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Abstract
To investigate the feasibility of interior imaging reconstruction in soft X-ray tomography for higher-
resolution cellular imaging, includingwhole-cell imaging, we develop an alignment and reconstruc-
tion algorithm that combines a small number of sparse whole-cell imageswith a high-resolution local
interior scan. Based onnumerical simulations, we demonstrate that combined reconstructions
mitigate the depth-of-field limitation in high-resolution scans, enable radiation dose optimization,
and yield quantitative X-ray absorption values with sparse sampling.We further validate our
numerical approach using experimental data from twodifferent cell types and show that the
combined reconstruction reliably provides high spatial resolutionwithin an interior region of
interest of awhole cell. The resulting sparse reconstruction framework offers robust, faithful
visualization of cellular organelles in soft X-ray tomography. Thismesoscale imaging strategy allows
one to ‘scout’ and zoom into selected subcellular volumes of interest, enabling increased spatial
resolutionwithout sacrificing larger-volume imaging and providing information on the relative
positions of all organelles within a cell.

1. Introduction

Over the past years, soft X-ray tomography, or SXT, has established itself as a powerful imaging technology to
tackle key questions in cell biology. To date, SXThas been used onmore than 100 different cell types [1]. Several
features set SXT apart fromother imagingmodalities. The so-called ‘water-window’ energy range used in SXT
enables native contrast of cellular anatomywithout the need for labeling or chemical fixation. This native
contrast is quantitative as theX-ray linear absorption coefficient, shortly LAC, is a directmeasurement of the
mass density within cells [1]. Therefore, the LAC is extensively used to study the state of cellular organelles [2, 3]
andmathematicalmodeling of theirmolecular composition [4]. Furthermore, SXT employs transmission
geometry and computed tomography (CT) acquisition to visualizewhole cells with tens of nanometers spatial
resolution.

This similarity tomedical CT comes alongwith comparable limitations. Themagnification and camera
pixel size limit the spatial resolution of SXT.Due to the use of diffractiveX-ray optics in SXT, the increase in
spatial resolution comes not onlywith a smaller field of view on the camera sensor but alsowith a shorter depth
of field. Therefore, whole-cell SXT imagingwith higher spatial resolution can be achieved only on smaller spe-
cimens, like bacterial cells [5]. The loss of imaging volume in high-resolution SXT can be compensated by
alternative imaging geometries that combine several volumes imaged in depth [6] or by laterally expanding the
field of view [7]. However, these approaches often result in higher radiation doses or loss of spatial resolution in
some parts of the specimen. Therefore, the challenge of SXT imaging lies in increasing spatial resolutionwith-
out compromising imaging volume or increasing the radiation dose, inevitably leading to incomplete data.
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Inmedical CT, incomplete data is often solved by alternatives to filtered-back-projection reconstruction
algorithms, such as optimal recovery, Bayes estimate, andTikhonov-Phillipsmethods [8]. In a specific case
where high-resolutionCT scans are acquired locally, known as region of interest (ROI) tomography, the out-
of-field structures affect the quantitative accuracy of theX-ray absorption coefficient and lead to artifacts, par-
ticularly at the edges of the field of view [9]. Kyrieleis et al [10] show that a simple extension of the truncated
data can be sufficient for high-quality reconstructions using standard reconstructionmethods.However, they
also argued that the required sampling is still governed by the overall size of the sample, e.g., imaging a 25%ROI
would require approximately a 4x increase in the number of projection images compared to the standard pro-
tocol tomaintain quantitative accuracy. This approach is therefore impractical for SXTdue to the resulting
increase in radiation dose.

For correct quantitative reconstruction,multi-resolution approaches have been proposed, where an inter-
ior ROICT scan is supplemented by a scout scan of awhole sample at lower resolution [11, 12]. Several interior
reconstructionmethodswere designed to utilize themulti-resolution data. Using the low-resolution data as a
prior in the reconstruction of the ROI scan [13] or re-projecting sparse views to obtain extended data for ROI
scan [14] helps to reduce artifacts fromdata truncation and provide high-quality, reliable reconstructions of
interior tomography at low computational costs.

Interestingly, the dose-fractionation theorem that is valid for biological specimensmeasured in computed
tomography geometry[15, 16] suggests that the dose required to reconstruct a high-resolution 3D volume can
be distributed among any number of different projections. Thus, an accurate reconstruction of X-ray absorp-
tion values is possible without an increase in radiation dose for suchmulti-resolution approaches.

Despite the broad applicability of ROI tomography inmedical and laboratoryCT imaging and the possibi-
lity of combining projectionswith no increase in radiation dose, this imaging approach has not been employed
in SXT.On the one side, flat specimen supports used in some SXT instruments do not allow for full profit from
multi-resolution imaging, as the samples are laterally extended.On the other hand, full-rotation SXT imaging
at higher resolution is limited not only by the short depth of field, but also by themechanical stability of the
microscope [5].

