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ABSTRACT
We present the CIENS dataset, which contains ensemble weather forecasts from the operational convection-permitting nu-
merical weather prediction model of the German Weather Service. It comprises forecasts for 55 meteorological variables 
mapped to the locations of synoptic stations, as well as additional spatially aggregated forecasts from surrounding grid 
points, available for a subset of these variables. Forecasts are available at hourly lead times from 0 to 21 h for two daily model 
runs initialised at 00 and 12 UTC, covering the period from December 2010 to June 2023. Additionally, the dataset provides 
station observations for six key variables at 170 locations across Germany: pressure, temperature, hourly precipitation accu-
mulation, wind speed, wind direction, and wind gusts. Since the forecasts are mapped to the observed locations, the data is 
delivered in a convenient format for analysis. The CIENS dataset complements the growing collection of benchmark datasets 
for weather and climate modelling. A key distinguishing feature is its long temporal extent, which encompasses multiple up-
dates to the underlying numerical weather prediction model and thus supports investigations into how forecasting methods 
can account for such changes. In addition to detailing the design and contents of the CIENS dataset, we outline potential 
applications in ensemble post-processing, forecast verification, and related research areas. A use case focused on ensemble 
post-processing illustrates the benefits of incorporating the rich set of available model predictors into machine learning-
based forecasting models.
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1   |   Introduction

Weather forecasts today are typically based on numerical 
weather prediction (NWP) models, which use systems of par-
tial differential equations to simulate atmospheric processes. 
By running NWP models with varying initial conditions and/or 
model physics, ensemble simulations enable probabilistic fore-
casting. Despite continual advances (Bauer et  al.  2015), NWP 
ensemble predictions often exhibit systematic errors, making 
post-processing essential for achieving accurate and reliable 
forecasts. Here, post-processing refers to methods that lever-
age past NWP forecast-observation pairs to optimally adjust 
future forecasts. Over the past decades, a wide variety of post-
processing methods have been developed, and these now form a 
critical component of the forecasting workflow in national and 
international meteorological services (Vannitsem et al. 2018).

A recent focus of post-processing research has been the appli-
cation of modern machine learning (ML) methods; see Haupt 
et al. (2021), Vannitsem et al. (2021) for overviews. For example, 
post-processing approaches based on random forests (Taillardat 
et al. 2016), gradient boosting (Messner et al. 2017), and neural 
networks (Rasp and Lerch  2018) have demonstrated promis-
ing results across various applications. The rapid development 
and growing variety of new methods clearly underscore the 
need for systematic comparisons and rigorous assessments of 
the advantages and disadvantages of these approaches. Several 
studies have undertaken such efforts for univariate (Rasp and 
Lerch 2018; Schulz and Lerch 2022; Demaeyer et al. 2023) and 
multivariate (Wilks 2015; Perrone et al. 2020; Lerch et al. 2020; 
Lakatos et al. 2023) post-processing, using both simulated and 
real-world data. Nonetheless, there remains a critical need for 
comprehensive and easily accessible real-world benchmark 
datasets to enable fair quantitative comparisons and facilitate 
interdisciplinary research efforts by reducing the time-intensive 
process of data collection and curation (Dueben et al. 2022)

In recent years, numerous benchmark datasets for weather and 
climate modelling have been released, including datasets for sub-
seasonal and seasonal weather forecasting (Hwang et  al.  2019; 
Lenkoski et al. 2022; Vitart et al. 2022; Mouatadid et al. 2023) and 
for data-driven weather and climate prediction (Rasp et al. 2020; 
Watson-Parris et  al.  2022; Rasp et  al.  2024). Among these, the 
WeatherBench 2 dataset (Rasp et al.  2024) provides global grid-
ded NWP forecasts and corresponding reanalysis fields, making it 
a valuable resource for post-processing research as well (see, e.g., 
Bülte et  al.  2025). Additionally, several recent benchmark data-
sets explicitly identify post-processing as a key application (Haupt 
et al. 2021; Ashkboos et al. 2022; Kim et al. 2022). Most closely 
related to our work is the recent EUPPBench dataset (Demaeyer 
et al. 2023), which was published as part of the activities within the 
post-processing working group of the European Meteorological 
Network (EUMETNET). EUPPBench includes 2 years of fore-
casts and 20 years of corresponding reforecasts from the European 
Centre for Medium-Range Weather Forecasts (ECMWF), along 
with station observations across Europe.

