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ABSTRACT
Long-term, spatially representative soil-moisture records are critical for characterising ecosystem responses to water availability. 
We present a decade-long (2014–2024) dataset of continuous soil-moisture observations from distributed in situ networks and 
cosmic-ray neutron sensing (CRNS) across a 1 ha temperate deciduous forest in Germany. Spatial sensor coverage varied over 
time and challenged the derivation of a consistent spatial average due to the persistence of soil moisture patterns. We therefore 
implemented a semi-automatic workflow that (i) identifies reference periods via a bootstrap-based minimum required number 
of sensors (MRNS) and (ii) maps point measurements to the field-scale distribution using empirical CDF transformation. The 
resulting record provides a coherent long-term signal suitable for ecohydrological analyses and validation of remote-sensing 
products. Since any decade-scale monitoring will encounter sensor losses and replacements, we emphasise the critical role of 
robust data integration techniques to ensure the reliability of extended soil moisture datasets.

1   |   Introduction

Accurate soil moisture measurements are crucial for assessing 
ecosystem responses to water availability. Soil moisture influ-
ences plant growth, microbial activity, carbon and nutrient cy-
cling, and even local climate conditions (Vereecken et al. 2008; 
Humphrey et  al.  2018, 2021; Green et  al.  2019). In  situ tech-
niques, which involve direct contact with the soil using instru-
ments such as soil moisture probes or sensors, can provide the 
required data. Sensors offer the advantage of continuous, near-
real-time monitoring, making them ideal for capturing temporal 
dynamics of soil moisture over long periods. However, the com-
plexity of installing and operating sensors in the ground means 
that only selected locations can be monitored. In addition to 
in situ monitoring, soil moisture can be obtained from proximal 
sensing approaches such as cosmic-ray neutron sensing (CRNS) 
or from satellite or airborne remote sensing. These methods 
enable observations over larger spatial domains but ultimately 

depend on in situ measurements for calibration and validation 
(Colliander et al. 2017; Schrön et al. 2017).

To validate spatial soil moisture information, it is necessary 
to bridge the “support gap” between reference measurements 
from sensors (point scale) and the target product (spatial 
scales from metres to kilometres), that is, to transfer infor-
mation from the scale where measurements are obtained to, 
for example, the ecosystem level or the grid scale of the target 
product (Pachepsky and Hill  2017). Multiple measurements 
are required to reliably estimate the spatial mean soil water 
content, depending on the heterogeneity of the area of inter-
est. Due to the strong influence of local factors on soil water 
content and dynamics, single sensor measurements are usu-
ally not representative for the whole area (Brocca et al. 2009; 
Heathman et al. 2012; Zhu et al. 2018). Based on a literature 
review, Crow et al. (2012) concluded that for an area of about 
800 m2 on average 10–20 sensors are required to obtain the 
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field mean with an accuracy of 2 vol. % (1σ) in the top layer. 
Depending on site-specific characteristics such as topography, 
vegetation or climate, the actual number of sensors required 
can range from 1 to 12 sensors (Hupet and Vanclooster 2002) 
to 42 sensors (Wang et al. 2008) in extreme cases. On the other 
hand, soil water content measurements at the point scale can 
show a high level of redundancy in time (Vachaud et al. 1985; 
Mälicke et  al.  2020), a property that can be used for quality 
assurance in long-term soil moisture time series based on a 
limited number of sensors (Pachepsky et al. 2005).

Here, we present a dataset consisting of more than 10 years 
of spatially distributed in  situ as well as remotely sensed soil 
moisture measurements from a CRNS setup in a deciduous for-
est in Germany. The study site was established in 2013 within 
the framework of the TERENO project as part of the Central 
German Lowland Observatory (Wollschläger et  al.  2016) and 
offers a wide range of ecohydrological research opportunities. 
Data gathered at the research site has been used to study, for 
example, species composition of mycorrhizal fungi (Marañón-
Jiménez et al. 2021), the relationship between climate and litter 
decomposition (Djukic et  al.  2018), validation of soil moisture 
simulations (Boeing et al. 2022), impact of an extreme drought 
event on carbon uptake (Pohl et al. 2023) or leaf-out dates of dif-
ferent tree compositions (Delpierre et al. 2024).