Here, we develop and optimize the reconstruction algorithm, that combines sparse low-resolution and
interior high-resolution SXT scans to achieve accurate and stable interior tomography in SXT. Based on theor-
etical considerations, we find an optimal number of low-resolution images required to obtain high-fidelity,
high-resolution local imaging. To fully exploit the advantages of interior SXT,we consider full rotation over
360° and half rotation over 180° arc tomography acquisitions side by side. Furthermore, we show that dose
distribution optimization in full-rotation SXT enablesmulti-resolution interior SXT implementation.

Finally, we probe our theoretical considerations experimentally by performing interior SXT tomography of
bacteria and humanB cells. Using analysis of the LACprofiles, we show that our algorithmprovides a theoreti-
cally exact interior SXT reconstruction that is reliable and has great potential for cell imagingwith SXT,where
high and local spatial resolution is crucial, such as the substructure of small bacterial cells andmembrane struc-
tures within larger human cells.

2.Method

Here, we present the theory and implementation of interior soft X-ray tomography in a compact form. For
more details on the implementation, please see theAppendices and theGitHub repository [45]: https://github.
com/ncxt/InteriorSXT

InX-ray tomography, the image formationmodel has traditionally been based on the Radon transform
[17], the ideal linear transform (projection) of the specimen’s attenuation coefficients onto a plane. This is
linked to the experimental image formation through the Beer-Lambert law, such that the recorded intensity of
a ray, Ii, can be expressed as attenuation of its intensity along a ray path, Li, as

( ) ( )µ=I I t texp d . 1i i
L

0
i

In this work, for the inversion, we consider only themeasurement in terms of a linear transformon the
discrete representation of theX-ray LACdistribution x such that

( )=y P x, 2

where thematrix elements P ij represent the contribution of jth voxel in the LACdistribution on the projection
on the ithmeasured pixel, and yα is a vector representation of themeasured absorption image /I Ilog 0.
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A tomographicmeasurement can nowbe expressed as a series of projection operators

( )=
y

y

P

P
x, 3

nn

0 0

wherePn is themeasurementmatrix describing the image formation of the nth image and yn its corresponding
absorption image. The tomographic inversion is then described by its ‘measurementmatrix’

( )A
P

P
4

n

0

[and thus, with a set of linear equations

( )=Ax y. 5

The behavior ofA and the possible existence of its inverse depend on themeasurement setup. In general, no
unique solution exists for an overdetermined systembecause of noise, but suitable solutions can be found, e.g.,
via the normal equation

( )=A y A Ax, 6

which describes the critical points of the l2-normof themeasurement errors.
The least-squares solution is not unique for an undetermined system, and the solution depends on the

initial point and the reconstruction algorithm. Examples of such undeterminedmeasurements, such as insuffi-
cient sampling, limited angle acquisition, and interior tomography, are shown in figure 1.

InX-ray tomography, the interior problem is nearly solvable, with the primary challenge being a low-fre-
quency ‘cupping’ bias [18], which can bemitigated using lambda tomography [19] or by incorporating known
X-ray attenuation in subregions [20].

In this study, we explorewhether incorporating a sparse full field-of-view (FOV) scan can provide sufficient
stabilization for the reconstruction process, particularly in high-resolution quantitative soft X-ray tomography
experiments.

Specifically, we do this by extending themeasurementmatrixAROI containing the interior scanswith a set
of full FOV scansAfull, such that

( )A
A
A

7ROI

full

Ourwork here focuses primarily on the feasibility of the inverse problem in this setting, the sampling con-
siderations for the SXT case, and an experimental proof of concept. Thus, all reconstructions are performed
using a pure l2minimization of themeasurementmatrix via the conjugate gradientmethod on the normal
equations (CGNE). For the simulated results, we determine the optimal stopping iterations based on the l2 loss.

Although numerous reconstruction approaches incorporate, e.g.,more accurate statisticalmodeling [21],
regularization [22], or deep learning [23], our focus remains on the fundamental tomographymodel as a
straightforward linear inverse problem. The formulation of the interior problem is simple andmodular, and
can be easily incorporated intomany existing frameworks by splitting the designmatrix Equation (7) into the
operator-specific partsAi for the two separate scans. For example, SIRT can be implemented as

Figure 1.Examples of well-sampled and undeterminedmeasurements in SXT, showing typical reconstruction artifacts arising from
the nature of the forwardmodelA. a) sufficient well-sampled reconstructionwith 92 projection images acquired; b) insufficient
sampling, where the number of projectionswas reduced to 10; c) limited angle problemwhere 100 projectionswere acquired from
−65° to−65°, and d) interior problemwhere the detector width is reduced to 8 μm (from16 μm).
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where⊙ is theHadamard product, and
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are the domainweights, andAi and Ai denote the forward and backward projection operators, respectively.