In this work, we introduce the CIENS dataset, which pro-
vides location-specific ensemble forecasts from the opera-
tional convection-permitting NWP model of the German 
Weather Service (Deutscher Wetterdienst, DWD), along with 

corresponding observations from 170 stations across Germany. 
The dataset includes ensemble forecasts of the 20 members for 
55 meteorological variables mapped to the locations of the sta-
tions, as well as additional spatially aggregated forecasts from 
surrounding grid points available for some variables. Forecasts 
are available at hourly lead times from 0 to 21 h, for two daily 
model runs initialised at 00 UTC and 12 UTC. Spanning 
December 2010 to June 2023, the dataset also includes station 
observations of six key variables: pressure, temperature, hourly 
precipitation accumulation, wind speed, wind direction, and 
wind gusts. Over this time period, the operational NWP model 
has undergone significant updates, including changes of resolu-
tion, ensemble generation mechanisms, and model physics.

To the best of our knowledge, the CIENS dataset is the largest 
available archive of pre-processed, analysis-ready weather fore-
cast and observation data specifically designed for station-based 
post-processing in terms of the temporal extent of the provided 
data. It complements existing datasets such as EUPPBench and 
enables addressing a wide range of research questions concerning 
the development and evaluation of post-processing methods. For 
instance, adapting post-processing methods to accommodate on-
going changes in the NWP model remains a challenge in opera-
tional settings (Hess 2020; Lang et al. 2020; Vannitsem et al. 2021; 
Primo et al. 2024). The extensive time span of operational ensem-
ble forecasts available in the CIENS dataset makes it ideally suited 
to address this challenge, among many others. Parts of the CIENS 
dataset have been used in previous research, primarily focused 
on wind gust forecasting. For example, Hess  (2020), Schulz and 
Lerch (2022) and Primo et al.  (2024) compare various statistical 
and ML-based post-processing methods, Pantillon et al. (2018) and 
Eisenstein et al. (2022) investigate meteorological aspects of wind 
gust forecasts during severe storms, and Arnold et al. (2024) lever-
age forecast and observation data for methodological advance-
ments in forecast evaluation.

The remainder of this article is structured as follows: Section 2 pro-
vides a detailed description of the dataset structure, forecasts, and 
observations included in the CIENS dataset. Section 4 explores po-
tential applications of the dataset in post-processing research and 
other areas. The article concludes with a discussion in Section 5. 
Appendix  S1 presents an exemplary use case, where ML-based 
post-processing methods use different sets of input variables for 
probabilistic wind gust forecasting are compared.

2   |   CIENS Dataset

This section provides an overview of the structure and contents 
of the CIENS dataset.

2.1   |   Data Structure

The CIENS data are provided in four parts, see Table 1 for an 
overview. This simplifies downloading and handling of the 
large dataset (with a total size of approximately 370 GB) and 
was necessitated by technical restrictions of the data repository, 
where the data is hosted (KITOpen, a central repository service 
at the Karlsruhe Institute of Technology). To support typical 
uses in the context of ensemble post-processing (see Section 4; 
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and Section A in Appendix S1), we split the data by initialization 
times of the model runs (at 00 UTC and 12 UTC), and according 
to the type of meteorological variables from the NWP forecasts. 
Specifically, we distinguish between ensemble forecasts taken 
from the grid point closest to a station location, and spatial fore-
casts which summarise forecasts from the surrounding 11 × 11 
and 21 × 21 grid points via their mean value and standard devi-
ation (individually for each ensemble member). Note that while 
observations are available for all hours of the day, the (complete) 
observational data are only included in the CIENS—Run 00 
UTC dataset to avoid unnecessary duplicates.