In addition to the description of the data, special attention is 
given to the derivation of a consistent and long-term spatial 
mean. Due to sensor failures and required re-installation of new 
sensors, it was necessary to develop a workflow that provides a 
temporally consistent spatial average soil moisture, for example, 
one that is faithful to the actual climatic temporal trends despite 
the presence of spatially and temporally irregular data gaps. Due 
to the temporal persistence of soil moisture patterns (Vachaud 
et al. 1985), averaging the remaining data runs the risk of intro-
ducing artificial trends in the time series (Vachaud et al. 1985; 
Pachepsky et al. 2005). Permanent sensor loss also leads to gaps 
in the time series that traditional gap-filling approaches cannot 
address (Kornelsen and Coulibaly 2014). Therefore, we present 
a semi-automated workflow that enables us to account for tem-
poral shifts as a result of the different sensors contributing to 
the calculation of the spatial average. This approach may also be 
helpful for other research groups that are facing similar problems 
when it comes to aligning multiple sensor setups or replacing soil 
moisture sensors in situations where there are few soil moisture 
sensors installed overall, such as at eddy covariance sites. The 
correction is based on the philosophy proposed by Pachepsky 
et al. (2005), but uses an adapted correction procedure.

2   |   Study Site and Design

Data are gathered within a 1 ha fenced area of the Hohes Holz 
forest (DE-HoH, N52°05′ E11°13′, 193 m above sea level), located 
in the northern part of the Bode catchment near Magdeburg in 
central Germany (cf. Figure 1). Since the beginning of 2019, the 
station has met all required instrumentation and sampling pro-
cedures according to the ICOS ecosystem standards for class 1 
stations (Franz et  al.  2018; Rebmann et  al.  2018). Climate in 
the study area is subatlantic-submontane with a mean annual 
temperature of 9.1°C and mean annual precipitation of 563 mm 

(climatic period 1981–2010, station Ummendorf of the German 
Weather Service). The fenced area is composed of European 
beech (Fagus sylvatica L.) and sessile oak (Quercus petraea 
(Matt.) Liebl.) as dominant species (38% and 45% of total basal 
area, respectively) with accompanying hornbeam (Carpinus 
betulus L., 13%) with 245 trees in the enclosure.

Soil water content sensors from a distributed monitoring net-
work (SoilNet-WSN with SPADE sensors, sceme.de GmbH, 
Germany) (Bogena et  al.  2010) were installed in April 2014 
and distributed over areas with low and high tree (and thus 
root) density. The number of in situ sensors originally installed 
varied from 14 sensors at seven locations per depth at 5, 20, 40, 
and 50 cm, to 30 sensors at 23 locations at 30 cm, and 34 sensors 
at 27 locations at 10 cm, in order to better capture near-surface 
soil moisture dynamics. Note that sensors that worked for only 
a very short time or delivered erroneous data were excluded 
from this data release, which is why the actual number of sen-
sors included is lower than the original setup (cf. Figure 2).

Data were collected every 10 min via the network coordinator 
and stored on a field computer. Soil moisture was also mea-
sured in two additional profiles using CS616 sensors (Campbell 
Scientific Inc., Logan, Utah, USA) to fulfil requirements for the 
TERENO network (Wollschläger et al. 2016). Likewise, SMT100 
sensors (TRUEBNER GmbH, Germany) were additionally in-
stalled in 2017 at 4 locations to account for the sensor losses and 
fulfil requirements of ICOS (Rebmann et al. 2018). These data 
were also recorded and stored as 10 min averages by a CR1000 
data logger (Campbell Scientific Inc., Logan, Utah, USA). 
Physically unrealistic data were removed using semi-automated 
procedures that check for outliers (values below zero or above 
the soil porosity) and spikes unrelated to precipitation using the 
SA/QC tool (Schmidt et al. 2023).

