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Abstract

To investigate the feasibility of interior imaging reconstruction in soft X-ray tomography for higher-
resolution cellular imaging, including whole-cell imaging, we develop an alignment and reconstruc-
tion algorithm that combines a small number of sparse whole-cell images with a high-resolution local
interior scan. Based on numerical simulations, we demonstrate that combined reconstructions
mitigate the depth-of-field limitation in high-resolution scans, enable radiation dose optimization,
and yield quantitative X-ray absorption values with sparse sampling. We further validate our
numerical approach using experimental data from two different cell types and show that the
combined reconstruction reliably provides high spatial resolution within an interior region of
interest of a whole cell. The resulting sparse reconstruction framework offers robust, faithful
visualization of cellular organelles in soft X-ray tomography. This mesoscale imaging strategy allows
one to ‘scout’ and zoom into selected subcellular volumes of interest, enabling increased spatial
resolution without sacrificing larger-volume imaging and providing information on the relative
positions of all organelles within a cell.

1. Introduction

Over the past years, soft X-ray tomography, or SXT, has established itself as a powerful imaging technology to
tackle key questions in cell biology. To date, SXT has been used on more than 100 different cell types[1]. Several
features set SXT apart from other imaging modalities. The so-called ‘water-window’ energy range used in SXT
enables native contrast of cellular anatomy without the need for labeling or chemical fixation. This native
contrast is quantitative as the X-ray linear absorption coefficient, shortly LAC, is a direct measurement of the
mass density within cells [1]. Therefore, the LAC is extensively used to study the state of cellular organelles [2, 3]
and mathematical modeling of their molecular composition [4]. Furthermore, SXT employs transmission
geometry and computed tomography (CT) acquisition to visualize whole cells with tens of nanometers spatial
resolution.

This similarity to medical CT comes along with comparable limitations. The magnification and camera
pixel size limit the spatial resolution of SXT. Due to the use of diffractive X-ray optics in SXT, the increase in
spatial resolution comes not only with a smaller field of view on the camera sensor but also with a shorter depth
of field. Therefore, whole-cell SXT imaging with higher spatial resolution can be achieved only on smaller spe-
cimens, like bacterial cells [5]. The loss of imaging volume in high-resolution SXT can be compensated by
alternative imaging geometries that combine several volumes imaged in depth [6] or by laterally expanding the
field of view [7]. However, these approaches often result in higher radiation doses or loss of spatial resolution in
some parts of the specimen. Therefore, the challenge of SXT imaging lies in increasing spatial resolution with-
out compromising imaging volume or increasing the radiation dose, inevitably leading to incomplete data.

© 2025 The Author(s). Published by IOP Publishing Ltd
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In medical CT, incomplete data is often solved by alternatives to filtered-back-projection reconstruction
algorithms, such as optimal recovery, Bayes estimate, and Tikhonov-Phillips methods [8]. In a specific case
where high-resolution CT scans are acquired locally, known as region of interest (ROI) tomography, the out-
of-field structures affect the quantitative accuracy of the X-ray absorption coefficient and lead to artifacts, par-
ticularly at the edges of the field of view [9]. Kyrieleis et al [ 10] show that a simple extension of the truncated
data can be sufficient for high-quality reconstructions using standard reconstruction methods. However, they
also argued that the required sampling is still governed by the overall size of the sample, e.g., imaging a 25% ROI
would require approximately a 4x increase in the number of projection images compared to the standard pro-
tocol to maintain quantitative accuracy. This approach is therefore impractical for SXT due to the resulting
increase in radiation dose.

For correct quantitative reconstruction, multi-resolution approaches have been proposed, where an inter-
ior ROI CT scan is supplemented by a scout scan of a whole sample at lower resolution [11, 12]. Several interior
reconstruction methods were designed to utilize the multi-resolution data. Using the low-resolution dataasa
prior in the reconstruction of the ROI scan [ 13] or re-projecting sparse views to obtain extended data for ROI
scan [14] helps to reduce artifacts from data truncation and provide high-quality, reliable reconstructions of
interior tomography at low computational costs.

Interestingly, the dose-fractionation theorem that is valid for biological specimens measured in computed
tomography geometry[15, 16] suggests that the dose required to reconstruct a high-resolution 3D volume can
be distributed among any number of different projections. Thus, an accurate reconstruction of X-ray absorp-
tion values is possible without an increase in radiation dose for such multi-resolution approaches.

Despite the broad applicability of ROI tomography in medical and laboratory CT imaging and the possibi-
lity of combining projections with no increase in radiation dose, this imaging approach has not been employed
in SXT. On the one side, flat specimen supports used in some SXT instruments do not allow for full profit from
multi-resolution imaging, as the samples are laterally extended. On the other hand, full-rotation SXT imaging
athigher resolution is limited not only by the short depth of field, but also by the mechanical stability of the
microscope [5].