The four parts of the CIENS dataset are organised in a similar 
manner, exemplified by the directory structure of the CIENS—
Run 00 UTC data shown in Figure 1. The forecast data is pro-
vided as daily netCDF files, with corresponding NWP ensemble 
predictions for all available observation stations and lead times. 
Corresponding observation data is provided in yearly netCDF 
files and can be matched to the forecast data using the pro-
vided code.

2.2   |   NWP Model Forecasts

The CIENS data set includes model forecasts provided by the 
ensemble prediction system (EPS) of the DWD from 8 December 
2010 to 30 June 2023. During that period, different improve-
ments have been made to the NWP system, partly even resulting 
in different model names: COSMO-DE-EPS, COSMO-D2-EPS 
and ICON-D2-EPS. Figure 2 shows an overview of the most rel-
evant changes in the NWP model during the time range con-
sidered. The mean verification scores for wind gust forecasts 
from the NWP model shown alongside the model updates indi-
cate that the model updates can have substantial impacts on the 
quality of the resulting ensemble forecasts.

Forecast data are provided for the 00 UTC and 12 UTC runs of 
the ensemble forecast systems which were operational at that 
time, i.e., of COSMO-DE-EPS (Baldauf et  al.  2011; Gebhardt 
et  al.  2011), COSMO-D2-EPS (Baldauf et  al.  2018), and 

ICON-D2-EPS (Reinert et  al.  2021). In order to generate long 
time series, data of COSMO-DE-EPS are used from 8 December 
2010 00 UTC until 15 May 2018 12 UTC, when the first data of 
COSMO-D2-EPS became available. Among other updates, this 
model change included an increase in the horizontal resolution 
from 2.8 to 2.2 km and an updated orography. Beginning with 
10 February 2021, run 12 UTC, forecast data from the current 
operational ensemble system ICON-D2-EPS are used. The spa-
tial resolution was kept constant for this model change. There 
have been numerous additional model updates, which are doc-
umented in DWD (2016, 2018, 2025). For example, at the time 
of writing, four model updates have occurred in the year 2024, 
and the latest update from 9 July 2024 comprises a revision of 
the wind gust parameterization and modifications to the radar 
data assimilation processes. Whether such model updates will 
have substantial impacts on the forecast quality depends on the 
specific target variable of interest, along with many other factors 
such as the location or lead time under consideration.

Forecasts in the CIENS dataset are available for hourly lead 
times from 0 to 21 h, for each of the 20 members of the ensem-
ble models mentioned above.1 The forecast model data are in-
terpolated to 170 synoptic observation stations within Germany 
(see Section 2.3). The interpolation is applied separately for each 
ensemble member and uses data from the nearest model grid 
point. Furthermore, medium- and large-scale predictors are de-
rived from the model forecasts including the spatial mean and 
standard deviation of 11 × 11 and 21 × 21 model grid points, re-
spectively, around the locations of the synoptic stations, com-
puted separately for each ensemble member. Those spatial 
variables constitute supplementary information, that might be 
of interest for some potential applications, see Hess (2020) and 
Appendix S1 for examples.

Altogether 55 model variables are available, including near sur-
face parameters such as 2 m-temperature and dew point, wind 
and wind gusts in 10 m height, total precipitation, cloud cover-
age, radiation, and many more, but also temperature, relative 
humidity, wind, vertical velocity, and geopotential on 5 pressure 
levels from 500 hPa up to 1000 hPa are provided. The complete 

TABLE 1    |    Overview of the different parts of the CIENS dataset. The included NWP forecasts are separated between so-called standard and 
spatial variables. We refer to standard variables as the meteorological variables taken from the closest grid point, while the spatial variables refer to 
summary statistics of surrounding grid cells.