FIGURE 1    |    Spatial distribution of soil moisture monitoring profiles, 
the location of the Cosmic-Ray Neutron Sensor (CRNS) and tree spe-
cies within the study site. The inset shows the study location within 
Germany.
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In addition to the in  situ sensors, a CRS1000 cosmic-ray neu-
tron sensor (Schrön et al. 2018) was installed at the central forest 
tower, about 4 m above ground level, in the summer of 2014. The 
neutron measurements were processed according to the methods 
described in (Bogena et al. 2022), assuming soil bulk density of 
1.136 g cm −3, soil organic carbon of 0.031 g/g, soil lattice water of 
0.038 g/g, and a free calibration parameter of N0 = 743 cph. The 
final daily soil moisture product is given in volumetric percent 

with an uncertainty range from ± 0.5 vol. % in summer and ± 1.5 
vol. % in winter. The integral measurement is representative for 
surface and subsurface water in an area of up to 150–200 m ra-
dius around the sensor (winter to summer) and down to 25–50 cm 
depth (winter to summer).

Throughout the rest of the manuscript, the term ‘sensor’ re-
fers to the in situ soil moisture sensors installed below ground 

FIGURE 2    |    Temporal coverage of active in situ sensors across depths (0.05 m to 0.8 m) from 2014 to 2024, colours refer to the three setups ICOS 
(green), SoilNet (purple), and TERENO (orange).

 20496060, 2026, 1, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.70053, W
iley O

nline L
ibrary on [07/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 12 Geoscience Data Journal, 2026

and the Cosmic-Ray Neutron Sensor is explicitly mentioned as 
‘CRNS’. An overview of all the soil moisture monitoring setups 
described previously is provided in Table 1.

3   |   Methods

3.1   |   Definition of Spatial Reference Estimates

Given a set of sensors indexed by x, let At be the set of sensors 
with valid data at time step t . For each sensor x, let Tx be the set 
of time steps for which x has valid data. The spatial mean at time 
t  and the temporal mean for sensor x are

where nt = ∣ At ∣ and nx = ∣ Tx ∣. Here, �t,x denotes the soil-
moisture reading.

We assume that the estimation error for �t is small if the sample 
is sufficiently large, which implies that the identity of the sam-
ple (i.e., which sensors are active at time t) has little effect on 
the estimate of �t. Due to the temporal stability of soil moisture 
patterns, the fluctuating identity of the sample leads to different 
biases with increasing in situ sensor loss and increases the esti-
mation error of �t (Pachepsky et al. 2005).

In order to establish a threshold for the number of active in situ 
sensors needed to estimate the spatial reference averages, for 
each depth, we selected 50 days with the largest nt. For each se-
lected day and each target sample size k ∈

{

kmin, … ,nt
}

, we 
drew B = 1000 bootstrap samples of size k and computed the 
spatial mean �(k)

t,b for replicate b. We then summarised the vari-
ability across replicates via the coefficient of variation CV(k) 
and related it to k. The minimum required number of sensors 
(MRNS) was defined as the k at the elbow of the CV(k) curve, 
determined by the maximum second derivative (maximum cur-
vature). Times with nt ≥MRNS form the reference period Tref.

3.2   |   Evaluation of Temporal Stability

Temporal Stability Analysis (TSA) has been widely used as a 
common technique to identify representative locations for spatial 
soil moisture patterns (Brocca et  al.  2009; Vachaud et  al.  1985; 

Jacobs  2004; Ran et  al.  2017). TSA evaluates soil moisture dy-
namics at individual sensor locations relative to the field mean 
over time. Two key metrics can be considered in that sense: the 
mean relative difference (MRD) and the standard deviation of 
the relative difference (SDRD). Here and below, TSA metrics are 
computed only over the reference period, that is, sums run over 
t ∈ Tx ∩ Tref. For brevity, we write Tx and nx.

MRD indicates the average deviation of the point measurement 
from the field mean, that is, whether a particular location is 
drier or wetter on average than the field mean and is defined as:

where RDx,t is the relative difference of � at the location x and 
observation time t , and nx is the number of time steps for that 
location. Small absolute values of MRDx indicate locations that 
are near the spatial average.

