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ARTICLE INFO ABSTRACT

Keywords: Modelling interactions between climate, water, crops, and human decision-making requires coupling of bio-
Coupled modelling physical and socioeconomic processes to model outcomes and explore potential futures. This study presents a
Crop yield novel coupled model of land-use change and ecohydrological processes in arid agricultural systems. The model
‘évg;efre:tsﬂeisation links SWAT+, which simulates ecohydrological processes, including crop growth and irrigation water use, with
Adaptation CRAFTY, an agent-based framework that allocates land according to agent characteristics and resource condi-

tions. Egypt is used as a case study where climate and socioeconomic stressors constrain agricultural production.
The coupling captures how shifts in potential yields, driven by elevated CO; and warming, shape land-use
change. Crop yields vary by crop and scenario, with the largest gains — and declines — under high-emission fu-
tures, while water use efficiency consistently improves, especially at higher CO, concentrations. Relying on open
global datasets, the model provides a transferable approach for exploring climate adaptation in data-scarce,
water-limited regions.

Arid agriculture

1. Introduction certain conditions (Ainsworth and Long, 2021; Jagermeyr et al., 2021).

As the rate and severity of climate change are likely to increase over the

Climate change poses significant risks to environmental and socio-
economic systems, particularly for land use and freshwater management
(Z. Cao et al., 2022). The agricultural sector, as the largest global user of
both land and freshwater, is especially vulnerable (Malhi et al., 2021).
These vulnerabilities include more frequent and extreme weather
events, shrinking arable land area, declining soil quality, and rising crop
water demand; trends which are already occurring rapidly in arid and
semi-arid agricultural systems (El-Beltagy and Madkour, 2012). Climate
change has already reduced global agricultural productivity by an esti-
mated 21 % since 1961 compared to a no-climate-change baseline, with
higher losses in some of the most climate-exposed regions, including
Sub-Saharan Africa (34 %), and the Middle East and North Africa (30 %)
(Ortiz-Bobea et al., 2021). However, the net impact remains uncertain
due to the potential counteracting effect of elevated CO,, which may
enhance photosynthesis and water use efficiency for some crops under
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coming decades (Zittis et al., 2022), proactive adaptation remains
essential to manage risks, sustain agricultural productivity and capi-
talise on the benefits to some crops (Grigorieva et al., 2023).

The responses of governments and farmers to constrained freshwater
resources and the impacts of climate change on water and land systems
are crucial for both farmer welfare and food and water security
(Grigorieva et al., 2023). Agricultural activity in arid and semi-arid re-
gions has long been defined by its ability to meet these challenges
(El-Beltagy and Madkour, 2012). Whether or not it continues to do so is
likely to be determined by the interaction of hydrological and land-use
systems, and the extent to which they can be influenced by agricultural
management decisions at various spatial scales. It is therefore essential
to understand the dynamics of these complex systems, predict how they
may change in the future, and assess the efficacy of policies for natural
resource management, food and water security, and rural development
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(Alam et al., 2022).

A wide range of modelling approaches have been used to assess
agricultural responses to climate and socioeconomic change, each with
distinct strengths and limitations. Econometric models capture statisti-
cal relationships between climate variables and yields, often assuming
profit-maximising behaviour, but they lack spatial and behavioural
detail (Feng et al., 2023; Su and Chen, 2022). More sophisticated eco-
nomic models, such as computable general equilibrium (CGE) models,
can capture economy-wide impacts of agricultural change but struggle
to represent physical constraints and heterogeneity in farmer behaviour
(Huber et al., 2018). Physical models, including crop and hydrological
models, simulate biophysical processes such as photosynthesis, tran-
spiration, and runoff generation with high resolution and are useful for
analysing yield and water impacts under climate change (Dlamini et al.,
2023; You et al., 2024). However, they typically represent cropping
decisions and water management as static or uniform, limiting their
ability to account for local adaptation (Alam et al., 2022; McDermid
et al., 2023). Addressing these limitations, agent-based models (ABMs)
simulate heterogeneous decision-making in response to changing envi-
ronmental and socioeconomic conditions, and are particularly useful in
arid regions where farm-level decisions shape water use outcomes (Alam
et al., 2022; Schrieks et al., 2021). However, their effectiveness depends
on their ability to be adequately calibrated and on the availability of
spatially and behaviourally rich data, which can be challenging in
data-scarce contexts (Brown et al., 2023; Kimpton et al., 2024).

Recent advances in agricultural systems modelling reflect a growing
recognition of the need to capture feedback between climate, water,
crop growth, and human decision-making. Increasingly, models are
coupling biophysical processes and socioeconomic behaviour to
improve the realism and relevance of climate impact assessments (e.g.
Canales et al., 2024; Mijic et al., 2023; Streefkerk et al., 2023). These
integrated models are particularly relevant to arid and semi-arid con-
texts, where agricultural outcomes are tightly constrained by both
environmental stressors and adaptive management strategies (El Far-
tassi et al., 2025; Harms et al., 2023). Coupled models allow for the
simultaneous analysis of yields, water demand and behavioural re-
sponses, dimensions which are often addressed separately in standalone
crop, hydrological, or agent-based models (El Fartassi et al., 2025;
O’Keeffe et al., 2018). Recent work has improved the representation of
irrigation and crop-water interactions in arid environments (e.g.,
Elsayed et al. (2025)), yet these models generally operate at field or
watershed scales and do not integrate dynamic land-use or behavioural
responses. Existing coupled approaches, therefore, remain limited in
their ability to explore long-term adaptation pathways and feedbacks
across biophysical and socioeconomic systems.

Additionally, most existing coupled models focus primarily on short-
term farm management decisions, particularly irrigation scheduling and
technology adoption (Du et al., 2020; Harms et al., 2023; O’Keeffe et al.,
2018). This limits their capacity to explore long-term adaptation path-
ways in arid and semi-arid systems, where shifting cropping patterns
represent a crucial response to sustained climate and resource pressures.
Ecohydrological models such as the Soil and Water Assessment Tool
(SWAT), Agricultural Production Systems Simulator (APSIM), and
AquaCrop provide detailed simulations of crop growth, hydrology, and
irrigation demand, but often assume static land use and uniform man-
agement practices (Bieger et al., 2017; Holzworth et al., 2014; Steduto
et al., 2009). Conversely, agent-based models, such as Competition for
Resources between Agent Functional Types (CRAFTY) or mathematical
programming-based multi-agent systems (MP-MAS), capture heteroge-
neity in decision making and resource endowments (Berger et al., 2007;
Murray-Rust et al., 2014), but typically rely on externally prescribed
productivity and water availability inputs, limiting their capacity to
reflect feedback from environmental processes (Alam et al., 2022).

Taken together, these limitations highlight a clear research gap: the
absence of long-term, transferable coupled models that can jointly
simulate land-use change, irrigation behaviour, and biophysical
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feedbacks under changing climate and socioeconomic conditions. This
gap is particularly relevant in data-scarce, multi-seasonal agricultural
systems such as Egypt, where both physical processes and adaptive
management strongly influence water and land outcomes. To address
these limitations, we develop a novel coupled model linking biophysical
and agent-based components to simulate land-use and irrigation dy-
namics in large, intensively managed agricultural systems. The inno-
vation of the coupled model lies in three main aspects: (1) the explicit
multi-seasonal representation of crop and irrigation processes; (2) the
integration of biophysical and socioeconomic responses, allowing land-
use change and irrigation behaviour to evolve interactively; and (3) the
use of openly available global datasets that enable application in data-
scarce regions and across a broad range of cropping patterns.

The coupled model combines SWAT+, a spatially explicit ecohy-
drological model (EHM) that simulates crop growth and water use, with
CRAFTY, an agent-based model representing land-use decisions through
agent functional types. SWAT + supports applications in data-scarce
regions and has proven effective in capturing yield and water use in
managed systems such as Egypt’s Nile Valley and Delta (Bieger et al.,
2017; Chawanda et al., 2024). CRAFTY complements this by modelling
farmers’ adaptive land-use responses to changes in resource access,
climate, and policy drivers (Murray-Rust et al., 2014). The coupled
model captures both irrigation decisions and transitions in cropping
patterns and land use. By linking these two models, the coupled model
enables assessment of long-term adaptation trajectories and feedbacks
between land use, water demand, and climate, providing a robust and
scalable approach for agricultural systems in arid and semi-arid regions.

This research presents the development and application of the
coupled model. We describe the model components, coupling strategy,
and input datasets. Egypt serves as a case study due to its reliance on
irrigation and a multi-seasonal cropping system. The model is applied to
estimate potential yield and water use trajectories under various climate
change scenarios to 2099, providing insight into how future conditions
may affect agricultural productivity and water demand in arid systems.
We go on to apply the coupled model using static socioeconomic con-
ditions to demonstrate the benefit of the coupling over a standalone
ecohydrological model.

