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Abstract

Due to declining costs and policy measures promoting renewable energy sources, the
number of renewable energy systems is increasing worldwide. This development demands
investments in distribution grid infrastructure and intelligent control mechanisms that
compensate fluctuating energy generation from renewable sources. Simultaneously, quanti-
fying these requirements by distribution system operators is impossible without adequate
measurement instrumentation. Key components, such as transformers, have long life ex-
pectancies and are often not equipped with communication or measurement hardware. As
an alternative, smart household appliances are increasingly widespread, and some models
are equipped with measurement hardware for monitoring the voltage at the socket out-
let. For uninstrumented nodes, pseudo-measurements can be generated using a feature
propagation algorithm. This completes voltage monitoring across the entire distribution
grid. With knowledge of distribution grid voltage levels and congested lines, Distributed
Energy Resources (DERs) can be strategically sized and scheduled to support the grid most
economically. This planning and dispatch scheduling process constitutes an optimization
problem, which may be solved analytically or heuristically with distinct advantages for
either approach. As part of this procedure, power flow calculations are performed iteratively,
which is computationally intensive. By leveraging Graph Neural Networks (GNNs), the
results of such calculations can be efficiently approximated. The accuracy and efficiency of
these approximations are highly dependent on the machine learning model’s underlying
architecture.
This dissertation investigates the measurement accuracy of widely available smart plugs,
demonstrating their sufficient precision for voltage monitoring in distribution grids. A fast
feature propagation algorithm supplements these measurements with pseudo-measurements,
completing the monitoring across entire distribution grids. Through a comparison of heuris-
tic and analytical optimization approaches for multi-energy DERs, this research establishes
that DER components can be accurately described using linear equations in Mixed-Integer
Linear Program (MILP) formulations that yield precise analytical solutions and can be
computed efficiently. An iterative algorithm adapts the composition and dispatch schedule
of a multi-energy DER to the surrounding distribution grid. To accelerate computation,
GNNs are employed to infer the algorithm’s solutions. A two-stage, pre-trained model that
incorporates a first-stage power flow inference model and a second stage that approximates
the algorithm’s results is compared to a baseline, single-stage GNN that serves as a direct
substitute for the iterative algorithm. The pre-trained GNN approximates minimal power
requirements for grid congestion mitigation with greater accuracy than the cold-start model
in all tested scenarios, including calculations on real-world distribution grid topologies
excluded from the training datasets.
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Zusammenfassung

Aufgrund sinkender Kosten und politischer Maßnahmen zur Förderung regenerativer Ener-
giequellen steigt die Anzahl erneuerbarer Erzeugungsanlagen weltweit an. Diese Entwick-
lung erfordert Investitionen in Verteilnetzinfrastruktur und intelligente Steuerungsme-
chanismen, welche die schwankende Energieerzeugung kompensieren. Gleichzeitig ist
die Quantifizierung dieser Erfordernisse durch die Verteilnetzbetreiber ohne ausreichen-
de Messinstrumentierung unmöglich. Infrastrukturkomponenten, wie Transformatoren,
haben eine lange Lebensdauer und sind oftmals nicht mit Kommunikations- oder Mess-
hardware ausgestattet. Als Alternative werden Smart Home Geräte mit Hardware zur Span-
nungsüberwachung an der Steckdose immer populärer. Können in den Netzknoten keine
direkten Messungen vorgenommen werden, lassen sich mithilfe eines Feature-Propagation-
Algorithmus Pseudo-Messwerte generieren. Damit wird die Spannungsüberwachung über
das gesamte Verteilnetz vervollständigt, selbst wenn nicht alle Knoten instrumentiert sind.
Mit detaillierten Kenntnissen über Netzengpässe lassen sich dezentrale Energieressourcen
DERs auslegen, um das Netz möglichst ökonomisch zu unterstützen. Dieser Planungs-
und Steuerungsprozess stellt ein Optimierungsproblem dar, das analytisch oder heuris-
tisch gelöst werden kann, wobei jede Methode eigene Vorteile bietet. Im Rahmen dieses
Verfahrens werden iterativ rechenintensive Lastflussberechnungen durchgeführt. Durch
den Einsatz von Graph Neural Networks (GNNs) lassen sich diese Berechnungen effizient
approximieren. Die Genauigkeit und Effizienz dieser Approximationen hängen von der
zugrunde liegenden Architektur des Machine-Learning-Modells ab. In dieser Dissertation
wird die Messgenauigkeit kommerzieller Smart-Plugs untersucht, wobei deren hinreichende
Präzision für die Spannungsüberwachung in Verteilnetzen nachgewiesen wird. Ein schnel-
ler Feature-Propagation-Algorithmus ergänzt diese Messungen durch Pseudo-Messwerte
und vervollständigt so die Netzüberwachung. Durch den Vergleich heuristischer und ana-
lytischer Optimierungsansätze für sektorenübergreifende DERs wird gezeigt, dass DER-
Komponenten mit linearen Gleichungen in Mixed-Integer Linear Program (MILP)-Modellen
präzise analytische Lösungen liefern und zudem effizient berechnet werden können. Ein
iterativer Algorithmus passt die Zusammensetzung und den Fahrplan einer sektorenüber-
greifenden DER an das umgebende Verteilnetz an. Um die Rechenzeit zu verkürzen, werden
GNNs eingesetzt, um die Ergebnisse des Algorithmus zu approximieren. Ein in zwei Stufen
vortrainiertes Modell, das zunächst die Lastflussberechnungen und anschließend die Algo-
rithmusergebnisse approximiert, wird einem Einstufigen-GNN gegenübergestellt, das als
direkter Ersatz für den iterativen Algorithmus dient. Das vortrainierte GNN approximiert
den minimalen Leistungsbedarf zur Netzengpassbehebung in allen getesteten Szenarien,
einschließlich realer Verteilnetz-Topologien, die nicht Teil der Trainingsdaten waren, mit
höherer Genauigkeit als das Cold-Start-Modell.
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1 Introduction