2.1.Null space
To assess the stability of the reconstructionwithin the region of interest (ROI), we evaluate its contribution to
the null space of the projection operatorA. As discussed in [24], the domain U of themeasurementmatrixA
can be divided into two subspaces, its null spaceN(A) and itsmeasurable spaceN⊥(A), where the null space is
formally defined as

( ) { } ( )= =UA AN f f 0 . 8

This implies that for any vector Ux that is a solution of Equation (5), then {x + xnull} is also a solution to
the equation for any vector xnull∈ N(A). Therefore, any solution component residing in the null space does not
affect the projection data and thus cannot be recovered from themeasurements alone.

To estimate the null space, we follow themethods discussed in Zeng andGullberg [25] andKuo et al [24] by
initializing the x0 with a phantom image.We update the image usingWilson-Barrett iterations [26]

( ) ( )=+x I A A xs , 9n n1

where s is an iteration step size. From the starting point of the phantom image x0= xmeas+ xnull, the system can
only updatemeasurable components of x0, thus converges towards the null space component xnull of the
phantom.

We conducted simulationswith bandwidth-limited, noiseless projection images, reconstructing them
usingCGNE. The number of projectionswas selected based on the sampling requirements for a bandwidth-
limited 2DRadon transform [27]. The reconstruction process was halted at the point of the highest peak signal-
to-noise ratio (PSNR). In figure 2, we showboth the PSNR and the relative length of the null space vector,
|xnull|/|x0| for different SXTmeasurement setups: a full-view scanAfull, an interior scanAROI, and a combina-
tion of sparse full-view and interior scans as defined in Equation (7).

Fromboth the reconstructions and the profiles on figure 2, we observe that the sparse scan provides a
reconstructionwithout bias but lacks detailed resolution.While having enough sampling to capture the fine
details in the truncated data, the interior scan exhibits the common artifacts associatedwith interior tomo-
graphy.However, by combining bothmeasurementmatrices, the artifacts are corrected, and the details of a
sample are preserved in reconstruction.

Furthermore, we can see that although the PSNR (and, inversely, the length of the null space vector) con-
verges gradually whenmeasured across the full volume, the samemetrics asmeasured from the interior ROI
stabilize rapidly with just a few full-view scans.Notably, while thematrix itself is still underdetermined,
remarkably few full FOVprojections are required to achieve a stable reconstructionwithin theROI of the
interior scan. Importantly, the LACvalues of combined interior SXT reconstructions are the closest to the
selected phantom.

2.2. PSF considerations
X-raymicroscopic images are not ideal projections of objects because they are influenced by themicroscope’s
three-dimensional point spread function (PSF) [28]. The resolution of the optical system, such as SXT, is
determined by the relationship r ∝ λ/NA, whereλ is thewavelength of the illuminating light andNA is the
numerical aperture of the objective lens.However, diffraction-limited optics impose amaximumdepth of field
(DOF)described byDOF ∝ λ/NA2. This narrowDOF restricts the volume inwhich image formation can
approximate parallel projections and, particularly for large samples,may introduce radial reconstruction
artifacts [29].

To address the impact of limitedDOFon the accuracy of interior SXT tomography, we numerically eval-
uated theX-ray optics of theXM-2microscope. The image formation process wasmodeled as an incoherent
intensity transform, incorporating a PSFwith added Poisson noise, following the approach in [29].We ana-
lyzed twoX-ray objective lenses with outer zonewidths (OZW) of 35 nmand 60 nm, as described in Section
AppendixA.

4

Phys. Scr. 100 (2025) 126008 AEkman et al



To evaluate the quality of a reconstruction, x, we define a relative peak signal-to-noise ratio PSNRrel as

( ) ( ) ( )= x xPSNR PSNR PSNR , 10rel ref

where xref is the ‘ideal’ reference reconstruction. For xref, we used a high-resolution that is independent of depth
(infiniteDOF) and has the same lateral resolution as the 35 nmOZW.

Figure 3 presents the numerical results of Equation (10) for a 6 μmwide interior, showing variations in
PSNRrel as a function of the radius of the cylindricalmeasurement region.

As expected, the PSNR and Fourier ring correction analysis (FRC) for the interior scan (in green) show that
interior data preserves the high-frequency information but suffer due to bias from the truncated data, with
image quality rapidly deteriorating towards the edges of the ROI. The full scanwith a 35 nmOZW (in orange)
scan provides better detail within the central region compared to the 60 nmOZW (in blue). For example, taking
1/7 of the resolution line in FRC analysis as ameasure of spatial resolution, the in-slice resolution for full 35 nm
ZP is 61 nmas compared to full 60 nmZPwith 79 nm spatial resolution.

