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A B S T R A C T

Modelling interactions between climate, water, crops, and human decision-making requires coupling of bio
physical and socioeconomic processes to model outcomes and explore potential futures. This study presents a 
novel coupled model of land-use change and ecohydrological processes in arid agricultural systems. The model 
links SWAT+, which simulates ecohydrological processes, including crop growth and irrigation water use, with 
CRAFTY, an agent-based framework that allocates land according to agent characteristics and resource condi
tions. Egypt is used as a case study where climate and socioeconomic stressors constrain agricultural production. 
The coupling captures how shifts in potential yields, driven by elevated CO2 and warming, shape land-use 
change. Crop yields vary by crop and scenario, with the largest gains – and declines – under high-emission fu
tures, while water use efficiency consistently improves, especially at higher CO2 concentrations. Relying on open 
global datasets, the model provides a transferable approach for exploring climate adaptation in data-scarce, 
water-limited regions.

1. Introduction

Climate change poses significant risks to environmental and socio
economic systems, particularly for land use and freshwater management 
(Z. Cao et al., 2022). The agricultural sector, as the largest global user of 
both land and freshwater, is especially vulnerable (Malhi et al., 2021). 
These vulnerabilities include more frequent and extreme weather 
events, shrinking arable land area, declining soil quality, and rising crop 
water demand; trends which are already occurring rapidly in arid and 
semi-arid agricultural systems (El-Beltagy and Madkour, 2012). Climate 
change has already reduced global agricultural productivity by an esti
mated 21 % since 1961 compared to a no-climate-change baseline, with 
higher losses in some of the most climate-exposed regions, including 
Sub-Saharan Africa (34 %), and the Middle East and North Africa (30 %) 
(Ortiz-Bobea et al., 2021). However, the net impact remains uncertain 
due to the potential counteracting effect of elevated CO2, which may 
enhance photosynthesis and water use efficiency for some crops under 

certain conditions (Ainsworth and Long, 2021; Jägermeyr et al., 2021). 
As the rate and severity of climate change are likely to increase over the 
coming decades (Zittis et al., 2022), proactive adaptation remains 
essential to manage risks, sustain agricultural productivity and capi
talise on the benefits to some crops (Grigorieva et al., 2023).

The responses of governments and farmers to constrained freshwater 
resources and the impacts of climate change on water and land systems 
are crucial for both farmer welfare and food and water security 
(Grigorieva et al., 2023). Agricultural activity in arid and semi-arid re
gions has long been defined by its ability to meet these challenges 
(El-Beltagy and Madkour, 2012). Whether or not it continues to do so is 
likely to be determined by the interaction of hydrological and land-use 
systems, and the extent to which they can be influenced by agricultural 
management decisions at various spatial scales. It is therefore essential 
to understand the dynamics of these complex systems, predict how they 
may change in the future, and assess the efficacy of policies for natural 
resource management, food and water security, and rural development 
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(Alam et al., 2022).
A wide range of modelling approaches have been used to assess 

agricultural responses to climate and socioeconomic change, each with 
distinct strengths and limitations. Econometric models capture statisti
cal relationships between climate variables and yields, often assuming 
profit-maximising behaviour, but they lack spatial and behavioural 
detail (Feng et al., 2023; Su and Chen, 2022). More sophisticated eco
nomic models, such as computable general equilibrium (CGE) models, 
can capture economy-wide impacts of agricultural change but struggle 
to represent physical constraints and heterogeneity in farmer behaviour 
(Huber et al., 2018). Physical models, including crop and hydrological 
models, simulate biophysical processes such as photosynthesis, tran
spiration, and runoff generation with high resolution and are useful for 
analysing yield and water impacts under climate change (Dlamini et al., 
2023; You et al., 2024). However, they typically represent cropping 
decisions and water management as static or uniform, limiting their 
ability to account for local adaptation (Alam et al., 2022; McDermid 
et al., 2023). Addressing these limitations, agent-based models (ABMs) 
simulate heterogeneous decision-making in response to changing envi
ronmental and socioeconomic conditions, and are particularly useful in 
arid regions where farm-level decisions shape water use outcomes (Alam 
et al., 2022; Schrieks et al., 2021). However, their effectiveness depends 
on their ability to be adequately calibrated and on the availability of 
spatially and behaviourally rich data, which can be challenging in 
data-scarce contexts (Brown et al., 2023; Kimpton et al., 2024).

Recent advances in agricultural systems modelling reflect a growing 
recognition of the need to capture feedback between climate, water, 
crop growth, and human decision-making. Increasingly, models are 
coupling biophysical processes and socioeconomic behaviour to 
improve the realism and relevance of climate impact assessments (e.g. 
Canales et al., 2024; Mijic et al., 2023; Streefkerk et al., 2023). These 
integrated models are particularly relevant to arid and semi-arid con
texts, where agricultural outcomes are tightly constrained by both 
environmental stressors and adaptive management strategies (El Far
tassi et al., 2025; Harms et al., 2023). Coupled models allow for the 
simultaneous analysis of yields, water demand and behavioural re
sponses, dimensions which are often addressed separately in standalone 
crop, hydrological, or agent-based models (El Fartassi et al., 2025; 
O’Keeffe et al., 2018). Recent work has improved the representation of 
irrigation and crop-water interactions in arid environments (e.g., 
Elsayed et al. (2025)), yet these models generally operate at field or 
watershed scales and do not integrate dynamic land-use or behavioural 
responses. Existing coupled approaches, therefore, remain limited in 
their ability to explore long-term adaptation pathways and feedbacks 
across biophysical and socioeconomic systems.

Additionally, most existing coupled models focus primarily on short- 
term farm management decisions, particularly irrigation scheduling and 
technology adoption (Du et al., 2020; Harms et al., 2023; O’Keeffe et al., 
2018). This limits their capacity to explore long-term adaptation path
ways in arid and semi-arid systems, where shifting cropping patterns 
represent a crucial response to sustained climate and resource pressures. 
Ecohydrological models such as the Soil and Water Assessment Tool 
(SWAT), Agricultural Production Systems Simulator (APSIM), and 
AquaCrop provide detailed simulations of crop growth, hydrology, and 
irrigation demand, but often assume static land use and uniform man
agement practices (Bieger et al., 2017; Holzworth et al., 2014; Steduto 
et al., 2009). Conversely, agent-based models, such as Competition for 
Resources between Agent Functional Types (CRAFTY) or mathematical 
programming-based multi-agent systems (MP-MAS), capture heteroge
neity in decision making and resource endowments (Berger et al., 2007; 
Murray-Rust et al., 2014), but typically rely on externally prescribed 
productivity and water availability inputs, limiting their capacity to 
reflect feedback from environmental processes (Alam et al., 2022).

Taken together, these limitations highlight a clear research gap: the 
absence of long-term, transferable coupled models that can jointly 
simulate land-use change, irrigation behaviour, and biophysical 

feedbacks under changing climate and socioeconomic conditions. This 
gap is particularly relevant in data-scarce, multi-seasonal agricultural 
systems such as Egypt, where both physical processes and adaptive 
management strongly influence water and land outcomes. To address 
these limitations, we develop a novel coupled model linking biophysical 
and agent-based components to simulate land-use and irrigation dy
namics in large, intensively managed agricultural systems. The inno
vation of the coupled model lies in three main aspects: (1) the explicit 
multi-seasonal representation of crop and irrigation processes; (2) the 
integration of biophysical and socioeconomic responses, allowing land- 
use change and irrigation behaviour to evolve interactively; and (3) the 
use of openly available global datasets that enable application in data- 
scarce regions and across a broad range of cropping patterns.

The coupled model combines SWAT+, a spatially explicit ecohy
drological model (EHM) that simulates crop growth and water use, with 
CRAFTY, an agent-based model representing land-use decisions through 
agent functional types. SWAT + supports applications in data-scarce 
regions and has proven effective in capturing yield and water use in 
managed systems such as Egypt’s Nile Valley and Delta (Bieger et al., 
2017; Chawanda et al., 2024). CRAFTY complements this by modelling 
farmers’ adaptive land-use responses to changes in resource access, 
climate, and policy drivers (Murray-Rust et al., 2014). The coupled 
model captures both irrigation decisions and transitions in cropping 
patterns and land use. By linking these two models, the coupled model 
enables assessment of long-term adaptation trajectories and feedbacks 
between land use, water demand, and climate, providing a robust and 
scalable approach for agricultural systems in arid and semi-arid regions.

This research presents the development and application of the 
coupled model. We describe the model components, coupling strategy, 
and input datasets. Egypt serves as a case study due to its reliance on 
irrigation and a multi-seasonal cropping system. The model is applied to 
estimate potential yield and water use trajectories under various climate 
change scenarios to 2099, providing insight into how future conditions 
may affect agricultural productivity and water demand in arid systems. 
We go on to apply the coupled model using static socioeconomic con
ditions to demonstrate the benefit of the coupling over a standalone 
ecohydrological model.

2. Model description

We present a novel model that implements a coupling process be
tween biophysical and agent-based components (Fig. 1). The biophysical 
model (SWAT+) calculates potential crop yields under optimal man
agement for different climate change scenarios, generating annual nat
ural capital inputs that represent grid-cell productivity ceilings. These 
outputs inform the agent-based model (CRAFTY), where agricultural 
producers, competing through capital-weighted utility functions, 
determine land use patterns and management practices. Socioeconomic 
capitals (infrastructure access, financial resources, access to mecha
nisation, human resources, social cohesion, access to water resources) 
drive agent competition. This coupled model prioritises provisioning 
services such as crop production while incorporating policy objectives 
such as water use efficiency. Finally, the annual gridded agents derived 
from the competition in CRAFTY are passed onto the SWAT + model, 
where the land use and management practices are used to determine 
gridded production and water use. The coupling propagates spatial 
heterogeneity in water use efficiency through agent-specific irrigation 
strategies, with commercial agents adopting modern techniques and 
subsistence agents persisting with traditional practices.