The standard deviation of the relative difference (SDRD) quanti-
fies the temporal consistency, with lower values indicating high 
stability or temporal persistence of the soil moisture conditions 
at that location. SDRD is defined as:

Jacobs (2004) defined a single metric that combines the informa-
tion of MRD and SDRD that can be used to define representative 
locations for the target area. We follow the suggestion of (Zhao 
et al. 2010) and use the term index of time stability (ITS) instead 
of RMSE proposed by Jacobs (2004) to avoid confusion with the 
general RMSE. The smaller the value for ITS, the better a sensor 
location reflects the spatial average. ITS can be calculated as:

3.3   |   Statistical Transformation From Point to 
Field Scale

When the statistical distributions of two random variables are 
known, their cumulative distribution functions (CDFs) can be 
transformed from one to the other using a transfer function. 

(1)�t =
1

nt

∑

x ∈At

�t,x

(2)�x =
1

nx

∑

t ∈Tx

�t,x

(3)RDx,t =
�t,x − �t

�t

(4)MRDx =
1

nx

∑

t ∈Tx

RDx,t

(5)SDRDx =

√

1

nx − 1

∑

t ∈Tx

(

RDx,t−MRDx

)2

(6)ITSx =
√

MRD2
x
+ SDRD2

x

TABLE 1    |    Overview of soil moisture measurement setups.

#
Sensor 

type
Referred 

to as
Year 

installed
No. of 

locations Depth (m) References

1 SPADE SoilNet 2014 7–27 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 Bogena et al. (2010)

2 SMT100 ICOS 2017 4 0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.7 Rebmann et al. (2018)

3 CS616 TERENO 2014 2 0.1, 0.2, 0.3, 0.4, 0.5, 0.8 Wollschläger et al. (2016)

4 CRS1000 CRNS 2014 1 Integral volume up to 0.25 m 
(winter), 0.50 m (summer)

Schrön et al. (2018)
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This technique is widely used, for example, to bias-correct 
model outputs against observations in climate simulations 
(Thrasher et  al.  2012; Maraun  2013; Cannon et  al.  2015), to 
downscale remote sensing products (Xu and Cheng 2021), to 
estimate subsurface soil moisture from surface measurements 
(Gao et al. 2019; Tian et al. 2020; Zhuang et al. 2020), or to up-
scale profile soil measurements to field averages (De Lannoy 
et  al.  2007; Han et  al.  2012). This approach is referred to in 
the literature as CDF matching, quantile mapping, quantile–
quantile transformation, observation operators, and other 
terms. In this study, we adopt the term statistical transfor-
mation, following (Gudmundsson et al. 2012). We map point-
scale measurements to the field scale via an empirical CDF 
transformation:

where Fx and Fsp denote the empirical CDFs computed over 
the overlapping calibration period x ∩ ref for sensor x and the 
spatial mean �t, respectively. Between empirical quantiles we 
apply linear interpolation. Outside the observed range, values 
are not extrapolated but instead mapped to the nearest bound 
of the empirical CDF (minimum or maximum). Linear extrap-
olation of the outermost segment would in principle be possi-
ble, but was not applied in this release because it occasionally 
produced implausible values.

4   |   Data

The dataset consists of soil moisture measurements collected over 
a decade from multiple in situ monitoring systems and Cosmic Ray 
Neutron Sensing (CRNS) at the study site. Due to sensor failures, 
replacements, and varying depths of measurement, the number of 
available observations fluctuates over time. To provide a compre-
hensive overview, Figure 2 shows the temporal coverage of active 
soil moisture sensors at different depths, ranging from 0.05 m to 
0.8 m, for three monitoring systems: ICOS (green), SoilNet (purple) 
and TERENO (orange).

The SoilNet setup had been in operation since mid-2014 and 
initially accounted for most of the spatially distributed mea-
surements. Depending on the depth, up to 34 sensors were in-
stalled, but due to sensor loss and erroneous data, the number 
of spatially distributed measurements decreased over time. In 
addition, two other profiles have been established to meet the re-
quirements of TERENO and have been in operation since 2014. 
These are the only profiles covering the 80 cm depth. In 2018, a 
new set of four profiles was established as part of the ICOS cer-
tification, some of which replaced the previous SoilNet profiles. 
One of these profiles also covers depths of 15, 25 and 35 cm. As of 
2024, between 1 and 4 sensors are still active per depth.