The combined scan, using the truncated 35 nmdata alongside the full 60 nmdata, successfully captures the
inner details of the high-resolution scanwithout the loss of image quality typically associatedwith the interior

Figure 2. Left: Examples of reconstructions and their corresponding null space components, xnull, (a,b) for a sparse low-resolution
scan (7 projection images), (c,d) an interior scan of the same phantom (273 truncated projection images), and (e,f) a combined
reconstruction of sparse low resolution and interior tomography (7 full and 273 truncated images). g)PSNRof the ROIwithin the
interior scan (pixels within the orange circle in panel a) and the full volume (blue square shown in panel a). Both PSNRs are for the
combined reconstruction as a function of the number of full-view projections used in the sparse scan. h) the relative length of the null
space vector for the interior scan (orange circle in panel a) and outside ROI (orange circle). i)LACprofile across the horizontal red
line shown in panel e) for the original phantom and three SXT reconstructions, which are sparse low-resolution imaging, interior
high-resolution, and combined reconstructions.
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scan. That shows that the constraints of limitedDOFgo awaywhen the interior SXT tomography is recon-
structed in a combined fashionwith the ‘out of focus’ knowledge from the sparse scan.

As shown in figure 3, the combined reconstruction of the low andhigh-resolution projectionmatrix can
slightly degrade the quality of the interior scan as compared to the ideal high-resolution case. This is due to the
non-optimalweight of the back-projectedmeasurements. Using the true PSF of themicroscopewith its inver-
sion [29]wouldmitigate this, as the back-projectionweights the overlapping interior data appropriately. In
practice, however, this approach is computationally costly (on the order ofN2, whereN is thewidth of the
kernel) and suffers from slower convergence. Another solution is to apply a data-weighting scheme, as inCao
et al [11], to take into account the different weights of themeasurement data.

We suggest approximating the projection operator as

( ) ( )*A x k Ax , 11psf

where the kernel k is a z-independent PSF and * the 2D convolution operator. Conversely, the adjoint operator
can be expressed as

( ) ( )*A y A k y . 12psf

This 2Ddeconvolution approach drastically speeds up the projection operator and allows it to bemore easily
integrated into existing projection libraries.

2.3. Sampling considerations
The system’s optics set a physical limit on the achievable spatial resolution.However, in an experimental setup,
this represents an optimistic upper limit. In reality, the spatial resolution is constrained bymeasurement
statistics, influenced by the total radiation dose the sample can tolerate, and the specific sampling
protocol used.

Dose fractionation tells us that we are free to distribute the dose inwhicheverwaywewant as long aswe
remain sufficiently sampled (for details, see Section B.3). However, experimentally, it is often beneficial to take
fewer projections, as processing, such as alignment or deconvolution of the projection images, ismuchmore
robust. Figure 12 shows FRC analysis of conjugate gradient applied to normal equation (CGNE) reconstruction
method for different angular sampling and the radiation dose. Angular sampling shows no effect on FRC curves
at a lower total dose.

2.4.Dose optimization
Achieving high-resolution imagingwith full FOV scansmay require higher doses than currently used. If one is
only interested in the ROI of the scan, the dose distribution of a full scan is highly non-optimal. This is
illustrated in figure 4wherewe show the dose distribution across a sample for three different scanning
approaches: half rotationwith 180°with 97 images in full FOV, full rotation 360°with 97 images in full FOV,
and a combined scanwith 19 full FOV images, combinedwith 97 interior images. For the combined scan, the

Figure 3. a)PSNR comparison for different scanningmodes in an interior tomography setupwith a 6 μmROI. The interior scan
behaves as expected. The full scanwith 35 nmOZWprovides better interior detail but suffers from reduced quality because of the
shorterDOF. The combined scanwith truncated 35 nmdata and full 60 nmdata preserves high inner detail without artifacts of the
interior scan. b)Corresponding in-slice FRCwith a ROI of 6 μm.The square ROI includes the interior boundary to exaggerate
artifacts. The low-frequency bias explains the huge drop in PSNR. Themulti-view protocol, including both 60 nmand 35 nmdata,
preserves both PSNRand FRC.The horizontal line shows the 1/7 resolution line, giving an in-slice resolution of 79 nm for the 60 nm
ZP and 61 nm for the 35 nmZP.
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intensity of the interior imageswas increased so that the total integrated dose over the entire samplematched
that of the other scanning geometries.

It was previously reported [30] that the highest dose levels accumulate at the sample edges during a half-
rotation FOV scan. To optimize dose distribution, themost straightforward approach is to use a full 360-degree
rotation protocol. In full rotation tomography, it is essential to interlace themirrored images such that the
angular sampling is increased (ifmirrored images overlap, the angular sampling is halved). Despite this, even in
full-rotation scanning, a significant portion of the radiation dose is still concentrated at the sample edges and
specimenholder, increasing the risk of localized radiation damage.

Going one step further, the interior SXT scan distributes the dosemore effectively across the specimen,
focusing on areaswhere detailed imaging is required. Additionally, as discussed in Section 2.1, the quality of the
ROI for the combined projection operator improves rapidlywith just a few full FOV scans. Beyond this point,
additional full-FOV sampling provides diminishing returns regardingROI qualitywhile unnecessarily increas-
ing the total radiation dose as shown in figure 2 panels g) and h).