Electricity grids around the world are undergoing significant transformations, driven by a
conjunction of economic and environmental factors. The primary environmental driver is
the urgent need to stop climate change, which is principally caused by greenhouse gas emis-
sions from burning fossil fuels [Cal+23]. This human-caused dramatic rise in average global
surface temperature, both over land and oceans, is illustrated in Figure 1.1. In response,
international frameworks such as the International Renewable Energy Agency (IRENA) 1.5°
scenario outline a clear pathway to limit global warming by fundamentally transforming
energy systems, a transition made feasible by compelling economic incentives [Int+24].
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Figure 1.1: “Annual (thin lines) and five-year [averaged] (thick lines) [. . . ] temperature
anomalies (vs. 1951-1980) averaged over the Earth’s land area and sea surface temperature
anomalies (vs. 1951-1980) averaged over the part of the ocean that is free of ice at all times
(open ocean).” [NG25] Source: https://data.giss.nasa.gov/gistemp/graphs_v4/
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Chapter 1 Introduction

The falling cost of renewable energy generation is a pivotal economic factor accelerating
the energy transition. On a global scale, renewable energy is now the cheapest option for
increasing electricity generation in almost every country [Int+24]. In Germany, even low-
voltage Photovoltaic (PV) systems connected to the distribution grid generate electricity at a
lower cost than lignite, coal, or nuclear power plants [Kos+24]. However, realizing the goals
of the energy transition is not without challenges. The increase in renewable generation
must be matched by a significant enhancement in the energy transmission capabilities
of both transmission and distribution grids to ensure system reliability and stability [Int+24].

Because of the rising cost of carbon emissions [Wor24] and fuel prices [Nev+17], heating
with gas and oil is becoming more expensive. This makes electric heating more attractive
and leads to more heat pump installations, which changes the characteristic load curve in
electric grids. Governmental interventions reinforce this trend by introducing incentives
to promote the installation of heat pumps [Bf23]. As electric heating and cooling become
more popular, electricity consumption patterns become increasingly dependent on weather
conditions. Similarly, the cost of operating fossil fuel-powered vehicles is increasing, while
Electric Vehicles (EVs) are becoming more affordable. This necessitates the integration of
EV chargers into the existing grid infrastructure. Incorporating such high-power loads of up
to several hundreds of kW into the distribution grids poses significant challenges [Ham+24].
On the other hand, renewable energy generation is linked to meteorological conditions and
is not necessarily available at times of high demand. PV systems, for example, produce the
most power at midday during summer, when there is the most sunlight. This contrasts with
the consistent output characteristic of fossil fuel-based generation systems. The intermittent
nature of renewable energy production leads to fluctuations in the utilization of the distri-
bution grid. Especially at times with high simultaneous generation, the distribution grid
voltage increases due to the high feed-in power. During these times, energy may flow from
the low-voltage grids into the medium-voltage grids, increasing the voltage levels in the
medium-voltage grids [Mit+15] and the utilization of transformers and lines. Furthermore,
if the voltage magnitude is too high, feed-in must be curtailed.

Curtailing decentralized feed-in is associated with costs for the grid operators (§ 13a
of the German Energiewirtschaftsgesetz (EnWG)) that are passed on to the consumers.
Ideally, the grid operator should be able to detect violations of the permissible voltage range
beforehand by extensively monitoring the distribution grid. This enables the estimation of
how and when the distribution grid needs to be upgraded. However, grid operators often
lack this information about the current grid state. This information deficit could potentially
be addressed by leveraging other data sources. For instance, the adoption of smart home
technology is experiencing significant growth [Mar22] and may offer a viable means for
enhancing grid observability.
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Introduction Chapter 1

Within this expanding market, several kinds of devices incorporate measurement hard-
ware specifically designed to quantify the energy consumption of the device itself or
connected appliances. This functionality is achieved by measuring voltage and current
concurrently. The data acquired via these measurements holds potential utility for en-
hancing the monitoring of the electrical distribution grid. This motivates the first research
question of this thesis: To what extent can smart plugs be used for distribution grid
monitoring?

To realize complete monitoring of the distribution grid with the help of this measurement
data, the voltage values at each node must be known. If nodes are not instrumented, the
measured values must be calculated or derived differently. Rossi et al. [Ros+21] apply the
principle of heat propagation to information propagation in graphs and present a feature
propagation algorithm. The propagation of heat can be calculated using the heat diffusion
equation as a function of thermal conductivity and heat sources. A direct analogy exists
within graph theory: the weights assigned to graph edges can be conceptualized as analo-
gous to thermal conductivity, while nodes acting as origins of information parallel the role
of heat sources. This leads to the second research question: How viable is the use of a
feature propagation algorithm for pseudo-measurement generation in distribution
grids compared to other related methods?

If the state of the distribution grid is known, congestion can be mitigated, for example,
by using DERs. These decentralized systems can store different forms of energy or con-
vert them into one another, for instance, via combustion engines, electrolyzers, and fuel
cells. By combining multiple components into a single DER, operational synergies can
be utilized [Gei+07]. The planning and sizing of a multi-energy DER presents a complex
optimization problem that can be separated into two fundamental tasks: system composition
and operational scheduling. Both optimization problems require a multi-criteria approach
in order to find the best possible trade-off between the different goals a DER can pursue.
These goals include supporting the distribution grid, minimizing environmental impacts
such as carbon emissions, and maximizing economic value through revenue generation. The
optimal DER implementation therefore represents a compromise among these objectives,
both in the configuration of the system and in its dynamic operational strategy. Depending
on the modeling and optimization method, the optimization goal is achieved with varying
degrees of quality and computational effort. In order to choose a suitable approach for opti-
mizing a multi-energy DER, another research question is: What are the advantages and
disadvantages of optimizing a multi-energy DER using an evolutionary algorithm,
an MILP, and an MIQP?

When planning and sizing such a multi-energy DER, the surrounding distribution grid
should be considered. Depending on the loads and generation in the distribution grid,
overloads occur, which should be compensated by the DER. At the same time, the DER
should not be planned to be too large and should be as economical as possible.

3



Chapter 1 Introduction

This problem raises a further research question: How does the annual cost of a DER
designed to provide grid supporting services compare to the annual cost of the
most economical design?

The algorithm developed for planning a DER located in a specific distribution grid area is
based on a large number of power flow calculations as a part of an iterative, computationally
demanding algorithm. Speedups for power flow calculations can be achieved, for example,
by implementing a power flow inferring GNN. It therefore stands to reason that a GNN can
also learn the results of the iterative algorithm. However, the two problems of power flow
prediction using GNNs and optimizing the DER’s power can also be considered separately.
Thus, the power flow approximating GNN can be trained using large training datasets and
provide the best possible basis for inferring the optimal DER power. This leads to the next
research question: How effective is a pre-trained GNN compared to a cold-start GNN
for inferring the optimal DER power?

