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ABSTRACT

Long-term, spatially representative soil-moisture records are critical for characterising ecosystem responses to water availability.
We present a decade-long (2014-2024) dataset of continuous soil-moisture observations from distributed in situ networks and
cosmic-ray neutron sensing (CRNS) across a 1ha temperate deciduous forest in Germany. Spatial sensor coverage varied over
time and challenged the derivation of a consistent spatial average due to the persistence of soil moisture patterns. We therefore

implemented a semi-automatic workflow that (i) identifies reference periods via a bootstrap-based minimum required number

of sensors (MRNS) and (ii) maps point measurements to the field-scale distribution using empirical CDF transformation. The

resulting record provides a coherent long-term signal suitable for ecohydrological analyses and validation of remote-sensing
products. Since any decade-scale monitoring will encounter sensor losses and replacements, we emphasise the critical role of
robust data integration techniques to ensure the reliability of extended soil moisture datasets.

1 | Introduction

Accurate soil moisture measurements are crucial for assessing
ecosystem responses to water availability. Soil moisture influ-
ences plant growth, microbial activity, carbon and nutrient cy-
cling, and even local climate conditions (Vereecken et al. 2008;
Humphrey et al. 2018, 2021; Green et al. 2019). In situ tech-
niques, which involve direct contact with the soil using instru-
ments such as soil moisture probes or sensors, can provide the
required data. Sensors offer the advantage of continuous, near-
real-time monitoring, making them ideal for capturing temporal
dynamics of soil moisture over long periods. However, the com-
plexity of installing and operating sensors in the ground means
that only selected locations can be monitored. In addition to
in situ monitoring, soil moisture can be obtained from proximal
sensing approaches such as cosmic-ray neutron sensing (CRNS)
or from satellite or airborne remote sensing. These methods
enable observations over larger spatial domains but ultimately

depend on in situ measurements for calibration and validation
(Colliander et al. 2017; Schron et al. 2017).

To validate spatial soil moisture information, it is necessary
to bridge the “support gap” between reference measurements
from sensors (point scale) and the target product (spatial
scales from metres to kilometres), that is, to transfer infor-
mation from the scale where measurements are obtained to,
for example, the ecosystem level or the grid scale of the target
product (Pachepsky and Hill 2017). Multiple measurements
are required to reliably estimate the spatial mean soil water
content, depending on the heterogeneity of the area of inter-
est. Due to the strong influence of local factors on soil water
content and dynamics, single sensor measurements are usu-
ally not representative for the whole area (Brocca et al. 2009;
Heathman et al. 2012; Zhu et al. 2018). Based on a literature
review, Crow et al. (2012) concluded that for an area of about
800m? on average 10-20 sensors are required to obtain the
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field mean with an accuracy of 2 vol. % (10) in the top layer.
Depending on site-specific characteristics such as topography,
vegetation or climate, the actual number of sensors required
can range from 1 to 12 sensors (Hupet and Vanclooster 2002)
to 42 sensors (Wang et al. 2008) in extreme cases. On the other
hand, soil water content measurements at the point scale can
show a high level of redundancy in time (Vachaud et al. 1985;
Milicke et al. 2020), a property that can be used for quality
assurance in long-term soil moisture time series based on a
limited number of sensors (Pachepsky et al. 2005).

Here, we present a dataset consisting of more than 10years
of spatially distributed in situ as well as remotely sensed soil
moisture measurements from a CRNS setup in a deciduous for-
est in Germany. The study site was established in 2013 within
the framework of the TERENO project as part of the Central
German Lowland Observatory (Wollschliger et al. 2016) and
offers a wide range of ecohydrological research opportunities.
Data gathered at the research site has been used to study, for
example, species composition of mycorrhizal fungi (Marafién-
Jiménez et al. 2021), the relationship between climate and litter
decomposition (Djukic et al. 2018), validation of soil moisture
simulations (Boeing et al. 2022), impact of an extreme drought
event on carbon uptake (Pohl et al. 2023) or leaf-out dates of dif-
ferent tree compositions (Delpierre et al. 2024).