Figure 3 shows time series of daily mean air temperature (at 49 m 
at the top of the eddy-covariance tower), precipitation sums, and 
soil moisture time series per sensor at selected depths, as well 
as from the Cosmic Ray Neutron Sensing (CRNS). Sensor-based 
soil moisture values are presented as daily means, but original 
sensor data with 10–15 min resolution are available in the data 
release.

Strong seasonal trends in soil moisture are evident in all layers, 
with values peaking during the winter period and declining 
sharply after the onset of the vegetation active period in May, 
following an increase in temperature and hence evapotranspi-
ration. With increasing depth, the seasonal variations are at-
tenuated due to the buffering effect of deeper soil layers against 
surface climatic variability. For example, at 10 cm depth the 
TERENO profiles show differences of ~30 percentage points 
in volumetric soil water content between the rainy periods of 
winter 2017/2018 and the extremely hot and dry summer of 
2018, while the difference at 80 cm is only about ~15 percentage 
points during the same period. Similarly, the spatial variability 
decreases with depth, but the different number of sensors per 
layer and over time makes an accurate comparison difficult. In 
2015 and 2017, the influence of increased precipitation events 
in summer can be seen, which led to a lower annual variation 
in soil moisture and higher spatial variability compared to the 
other years.

5   |   Strategies to Derive Field Scale Estimates

In addition to individual profile measurements, soil moisture 
information representative of the entire study site is essential 
for validating remote sensing products, comparison with CRNS 
measurements, and supporting eddy covariance flux interpre-
tations. However, deriving consistent spatial averages from 
distributed sensor networks presents significant challenges, 
particularly when sensor coverage varies over time due to fail-
ures and replacements. The temporal persistence of soil mois-
ture patterns means that simply averaging available sensors can 
introduce artificial biases if the remaining sensors are not repre-
sentative of the full spatial distribution.

5.1   |   Minimum Required Number of Sensors 
(MRNS)

To understand how sensor failure affects the reliability of the 
spatial mean, we bootstrapped the spatial average of soil mois-
ture measurements on the days with the highest data availabil-
ity and then artificially reduced the sample size. The resulting 
coefficient of variation (CV) of the mean is shown in Figure 4 for 
five soil depths (0.1 to 0.5 m).

The coefficient of variation (CV) increases non-linearly as the 
number of active sensors decreases, with the steepest changes 
occurring below five sensors across all depths. While this pat-
tern and rate of change are consistent across layers, the absolute 
CV values vary significantly with depth. At 0.1 and 0.2 m depths, 
CV exceeds 20% with only 1–2 sensors and remains above 10% 
even with 5 sensors. Deeper layers (0.3–0.5 m) show lower over-
all CV values which stay below 10% with 3 to 5 or more active 
sensors due to a more uniform spatial moisture distribution at 
greater depth. The 0.4 m layer notably shows the lowest CV val-
ues across all sensor configurations.

The minimum required number of sensors (MRNS) for the refer-
ence period was defined as the point of maximum curvature in the 
non-linear relationship between sample size and the coefficient of 
variation (CV). This analysis indicated a threshold of at least six 

(7)�sp,x,t = hx
(

�t,x

)

= F−1
sp

(

Fx
(

�t,x

))
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FIGURE 3    |     Legend on next page.
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active sensors for the 10 and 20 cm layers, five for the 30 cm layer, 
and four for the 40 and 50 cm layers. However, a visual inspection 
of the reference period revealed that the reference period for the 
two deepest layers extended into a phase where the spatial mean 
was likely to be biased due to sensor losses (a sudden shift in field 
capacity in winter). To account for this potential artificial shift, 
we adopted a more conservative threshold of five active sensors 
for these layers instead of the four suggested by the maximum-
curvature method.