Dataset DOI Content Size (GB)

CIENS 10.35097/EOvvQEsgILoXpYTK ‘Parent’ (or primary) dataset which 
serves as the official reference and 
links to the four parts listed below

—

CIENS—Run 00 UTC 10.35097/zzfEJPxDILXwSNPH NWP forecasts (standard variables) 
of the model runs initialised at 00 

UTC and observational data

75.9

CIENS—Run 00 UTC—
Spatial Variables

10.35097/wVDXkDCGnBgFuuGt NWP forecasts (spatial variables) of 
the model runs initialised at 00 UTC

109.7

CIENS—Run 12 UTC 10.35097/JKALdQqqLIjGUOBC NWP forecasts (standard variables) of 
the model runs initialised at 12 UTC

75.3

CIENS—Run 12 UTC—
Spatial Variables

10.35097/rJZCZYljpSReTWNL NWP forecasts (spatial variables) of 
the model runs initialised at 12 UTC

109.5
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FIGURE 1    |    Directory structure of the CIENS—Run 00 UTC data.

FIGURE 2    |    Overview of the most substantial changes in the NWP model underlying the CIENS forecasts indicated by the coloured boxes and 
lines, along with the temporal evolution of the mean CRPS values (see Section A.2 in Appendix S1) of the raw ensemble forecasts of wind gust with a 
lead time of 18 h. The CRPS values are averaged over all station locations and smoothed with a 30-day running mean, restricted to the corresponding 
NWP model version. Horizontal lines indicate the mean CRPS over the corresponding period. The mean CRPS values shown here are restricted to 
the time period from 2016 until the end of the dataset in June 2023.
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list of forecast variables is included in the CIENS repository 
(Möller et al. 2024).

The zonal and meridional wind components U and V are rotated 
according to the rotated grid used in the COSMO models. While 
ICON-D2-EPS uses the same rotated grid as COSMO-D2-EPS, 
the corresponding U and V forecasts are directed truly geo-
graphical and have been rotated according to the rotated grid 
of the COSMO models to obtain a consistent forecast dataset. 
Therefore, all U and V forecasts are the zonal and meridional 
components of the rotated grid of the COSMO model. Since re-
verting the rotation is not straightforward, this might lead to 
challenges in comparisons to observations or in using the fore-
casts in downstream applications.

2.3   |   Observations at Station Locations

The CIENS observation data set consists of netCDF files that in-
clude 170 European synoptic observation sites distributed within 
the German domain for the time range from 8 December 2010 
to 30 June 2023 (see Figure 3). These station data are part of the 
synoptic observations distributed via the World Meteorological 
Observation (WMO) Global Telecommunication System (GTS), 
available from 2001 onward. The maximum temporal resolution 
is 1 or 3 h for the standard elements.

The CIENS observation files differ from the original WMO files. 
An original WMO data file is written in a fixed machine-readable 

ASCII; however, the CIENS observations are written into 
netCDF files. WMO files contain all stations and all observa-
tion dates for one day with 79 elements. Not all quantities are 
measured at all stations and may thus be marked with missing 
values. The standard elements are 2 m-temperature, dew point, 
precipitation amount, 10 m-wind speed, gust and direction, pres-
ent weather and cloud cover. In addition, there are cloud heights, 
sunshine duration, global radiation and many more. However, 
to enable a large number of observation stations covering all 
available variables and to minimise missing data and temporal 
gaps, the CIENS data only includes wind, temperature and pre-
cipitation, see Table 2. Note that in contrast to the model predic-
tions of the U and V wind components, the wind direction in the 
observations is truly geographically directed, which complicates 
direct comparisons with the forecasts.

The only metadata included is the station identifier (WMO or 
national identifier), but not the station name nor any geographi-
cal information. These can be found in the World Meteorological 
Organization's official repository named OSCAR/Surface 
(https://​oscar.​wmo.​int/​surfa​ce/#/​), and have been made avail-
able via the Github repository accompanying the dataset.

3   |   Dataset Access

The CIENS data are available from the KITOpen repository 
at https://​doi.​org/​10.​35097/​​EOvvQ​EsgIL​oXpYTK under a CC 
BY 4.0 licence (Schulz et  al.  2024). Exemplary code for the R 

FIGURE 3    |    Map of WMO synoptic stations included in CIENS. Colours represent the station altitude (m).
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programming language and additional documentation, along 
with all code to reproduce the results and usage examples from 
Section A in Appendix  S1, is available at https://​github.​com/​
slerch/​CIENS/​​. Additional location data including the names of 
the stations, their coordinates, their height and the height of the 
closest model grid point in the file is also available there.