In addition to the description of the data, special attention is
given to the derivation of a consistent and long-term spatial
mean. Due to sensor failures and required re-installation of new
sensors, it was necessary to develop a workflow that provides a
temporally consistent spatial average soil moisture, for example,
one that is faithful to the actual climatic temporal trends despite
the presence of spatially and temporally irregular data gaps. Due
to the temporal persistence of soil moisture patterns (Vachaud
et al. 1985), averaging the remaining data runs the risk of intro-
ducing artificial trends in the time series (Vachaud et al. 1985;
Pachepsky et al. 2005). Permanent sensor loss also leads to gaps
in the time series that traditional gap-filling approaches cannot
address (Kornelsen and Coulibaly 2014). Therefore, we present
a semi-automated workflow that enables us to account for tem-
poral shifts as a result of the different sensors contributing to
the calculation of the spatial average. This approach may also be
helpful for other research groups that are facing similar problems
when it comes to aligning multiple sensor setups or replacing soil
moisture sensors in situations where there are few soil moisture
sensors installed overall, such as at eddy covariance sites. The
correction is based on the philosophy proposed by Pachepsky
et al. (2005), but uses an adapted correction procedure.

2 | Study Site and Design

Data are gathered within a 1 ha fenced area of the Hohes Holz
forest (DE-HoH, N52°05’ E11°13’,193 m above sea level), located
in the northern part of the Bode catchment near Magdeburg in
central Germany (cf. Figure 1). Since the beginning of 2019, the
station has met all required instrumentation and sampling pro-
cedures according to the ICOS ecosystem standards for class 1
stations (Franz et al. 2018; Rebmann et al. 2018). Climate in
the study area is subatlantic-submontane with a mean annual
temperature of 9.1°C and mean annual precipitation of 563 mm

Om 20m 40m 60m 80m 100m 120m 140 m

Soil Moisture Species

¥ CRNS o Carpinus betulus L.
® |COS e Fagus sylvatica L.

A SoilNet * Quercus petraea (Matt.) Liebl.
¢ TERENO

FIGURE1 | Spatial distribution of soil moisture monitoring profiles,
the location of the Cosmic-Ray Neutron Sensor (CRNS) and tree spe-
cies within the study site. The inset shows the study location within
Germany.

(climatic period 1981-2010, station Ummendorf of the German
Weather Service). The fenced area is composed of European
beech (Fagus sylvatica L.) and sessile oak (Quercus petraea
(Matt.) Liebl.) as dominant species (38% and 45% of total basal
area, respectively) with accompanying hornbeam (Carpinus
betulus L., 13%) with 245 trees in the enclosure.

Soil water content sensors from a distributed monitoring net-
work (SoilNet-WSN with SPADE sensors, sceme.de GmbH,
Germany) (Bogena et al. 2010) were installed in April 2014
and distributed over areas with low and high tree (and thus
root) density. The number of in situ sensors originally installed
varied from 14 sensors at seven locations per depth at 5, 20, 40,
and 50 cm, to 30 sensors at 23 locations at 30 cm, and 34 sensors
at 27 locations at 10cm, in order to better capture near-surface
soil moisture dynamics. Note that sensors that worked for only
a very short time or delivered erroneous data were excluded
from this data release, which is why the actual number of sen-
sors included is lower than the original setup (cf. Figure 2).

Data were collected every 10min via the network coordinator
and stored on a field computer. Soil moisture was also mea-
sured in two additional profiles using CS616 sensors (Campbell
Scientific Inc., Logan, Utah, USA) to fulfil requirements for the
TERENO network (Wollschldger et al. 2016). Likewise, SMT100
sensors (TRUEBNER GmbH, Germany) were additionally in-
stalled in 2017 at 4 locations to account for the sensor losses and
fulfil requirements of ICOS (Rebmann et al. 2018). These data
were also recorded and stored as 10min averages by a CR1000
data logger (Campbell Scientific Inc., Logan, Utah, USA).
Physically unrealistic data were removed using semi-automated
procedures that check for outliers (values below zero or above
the soil porosity) and spikes unrelated to precipitation using the
SA/QC tool (Schmidt et al. 2023).
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FIGURE 2 | Temporal coverage of active in situ sensors across depths (0.05m to 0.8 m) from 2014 to 2024, colours refer to the three setups ICOS

(green), SoilNet (purple), and TERENO (orange).