Here, we develop and optimize the reconstruction algorithm, that combines sparse low-resolution and
interior high-resolution SXT scans to achieve accurate and stable interior tomography in SXT. Based on theor-
etical considerations, we find an optimal number of low-resolution images required to obtain high-fidelity,
high-resolution local imaging. To fully exploit the advantages of interior SXT, we consider full rotation over
360° and halfrotation over 180° arc tomography acquisitions side by side. Furthermore, we show that dose
distribution optimization in full-rotation SXT enables multi-resolution interior SXT implementation.

Finally, we probe our theoretical considerations experimentally by performing interior SXT tomography of
bacteria and human B cells. Using analysis of the LAC profiles, we show that our algorithm provides a theoreti-
cally exact interior SXT reconstruction that is reliable and has great potential for cell imaging with SXT, where
high and local spatial resolution is crucial, such as the substructure of small bacterial cells and membrane struc-
tures within larger human cells.

2.Method

Here, we present the theory and implementation of interior soft X-ray tomography in a compact form. For
more details on the implementation, please see the Appendices and the GitHub repository [45]: https://github.
com/ncxt/InteriorSXT

In X-ray tomography, the image formation model has traditionally been based on the Radon transform
[17], the ideal linear transform (projection) of the specimen’s attenuation coefficients onto a plane. This is
linked to the experimental image formation through the Beer-Lambert law, such that the recorded intensity of
aray, [;, can be expressed as attenuation of its intensity along a ray path, L;, as

I = I,-oexp[—j;u(t) dt]. 1)

In this work, for the inversion, we consider only the measurement in terms of a linear transform on the
discrete representation of the X-ray LAC distribution x such that

)’G, = Pa'x) (2)

where the matrix elements R,; represent the contribution of jth voxel in the LAC distribution on the projection
on the ith measured pixel, and y,, is a vector representation of the measured absorption image —log I,/ L.
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Well sampled Insufficient sampling  Limited angle problem Interior problem

b) c)

Figure 1. Examples of well-sampled and undetermined measurements in SXT, showing typical reconstruction artifacts arising from
the nature of the forward model A. a) sufficient well-sampled reconstruction with 92 projection images acquired; b) insufficient
sampling, where the number of projections was reduced to 10; ¢) limited angle problem where 100 projections were acquired from
—65° to —65°, and d) interior problem where the detector width is reduced to 8 ym (from 16 pm).

A tomographic measurement can now be expressed as a series of projection operators

Yo ) 0
Y B,

where P, is the measurement matrix describing the image formation of the nth image and y,, its corresponding
absorption image. The tomographic inversion is then described by its ‘measurement matrix’

P
A= @
B,
[and thus, with a set of linear equations
Ax =y. )

The behavior of A and the possible existence of its inverse depend on the measurement setup. In general, no
unique solution exists for an overdetermined system because of noise, but suitable solutions can be found, e.g.,
via the normal equation

ATy = AT Ax, (6)

which describes the critical points of the *-norm of the measurement errors.

The least-squares solution is not unique for an undetermined system, and the solution depends on the
initial point and the reconstruction algorithm. Examples of such undetermined measurements, such as insuffi-
cient sampling, limited angle acquisition, and interior tomography, are shown in figure 1.

In X-ray tomography, the interior problem is nearly solvable, with the primary challenge being a low-fre-
quency ‘cupping’ bias [18], which can be mitigated using lambda tomography [19] or by incorporating known
X-ray attenuation in subregions [20].

In this study, we explore whether incorporating a sparse full field-of-view (FOV) scan can provide sufficient
stabilization for the reconstruction process, particularly in high-resolution quantitative soft X-ray tomography
experiments.

Specifically, we do this by extending the measurement matrix Aro; containing the interior scans with a set
of full FOV scans Ag,y;, such that

_ | Aror
A= [ Agy ] @

Our work here focuses primarily on the feasibility of the inverse problem in this setting, the sampling con-
siderations for the SXT case, and an experimental proof of concept. Thus, all reconstructions are performed
using a pure /> minimization of the measurement matrix via the conjugate gradient method on the normal
equations (CGNE). For the simulated results, we determine the optimal stopping iterations based on the I*loss.

Although numerous reconstruction approaches incorporate, e.g., more accurate statistical modeling [21],
regularization [22], or deep learning [23], our focus remains on the fundamental tomography model as a
straightforward linear inverse problem. The formulation of the interior problem is simple and modular, and
can be easily incorporated into many existing frameworks by splitting the design matrix Equation (7) into the
operator-specific parts A; for the two separate scans. For example, SIRT can be implemented as
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xED = x® 1+ C oY AR © (y — Aix®)),
i

where ® is the Hadamard product, and

Al Ay

are the domain weights, and A;and A, denote the forward and backward projection operators, respectively.