2.1. SWAT + biophysical model

We use the SWAT + model, a semi-distributed watershed ecohy
drological model (Arnold et al., 1998), to simulate biophysical pro
cesses. The SWAT +model simulates hydrology and crop production at a 
regional scale. SWAT + builds on the original SWAT model, offering 
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enhanced flexibility in model component configuration and spatial 
discretisation (Bieger et al., 2017). It simulates hydrology and crop 
growth processes across large regions by linking subbasins, defined by 
topography, with hydrological response units (HRUs). HRUs represent 
homogeneous areas defined based on land use, soil type, and slope. 
Although these semi-distributed HRUs are computationally efficient, 
they do not include connectivity and interactions between HRUs. 
SWATgrid was developed to enable gridded, location-specific HRUs, 
which also represent watersheds, allowing for the linking of grids and 
routing flow between them (Pignotti et al., 2017).

Crop growth in SWAT+ is simulated using the Erosion Productivity 
Impact Calculator (EPIC) crop growth model (Williams et al., 1984), 
which provides a process-based representation of photosynthesis, tran
spiration, and biomass accumulation. Management practices are 
implemented using decision tables that define actions such as planting, 
harvesting, irrigation, reservoir management, fertiliser application, 
ploughing, and pesticide application (Arnold et al., 2018). These man
agement activities can be scheduled by date or triggered by thresholds, 
such as soil water content, plant water stress, or accumulated plant heat 
units. The decision table structure allows simulation of diverse crop and 
irrigation practices, including the automation of irrigation based on crop 
water requirements and the availability of water from surface or 
groundwater sources. The flexibility of the decision table structure also 
supports seasonal and perennial systems, as well as fixed calendars and 
rules tied to environmental triggers. Combined with its comprehensive 
library of plant types and default agronomic parameters, SWAT + re
mains accessible for applications in data-scarce regions. Full details of 
the decision tables as they are applied in SWAT + are included in Arnold 
et al. (2018).

To estimate potential yields, we implement the biophysical model 
under optimal management assumptions. Irrigation is triggered auto
matically when soil moisture falls below field capacity, applying suffi
cient water as per crop water demand, ensuring non-stressed crop 
growth. Fertiliser is also applied based on nutrient stress to ensure non- 
limiting growth conditions. This approach prioritises yield max
imisation, which is the required input for the CRAFTY natural capital 
layer, and represents common practices in low-income irrigated sys
tems, simplifying operation variations such as Egypt’s dominant flood 
irrigation (Abdelhafez et al., 2020). Additionally, tree crops (fruit/date) 
are assumed to be at full maturity. Other multi-year perennial crops, 
such as sugarcane, are simplified and harvested and replanted on an 
annual basis to facilitate annual land-use change.

Elevated atmospheric CO2 concentrations under future climate sce
narios are also an important aspect of crop modelling. Elevated CO2 

levels can enhance crop growth through the carbon fertilisation effect, 
which increases photosynthetic and water use efficiencies (Wang et al., 
2017). SWAT + incorporates this effect through adjustments in the EPIC 
crop model, where crop transpiration and biomass accumulation 
respond dynamically to prescribed CO2 concentrations, typically aligned 
to Representative Concentration Pathways (RCPs) (Meinshausen et al., 
2020; Zhang et al., 2022). The model uses a radiation use efficiency 
(RUE) approach to simulate crop growth, with RUE specified at both 
ambient and elevated CO2 levels. Default parameters are available for 
many crops within SWAT+’s plant database (plants.plt), facilitating 
implementation in data-scarce regions where crop-specific trial data 
may not be available. These built-in features support consistent incor
poration of CO2 fertilisation effects across diverse crop and climate 
scenarios (USDA Agricultural Research Service, 2020).

2.2. CRAFTY agent-based model

The agent-based component of the coupled model is implemented 
using the Competition for Resources between Agent Functional Types 
(CRAFTY) framework (Murray-Rust et al., 2014). The CRAFTY frame
work has been applied to various contexts, including Sweden (Blanco 
et al., 2017), Europe (Brown et al., 2019), Great Britain (Brown et al., 
2022), and Brazil (Millington et al., 2021). CRAFTY models the pro
duction of ecosystem services by agents utilising spatially explicit re
sources (capitals) (Murray-Rust et al., 2014). Competition between 
Agent Functional Types (AFTs) reflects how land use and management 
practices evolve. Their competitiveness is determined by a utility func
tion that incorporates unmet demand and a Cobb–Douglas production 
function. AFTs are defined based on the distribution of “give in” and 
“give up” thresholds and their capital sensitivities. The “give in” 
threshold represents the agent’s willingness to yield to competition, 
while the “give up” threshold represents the agent’s likelihood to 
relinquish land if they are not profitable (Murray-Rust et al., 2014). The 
capital sensitivities describe how sensitive an AFT is to a resource in the 
production of an ecosystem service.

2.3. Model coupling of SWAT+ and CRAFTY

In the coupled model, information flows sequentially between 
SWAT+ and CRAFTY. Initially, SWAT+ is employed to simulate crop 
growth and water use for each crop type across all agricultural grid cells 
within the six regional models under optimal management conditions. 
This process determines potential yields without irrigation or fertiliser 
resource constraints. The potential yield for each cell and crop is 

Fig. 1. Conceptual framework of the coupled land-use change-ecohydrological (LUC-EH) model. SWAT+ is shown twice to represent its two sequential roles: first 
simulating potential yields for CRAFTY inputs, and then simulating realised yields and water use based on CRAFTY outputs. The figure illustrates the general data 
flow between models.
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normalised by rescaling all values between the overall minimum and 
maximum yields across all cells, years, and scenarios, such that the 
minimum corresponds to 0 and the maximum to 1. The maximum yield 
for each cell and crop is then established as the potential yield, which is 
subsequently normalised for each crop type. These normalised values 
serve as the natural capital inputs for the CRAFTY model. Following this, 
the CRAFTY model simulates inter-agent competition, generating 
annual gridded AFTs. These AFTs can be translated into land use and 
management practices within SWAT+, which in turn simulate crop 
growth and provide annual crop production and water use results under 
different socioeconomic and climate change scenarios. Non-crop 
ecosystem services, such as employment and water use efficiency, are 
defined in CRAFTY.

3. Egypt case study

3.1. SWAT + model implementation for Egypt

To demonstrate the application of this coupled model, we implement 
SWAT + for Egypt, a highly irrigated agricultural system characterised 
by multi-seasonal cropping and high dependence on Nile River flows for 
irrigation. The model uses a daily timestep and 900 m grid resolution to 
model yield and water use for winter and summer crops. Model input 
data is summarised in Table 4. The model is structured into six separate 
submodels representing the Nile Delta, Nile Valley, and Mediterranean 
regions, collectively covering 28 % of Egypt’s land area and 92 % of its 
cultivated land (Fig. 2 and Table A.4). Due to SWAT+’s data handling 
limitations for gridded models, each model is constrained to fewer than 
90,000 grid cells. This segmentation ensures efficient processing while 
maintaining comprehensive coverage of the entire region.

We utilise statistical reports of annual land use (CAPMAS, 2025) to 
generate land use maps using the European Space Agency (ESA) land 
cover dataset (Copernicus Climate Change Service, 2019) as the un
derlying land cover distribution. Appendix A.1 includes details of the 
process used to develop the land use map in 2020. We use the total area 
grown for each crop in each governorate as the basis for this. As Egyp
tian cropping systems are highly flexible, evolving quickly, and lack 

fixed rotation rules, the model simplifies crop rotations to a statistically 
optimised set of representative winter–summer combinations. Although 
sequences such as Egyptian clover (berseem) followed by maize are 
common, they are not applied consistently across regions or years, as 
other crops are often substituted depending on local conditions, labour 
availability, market demand, and management preferences. To ensure 
computational feasibility and efficient model development, a minimum 
number of representative cropping patterns were identified using sta
tistical optimisation based on the 2010 statistical reports of cropped 
areas for seasonal and perennial crops (CAPMAS, 2025). This approach 
captures the dominant rotational structure while keeping the model 
tractable. The SWAT + model inputs include crop-specific decision ta
bles for planting, harvesting, and irrigation (summarised in Tables 1 and 
2). Cropping calendars are based on regional planting and harvesting 
dates and heat unit thresholds.

SWAT + internally simulates both potential and actual evapotrans
piration (ET) as part of the crop–water balance, based on temperature, 
precipitation, radiation, humidity, and wind speed. Under increasing 
temperatures, potential ET generally rises, while elevated CO2 reduces 
stomatal conductance, which can moderate or reduce actual ET. These 
processes are therefore accounted for within the model structure, 
although ET outputs were not evaluated separately due to the limited 
availability of observational ET records in Egypt. For modelling poten
tial yields, irrigation is triggered automatically when soil moisture falls 
below field capacity, ensuring optimal water supply to maximise crop 

Fig. 2. Model regions and cropped area in Egypt: SWAT + submodel areas and national cropped area in 2020. The cropped area is in dark green. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1 
Planting and harvesting decision table details for winter, summer, perennial, 
and tree crops.