In addition to the in situ sensors, a CRS1000 cosmic-ray neu-
tron sensor (Schron et al. 2018) was installed at the central forest
tower, about 4m above ground level, in the summer of 2014. The
neutron measurements were processed according to the methods
described in (Bogena et al. 2022), assuming soil bulk density of
1.136gcm _3, soil organic carbon of 0.031 g/g, soil lattice water of
0.038g/g, and a free calibration parameter of N, = 743 cph. The
final daily soil moisture product is given in volumetric percent

with an uncertainty range from + 0.5 vol. % in summer and + 1.5
vol. % in winter. The integral measurement is representative for
surface and subsurface water in an area of up to 150-200m ra-
dius around the sensor (winter to summer) and down to 25-50cm
depth (winter to summer).

Throughout the rest of the manuscript, the term ‘sensor’ re-
fers to the in situ soil moisture sensors installed below ground
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and the Cosmic-Ray Neutron Sensor is explicitly mentioned as
‘CRNS’. An overview of all the soil moisture monitoring setups
described previously is provided in Table 1.

3 | Methods
3.1 | Definition of Spatial Reference Estimates

Given a set of sensors indexed by x, let A, be the set of sensors
with valid data at time step ¢. For each sensor x, let T, be the set
of time steps for which x has valid data. The spatial mean at time
t and the temporal mean for sensor x are

- 1
b= 200 M
IxeA,
- 1
O =—- th»x @
XteT,
where n, = | A, | and n, = | T, |. Here, §,, denotes the soil-

moisture reading.

We assume that the estimation error for , is small if the sample
is sufficiently large, which implies that the identity of the sam-
ple (i.e., which sensors are active at time t) has little effect on
the estimate of ,. Due to the temporal stability of soil moisture
patterns, the fluctuating identity of the sample leads to different
biases with increasing in situ sensor loss and increases the esti-
mation error of 8, (Pachepsky et al. 2005).

In order to establish a threshold for the number of active in situ
sensors needed to estimate the spatial reference averages, for
each depth, we selected 50days with the largest n,. For each se-
lected day and each target sample size k € {kpyp, .. .1, }, We
drew B = 1000 bootstrap samples of size k and computed the
spatial mean 52;) for replicate b. We then summarised the vari-
ability across replicates via the coefficient of variation CV(k)
and related it to k. The minimum required number of sensors
(MRNS) was defined as the k at the elbow of the CV(k) curve,
determined by the maximum second derivative (maximum cur-
vature). Times with n, > MRNS form the reference period T,

3.2 | Evaluation of Temporal Stability
Temporal Stability Analysis (TSA) has been widely used as a
common technique to identify representative locations for spatial

soil moisture patterns (Brocca et al. 2009; Vachaud et al. 1985;

TABLE1 | Overview of soil moisture measurement setups.

Jacobs 2004; Ran et al. 2017). TSA evaluates soil moisture dy-
namics at individual sensor locations relative to the field mean
over time. Two key metrics can be considered in that sense: the
mean relative difference (MRD) and the standard deviation of
the relative difference (SDRD). Here and below, TSA metrics are
computed only over the reference period, that is, sums run over
t € T, N T, For brevity, we write T, and n,.

MRD indicates the average deviation of the point measurement
from the field mean, that is, whether a particular location is
drier or wetter on average than the field mean and is defined as:

-
RD,, = ""5 : ®
t
1
MRD, = — Y RD,, @
XteT,

x

where RD, , is the relative difference of 6 at the location x and
observation time t, and n, is the number of time steps for that
location. Small absolute values of MRD, indicate locations that
are near the spatial average.

The standard deviation of the relative difference (SDRD) quanti-
fies the temporal consistency, with lower values indicating high
stability or temporal persistence of the soil moisture conditions
at that location. SDRD is defined as:

1 2
SDRD, = \/nx — ltesz(RDx,t_MRDx) )

Jacobs (2004) defined a single metric that combines the informa-
tion of MRD and SDRD that can be used to define representative
locations for the target area. We follow the suggestion of (Zhao
et al. 2010) and use the term index of time stability (ITS) instead
of RMSE proposed by Jacobs (2004) to avoid confusion with the
general RMSE. The smaller the value for ITS, the better a sensor
location reflects the spatial average. ITS can be calculated as:

ITS, = {/MRD? + SDRD? 6)

3.3 | Statistical Transformation From Point to
Field Scale

When the statistical distributions of two random variables are
known, their cumulative distribution functions (CDFs) can be
transformed from one to the other using a transfer function.