In summary, the following research questions are devised:

1. To what extent can smart plugs be used for distribution grid monitoring?

2. Howviable is the use of a feature propagation algorithm for pseudo-measurement
generation in distribution grids compared to other related methods?

3. What are the advantages and disadvantages of optimizing a multi-energy
DER using an evolutionary algorithm, an MILP, and an MIQP?

4. How does the annual cost of a DER designed to provide grid supporting
services compare to the annual cost of the most economical design?

5. How effective is a pre-trainedGNN compared to a cold-start GNN for inferring
the optimal DER power?

This dissertation is structured as follows: The first chapter outlines the fundamentals,
which include DERs, power grids, the grid infrastructure, and power flow calculations.
Furthermore, it provides an exposition on GNNs. The second chapter investigates the
domain of distribution grid monitoring. It introduces a methodology for monitoring the
low-voltage grid that employs smart plugs. This approach is subsequently extended to
achieve comprehensive grid observability through the use of pseudo-measurements, which
are synthesized for all grid non-instrumented nodes via a feature propagation algorithm.
The third chapter addresses the optimization of DERs containing multi-energy components,
and presents a comparative analysis of heuristic Evolutionary Algorithms (EAs) and analytic
mixed-integer problem formulations. The fourth chapter then builds upon this foundation.
It enhances the analytic optimization algorithm by integrating constraints that stem from
the surrounding distribution grid. As the monitoring process makes potential congestion
scenarios evident, the enhanced algorithm optimizes the DER’s operation specifically to
mitigate these events.

4
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The primary drawback of the bespoke DER optimization algorithm is its computational
complexity. Consequently, the fifth chapter focuses on the development of GNNs to serve
as computationally efficient approximators of the algorithm’s results. A baseline model
is first established using a single-stage GNN approach. In this configuration, the GNN
directly infers the optimal DER power required for congestion mitigation from the grid’s
load and generation components. A second, more advanced methodology is also developed,
employing a two-stage GNN architecture. In the first stage, the network is tasked with
approximating the power flows within the grid. The resulting power flow estimations
are then supplied as input to a second GNN, a design which facilitates the generation of
more accurate inference results. The sixth chapter summarizes and critically discusses
the findings, encompassing the complete, end-to-end workflow presented throughout the
thesis. Finally, the seventh chapter concludes the dissertation, offering a final synthesis of
the work and outlining promising directions for future research.
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2 Fundamentals

2.1 Distributed Energy Resources
Distributed Energy Resources (DERs) are characterized as small (kW-scale) energy genera-
tion, controllable loads, or storage systems located at the distribution level of the power
grid, contrasting with traditional centralized generation [Hat+07]. DERs intrinsically enable
bidirectional energy exchange between nodes within the distribution grid. The capability of
energy production, for example, through local generation mechanisms, such as PV systems
installed on rooftops and balconies, precipitates a transition in the role of end-users, from
mere consumers to “prosumers”. However, the definition of DERs also includes certain
energy-consuming appliances, particularly those with Demand-Side Management (DSM)
capabilities. EV chargers can sometimes be remotely managed by Distribution System
Operators (DSOs) to avoid congestion [HAI23]. Regulatory frameworks, such as § 14a
of the German EnWG, further extend the number of manageable appliances by enabling
DSOs to control high-load systems like heat pumps. This regulatory approach underscores
the growing importance of integrating controllable devices with DSM to meet multiple
needs, also called active DSM [Di +18]. This control mechanism allows different objec-
tives to be combined, such as minimizing costs, maximizing self-consumption, and grid
support [Mat+12].

Although DERs can be individual components, a combination of components can also
be classified as a DER. This integrated approach enables the provision of multiple forms
of energy, such as electricity, thermal energy, and hydrogen as a gaseous energy carrier.
Henceforth, DERs utilizing multiple forms of energy and comprising multiple individual
components are termed multi-energy DERs. An example of such a multi-energy DER is the
energy hub [Gei+07]. Energy flows within an energy hub can be effectively modeled using
a coupling matrix that quantifies the relationships between energy inputs and outputs. The
relationship between the inputs and outputs of the energy hub is defined by
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Chapter 2 Fundamentals

The coupling matrix provides a mathematical representation of the energy hub, where
each element 𝐶𝑚,𝑛 defines the conversion factor from input energy carrier 𝑚 to output
carrier 𝑛. The diagonal coefficients 𝐶𝑛,𝑛 correspond to instances of direct pass-through
where the energy carrier remains unchanged. Conversely, the off-diagonal elements 𝐶𝑚,𝑛
for𝑚 ≠ 𝑛 model the transformation between two distinct energy carriers. The magnitude
of these off-diagonal coefficients is physically significant: values between 0 and 1 repre-
sent energetically lossy conversions, while values exceeding 1 denote processes of energy
multiplication, such as the thermal output of a heat pump relative to its electrical input.
A coefficient of 𝐶𝑚,𝑛 = 0 signifies that no technological pathway exists within the hub to
convert energy carrier𝑚 to 𝑛.

The model is extended beyond this input-output mapping to incorporate energy storage
systems, which necessitates the inclusion of their dynamic behavior. Consequently, the
complete energy hub formulation integrates the storage dynamics:
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

×
©­­­­
«

¤𝐸1
¤𝐸2
...
¤𝐸𝑛

ª®®®®
¬±

𝐸𝑛𝑒𝑟𝑔𝑦 𝑓 𝑙𝑜𝑤

. (2.2)

The combination of Equation (2.1) and Equation (2.2) yields the complete system formu-
lation:

𝑳 = 𝑪𝑷 − 𝑺 ¤𝑬 . (2.3)

In order to operate an energy hub with minimal costs, the individual components must be
planned in the most economical way. By linearizing all conversion processes and constraints,
an MILP can be used for optimization. Due to the combination of multiple components and
interactions with the connected energy grids, the design and planning of energy hubs is
complex and multifaceted.

The energy hub proposed by Geidl et al. [Gei+07] represents a specific kind of multi-
energy DER that utilizes synergy effects among multiple energy carriers, such as electricity
and natural gas. Their work provides models and methods to optimize the power exchange
between the carriers, thereby minimizing costs or emissions, or maximizing efficiency,
availability, and security.