2.1. Null space

To assess the stability of the reconstruction within the region of interest (ROI), we evaluate its contribution to
the null space of the projection operator A. As discussed in [24], the domain U of the measurement matrix A
can be divided into two subspaces, its null space N(A) and its measurable space N | (A), where the null space is
formally defined as

N(A) = {f € UJAf= 0}. (8)

This implies that for any vector x € U that is a solution of Equation (5), then {x + x,,;} is also a solution to
the equation for any vector x,,,; € N(A). Therefore, any solution component residing in the null space does not
affect the projection data and thus cannot be recovered from the measurements alone.

To estimate the null space, we follow the methods discussed in Zeng and Gullberg [25] and Kuo et al [24] by
initializing the x, with a phantom image. We update the image using Wilson-Barrett iterations [26]

Xnt1 = (I - SATA)xn: (9)

where sis an iteration step size. From the starting point of the phantom image xy = X4 + X5, the system can
only update measurable components of x, thus converges towards the null space component x,,,,;; of the
phantom.

We conducted simulations with bandwidth-limited, noiseless projection images, reconstructing them
using CGNE. The number of projections was selected based on the sampling requirements for a bandwidth-
limited 2D Radon transform [27]. The reconstruction process was halted at the point of the highest peak signal-
to-noise ratio (PSNR). In figure 2, we show both the PSNR and the relative length of the null space vector,
|%,.01] / | %0 for different SXT measurement setups: a full-view scan Agyj, an interior scan Agop, and a combina-
tion of sparse full-view and interior scans as defined in Equation (7).

From both the reconstructions and the profiles on figure 2, we observe that the sparse scan provides a
reconstruction without bias but lacks detailed resolution. While having enough sampling to capture the fine
details in the truncated data, the interior scan exhibits the common artifacts associated with interior tomo-
graphy. However, by combining both measurement matrices, the artifacts are corrected, and the details of a
sample are preserved in reconstruction.

Furthermore, we can see that although the PSNR (and, inversely, the length of the null space vector) con-
verges gradually when measured across the full volume, the same metrics as measured from the interior ROI
stabilize rapidly with just a few full-view scans. Notably, while the matrix itself is still underdetermined,
remarkably few full FOV projections are required to achieve a stable reconstruction within the ROI of the
interior scan. Importantly, the LAC values of combined interior SXT reconstructions are the closest to the
selected phantom.

2.2. PSF considerations

X-ray microscopic images are not ideal projections of objects because they are influenced by the microscope’s
three-dimensional point spread function (PSF) [28]. The resolution of the optical system, such as SXT, is
determined by the relationship r o« A/NA, where A is the wavelength of the illuminating light and NA is the
numerical aperture of the objective lens. However, diffraction-limited optics impose a maximum depth of field
(DOF) described by DOF ox \/NA?. This narrow DOF restricts the volume in which image formation can
approximate parallel projections and, particularly for large samples, may introduce radial reconstruction
artifacts [29].

To address the impact of limited DOF on the accuracy of interior SXT tomography, we numerically eval-
uated the X-ray optics of the XM-2 microscope. The image formation process was modeled as an incoherent
intensity transform, incorporating a PSF with added Poisson noise, following the approach in [29]. We ana-
lyzed two X-ray objective lenses with outer zone widths (OZW) of 35 nm and 60 nm, as described in Section
Appendix A.
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Figure 2. Left: Examples of reconstructions and their corresponding null space components, x,,,1;, (a,b) for a sparse low-resolution
scan (7 projection images), (¢,d) an interior scan of the same phantom (273 truncated projection images), and (e,f) a combined
reconstruction of sparse low resolution and interior tomography (7 full and 273 truncated images). g) PSNR of the ROI within the
interior scan (pixels within the orange circle in panel a) and the full volume (blue square shown in panel a). Both PSNRs are for the
combined reconstruction as a function of the number of full-view projections used in the sparse scan. h) the relative length of the null
space vector for the interior scan (orange circle in panel a) and outside ROI (orange circle). 1) LAC profile across the horizontal red
line shown in panel e) for the original phantom and three SXT reconstructions, which are sparse low-resolution imaging, interior
high-resolution, and combined reconstructions.