Sensor Referred Year No. of
#  type to as installed locations Depth (m) References
1 SPADE SoilNet 2014 7-27 0.05,0.1,0.2,0.3,0.4,0.5 Bogena et al. (2010)
2 SMT100 ICOS 2017 4 0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.7 Rebmann et al. (2018)
3 CS6l16 TERENO 2014 2 0.1,0.2,0.3,0.4,0.5,0.8 Wollschliger et al. (2016)
4 CRS1000 CRNS 2014 1 Integral volume up to 0.25m Schron et al. (2018)
(winter), 0.50 m (summer)
40f 12 Geoscience Data Journal, 2026
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This technique is widely used, for example, to bias-correct
model outputs against observations in climate simulations
(Thrasher et al. 2012; Maraun 2013; Cannon et al. 2015), to
downscale remote sensing products (Xu and Cheng 2021), to
estimate subsurface soil moisture from surface measurements
(Gao et al. 2019; Tian et al. 2020; Zhuang et al. 2020), or to up-
scale profile soil measurements to field averages (De Lannoy
et al. 2007; Han et al. 2012). This approach is referred to in
the literature as CDF matching, quantile mapping, quantile-
quantile transformation, observation operators, and other
terms. In this study, we adopt the term statistical transfor-
mation, following (Gudmundsson et al. 2012). We map point-
scale measurements to the field scale via an empirical CDF
transformation:

Oups = hx(01x) = ) (Fe(01x)) ™

where F, and Fg, denote the empirical CDFs computed over
the overlapping calibration period 7, N 7, for sensor x and the
spatial mean Et, respectively. Between empirical quantiles we
apply linear interpolation. Outside the observed range, values
are not extrapolated but instead mapped to the nearest bound
of the empirical CDF (minimum or maximum). Linear extrap-
olation of the outermost segment would in principle be possi-
ble, but was not applied in this release because it occasionally
produced implausible values.

4 | Data

The dataset consists of soil moisture measurements collected over
adecade from multiple in situ monitoring systems and Cosmic Ray
Neutron Sensing (CRNS) at the study site. Due to sensor failures,
replacements, and varying depths of measurement, the number of
available observations fluctuates over time. To provide a compre-
hensive overview, Figure 2 shows the temporal coverage of active
soil moisture sensors at different depths, ranging from 0.05m to
0.8m, for three monitoring systems: ICOS (green), SoilNet (purple)
and TERENO (orange).

The SoilNet setup had been in operation since mid-2014 and
initially accounted for most of the spatially distributed mea-
surements. Depending on the depth, up to 34 sensors were in-
stalled, but due to sensor loss and erroneous data, the number
of spatially distributed measurements decreased over time. In
addition, two other profiles have been established to meet the re-
quirements of TERENO and have been in operation since 2014.
These are the only profiles covering the 80cm depth. In 2018, a
new set of four profiles was established as part of the ICOS cer-
tification, some of which replaced the previous SoilNet profiles.
One of these profiles also covers depths of 15, 25 and 35cm. As of
2024, between 1 and 4 sensors are still active per depth.

Figure 3 shows time series of daily mean air temperature (at 49 m
at the top of the eddy-covariance tower), precipitation sums, and
soil moisture time series per sensor at selected depths, as well
as from the Cosmic Ray Neutron Sensing (CRNS). Sensor-based
soil moisture values are presented as daily means, but original
sensor data with 10-15min resolution are available in the data
release.

Strong seasonal trends in soil moisture are evident in all layers,
with values peaking during the winter period and declining
sharply after the onset of the vegetation active period in May,
following an increase in temperature and hence evapotranspi-
ration. With increasing depth, the seasonal variations are at-
tenuated due to the buffering effect of deeper soil layers against
surface climatic variability. For example, at 10cm depth the
TERENO profiles show differences of ~30 percentage points
in volumetric soil water content between the rainy periods of
winter 2017/2018 and the extremely hot and dry summer of
2018, while the difference at 80cm is only about ~15 percentage
points during the same period. Similarly, the spatial variability
decreases with depth, but the different number of sensors per
layer and over time makes an accurate comparison difficult. In
2015 and 2017, the influence of increased precipitation events
in summer can be seen, which led to a lower annual variation
in soil moisture and higher spatial variability compared to the
other years.