2. Model description

We present a novel model that implements a coupling process be-
tween biophysical and agent-based components (Fig. 1). The biophysical
model (SWAT+) calculates potential crop yields under optimal man-
agement for different climate change scenarios, generating annual nat-
ural capital inputs that represent grid-cell productivity ceilings. These
outputs inform the agent-based model (CRAFTY), where agricultural
producers, competing through capital-weighted utility functions,
determine land use patterns and management practices. Socioeconomic
capitals (infrastructure access, financial resources, access to mecha-
nisation, human resources, social cohesion, access to water resources)
drive agent competition. This coupled model prioritises provisioning
services such as crop production while incorporating policy objectives
such as water use efficiency. Finally, the annual gridded agents derived
from the competition in CRAFTY are passed onto the SWAT + model,
where the land use and management practices are used to determine
gridded production and water use. The coupling propagates spatial
heterogeneity in water use efficiency through agent-specific irrigation
strategies, with commercial agents adopting modern techniques and
subsistence agents persisting with traditional practices.

2.1. SWAT + biophysical model

We use the SWAT + model, a semi-distributed watershed ecohy-
drological model (Arnold et al., 1998), to simulate biophysical pro-
cesses. The SWAT -+ model simulates hydrology and crop production at a
regional scale. SWAT + builds on the original SWAT model, offering
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Fig. 1. Conceptual framework of the coupled land-use change-ecohydrological (LUC-EH) model. SWAT+ is shown twice to represent its two sequential roles: first
simulating potential yields for CRAFTY inputs, and then simulating realised yields and water use based on CRAFTY outputs. The figure illustrates the general data

flow between models.

enhanced flexibility in model component configuration and spatial
discretisation (Bieger et al., 2017). It simulates hydrology and crop
growth processes across large regions by linking subbasins, defined by
topography, with hydrological response units (HRUs). HRUs represent
homogeneous areas defined based on land use, soil type, and slope.
Although these semi-distributed HRUs are computationally efficient,
they do not include connectivity and interactions between HRUs.
SWATgrid was developed to enable gridded, location-specific HRUs,
which also represent watersheds, allowing for the linking of grids and
routing flow between them (Pignotti et al., 2017).

Crop growth in SWAT+ is simulated using the Erosion Productivity
Impact Calculator (EPIC) crop growth model (Williams et al., 1984),
which provides a process-based representation of photosynthesis, tran-
spiration, and biomass accumulation. Management practices are
implemented using decision tables that define actions such as planting,
harvesting, irrigation, reservoir management, fertiliser application,
ploughing, and pesticide application (Arnold et al., 2018). These man-
agement activities can be scheduled by date or triggered by thresholds,
such as soil water content, plant water stress, or accumulated plant heat
units. The decision table structure allows simulation of diverse crop and
irrigation practices, including the automation of irrigation based on crop
water requirements and the availability of water from surface or
groundwater sources. The flexibility of the decision table structure also
supports seasonal and perennial systems, as well as fixed calendars and
rules tied to environmental triggers. Combined with its comprehensive
library of plant types and default agronomic parameters, SWAT + re-
mains accessible for applications in data-scarce regions. Full details of
the decision tables as they are applied in SWAT + are included in Arnold
et al. (2018).

To estimate potential yields, we implement the biophysical model
under optimal management assumptions. Irrigation is triggered auto-
matically when soil moisture falls below field capacity, applying suffi-
cient water as per crop water demand, ensuring non-stressed crop
growth. Fertiliser is also applied based on nutrient stress to ensure non-
limiting growth conditions. This approach prioritises yield max-
imisation, which is the required input for the CRAFTY natural capital
layer, and represents common practices in low-income irrigated sys-
tems, simplifying operation variations such as Egypt’s dominant flood
irrigation (Abdelhafez et al., 2020). Additionally, tree crops (fruit/date)
are assumed to be at full maturity. Other multi-year perennial crops,
such as sugarcane, are simplified and harvested and replanted on an
annual basis to facilitate annual land-use change.

Elevated atmospheric CO, concentrations under future climate sce-
narios are also an important aspect of crop modelling. Elevated COy

levels can enhance crop growth through the carbon fertilisation effect,
which increases photosynthetic and water use efficiencies (Wang et al.,
2017). SWAT + incorporates this effect through adjustments in the EPIC
crop model, where crop transpiration and biomass accumulation
respond dynamically to prescribed CO5 concentrations, typically aligned
to Representative Concentration Pathways (RCPs) (Meinshausen et al.,
2020; Zhang et al., 2022). The model uses a radiation use efficiency
(RUE) approach to simulate crop growth, with RUE specified at both
ambient and elevated CO; levels. Default parameters are available for
many crops within SWAT+’s plant database (plants.plt), facilitating
implementation in data-scarce regions where crop-specific trial data
may not be available. These built-in features support consistent incor-
poration of CO, fertilisation effects across diverse crop and climate
scenarios (USDA Agricultural Research Service, 2020).

2.2. CRAFTY agent-based model

The agent-based component of the coupled model is implemented
using the Competition for Resources between Agent Functional Types
(CRAFTY) framework (Murray-Rust et al., 2014). The CRAFTY frame-
work has been applied to various contexts, including Sweden (Blanco
et al., 2017), Europe (Brown et al., 2019), Great Britain (Brown et al.,
2022), and Brazil (Millington et al., 2021). CRAFTY models the pro-
duction of ecosystem services by agents utilising spatially explicit re-
sources (capitals) (Murray-Rust et al., 2014). Competition between
Agent Functional Types (AFTs) reflects how land use and management
practices evolve. Their competitiveness is determined by a utility func-
tion that incorporates unmet demand and a Cobb-Douglas production
function. AFTs are defined based on the distribution of “give in” and
“give up” thresholds and their capital sensitivities. The “give in”
threshold represents the agent’s willingness to yield to competition,
while the “give up” threshold represents the agent’s likelihood to
relinquish land if they are not profitable (Murray-Rust et al., 2014). The
capital sensitivities describe how sensitive an AFT is to a resource in the
production of an ecosystem service.

2.3. Model coupling of SWAT+ and CRAFTY

In the coupled model, information flows sequentially between
SWAT+ and CRAFTY. Initially, SWAT+ is employed to simulate crop
growth and water use for each crop type across all agricultural grid cells
within the six regional models under optimal management conditions.
This process determines potential yields without irrigation or fertiliser
resource constraints. The potential yield for each cell and crop is
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normalised by rescaling all values between the overall minimum and
maximum yields across all cells, years, and scenarios, such that the
minimum corresponds to 0 and the maximum to 1. The maximum yield
for each cell and crop is then established as the potential yield, which is
subsequently normalised for each crop type. These normalised values
serve as the natural capital inputs for the CRAFTY model. Following this,
the CRAFTY model simulates inter-agent competition, generating
annual gridded AFTs. These AFTs can be translated into land use and
management practices within SWAT+, which in turn simulate crop
growth and provide annual crop production and water use results under
different socioeconomic and climate change scenarios. Non-crop
ecosystem services, such as employment and water use efficiency, are
defined in CRAFTY.

3. Egypt case study
3.1. SWAT + model implementation for Egypt

To demonstrate the application of this coupled model, we implement
SWAT + for Egypt, a highly irrigated agricultural system characterised
by multi-seasonal cropping and high dependence on Nile River flows for
irrigation. The model uses a daily timestep and 900 m grid resolution to
model yield and water use for winter and summer crops. Model input
data is summarised in Table 4. The model is structured into six separate
submodels representing the Nile Delta, Nile Valley, and Mediterranean
regions, collectively covering 28 % of Egypt’s land area and 92 % of its
cultivated land (Fig. 2 and Table A.4). Due to SWAT+’s data handling
limitations for gridded models, each model is constrained to fewer than
90,000 grid cells. This segmentation ensures efficient processing while
maintaining comprehensive coverage of the entire region.

We utilise statistical reports of annual land use (CAPMAS, 2025) to
generate land use maps using the European Space Agency (ESA) land
cover dataset (Copernicus Climate Change Service, 2019) as the un-
derlying land cover distribution. Appendix A.1 includes details of the
process used to develop the land use map in 2020. We use the total area
grown for each crop in each governorate as the basis for this. As Egyp-
tian cropping systems are highly flexible, evolving quickly, and lack

30°N -

28°N -

26°N -

24°N -

Mediterranean Sea
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fixed rotation rules, the model simplifies crop rotations to a statistically
optimised set of representative winter-summer combinations. Although
sequences such as Egyptian clover (berseem) followed by maize are
common, they are not applied consistently across regions or years, as
other crops are often substituted depending on local conditions, labour
availability, market demand, and management preferences. To ensure
computational feasibility and efficient model development, a minimum
number of representative cropping patterns were identified using sta-
tistical optimisation based on the 2010 statistical reports of cropped
areas for seasonal and perennial crops (CAPMAS, 2025). This approach
captures the dominant rotational structure while keeping the model
tractable. The SWAT + model inputs include crop-specific decision ta-
bles for planting, harvesting, and irrigation (summarised in Tables 1 and
2). Cropping calendars are based on regional planting and harvesting
dates and heat unit thresholds.