Likewise, a multi-energy DER can be configured to be controlled by the DSO to provide
grid support services. Nerowski et al. [Ner+25], for instance, develop a grid congestion
mitigation strategy that demonstrates this feature. In this scheme, the energy hub exchanges
information with the grid operator, communicating its optimal operating costs. The DSO
then responds with load targets for specific time stamps, prompting the energy hub to
re-optimize its operation to meet these requirements. This process, however, leads to higher
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operational costs for the energy hub, which allows a monetary value to be assigned to
the requested grid-supportive service. Through the local integration of energy generation,
storage, and consumption, the dependence on long-haul energy transport is minimized. This
can postpone or limit the financial outlay for grid expansion projects, leading to a concur-
rent reduction in energy losses and an increase in overall system efficiency [Ela+23; Zho+22].

Furthermore, energy hubs enable further integration of Renewable Energy Sources (RESs)
into the distribution grids. By providing localized storage and flexible demand, they assist
in avoiding renewable energy curtailment, encouraging greater penetration of RESs into
the grid [Liu+12]. The operational flexibility of an energy hub allows it to attenuate peaks
in both energy demand and intermittent renewable generation, contributing to a more
efficient grid operation.

Energy hubs also bolster distribution grid resilience [Wan+17]. As localized DERs, they
can supply backup power during infrastructure failures, maintaining supply to critical
loads. This function enhances the overarching reliability and security of the energy sys-
tem [Wan+17] by providing substantial operational flexibility, primarily achieved through
inter-sectoral energy exchange [Eid+16].

The economic benefit of energy hubs comes from the demand and generation shifting to
periods of more favorable pricing, thereby reducing overall energy costs [Wan+17]. For
instance, during intervals of high electricity prices, natural gas can be used for on-site power
generation. Conversely, when electricity prices are low, excess electrical energy can be
converted, for example, to produce synthetic gas for potential injection into the gas network.

9
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2.2 Scheduling Distributed Energy Resources
The scheduling of a multi-energy DER constitutes a complex optimization problem. It
involves orchestrating the various components with their respective energy inputs and
outputs, subject to a set of constraints. These constraints include operational limits, the size
of individual components, and external requirements. For example, the DSO could request
the DER to provide a specific load or generation profile to support grid operations. Further-
more, weather conditions govern the efficiency of the renewable generation components.

The objective function, therefore, is multifaceted, designed to capture all the potential
benefits a DER can provide, such as direct monetary savings, revenue from grid services, and
penalties for deviating from a target power curve. The nature of the optimization problem
changes significantly depending on the primary objective. When the sole objective is to
follow a specified power target, the problem simplifies into a disaggregation task, where
the central challenge is to allocate the required power among the available components.
Conversely, if the objective is purely to minimize internal costs or maximize revenue,
the components each operate at their own cost-optimal setting without any coordinated
interaction for broader system goals. Therefore, optimal scheduling is achieved by balancing
these extremes, finding a sophisticated control strategy that respects all constraints while
intelligently coordinating all components to achieve the best possible outcome across a
range of competing objectives.

2.2.1 Mixed-Integer Linear Program (MILP) and Mixed-Integer
Quadratic Program (MIQP)

A mathematical optimization problem consists of an objective function and a search space.
The search space is formulated as a set 𝐴 whose elements satisfy specific constraints. These
points represent all valid solutions to the problem. The objective function maps these
elements to a value that is to be minimized or maximized. Without loss of generality, a
minimization problem can be formulated as

𝑓 (x𝑚) ≥ 𝑓 (x) ⇔ −𝑓 (x𝑚) ≤ −𝑓 (x) ∀𝑥 ∈ 𝐴. (2.4)

A Linear Program (LP) is a type of mathematical optimization in which the objective is to
find a vector x that minimizes an objective function, 𝑓 (x) = c𝑇x with c ∈ ℝ𝑛 , over a search
space defined by the convex hull of a set of points. This set of points can be described with
𝐴x ≤ b, b ∈ ℝ𝑚 and x ≥ 0 [BN01]. The 𝑚 × 𝑛 matrix 𝐴 contains the coefficients of all
constraints, and the vector b is a given right-hand side of the constraints.

Both MILP and MIQP are specific formulations of such problems. An MILP extends the
LP approach to include integer and binary decision variables in addition to the continuous
coefficients. While an MILP handles linear objective functions, an MIQP is necessary to
optimize problems that are described by quadratic functions. In this work, the DER com-
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ponents are approximated and implemented with linear models. The error metric used to
follow a target from the DSO as closely as possible is a Mean Squared Error (MSE) function.
Since this error metric contains a quadratic term, an MIQP formulation is required.
Several frameworks exist to formulate such optimization problems. This work utilizes the
Pyomo (“a Python-based tool for modeling and solving optimization problems”) [Byn+21;
HWW11], and GBOML (“Graph-Based Optimization Modeling Language”) [Mif+22] frame-
works, which both offer interfaces to a range of solvers. These include commercial solvers,
such as Gurobi [Gur23], as well as open-source solvers, such as SCIP [Bol+24]. The Gurobi
solver is employed for all MIQP and MIQP optimization problems in this research, due to
its availability for academic purposes at no cost and its high performance.

A distinguishing feature of Pyomo is its fundamentally object-oriented modeling ap-
proach. This paradigm allows for the decomposition of a complex optimization problem
into its individual components, which are defined as reusable classes. This modular struc-
ture provides an intuitive and maintainable modeling environment within object-oriented
programming languages. The Pyomo framework supports a broad spectrum of problem
formulations, including linear programs, quadratic programs, non-linear programs, and
MILP and MIQP. This flexibility makes it well-suited for the possibly evolving models of
the DER formulation central to this work.

In contrast, GBOML is a more recent framework for graph-based DER modeling. Although
limited to MILP formulations, its design facilitates rapid model development. To ensure the
future extensibility and reusability of the models developed within this thesis, GBOML is
only employed for the initial, linear DER model.
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2.3 Power Grids
Power grids can be characterized based on their voltage level. In Germany, the distribu-
tion grids usually operate at the low voltage level of 400 V and the medium voltage level
between 6 kV and 60 kV, while the high voltage level between 60 kV and 220 kV is mostly
found in regional transmission grids. In order to cover long distances, transmission grids
with voltages between 220 kV and 380 kV and Direct Current (DC) high-voltage grids with
voltages up to 525 kV are used [Ger25].