5.2   |   Temporal Stability Analysis

We show the results of the TSA exemplarily for two depths, 
0.1 and 0.5 m in Figure 5. Sensors are ranked by their MRD 
(shown as filled circles), with error bars indicating SDRD. 
Additionally, the index of temporal stability (ITS) is repre-
sented by the dashed line. ITS combines MRD and SDRD into 
a single metric, providing an integrated assessment of both 
proximity to the field mean and temporal stability. The colour 
gradient of the data points reflects the number of days with 
available measurements.

In the shallow layer, considerable spatial variability in soil mois-
ture patterns can be found, with deviations from the field mean 
ranging from −52% to 36% in extreme cases. Sensors with small 
standard deviation values are mostly closer to the field mean, 
but exceptions exist. At 0.5 m depth, the range of the MRD is 
much narrower, ranging between −24% and 17%.

Ideally, representative sensors should be selected whose index 
of temporal stability (ITS) is close to zero (i.e., both MRD and 
SDRD are close to zero), but with the available data these sen-
sors cover only a fraction of the total measurement period. 
Alternatively, sensors with low SDRD are preferable, as a low 
value here indicates high temporal stability relative to the 
spatial mean, as the correct temporal dynamics may be more 
important than the absolute values. In addition, a sensor with 
high temporal stability enables the offset to be easily corrected 
to the spatial mean, as a simple linear transformation may be 
sufficient here.

5.3   |   Upscaling of Sensor Measurements

If no suitable sensor can be identified as representative of the 
spatial mean, or if the selected sensor has an offset to the spatial 
mean, the sensor measurements can be scaled up. This requires 
that the relationship between the sensor and the spatial mean 
is known or can be estimated. Here we used the spatial mean 
of the sensor readings over time with sufficient coverage, as ex-
plored by the bootstrapping analysis, to estimate the empirical 
CDF of the field mean. Alternatively, other references such as re-
mote sensing products or model outputs could be used, but this 
would require knowledge of their accuracy before using them as 
a reference. Data from the Cosmic Ray Neutron Sensing (CRNS), 
also included in this data release, could be a promising reference 
for area- and depth-average soil moisture, which remains to be 
examined in future studies.

To check the accuracy of the upscaled sensor data, we com-
pared it to spatial reference estimates derived from all active 
sensors. Figure 6 shows a scatter plot of the upscaled sensor 
data against the spatial reference estimates, where the colour 
gradient indicates the number of data points (count). The re-
sults show a strong correlation (R2 = 0.90) between the up-
scaled data and the reference estimates and a root mean square 
error (RMSE) of 2.12 vol. % by volume. Most of the data points 
are grouped along the 1:1 line (dashed), reflecting a close cor-
respondence between the upscaled values and the spatial ref-
erence. However, the number of data points for which there 
is good agreement between the upscaled and reference value 
decreases at the low and high ends of the soil moisture range, 
where variability is typically higher due to soil heterogeneity 
or sensor limitations.

Figure  7 shows the time series of the upscaled soil moisture 
data (black) and the corresponding temporal median (red line) 
for five depths ranging from 0.1 m to 0.5 m. Highlighted in blue 
are periods which were identified as reference periods based on 
a minimum number of active sensors and used to estimate pa-
rameters for the sensor transformation. Using the upscaled data 
instead of raw sensor readings to calculate the spatial mean is 
particularly beneficial during dry and wet periods. This ensures 
the time series consistently reflects the true hydrological signal 

FIGURE 3    |    Time series of daily mean air temperature at 49 m height, daily precipitation sums and daily mean soil moisture (volumetric water 
content, %) at different depths (0.1 to 0.8 m) from 2014 to 2024, measured by the ICOS (orange), SoilNet (purple), TERENO (red) and CRNS (green) 
setups.

FIGURE 4    |    Bootstrapped coefficient of variation (CV) of the arith-
metic mean of soil moisture measurements as a function of the num-
ber of active sensors, sampled at 50 days with maximum data coverage. 
Results are stratified by soil depth.
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of the spatial mean rather than being shifted by sensor failure 
or dropout.