SWAT + internally simulates both potential and actual evapotrans-
piration (ET) as part of the crop-water balance, based on temperature,
precipitation, radiation, humidity, and wind speed. Under increasing
temperatures, potential ET generally rises, while elevated CO5 reduces
stomatal conductance, which can moderate or reduce actual ET. These
processes are therefore accounted for within the model structure,
although ET outputs were not evaluated separately due to the limited
availability of observational ET records in Egypt. For modelling poten-
tial yields, irrigation is triggered automatically when soil moisture falls
below field capacity, ensuring optimal water supply to maximise crop

Table 1
Planting and harvesting decision table details for winter, summer, perennial,
and tree crops.

Season Decision Planting Harvesting
Winter Date 6th November 30th April
Heat Units - 1.15
Summer Date 15th May 27th October
Heat Units - 1.15
Perennial Date 6th November 27th October
Heat units - 0.9
Trees Date - 15th September
Region
Aswan
Delta
B Ved
B widdie
Red Sea Qena
Upper

22°N -

l l l
24°E 26°E 28°E 30°E

' '

!
32°E 34°E 36°E

Fig. 2. Model regions and cropped area in Egypt: SWAT + submodel areas and national cropped area in 2020. The cropped area is in dark green. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 2
Irrigation decision table details for commercial and Subsistence farmers.
Modelling Method Threshold Threshold Water per
stage/ method quantity application
Management
Potential yield Furrow Soil moisture 100 % Based on
modelling demand
Deficit Defined per  Soil Defined per Defined per
irrigation crop and moisture/ crop and crop and
region plant water region region

stress

productivity. In preparation for actual yield and water use modelling,
additional irrigation settings are developed to reflect deficit irrigation
strategies. These are applied during the final stage of the workflow,
when land use from CRAFTY is used to drive SWAT+. In this case,
irrigation is triggered by either soil moisture thresholds or plant water
stress, and the volume of water applied is based on either crop water
demand or specified quantities. These settings are derived through a
sensitivity analysis, detailed in Section 4.1.

Multi-cut crops such as alfalfa and berseem clover are typically
harvested multiple times annually under real-world conditions. Berseem
and alfalfa achieve 3-7 cuts per year in Egypt (FAO, 2014), while sug-
arcane’s perennial growth allows annual harvesting up to 5 times
(Mehareb et al., 2021). Berseem and alfalfa crops are harvested based on
reaching 90 % of the plant-heat units to maturity, up to four times per
season, followed by a final harvest and termination. To facilitate annual
land-use change modelling, sugarcane is simplified to a single-year
growth and harvest cycle. Perennial crops are assumed to align with
winter cropping calendars, with termination occurring 10 days before
replanting. Fruit and date trees, modelled at full maturity, follow fixed
annual harvests on 15th September to reflect simplified regional
practices.

While a detailed analysis of fertiliser impacts is beyond this study’s
scope, calibration requires fertilisation to be defined. The Food and
Agriculture Organization of the United Nations (FAO) report on crop-
specific fertiliser use in Egypt (Food and Agriculture Organization of
the United Nations, 2005) provides estimates of fertiliser use for each
crop in Egypt. This is used in the initial phase of the modelling to allow
for calibration of the model. Fertiliser application is defined using the
same decision table structure, with automatic application triggered by
nutrient stress. The default crop-specific fertiliser setting is included in
Table A.3.

To maintain hydrological continuity across the modelled domain, a
cascading configuration is implemented for the Nile Valley and Delta
submodels. In this setup, the outlet of each upstream region serves as the
inlet for the downstream model, thereby replicating the natural flow
progression of the Nile River and enabling a coherent simulation of
water movement across regions. While the model does not calibrate
streamflow explicitly — owing to the simplified representation of Egypt’s
irrigation system, in which irrigation water is applied from an abstract,
unlimited source — streamflow values are based on historical records
(Hou et al., 2024). Streamflow projections are estimated by averaging
values across the historical period and extending them uniformly to
2100. The Mediterranean submodel is excluded from the cascading
configuration due to the absence of major upstream inflows.

3.2. CRAFTY model implementation for Egypt

We apply the CRAFTY framework to Egypt to model the process of
land-use change through competition between AFTs. CRAFTY-Egypt
uses a 900 m x 900 m resolution grid and is developed to simulate
land use change between 2020 and 2100. The model is comprised of
capitals, which represent the spatially explicit resources. These include
socioeconomic capitals — manufactured, human, social and financial.
Table 5 contains details of the indicators used for each of these capitals.
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Table 3

Yield and irrigation application parameters, method of change, minimum and
maximum value range and whether the variable is model-wide or crop-specific.
Change: abschng = absolute change of value, percent = percentage change,
replace = replace value. Parameters: bm_e.plt = biomass-energy ratio, tmp_pot.
plt = optimal temperature for plant growth, tmp_base.plt = minimum temper-
ature for plant growth, harv_idx.plt = harvest index for optimal growth condi-
tions, lai_pot.plt = maxium potential leaf area index, phu_mat.plt = plant heat
units to maturity, esco.hru = soil evaporation compensation factor, cn2.hru =
Condition II curve number, perco.hru = percolation coefficient, awc.sol =
available water capacity of the soil layer, surlag.bsn = surface runoff lag coef-
ficient, aquifer_delay.hru = delay time for groundwater flow to stream.

Observed Parameter Change Min Max Details
data
Yield bm_e.plt abschng -5 5 Crop
specific
Yield tmp_opt.plt abschng -3 3  Crop
specific
Yield tmp_base.plt abschng -1 1  Crop
specific
Yield harv_idx.plt percent -70 70  Crop
specific
Yield lai_pot.plt percent -70 70  Crop
specific
Yield phu_mat.plt percent -70 70  Crop
specific
Irrigation esco.hru replace 0 1 Model
Irrigation cn2.hru percent -70 70  Model
Irrigation perco.hru replace 0.01 1  Model
Irrigation awc.sol percent -70 70  Model
Irrigation surlag.bsn replace 0.05 24 Model
Irrigation aquifer_delay. replace 0 1000  Model
hru

Each distributed indicator is sampled to the base grid of the model, so for
every model grid cell, there is a value for each year. The indicators are
scaled between 0 and 1 and summed for each grid to develop the capi-
tals. The indicators use a range of spatial resolutions. The education and
health indices (Smits and Permanyer, 2019), farm machinery preva-
lence, and per capita membership of agricultural cooperatives
(CAPMAS, 2025) are governorate-level datasets. GDP per capita is
calculated using 1 km? resolution gridded GDP and population datasets
(Wang and Sun, 2022; Wang et al., 2022). The population and GDP
gridded values are scaled to account for updated projections (Koch and
Leimbach, 2023). These datasets are then resampled at 900 m x 900 m
resolution to match the model resolution. We define human capital by
summing the health and education indices and scaling the values by
gridded population data. Gridded GDP per capita is used to represent the
financial capital. Social capital is represented by the combination of per
capita membership in agricultural cooperatives (CAPMAS, 2025) and
the Gini index (OAMDI, 2023), as higher income inequality — measured
by the Gini index — is associated with lower levels of social cohesion and
trust within communities (Delhey et al., 2023; Tucker and Xu, 2023).
Finally, manufactured capital is derived from gridded road infrastruc-
ture data (Meijer et al., 2018) and governorate-level agricultural ma-
chinery per unit agricultural area (CAPMAS, 2025).

