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ABSTRACT

We present the CIENS dataset, which contains ensemble weather forecasts from the operational convection-permitting nu-
merical weather prediction model of the German Weather Service. It comprises forecasts for 55 meteorological variables
mapped to the locations of synoptic stations, as well as additional spatially aggregated forecasts from surrounding grid
points, available for a subset of these variables. Forecasts are available at hourly lead times from 0 to 21 h for two daily model
runs initialised at 00 and 12 UTC, covering the period from December 2010 to June 2023. Additionally, the dataset provides
station observations for six key variables at 170 locations across Germany: pressure, temperature, hourly precipitation accu-
mulation, wind speed, wind direction, and wind gusts. Since the forecasts are mapped to the observed locations, the data is
delivered in a convenient format for analysis. The CIENS dataset complements the growing collection of benchmark datasets
for weather and climate modelling. A key distinguishing feature is its long temporal extent, which encompasses multiple up-
dates to the underlying numerical weather prediction model and thus supports investigations into how forecasting methods
can account for such changes. In addition to detailing the design and contents of the CIENS dataset, we outline potential
applications in ensemble post-processing, forecast verification, and related research areas. A use case focused on ensemble
post-processing illustrates the benefits of incorporating the rich set of available model predictors into machine learning-
based forecasting models.

Dataset Details:

Identifier: 10.35097/EOvvQEsgILoXpYTK

Creator: Lerch, S., Schulz, B., Hess, R., Mdller, A., Primo, C., Trepte, S., and Theis, S.

Dataset correspondence: lerch@mathematik.uni-marburg.de

Title: Operational convection-permitting COSMO/ICON ensemble predictions at observation sites (CIENS)
Data centre: RADAR4KIT

Publisher: KITOpen

Publication year: 2024

Licence: CC BY 4.0

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2025 The Author(s). Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd.

Geoscience Data Journal, 2026; 13:€70051 10of9
https://doi.org/10.1002/gd;j3.70051


https://doi.org/10.1002/gdj3.70051
https://doi.org/10.1002/gdj3.70051
mailto:lerch@mathematik.uni-marburg.de
https://orcid.org/0000-0002-3467-4375
https://orcid.org/0000-0001-9386-1691
mailto:lerch@mathematik.uni-marburg.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.35097/EOvvQEsgILoXpYTK
mailto:lerch@mathematik.uni-marburg.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fgdj3.70051&domain=pdf&date_stamp=2025-12-28

1 | Introduction

Weather forecasts today are typically based on numerical
weather prediction (NWP) models, which use systems of par-
tial differential equations to simulate atmospheric processes.
By running NWP models with varying initial conditions and/or
model physics, ensemble simulations enable probabilistic fore-
casting. Despite continual advances (Bauer et al. 2015), NWP
ensemble predictions often exhibit systematic errors, making
post-processing essential for achieving accurate and reliable
forecasts. Here, post-processing refers to methods that lever-
age past NWP forecast-observation pairs to optimally adjust
future forecasts. Over the past decades, a wide variety of post-
processing methods have been developed, and these now form a
critical component of the forecasting workflow in national and
international meteorological services (Vannitsem et al. 2018).

A recent focus of post-processing research has been the appli-
cation of modern machine learning (ML) methods; see Haupt
et al. (2021), Vannitsem et al. (2021) for overviews. For example,
post-processing approaches based on random forests (Taillardat
et al. 2016), gradient boosting (Messner et al. 2017), and neural
networks (Rasp and Lerch 2018) have demonstrated promis-
ing results across various applications. The rapid development
and growing variety of new methods clearly underscore the
need for systematic comparisons and rigorous assessments of
the advantages and disadvantages of these approaches. Several
studies have undertaken such efforts for univariate (Rasp and
Lerch 2018; Schulz and Lerch 2022; Demaeyer et al. 2023) and
multivariate (Wilks 2015; Perrone et al. 2020; Lerch et al. 2020;
Lakatos et al. 2023) post-processing, using both simulated and
real-world data. Nonetheless, there remains a critical need for
comprehensive and easily accessible real-world benchmark
datasets to enable fair quantitative comparisons and facilitate
interdisciplinary research efforts by reducing the time-intensive
process of data collection and curation (Dueben et al. 2022)