Season Decision Planting Harvesting

Winter Date 6th November 30th April
​ Heat Units – 1.15
Summer Date 15th May 27th October
​ Heat Units – 1.15
Perennial Date 6th November 27th October
​ Heat units – 0.9
Trees Date – 15th September
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productivity. In preparation for actual yield and water use modelling, 
additional irrigation settings are developed to reflect deficit irrigation 
strategies. These are applied during the final stage of the workflow, 
when land use from CRAFTY is used to drive SWAT+. In this case, 
irrigation is triggered by either soil moisture thresholds or plant water 
stress, and the volume of water applied is based on either crop water 
demand or specified quantities. These settings are derived through a 
sensitivity analysis, detailed in Section 4.1.

Multi-cut crops such as alfalfa and berseem clover are typically 
harvested multiple times annually under real-world conditions. Berseem 
and alfalfa achieve 3–7 cuts per year in Egypt (FAO, 2014), while sug
arcane’s perennial growth allows annual harvesting up to 5 times 
(Mehareb et al., 2021). Berseem and alfalfa crops are harvested based on 
reaching 90 % of the plant-heat units to maturity, up to four times per 
season, followed by a final harvest and termination. To facilitate annual 
land-use change modelling, sugarcane is simplified to a single-year 
growth and harvest cycle. Perennial crops are assumed to align with 
winter cropping calendars, with termination occurring 10 days before 
replanting. Fruit and date trees, modelled at full maturity, follow fixed 
annual harvests on 15th September to reflect simplified regional 
practices.

While a detailed analysis of fertiliser impacts is beyond this study’s 
scope, calibration requires fertilisation to be defined. The Food and 
Agriculture Organization of the United Nations (FAO) report on crop- 
specific fertiliser use in Egypt (Food and Agriculture Organization of 
the United Nations, 2005) provides estimates of fertiliser use for each 
crop in Egypt. This is used in the initial phase of the modelling to allow 
for calibration of the model. Fertiliser application is defined using the 
same decision table structure, with automatic application triggered by 
nutrient stress. The default crop-specific fertiliser setting is included in 
Table A.3.

To maintain hydrological continuity across the modelled domain, a 
cascading configuration is implemented for the Nile Valley and Delta 
submodels. In this setup, the outlet of each upstream region serves as the 
inlet for the downstream model, thereby replicating the natural flow 
progression of the Nile River and enabling a coherent simulation of 
water movement across regions. While the model does not calibrate 
streamflow explicitly – owing to the simplified representation of Egypt’s 
irrigation system, in which irrigation water is applied from an abstract, 
unlimited source – streamflow values are based on historical records 
(Hou et al., 2024). Streamflow projections are estimated by averaging 
values across the historical period and extending them uniformly to 
2100. The Mediterranean submodel is excluded from the cascading 
configuration due to the absence of major upstream inflows.

3.2. CRAFTY model implementation for Egypt

We apply the CRAFTY framework to Egypt to model the process of 
land-use change through competition between AFTs. CRAFTY-Egypt 
uses a 900 m × 900 m resolution grid and is developed to simulate 
land use change between 2020 and 2100. The model is comprised of 
capitals, which represent the spatially explicit resources. These include 
socioeconomic capitals – manufactured, human, social and financial. 
Table 5 contains details of the indicators used for each of these capitals. 

Each distributed indicator is sampled to the base grid of the model, so for 
every model grid cell, there is a value for each year. The indicators are 
scaled between 0 and 1 and summed for each grid to develop the capi
tals. The indicators use a range of spatial resolutions. The education and 
health indices (Smits and Permanyer, 2019), farm machinery preva
lence, and per capita membership of agricultural cooperatives 
(CAPMAS, 2025) are governorate-level datasets. GDP per capita is 
calculated using 1 km2 resolution gridded GDP and population datasets 
(Wang and Sun, 2022; Wang et al., 2022). The population and GDP 
gridded values are scaled to account for updated projections (Koch and 
Leimbach, 2023). These datasets are then resampled at 900 m × 900 m 
resolution to match the model resolution. We define human capital by 
summing the health and education indices and scaling the values by 
gridded population data. Gridded GDP per capita is used to represent the 
financial capital. Social capital is represented by the combination of per 
capita membership in agricultural cooperatives (CAPMAS, 2025) and 
the Gini index (OAMDI, 2023), as higher income inequality – measured 
by the Gini index – is associated with lower levels of social cohesion and 
trust within communities (Delhey et al., 2023; Tucker and Xu, 2023). 
Finally, manufactured capital is derived from gridded road infrastruc
ture data (Meijer et al., 2018) and governorate-level agricultural ma
chinery per unit agricultural area (CAPMAS, 2025).

The representation of water availability in the model necessitated the 
explicit inclusion of a water capital variable. While Egypt is classified as a 
highly water-stressed nation due to its limited renewable freshwater 
resources (Gado and El-Agha, 2021), this scarcity primarily reflects 
current technological and infrastructural constraints rather than abso
lute physical limits. Non-renewable water sources – including fossil 
groundwater reserves, wastewater reuse, and desalination – hold the 
potential to expand freshwater access significantly under future tech
nological advancements. As the model is designed for scenario analysis, 
water capital is conceptualised not as a fixed physical quantity but as a 
dynamic measure of access to water, contingent on technological ca
pacity and infrastructure development. This capital is integrated in the 
model using three spatially explicit components: (1) rainfall patterns 

Table 2 
Irrigation decision table details for commercial and Subsistence farmers.

Modelling 
stage/ 
Management

Method Threshold 
method

Threshold 
quantity

Water per 
application

Potential yield 
modelling

Furrow Soil moisture 100 % Based on 
demand

Deficit 
irrigation

Defined per 
crop and 
region

Soil 
moisture/ 
plant water 
stress

Defined per 
crop and 
region

Defined per 
crop and 
region

Table 3 
Yield and irrigation application parameters, method of change, minimum and 
maximum value range and whether the variable is model-wide or crop-specific. 
Change: abschng = absolute change of value, percent = percentage change, 
replace = replace value. Parameters: bm_e.plt = biomass-energy ratio, tmp_pot. 
plt = optimal temperature for plant growth, tmp_base.plt = minimum temper
ature for plant growth, harv_idx.plt = harvest index for optimal growth condi
tions, lai_pot.plt = maxium potential leaf area index, phu_mat.plt = plant heat 
units to maturity, esco.hru = soil evaporation compensation factor, cn2.hru =
Condition II curve number, perco.hru = percolation coefficient, awc.sol =
available water capacity of the soil layer, surlag.bsn = surface runoff lag coef
ficient, aquifer_delay.hru = delay time for groundwater flow to stream.

Observed 
data

Parameter Change Min Max Details

Yield bm_e.plt abschng − 5 5 Crop 
specific

Yield tmp_opt.plt abschng − 3 3 Crop 
specific

Yield tmp_base.plt abschng − 1 1 Crop 
specific

Yield harv_idx.plt percent − 70 70 Crop 
specific

Yield lai_pot.plt percent − 70 70 Crop 
specific

Yield phu_mat.plt percent − 70 70 Crop 
specific

Irrigation esco.hru replace 0 1 Model
Irrigation cn2.hru percent − 70 70 Model
Irrigation perco.hru replace 0.01 1 Model
Irrigation awc.sol percent − 70 70 Model
Irrigation surlag.bsn replace 0.05 24 Model
Irrigation aquifer_delay. 

hru
replace 0 1000 Model
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derived from climate projections (Lange and Büchner, 2021), (2) prox
imity to surface water infrastructure, mapped via open-source geospatial 
datasets (Humanitarian OpenStreetMap Team (HOT), 2024; Messager 
et al., 2016), and (3) the hydraulic head of confined groundwater 
aquifers, which governs extraction feasibility (Verkaik et al., 2024). By 
integrating these factors, the model captures both natural hydrological 
constraints and human-mediated water accessibility, enabling robust 
exploration of future scenarios where technological innovations reduce 
costs or enhance efficiency in non-renewable water exploitation.

In addition to capitals, the CRAFTY framework includes AFTs, which 
represent land managers. Our application of the framework has 56 AFTs, 
which characterise different cropping patterns and management prac
tices. Although not direct representations of the farming household 
types described in Sattar et al. (2024), our model draws loosely on their 
typology to define two broad agent categories: Commercial (inspired by 
specialised households) and Subsistence (based on village households), 
in line with the model’s objectives. All cropping patterns are represented 
by both agent types to reflect variation in management strategies.

The cropping patterns in Egypt are not fixed. Some crops are only 
grown in a specific season – Winter: legumes, wheat; Summer: maize, 
fibre, rice, oil crops – whilst others can be grown in both seasons. The 
final cropping patterns are estimated based on annual production and 
area reports (CAPMAS, 2025). As the seasonal data is not available for 
2020, the 2010 seasonal areas are used. Crops are grouped based on the 
groupings used by the Government of Egypt in its annual production and 
area reports, with the most important crops for each group being used as 
the representative plant. Table A.1 includes details of the plant used to 
represent each crop grouping. Fig. 3 illustrates the relative size of 
different cropping patterns. It includes, on the left, the relative size (by 
area) of the subsistence and commercial farmers in 2020. As the diagram 
shows, we estimate that 10 % of the cropped areas are commercial and 
90 % are subsistence. The middle section of the diagram shows the 
relative areas of winter crops, and finally, the right section of the dia
gram shows the relative areas of summer crops.