5 | Strategies to Derive Field Scale Estimates

In addition to individual profile measurements, soil moisture
information representative of the entire study site is essential
for validating remote sensing products, comparison with CRNS
measurements, and supporting eddy covariance flux interpre-
tations. However, deriving consistent spatial averages from
distributed sensor networks presents significant challenges,
particularly when sensor coverage varies over time due to fail-
ures and replacements. The temporal persistence of soil mois-
ture patterns means that simply averaging available sensors can
introduce artificial biases if the remaining sensors are not repre-
sentative of the full spatial distribution.

5.1 | Minimum Required Number of Sensors
(MRNS)

To understand how sensor failure affects the reliability of the
spatial mean, we bootstrapped the spatial average of soil mois-
ture measurements on the days with the highest data availabil-
ity and then artificially reduced the sample size. The resulting
coefficient of variation (CV) of the mean is shown in Figure 4 for
five soil depths (0.1 to 0.5m).

The coefficient of variation (CV) increases non-linearly as the
number of active sensors decreases, with the steepest changes
occurring below five sensors across all depths. While this pat-
tern and rate of change are consistent across layers, the absolute
CV values vary significantly with depth. At 0.1 and 0.2 m depths,
CV exceeds 20% with only 1-2 sensors and remains above 10%
even with 5 sensors. Deeper layers (0.3-0.5m) show lower over-
all CV values which stay below 10% with 3 to 5 or more active
sensors due to a more uniform spatial moisture distribution at
greater depth. The 0.4 m layer notably shows the lowest CV val-
ues across all sensor configurations.

The minimum required number of sensors (MRNS) for the refer-
ence period was defined as the point of maximum curvature in the
non-linear relationship between sample size and the coefficient of
variation (CV). This analysis indicated a threshold of at least six
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FIGURE 3 | Time series of daily mean air temperature at 49 m height, daily precipitation sums and daily mean soil moisture (volumetric water
content, %) at different depths (0.1 to 0.8 m) from 2014 to 2024, measured by the ICOS (orange), SoilNet (purple), TERENO (red) and CRNS (green)

setups.
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FIGURE 4 | Bootstrapped coefficient of variation (CV) of the arith-

metic mean of soil moisture measurements as a function of the num-

ber of active sensors, sampled at 50days with maximum data coverage.

Results are stratified by soil depth.

active sensors for the 10 and 20cm layers, five for the 30cm layer,
and four for the 40 and 50cm layers. However, a visual inspection
of the reference period revealed that the reference period for the
two deepest layers extended into a phase where the spatial mean
was likely to be biased due to sensor losses (a sudden shift in field
capacity in winter). To account for this potential artificial shift,
we adopted a more conservative threshold of five active sensors
for these layers instead of the four suggested by the maximum-
curvature method.

5.2 | Temporal Stability Analysis

We show the results of the TSA exemplarily for two depths,
0.1 and 0.5m in Figure 5. Sensors are ranked by their MRD
(shown as filled circles), with error bars indicating SDRD.
Additionally, the index of temporal stability (ITS) is repre-
sented by the dashed line. ITS combines MRD and SDRD into
a single metric, providing an integrated assessment of both
proximity to the field mean and temporal stability. The colour
gradient of the data points reflects the number of days with
available measurements.

In the shallow layer, considerable spatial variability in soil mois-
ture patterns can be found, with deviations from the field mean
ranging from —52% to 36% in extreme cases. Sensors with small
standard deviation values are mostly closer to the field mean,
but exceptions exist. At 0.5m depth, the range of the MRD is
much narrower, ranging between —24% and 17%.

Ideally, representative sensors should be selected whose index
of temporal stability (ITS) is close to zero (i.e., both MRD and
SDRD are close to zero), but with the available data these sen-
sors cover only a fraction of the total measurement period.
Alternatively, sensors with low SDRD are preferable, as a low
value here indicates high temporal stability relative to the
spatial mean, as the correct temporal dynamics may be more
important than the absolute values. In addition, a sensor with
high temporal stability enables the offset to be easily corrected
to the spatial mean, as a simple linear transformation may be
sufficient here.