In recent years, numerous benchmark datasets for weather and
climate modelling have been released, including datasets for sub-
seasonal and seasonal weather forecasting (Hwang et al. 2019;
Lenkoski et al. 2022; Vitart et al. 2022; Mouatadid et al. 2023) and
for data-driven weather and climate prediction (Rasp et al. 2020;
Watson-Parris et al. 2022; Rasp et al. 2024). Among these, the
WeatherBench 2 dataset (Rasp et al. 2024) provides global grid-
ded NWP forecasts and corresponding reanalysis fields, making it
a valuable resource for post-processing research as well (see, e.g.,
Biilte et al. 2025). Additionally, several recent benchmark data-
sets explicitly identify post-processing as a key application (Haupt
et al. 2021; Ashkboos et al. 2022; Kim et al. 2022). Most closely
related to our work is the recent EUPPBench dataset (Demaeyer
et al. 2023), which was published as part of the activities within the
post-processing working group of the European Meteorological
Network (EUMETNET). EUPPBench includes 2years of fore-
casts and 20years of corresponding reforecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF), along
with station observations across Europe.

In this work, we introduce the CIENS dataset, which pro-
vides location-specific ensemble forecasts from the opera-
tional convection-permitting NWP model of the German
Weather Service (Deutscher Wetterdienst, DWD), along with

corresponding observations from 170 stations across Germany.
The dataset includes ensemble forecasts of the 20 members for
55 meteorological variables mapped to the locations of the sta-
tions, as well as additional spatially aggregated forecasts from
surrounding grid points available for some variables. Forecasts
are available at hourly lead times from 0 to 21h, for two daily
model runs initialised at 00 UTC and 12 UTC. Spanning
December 2010 to June 2023, the dataset also includes station
observations of six key variables: pressure, temperature, hourly
precipitation accumulation, wind speed, wind direction, and
wind gusts. Over this time period, the operational NWP model
has undergone significant updates, including changes of resolu-
tion, ensemble generation mechanisms, and model physics.

To the best of our knowledge, the CIENS dataset is the largest
available archive of pre-processed, analysis-ready weather fore-
cast and observation data specifically designed for station-based
post-processing in terms of the temporal extent of the provided
data. It complements existing datasets such as EUPPBench and
enables addressing a wide range of research questions concerning
the development and evaluation of post-processing methods. For
instance, adapting post-processing methods to accommodate on-
going changes in the NWP model remains a challenge in opera-
tional settings (Hess 2020; Lang et al. 2020; Vannitsem et al. 2021;
Primo et al. 2024). The extensive time span of operational ensem-
ble forecasts available in the CIENS dataset makes it ideally suited
to address this challenge, among many others. Parts of the CIENS
dataset have been used in previous research, primarily focused
on wind gust forecasting. For example, Hess (2020), Schulz and
Lerch (2022) and Primo et al. (2024) compare various statistical
and ML-based post-processing methods, Pantillon et al. (2018) and
Eisenstein et al. (2022) investigate meteorological aspects of wind
gust forecasts during severe storms, and Arnold et al. (2024) lever-
age forecast and observation data for methodological advance-
ments in forecast evaluation.

The remainder of this article is structured as follows: Section 2 pro-
vides a detailed description of the dataset structure, forecasts, and
observations included in the CIENS dataset. Section 4 explores po-
tential applications of the dataset in post-processing research and
other areas. The article concludes with a discussion in Section 5.
Appendix S1 presents an exemplary use case, where ML-based
post-processing methods use different sets of input variables for
probabilistic wind gust forecasting are compared.

2 | CIENS Dataset

This section provides an overview of the structure and contents
of the CIENS dataset.

2.1 | Data Structure

The CIENS data are provided in four parts, see Table 1 for an
overview. This simplifies downloading and handling of the
large dataset (with a total size of approximately 370 GB) and
was necessitated by technical restrictions of the data repository,
where the data is hosted (KITOpen, a central repository service
at the Karlsruhe Institute of Technology). To support typical
uses in the context of ensemble post-processing (see Section 4;
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TABLE 1 | Overview of the different parts of the CIENS dataset. The included NWP forecasts are separated between so-called standard and
spatial variables. We refer to standard variables as the meteorological variables taken from the closest grid point, while the spatial variables refer to

summary statistics of surrounding grid cells.