Electrical distribution grids are predominantly designed with a three-phase configuration,
which enables the delivery of multiple voltage levels. A typical example is the low-voltage
distribution grid, where nominal voltages of 230 V and 400 V are available to consumers.
These voltage levels are achieved through distinct connection methodologies: 230 V is ob-
tained by connecting to a phase and neutral conductor, whereas 400 V is achieved through
phase-to-phase connections. However, power flow analysis is often conducted for a single
phase [LLW17; Wid+10].

Modern distribution grids contain DERs, measurement devices, transformers, switching
infrastructure, and more. Increasing penetration of distributed generation and demanding
loads, such as EV chargers, must go hand in hand with adjustments to the grid infrastruc-
ture. Smart meters enable time-dependent energy prices, enabling the consumer to react to
price signals. With this method, incentives can be created such that the consumer volun-
tarily supports the grid. The smart meters track the energy consumption in configurable
time intervals. In the European Union, a 15-minute time interval was deemed appropriate
in 2012 [Swa+21]. Therefore, new energy prices can be set for every 15-minute time window.

Using smart meters, load and generation in distribution grids can be shifted through
consumers’ reactions to price signals. However, the price signal for household consumers is
currently not affected by grid congestion but rather the energy prices at the exchanges. How-
ever, the distribution system operator is able to use other tools to enhance the capabilities
of the distribution grid. A regulated distribution transformer’s ratio between the primary
and secondary sides can be tuned in such a way that the voltage levels in the distribution
grid are within permissible bounds. Therefore, even if voltage levels on the primary high
voltage side increase, for example, due to high renewable generation in the area, voltage
levels on the secondary low voltage side can remain within permissible bounds. Similarly,
when the level of distributed generation in the low-voltage grid is high, the voltage at the
transformer’s low-voltage side can be reduced, and the voltages stay within bounds at every
node in the grid. Mitra et al. [Mit+15] exploit the inherent correlation between voltage
magnitudes at low-voltage and medium-voltage levels within the distribution system to
derive a connectivity model.
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Figure 2.1: Illustration of the voltage drop in the distribution grid depending on the length
of the shortest path to the transformer.

In distribution grids, line impedance causes voltage drops that become more severe
with electrical distance. Consequently, grid participants connected to distant buses may
experience low voltage levels. Furthermore, high demand throughout the grid leads to large
power transmission, particularly through lines near the feeder. This results in elevated
line temperatures and thermal stress. These grid congestion issues are identified using
power flow analysis, particularly steady-state power flow calculations, which solve the
nodal power balance equations. For such nonlinear systems, the Newton-Raphson method
is a standard iterative solver. Figure 2.1 depicts an exemplary 400 V European radial feeder
with 20 kW loads at all nodes. The resulting nodal voltages, shown in Figure 2.1, can be
calculated using the Newton-Raphson algorithm. All power flow analyses in this thesis are
performed using the Pandapower library. Voltages are reported in per-unit (per unit (p.u.)),
defined as the ratio of actual to nominal voltage, and are evaluated against regulatory limits,
such as the 0.9 to 1.1 p.u. range specified by the EN-50160 standard.
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2.4 Power Flow Analysis
A power flow analysis constitutes a fundamental numerical analysis of an interconnected
electrical grid. Its primary purpose is to determine the steady-state operating conditions
of the system. The analysis is based on four fundamental Alternating Current (AC) power
grid parameters for each bus: the voltage magnitude |𝑉 |, the voltage angle 𝜃 , the real
power 𝑃 , and the reactive power 𝑄 [Glo+22]. To manage the inherent complexity of power
grids, these studies employ simplified representations. Key aspects of the simplification
include representing a balanced three-phase system with a single line and the p.u. system,
which normalizes voltage values. Critically, this analysis focuses solely on the system’s
behavior under normal, steady-state conditions. This provides an overview of the grid’s
state, excluding transient phenomena such as faults or switching events.

The power-flow analyses conducted within this thesis operate under the unifying as-
sumption that for every bus in the network, the real power and reactive power are specified
quantities. Consequently, the voltage magnitude (|𝑉 |) and phase angle (𝜃 ) are treated as the
unknown variables to be determined for all buses. These buses are referred to as 𝑃𝑄 buses.

This contrasts with another common approach that also incorporates 𝑃𝑉 buses for gen-
erators, at which the voltage magnitude is a known, controlled setpoint. In order to ensure
a valid solution for the power-flow equations, it is essential to designate one bus as the
slack bus, also known as the swing or reference bus. The role of this bus is paramount in
that it addresses the disparity between the scheduled power generation and the aggregate
system demand, encompassing both consumer loads and the inherent network losses. Given
that the system’s power losses remain unknown until the power-flow calculation reaches
convergence, the slack bus functions as the balancing component, thereby supplying or
absorbing the required real and reactive power to maintain power equilibrium across the
network. In the grid topologies examined in this thesis, the primary transformer, which
functions as the connection to the upstream transmission system, is designated as the slack
bus.

Solving the power-flow problem involves determining the voltage magnitude, voltage
angle, real power, and reactive power for every bus in the network. The basic relationships
between these variables is described using the power flow equations, which are derived in
the subsequent section based on the work of Glover et al. [Glo+22].

The injected power at bus 𝑘 in a three-phase electricity grid is denoted by

𝑆𝑘 = 𝑃𝑘 + 𝑗𝑄𝑘
=
√

3𝑉𝑘𝐼 ∗𝑘 .
(2.5)
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This complex quantity is constituted by its real and imaginary parts, which correspond to
the active power (𝑃𝑘 ) and reactive power (𝑄𝑘 ), respectively. The asterisk is used to indicate
complex conjugate quantities and 𝑗 =

√−1.

The electrical characteristics of a transmission line are modeled by its impedance (𝑍 ).
This complex quantity is constituted by a real component, the resistance (𝑅), which accounts
for real power losses through dissipation, and an imaginary component, the reactance (𝑋 ),
which represents the lossless energy storage characteristic of the line in an AC system. The
relationship for a line between the buses 𝑘 and 𝑛 is given by

𝑍𝑘𝑛 = 𝑅𝑘𝑛 + 𝑗𝑋𝑘𝑛 . (2.6)

Whereas the impedance quantifies a circuit’s opposition to current, the admittance (𝑌 )
measures the ease with which a circuit allows current to pass for a given applied voltage.
Mathematically, the admittance is simply the reciprocal of the impedance (𝑌 = 1/𝑍 ). Just as
the impedance is deconstructed into the resistance and the reactance, the admittance can
be broken down into the conductance 𝐺 and the susceptance 𝐵. With the phase angle ∠𝜃𝑘𝑛 ,
the total admittance Y of the line between bus 𝑘 and bus 𝑛 is thus

Y𝑘𝑛 = 𝐺𝑘𝑛 + 𝑗𝐵𝑘𝑛
= |Y𝑘𝑛 |∠𝜃𝑘𝑛
= |Y𝑘𝑛 |𝑒 𝑗𝜃𝑘𝑛
= |Y𝑘𝑛 | (cos(𝜃𝑘𝑛) + 𝑗 sin(𝜃𝑘𝑛)).