5.3 | Upscaling of Sensor Measurements

If no suitable sensor can be identified as representative of the
spatial mean, or if the selected sensor has an offset to the spatial
mean, the sensor measurements can be scaled up. This requires
that the relationship between the sensor and the spatial mean
is known or can be estimated. Here we used the spatial mean
of the sensor readings over time with sufficient coverage, as ex-
plored by the bootstrapping analysis, to estimate the empirical
CDF of the field mean. Alternatively, other references such as re-
mote sensing products or model outputs could be used, but this
would require knowledge of their accuracy before using them as
areference. Data from the Cosmic Ray Neutron Sensing (CRNS),
also included in this data release, could be a promising reference
for area- and depth-average soil moisture, which remains to be
examined in future studies.

To check the accuracy of the upscaled sensor data, we com-
pared it to spatial reference estimates derived from all active
sensors. Figure 6 shows a scatter plot of the upscaled sensor
data against the spatial reference estimates, where the colour
gradient indicates the number of data points (count). The re-
sults show a strong correlation (R?=0.90) between the up-
scaled data and the reference estimates and a root mean square
error (RMSE) of 2.12 vol. % by volume. Most of the data points
are grouped along the 1:1 line (dashed), reflecting a close cor-
respondence between the upscaled values and the spatial ref-
erence. However, the number of data points for which there
is good agreement between the upscaled and reference value
decreases at the low and high ends of the soil moisture range,
where variability is typically higher due to soil heterogeneity
or sensor limitations.

Figure 7 shows the time series of the upscaled soil moisture
data (black) and the corresponding temporal median (red line)
for five depths ranging from 0.1 m to 0.5m. Highlighted in blue
are periods which were identified as reference periods based on
a minimum number of active sensors and used to estimate pa-
rameters for the sensor transformation. Using the upscaled data
instead of raw sensor readings to calculate the spatial mean is
particularly beneficial during dry and wet periods. This ensures
the time series consistently reflects the true hydrological signal

Geoscience Data Journal, 2026

70f 12

95U8017 SUOWWIOD aAIEa1D a|qeal|dde ay) Aq pausencb afe sepiLe O ‘8sh Jo se|n Joj Aeiq1T aulu A8]i/MW UO (SUONIPUD-pUe-SWLB)/W0D A8 | 1M Afelq 1 jBU1|UO//SANY) SUONIPUOD pue SWie | 841 89S *[9202/T0/20] Uo Akiqiaulluo A8[IM ‘€500£ € PB/Z00T 0T/I0p/Wod A3 |im Aeq 1 puljuo SieLLL//sdny Wwoly pepeojumod ‘T ‘9202 ‘09096702



—
0.1m || 0.5m U>"
0.61 c
. ©
\ d
\ 5 ©
/ %
- AN 7|\ -
v 0.3 -~ A1 ©
-
4
4 S
C S - ~ ’
O A N I S G SO ,o T 3000
o ~ S~ N P
(O] \ -
tj:OO'
© 2000
O +
< -0.31
1000
N MMMMNONMH MOMNNWU I N NN NMNMWMAMNNONM W W VW W WO uwWwuwuwuwuwuwuwuo
PPN NP TN NONTANNNG QOO LY e YL
Mmoo nunmno 0unnoq n0unununununnnnnnnnnn Mmoo n un n o4 nunnunnq
O O O 0O O wm O OO O OO O OO O O O O 0O O 0o O o o o O O O 0O O m O O O O O o
SS55555555535555555553535>555 5333555355553
| S S SR v SN A N - SN ) E H N N A N N E N N Ht R N N B T T Tl T T T ; - = |ITS
0 00 O 1 o o N N N N WD 0 W Oo T MMMN LW N O A M < m < 0N~ O N 0 ™~ O N
m M ™M mMm m < ™M < O MM AN NN NS MO MMOHO MMM N M < N < N O M < NN O
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
O O O O O O O O O O O O O OO O OO O OO O O O o O O O O O O O O O O
oo Mmom o oo m O 00000000000 ooooOoaMma oo MmoMm o oo oom