To further investigate this trade-off, we simulated the accumulated dose in a high-resolution phantom,
comparing a full scan to an interior scanwhile keeping the incident intensity constant. For this phantom, the
average accumulated dose of a full scan,DFull, was 2.3 times higher than that of the ROI scan,DROI. Thismeans
that for each full FOV image removed, the remaining dose allows for aDFull/DROI increase in the intensity of the
interior scanwhile keeping the total dose constant.

Tomaintain consistent angular sampling for the interior scan, the redistributed dosewas evenly allocated
among the interior projections, leading to the following relationship:

( )=I I
D

D

N N

N
, 13Full

ROI
ROI 0

0 full

0

whereN0= 499 is the full angular sampling used as a reference.
In figure 5, we show the simulation phantom and the results of the dose optimization. As expected, while

the PSNRof the full-FOV reconstruction (blue) increases with an increasing number of projection images, the
quality of the combined interior scan (orange) is higher at the lownumber of projection images, as the dose is
distributedmore efficiently and results in a lower statistical error for the interiormeasurements. This beneficial
trade breaks down at very low angular sampling (orange circle), as the number of full FOVprojections is insuf-
ficient to reduce the interior bias.

Additionally, we show the result of the deconvolved reconstructions using 2D approximation as described
in Equation (12). Tomitigate possible inversion crimes (where both the forwardmodel and the backward
model are donewith the exact same discrete operatorA ), the deconvolution reconstructionwas done by using
aGaussian kernel with a full-width-half-maximumequal toOZW.This deconvolution approach significantly
helps to improve the quality of the combined interior scan asmeasured using PSNR.

Overall dose and angular sampling optimization for the phantommeasurements show that a combined
interior scan can be achievedwith only 23 full projections. In practice, the optimal selection of dose reduction is
additionally limited by experimental factors, such as alignment, which is discussed in SectionAppendix B.

3. Experimental results

To verify the applicability of the interior SXT experimentally, we have applied our interior reconstruction
method on bacteria (Pseudomonas putida, KT2440 strain) and humanB lymphocytes (GM12878 from the
NGIMSHumanGenetics Cell Repository). These specimens demonstrate a variety of cells that would profit

Figure 4.Comparison of the radiation dose distribution in a sample for different scanning protocols. a) simulatedX-ray absorption
(LAC)within a sample. Distribution of the dose over b) half rotation (180 degrees) c) full rotation (360 degrees), and d) the combined
interior and sparse scan. The total dose on the sample for all scanning geometries is the same. The full FOV scan concentrates the
dose at the sample’s edges, leading to inefficient sampling. The interior scan distributes the dosemore effectively within the center of
the specimen.
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from interior SXT. That is, from small cells like bacteria and yeast, where a high number of tiny cells and their
structure can be quantitatively analyzed, and larger human cells, where tiny structural changes appear in an
unpredictable locationwithin the larger cell volume, are visualized in the context of other organelles and a
whole cell. Like other full-rotation SXT experiments, specimenswere loaded into thin-wall glass capillaries and
vitrified via rapid plunging into a liquid propane [31].

For each approach, 92 projection imageswere acquired for full and interior tomographywith 2° rotation
increment and 200ms 500ms exposure time per projection. The projection images of full FOV and interior
scanswere aligned using a combination of an automatic alignment of the full FOV scans and cross-correlation
of the interior projections to the full FOVdata, described in detail in SectionAppendix B. To demonstrate the
differences in interior SXT for each cell type, we reconstruct full FOV, interior SXT, and combined reconstruc-
tion based on a full interior scan and 19 projection images from full FOV.

Figure 6 demonstrates the results obtained for an interior high-resolution scan, a sparse low-resolution
SXT scan, and the combined interior tomography reconstruction. To enhance the demonstration of interior

Figure 5.Comparison of full scan and dose-optimized scan performance. The protocolswere designed so that the total dose of the
sample was kept the same. The gained intensity from reducing the number of full scan imagesNfull was distributed evenly across the
interior scans. From the PSNR curves, we see that the overall quality decreases as the angular sampling becomes sparser, but the
interior PSNR increases. The red line shows the comparison PSNR for the reference scan, i.e., a full FOV35 nm scanwith infinite
DOF. At some sparse sampling, this breaks down, as the sparsemeasurementmatrix is insufficient to reduce the interior bias in the
null space. The top row shows a detail of the ROI for the peak PSNR for the direct a) and deconvolved b) reconstructions as compared
to the ideal reference scan c).

Figure 6. Interior SXTdemonstrated experimentally on bacteria cells. Transverse virtual slices through the SXT volume for a)
interior and b) sparse scans only, and c) combined reconstruction as described above. To emphasize the interior effects, the interior
scan datawas cropped horizontally by 25%.
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tomography, the ROI projections have been additionally cropped by 25% to reduce the FOVof the scans artifi-
cially. In-plane reconstructed virtual slices, as expected, show artifacts outside the imaging area in the interior
scan. Although the interior reconstructions enable the visualization of cells inside the specimen holder, the
addition of the sparse full FOV scan substantially increases the usable ROI of the reconstruction. It delivers
faithful LAC reconstruction in every cell over thewhole ROI as seen for cells close to the periphery of the ROI in
combinedwith respect to interior reconstructions in figure 6.