(2.7)

The currents that are injected at each node can be represented analogously to Ohm’s law
(𝐼 = 𝑈

𝑅 ):

𝐼 =
𝑉

𝑍
= 𝑌𝑉 .

(2.8)

With the terms Ykn representing elements of the admittance matrix, the injected current at
bus 𝑘 can be written as

𝐼𝑘 =
𝑁∑︁
𝑛=1

Ykn𝑉𝑛 . (2.9)

To calculate the complex power injected at bus 𝑘 , 𝑆𝑘 , the Equation (2.9) can be inserted
into Equation (2.5):
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𝑆𝑘 = 𝑃𝑘 + 𝑗𝑄𝑘
= 𝑉𝑘𝐼

∗
𝑘

= 𝑉𝑘
𝑁∑︁
𝑛=1

Ykn
∗𝑉 ∗𝑛 .

(2.10)

Expanding Ykn
∗ and using phasors as in Equation (2.7), the Equation (2.10) becomes

𝑆𝑘 = |𝑉𝑘 |
𝑁∑︁
𝑛=1
|Ykn | |𝑉𝑛 |𝑒 𝑗 (𝛿𝑘−𝛿𝑛−𝜃𝑘𝑛)

= |𝑉𝑘 |
𝑁∑︁
𝑛=1
|𝑉𝑛 | (cos(𝛿𝑘 − 𝛿𝑛) − 𝑗 sin(𝛿𝑘 − 𝛿𝑛)) (𝐺𝑘𝑛 − 𝑗𝐵𝑘𝑛).

(2.11)

In the above Equation (2.11), the terms 𝛿𝑘 and 𝛿𝑛 denote the phase angles at nodes 𝑘 and
𝑛, respectively. From Equation (2.11), the power flow equations can be devised as

𝑃𝑘 = |𝑉𝑘 |
∑𝑁
𝑛=1 |𝑉𝑛 | (𝐺𝑘𝑛 cos(𝛿𝑘 − 𝛿𝑛) + 𝐵𝑘𝑛 sin(𝛿𝑘 − 𝛿𝑛)), (2.12a)

𝑄𝑘 = |𝑉𝑘 |
∑𝑁
𝑛=1 |𝑉𝑛 | (𝐺𝑘𝑛 sin(𝛿𝑘 − 𝛿𝑛) − 𝐵𝑘𝑛 cos(𝛿𝑘 − 𝛿𝑛)) . (2.12b)

2.4.1 Newton-Raphson Solver
The Newton-Raphson method is one of the most popular techniques for solving load flow
equations. It exhibits quadratic convergence properties, reaching a solution in significantly
fewer iterations than the Gauss-Seidel method. The computational effort in each iteration
is, however, higher [Jay16]. The algorithm is based on the linearization of the nonlinear
power flow equations and solves them iteratively using Taylor expansion approximation as

𝑦 ≈ 𝑓 (𝑥0) + 𝑓 ′(𝑥0) (𝑥 − 𝑥0). (2.13)
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Letting the approximation be an equality results in the following Equation (2.14) at the
𝑖-th iteration:

𝑦 = 𝑓 (𝑥𝑖) + 𝑓 ′(𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖)
𝑓 ′(𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖) = 𝑦 − 𝑓 (𝑥𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑦 − 𝑓 (𝑥𝑖)
𝑓 ′(𝑥𝑖) .

(2.14)

In this Equation (2.14), the first-order partial derivatives of the power flow Equations (2.12)
are the Jacobian matrix 𝑓 ′(𝑥𝑖) = J𝑖 . The Jacobian matrix can be written as

J =



𝜕P
𝜕𝜹

𝜕P
𝜕V

𝜕Q
𝜕𝜹

𝜕Q
𝜕V



. (2.15)

The vector 𝑓 (𝑥𝑖) in Equation (2.14) denotes the following column vector (2.16) that
represents the differences between specified and calculated power injections. Because the
first bus is the slack bus, indices start with 2.

𝑓 (𝑥) =



𝑃
spec
2 − 𝑃 calc

2
...

𝑃
spec
𝑘
− 𝑃 calc

𝑘
𝑄

spec
2 −𝑄calc

2
...

𝑄
spec
𝑘
−𝑄calc

𝑘



(2.16)

The iterative algorithm stops when all elements of this vector 𝑓 (𝑥) reach a specified
threshold, for example

𝑚𝑎𝑥 |𝑓 (𝑥) | < 𝜖. (2.17)
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2.4.2 Pandapower
For the power system analyses in this thesis, the Pandapower library is selected [Thu+18].
The choice of Pandapower is motivated by its status as an open-source, Python-based library.
This offers two distinct advantages: First, its open-source nature ensures transparency and
accessibility for the research community. Second, being a Python library, it provides flexibil-
ity and can be easily extended. This allows for integration with other scientific computing
libraries, such as PyTorch, for machine learning tasks.

At its core, Pandapower provides a tool to model power grids and solve power flows.
The library features an implementation of the Newton-Raphson power flow solver. The
practical utility of the framework is significantly enhanced by its direct integration with
the SimBench grids, which are available directly as Pandapower grids, providing standard-
ized, validated, and realistic network topologies for testing and analysis. This ensures the
reproducibility of results.

The modeling process itself is streamlined through the library of standardized component
models for power system infrastructures. This includes predefined models for common
lines, switches, and transformers, which accelerates the grid modeling process.