4   |   Potential Uses

The comprehensive collection of forecasts and observations in 
the CIENS dataset enables researchers to address a wide range 
of questions. This section aims to present a non-exhaustive list 
of relevant topics in post-processing research and related fields 
where the CIENS dataset could serve as a valuable resource.

One primary application of the CIENS dataset in post-processing 
research is benchmarking both existing and novel methods for 
the weather variables listed in Table  2 in various settings. In 
particular, the recent advancements and successes in ML-based 
post-processing underscore the need for large archives of train-
ing data. Given that a key advantage of ML models (and other 
approaches, such as vine copula-based models, see e.g., Jobst 
et al. 2023) lies in their ability to effectively leverage information 
from a wide range of available predictors, the CIENS dataset—
with its 55 meteorological variables from the COSMO/ICON 
model—provides a promising testing ground.

Specifically, it will be interesting to see whether statistical or 
ML-based post-processing methods can make efficient use of 
the additionally available spatially aggregated predictions, or 
whether incorporating information from all ensemble members 
can provide improvements over methods based on summary 
statistics alone (Höhlein et al. 2024). Further aspects of model 
development in post-processing include determining optimal 
ways to utilise information across multiple lead times (Mlakar 
et al. 2024) and to effectively combine multiple NWP model runs 
from different initialization times during model training (Primo 
et al. 2024). As noted in the introduction, frequent updates to 
NWP models need to be accounted for by post-processing sys-
tems, and thus pose a challenge in operational weather pre-
diction at meteorological services (Vannitsem et  al.  2021). 
Producing a large archive of reforecasts for past dates with an 
updated model version would be the ideal solution for training 
post-processing models, but is usually infeasible in terms of the 
required computational resources in practice, see Hamill (2018) 

for a detailed discussion. The CIENS dataset, with its exten-
sive archive of operational forecast data encompassing several 
major updates, allows for detailed investigations of the effects 
of NWP model changes and the adaptation of post-processing 
methods, see Section  2.2. Another key research focus in post-
processing literature has been on extreme events (e.g., Lerch and 
Thorarinsdottir 2013; Williams et al. 2014; Pantillon et al. 2018; 
Friederichs et al. 2018). The large volume of forecast and obser-
vation data available for variables such as wind gusts and hourly 
precipitation accumulation will facilitate comparative studies 
and targeted model development (Wessel et al. 2024) using the 
CIENS dataset.

In addition to univariate post-processing of ensemble forecasts 
for single target variables at specific locations and lead times, 
many applications require accurate modelling of dependen-
cies across space, time, and variables (Schefzik et  al.  2013). 
Consequently, recent research has increasingly focused on 
developing multivariate post-processing methods, including 
new generative ML-based models (Chen et  al.  2024; Landry 
et  al.  2025), or vine copula-based methods (Jobst et  al.  2024, 
2025). The amount of target variables, locations, and lead times 
in the CIENS dataset provides an opportunity to expand existing 
benchmarking efforts, particularly through incorporating addi-
tional input predictors into multivariate post-processing models.

Beyond ensemble post-processing, the CIENS dataset also sup-
ports various other research avenues. For instance, it could serve 
as a platform for developing new verification methods for prob-
abilistic forecasts. Although substantial progress has been made 
in both methodology and software tools (for overviews, see e.g., 
Gneiting and Raftery 2007; Gneiting and Katzfuss 2014; Jordan 
et  al.  2019; Gneiting et  al.  2023; Allen  2024), there remains a 
need for new approaches that address specific challenges such 
as extremes (Lerch et al. 2017; Allen et al. 2023) and multivari-
ate evaluation (see e.g., Chen et al. 2024, for a discussion from 
a multivariate post-processing perspective). Additionally, the 
extensive archive of data allows for a feature-based assessment 
of forecast quality in both raw and post-processed ensemble 
predictions; see e.g., Eisenstein et al. (2022) for a study on wind 
gusts during winter storms. Moreover, the CIENS forecast and 
observation data could be integrated with other data sources 
for downstream applications such as hydrological modelling 
or energy forecasting (potentially in conjunction with post-
processing, see Phipps et al. 2022).