The representation of water availability in the model necessitated the
explicit inclusion of a water capital variable. While Egypt is classified as a
highly water-stressed nation due to its limited renewable freshwater
resources (Gado and El-Agha, 2021), this scarcity primarily reflects
current technological and infrastructural constraints rather than abso-
lute physical limits. Non-renewable water sources — including fossil
groundwater reserves, wastewater reuse, and desalination — hold the
potential to expand freshwater access significantly under future tech-
nological advancements. As the model is designed for scenario analysis,
water capital is conceptualised not as a fixed physical quantity but as a
dynamic measure of access to water, contingent on technological ca-
pacity and infrastructure development. This capital is integrated in the
model using three spatially explicit components: (1) rainfall patterns
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Table 4
Input data used to develop the SWAT -+ model.
Submodel Data Spatial resolution Temporal References
resolution
Global datasets
Surface water MERIT DEM 90m - Yamazaki et al. (2017)
ESA Landcover 300m Annual (2020) Copernicus Climate Change
Service (2019)
DSOLMap 250m - (Hengl et al., 2017;
Lopez-Ballesteros et al., 2023)
Lake shapefile - Messager et al. (2016)
Streamflow Hou et al. (2024)
CO,, concentration 2020-2100 Meinshausen et al. (2020)
Groundwater Soil grid depth to bedrock 250m - Hengl et al. (2017)

GLHYMPS

Climate data

National datasets

Cropping 2010 cropped areas
pattern
Calibration Yield data

Water use data

Climate data bias corrected and downscaled for MRI-ESM2-0 climate model:
rainfall, min/max temperature, relative humidity, solar radiation, wind speed

(Gleeson, 2018; Huscroft et al.,
2018)

0.25° (25 km at the  Daily (Lange and Biichner, 2021;

equator) Yukimoto et al., 2019)

governorate Annual CAPMAS (2025)
(2010-2019)

Governorate CAPMAS (2025)

Governorate CAPMAS (2025)

derived from climate projections (Lange and Biichner, 2021), (2) prox-
imity to surface water infrastructure, mapped via open-source geospatial
datasets (Humanitarian OpenStreetMap Team (HOT), 2024; Messager
et al., 2016), and (3) the hydraulic head of confined groundwater
aquifers, which governs extraction feasibility (Verkaik et al., 2024). By
integrating these factors, the model captures both natural hydrological
constraints and human-mediated water accessibility, enabling robust
exploration of future scenarios where technological innovations reduce
costs or enhance efficiency in non-renewable water exploitation.

In addition to capitals, the CRAFTY framework includes AFTs, which
represent land managers. Our application of the framework has 56 AFTs,
which characterise different cropping patterns and management prac-
tices. Although not direct representations of the farming household
types described in Sattar et al. (2024), our model draws loosely on their
typology to define two broad agent categories: Commercial (inspired by
specialised households) and Subsistence (based on village households),
in line with the model’s objectives. All cropping patterns are represented
by both agent types to reflect variation in management strategies.

The cropping patterns in Egypt are not fixed. Some crops are only
grown in a specific season — Winter: legumes, wheat; Summer: maize,
fibre, rice, oil crops — whilst others can be grown in both seasons. The
final cropping patterns are estimated based on annual production and
area reports (CAPMAS, 2025). As the seasonal data is not available for
2020, the 2010 seasonal areas are used. Crops are grouped based on the
groupings used by the Government of Egypt in its annual production and
area reports, with the most important crops for each group being used as
the representative plant. Table A.1 includes details of the plant used to
represent each crop grouping. Fig. 3 illustrates the relative size of
different cropping patterns. It includes, on the left, the relative size (by
area) of the subsistence and commercial farmers in 2020. As the diagram
shows, we estimate that 10 % of the cropped areas are commercial and
90 % are subsistence. The middle section of the diagram shows the
relative areas of winter crops, and finally, the right section of the dia-
gram shows the relative areas of summer crops.

The model differentiates agricultural agents based on management
practices, encoded through distinct behavioural parameters. Subsistence
agents represent smallholder farmers who rely on flood irrigation and
are characterised by lower income levels, limited access to technology,
and strong dependence on social capital such as community networks.
These agents exhibit a greater propensity to persist with agricultural
production even under economically non-competitive conditions, pri-
oritising subsistence needs over market-driven optimisation. In contrast,
commercial agents adopt market-oriented farming practices, including
the use of deficit irrigation, alongside external labour, advanced

technologies. The commercial AFT represents behaviour that is more
responsive to poor performance, defined by a lower giving-up threshold
than that of subsistence AFTs. This means that less profitable grid cells
are more readily relinquished, reflecting greater responsiveness to
changing conditions rather than higher overall resilience. These
behavioural distinctions are systematically embedded within the
model’s sensitivity matrices and AFT parameters, which govern the
competition (land-use change) processes. The details of how the sensi-
tivity matrices and AFT parameters are developed for a business-as-
usual scenario are included in Tables A.10 and A11.

The AFTs compete to produce ecosystem services. The Egyptian
implementation of the CRAFTY framework quantifies ecosystem ser-
vices across four dimensions critical to agricultural systems: crop pro-
duction, water use efficiency, livestock products, and employment
generation. Service provision varies according to AFT, reflecting dif-
ferences in crop selection and management strategies. Crop production
is universal across all agricultural agents, with each cultivating either
one or two crops depending on their AFT. Water use efficiency varies
between AFTs, with commercial agents achieving greater efficiency
through deficit irrigation methods, whereas subsistence agents rely on
traditional flood irrigation practices. Additionally, AFTs cultivating
water-intensive crops (i.e. rice and fibre) exhibit reduced efficiency
compared to those focusing on less water-intensive crop types.

Livestock products, including meat and milk, are generated indi-
rectly through two pathways: by agents specialising in fodder crops (i.e.
alfalfa and seasonal fodder), and via crop residues from cereal cultiva-
tion. Employment generation occurs universally but varies in magni-
tude, with commercial agents creating more opportunities due to the
labour-intensive nature of advanced practices and larger operational
scales, whilst subsistence farmers are likely to depend more on house-
hold labour.

In Egypt, agricultural expansion through land reclamation, the pro-
cess of converting desert or other non-cultivated land into farmland, has
been a common practice to increase agricultural production (Adriansen,
2009). Government-sponsored projects, such as those in the New Valley,
prioritise desert land conversion through centralised irrigation infra-
structure. Simultaneously, smallholder farmers along the Nile Valley
and Delta fringes engage in informal reclamation, leveraging shallow
groundwater from Nile-dependent aquifers (Nour, 2020). As the New
Valley Governorate is outside the boundaries of our model, large
state-sponsored projects are not included. However, to reflect the pro-
cess of informal reclamation within the model, an Unmanaged Land
(UL) agent is introduced. This agent is assigned to all grid cells that are
neither cultivated nor masked as urban or wetland areas. Additionally,
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Table 5

Input data used to develop the capital layers for the CRAFTY model.

Capital Indicator

Details

References

Global datasets

Human Education index

Health index

Population
downscaling

Manufactured  Road
infrastructure
inventory

Financial GDP per capita

Water Capital Rainfall

Distance to
surface water
infrastructure

Groundwater

head of confined

aquifer layer
National datasets

Social Coop
membership per
capita
Gini index

Manufactured  Tractors per

feddan

Modelled datasets
Natural Potential yield
capital

Subnational Human
Development Index
indicator
Subnational Human
Development Index
indicator

1 km? gridded
population datasets
resampled to 0.81
km? resolution.
These are rescaled
based on updated
national population
values and used to
downscale human
capital.

Developed based on
2015 data.

1 km? gridded GDP
and population
datasets resampled
to 0.81 km?
resolution. These are
rescaled based on
updated national
GDP and population
values.

0.25° resolution
gridded daily
rainfall data
summed per year
from data bias
corrected and
downscaled for MRI-
ESM2-0 climate
model.

Distance to lakes and
canals calculated
using surface water
layer from Opens
Street Map for canals
and rivers.

Governorate-level
dataset

Calculated from the
Household
Expenditure,
Income, and
Consumption Survey
expenditure
statistics.
Governorate-level
statistics of tractors
per feddan

Calculated from the
SWAT + model at
900m resolution.

Smits and Permanyer
(2019)

Smits and Permanyer
(2019)

(Koch and Leimbach,
2023; Wang et al.,
2022)

Meijer et al. (2018)

(Koch and Leimbach,
2023; Wang and
Sun, 2022; Wang

et al., 2022)

(Lange and Biichner,
2021; Yukimoto
et al., 2019)

(Humanitarian
OpenStreetMap
Team (HOT), 2024)
Messager et al.
(2016)

Verkaik et al. (2024)

CAPMAS (2025)

Calculated from (
OAMDI, 2023)

CAPMAS (2025)

due to agents’ sensitivity to socioeconomic capitals, grid cells with zero
socioeconomic capitals are also excluded. The UL agent represents state
ownership of uncultivated land and remains in place unless displaced by
a competing agricultural agent. The UL agent does not produce any
ecosystem services, does not ‘give-up’ land, and has a 0 ‘give-in’
threshold, thus relinquishing land to any other agent regardless of their
competitiveness.
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3.2.1. Demand

CRAFTY does not simulate international trade and, as such, does not
represent actual demand. Instead, demand for domestic production of
food, fibre, and animal products is used as a proxy for demand (included
in Table A.9). In this application of the coupled model, we applied static
demand values to demonstrate model functionality. These 2020 baseline
values for food and fibre ecosystem services are derived from national
statistical and dietary reports (CAPMAS, 2025). We used a different
approach for non-food and non-fibre ecosystem services, namely
employment and water-use efficiency. We estimated employment de-
mand by multiplying the total population by the proportion employed in
agriculture. Water-use efficiency is treated as an index, with a baseline
value of 100 in 2020.