To evaluate the quality of a reconstruction, x, we define a relative peak signal-to-noise ratio PSNR ., as

PSNR;; = PSNR(x) — PSNR(x/ef),

(10

where x,.¢is the ‘ideal’ reference reconstruction. For x,.;, we used a high-resolution that is independent of depth
(infinite DOF) and has the same lateral resolution as the 35 nm OZW.
Figure 3 presents the numerical results of Equation (10) for a 6 m wide interior, showing variations in
PSNR,,; as a function of the radius of the cylindrical measurement region.
As expected, the PSNR and Fourier ring correction analysis (FRC) for the interior scan (in green) show that
interior data preserves the high-frequency information but suffer due to bias from the truncated data, with
image quality rapidly deteriorating towards the edges of the ROI. The full scan with a 35 nm OZW (in orange)
scan provides better detail within the central region compared to the 60 nm OZW (in blue). For example, taking
1/7 of the resolution line in FRC analysis as a measure of spatial resolution, the in-slice resolution for full 35 nm
ZPis 61 nm as compared to full 60 nm ZP with 79 nm spatial resolution.
The combined scan, using the truncated 35 nm data alongside the full 60 nm data, successfully captures the
inner details of the high-resolution scan without the loss of image quality typically associated with the interior
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Figure 3. a) PSNR comparison for different scanning modes in an interior tomography setup with a 6 ssm ROI. The interior scan
behaves as expected. The full scan with 35 nm OZW provides better interior detail but suffers from reduced quality because of the
shorter DOF. The combined scan with truncated 35 nm data and full 60 nm data preserves high inner detail without artifacts of the
interior scan. b) Corresponding in-slice FRC with a ROI of 6 m. The square ROI includes the interior boundary to exaggerate
artifacts. The low-frequency bias explains the huge drop in PSNR. The multi-view protocol, including both 60 nm and 35 nm data,
preserves both PSNR and FRC. The horizontal line shows the 1/7 resolution line, giving an in-slice resolution of 79 nm for the 60 nm
ZP and 61 nm for the 35 nm ZP.

scan. That shows that the constraints of limited DOF go away when the interior SXT tomography is recon-
structed in a combined fashion with the ‘out of focus’ knowledge from the sparse scan.

As shown in figure 3, the combined reconstruction of the low and high-resolution projection matrix can
slightly degrade the quality of the interior scan as compared to the ideal high-resolution case. This is due to the
non-optimal weight of the back-projected measurements. Using the true PSF of the microscope with its inver-
sion [29] would mitigate this, as the back-projection weights the overlapping interior data appropriately. In
practice, however, this approach is computationally costly (on the order of N% where Nis the width of the
kernel) and suffers from slower convergence. Another solution is to apply a data-weighting scheme, as in Cao
etal [11], to take into account the different weights of the measurement data.

We suggest approximating the projection operator as

Apx ~ k*(Ax), (11)

where the kernel kis a z-independent PSF and * the 2D convolution operator. Conversely, the adjoint operator
can be expressed as

Alcy ~ AT (K™y). (12)

This 2D deconvolution approach drastically speeds up the projection operator and allows it to be more easily
integrated into existing projection libraries.

2.3. Sampling considerations

The system’s optics set a physical limit on the achievable spatial resolution. However, in an experimental setup,
this represents an optimistic upper limit. In reality, the spatial resolution is constrained by measurement
statistics, influenced by the total radiation dose the sample can tolerate, and the specific sampling

protocol used.

Dose fractionation tells us that we are free to distribute the dose in whichever way we want as long as we
remain sufficiently sampled (for details, see Section B.3). However, experimentally, it is often beneficial to take
fewer projections, as processing, such as alignment or deconvolution of the projection images, is much more
robust. Figure 12 shows FRC analysis of conjugate gradient applied to normal equation (CGNE) reconstruction
method for different angular sampling and the radiation dose. Angular sampling shows no effect on FRC curves
atalower total dose.

2.4. Dose optimization

Achieving high-resolution imaging with full FOV scans may require higher doses than currently used. If one is
only interested in the ROI of the scan, the dose distribution of a full scan is highly non-optimal. This is
illustrated in figure 4 where we show the dose distribution across a sample for three different scanning
approaches: half rotation with 180° with 97 images in full FOV, full rotation 360° with 97 images in full FOV,
and a combined scan with 19 full FOV images, combined with 97 interior images. For the combined scan, the

6
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Figure 4. Comparison of the radiation dose distribution in a sample for different scanning protocols. a) simulated X-ray absorption
(LAC) within a sample. Distribution of the dose over b) half rotation (180 degrees) c) full rotation (360 degrees), and d) the combined
interior and sparse scan. The total dose on the sample for all scanning geometries is the same. The full FOV scan concentrates the
dose at the sample’s edges, leading to inefficient sampling. The interior scan distributes the dose more effectively within the center of
the specimen.

intensity of the interior images was increased so that the total integrated dose over the entire sample matched
that of the other scanning geometries.

It was previously reported [30] that the highest dose levels accumulate at the sample edges during a half-
rotation FOV scan. To optimize dose distribution, the most straightforward approach is to use a full 360-degree
rotation protocol. In full rotation tomography, it is essential to interlace the mirrored images such that the
angular sampling is increased (if mirrored images overlap, the angular sampling is halved). Despite this, even in
full-rotation scanning, a significant portion of the radiation dose is still concentrated at the sample edges and
specimen holder, increasing the risk of localized radiation damage.