The spatial average of the upscaled in  situ sensors has been 
compared with the field-scale CRNS data in the center of the 
area (Figure 8). Since the measured neutrons are more sensitive 
to shallow soil horizons and to the near-field area around the 
station, an equal average of all in  situ data in the area across 

their depth and distance would not result in a fair comparison. 
For this reason, the in  situ data has undergone a horizontally 
weighted averaging and a vertically weighted averaging ac-
cording to CRNS sensitivity expressed by (Schrön et al. 2017). 
Figure 8 shows both averaging approaches which demonstrate a 
very good agreement between the two measurement techniques. 
Despite the expected better performance of the weighted aver-
aging approach, the CRNS shows decent performance also in 
representing the equally weighted average soil moisture of the 
area. This result indicates that the spatial soil moisture pattern 
at the site is relatively homogeneous. A perfect match between 
CRNS and the in situ measurements cannot be expected, since 
CRNS is sensitive to water in the vegetation, litter layer, and 
uppermost soil layers, which is invisible to the in  situ sensors 
(Bogena et al. 2013).

6   |   Discussion

The spatial soil moisture characteristics of the study site are 
highly heterogeneous, with differences of up to ~20 percentage 
points (vol. %) between sensors at the same time. This is com-
parable to other studies in similar forest and climate types (Lv 
et al. 2016; Wei et al. 2017; Zhu et al. 2021), indicating that such 
scatter is expected at these sites. A systematic issue arises when 
averaging the remaining measurements if sensor availability 
changes along the dry–wet gradient: because missingness is not 
random (e.g., failures cluster in drier or wetter locations within 
the research area), a changing set of active sensors can bias 
the field-scale mean time series (Pachepsky et al. 2005; Guber 
et al. 2008). For example, if more sensors fail in drier locations, 
the spatial average computed via Equation (1) will tend to shift 
toward wetter conditions and no longer reflect the full area.

We suspect this issue is common in aggregated soil-moisture prod-
ucts from in situ sensors, as missing data, failures, replacements, 
and new installations are typical at long-term observatories. 

FIGURE 6    |    Comparison of upscaled sensor data with spatial refer-
ence estimates of soil moisture [vol. %]. The scatter density plot high-
lights the agreement between the upscaled data and reference values.

FIGURE 5    |    Temporal stability analysis for two depths (0.1 and 0.5 m). Sensors are ranked by their mean relative difference (MRD), and error bars 
represent the standard deviation of the relative difference (SDRD). The dashed line is the index of time stability (ITS). Data point colour represents 
the number of measurement days, with darker colours indicating longer measurement periods.
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Likewise, Vanderlinden et al. (2012) reported that 29% of data-
sets examined showed bias in mean relative differences, likely 
due to incomplete observations. Numerous statistical and data-
driven methods have been used to fill gaps in soil-moisture time 
series (Kornelsen and Coulibaly  2014; Bárdossy et  al.  2005; 

Dumedah and Coulibaly 2011; Shao et al. 2017), ranging from 
monthly-mean replacement to k-nearest neighbours, variance-
reduction techniques, neural networks, and evolutionary 
polynomial regression. While performance varies by site and 
method, these approaches are generally suited to relatively short 
gaps (hours to a few days) (Kornelsen and Coulibaly 2014) and 
do not by themselves resolve long-term representativeness when 
sensor availability changes.

With this data release, we propose a strategy to derive long-term 
consistent spatial averages from in  situ measurements even 
under sensor attrition. Prior work shows that only a limited 
number of active sensors is needed to estimate the spatial mean 
reliably (Crow et  al.  2012; Brocca et  al.  2010; Gao et  al.  2013; 
Lv et al. 2020). Our MRNS analysis operationalises this idea by 
identifying periods with sufficient coverage to define a reference 
for calibration (Section 5.1).

Upscaling before averaging helps maintain the spatial mean 
within the empirical range during the reference period because 
the CDF transformation maps point measurements to the distri-
bution of the site mean (Section 3.3). In this data release, values 
falling below or above the observed range were not extrapolated. 
Instead, we truncated them to the minimum or maximum of 
the reference CDF because linear extrapolation of the outermost 
segment sometimes yielded implausible values. Theoretically, 
linear extrapolation of the outermost local segment can be at-
tempted, but we consider it only in exceptional cases and with 
explicit uncertainty checks. Although CDF mapping can reduce 
biases between point sensors and the site mean, errors tend to 
increase near the distribution tails where empirical support is 
sparse.