3.3. Coupled model implementation

After completing the CRAFTY sensitivity analysis (Section 4), we ran
the CRAFTY model using static demand, business-as-usual AFT param-
eters and production sensitivities, and fixed socioeconomic capitals and
demand based on 2020 conditions. Natural capital, however, was
dynamically derived from the biophysical model simulations under
RCP2.6, RCP4.5, RCP6.0, RCP7.0, and RCP8.5 climate scenarios. To
account for the influence of initial conditions, the CRAFTY model was
run ten times using different randomised initial land-use maps, as
explained above. The model simulated land-use change and shifts in
management practices, specifically irrigation, under each scenario
through competition between AFTs. Outputs from these simulations
were then used to drive SWAT+, which provides a more detailed and
process-based representation of crop growth and water use under
varying land use configurations. This stylised implementation, which
holds socioeconomic capitals, demand, and AFT parameters constant,
was designed to demonstrate the functionality of the coupled framework
and to isolate the effects of climate and land-use change on agricultural
production and water use. Future applications will incorporate dynamic
socioeconomic and behavioural processes to explore adaptation and
policy responses in greater detail. The coupled model is summarised in
Fig. 4, and results presented in Section 6.5, below.

4. Sensitivity analysis and calibration
4.1. Sensitivity analysis and calibration of SWAT+

Calibration and validation are critical steps in ecohydrological
modelling, ensuring model outputs align with observed data while un-
derstanding model uncertainty (Zou et al., 2023). For this study, the
SWAT + calibration focused on two primary outputs: crop yield and
irrigation water use. The process addressed data limitations through a
hierarchical calibration methodology using Latin Hypercube Sampling
(LHS) and targeted parameter adjustments.

The six regional submodels (encompassing the Nile Delta, Nile Val-
ley, and Mediterranean regions) were calibrated separately to ensure
model parameters are developed specifically for each region (Cerkasova
et al., 2023). Due to the size of the models, it was not possible to use
them directly for calibration. Smaller models were developed using a
subbasin within each submodel for the calibration process. All land uses
were distributed randomly and evenly across the representative regional
model in cropped areas only.

Fertiliser parameters were excluded from calibration, as Egypt’s
agricultural practices maintain near-optimal application rates (Food and
Agriculture Organization of the United Nations, 2005). Instead, fertiliser
settings were adjusted during sensitivity analysis to determine
maximum potential yield. Additionally, irrigation parameters were not
included in the calibration. Irrigation was applied at rates sufficient to
meet full crop water demand whenever soil water content fell below
field capacity, representing conditions for yield maximisation under the
dominant flood irrigation methods used in Egypt (Abdelhafez et al.,
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Farmer Type (Management)

Subsistence

Winter Crop

~1 Date.trees
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Summer Crop

Alfalfa

Fodder_win

Fig. 3. Management practice, and winter and summer cropping patterns in 2020: The width represents the percentage area of each. The very left shows the division
between commercial and subsistence farmers, the middle shows the crops grown in winter, and the right shows the crops grown in summer. For crops grown in both
winter and summer, “ win” denotes the area in winter and “_sum” the area in summer.

2020).

The calibration prioritised parameters directly influencing crop yield
and water use, as detailed in Table 3. Yield calibration focused on the
optimal and base temperatures (tmp_opt and tmp_base), biomass energy
conversion rate (bm_e), harvest index (harv_idx), potential leaf area
index (lai_pot), and plant heat units to maturity (phu_mat). Irrigation
calibration targeted parameters governing soil water dynamics,
including the soil conservation service curve number (cn2), soil evap-
oration compensation factor (esco), percolation coefficient (perco),
available soil capacity of the soil layer (awc), surface runoff lag coeffi-
cient (surlag), and aquifer delay.

We calibrate simulated average annual yield and irrigation water use
against observed data, similar to the “soft calibration” method applied
by Cerkasova et al. (2023), using a modified version of the RSWAT
package (Nguyen et al., 2022). Observed yield and irrigation data were
obtained from annual governorate-level statistical data (CAPMAS,
2025), providing regionally aggregated statistics for crops used. As crop
models simulate dry matter yield, while observed yield data typically
includes moisture content, we applied a range of crop-specific moisture
percentages (detailed in Table A.5). During calibration, we identified
whether the minimum, average, or maximum moisture content yielded
the lowest error for each crop. To enable unconstrained land use tran-
sitions, all crops were included in every region’s calibration. For crops

not currently grown in a region, we used the average observed yield
across all governorates as a proxy. ted to ensure consistency at
national-scale, and so smooths field-level heterogeneity that may be
more relevant for local applications.

Unlike Cerkasova et al. (2023), however, who apply plant uptake
compensation factor (EPCO) — a measure of the compensation of water
uptake from lower soil layers — adjustments on a HRU level, our
approach requires a uniform EPCO value for each model, as the crop in
each HRU will be modified in further modelling. This ensures EPCO
values are suitable for all crops used in the model. Table 3 summarises
the calibrated parameters, their adjustment methods (absolute change,
replace or percentage change), allowable ranges, and scope (model-wide
or crop-specific). A step-by-step summary of the calibration and sensi-
tivity analysis is outlined below.

Step 1: Yield parameter calibration

We use a Latin Hypercube Sampling (LHS) ensemble of 10,000
parameter sets per region to calibrate crop-specific growth parameters.
After filtering parameter sets for those within 25 % of the lowest nor-
malised root mean square error (NRMSE) value, we evaluated model
performance using a weighted scoring metric prioritising error reduc-
tion (50 % NRMSE, 25 % PBIAS) while retaining explanatory power (25
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Fig. 4. Coupled LUC-EH model schematic for Egypt: The diagram shows information exchange between CRAFTY (left) and SWAT+ (right) as implemented in the
Egypt case study. Orange boxes represent model outputs passed as inputs (blue) to the other model. In SWAT-+, Step 1 refers to the initial run simulating potential
yield, and Step 2 uses land use and management from CRAFTY to simulate actual yield and water use. The schematic has been simplified to include the most relevant
aspects of each model (especially SWAT+) to the coupled model and does not include, for example, many hydrological features of the SWAT + model. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

% R?). To reduce the changes to the default values, we also add a penalty
for the parameters, with lower deviation from default values being
preferred. The optimal parameter combination for each crop in each
region was selected based on this composite score.

Step 2: Irrigation water use calibration

A subsequent LHS ensemble of 10,000 parameter sets was used to
optimise irrigation variables, with water use per unit area in Egypt’s
simplified irrigation zones (Upper, Middle, and Lower regions) serving
as the observed dataset. In the initial filtering step, we retained only
those runs whose yield NRMSE was within 25 % of the best-performing
run, ensuring that irrigation calibration did not come at the cost of yield
accuracy. The remaining runs were then ranked using a multi-criterion
scoring system weighted 75 % towards NRMSE and 25 % towards R?,
allowing us to balance calibration accuracy against the model’s stylised
representation of irrigation.

Step 3: Fertiliser sensitivity for maximum yield

Fertiliser application rates and stress thresholds were systematically
adjusted to identify configurations maximising simulated yields. This
aligned with Egypt’s high-input farming norms, where nitrogen appli-
cation typically ranges 200-300 kg/ha (Food and Agriculture

Organization of the United Nations, 2005). The resulting parameters
defined potential yields under idealised nutrient conditions.

Step 4: Deficit irrigation analysis

A similar sensitivity analysis identified irrigation strategies that
reduced water use relative to yield penalties <10 %. We iteratively
adjusted parameters governing irrigation triggers (soil water deficit and
plant water stress thresholds) and application volumes and frequencies
to map trade-offs between water conservation and productivity.