Dataset DOI Content Size (GB)
CIENS 10.35097/EOvvQEsgILoXpYTK ‘Parent’ (or primary) dataset which —
serves as the official reference and
links to the four parts listed below
CIENS—Run 00 UTC 10.35097/zzf EJPxDILXwSNPH NWP forecasts (standard variables) 75.9
of the model runs initialised at 00
UTC and observational data
CIENS—Run 00 UTC— 10.35097/wVDXkDCGnBgFuuGt NWP forecasts (spatial variables) of 109.7
Spatial Variables the model runs initialised at 00 UTC
CIENS—Run 12 UTC 10.35097/JKALdQqqLIjGUOBC NWP forecasts (standard variables) of 75.3
the model runs initialised at 12 UTC
CIENS—Run 12 UTC— 10.35097/rJZCZY]jpSReTWNL NWP forecasts (spatial variables) of 109.5

Spatial Variables

the model runs initialised at 12 UTC

and Section A in Appendix S1), we split the data by initialization
times of the model runs (at 00 UTC and 12 UTC), and according
to the type of meteorological variables from the NWP forecasts.
Specifically, we distinguish between ensemble forecasts taken
from the grid point closest to a station location, and spatial fore-
casts which summarise forecasts from the surrounding 11 x 11
and 21 X 21 grid points via their mean value and standard devi-
ation (individually for each ensemble member). Note that while
observations are available for all hours of the day, the (complete)
observational data are only included in the CIENS—Run 00
UTC dataset to avoid unnecessary duplicates.

The four parts of the CIENS dataset are organised in a similar
manner, exemplified by the directory structure of the CIENS—
Run 00 UTC data shown in Figure 1. The forecast data is pro-
vided as daily netCDF files, with corresponding NWP ensemble
predictions for all available observation stations and lead times.
Corresponding observation data is provided in yearly netCDF
files and can be matched to the forecast data using the pro-
vided code.

2.2 | NWP Model Forecasts

The CIENS data set includes model forecasts provided by the
ensemble prediction system (EPS) of the DWD from 8 December
2010 to 30 June 2023. During that period, different improve-
ments have been made to the NWP system, partly even resulting
in different model names: COSMO-DE-EPS, COSMO-D2-EPS
and ICON-D2-EPS. Figure 2 shows an overview of the most rel-
evant changes in the NWP model during the time range con-
sidered. The mean verification scores for wind gust forecasts
from the NWP model shown alongside the model updates indi-
cate that the model updates can have substantial impacts on the
quality of the resulting ensemble forecasts.

Forecast data are provided for the 00 UTC and 12 UTC runs of
the ensemble forecast systems which were operational at that
time, i.e., of COSMO-DE-EPS (Baldauf et al. 2011; Gebhardt
et al. 2011), COSMO-D2-EPS (Baldauf et al. 2018), and

ICON-D2-EPS (Reinert et al. 2021). In order to generate long
time series, data of COSMO-DE-EPS are used from 8 December
2010 00 UTC until 15 May 2018 12 UTC, when the first data of
COSMO-D2-EPS became available. Among other updates, this
model change included an increase in the horizontal resolution
from 2.8 to 2.2km and an updated orography. Beginning with
10 February 2021, run 12 UTC, forecast data from the current
operational ensemble system ICON-D2-EPS are used. The spa-
tial resolution was kept constant for this model change. There
have been numerous additional model updates, which are doc-
umented in DWD (2016, 2018, 2025). For example, at the time
of writing, four model updates have occurred in the year 2024,
and the latest update from 9 July 2024 comprises a revision of
the wind gust parameterization and modifications to the radar
data assimilation processes. Whether such model updates will
have substantial impacts on the forecast quality depends on the
specific target variable of interest, along with many other factors
such as the location or lead time under consideration.

Forecasts in the CIENS dataset are available for hourly lead
times from 0 to 21h, for each of the 20 members of the ensem-
ble models mentioned above.! The forecast model data are in-
terpolated to 170 synoptic observation stations within Germany
(see Section 2.3). The interpolation is applied separately for each
ensemble member and uses data from the nearest model grid
point. Furthermore, medium- and large-scale predictors are de-
rived from the model forecasts including the spatial mean and
standard deviation of 11 x 11 and 21 x 21 model grid points, re-
spectively, around the locations of the synoptic stations, com-
puted separately for each ensemble member. Those spatial
variables constitute supplementary information, that might be
of interest for some potential applications, see Hess (2020) and
Appendix S1 for examples.