Going one step further, the interior SXT scan distributes the dose more effectively across the specimen,
focusing on areas where detailed imaging is required. Additionally, as discussed in Section 2.1, the quality of the
ROI for the combined projection operator improves rapidly with just a few full FOV scans. Beyond this point,
additional full-FOV sampling provides diminishing returns regarding ROI quality while unnecessarily increas-
ing the total radiation dose as shown in figure 2 panels g) and h).

To further investigate this trade-off, we simulated the accumulated dose in a high-resolution phantom,
comparing a full scan to an interior scan while keeping the incident intensity constant. For this phantom, the
average accumulated dose of a full scan, D, j, was 2.3 times higher than that of the ROI scan, Dy ;. This means
that for each full FOV image removed, the remaining dose allows for a D,/ Droyincrease in the intensity of the
interior scan while keeping the total dose constant.

To maintain consistent angular sampling for the interior scan, the redistributed dose was evenly allocated
among the interior projections, leading to the following relationship:

Drun No — Nean
Dror Ny

Iro1 = Iy (13)
where Nj = 499 is the full angular sampling used as a reference.

In figure 5, we show the simulation phantom and the results of the dose optimization. As expected, while
the PSNR of the full-FOV reconstruction (blue) increases with an increasing number of projection images, the
quality of the combined interior scan (orange) is higher at the low number of projection images, as the dose is
distributed more efficiently and results in a lower statistical error for the interior measurements. This beneficial
trade breaks down at very low angular sampling (orange circle), as the number of full FOV projections is insuf-
ficient to reduce the interior bias.

Additionally, we show the result of the deconvolved reconstructions using 2D approximation as described
in Equation (12). To mitigate possible inversion crimes (where both the forward model and the backward
model are done with the exact same discrete operator A ), the deconvolution reconstruction was done by using
a Gaussian kernel with a full-width-half-maximum equal to OZW. This deconvolution approach significantly
helps to improve the quality of the combined interior scan as measured using PSNR.

Opverall dose and angular sampling optimization for the phantom measurements show that a combined
interior scan can be achieved with only 23 full projections. In practice, the optimal selection of dose reduction is
additionally limited by experimental factors, such as alignment, which is discussed in Section Appendix B.

3. Experimental results

To verify the applicability of the interior SXT experimentally, we have applied our interior reconstruction
method on bacteria (Pseudomonas putida, KT2440 strain) and human B lymphocytes (GM 12878 from the
NGIMS Human Genetics Cell Repository). These specimens demonstrate a variety of cells that would profit
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Figure 5. Comparison of full scan and dose-optimized scan performance. The protocols were designed so that the total dose of the
sample was kept the same. The gained intensity from reducing the number of full scan images N, was distributed evenly across the
interior scans. From the PSNR curves, we see that the overall quality decreases as the angular sampling becomes sparser, but the
interior PSNR increases. The red line shows the comparison PSNR for the reference scan, i.e., a full FOV 35 nm scan with infinite
DOF. At some sparse sampling, this breaks down, as the sparse measurement matrix is insufficient to reduce the interior bias in the
null space. The top row shows a detail of the ROI for the peak PSNR for the direct a) and deconvolved b) reconstructions as compared

to the ideal reference scan c).

Interior Combined

Figure 6. Interior SXT demonstrated experimentally on bacteria cells. Transverse virtual slices through the SXT volume for a)
interior and b) sparse scans only, and ¢) combined reconstruction as described above. To emphasize the interior effects, the interior

scan data was cropped horizontally by 25%.

from interior SXT. That is, from small cells like bacteria and yeast, where a high number of tiny cells and their
structure can be quantitatively analyzed, and larger human cells, where tiny structural changes appear in an
unpredictable location within the larger cell volume, are visualized in the context of other organelles and a
whole cell. Like other full-rotation SXT experiments, specimens were loaded into thin-wall glass capillaries and
vitrified via rapid plunging into a liquid propane [31].

For each approach, 92 projection images were acquired for full and interior tomography with 2° rotation
increment and 200 ms 500 ms exposure time per projection. The projection images of full FOV and interior
scans were aligned using a combination of an automatic alignment of the full FOV scans and cross-correlation
of the interior projections to the full FOV data, described in detail in Section Appendix B. To demonstrate the
differences in interior SXT for each cell type, we reconstruct full FOV, interior SXT, and combined reconstruc-
tion based on a full interior scan and 19 projection images from full FOV.