In one such interior SXT, there are tens of individual bacterial cells, each showing variablemembrane aber-
rations. Such subcellular changes in bacteria are of high relevance to research on geneticmutants [32], metabo-
lism [33], and bacterial biofilms [34].

A similar comparison of the interior, sparse, and combined SXT imaging of a humanB cell is shown in
figure 7. Allmajor organelles, such as the nucleus,mitochondria, and lipid droplets, are visible in all recon-
struction examples. Smaller organelles, such as the endoplasmic reticulum (ER) and endosomes, are visible but
challenging to segment and analyze quantitatively in sparse reconstruction. In comparison, when interior SXT
is truncatedwith projections from full FOV, the reconstructed combined volume is free fromartifacts with
faithful LAC values, that are known for cellular organelles, such asmitochondria, lipid droplets and nucleus [1],
and locally higher resolution.

Figure 7. Interior SXTdemonstrated experimentally on humanB cells. Saggital virtual slices through the SXT volume for a) interior,
b) sparse scans, and c) combined reconstruction as described above, and two highlightedROIs. Panels (d—g) show a detailed ROI of
ERwrapping around the late endosome (orange ROI in panel a). Panels (h—k) show a doublemembrane vesicle (blueROI in panel
a) from a low-resolution full FOVdata (d andh), a sparse global sampling (e and i), and a combined interior reconstruction (f and j).
Part of the outermembrane is clipped to reveal the structure inside. Panels g) and k) show3D renderings of segmented organelles in
the ROIs.
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This higher resolution regionwithin thewhole cell enables the segmentation of the region of interest (ROI1
andROI2). BothROIs show faint details in the low-resolution scan that could not be faithfully labeled butwere
segmentable semi-automatically in the combined interior scanwith sparse global sampling. This type of inter-
ior high-resolution imaging enables the analysis of fine cellular features likemembranes withinwhole human
cells. Its combinationwith the sparse information enables a) to determine the region of interest for a ‘zoom in’
high-resolution SXT scan; b) to retrieve contextual information, such as proximity to the nucleus or other
organelles; and c) to reconstruct faithful LACvalues, enabling automatic and quantitative analysis. For the
example of the ER-endosome interaction network, even just the sparse scan is sufficient to probe the position of
the desiredROI, as the position of the endosomedoes not require high resolution or angular sampling.

Overall, the experimental results show that the combined reconstruction developed for the interior SXT
scans enables the visualization of subcellular features in a large contextual volume and can be robustly used for
other scientific cases.

4. Conclusions

In this work, we have demonstrated via theNull space of the combined projectionmatrix that the bias in the
interior tomography vanisheswhen combinedwith sparse context scans.We showed numerically that the
limitation of the shallowdepth of field in the high-resolution interior scan is not relevant for the combined
reconstructions, as the sparse scan provides the ‘out of focus’ information. Furthermore, based on the dose
fractionation theorem,we argue that since SXT imaging is primarily noise-limited, optimizing the dose
distribution ismore critical than increasing angular sampling. The calculated dose distribution confirms that
the combined interior SXT reconstruction utilizes the radiation dosemore effectively within the specimen
holder than half- and full-rotation tomography.

In practice, the optimal selection of imaging is limited by experimental factors, such as alignment.We,
therefore, performedmulti-resolution imaging of bacteria and humanB cells. Based on these experimental
data, we show that combined reconstructions of the interior SXT enable faithful reconstructions of LACvalues
in 3D. For small cells like bacteria or yeast, our combined reconstructions allow for analysis of subcellular
alterations for tens of cells. Conversely, combined interior reconstructions required only 19 projections from
the sparse scan. That enables us to perform low-resolution ‘scout’ SXT imaging, followed by a zoom-in into the
region of interest in larger cells, like humanB cells. Therefore, the combined reconstruction of the interior SXT
imaging is a valuable tool for several application cases.

Our combined reconstruction algorithmof interior tomography provides numerical consideration and the
first experimental evidence that the resolution limit in SXT imaging can be increasedwithout sacrificing larger-
volume imaging.
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AppendixA. Simulation

For a high-resolution phantom,we used aMacrophage cell (jrc_macrophage-2) fromOpenOrganelle [35]. The
Linear AttenuationCoefficient (LAC) values were approximated bymeasuring themean gray values from the
provided label field. These valueswere then linearly scaled tomatch the knownLACvalues of the respective
organelles. The average LAC for the phantomwas approximately 0.28 μm−1.