FIGURES5 | Temporal stability analysis for two depths (0.1 and 0.5m). Sensors are ranked by their mean relative difference (MRD), and error bars
represent the standard deviation of the relative difference (SDRD). The dashed line is the index of time stability (ITS). Data point colour represents
the number of measurement days, with darker colours indicating longer measurement periods.
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FIGURE 6 | Comparison of upscaled sensor data with spatial refer-
ence estimates of soil moisture [vol. %]. The scatter density plot high-
lights the agreement between the upscaled data and reference values.

of the spatial mean rather than being shifted by sensor failure
or dropout.

The spatial average of the upscaled in situ sensors has been
compared with the field-scale CRNS data in the center of the
area (Figure 8). Since the measured neutrons are more sensitive
to shallow soil horizons and to the near-field area around the
station, an equal average of all in situ data in the area across

their depth and distance would not result in a fair comparison.
For this reason, the in situ data has undergone a horizontally
weighted averaging and a vertically weighted averaging ac-
cording to CRNS sensitivity expressed by (Schron et al. 2017).
Figure 8 shows both averaging approaches which demonstrate a
very good agreement between the two measurement techniques.
Despite the expected better performance of the weighted aver-
aging approach, the CRNS shows decent performance also in
representing the equally weighted average soil moisture of the
area. This result indicates that the spatial soil moisture pattern
at the site is relatively homogeneous. A perfect match between
CRNS and the in situ measurements cannot be expected, since
CRNS is sensitive to water in the vegetation, litter layer, and
uppermost soil layers, which is invisible to the in situ sensors
(Bogena et al. 2013).

6 | Discussion

The spatial soil moisture characteristics of the study site are
highly heterogeneous, with differences of up to ~20 percentage
points (vol. %) between sensors at the same time. This is com-
parable to other studies in similar forest and climate types (Lv
et al. 2016; Wei et al. 2017; Zhu et al. 2021), indicating that such
scatter is expected at these sites. A systematic issue arises when
averaging the remaining measurements if sensor availability
changes along the dry-wet gradient: because missingness is not
random (e.g., failures cluster in drier or wetter locations within
the research area), a changing set of active sensors can bias
the field-scale mean time series (Pachepsky et al. 2005; Guber
et al. 2008). For example, if more sensors fail in drier locations,
the spatial average computed via Equation (1) will tend to shift
toward wetter conditions and no longer reflect the full area.

Wesuspectthisissueiscommonin aggregated soil-moisture prod-
ucts from in situ sensors, as missing data, failures, replacements,
and new installations are typical at long-term observatories.
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Likewise, Vanderlinden et al. (2012) reported that 29% of data-
sets examined showed bias in mean relative differences, likely
due to incomplete observations. Numerous statistical and data-
driven methods have been used to fill gaps in soil-moisture time
series (Kornelsen and Coulibaly 2014; Bardossy et al. 2005;

Dumedah and Coulibaly 2011; Shao et al. 2017), ranging from
monthly-mean replacement to k-nearest neighbours, variance-
reduction techniques, neural networks, and evolutionary
polynomial regression. While performance varies by site and
method, these approaches are generally suited to relatively short
gaps (hours to a few days) (Kornelsen and Coulibaly 2014) and
do not by themselves resolve long-term representativeness when
sensor availability changes.

With this data release, we propose a strategy to derive long-term
consistent spatial averages from in situ measurements even
under sensor attrition. Prior work shows that only a limited
number of active sensors is needed to estimate the spatial mean
reliably (Crow et al. 2012; Brocca et al. 2010; Gao et al. 2013;
Lv et al. 2020). Our MRNS analysis operationalises this idea by
identifying periods with sufficient coverage to define a reference
for calibration (Section 5.1).

Upscaling before averaging helps maintain the spatial mean
within the empirical range during the reference period because
the CDF transformation maps point measurements to the distri-
bution of the site mean (Section 3.3). In this data release, values
falling below or above the observed range were not extrapolated.
Instead, we truncated them to the minimum or maximum of
the reference CDF because linear extrapolation of the outermost
segment sometimes yielded implausible values. Theoretically,
linear extrapolation of the outermost local segment can be at-
tempted, but we consider it only in exceptional cases and with
explicit uncertainty checks. Although CDF mapping can reduce
biases between point sensors and the site mean, errors tend to
increase near the distribution tails where empirical support is
sparse.