Figure 6 demonstrates the results obtained for an interior high-resolution scan, a sparse low-resolution
SXT scan, and the combined interior tomography reconstruction. To enhance the demonstration of interior
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Figure 7. Interior SXT demonstrated experimentally on human B cells. Saggital virtual slices through the SXT volume for a) interior,
b) sparse scans, and ¢) combined reconstruction as described above, and two highlighted ROIs. Panels (d—g) show a detailed ROI of
ER wrapping around the late endosome (orange ROI in panel a). Panels (h—Xk) show a double membrane vesicle (blue ROl in panel
a) from alow-resolution full FOV data (d and h), a sparse global sampling (e and i), and a combined interior reconstruction (fandj).
Part of the outer membrane is clipped to reveal the structure inside. Panels g) and k) show 3D renderings of segmented organelles in
the ROIs.

tomography, the ROI projections have been additionally cropped by 25% to reduce the FOV of the scans artifi-
cially. In-plane reconstructed virtual slices, as expected, show artifacts outside the imaging area in the interior
scan. Although the interior reconstructions enable the visualization of cells inside the specimen holder, the
addition of the sparse full FOV scan substantially increases the usable ROI of the reconstruction. It delivers
faithful LAC reconstruction in every cell over the whole ROI as seen for cells close to the periphery of the ROl in
combined with respect to interior reconstructions in figure 6.

In one such interior SXT, there are tens of individual bacterial cells, each showing variable membrane aber-
rations. Such subcellular changes in bacteria are of high relevance to research on genetic mutants [32], metabo-
lism [33], and bacterial biofilms [34].

A similar comparison of the interior, sparse, and combined SXT imaging of a human B cell is shown in
figure 7. All major organelles, such as the nucleus, mitochondria, and lipid droplets, are visible in all recon-
struction examples. Smaller organelles, such as the endoplasmic reticulum (ER) and endosomes, are visible but
challenging to segment and analyze quantitatively in sparse reconstruction. In comparison, when interior SXT
is truncated with projections from full FOV, the reconstructed combined volume is free from artifacts with
faithful LAC values, that are known for cellular organelles, such as mitochondria, lipid droplets and nucleus [1],
and locally higher resolution.
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This higher resolution region within the whole cell enables the segmentation of the region of interest (ROI1
and ROI2). Both ROIs show faint details in the low-resolution scan that could not be faithfully labeled but were
segmentable semi-automatically in the combined interior scan with sparse global sampling. This type of inter-
ior high-resolution imaging enables the analysis of fine cellular features like membranes within whole human
cells. Its combination with the sparse information enables a) to determine the region of interest for a ‘zoom in’
high-resolution SXT scan; b) to retrieve contextual information, such as proximity to the nucleus or other
organelles; and ¢) to reconstruct faithful LAC values, enabling automatic and quantitative analysis. For the
example of the ER-endosome interaction network, even just the sparse scan is sufficient to probe the position of
the desired ROJ, as the position of the endosome does not require high resolution or angular sampling.

Overall, the experimental results show that the combined reconstruction developed for the interior SXT
scans enables the visualization of subcellular features in a large contextual volume and can be robustly used for
other scientific cases.

4. Conclusions

In this work, we have demonstrated via the Null space of the combined projection matrix that the bias in the
interior tomography vanishes when combined with sparse context scans. We showed numerically that the
limitation of the shallow depth of field in the high-resolution interior scan is not relevant for the combined
reconstructions, as the sparse scan provides the ‘out of focus’ information. Furthermore, based on the dose
fractionation theorem, we argue that since SXT imaging is primarily noise-limited, optimizing the dose
distribution is more critical than increasing angular sampling. The calculated dose distribution confirms that
the combined interior SXT reconstruction utilizes the radiation dose more effectively within the specimen
holder than half- and full-rotation tomography.

In practice, the optimal selection of imaging is limited by experimental factors, such as alignment. We,
therefore, performed multi-resolution imaging of bacteria and human B cells. Based on these experimental
data, we show that combined reconstructions of the interior SXT enable faithful reconstructions of LAC values
in 3D. For small cells like bacteria or yeast, our combined reconstructions allow for analysis of subcellular
alterations for tens of cells. Conversely, combined interior reconstructions required only 19 projections from
the sparse scan. That enables us to perform low-resolution ‘scout’ SXT imaging, followed by a zoom-in into the
region of interest in larger cells, like human B cells. Therefore, the combined reconstruction of the interior SXT
imaging is a valuable tool for several application cases.

Our combined reconstruction algorithm of interior tomography provides numerical consideration and the
first experimental evidence that the resolution limit in SXT imaging can be increased without sacrificing larger-
volume imaging.
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Appendix A. Simulation

For a high-resolution phantom, we used a Macrophage cell (jrc_macrophage-2) from OpenOrganelle [35]. The
Linear Attenuation Coefficient (LAC) values were approximated by measuring the mean gray values from the
provided label field. These values were then linearly scaled to match the known LAC values of the respective
organelles. The average LAC for the phantom was approximately 0.28 zm ™.