Figure 2 used a downsampled image of shape 196 px× 170 px. For figures 3, 5, and 12, the phantomwas
cropped to a circular ROI ofwidth 801 px, with a pixel size of 20 nm.
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For bandwidth-limited projections, we used the linearized incoherentmodel for the forwardmodel as pre-
viously described [29]. The high-resolution and low-resolution PSFswere approximated bymodeling theMZP
as an ideal circular lens, with the effective PSF calculated according to themethods outlined previously [36], by
the converging illumination emerging froma circular lens aperture based on theHuygens-Fresnel princi-
ple [37].

TheMZPs used in the simulations had outer zonewidths (OZW) of 35 nmand 60 nm for high and low-
resolution setups, respectively. These parameters were chosen to simulate the current configuration at theXM-
2microscope. InXM-2 [38], the condenser is configured as a linearmonochromator, formed by the condenser
zone plate and a pinhole placed close to the specimen,meaning that we have the same effect of elongated PSF as
described in [36].We have chosen a representativewavelength from the ‘water window’ of 2.4 nmwith amono-
chromaticity ofλ0/Δλ = 300. As an ‘ideal’ reference, we used a z-independent PSF equal to the focal point of
the 35 nmOZW. For the Beer-Lambertmodel’s forward and backward projection operators, we used the
ASTRA toolbox [39–41] via Tomosipo [42].

As the phantom’s variability in thickness was high, we used a z-normalizing flat field as the illumination
profile so that a single Poisson noise level could better describe the images. This was done by taking an ideal
Beer-Lambert projection of the sample and then averaging all illumination profiles over themean horizontal
absorption of the sample.

The approximate noise level of the PSNRwasmeasured fromdiagonally split experimental data. A similar
measurementwas done onPSF simulated projections to extract the necessary Poisson count for similar PSNR,
with a result of about 150 photons / (10 nm)2.

Code available at https://github.com/ncxt/InteriorSXT. [45]

AppendixB. Experimental results

B.1. Alignment
The alignment is preceded by the alignment of the full-FOV stack following standard protocol [31]using
AREC3D [43]. Since the entire sample is within the field of view, pre-aligning the capillary using a rigid body
transformation is highly robust, even in cases of sparse sampling. The aligned stack is then upscaled tomatch
the resolution of the high-resolution interior projection images.

These images (anchors) Ai serve as accurately aligned reference images for the interior scan. A schematic
representation of the alignment setup is shown in figure 8.Note that themirror images can also be used as
anchor points for sampling protocols spanning over 180°.

We seek translationsTi to the interior images Ii, thatmaximises the function

( ) ( ) ( )+f T I A f T I T Iarg max , , 14T
C

i i j
C

i i j ji

a nn

whereCa is the collection of image-anchor pairs i, j, forwhich the angular difference to the anchor is smaller
than half of that to its nearest neighbor, andCnn is the collection of nearest neighbor image-image pairs.

As an alignmentmetric f, we used the normalized cross-correlation

( )
( ¯)( ¯)

( ¯) ( ¯)
( )=x y

x y

x y
NCC

x y

x y
, , 15

i i i

i i
2 2

where x and y are vector representations of the overlapping information of the two images and x̄, ȳ , their
respectivemeans.

The alignment of the interior images was initially set using a nearest-neighbor approach. A global shift was
determined for all images based on reliable full-scan anchor points. This shift was then smoothly interpolated
to provide an initial estimate for the interior alignment across thewhole dataset. Starting from this initial align-
ment, the alignment function Equation (14)was optimized usingQuasi-Newtonmethods [44].

Values ofNCC(x, y)were only evaluated at integer shifts, and intermediate values were obtained by bicubic
interpolation. This way, cached values of integer shifts forNCCwere used to obtain both function values and
their derivatives of sub-pixel shifts.

Pure nearest-neighbor alignment generally fares relatively poorly in tomography, as there can be sub-
stantial drift in successive alignments. The anchor points (shown in figure 8)mitigate this, as it reduces the
length of long chainswhere this drift can happen.

To investigate howmany such anchors are experimentally needed for faithful alignment of the interior
data, several alignmentswere performedusing only a sparse subset of the complete low-resolution dataset.
Figure 9 presents themean alignment error T Ti i

ref (L2 norm) as a function of anchor sparsity for exper-
imental bacteria andB-cell datasets, whereTi

ref are the interior translations using all available full FOV images
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as anchor points. The results demonstrate a slow quality decay (sub-pixel accuracy)with reduced full-FOV
images to as low as 10 images, where the alignment error increases significantly.

Optimal sampling should balance the number of anchor points with alignment stability and dose. Too few
anchors lead to significant drift, while excessive anchors introduce sub-optimal dose distribution.Notably,
interleaved sampling plays a crucial role in reducing systematic biases by ensuring thatmirror images con-
tribute distinct anchor points, thereby enhancing the robustness of the alignment procedure.