Geoscience Data Journal, 2026

9o0f12

95U8017 SUOWWIOD aAIEa1D a|qeal|dde ay) Aq pausencb afe sepiLe O ‘8sh Jo se|n Joj Aeiq1T aulu A8]i/MW UO (SUONIPUD-pUe-SWLB)/W0D A8 | 1M Afelq 1 jBU1|UO//SANY) SUONIPUOD pue SWie | 841 89S *[9202/T0/20] Uo Akiqiaulluo A8[IM ‘€500£ € PB/Z00T 0T/I0p/Wod A3 |im Aeq 1 puljuo SieLLL//sdny Wwoly pepeojumod ‘T ‘9202 ‘09096702



A key open question is the impact of the length and represen-
tativeness of the reference period for a stable transformation.
Currently, the minimum length of the calibration window re-
quired for reliable upscaling is unknown and is likely to depend
on the site, depth, and climate regime. Future work should
quantify how mapping error varies with calibration window
length (e.g., via cross-validation across windows) and in relation
to specific site conditions.

Moreover, the point-field relationship is likely to be non-
stationary on a seasonal basis. Winter recharge, spring transi-
tions and summer dry-down differ in terms of variance, spatial
patterns and the dominant processes involved, such as infil-
tration events, root water uptake and hydraulic redistribution.
Pooling all months into a single empirical cumulative distribu-
tion function (ECDF) can obscure these regimes and bias the
transformation. Where records are sufficiently long and sea-
sonal coverage meets the MRNS within each regime, however,
seasonal ECDFs or moving-window transformations may better
capture regime-specific behaviour. This approach does require
more data per season, though.

In our data, no single sensor was able to perfectly replace the
reference. While a carefully chosen “representative” sensor
can capture substantial variance (e.g., via a low ITS), a semi-
automatic workflow that upscales all available sensors and
then aggregates them with a robust estimator (e.g., the median
across upscaled sensors at each time) produces a more reliable
site-mean series. This choice prioritises temporal dynamics and
reduces sensitivity to individual sensor offsets, though the op-
timal approach will depend on site characteristics and network
design.

Overall, long-term soil-moisture observatories are inevitably
subject to sensor attrition and technological change. To our
knowledge, there is no universally accepted protocol for har-
monising successive instruments at a single site. Projects there-
fore need to develop transfer functions, overlap campaigns, or
statistical homogenisation tailored to their networks. In order
for soil-moisture archives to underpin climate-trend analyses
and cross-sensor syntheses over the next few decades, it will be
essential to advance shared standards, including the transparent
reporting of coverage thresholds (e.g., MRNS), calibration peri-
ods, and transformation/aggregation choices.

7 | Dataset Access

The data is publicly available at Zenodo (DOI: 10.5281/ze-
nodo.17121123) and is organised into three files: one con-
taining all available sensor data, one containing pre-filtered
sensor data as presented in Sections 4 and 5 and one contain-
ing the spatial average of the research site, using both the
original and the upscaled data. An additional file contains the
data from the Cosmic-Ray Neutron Sensor (CRNS); for more
information on its content we refer to the original data release
(Bogena et al. 2022).

The pre-filtered sensor data file is in long format and includes
the measurement date, sensor identifier, installation depth, vol-
umetric soil water content (SWC), the corresponding upscaled

value for that sensor, geographic coordinates and the data
source. An additional column (Tref) indicates whether the re-
cord falls within the designated reference period used for cal-
culating temporal stability and scaling. This dataset preserves
the full spatial detail and is suited to sensor-level analysis and
Cross-comparisons.

The file containing the daily, plot-level averages includes the
spatial mean of the original soil water content (SWC) data and
the median of the upscaled sensor data for each depth and day. It
also provides details of the number of active sensors that contrib-
uted valid data on each day and the MRNS (minimum required
number of sensors) threshold that had to be met to obtain a value
that is representative of the whole area. The Tref column again
marks entries belonging to the reference period. For general use
of the spatially averaged soil water content at the research site,
the median of the upscaled SWC is recommended.
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