The model differentiates agricultural agents based on management 
practices, encoded through distinct behavioural parameters. Subsistence 
agents represent smallholder farmers who rely on flood irrigation and 
are characterised by lower income levels, limited access to technology, 
and strong dependence on social capital such as community networks. 
These agents exhibit a greater propensity to persist with agricultural 
production even under economically non-competitive conditions, pri
oritising subsistence needs over market-driven optimisation. In contrast, 
commercial agents adopt market-oriented farming practices, including 
the use of deficit irrigation, alongside external labour, advanced 

technologies. The commercial AFT represents behaviour that is more 
responsive to poor performance, defined by a lower giving-up threshold 
than that of subsistence AFTs. This means that less profitable grid cells 
are more readily relinquished, reflecting greater responsiveness to 
changing conditions rather than higher overall resilience. These 
behavioural distinctions are systematically embedded within the 
model’s sensitivity matrices and AFT parameters, which govern the 
competition (land-use change) processes. The details of how the sensi
tivity matrices and AFT parameters are developed for a business-as- 
usual scenario are included in Tables A.10 and A11.

The AFTs compete to produce ecosystem services. The Egyptian 
implementation of the CRAFTY framework quantifies ecosystem ser
vices across four dimensions critical to agricultural systems: crop pro
duction, water use efficiency, livestock products, and employment 
generation. Service provision varies according to AFT, reflecting dif
ferences in crop selection and management strategies. Crop production 
is universal across all agricultural agents, with each cultivating either 
one or two crops depending on their AFT. Water use efficiency varies 
between AFTs, with commercial agents achieving greater efficiency 
through deficit irrigation methods, whereas subsistence agents rely on 
traditional flood irrigation practices. Additionally, AFTs cultivating 
water-intensive crops (i.e. rice and fibre) exhibit reduced efficiency 
compared to those focusing on less water-intensive crop types.

Livestock products, including meat and milk, are generated indi
rectly through two pathways: by agents specialising in fodder crops (i.e. 
alfalfa and seasonal fodder), and via crop residues from cereal cultiva
tion. Employment generation occurs universally but varies in magni
tude, with commercial agents creating more opportunities due to the 
labour-intensive nature of advanced practices and larger operational 
scales, whilst subsistence farmers are likely to depend more on house
hold labour.

In Egypt, agricultural expansion through land reclamation, the pro
cess of converting desert or other non-cultivated land into farmland, has 
been a common practice to increase agricultural production (Adriansen, 
2009). Government-sponsored projects, such as those in the New Valley, 
prioritise desert land conversion through centralised irrigation infra
structure. Simultaneously, smallholder farmers along the Nile Valley 
and Delta fringes engage in informal reclamation, leveraging shallow 
groundwater from Nile-dependent aquifers (Nour, 2020). As the New 
Valley Governorate is outside the boundaries of our model, large 
state-sponsored projects are not included. However, to reflect the pro
cess of informal reclamation within the model, an Unmanaged Land 
(UL) agent is introduced. This agent is assigned to all grid cells that are 
neither cultivated nor masked as urban or wetland areas. Additionally, 

Table 4 
Input data used to develop the SWAT + model.

Submodel Data Spatial resolution Temporal 
resolution

References

Global datasets
Surface water MERIT DEM 90m – Yamazaki et al. (2017)

ESA Landcover 300m Annual (2020) Copernicus Climate Change 
Service (2019)

DSOLMap 250m – (Hengl et al., 2017; 
López-Ballesteros et al., 2023)

Lake shapefile ​ – Messager et al. (2016)
Streamflow ​ ​ Hou et al. (2024)

​ CO2 concentration ​ 2020–2100 Meinshausen et al. (2020)
Groundwater Soil grid depth to bedrock 250m – Hengl et al. (2017)

GLHYMPS ​ ​ (Gleeson, 2018; Huscroft et al., 
2018)

Climate data Climate data bias corrected and downscaled for MRI-ESM2-0 climate model: 
rainfall, min/max temperature, relative humidity, solar radiation, wind speed

0.25◦ (25 km at the 
equator)

Daily (Lange and Büchner, 2021; 
Yukimoto et al., 2019)

National datasets
Cropping 

pattern
2010 cropped areas governorate Annual 

(2010–2019)
CAPMAS (2025)

Calibration Yield data Governorate ​ CAPMAS (2025)
Water use data Governorate ​ CAPMAS (2025)
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due to agents’ sensitivity to socioeconomic capitals, grid cells with zero 
socioeconomic capitals are also excluded. The UL agent represents state 
ownership of uncultivated land and remains in place unless displaced by 
a competing agricultural agent. The UL agent does not produce any 
ecosystem services, does not ‘give-up’ land, and has a 0 ‘give-in’ 
threshold, thus relinquishing land to any other agent regardless of their 
competitiveness.

3.2.1. Demand
CRAFTY does not simulate international trade and, as such, does not 

represent actual demand. Instead, demand for domestic production of 
food, fibre, and animal products is used as a proxy for demand (included 
in Table A.9). In this application of the coupled model, we applied static 
demand values to demonstrate model functionality. These 2020 baseline 
values for food and fibre ecosystem services are derived from national 
statistical and dietary reports (CAPMAS, 2025). We used a different 
approach for non-food and non-fibre ecosystem services, namely 
employment and water-use efficiency. We estimated employment de
mand by multiplying the total population by the proportion employed in 
agriculture. Water-use efficiency is treated as an index, with a baseline 
value of 100 in 2020.

3.3. Coupled model implementation

After completing the CRAFTY sensitivity analysis (Section 4), we ran 
the CRAFTY model using static demand, business-as-usual AFT param
eters and production sensitivities, and fixed socioeconomic capitals and 
demand based on 2020 conditions. Natural capital, however, was 
dynamically derived from the biophysical model simulations under 
RCP2.6, RCP4.5, RCP6.0, RCP7.0, and RCP8.5 climate scenarios. To 
account for the influence of initial conditions, the CRAFTY model was 
run ten times using different randomised initial land-use maps, as 
explained above. The model simulated land-use change and shifts in 
management practices, specifically irrigation, under each scenario 
through competition between AFTs. Outputs from these simulations 
were then used to drive SWAT+, which provides a more detailed and 
process-based representation of crop growth and water use under 
varying land use configurations. This stylised implementation, which 
holds socioeconomic capitals, demand, and AFT parameters constant, 
was designed to demonstrate the functionality of the coupled framework 
and to isolate the effects of climate and land-use change on agricultural 
production and water use. Future applications will incorporate dynamic 
socioeconomic and behavioural processes to explore adaptation and 
policy responses in greater detail. The coupled model is summarised in 
Fig. 4, and results presented in Section 6.5, below.

4. Sensitivity analysis and calibration

4.1. Sensitivity analysis and calibration of SWAT+

Calibration and validation are critical steps in ecohydrological 
modelling, ensuring model outputs align with observed data while un
derstanding model uncertainty (Zou et al., 2023). For this study, the 
SWAT + calibration focused on two primary outputs: crop yield and 
irrigation water use. The process addressed data limitations through a 
hierarchical calibration methodology using Latin Hypercube Sampling 
(LHS) and targeted parameter adjustments.

The six regional submodels (encompassing the Nile Delta, Nile Val
ley, and Mediterranean regions) were calibrated separately to ensure 
model parameters are developed specifically for each region (Čerkasova 
et al., 2023). Due to the size of the models, it was not possible to use 
them directly for calibration. Smaller models were developed using a 
subbasin within each submodel for the calibration process. All land uses 
were distributed randomly and evenly across the representative regional 
model in cropped areas only.

Fertiliser parameters were excluded from calibration, as Egypt’s 
agricultural practices maintain near-optimal application rates (Food and 
Agriculture Organization of the United Nations, 2005). Instead, fertiliser 
settings were adjusted during sensitivity analysis to determine 
maximum potential yield. Additionally, irrigation parameters were not 
included in the calibration. Irrigation was applied at rates sufficient to 
meet full crop water demand whenever soil water content fell below 
field capacity, representing conditions for yield maximisation under the 
dominant flood irrigation methods used in Egypt (Abdelhafez et al., 

Table 5 
Input data used to develop the capital layers for the CRAFTY model.

Capital Indicator Details References

Global datasets
Human Education index Subnational Human 

Development Index 
indicator

Smits and Permanyer 
(2019)

Health index Subnational Human 
Development Index 
indicator

Smits and Permanyer 
(2019)

Population 
downscaling

1 km2 gridded 
population datasets 
resampled to 0.81 
km2 resolution. 
These are rescaled 
based on updated 
national population 
values and used to 
downscale human 
capital.

(Koch and Leimbach, 
2023; Wang et al., 
2022)

Manufactured Road 
infrastructure 
inventory

Developed based on 
2015 data.

Meijer et al. (2018)

Financial GDP per capita 1 km2 gridded GDP 
and population 
datasets resampled 
to 0.81 km2 

resolution. These are 
rescaled based on 
updated national 
GDP and population 
values.

(Koch and Leimbach, 
2023; Wang and 
Sun, 2022; Wang 
et al., 2022)

Water Capital Rainfall 0.25◦ resolution 
gridded daily 
rainfall data 
summed per year 
from data bias 
corrected and 
downscaled for MRI- 
ESM2-0 climate 
model.