4.2. Sensitivity analysis of CRAFTY

Within CRAFTY, the natural capital layers, as defined by potential
yields, have the greatest influence on ecosystem service supply. To a
lesser extent, ecosystem services are also influenced by the socioeco-
nomic capitals. At model initialisation, the CRAFTY model automati-
cally scales demand to match the modelled supply, therefore preserving
the supply provided from the biophysical model, removing the need for
further calibration. Model evaluation is primarily carried out via anal-
ysis of the sensitivity of the model output to parameter values, in line
with previous applications of the model (e.g. Blanco et al., 2017; Brown
et al., 2022), while evaluation of the model framework itself ensures
appropriate functioning (Brown et al., 2023).
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The sensitivity analysis entails modifying the AFT parameters (‘giv-
ing-in’ and ‘giving-up’) and production sensitivity tables for socioeco-
nomic capitals to determine their impact on the supply of ecosystem
services. This is completed for a single scenario representing the
business-as-usual case. The socioeconomic capitals are held constant at
2020 levels during the analysis, while natural capitals reflect potential
yields under the same scenario. To further assess the influence of sen-
sitivities, an additional run was conducted where all socioeconomic
capital sensitivity values or all AFT parameters were set to zero. Due to
the model size and time required for each run, a one-at-a-time sensitivity
analysis is adopted (Pianosi et al., 2016).

The initial distribution of land use was based on a random allocation
of crops, informed by land cover satellite data and governorate-level
statistics on cropped areas for each crop. While this ensures accuracy
at the administrative level, it does not necessarily reflect field-level
patterns. To account for the potential influence of initial conditions,
the model was run ten times with different initial land-use distributions,
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parameterise the SWAT + model of Egypt. Table 5 includes details of the
data used to create the CRAFTY model of Egypt. Global datasets, which
can be utilised for different regional applications of the coupled model,
are separated from national and modelled data that are specific to the
model application for Egypt.

6. Results
6.1. SWAT + calibration analysis
Calibration performance varied by crop and region. In the Delta re-

gion (Fig. 5), wheat and oil crops both achieved strong agreement with
observed yields, each with an R? of 0.67 and NRMSE values of 24 % and

Table 6
Average yield calibration and validation NRMSE, R?, and PBIAS for each region.

. Region Calibration Validation
and results were aggregated across these runs for reporting.
R? NRMSE PBIAS R? NRMSE PBIAS
5. Data (%) (%) (%) (%)
Aswan 0.51  44.14 2.77 0.12 91.24 18.80
Developing ecohydrological models requires a large, diverse dataset Delta 046 3279 0.38 0.18 98.08 10.56
to characterise the physical characteristics of the model area. The Med 059 34.52 246 0-34 97.22 13.64
0 cha phy ! : Middle  0.44  44.90 1.83 014 10137 8.48
absence of good-quality, open-source, national GIS datasets necessitated Qena 0.47  72.01 2.23 031 114.86 10.43
the use of global datasets. National data was used for cropped areas and Upper 0.66  35.55 1.10 0.43 14556 14.02
yields. Table 4 includes details of the data used to drive and Average  0.52  43.98 1.79 0.25  108.19 12.65
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Fig. 5. Yield calibration and validation plots for key crops for the Delta region: Observed dry yield in blue and modelled dry yield in red. The calibration period
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29 %, respectively. Maize also produced relatively accurate yield mag-
nitudes, with an NRMSE of 33 %, but its low R? of 0.30 indicates limited
ability to capture interannual variability. Performance declined slightly
during validation. On average, R? dropped from 0.52 in calibration to
0.25 in validation, while NRMSE increased from 44 % to 108 %
(Table 6). However, although absolute PBIAS increases from 1.79 % to
12.65 % in calibration and validation stages, it remains below 15 %
showing that systematic bias is acceptable during the validation stage.

Performance also varied by region. The Mediterranean region
recorded the lowest calibration error (R? = 0.59, NRMSE = 34.52 %),
while the Upper region achieved the strongest model fit (R = 0.66,
NRMSE = 35.55 %). Qena exhibited the weakest performance, partic-
ularly during calibration (R2 = 0.47, NRMSE = 72.01 %). These patterns
persisted into the validation phase, where regions that calibrated well
tended to validate more reliably. Full calibration and validation plots for
all crops and regions are provided in the Supplementary Materials.

6.2. Sensitivity analyses

6.2.1. Fertiliser sensitivity analysis

The fertiliser sensitivity analysis revealed that for many crops and
regions, the default nutrient application settings were already optimal
for yield. This was particularly evident for crops such as alfalfa, seasonal
fodder, legumes, oil crops, and fibre, where no improvements in average
yield were observed through further fertiliser adjustments. However, for
other crops - particularly sugarcane, rice, other vegetables, and wheat —
adjusting fertiliser inputs improved performance, with sugarcane
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consistently showing the highest yields under high nitrogen and phos-
phorus input scenarios. Notably, maize and rice responded strongly to
reduced nitrogen stress, but excessive phosphorus application often
showed diminishing returns.

6.2.2. Irrigation sensitivity analysis

The irrigation sensitivity analysis aimed to identify deficit irrigation
configurations that achieved water savings while maintaining yield
losses within an acceptable 10 % threshold. On average across all re-
gions and crops, water use was reduced by approximately 51 %, while
yield declined by only 6.7 %, confirming the effectiveness of the selected
settings. Some systems showed particularly efficient trade-offs: for
instance, legumes and winter other vegetables (winter potatoes) ach-
ieved water savings of 76 % and 72 %, respectively, with yield re-
ductions of 4.01 % and 5.49 %, respectively. Conversely, sugarcane and
date trees experienced lower irrigation reductions (25 % and 26 %), with
yield reductions of 5.00 % and 7.47 %, respectively. The highest yield
reduction was exhibited by winter seasonal fodder (9.15 %), which
resulted in an irrigation reduction of 54 %.

6.2.3. CRAFTY sensitivity analysis

The analysis of the CRAFTY model’s sensitivity to changes in socio-
economic capital sensitivities showed a moderate response (detailed
results included in Appendix B). Higher capital sensitivities led to lower
production of most crop-related ecosystem services, while animal
products, employment, and water use efficiency were less affected. This
pattern was consistent with the sensitivity analysis of AFT parameters.
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Fig. 6. Projected yield trajectories for key crops under different climate scenarios (2020-2099): Yield values are based on modelled outputs for currently cultivated

lands only, illustrating changes over time for each crop and scenario.
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Regarding abandonment and agricultural expansion, differences be-
tween sensitivity runs were relatively limited. The minimum abandoned
area was 41,472 ha, compared to a maximum of 58,806 ha. Abandon-
ment was higher when AFT parameters were at their lowest. However,
when the ‘give-up’ probability or the sensitivity to capitals was set to
zero, abandonment was lowest. Reclamation of unmanaged land, which
varied across runs from 247,698 ha to 382,644 ha, followed a similar
pattern: the smallest reclaimed area occurred when AFT parameters
were at their lowest, while the highest reclamation occurred when the
‘give-up’ probability or sensitivity to capitals was set to zero.

6.3. Potential yields under different climate scenarios

Model outputs show varying yield responses across crops and climate
scenarios (Fig. 6). Fodder crops, including seasonal fodder and alfalfa,
demonstrate the largest percentage increases between 2020 and 2099,
with gains of 119 % and 117 %, respectively. Wheat also shows a marked
increase under RCP8.5, with average yields in currently cultivated areas
rising by over 43 %. This represents a 36 % increase in 5-year average
yield (2095-2099 vs. 2020-2024), reaching approximately 9 t/ha by the
end of the century.

Main vegetables and sugarcane also exhibit strong yield gains of 25
% and 34 % between 2020 and 2099, respectively. In contrast, maize,
fibre crops, and rice display non-linear trends under RCP8.5, with yields
peaking between 2060 and 2080 before declining towards 2099. Fruit
tree yields remain relatively stable, with modest increases between 4 %
and 13 % across scenarios based on the 5-year average comparison. The
greatest reduction in yield was observed for other vegetables, which
reduces by 31 % between 2020 and 2099, under the RCP8.5 scenario.
Overall, RCP8.5 leads to the greatest gains, with a 25 % increase in yield
across all crops. By comparison, under RCP2.6, yields remain relatively
stable, with an average increase of just 4 % over the century.

Yield responses also vary spatially. Under all climate scenarios,
maize yields decline across much of Egypt by the late 21st century, with
reductions of up to 25 % in some areas, particularly in the southern
region (Fig. 7b). In contrast, wheat yields increase in all scenarios and
across all regions (Fig. 7a), with the most pronounced gains in currently
uncultivated areas of the Western Desert (Upper Egypt SWAT + sub-
model), where increases of up to 75 % are projected.

A noticeable spatial distinction emerges between currently irrigated
areas in the Nile Valley and Delta and newly cultivated zones. For both
wheat and maize, currently irrigated areas maintain higher yields across
all scenarios, except in the case of wheat under RCP8.5, where new
expansion areas also experience marked gains.

6.4. Water use efficiency

Water use efficiency (WUE) in old lands (Fig. 8) shows considerable
variation across climate scenarios under assumptions of ideal irrigation
and optimal fertiliser application. The most substantial improvements
are observed under RCP8.5, which leads to an average 69 % reduction in
water use per tonne of yield across all crops. Alfalfa and seasonal fodder
exhibit the greatest improvements, reducing water use by 88 % and 85
%, respectively. Sugarcane and wheat also benefit, with water use re-
ductions of 79 % and 75 % between 2020 and 2099.