As numerous modern publications in the field of energy informatics utilize Pandapower [De
+22; Dem+25; Lin+24], it proves to be a highly suitable and powerful tool for the scope of
this research.
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2.5 Power Grid Graph Representation

In the present thesis, the distribution grid is modeled as an undirected graph, 𝐺 = (𝑁, 𝐸),
where the set of nodes 𝑁 = 1, ..., 𝑛 corresponds to the electrical buses, and the set of edges
𝐸 ⊆ 𝑁 ×𝑁 represents the power lines. Each node 𝑛 embodies a distribution grid participant,
such as a building or DER. Every node is associated with multiple attributes: a voltage
magnitude, a voltage angle, a reactive power, and an active power. Each edge 𝑒 ⊆ 𝐸 is
characterized by the admittance of the corresponding power line (𝑌 = 𝐺 + 𝑗𝐵). The graph’s
adjacency matrix is closely related to the admittance matrix. The adjacency matrix indicates
the weight of an edge between nodes, while the negative off-diagonal elements of the
admittance matrix quantify the ease with which current flows between those buses.

2.5.1 Graph Neural Networks

GNNs are a specialized class of deep learning architectures designed to operate directly
on graph data. Both the input and the output of these models are based on graphs. A
fundamental feature that distinguishes GNNs from traditional architectures such as Convo-
lutional Neural Networks (CNNs) is their permutation invariance. While the performance
of traditional models depends on a fixed, ordered arrangement of the input data (e.g., pixels
in a grid or words in a sequence), the topological information of a graph is preserved even if
the order of its nodes is permuted in the data representation - for example, in the adjacency
matrix. A GNN is designed to respect this structural property. Consequently, the model
treats different but isomorphic graph representations of the same graph identically and
produces a consistent output that depends solely on the graph topology and node features,
not on random indexing.

Within the broader landscape of GNNs, Graph Convolutional Networks (GCNs) consti-
tute a prominent and influential subclass. Their central objective is to generalize the concept
of CNNs to the irregular, topological structure of graphs. The methodologies for achieving
this generalization are primarily divided into two fundamental paradigms: spectral GCNs
and spatial GCNs. Spectral GCNs are grounded in the principles of graph signal processing,
defining the convolution in the graph’s frequency domain. This approach leverages the
graph’s Laplacian matrix, defined as 𝐿 = 𝐷−𝐴, where𝐴 is the adjacency matrix of the graph,
and 𝐷 denotes the diagonal degree matrix. The diagonal elements 𝐷𝑖,𝑖 contain the degree of
node 𝑖 , which is defined as the number of edges connected to node 𝑖 . In contrast, spatial
GCNs define convolution directly on the graph’s topology, operating in the spatial domain.
This methodology is directly analogous to the kernels used in traditional GCNs. For each
layer, a node’s feature representation is updated by aggregating the feature representations
of its neighbors. This paradigm can be conceptualized as a message-passing or neighborhood
aggregation scheme. For each node, a convolutional operation consists of multiple steps.
First, the feature vectors from its 𝐾-hop neighbors are collected. The set of 𝐾-hop neighbors
for a vertex 𝑣 in a graph 𝐺 = (𝑉 , 𝐸) is formally given by 𝑛𝐾 (𝑣) = {𝑢 ∈ 𝑉 |𝑑 (𝑢, 𝑣) = 𝐾},
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where the function𝑑 (𝑢, 𝑣) denotes the length of the shortest path connecting vertices𝑢 and 𝑣.

The feature vectors are combined into a single vector, typically through a differentiable
function like a (weighted) mean or sum. The combination of these feature vectors can
also be accomplished with a neural network; for example, the PowerFlowNet model by
Lin et al. [Lin+24] employs an Multilayer Perceptron (MLP) for this purpose. Finally, the
aggregated neighborhood information is combined with the central node’s own current
representation.
For illustrative purposes, Figure 2.2 provides a schematic of a simple graph structure. The
concept of a node’s receptive field is demonstrated for a central node, 𝑣, where its 0-hop,
1-hop, and 2-hop neighborhoods are denoted by colored circles. The feature vector of each
node

(
𝑓1
...
𝑓𝑡

)
is depicted next to the respective node. The combination of the neighboring feature

𝑣

𝑢1 𝑢2
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)
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𝑊 ={𝑤∈𝑉 |𝑑 (𝑢,𝑣)=2}

Figure 2.2: Exemplary graph with 0-hop, 1-hop, and 2-hop neighborhood of node 𝑣.
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vectors and the node’s own representation can be achieved using various convolutional
operators. The Topology Adaptive Graph Convolutional (TAGConv) operator, introduced
in the work of Du et al. [Du+17], produces an output tensor X′, represented as

X′ =
𝐾∑︁
𝑘=0

(
D−1/2AD−1/2

)𝐾
XW𝐾 . (2.18)

In this formulation, the term D−1/2AD−1/2 represents the symmetrically normalized ad-
jacency matrix, A. This is computed using the adjacency matrix Â and its corresponding
diagonal degree matrix D, where each diagonal element is defined as𝐷𝑖𝑖 =

∑
𝑗=0𝐴𝑖 𝑗 . Further-

more, the parameter 𝐾 specifies the number of hops considered within the convolutional
layer, and W𝐾 denotes the trainable weight matrix that is applied to the input feature tensor
X. An exemplary convolution with 𝐾 = 2 is depicted in Figure 2.3.
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Figure 2.3: Illustration of a graph convolution. The feature vectors are aggregated and
incorporated into the graph convolution, depending on the distance.
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2.5.2 Multilayer Perceptrons
MLPs consist of multiple neural network layers with activation functions and no feedback
connections. They are also referred to as feedforward neural networks and approximate a
function 𝑦 = 𝑓 (𝑥 ;𝜃 ) with learnable parameters 𝜃 . Since each layer represents a function,
a three-layer multilayer perceptron with the layers being connected in a chain can be
expressed as 𝑦 = 𝑓 3(𝑓 2(𝑓 1(𝑥))) [GBC16].

2.5.3 Training Procedure
The gradient descent method is an iterative optimization algorithm used to find a local
minimum of a differentiable function. Within the domain of machine learning, the objective
is to methodically adjust the parameters of a model, such as the weights and biases of a
neural network, in a manner that minimizes a specific loss function.

This function is employed to quantify the error or “loss” of the model for a specified
set of parameters. It measures the discrepancy between the model’s predictions and the
actual target values. In the present thesis, the MSE is utilized as either the loss function
𝐽 or as a component of the loss function. The objective is to find the parameter values
that minimize the loss function. The adjustment of the model parameters depends on the
learning rate 𝛼 . This scalar hyperparameter determines the length of the step taken during
each iteration, corresponding to the amount of progress towards the optimal parameters. A
small learning rate results in slow but stable convergence, while a large learning rate can
speed up the process but risks overshooting the minimum [Jun22]. In order to adjust the
parameters in the correct direction, the back-propagation algorithm computes the gradient.
This approach enables the information from the loss function to flow backwards through a
straightforward procedure [GBC16].