(Lange and Büchner, 
2021; Yukimoto 
et al., 2019)

Distance to 
surface water 
infrastructure

Distance to lakes and 
canals calculated 
using surface water 
layer from Opens 
Street Map for canals 
and rivers.

(Humanitarian 
OpenStreetMap 
Team (HOT), 2024) 
Messager et al. 
(2016)

Groundwater 
head of confined 
aquifer layer

​ Verkaik et al. (2024)

National datasets
Social Coop 

membership per 
capita

Governorate-level 
dataset

CAPMAS (2025)

Gini index Calculated from the 
Household 
Expenditure, 
Income, and 
Consumption Survey 
expenditure 
statistics.

Calculated from (
OAMDI, 2023)

Manufactured Tractors per 
feddan

Governorate-level 
statistics of tractors 
per feddan

CAPMAS (2025)

Modelled datasets
Natural 

capital
Potential yield Calculated from the 

SWAT + model at 
900m resolution.

​
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2020).
The calibration prioritised parameters directly influencing crop yield 

and water use, as detailed in Table 3. Yield calibration focused on the 
optimal and base temperatures (tmp_opt and tmp_base), biomass energy 
conversion rate (bm_e), harvest index (harv_idx), potential leaf area 
index (lai_pot), and plant heat units to maturity (phu_mat). Irrigation 
calibration targeted parameters governing soil water dynamics, 
including the soil conservation service curve number (cn2), soil evap
oration compensation factor (esco), percolation coefficient (perco), 
available soil capacity of the soil layer (awc), surface runoff lag coeffi
cient (surlag), and aquifer delay.

We calibrate simulated average annual yield and irrigation water use 
against observed data, similar to the “soft calibration” method applied 
by Čerkasova et al. (2023), using a modified version of the RSWAT 
package (Nguyen et al., 2022). Observed yield and irrigation data were 
obtained from annual governorate-level statistical data (CAPMAS, 
2025), providing regionally aggregated statistics for crops used. As crop 
models simulate dry matter yield, while observed yield data typically 
includes moisture content, we applied a range of crop-specific moisture 
percentages (detailed in Table A.5). During calibration, we identified 
whether the minimum, average, or maximum moisture content yielded 
the lowest error for each crop. To enable unconstrained land use tran
sitions, all crops were included in every region’s calibration. For crops 

not currently grown in a region, we used the average observed yield 
across all governorates as a proxy. ted to ensure consistency at 
national-scale, and so smooths field-level heterogeneity that may be 
more relevant for local applications.

Unlike Čerkasova et al. (2023), however, who apply plant uptake 
compensation factor (EPCO) – a measure of the compensation of water 
uptake from lower soil layers – adjustments on a HRU level, our 
approach requires a uniform EPCO value for each model, as the crop in 
each HRU will be modified in further modelling. This ensures EPCO 
values are suitable for all crops used in the model. Table 3 summarises 
the calibrated parameters, their adjustment methods (absolute change, 
replace or percentage change), allowable ranges, and scope (model-wide 
or crop-specific). A step-by-step summary of the calibration and sensi
tivity analysis is outlined below. 

Step 1: Yield parameter calibration

We use a Latin Hypercube Sampling (LHS) ensemble of 10,000 
parameter sets per region to calibrate crop-specific growth parameters. 
After filtering parameter sets for those within 25 % of the lowest nor
malised root mean square error (NRMSE) value, we evaluated model 
performance using a weighted scoring metric prioritising error reduc
tion (50 % NRMSE, 25 % PBIAS) while retaining explanatory power (25 

Fig. 3. Management practice, and winter and summer cropping patterns in 2020: The width represents the percentage area of each. The very left shows the division 
between commercial and subsistence farmers, the middle shows the crops grown in winter, and the right shows the crops grown in summer. For crops grown in both 
winter and summer, “_win” denotes the area in winter and “_sum” the area in summer.
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% R2). To reduce the changes to the default values, we also add a penalty 
for the parameters, with lower deviation from default values being 
preferred. The optimal parameter combination for each crop in each 
region was selected based on this composite score. 

Step 2: Irrigation water use calibration

A subsequent LHS ensemble of 10,000 parameter sets was used to 
optimise irrigation variables, with water use per unit area in Egypt’s 
simplified irrigation zones (Upper, Middle, and Lower regions) serving 
as the observed dataset. In the initial filtering step, we retained only 
those runs whose yield NRMSE was within 25 % of the best-performing 
run, ensuring that irrigation calibration did not come at the cost of yield 
accuracy. The remaining runs were then ranked using a multi-criterion 
scoring system weighted 75 % towards NRMSE and 25 % towards R2, 
allowing us to balance calibration accuracy against the model’s stylised 
representation of irrigation. 

Step 3: Fertiliser sensitivity for maximum yield

Fertiliser application rates and stress thresholds were systematically 
adjusted to identify configurations maximising simulated yields. This 
aligned with Egypt’s high-input farming norms, where nitrogen appli
cation typically ranges 200–300 kg/ha (Food and Agriculture 

Organization of the United Nations, 2005). The resulting parameters 
defined potential yields under idealised nutrient conditions. 

Step 4: Deficit irrigation analysis

A similar sensitivity analysis identified irrigation strategies that 
reduced water use relative to yield penalties ≤10 %. We iteratively 
adjusted parameters governing irrigation triggers (soil water deficit and 
plant water stress thresholds) and application volumes and frequencies 
to map trade-offs between water conservation and productivity.

4.2. Sensitivity analysis of CRAFTY

Within CRAFTY, the natural capital layers, as defined by potential 
yields, have the greatest influence on ecosystem service supply. To a 
lesser extent, ecosystem services are also influenced by the socioeco
nomic capitals. At model initialisation, the CRAFTY model automati
cally scales demand to match the modelled supply, therefore preserving 
the supply provided from the biophysical model, removing the need for 
further calibration. Model evaluation is primarily carried out via anal
ysis of the sensitivity of the model output to parameter values, in line 
with previous applications of the model (e.g. Blanco et al., 2017; Brown 
et al., 2022), while evaluation of the model framework itself ensures 
appropriate functioning (Brown et al., 2023).

Fig. 4. Coupled LUC-EH model schematic for Egypt: The diagram shows information exchange between CRAFTY (left) and SWAT+ (right) as implemented in the 
Egypt case study. Orange boxes represent model outputs passed as inputs (blue) to the other model. In SWAT+, Step 1 refers to the initial run simulating potential 
yield, and Step 2 uses land use and management from CRAFTY to simulate actual yield and water use. The schematic has been simplified to include the most relevant 
aspects of each model (especially SWAT+) to the coupled model and does not include, for example, many hydrological features of the SWAT + model. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The sensitivity analysis entails modifying the AFT parameters (‘giv
ing-in’ and ‘giving-up’) and production sensitivity tables for socioeco
nomic capitals to determine their impact on the supply of ecosystem 
services. This is completed for a single scenario representing the 
business-as-usual case. The socioeconomic capitals are held constant at 
2020 levels during the analysis, while natural capitals reflect potential 
yields under the same scenario. To further assess the influence of sen
sitivities, an additional run was conducted where all socioeconomic 
capital sensitivity values or all AFT parameters were set to zero. Due to 
the model size and time required for each run, a one-at-a-time sensitivity 
analysis is adopted (Pianosi et al., 2016).

The initial distribution of land use was based on a random allocation 
of crops, informed by land cover satellite data and governorate-level 
statistics on cropped areas for each crop. While this ensures accuracy 
at the administrative level, it does not necessarily reflect field-level 
patterns. To account for the potential influence of initial conditions, 
the model was run ten times with different initial land-use distributions, 
and results were aggregated across these runs for reporting.

5. Data

Developing ecohydrological models requires a large, diverse dataset 
to characterise the physical characteristics of the model area. The 
absence of good-quality, open-source, national GIS datasets necessitated 
the use of global datasets. National data was used for cropped areas and 
yields. Table 4 includes details of the data used to drive and 

parameterise the SWAT + model of Egypt. Table 5 includes details of the 
data used to create the CRAFTY model of Egypt. Global datasets, which 
can be utilised for different regional applications of the coupled model, 
are separated from national and modelled data that are specific to the 
model application for Egypt.

6. Results

6.1. SWAT + calibration analysis

Calibration performance varied by crop and region. In the Delta re
gion (Fig. 5), wheat and oil crops both achieved strong agreement with 
observed yields, each with an R2 of 0.67 and NRMSE values of 24 % and 

Fig. 5. Yield calibration and validation plots for key crops for the Delta region: Observed dry yield in blue and modelled dry yield in red. The calibration period 
(2013–2017) and the validation period (2018–2022) are represented by a circle and a triangle, respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Table 6 
Average yield calibration and validation NRMSE, R2, and PBIAS for each region.

Region Calibration Validation

R2 NRMSE 
(%)

PBIAS 
(%)

R2 NRMSE 
(%)

PBIAS 
(%)

Aswan 0.51 44.14 2.77 0.12 91.24 18.80
Delta 0.46 32.79 0.38 0.18 98.08 10.56
Med 0.59 34.52 2.46 0.34 97.22 13.64
Middle 0.44 44.90 1.83 0.14 101.37 8.48
Qena 0.47 72.01 2.23 0.31 114.86 10.43
Upper 0.66 35.55 1.10 0.43 145.56 14.02
Average 0.52 43.98 1.79 0.25 108.19 12.65
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29 %, respectively. Maize also produced relatively accurate yield mag
nitudes, with an NRMSE of 33 %, but its low R2 of 0.30 indicates limited 
ability to capture interannual variability. Performance declined slightly 
during validation. On average, R2 dropped from 0.52 in calibration to 
0.25 in validation, while NRMSE increased from 44 % to 108 % 
(Table 6). However, although absolute PBIAS increases from 1.79 % to 
12.65 % in calibration and validation stages, it remains below 15 % 
showing that systematic bias is acceptable during the validation stage.