Altogether 55 model variables are available, including near sur-
face parameters such as 2m-temperature and dew point, wind
and wind gusts in 10m height, total precipitation, cloud cover-
age, radiation, and many more, but also temperature, relative
humidity, wind, vertical velocity, and geopotential on 5 pressure
levels from 500hPa up to 1000hPa are provided. The complete
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https://doi.org/10.35097/EOvvQEsgILoXpYTK
https://doi.org/10.35097/zzfEJPxDILXwSNPH
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https://doi.org/10.35097/rJZCZYljpSReTWNL

CIENS -- Run 00 UTC

| 201101/

| 202306/

grib_2010120900.nc

grib_2010123100.nc

grib_2011010100.nc

grib_2011013100.nc

grib_2023060100.nc

grib_2023063000.nc

) oY=T=5 on 2= e+ = A This directory holds observation data as netCDF files organized by year.
obs-2010.nc
obs-2011.nc
obs-2023.nc
R o 0 Directory with NWP forecast data organized in sub-folders named by year and month.
L 201012/ ittt e e, Directory with forecasts for a specific month, as netCDF files organized by day.
ETib_2010120800 . T0C ¢t ttttn ettt ettt ettt Forecasts are available from 8 December 2010.

.................................................................. Forecasts are available until 30 June 2023.

FIGURE 1 Directory structure of the CIENS—Run 00 UTC data.

2018 | 2019 | 2020 | 2021 | 2022 l 2023 |

2010| 1 2016 | 2017

9 Dec.: Start of
COSMO-EPS in
pre-operational mode

21 March: Change to
KENDA in the Data
Assimilation process

0
-

1.3

CRPS in m/s
1.2

\ Year >

10 Feb.: Change from
COSMO-EPS to ICON-EPS

15 May: Change from
COSMO-DE-EPS to
COSMO-D2-EPS

W

2016

2018

T T
2020 2022

Date

FIGURE 2 | Overview of the most substantial changes in the NWP model underlying the CIENS forecasts indicated by the coloured boxes and

lines, along with the temporal evolution of the mean CRPS values (see Section A.2 in Appendix S1) of the raw ensemble forecasts of wind gust with a

lead time of 18 h. The CRPS values are averaged over all station locations and smoothed with a 30-day running mean, restricted to the corresponding
NWP model version. Horizontal lines indicate the mean CRPS over the corresponding period. The mean CRPS values shown here are restricted to
the time period from 2016 until the end of the dataset in June 2023.
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list of forecast variables is included in the CIENS repository
(Moller et al. 2024).

The zonal and meridional wind components U and V are rotated
according to the rotated grid used in the COSMO models. While
ICON-D2-EPS uses the same rotated grid as COSMO-D2-EPS,
the corresponding U and V forecasts are directed truly geo-
graphical and have been rotated according to the rotated grid
of the COSMO models to obtain a consistent forecast dataset.
Therefore, all U and V forecasts are the zonal and meridional
components of the rotated grid of the COSMO model. Since re-
verting the rotation is not straightforward, this might lead to
challenges in comparisons to observations or in using the fore-
casts in downstream applications.

2.3 | Observations at Station Locations

The CIENS observation data set consists of netCDF files that in-
clude 170 European synoptic observation sites distributed within
the German domain for the time range from 8 December 2010
to 30 June 2023 (see Figure 3). These station data are part of the
synoptic observations distributed via the World Meteorological
Observation (WMO) Global Telecommunication System (GTS),
available from 2001 onward. The maximum temporal resolution
is 1 or 3h for the standard elements.

The CIENS observation files differ from the original WMO files.
Anoriginal WMO data file is written in a fixed machine-readable

ASCII; however, the CIENS observations are written into
netCDF files. WMO files contain all stations and all observa-
tion dates for one day with 79 elements. Not all quantities are
measured at all stations and may thus be marked with missing
values. The standard elements are 2 m-temperature, dew point,
precipitation amount, 10 m-wind speed, gust and direction, pres-
ent weather and cloud cover. In addition, there are cloud heights,
sunshine duration, global radiation and many more. However,
to enable a large number of observation stations covering all
available variables and to minimise missing data and temporal
gaps, the CIENS data only includes wind, temperature and pre-
cipitation, see Table 2. Note that in contrast to the model predic-
tions of the U and V wind components, the wind direction in the
observations is truly geographically directed, which complicates
direct comparisons with the forecasts.

