KIT | KIT-Bibliothek | Impressum | Datenschutz

Rethinking Semi-supervised Segmentation Beyond Accuracy: Reliability and Robustness

Landgraf, Steven ORCID iD icon 1; Hillemann, Markus ORCID iD icon 1; Ulrich, Markus ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Semantic segmentation is critical for scene understanding but demands costly pixel-wise annotations, attracting increasing attention to semi-supervised approaches to leverage abundant unlabeled data. While semi-supervised segmentation is often promoted as a path toward scalable, real-world deployment, it is astonishing that current evaluation protocols exclusively focus on segmentation accuracy, entirely overlooking reliability and robustness. These qualities, which ensure consistent performance under diverse conditions (robustness) and well-calibrated model confidences as well as meaningful uncertainties (reliability), are essential for safety-critical applications like autonomous driving, where models must handle unpredictable environments and avoid sudden failures at all costs. To address this gap, we introduce the Reliable Segmentation Score (RSS), a novel metric that combines predictive accuracy, calibration, and uncertainty quality measures via a harmonic mean. RSS penalizes deficiencies in any of its components, providing an easy and intuitive way of holistically judging segmentation models. Comprehensive evaluations of UniMatchV2 against its predecessor and a supervised baseline show that semi-supervised methods often trade reliability for accuracy. ... mehr


Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-12839-3
ISSN: 0302-9743
KITopen-ID: 1000189402
Erschienen in Pattern Recognition : 47th DAGM German Conference, DAGM GCPR 2025, Freiburg, Germany, September 23–26, 2025, Proceedings. Ed.: M. Keuper
Veranstaltung 47th DAGM German Conference on Pattern Recognition (DAGM GCPR 2025), Freiburg im Breisgau, Deutschland, 23.09.2025 – 26.09.2025
Verlag Springer Nature Switzerland
Seiten 434–452
Serie Lecture Notes in Computer Science ; 16125
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page