Performance also varied by region. The Mediterranean region 
recorded the lowest calibration error (R2 = 0.59, NRMSE = 34.52 %), 
while the Upper region achieved the strongest model fit (R2 = 0.66, 
NRMSE = 35.55 %). Qena exhibited the weakest performance, partic
ularly during calibration (R2 = 0.47, NRMSE = 72.01 %). These patterns 
persisted into the validation phase, where regions that calibrated well 
tended to validate more reliably. Full calibration and validation plots for 
all crops and regions are provided in the Supplementary Materials.

6.2. Sensitivity analyses

6.2.1. Fertiliser sensitivity analysis
The fertiliser sensitivity analysis revealed that for many crops and 

regions, the default nutrient application settings were already optimal 
for yield. This was particularly evident for crops such as alfalfa, seasonal 
fodder, legumes, oil crops, and fibre, where no improvements in average 
yield were observed through further fertiliser adjustments. However, for 
other crops – particularly sugarcane, rice, other vegetables, and wheat – 
adjusting fertiliser inputs improved performance, with sugarcane 

consistently showing the highest yields under high nitrogen and phos
phorus input scenarios. Notably, maize and rice responded strongly to 
reduced nitrogen stress, but excessive phosphorus application often 
showed diminishing returns.

6.2.2. Irrigation sensitivity analysis
The irrigation sensitivity analysis aimed to identify deficit irrigation 

configurations that achieved water savings while maintaining yield 
losses within an acceptable 10 % threshold. On average across all re
gions and crops, water use was reduced by approximately 51 %, while 
yield declined by only 6.7 %, confirming the effectiveness of the selected 
settings. Some systems showed particularly efficient trade-offs: for 
instance, legumes and winter other vegetables (winter potatoes) ach
ieved water savings of 76 % and 72 %, respectively, with yield re
ductions of 4.01 % and 5.49 %, respectively. Conversely, sugarcane and 
date trees experienced lower irrigation reductions (25 % and 26 %), with 
yield reductions of 5.00 % and 7.47 %, respectively. The highest yield 
reduction was exhibited by winter seasonal fodder (9.15 %), which 
resulted in an irrigation reduction of 54 %.

6.2.3. CRAFTY sensitivity analysis
The analysis of the CRAFTY model’s sensitivity to changes in socio

economic capital sensitivities showed a moderate response (detailed 
results included in Appendix B). Higher capital sensitivities led to lower 
production of most crop-related ecosystem services, while animal 
products, employment, and water use efficiency were less affected. This 
pattern was consistent with the sensitivity analysis of AFT parameters. 

Fig. 6. Projected yield trajectories for key crops under different climate scenarios (2020–2099): Yield values are based on modelled outputs for currently cultivated 
lands only, illustrating changes over time for each crop and scenario.
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Regarding abandonment and agricultural expansion, differences be
tween sensitivity runs were relatively limited. The minimum abandoned 
area was 41,472 ha, compared to a maximum of 58,806 ha. Abandon
ment was higher when AFT parameters were at their lowest. However, 
when the ‘give-up’ probability or the sensitivity to capitals was set to 
zero, abandonment was lowest. Reclamation of unmanaged land, which 
varied across runs from 247,698 ha to 382,644 ha, followed a similar 
pattern: the smallest reclaimed area occurred when AFT parameters 
were at their lowest, while the highest reclamation occurred when the 
‘give-up’ probability or sensitivity to capitals was set to zero.

6.3. Potential yields under different climate scenarios

Model outputs show varying yield responses across crops and climate 
scenarios (Fig. 6). Fodder crops, including seasonal fodder and alfalfa, 
demonstrate the largest percentage increases between 2020 and 2099, 
with gains of 119 % and 117 %, respectively. Wheat also shows a marked 
increase under RCP8.5, with average yields in currently cultivated areas 
rising by over 43 %. This represents a 36 % increase in 5-year average 
yield (2095–2099 vs. 2020–2024), reaching approximately 9 t/ha by the 
end of the century.

Main vegetables and sugarcane also exhibit strong yield gains of 25 
% and 34 % between 2020 and 2099, respectively. In contrast, maize, 
fibre crops, and rice display non-linear trends under RCP8.5, with yields 
peaking between 2060 and 2080 before declining towards 2099. Fruit 
tree yields remain relatively stable, with modest increases between 4 % 
and 13 % across scenarios based on the 5-year average comparison. The 
greatest reduction in yield was observed for other vegetables, which 
reduces by 31 % between 2020 and 2099, under the RCP8.5 scenario. 
Overall, RCP8.5 leads to the greatest gains, with a 25 % increase in yield 
across all crops. By comparison, under RCP2.6, yields remain relatively 
stable, with an average increase of just 4 % over the century.

Yield responses also vary spatially. Under all climate scenarios, 
maize yields decline across much of Egypt by the late 21st century, with 
reductions of up to 25 % in some areas, particularly in the southern 
region (Fig. 7b). In contrast, wheat yields increase in all scenarios and 
across all regions (Fig. 7a), with the most pronounced gains in currently 
uncultivated areas of the Western Desert (Upper Egypt SWAT + sub
model), where increases of up to 75 % are projected.

A noticeable spatial distinction emerges between currently irrigated 
areas in the Nile Valley and Delta and newly cultivated zones. For both 
wheat and maize, currently irrigated areas maintain higher yields across 
all scenarios, except in the case of wheat under RCP8.5, where new 
expansion areas also experience marked gains.

6.4. Water use efficiency

Water use efficiency (WUE) in old lands (Fig. 8) shows considerable 
variation across climate scenarios under assumptions of ideal irrigation 
and optimal fertiliser application. The most substantial improvements 
are observed under RCP8.5, which leads to an average 69 % reduction in 
water use per tonne of yield across all crops. Alfalfa and seasonal fodder 
exhibit the greatest improvements, reducing water use by 88 % and 85 
%, respectively. Sugarcane and wheat also benefit, with water use re
ductions of 79 % and 75 % between 2020 and 2099.

In contrast, RCP2.6 shows minimal gains, with an average WUE 
improvement of just 4 % over the same period. For other vegetables, 
WUE remains relatively stable across most scenarios, with a slight in
crease in water use per tonne of 0.6 % under RCP2.6 and a modest 
decrease of 2.1 % under RCP7.0. However, RCP8.5 again stands out, 
reducing water use for this crop group by 47 %.

Most crops follow a consistent trend of improvement, with the 
magnitude of gains increasing along the scenario severity gradient: 
RCP2.6 (− 4 %), RCP4.5 (− 16 %), RCP6.0 (− 21 %), RCP7.0 (− 32 %), 
and RCP8.5 showing the greatest improvement in WUE.

6.5. Land use change

The implementation of the coupled model reveals notable variations 
in crop areas and production levels across scenarios (Fig. 9). Seasonal 
fodder, wheat, sugarcane, and main vegetables all show increased pro
duction under RCP4.5, RCP7.0, RCP6.0, and RCP8.5. Among these, 
seasonal fodder experiences the most substantial rise, increasing from 
130 Mt in 2020 to 255 Mt in 2100 under RCP8.5. In contrast, RCP2.6 
results in either stable or slightly declining production levels for these 
crops. Despite rising production, cropped areas for seasonal fodder, 
wheat, and main vegetables show gradual declines across all scenarios.

Fibre crops, rice, and maize exhibit non-linear trends under RCP8.5, 
peaking around 2070 before declining towards the end of the century. 
Other vegetables initially decline to 7.44 Mt before increasing again to 
reach 10.0 Mt by 2100. The area under other vegetables also expands 
markedly between 2080 and 2099, from 568,851 ha to 817,493 ha.

Patterns in abandoned land (Appendix A.4) are consistent across all 
scenarios except RCP8.5, which shows a sharp decline in abandonment 
after 2080, reaching 21,708 ha by 2099. In other scenarios, abandon
ment increases gradually, ranging from 43,092 ha (RCP7.0) to 49,896 ha 
(RCP4.5).

The conversion of unmanaged land (Appendix A.4) follows a similar 
trajectory across scenarios. Total unmanaged land declines sharply from 
939,600 ha in 2020 to between 650,000 and 700,000 ha by 2025. This 
reduced level remains relatively stable through to 2100, ending between 
649,296 ha and 668,979 ha, depending on the scenario.