Figure 2 used a downsampled image of shape 196 px x 170 px. For figures 3, 5, and 12, the phantom was

cropped to a circular ROI of width 801 px, with a pixel size of 20 nm.
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For bandwidth-limited projections, we used the linearized incoherent model for the forward model as pre-
viously described [29]. The high-resolution and low-resolution PSFs were approximated by modeling the MZP
asan ideal circular lens, with the effective PSF calculated according to the methods outlined previously [36], by
the converging illumination emerging from a circular lens aperture based on the Huygens-Fresnel princi-
ple[37].

The MZPs used in the simulations had outer zone widths (OZW) of 35 nm and 60 nm for high and low-
resolution setups, respectively. These parameters were chosen to simulate the current configuration at the XM-
2 microscope. In XM-2 [38], the condenser is configured as a linear monochromator, formed by the condenser
zone plate and a pinhole placed close to the specimen, meaning that we have the same effect of elongated PSF as
described in [36]. We have chosen a representative wavelength from the ‘water window’ of 2.4 nm with a mono-
chromaticity of Ao/ AX = 300. As an ‘ideal’ reference, we used a z-independent PSF equal to the focal point of
the 35 nm OZW. For the Beer-Lambert model’s forward and backward projection operators, we used the
ASTRA toolbox [39-41] via Tomosipo [42].

As the phantom’s variability in thickness was high, we used a z-normalizing flat field as the illumination
profile so that a single Poisson noise level could better describe the images. This was done by taking an ideal
Beer-Lambert projection of the sample and then averaging all illumination profiles over the mean horizontal
absorption of the sample.

The approximate noise level of the PSNR was measured from diagonally split experimental data. A similar
measurement was done on PSF simulated projections to extract the necessary Poisson count for similar PSNR,
with a result of about 150 photons / (10 nm)®.

Code available at https://github.com /ncxt/InteriorSXT. [45]

Appendix B. Experimental results

B.1. Alignment

The alignment is preceded by the alignment of the full-FOV stack following standard protocol [31] using
AREC3D [43]. Since the entire sample is within the field of view, pre-aligning the capillary using a rigid body
transformation is highly robust, even in cases of sparse sampling. The aligned stack is then upscaled to match
the resolution of the high-resolution interior projection images.

These images (anchors) A; serve as accurately aligned reference images for the interior scan. A schematic
representation of the alignment setup is shown in figure 8. Note that the mirror images can also be used as
anchor points for sampling protocols spanning over 180°.

We seek translations T;to the interior images I, that maximises the function

arg maXT;(Zf(T;‘Ii) A) + > f(TI, T,I) (14)
o Cin
where C, is the collection of image-anchor pairs i, j, for which the angular difference to the anchor is smaller
than half of that to its nearest neighbor, and C,,,, is the collection of nearest neighbor image-image pairs.
As an alignment metric f, we used the normalized cross-correlation

il — Xy, — )
VI — 2220 — 7)°
where x and y are vector representations of the overlapping information of the two images and %, 7, their
respective means.

The alignment of the interior images was initially set using a nearest-neighbor approach. A global shift was
determined for all images based on reliable full-scan anchor points. This shift was then smoothly interpolated
to provide an initial estimate for the interior alignment across the whole dataset. Starting from this initial align-
ment, the alignment function Equation (14) was optimized using Quasi-Newton methods [44].

Values of NCC(x, y) were only evaluated at integer shifts, and intermediate values were obtained by bicubic
interpolation. This way, cached values of integer shifts for NCC were used to obtain both function values and
their derivatives of sub-pixel shifts.

NCC(x, y) =

(15)

Pure nearest-neighbor alignment generally fares relatively poorly in tomography, as there can be sub-
stantial drift in successive alignments. The anchor points (shown in figure 8) mitigate this, as it reduces the
length of long chains where this drift can happen.

To investigate how many such anchors are experimentally needed for faithful alignment of the interior
data, several alignments were performed using only a sparse subset of the complete low-resolution dataset.
Figure 9 presents the mean alignment error | T; — T | (L, norm) as a function of anchor sparsity for exper-
imental bacteria and B-cell datasets, where T*! are the interior translations using all available full FOV images
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Figure 8. Schematic graph of the alignment procedure. The nodes represent the images, while the edges represent the transformation
between them. The inner circle shows the fixed transformation of the pre-alignment, while the outer circle represents the nearest
neighbor of the interior scan. An auxiliary constraint is added to a pre-aligned anchor image for an interior image when its angular
distance is smaller than that to its nearest neighbor.
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Figure 9. Mean length | T; — T} | of the alignment difference between sparse reference data for B cell and Bacteria as a function of
anchor sparsity. The shaded area shows the o percentile.

asanchor points. The results demonstrate a slow quality decay (sub-pixel accuracy) with reduced full-FOV
images to as low as 10 images, where the alignment error increases significantly.