In contrast, RCP2.6 shows minimal gains, with an average WUE
improvement of just 4 % over the same period. For other vegetables,
WUE remains relatively stable across most scenarios, with a slight in-
crease in water use per tonne of 0.6 % under RCP2.6 and a modest
decrease of 2.1 % under RCP7.0. However, RCP8.5 again stands out,
reducing water use for this crop group by 47 %.

Most crops follow a consistent trend of improvement, with the
magnitude of gains increasing along the scenario severity gradient:
RCP2.6 (—4 %), RCP4.5 (—16 %), RCP6.0 (—21 %), RCP7.0 (—32 %),
and RCP8.5 showing the greatest improvement in WUE.

12

Environmental Modelling and Software 197 (2026) 106845
6.5. Land use change

The implementation of the coupled model reveals notable variations
in crop areas and production levels across scenarios (Fig. 9). Seasonal
fodder, wheat, sugarcane, and main vegetables all show increased pro-
duction under RCP4.5, RCP7.0, RCP6.0, and RCP8.5. Among these,
seasonal fodder experiences the most substantial rise, increasing from
130 Mt in 2020 to 255 Mt in 2100 under RCP8.5. In contrast, RCP2.6
results in either stable or slightly declining production levels for these
crops. Despite rising production, cropped areas for seasonal fodder,
wheat, and main vegetables show gradual declines across all scenarios.

Fibre crops, rice, and maize exhibit non-linear trends under RCP8.5,
peaking around 2070 before declining towards the end of the century.
Other vegetables initially decline to 7.44 Mt before increasing again to
reach 10.0 Mt by 2100. The area under other vegetables also expands
markedly between 2080 and 2099, from 568,851 ha to 817,493 ha.

Patterns in abandoned land (Appendix A.4) are consistent across all
scenarios except RCP8.5, which shows a sharp decline in abandonment
after 2080, reaching 21,708 ha by 2099. In other scenarios, abandon-
ment increases gradually, ranging from 43,092 ha (RCP7.0) to 49,896 ha
(RCP4.5).

The conversion of unmanaged land (Appendix A.4) follows a similar
trajectory across scenarios. Total unmanaged land declines sharply from
939,600 ha in 2020 to between 650,000 and 700,000 ha by 2025. This
reduced level remains relatively stable through to 2100, ending between
649,296 ha and 668,979 ha, depending on the scenario.

7. Discussion

This study develops a coupled land-use change-ecohydrological
model to assess climate and socioeconomic impacts on agricultural
production and water use in multi-seasonal arid and semi-arid agricul-
tural systems. The approach integrates the SWAT + ecohydrological
model, which generates spatially distributed potential crop yields
(serving as a natural capital layer), with CRAFTY, an ABM simulating
land-use change and management decisions. Within the ABM, agricul-
tural agents, representing cropping patterns and management practices,
compete based on natural and socioeconomic capitals and agent char-
acteristics. The ecohydrological model was calibrated and its perfor-
mance evaluated against observed annual yield and irrigation data
under full irrigation conditions, demonstrating acceptable agreement
given data limitations; while deficit irrigation scenarios were subse-
quently developed through sensitivity analysis to identify realistic
water-saving strategies with limited yield reduction. We conduct a
climate change scenario analysis, which projected potential yield in-
creases under scenarios with elevated atmospheric CO levels for wheat,
main vegetables, sugarcane, fodder crops, while declines were observed
for maize, rice, and other vegetables, suggesting that any declines due to
increasing temperatures are counteracted by COs fertilisation effects for
some crops but not for others. We also show that irrigation water use
reduced at the highest rate for scenarios with the highest CO levels,
demonstrating the impact of elevated CO2 on water use. Finally, we
establish the benefit of the coupled model by running the model using
potential crop yields under different climate scenarios, static socioeco-
nomic capitals and demand, and business-as-usual agent properties. This
demonstrates that even in light of the static socioeconomic capitals and
demand, the coupled model results in some adaptation in response to
dynamic potential yields.

7.1. Climate change impact on crop yields

Our results indicate that C3 crops, such as wheat, and fodder crops
experience increased yields under elevated COy concentrations. This
finding aligns with previous studies (Ahmed et al., 2019; Ainsworth and
Long, 2021; Elsadek et al., 2024; Rezaei et al., 2023), which consistently
report enhanced productivity in C3 crops due to increased
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Fig. 7. Spatial change in crop yield under different climate scenarios: Percentage change in yield for (a) wheat and (b) maize between 2020 and 2099. Five-year
average yields are used to smooth interannual variability (2020-2024 and 2095-2099).
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Fig. 8. Trajectories of water use efficiency (WUE) under future climate scenarios: Projected WUE for major crops from 2020 to 2099.

photosynthetic efficiency under elevated CO,. In contrast, C4 crops,
such as maize, show no benefit of elevated CO, concentrations, except
under drought-stressed conditions (Rezaei et al., 2023). This is consis-
tent with our results, where maize yields increase modestly across most
climate scenarios, with slight reductions occurring under scenarios with
the highest atmospheric CO, concentrations. Since we model potential
yields under non-water-stressed conditions, the reduction observed for
maize further supports expectations based on physiological crop
responses.

A study of the Mediterranean region using the Lund-Potsdam-Jena
managed Land (LPJmL) ecohydrological and agro-ecosystem model
found yield increases for multiple crops under global warming scenarios
ranging from 2 °C to 5 °C (Fader et al., 2016). For sugarcane, yields
increased by 30 % and 120 % when comparing 2000-2009 to
2080-2090 under 2 °C and 5 °C scenarios, respectively, using dynamic
CO; concentrations. Notably, under elevated COo, all crops experienced
some level of yield gain across all scenarios. In contrast, under constant
CO4, levels, most crops showed yield reductions, typically within 20 %,
although some crops, including sugarcane, maintained their yield in-
creases. Broadly, our findings align with these results. However, while
Fader et al. (2016) report continuous increases in rice yield across all
scenarios, our results show an initial increase followed by a decline,
especially under high-emissions scenarios. This discrepancy may stem
from differences in climate and CO, input data; their scenarios reach a
maximum of 720 ppm CO3 under 5 °C warming, whereas our RCP8.5
scenario reaches 1135 ppm by 2100.

Previous studies assessing climate change impacts on Egyptian
agriculture report mixed findings (Elsadek et al., 2024; Gamal et al.,
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2021; Kheir et al., 2019; Moghazy and Kaluarachchi, 2021; S. M. Mos-
tafa et al., 2021). For instance, Moghazy and Kaluarachchi (2021) used
linear regression with climate projections to estimate yield impacts in
the Siwa region (Western Desert), projecting reductions of 10.4-27.4 %
by 2100 under RCP8.5. However, their model did not include elevated
CO, effects. In contrast, Elsadek et al. (2024), applying the
AquaCrop-GIS model for rice in the Nile Delta, found yield gains under
both RCP4.5 and RCP8.5 with elevated CO». Their projections show rice
yields increasing from 14.5 % in the 2030s to 16.9 % in the 2090s under
RCP4.5, while RCP8.5 shows a peak gain of 16.9 % in the 2050s fol-
lowed by a smaller increase of 1.6 % by the 2090s. Our model also shows
an initial yield increase for rice under RCP4.5, peaking around 2070,
followed by a decline, resulting in a net gain of just 1.8 % between 2020
and 2099. Moreover, under RCP8.5, rice yields decline by 5.1 % over the
modelling period. These differences may reflect the broader geographic
scope of our model, which includes southern Egypt, where higher
warming is expected. In these areas, the positive effects of CO5 fertil-
isation may be outweighed by heat stress more than in the cooler Delta
region.

Our results show increases in wheat yield under all scenarios, with
the largest gain (36 %) under RCP8.5. Kheir et al. (2019) investigated
the effects of sea-level rise, increased temperature, and elevated CO2 on
two wheat cultivars in a Kafr-El-Sheikh, a Nile Delta governorate, using
two DSSAT wheat models. Their results showed that a 4 °C temperature
increase could reduce yields by up to 18 %, while elevated CO5 con-
centrations (400-700 ppm) increased yields by 5-25 %. Although our
model does not simulate these specific cultivars and assumes ideal
growing conditions with combined climate effects, the general trends
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are consistent, demonstrating that elevated CO5 can offset some of the
negative impacts of warming on wheat yield.