B.2.Note on absorption correction
For both 60 nmand 35 nmOZWobjectives, the samemonochromator setup is used. In this scenario, a higher-
order diffraction of an incomingX-ray beamcould be potentially focused on the sample. To account for this
potential contamination ofX-ray absorption values, we use a dual-energymodel to correct the transmission
values of the experimental data between sparse and interior scans.

Figure 8. Schematic graph of the alignment procedure. The nodes represent the images, while the edges represent the transformation
between them.The inner circle shows the fixed transformation of the pre-alignment, while the outer circle represents the nearest
neighbor of the interior scan. An auxiliary constraint is added to a pre-aligned anchor image for an interior imagewhen its angular
distance is smaller than that to its nearest neighbor.

Figure 9.Mean length T Ti I
ref of the alignment difference between sparse reference data for B cell andBacteria as a function of

anchor sparsity. The shaded area shows the±σ percentile.
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The low-resolution intensity ismodeled as puremonochromatic Beer-Lambert

ˆ = µI e .A
L

For the high-resolutionMZP,wemodel the intensity as a dual-energy setup, where the intensity is now given
by

ˆ { }= +µ µI e e ,B
L L

0 1
0 1

wheref0 andf1 are the relative intensities of the two energies. As the LAC is energy dependent, we should also
describe the samplewith two different absorption coefficientsμ0 andμ1. For the sake of simplicity, we assume
that the dependency between absorption and energy can be described as a linear functionμ2= cμ1.

With this approximation, the intensity of the high-resolution scan can be described as

ˆ ˆ ( ) ˆ ( )= +I I I1 16B A A
c

0 0

In figure 10, we show the best fit ofmodel Equation (16) to the collected normalized data for the Bacteria
sample and compare it to a simple affinemodel for stray light.

B.3.Note onbandwidth-limited sampling of theRadon transform
For this, we consider theRadon transformof a two-dimensional impulse function as described by Rattey and
Lindgren [27].We can express its Radon transformation as

( ) ( ) ( )( )/= +P J r, 2 e , , 17u
j

t t
2

0
t 0

where (r0,f0) is the position of the impulse function in polar coordinates,ωθ andωu are the angular and
positional frequency, respectively, and the angular frequency Z and only takes discrete values.

In a discrete settingwherewe take the Radon transform for a single voxel of LACμ, this is equivalent to
( ) ( ) ( )/µ=P k k N J k R Lk, , 2 18u u ua

wherefθ andfu are the appropriate phase shifts for the angular and positional sampling,Na the number of
angles, and kθ = − Na/2…Na/2 and−L/2…L/2.

The function |J(x, y)| approaches zero as x ≫ y, forming a structure that resembles an ‘infinite length
bowtie’ [27]. For the bandwidth-limited case, wemultiply the columns by theOTF,

( ) ( ) ( ) ( )=F k k OTF k F k k, , 19otf u u

Next, we can investigate the total power collected fromdifferent sampling schemes. Integrating the cumu-
lative spectral power of the signal |Fotf2|

2 with respect to kθ, we can quantify the amount of signal power col-
lected by the limited sampling compared to the ‘ideal case’. In figure 11we an example of theOTF limited
Radon transform for the 60 nmOZWand the cumulative power for both 35 nmand 60 nmOZW, showing that
most of the signal is collectedwith sparse samplingwhile capturing the remaining power requires increasingly
dense angular sampling. The sampling limit ofNa ≈ (2πRfcut) is shown in figure 11(a), where the spatial fre-
quency fcut was chosen to correspond to 98%of theOTFpower.

Figure 10.An example of the fitted intensity transformbetween the 60 nmand the 35 nm images. The orange line shows the used
transformation using the polychromaticmodel of Equation (16). The green line shows a simple affinemodel, where the intensity
difference is caused by unspecified stray light.
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Figure 11. a)Aquadrant of the function |Fotf(kθ, ku)| showing bandwdth-limited bowtie of the 60 nmOZW.The blue and orange
lines show the accurate sampling up to 98%of theOTFpower for the 60 nm (656 images) and 35 nm (1256)ZP. b) Integrated total
power of the signal with respect to the angular sampling as described in SectionB.3. L = 800 r = 400 sampledwith a grid pixel size of
20 nm.

Figure 12. In-slice FRC reconstructions for different angular sampling rates. Sampling limit shows the theoretical resolution limit
based on the Radon sampling atNa = 881. At lower total doses, dose fractionation holds for sampling rates well below the standard
sampling criterion. As the total dose increases, the effects of sparse sampling becomemore pronounced.However, these deviations
require both higher dose and sparser sampling than is commonly employed.
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Weargue that when the imaging scheme becomes highly noise-limited, the importance of dense angular
sampling diminishes, as the SNRof the highest-frequency components degrades. In figure 12, we present three
examples of samplingwith equal total dose. At the lowest dose, no effect of sparse sampling is observed. As the
dose increases, the impact of sparse sampling becomes apparent, particularly in caseswith the lowest angular
sampling densities.
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