Optimal sampling should balance the number of anchor points with alignment stability and dose. Too few
anchors lead to significant drift, while excessive anchors introduce sub-optimal dose distribution. Notably,
interleaved sampling plays a crucial role in reducing systematic biases by ensuring that mirror images con-
tribute distinct anchor points, thereby enhancing the robustness of the alignment procedure.

B.2. Note on absorption correction
For both 60 nm and 35 nm OZW objectives, the same monochromator setup is used. In this scenario, a higher-

order diffraction of an incoming X-ray beam could be potentially focused on the sample. To account for this
potential contamination of X-ray absorption values, we use a dual-energy model to correct the transmission
values of the experimental data between sparse and interior scans.

12
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Figure 10. An example of the fitted intensity transform between the 60 nm and the 35 nm images. The orange line shows the used
transformation using the polychromatic model of Equation (16). The green line shows a simple affine model, where the intensity
difference is caused by unspecified stray light.

The low-resolution intensity is modeled as pure monochromatic Beer-Lambert
[ = e ML,

For the high-resolution MZP, we model the intensity as a dual-energy setup, where the intensity is now given
by

y = (Gl + ey,

where ¢ and ¢, are the relative intensities of the two energies. As the LAC is energy dependent, we should also
describe the sample with two different absorption coefficients py and p;. For the sake of simplicity, we assume
that the dependency between absorption and energy can be described as a linear function g, = cp;.

With this approximation, the intensity of the high-resolution scan can be described as

Iy = ¢ols + (1 — gL (16)

In figure 10, we show the best fit of model Equation (16) to the collected normalized data for the Bacteria
sample and compare it to a simple affine model for stray light.

B.3. Note on bandwidth-limited sampling of the Radon transform
For this, we consider the Radon transform of a two-dimensional impulse function as described by Rattey and
Lindgren [27]. We can express its Radon transformation as

P(wp, wy) = 2me /240 ] (w,, nyw,), (17)

where (7, ) is the position of the impulse function in polar coordinates, wg and w,, are the angular and
positional frequency, respectively, and the angular frequency wy € Z and only takes discrete values.
In a discrete setting where we take the Radon transform for a single voxel of LAC i, this is equivalent to

P(k€> ku) = uN, ¢0¢u](k6)’ ZWR/Lku) (18)

where ¢y and ¢, are the appropriate phase shifts for the angular and positional sampling, N, the number of
angles,and ky=— N,/2...N,/2and —L/2...L/2.

The function |J(x, y)| approaches zero as x > y, forming a structure that resembles an ‘infinite length
bowtie’ [27]. For the bandwidth-limited case, we multiply the columns by the OTF,

Fyf (ko, ku) = OTF (ko) F (kg, k) 19

Next, we can investigate the total power collected from different sampling schemes. Integrating the cumu-
lative spectral power of the signal |me2|2 with respect to kg, we can quantify the amount of signal power col-
lected by the limited sampling compared to the ‘ideal case’. In figure 11 we an example of the OTF limited
Radon transform for the 60 nm OZW and the cumulative power for both 35 nm and 60 nm OZW, showing that
most of the signal is collected with sparse sampling while capturing the remaining power requires increasingly
dense angular sampling. The sampling limit of N, ~ (27Rf.,) is shown in figure 11(a), where the spatial fre-
quency f., was chosen to correspond to 98% of the OTF power.
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Figure 11. a) A quadrant of the function |F,,(k, k,,)| showing bandwdth-limited bowtie of the 60 nm OZW. The blue and orange

lines show the accurate sampling up to 98 % of the OTF power for the 60 nm (656 images) and 35 nm (1256) ZP. b) Integrated total
power of the signal with respect to the angular sampling as described in Section B.3. L = 800 r = 400 sampled with a grid pixel size of

20 nm.
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Figure 12. In-slice FRC reconstructions for different angular sampling rates. Sampling limit shows the theoretical resolution limit
based on the Radon sampling at N, = 881. Atlower total doses, dose fractionation holds for sampling rates well below the standard
sampling criterion. As the total dose increases, the effects of sparse sampling become more pronounced. However, these deviations
require both higher dose and sparser sampling than is commonly employed.
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We argue that when the imaging scheme becomes highly noise-limited, the importance of dense angular
sampling diminishes, as the SNR of the highest-frequency components degrades. In figure 12, we present three
examples of sampling with equal total dose. At the lowest dose, no effect of sparse sampling is observed. As the
dose increases, the impact of sparse sampling becomes apparent, particularly in cases with the lowest angular
sampling densities.
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