In addition to research, the CIENS dataset could serve as a 
valuable resource for teaching university-level courses in atmo-
spheric sciences, statistics, or computer science and could also 
be used to run forecasting competitions (Bracher et  al.  2024). 
Finally, the availability of a ready-to-use benchmark data-
set alongside open-source software greatly simplifies data col-
lection for student thesis projects.

5   |   Discussion and Conclusions

We introduce the CIENS dataset, which encompasses more 
than 12 years of ensemble predictions from DWD's operational 
weather prediction model, paired with observations of six mete-
orological variables at 170 weather stations. The substantial data 

TABLE 2    |    Observed variables from the European synoptic stations 
included in CIENS.

Variable Name Unit

wind_speed_of_gust Wind gusts m∕s

wind_speed Wind speed m∕s

wind_from_direction Wind direction Degree

precipitation_amount Precipitation 
amount (hourly)

kg∕m2

air_temperature Air temperature K

air_pressure Air pressure Pa
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volume, particularly the wide range of meteorological variables 
available in the ensemble predictions, makes it a valuable re-
source for benchmarking existing methods and developing new 
statistical and ML methods for ensemble post-processing. The 
dataset is structured to facilitate addressing diverse research 
questions and allows users to extract relevant subsets with min-
imal effort. Accompanying code with example pre-processing 
functionalities and implementations of selected post-processing 
methods aims at promoting reproducibility and streamlining 
the dataset's future use.

While a single benchmark dataset cannot capture all aspects 
relevant to the development of post-processing models, the 
CIENS dataset offers valuable resources within certain con-
straints. For example, the operational convection-permitting 
ensemble prediction system at DWD is limited to forecast lead 
times of up to 21 h, which may not meet the requirements of 
all applications, including the growing interest in ML methods 
for post-processing subseasonal-to-seasonal forecasts (Mayer 
et  al.  2026). Further, the included observation stations were 
selected to focus on user-relevant variables and to ensure con-
sistent coverage over the dataset's time span with minimal 
data gaps. This necessitated the exclusion of certain variables, 
such as solar irradiance and visibility, which have been inves-
tigated in recent post-processing research (Schulz et al. 2021; 
Baran and Lakatos  2023; Horat et  al.  2024). Another active 
area of research involves spatial post-processing methods that 
utilise two-dimensional gridded forecasts as inputs, often le-
veraging convolutional neural networks (Grönquist et al. 2021; 
Veldkamp et  al.  2021; Chapman et  al.  2022; Li et  al.  2022; 
Horat and Lerch  2024). The CIENS dataset does not include 
gridded ensemble predictions; instead, in addition to the near-
est grid point predictors, it also provides spatial predictors 
as averages and standard deviations computed over a small 
set of surrounding grid points for each ensemble member. 
Consequently, the dataset is less suited for developing spatial 
post-processing models compared to other available bench-
mark datasets such as EUPPBench (Demaeyer et al. 2023) or 
WeatherBench 2 (Rasp et  al.  2024). Nevertheless, these two 
datasets do not include any convection-permitting forecasts so 
far. Therefore, activities are ongoing to extend EUPPBench by 
a gridded dataset of COSMO forecasts.

Ultimately, the scientific value of a benchmark dataset is deter-
mined by its adoption and use. We believe the CIENS dataset 
has significant potential as a resource for research projects and 
teaching across disciplines. Its name reflects this ambition, with 
the acronym derived from the Latin term ciens, which loosely 
translates to ‘to put in motion’.
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	1	Note that before KENDA was introduced in the data assimilation pro-
cess in March 2021, the 20 members of COSMO-DE-EPS were con-
structed using five slightly different model configurations applied to 
the initial and boundary conditions of four different global models. 
Members 1–5 were based on the IFS model of ECMWF, 6–10 on the 
formal global model GME of DWD, 11–15 on the GFS (United States 
National Weather Service) model, and the remaining on GSM (Japan 
Meteorological Agency).
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