Overall, these studies highlight the complex and uncertain nature of
climate change impacts on crop yields. Rising temperatures are gener-
ally expected to reduce yields, while elevated CO5 concentrations may
offset some of these losses, particularly for C3 crops. Our findings are
broadly consistent with this pattern, though rice shows some diver-
gence, likely due to differences in climate sensitivity and spatial varia-
tion across Egypt. However, the magnitude of the CO;, fertilisation effect
remains uncertain and may lead to an overestimation of future yield
potential, particularly in the absence of nutrient or management con-
straints (Ainsworth et al., 2025; Q. Cao et al., 2022). Moreover, these
positive effects could be offset by interacting stressors such as increasing
temperature extremes, drought frequency, and soil degradation, which
are not explicitly represented in the current coupled model (Ainsworth
et al., 2025).

7.2. Water use under future climate scenarios

Our modelling results show reductions in water use across all sce-
narios and crops. This trend is generally consistent with other studies
that account for both increased temperatures and elevated CO2 con-
centrations (Tian et al., 2023; Toreti et al., 2020), where reductions in
crop transpiration are primarily attributed to decreased stomatal
conductance under elevated CO,. For example, Fader et al. (2016)
analysed irrigation water use for multiple crops across the Mediterra-
nean region and found a net reduction in irrigation demand for most
crops included in our simulations, such as temperate cereals (e.g.
wheat), potatoes (included under other vegetables), and pulses
(included under legumes). In contrast to our results, however, their re-
sults showed increased irrigation for sugarcane, citrus, and rice. These
differences may reflect the relatively higher dependence on irrigation in
our study area compared to the broader Mediterranean average.

Mokhtar et al. (2025) conducted a meta-analysis of WUE responses
to elevated CO» across various crops and field experiments. They found
that C3 crops such as wheat and tomatoes (main vegetables) exhibited
consistent improvements in WUE, with increases of up to 40-50 % in
some cases. C4 crops, including maize and sugarcane, also showed im-
provements, albeit to a lesser extent. Similar patterns are observed in Q.
Cao et al. (2022), who reported WUE increases of 27.8 % for wheat and
49.7 % for maize under 800 ppm CO3 in non-drought conditions.

Several studies have explored the impacts of climate change on water
use in Egypt, though most focus solely on temperature effects (Gabr,
2023; S. Mostafa et al., 2021). These studies consistently project in-
creases in irrigation demand, such as S. Mostafa et al. (2021), who es-
timate increases ranging from 6.1 % to 7.3 % for winter crops and 11.7
%-13.2 % for summer crops due to higher evapotranspiration under
warming scenarios.

The reductions in irrigation water use observed in our results should
be interpreted in the context of how evapotranspiration (ET) is repre-
sented within SWAT+. Potential ET generally increases under warmer
conditions, while elevated CO, reduces stomatal conductance and can
lower actual ET. Both processes are simulated internally within the
SWAT + crop-water balance and therefore influence crop water demand
in the model. As a result, water demand does not rise in direct proportion
to temperature increases and may decline for some crops. This behav-
iour is consistent with the reductions in irrigation requirements that we
observe across the climate scenarios.

Overall, our results are in agreement with studies that incorporate
both temperture rise and CO; fertilisation effects, showing net im-
provements in water use efficiency under future climate scenarios.
However, such integrated modelling studies remain limited for Egypt,
highlighting a gap in the regional literature.
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7.3. Model evaluation

We use our coupled model implementation to demonstrate the value
of coupling a biophysical model with an agent-based land-use change
model, under a simplified scenario framework. This example assumes
dynamic potential yields driven by climate change, but holds socio-
economic capitals, demand, and AFT parameters constant and uniform
across scenarios. Despite these simplified assumptions, the model pro-
duces notable land-use dynamics, including land abandonment, recla-
mation, and shifts in crop areas in response to changing yield potentials.
For instance, the greatest decline in potential yield is observed for other
vegetables under RCP8.5. This yield reduction leads to an expansion in
cultivated area for that crop after 2080, accompanied by the re-
cultivation of previously abandoned land.

Previous models that couple biophysical and agent-based compo-
nents (e.g. Du et al., 2020; Harms et al., 2023; O’Keeffe et al., 2018) have
primarily focused on irrigation decision-making while limiting endog-
enous land-use change, despite its central role in adaptation to climate
change (e.g. Adly et al., 2018; Boazar et al., 2020; Chouchane et al.,
2020). Unlike optimisation-based approaches (e.g. Fikry et al., 2021;
Sardo et al., 2024), the coupled LUC-EH model enables land-use change
to emerge endogenously by defining initial conditions and allowing land
allocation to evolve without imposing prescriptive decision rules.

8. Limitations

Although the model presents some key developments, limited access
to high-resolution gauging data and evapotranspiration (ET) measure-
ments constrained the accuracy of model calibration. Such limitations
are common in data-scarce regions, where ecohydrological models must
often rely on sparse and fragmented monitoring networks (Chawanda
et al., 2024). While SWAT + benefits from open-source datasets, global
satellite products, and climate model integrations, making it suitable for
applications in data-poor regions, the absence of detailed records on
irrigation return flows and groundwater abstraction complicates the
calibration of key hydrological parameters (Akoko et al., 2021).
Although a formal Monte Carlo uncertainty analysis was not performed,
uncertainty was addressed through sensitivity analysis and the inclusion
of multiple climate scenarios, which capture a broad range of plausible
outcomes for crop yield and water use.

The moderate calibration performance for some crops reflects the
limited availability and quality of long-term yield and irrigation data in
Egypt. Governorate-level statistics provide only coarse spatial and
temporal detail, and inconsistencies between years reduce their useful-
ness for model tuning. As a result, the calibrated parameters are best
viewed as capturing general patterns rather than precise field-level re-
sponses. This affects the interpretation of scenario results, which should
be understood as indicative of broad trends and relative differences
between scenarios rather than exact projections of yield or water use.

Urban growth and competition with agricultural land are not
explicitly simulated in this version of the model, although CRAFTY has
the capacity to represent such processes. These were intentionally
excluded to isolate the effects of climate change on agricultural land use.
In the context of Egypt, this omission is expected to have limited
national-scale implications due to the availability of desert margins
suitable for managed agricultural expansion, although localised in-
teractions between urban and agricultural land in the Nile Delta warrant
inclusion in future model development.

Egypt’s hydrological system is highly complex, involving in-
teractions between surface irrigation infrastructure, subsurface tile
drainage, and the widespread reuse of agricultural drainage water
(Barnes, 2014). Although SWAT + supports the conceptual separation of
surface and groundwater irrigation sources, the current implementation
does not explicitly assign or quantify these sources. Furthermore,
groundwater withdrawals are not directly modelled, which limits the
ability to assess their contribution to aquifer depletion or the risk of
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saltwater intrusion in coastal regions and may lead to an underestima-
tion of water scarcity or overestimation of adaptive capacity in
groundwater-dependent areas. This is largely due to the absence of
openly accessible, regularly updated spatial and temporal datasets
describing the structure, operation, and management of irrigation
infrastructure, including pumping stations, return flows, and convey-
ance systems. Incorporating these processes into future model devel-
opment would substantially improve assessments of groundwater
sustainability and irrigation system resilience. In addition, the omission
of institutional and governance factors such as water allocation rules,
collective management arrangements, and agricultural subsidies con-
strains the realism of water accounting and limits the direct translation
of the results into policy. Incorporating these aspects, alongside
improved infrastructure data, would substantially strengthen future
assessments of groundwater sustainability and irrigation system
resilience.

9. Conclusion

This study demonstrates the value of coupling behavioural and bio-
physical models to simulate agricultural responses to climate change in
arid, multi-seasonal agricultural systems. By linking CRAFTY and
SWAT+, we move beyond static impact modelling to explore how
cropping patterns and irrigation decisions might shift in response to
changing environmental conditions. While this application uses a styl-
ised version of the model with static socioeconomic conditions and de-
mand, it shows that even under stagnant assumptions, agricultural land-
use change processes can enhance the interpretation of biophysical re-
sponses. These dynamic shifts redistribute cropping patterns in ways
that partially offset or amplify climate-driven yield changes. However,
the current version does not represent non-agricultural transitions such
as urban expansion, which may further influence land availability in
future applications.

The results also underscore the potential significance of rising at-
mospheric CO, concentrations, which improve water use efficiency and
may benefit the yields of some crops, particularly C3 species such as
wheat and fodder crops. However, these gains are not uniform and may
be offset by increased heat stress, pointing to the need for cautious
interpretation. More broadly, the coupled model offers a transferable
and open-access tool for scenario analysis in regions facing similar
constraints. Applying the model to fully developed climate-socioeco-
nomic scenarios would allow for more robust exploration of adaptation
pathways and the complex interplay between natural and human
systems.
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