7. Discussion

This study develops a coupled land-use change-ecohydrological 
model to assess climate and socioeconomic impacts on agricultural 
production and water use in multi-seasonal arid and semi-arid agricul
tural systems. The approach integrates the SWAT + ecohydrological 
model, which generates spatially distributed potential crop yields 
(serving as a natural capital layer), with CRAFTY, an ABM simulating 
land-use change and management decisions. Within the ABM, agricul
tural agents, representing cropping patterns and management practices, 
compete based on natural and socioeconomic capitals and agent char
acteristics. The ecohydrological model was calibrated and its perfor
mance evaluated against observed annual yield and irrigation data 
under full irrigation conditions, demonstrating acceptable agreement 
given data limitations; while deficit irrigation scenarios were subse
quently developed through sensitivity analysis to identify realistic 
water-saving strategies with limited yield reduction. We conduct a 
climate change scenario analysis, which projected potential yield in
creases under scenarios with elevated atmospheric CO2 levels for wheat, 
main vegetables, sugarcane, fodder crops, while declines were observed 
for maize, rice, and other vegetables, suggesting that any declines due to 
increasing temperatures are counteracted by CO2 fertilisation effects for 
some crops but not for others. We also show that irrigation water use 
reduced at the highest rate for scenarios with the highest CO2 levels, 
demonstrating the impact of elevated CO2 on water use. Finally, we 
establish the benefit of the coupled model by running the model using 
potential crop yields under different climate scenarios, static socioeco
nomic capitals and demand, and business-as-usual agent properties. This 
demonstrates that even in light of the static socioeconomic capitals and 
demand, the coupled model results in some adaptation in response to 
dynamic potential yields.

7.1. Climate change impact on crop yields

Our results indicate that C3 crops, such as wheat, and fodder crops 
experience increased yields under elevated CO2 concentrations. This 
finding aligns with previous studies (Ahmed et al., 2019; Ainsworth and 
Long, 2021; Elsadek et al., 2024; Rezaei et al., 2023), which consistently 
report enhanced productivity in C3 crops due to increased 
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Fig. 7. Spatial change in crop yield under different climate scenarios: Percentage change in yield for (a) wheat and (b) maize between 2020 and 2099. Five-year 
average yields are used to smooth interannual variability (2020–2024 and 2095–2099).
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photosynthetic efficiency under elevated CO2. In contrast, C4 crops, 
such as maize, show no benefit of elevated CO2 concentrations, except 
under drought-stressed conditions (Rezaei et al., 2023). This is consis
tent with our results, where maize yields increase modestly across most 
climate scenarios, with slight reductions occurring under scenarios with 
the highest atmospheric CO2 concentrations. Since we model potential 
yields under non-water-stressed conditions, the reduction observed for 
maize further supports expectations based on physiological crop 
responses.

A study of the Mediterranean region using the Lund-Potsdam-Jena 
managed Land (LPJmL) ecohydrological and agro-ecosystem model 
found yield increases for multiple crops under global warming scenarios 
ranging from 2 ◦C to 5 ◦C (Fader et al., 2016). For sugarcane, yields 
increased by 30 % and 120 % when comparing 2000–2009 to 
2080–2090 under 2 ◦C and 5 ◦C scenarios, respectively, using dynamic 
CO2 concentrations. Notably, under elevated CO2, all crops experienced 
some level of yield gain across all scenarios. In contrast, under constant 
CO2 levels, most crops showed yield reductions, typically within 20 %, 
although some crops, including sugarcane, maintained their yield in
creases. Broadly, our findings align with these results. However, while 
Fader et al. (2016) report continuous increases in rice yield across all 
scenarios, our results show an initial increase followed by a decline, 
especially under high-emissions scenarios. This discrepancy may stem 
from differences in climate and CO2 input data; their scenarios reach a 
maximum of 720 ppm CO2 under 5 ◦C warming, whereas our RCP8.5 
scenario reaches 1135 ppm by 2100.

Previous studies assessing climate change impacts on Egyptian 
agriculture report mixed findings (Elsadek et al., 2024; Gamal et al., 

2021; Kheir et al., 2019; Moghazy and Kaluarachchi, 2021; S. M. Mos
tafa et al., 2021). For instance, Moghazy and Kaluarachchi (2021) used 
linear regression with climate projections to estimate yield impacts in 
the Siwa region (Western Desert), projecting reductions of 10.4–27.4 % 
by 2100 under RCP8.5. However, their model did not include elevated 
CO2 effects. In contrast, Elsadek et al. (2024), applying the 
AquaCrop-GIS model for rice in the Nile Delta, found yield gains under 
both RCP4.5 and RCP8.5 with elevated CO2. Their projections show rice 
yields increasing from 14.5 % in the 2030s to 16.9 % in the 2090s under 
RCP4.5, while RCP8.5 shows a peak gain of 16.9 % in the 2050s fol
lowed by a smaller increase of 1.6 % by the 2090s. Our model also shows 
an initial yield increase for rice under RCP4.5, peaking around 2070, 
followed by a decline, resulting in a net gain of just 1.8 % between 2020 
and 2099. Moreover, under RCP8.5, rice yields decline by 5.1 % over the 
modelling period. These differences may reflect the broader geographic 
scope of our model, which includes southern Egypt, where higher 
warming is expected. In these areas, the positive effects of CO2 fertil
isation may be outweighed by heat stress more than in the cooler Delta 
region.

Our results show increases in wheat yield under all scenarios, with 
the largest gain (36 %) under RCP8.5. Kheir et al. (2019) investigated 
the effects of sea-level rise, increased temperature, and elevated CO2 on 
two wheat cultivars in a Kafr-El-Sheikh, a Nile Delta governorate, using 
two DSSAT wheat models. Their results showed that a 4 ◦C temperature 
increase could reduce yields by up to 18 %, while elevated CO2 con
centrations (400–700 ppm) increased yields by 5–25 %. Although our 
model does not simulate these specific cultivars and assumes ideal 
growing conditions with combined climate effects, the general trends 

Fig. 8. Trajectories of water use efficiency (WUE) under future climate scenarios: Projected WUE for major crops from 2020 to 2099.
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Fig. 9. Projected crop production and cultivated area under future scenarios: (a) Total crop production and (b) total cultivated area for key crops across all scenarios. 
Solid lines represent the median across 10 initial land use map runs, while shaded ribbons indicate the inter-run standard deviation.
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are consistent, demonstrating that elevated CO2 can offset some of the 
negative impacts of warming on wheat yield.

Overall, these studies highlight the complex and uncertain nature of 
climate change impacts on crop yields. Rising temperatures are gener
ally expected to reduce yields, while elevated CO2 concentrations may 
offset some of these losses, particularly for C3 crops. Our findings are 
broadly consistent with this pattern, though rice shows some diver
gence, likely due to differences in climate sensitivity and spatial varia
tion across Egypt. However, the magnitude of the CO2 fertilisation effect 
remains uncertain and may lead to an overestimation of future yield 
potential, particularly in the absence of nutrient or management con
straints (Ainsworth et al., 2025; Q. Cao et al., 2022). Moreover, these 
positive effects could be offset by interacting stressors such as increasing 
temperature extremes, drought frequency, and soil degradation, which 
are not explicitly represented in the current coupled model (Ainsworth 
et al., 2025).

7.2. Water use under future climate scenarios

Our modelling results show reductions in water use across all sce
narios and crops. This trend is generally consistent with other studies 
that account for both increased temperatures and elevated CO2 con
centrations (Tian et al., 2023; Toreti et al., 2020), where reductions in 
crop transpiration are primarily attributed to decreased stomatal 
conductance under elevated CO2. For example, Fader et al. (2016)
analysed irrigation water use for multiple crops across the Mediterra
nean region and found a net reduction in irrigation demand for most 
crops included in our simulations, such as temperate cereals (e.g. 
wheat), potatoes (included under other vegetables), and pulses 
(included under legumes). In contrast to our results, however, their re
sults showed increased irrigation for sugarcane, citrus, and rice. These 
differences may reflect the relatively higher dependence on irrigation in 
our study area compared to the broader Mediterranean average.

Mokhtar et al. (2025) conducted a meta-analysis of WUE responses 
to elevated CO2 across various crops and field experiments. They found 
that C3 crops such as wheat and tomatoes (main vegetables) exhibited 
consistent improvements in WUE, with increases of up to 40–50 % in 
some cases. C4 crops, including maize and sugarcane, also showed im
provements, albeit to a lesser extent. Similar patterns are observed in Q. 
Cao et al. (2022), who reported WUE increases of 27.8 % for wheat and 
49.7 % for maize under 800 ppm CO2 in non-drought conditions.

Several studies have explored the impacts of climate change on water 
use in Egypt, though most focus solely on temperature effects (Gabr, 
2023; S. Mostafa et al., 2021). These studies consistently project in
creases in irrigation demand, such as S. Mostafa et al. (2021), who es
timate increases ranging from 6.1 % to 7.3 % for winter crops and 11.7 
%–13.2 % for summer crops due to higher evapotranspiration under 
warming scenarios.

The reductions in irrigation water use observed in our results should 
be interpreted in the context of how evapotranspiration (ET) is repre
sented within SWAT+. Potential ET generally increases under warmer 
conditions, while elevated CO2 reduces stomatal conductance and can 
lower actual ET. Both processes are simulated internally within the 
SWAT + crop–water balance and therefore influence crop water demand 
in the model. As a result, water demand does not rise in direct proportion 
to temperature increases and may decline for some crops. This behav
iour is consistent with the reductions in irrigation requirements that we 
observe across the climate scenarios.

Overall, our results are in agreement with studies that incorporate 
both temperture rise and CO2 fertilisation effects, showing net im
provements in water use efficiency under future climate scenarios. 
However, such integrated modelling studies remain limited for Egypt, 
highlighting a gap in the regional literature.

7.3. Model evaluation

We use our coupled model implementation to demonstrate the value 
of coupling a biophysical model with an agent-based land-use change 
model, under a simplified scenario framework. This example assumes 
dynamic potential yields driven by climate change, but holds socio
economic capitals, demand, and AFT parameters constant and uniform 
across scenarios. Despite these simplified assumptions, the model pro
duces notable land-use dynamics, including land abandonment, recla
mation, and shifts in crop areas in response to changing yield potentials. 
For instance, the greatest decline in potential yield is observed for other 
vegetables under RCP8.5. This yield reduction leads to an expansion in 
cultivated area for that crop after 2080, accompanied by the re- 
cultivation of previously abandoned land.