The only metadata included is the station identifier (WMO or
national identifier), but not the station name nor any geographi-
cal information. These can be found in the World Meteorological
Organization's official repository named OSCAR/Surface
(https://oscarwmo.int/surface/#/), and have been made avail-
able via the Github repository accompanying the dataset.

3 | Dataset Access
The CIENS data are available from the KITOpen repository

at https://doi.org/10.35097/EOvvQEsgILoXpYTK under a CC
BY 4.0 licence (Schulz et al. 2024). Exemplary code for the R

Latitude

—3000

—2000
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900
800
700
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FIGURE3 | Map of WMO synoptic stations included in CIENS. Colours represent the station altitude (m).
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https://oscar.wmo.int/surface/#/
https://doi.org/10.35097/EOvvQEsgILoXpYTK

TABLE 2 | Observed variables from the European synoptic stations
included in CIENS.

Variable Name Unit
wind_speed_of_gust Wind gusts m/s
wind_speed Wind speed m/s
wind_from_direction Wind direction Degree
precipitation_amount Precipitation kg /m?
amount (hourly)

air_temperature Air temperature K
air_pressure Alr pressure Pa

programming language and additional documentation, along
with all code to reproduce the results and usage examples from
Section A in Appendix S1, is available at https://github.com/
slerch/CIENS/. Additional location data including the names of
the stations, their coordinates, their height and the height of the
closest model grid point in the file is also available there.

4 | Potential Uses

The comprehensive collection of forecasts and observations in
the CIENS dataset enables researchers to address a wide range
of questions. This section aims to present a non-exhaustive list
of relevant topics in post-processing research and related fields
where the CIENS dataset could serve as a valuable resource.

One primary application of the CIENS dataset in post-processing
research is benchmarking both existing and novel methods for
the weather variables listed in Table 2 in various settings. In
particular, the recent advancements and successes in ML-based
post-processing underscore the need for large archives of train-
ing data. Given that a key advantage of ML models (and other
approaches, such as vine copula-based models, see e.g., Jobst
et al. 2023) lies in their ability to effectively leverage information
from a wide range of available predictors, the CIENS dataset—
with its 55 meteorological variables from the COSMO/ICON
model—provides a promising testing ground.

Specifically, it will be interesting to see whether statistical or
ML-based post-processing methods can make efficient use of
the additionally available spatially aggregated predictions, or
whether incorporating information from all ensemble members
can provide improvements over methods based on summary
statistics alone (Hohlein et al. 2024). Further aspects of model
development in post-processing include determining optimal
ways to utilise information across multiple lead times (Mlakar
et al. 2024) and to effectively combine multiple NWP model runs
from different initialization times during model training (Primo
et al. 2024). As noted in the introduction, frequent updates to
NWP models need to be accounted for by post-processing sys-
tems, and thus pose a challenge in operational weather pre-
diction at meteorological services (Vannitsem et al. 2021).
Producing a large archive of reforecasts for past dates with an
updated model version would be the ideal solution for training
post-processing models, but is usually infeasible in terms of the
required computational resources in practice, see Hamill (2018)

for a detailed discussion. The CIENS dataset, with its exten-
sive archive of operational forecast data encompassing several
major updates, allows for detailed investigations of the effects
of NWP model changes and the adaptation of post-processing
methods, see Section 2.2. Another key research focus in post-
processing literature has been on extreme events (e.g., Lerch and
Thorarinsdottir 2013; Williams et al. 2014; Pantillon et al. 2018;
Friederichs et al. 2018). The large volume of forecast and obser-
vation data available for variables such as wind gusts and hourly
precipitation accumulation will facilitate comparative studies
and targeted model development (Wessel et al. 2024) using the
CIENS dataset.

In addition to univariate post-processing of ensemble forecasts
for single target variables at specific locations and lead times,
many applications require accurate modelling of dependen-
cies across space, time, and variables (Schefzik et al. 2013).
Consequently, recent research has increasingly focused on
developing multivariate post-processing methods, including
new generative ML-based models (Chen et al. 2024; Landry
et al. 2025), or vine copula-based methods (Jobst et al. 2024,
2025). The amount of target variables, locations, and lead times
in the CIENS dataset provides an opportunity to expand existing
benchmarking efforts, particularly through incorporating addi-
tional input predictors into multivariate post-processing models.