FIGURE 7    |    Time series of upscaled soil moisture data (black) and its temporal median (red line) across five depths (0.1 to 0.5 m). Blue shading 
indicates the reference periods with sufficient sensor coverage.

FIGURE 8    |    Comparison of the spatial average of the upscaled 
in  situ sensors with CRNS field-average soil moisture. In  situ sensor 
data has been weighted equally over depth and distance (red) and non-
linearly in horizontal and vertical space following the nature of neutron 
transport (blue).
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A key open question is the impact of the length and represen-
tativeness of the reference period for a stable transformation. 
Currently, the minimum length of the calibration window re-
quired for reliable upscaling is unknown and is likely to depend 
on the site, depth, and climate regime. Future work should 
quantify how mapping error varies with calibration window 
length (e.g., via cross-validation across windows) and in relation 
to specific site conditions.

Moreover, the point–field relationship is likely to be non-
stationary on a seasonal basis. Winter recharge, spring transi-
tions and summer dry-down differ in terms of variance, spatial 
patterns and the dominant processes involved, such as infil-
tration events, root water uptake and hydraulic redistribution. 
Pooling all months into a single empirical cumulative distribu-
tion function (ECDF) can obscure these regimes and bias the 
transformation. Where records are sufficiently long and sea-
sonal coverage meets the MRNS within each regime, however, 
seasonal ECDFs or moving-window transformations may better 
capture regime-specific behaviour. This approach does require 
more data per season, though.

In our data, no single sensor was able to perfectly replace the 
reference. While a carefully chosen “representative” sensor 
can capture substantial variance (e.g., via a low ITS), a semi-
automatic workflow that upscales all available sensors and 
then aggregates them with a robust estimator (e.g., the median 
across upscaled sensors at each time) produces a more reliable 
site-mean series. This choice prioritises temporal dynamics and 
reduces sensitivity to individual sensor offsets, though the op-
timal approach will depend on site characteristics and network 
design.

Overall, long-term soil-moisture observatories are inevitably 
subject to sensor attrition and technological change. To our 
knowledge, there is no universally accepted protocol for har-
monising successive instruments at a single site. Projects there-
fore need to develop transfer functions, overlap campaigns, or 
statistical homogenisation tailored to their networks. In order 
for soil-moisture archives to underpin climate-trend analyses 
and cross-sensor syntheses over the next few decades, it will be 
essential to advance shared standards, including the transparent 
reporting of coverage thresholds (e.g., MRNS), calibration peri-
ods, and transformation/aggregation choices.

7   |   Dataset Access

The data is publicly available at Zenodo (DOI: 10.5281/ze-
nodo.17121123) and is organised into three files: one con-
taining all available sensor data, one containing pre-filtered 
sensor data as presented in Sections 4 and 5 and one contain-
ing the spatial average of the research site, using both the 
original and the upscaled data. An additional file contains the 
data from the Cosmic-Ray Neutron Sensor (CRNS); for more 
information on its content we refer to the original data release 
(Bogena et al. 2022).

The pre-filtered sensor data file is in long format and includes 
the measurement date, sensor identifier, installation depth, vol-
umetric soil water content (SWC), the corresponding upscaled 

value for that sensor, geographic coordinates and the data 
source. An additional column (Tref) indicates whether the re-
cord falls within the designated reference period used for cal-
culating temporal stability and scaling. This dataset preserves 
the full spatial detail and is suited to sensor-level analysis and 
cross-comparisons.

The file containing the daily, plot-level averages includes the 
spatial mean of the original soil water content (SWC) data and 
the median of the upscaled sensor data for each depth and day. It 
also provides details of the number of active sensors that contrib-
uted valid data on each day and the MRNS (minimum required 
number of sensors) threshold that had to be met to obtain a value 
that is representative of the whole area. The Tref column again 
marks entries belonging to the reference period. For general use 
of the spatially averaged soil water content at the research site, 
the median of the upscaled SWC is recommended.
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