Previous models that couple biophysical and agent-based compo
nents (e.g. Du et al., 2020; Harms et al., 2023; O’Keeffe et al., 2018) have 
primarily focused on irrigation decision-making while limiting endog
enous land-use change, despite its central role in adaptation to climate 
change (e.g. Adly et al., 2018; Boazar et al., 2020; Chouchane et al., 
2020). Unlike optimisation-based approaches (e.g. Fikry et al., 2021; 
Sardo et al., 2024), the coupled LUC-EH model enables land-use change 
to emerge endogenously by defining initial conditions and allowing land 
allocation to evolve without imposing prescriptive decision rules.

8. Limitations

Although the model presents some key developments, limited access 
to high-resolution gauging data and evapotranspiration (ET) measure
ments constrained the accuracy of model calibration. Such limitations 
are common in data-scarce regions, where ecohydrological models must 
often rely on sparse and fragmented monitoring networks (Chawanda 
et al., 2024). While SWAT + benefits from open-source datasets, global 
satellite products, and climate model integrations, making it suitable for 
applications in data-poor regions, the absence of detailed records on 
irrigation return flows and groundwater abstraction complicates the 
calibration of key hydrological parameters (Akoko et al., 2021). 
Although a formal Monte Carlo uncertainty analysis was not performed, 
uncertainty was addressed through sensitivity analysis and the inclusion 
of multiple climate scenarios, which capture a broad range of plausible 
outcomes for crop yield and water use.

The moderate calibration performance for some crops reflects the 
limited availability and quality of long-term yield and irrigation data in 
Egypt. Governorate-level statistics provide only coarse spatial and 
temporal detail, and inconsistencies between years reduce their useful
ness for model tuning. As a result, the calibrated parameters are best 
viewed as capturing general patterns rather than precise field-level re
sponses. This affects the interpretation of scenario results, which should 
be understood as indicative of broad trends and relative differences 
between scenarios rather than exact projections of yield or water use.

Urban growth and competition with agricultural land are not 
explicitly simulated in this version of the model, although CRAFTY has 
the capacity to represent such processes. These were intentionally 
excluded to isolate the effects of climate change on agricultural land use. 
In the context of Egypt, this omission is expected to have limited 
national-scale implications due to the availability of desert margins 
suitable for managed agricultural expansion, although localised in
teractions between urban and agricultural land in the Nile Delta warrant 
inclusion in future model development.

Egypt’s hydrological system is highly complex, involving in
teractions between surface irrigation infrastructure, subsurface tile 
drainage, and the widespread reuse of agricultural drainage water 
(Barnes, 2014). Although SWAT + supports the conceptual separation of 
surface and groundwater irrigation sources, the current implementation 
does not explicitly assign or quantify these sources. Furthermore, 
groundwater withdrawals are not directly modelled, which limits the 
ability to assess their contribution to aquifer depletion or the risk of 
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saltwater intrusion in coastal regions and may lead to an underestima
tion of water scarcity or overestimation of adaptive capacity in 
groundwater-dependent areas. This is largely due to the absence of 
openly accessible, regularly updated spatial and temporal datasets 
describing the structure, operation, and management of irrigation 
infrastructure, including pumping stations, return flows, and convey
ance systems. Incorporating these processes into future model devel
opment would substantially improve assessments of groundwater 
sustainability and irrigation system resilience. In addition, the omission 
of institutional and governance factors such as water allocation rules, 
collective management arrangements, and agricultural subsidies con
strains the realism of water accounting and limits the direct translation 
of the results into policy. Incorporating these aspects, alongside 
improved infrastructure data, would substantially strengthen future 
assessments of groundwater sustainability and irrigation system 
resilience.

9. Conclusion

This study demonstrates the value of coupling behavioural and bio
physical models to simulate agricultural responses to climate change in 
arid, multi-seasonal agricultural systems. By linking CRAFTY and 
SWAT+, we move beyond static impact modelling to explore how 
cropping patterns and irrigation decisions might shift in response to 
changing environmental conditions. While this application uses a styl
ised version of the model with static socioeconomic conditions and de
mand, it shows that even under stagnant assumptions, agricultural land- 
use change processes can enhance the interpretation of biophysical re
sponses. These dynamic shifts redistribute cropping patterns in ways 
that partially offset or amplify climate-driven yield changes. However, 
the current version does not represent non-agricultural transitions such 
as urban expansion, which may further influence land availability in 
future applications.

The results also underscore the potential significance of rising at
mospheric CO2 concentrations, which improve water use efficiency and 
may benefit the yields of some crops, particularly C3 species such as 
wheat and fodder crops. However, these gains are not uniform and may 
be offset by increased heat stress, pointing to the need for cautious 
interpretation. More broadly, the coupled model offers a transferable 
and open-access tool for scenario analysis in regions facing similar 
constraints. Applying the model to fully developed climate–socioeco
nomic scenarios would allow for more robust exploration of adaptation 
pathways and the complex interplay between natural and human 
systems.
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López-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D., Senent-Aparicio, J., 
2023. DSOLMap, a novel high-resolution global digital soil property map for the 
SWAT + model: development and hydrological evaluation. Catena 231. https://doi. 
org/10.1016/j.catena.2023.107339.

A. Sattar et al.                                                                                                                                                                                                                                   Environmental Modelling and Software 197 (2026) 106845 

18 

https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.geoforum.2012.11.019
https://doi.org/10.1007/s11269-006-9045-z
https://doi.org/10.1111/1752-1688.12482
https://doi.org/10.1016/j.ecoser.2016.12.003
https://doi.org/10.1080/09640568.2020.1729705
https://doi.org/10.18174/sesmo.18434
https://doi.org/10.1029/2022ef002905
https://doi.org/10.5194/esd-10-809-2019
https://doi.org/10.1016/j.envsoft.2024.105980
https://doi.org/10.1016/j.envsoft.2024.105980
https://doi.org/10.3389/fpls.2022.953712
https://doi.org/10.3389/fpls.2022.953712
https://www.mdpi.com/2073-4441/14/9/1502
https://www.capmas.gov.eg/HomePage.aspx
https://doi.org/10.1016/j.agsy.2023.103695
https://doi.org/10.5194/hess-28-117-2024
https://doi.org/10.5194/hess-24-3015-2020
https://doi.org/10.24381/cds.006f2c9a
https://doi.org/10.1007/s11577-023-00891-6
https://doi.org/10.3390/rs15164066
https://doi.org/10.3390/rs15164066
https://doi.org/10.1016/j.jhydrol.2020.125313
https://doi.org/10.1186/2048-7010-1-3
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1016/j.agwat.2024.108673
https://doi.org/10.1016/j.agwat.2024.108673
https://doi.org/10.1016/j.agwat.2025.109668
https://doi.org/10.1016/j.agwat.2025.109668
https://doi.org/10.5194/hess-20-953-2016
https://doi.org/10.5194/hess-20-953-2016
https://openknowledge.fao.org/server/api/core/bitstreams/947fa627-c9f2-4f67-b725-e0ef30d220c7/content
https://openknowledge.fao.org/server/api/core/bitstreams/947fa627-c9f2-4f67-b725-e0ef30d220c7/content
https://doi.org/10.3389/ffgc.2023.1198186
https://doi.org/10.3389/ffgc.2023.1198186
https://doi.org/10.1109/access.2021.3113125
https://openknowledge.fao.org/server/api/core/bitstreams/b3d837e2-48c9-4adc-aa36-797bf45e5f68/content
https://openknowledge.fao.org/server/api/core/bitstreams/b3d837e2-48c9-4adc-aa36-797bf45e5f68/content
https://doi.org/10.1007/s13201-023-01961-y
https://doi.org/10.1007/978-3-030-78574-1_2
https://www.mdpi.com/2073-4433/12/12/1589
https://www.mdpi.com/2073-4433/12/12/1589
https://doi.org/10.5683/SP2/DLGXYO
https://doi.org/10.3390/cli11100202
https://doi.org/10.5194/hess-27-1683-2023
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.5194/essd-16-201-2024
https://doi.org/10.5194/essd-16-201-2024
https://doi.org/10.1016/j.agsy.2018.09.007
https://doi.org/10.1016/j.agsy.2018.09.007
https://data.humdata.org/dataset/hotosm_egy_waterways
https://doi.org/10.5683/SP2/TTJNIU
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1016/j.scitotenv.2018.10.209
http://refhub.elsevier.com/S1364-8152(25)00529-8/sref53
http://refhub.elsevier.com/S1364-8152(25)00529-8/sref53
https://doi.org/10.1016/j.ecolecon.2023.107751
https://doi.org/10.1016/j.ecolecon.2023.107751
https://doi.org/10.48364/ISIMIP.842396.1
https://doi.org/10.1016/j.catena.2023.107339
https://doi.org/10.1016/j.catena.2023.107339


Malhi, G.S., Kaur, M., Kaushik, P., 2021. Impact of climate change on agriculture and its 
mitigation strategies: a review. Sustainability 13 (3), 1318. https://www.mdpi.com/ 
2071-1050/13/3/1318.

McDermid, S., Nocco, M., Lawston-Parker, P., Keune, J., Pokhrel, Y., Jain, M., 
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