Beyond ensemble post-processing, the CIENS dataset also sup-
ports various other research avenues. For instance, it could serve
as a platform for developing new verification methods for prob-
abilistic forecasts. Although substantial progress has been made
in both methodology and software tools (for overviews, see e.g.,
Gneiting and Raftery 2007; Gneiting and Katzfuss 2014; Jordan
et al. 2019; Gneiting et al. 2023; Allen 2024), there remains a
need for new approaches that address specific challenges such
as extremes (Lerch et al. 2017; Allen et al. 2023) and multivari-
ate evaluation (see e.g., Chen et al. 2024, for a discussion from
a multivariate post-processing perspective). Additionally, the
extensive archive of data allows for a feature-based assessment
of forecast quality in both raw and post-processed ensemble
predictions; see e.g., Eisenstein et al. (2022) for a study on wind
gusts during winter storms. Moreover, the CIENS forecast and
observation data could be integrated with other data sources
for downstream applications such as hydrological modelling
or energy forecasting (potentially in conjunction with post-
processing, see Phipps et al. 2022).

In addition to research, the CIENS dataset could serve as a
valuable resource for teaching university-level courses in atmo-
spheric sciences, statistics, or computer science and could also
be used to run forecasting competitions (Bracher et al. 2024).
Finally, the availability of a ready-to-use benchmark data-
set alongside open-source software greatly simplifies data col-
lection for student thesis projects.

5 | Discussion and Conclusions

We introduce the CIENS dataset, which encompasses more
than 12years of ensemble predictions from DWD's operational
weather prediction model, paired with observations of six mete-
orological variables at 170 weather stations. The substantial data
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volume, particularly the wide range of meteorological variables
available in the ensemble predictions, makes it a valuable re-
source for benchmarking existing methods and developing new
statistical and ML methods for ensemble post-processing. The
dataset is structured to facilitate addressing diverse research
questions and allows users to extract relevant subsets with min-
imal effort. Accompanying code with example pre-processing
functionalities and implementations of selected post-processing
methods aims at promoting reproducibility and streamlining
the dataset's future use.

While a single benchmark dataset cannot capture all aspects
relevant to the development of post-processing models, the
CIENS dataset offers valuable resources within certain con-
straints. For example, the operational convection-permitting
ensemble prediction system at DWD is limited to forecast lead
times of up to 21h, which may not meet the requirements of
all applications, including the growing interest in ML methods
for post-processing subseasonal-to-seasonal forecasts (Mayer
et al. 2026). Further, the included observation stations were
selected to focus on user-relevant variables and to ensure con-
sistent coverage over the dataset's time span with minimal
data gaps. This necessitated the exclusion of certain variables,
such as solar irradiance and visibility, which have been inves-
tigated in recent post-processing research (Schulz et al. 2021;
Baran and Lakatos 2023; Horat et al. 2024). Another active
area of research involves spatial post-processing methods that
utilise two-dimensional gridded forecasts as inputs, often le-
veraging convolutional neural networks (Gronquist et al. 2021;
Veldkamp et al. 2021; Chapman et al. 2022; Li et al. 2022;
Horat and Lerch 2024). The CIENS dataset does not include
gridded ensemble predictions; instead, in addition to the near-
est grid point predictors, it also provides spatial predictors
as averages and standard deviations computed over a small
set of surrounding grid points for each ensemble member.
Consequently, the dataset is less suited for developing spatial
post-processing models compared to other available bench-
mark datasets such as EUPPBench (Demaeyer et al. 2023) or
WeatherBench 2 (Rasp et al. 2024). Nevertheless, these two
datasets do not include any convection-permitting forecasts so
far. Therefore, activities are ongoing to extend EUPPBench by
a gridded dataset of COSMO forecasts.

Ultimately, the scientific value of a benchmark dataset is deter-
mined by its adoption and use. We believe the CIENS dataset
has significant potential as a resource for research projects and
teaching across disciplines. Its name reflects this ambition, with
the acronym derived from the Latin term ciens, which loosely
translates to ‘to put in motion’.
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Endnotes

! Note that before KENDA was introduced in the data assimilation pro-
cess in March 2021, the 20 members of COSMO-DE-EPS were con-
structed using five slightly different model configurations applied to
the initial and boundary conditions of four different global models.
Members 1-5 were based on the IFS model of ECMWF, 6-10 on the
formal global model GME of DWD, 11-15 on the GFS (United States
National Weather Service) model, and the remaining on GSM (Japan
Meteorological Agency).
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