KIT | KIT-Bibliothek | Impressum | Datenschutz

Concurrent Self-testing and Uncertainty Estimation of Neural Networks Using Uncertainty Fingerprint

Ahmed, Soyed Tuhin ORCID iD icon 1; Tahoori, Mehdi Baradaran 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Neural networks (NNs) are increasingly used in always-on safety-critical applications deployed on hardware accelerators employing various memory technologies. Reliable, continuous operation of NN is essential for safety-critical applications. During online operation, NNs are susceptible to (single and multiple) permanent and soft errors due to factors such as radiation, aging, and thermal effects. Explicit testing methods for hardware accelerators cannot detect transient faults during inference, are unsuitable for always-on applications, and require extensive test vector generation and storage. Therefore, in this paper, we propose the uncertainty fingerprint approach that represents the online fault status of NN. Furthermore, we propose a dual-head NN topology specifically designed to produce uncertainty fingerprints and the primary prediction of the NN in a single shot. During the online operation, by matching the uncertainty fingerprint, we can concurrently self-test NNs with up to 100% coverage in the backbone and in the full model (with a modified approach) with a low false positive rate while maintaining the performance of the primary task similar to the baseline. ... mehr


Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2168-6750, 2376-4562
KITopen-ID: 1000189432
Erschienen in IEEE Transactions on Emerging Topics in Computing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–15
Vorab online veröffentlicht am 24.12.2025
Schlagwörter Self-testing, dual-head, concurrent testing, testing neural network, uncertainty estimation
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page