The weights and biases are updated based on the gradient. For the gradient descent
method, the weights 𝑤 are updated according to

w𝑡+1 = w𝑡 − 𝛼∇𝑓 (w𝑡 ). (2.19)

The term ∇𝑓 (w𝑡 ) in Equation 2.19 represents the gradient of the loss function that is
multiplied by the learning rate 𝛼 to modify the weights w.
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In the present thesis, the Adam optimizer is employed. The name “Adam” stems from
the adaptive moment estimation. The algorithm accelerates the gradient descent process
by integrating a moving average of the first- and second-order moments m and v of the
gradient [KB17]. The first-order moments m are updated according to Equation 2.20. The
parameters 𝛽1 and 𝛽2 represent the exponential decay rates that quantify the influence of
the gradient on the moments. They define the extent to which preceding moments influence
subsequent ones. According to the original publication of the Adam optimizer, “good default
settings” are 𝛽1 = 0.9 and 𝛽2 = 0.999. These settings are therefore used in the present thesis.
Note that 𝛽1 = 0 would result in the gradient descent described above (Equation 2.19):

m𝑡+1 = 𝛽1 ·m𝑡 + (1 − 𝛽1) · ∇𝑓 (w𝑡 ). (2.20)

The second-order moments v are updated according to

v𝑡+1 = 𝛽2 · v𝑡 + (1 − 𝛽2) · (∇𝑓 (w𝑡 ))2. (2.21)

Both moments m and v are bias-corrected using the terms m̂𝑡 = m𝑡/(1 − 𝛽𝑡1) and v̂𝑡 =
v𝑡/(1 − 𝛽𝑡2), respectively, as they start out at zero and tend to be biased towards zero. The
weights are finally updated using

w𝑡+1 = w𝑡 − 𝛼 m̂𝑡√
v̂𝑡 + 𝜖

. (2.22)

In the Equation 2.22 to update the weights, 𝜖 = 10−8 is another hyperparameter that is
required to avoid division by zero.
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3 Distribution Grid Monitoring

The operation of modern distribution grids is undergoing a fundamental transformation,
driven by the increasing penetration of renewable generation at low-voltage levels, the
proliferation of EV charging infrastructure, and the widespread adoption of heat pumps
for residential heating. While critical for the energy transition, these new assets introduce
unprecedented levels of stress and volatility into grids that were traditionally designed for
unidirectional power flow. Consequently, there is a growing risk of violating established
operational guidelines and standards. To maintain grid stability and reliability, a transi-
tion from reactive to proactive grid operations is essential. This requires the development
of new monitoring techniques capable of providing real-time situational awareness and
detecting potential violations before they occur. This chapter investigates the viability of
using measurement data from smart home hardware as a cost-effective solution to this
challenge, motivating the first research question: To what extent can smart plugs be
used for distribution grid monitoring?

After collecting and pre-processing the raw measurement data from the smart plugs,
the generation of pseudo-measurements is essential for achieving complete distribution
grid monitoring. The evaluation of the accuracy of these generated pseudo-measurements
addresses the second research question: How viable is the use of a feature propagation
algorithm for pseudo-measurement generation in distribution grids compared to
other related methods?

This chapter is primarily based on the publication “Distribution Grid Monitoring Based
on Widely Available Smart Plugs” [GFH24b] and “Distribution grid monitoring based on
feature propagation using smart plugs” [GFH24a].

3.1 Introduction

The voltage in European distribution grids must be maintained within the range of 0.9 to 1.1
p.u., as defined in the EN-50160 standard. Voltage levels are influenced by line impedances,
with Ohm’s law dictating that voltage drops across lines are proportional to current strength
(𝑈 = 𝑍 · 𝐼 ). Consequently, higher currents lead to greater voltage drops. The integration of
high-power loads, such as EV charging stations and heat pumps, increases the loads and
thereby further reduces the voltage levels. On the other hand, voltage increases can occur
due to decentralized generation systems, such as PV installations. The distribution grid
has a finite capacity to accommodate decentralized generation without exceeding voltage
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limits, a concept referred to as hosting capacity [FPL20; MBE20].

However, the new loads and generators do not operate at constant power levels. They
are heavily influenced by external factors such as weather conditions and user behavior,
which can cause them to increase or decrease their input and output rapidly. As a result, the
power grid experiences rapid voltage fluctuations, which can have detrimental effects on the
overall stability and reliability of the system. DERs, such as controllable heat pumps, schedu-
lable EV chargers, and DSM of smart household appliances, have the potential to mitigate
these voltage fluctuations when they are detected. However, effective mitigation requires
monitoring and responding to changes in the grid, necessitating fast and high-frequency
measurements. The DSO needs to have comprehensive and up-to-date measurement data of
the whole distribution grid to control these systems. Moreover, the design and optimization
of new DERs rely heavily on the analysis of historical voltage data, which provides valuable
insights into the patterns and trends of voltage fluctuations in the grid.

The acquisition of accurate and timely measurements is crucial for effective distribu-
tion grid management. However, the deployment of smart distribution grid infrastructure
and measurement devices is proceeding slowly due to the prevalence of aging network
infrastructures. These legacy systems lack monitoring and communication capabilities, and
upgrading them is a complex and costly endeavor. The lengthy lifespan of critical infrastruc-
ture components, including transformers and cables, which is typically in the range of 30
years [ASB11; Bar+95], introduces an additional layer of complexity to the modernization
process. Premature replacement of these components before the end of their operational
lifespan is often economically unfeasible. Consequently, this underscores the necessity for
novel, cost-effective solutions and strategic investment approaches to facilitate grid mod-
ernization, thereby mitigating the financial burdens associated with infrastructure upgrades.

Currently, the adoption of smart household devices is experiencing rapid growth. Accord-
ing to recent studies, approximately 35.8 % of households in the United States and 23.0 % of
households in the European Union had smart home devices installed as of 2021 [Mar22],
with a projected annual growth rate of around 9 % [Mar24]. A specific category of smart
home devices, known as smart plugs, is designed to be interposed between an appliance
and a socket outlet, enabling remote control of the connected device’s power supply. Some
smart plugs can measure the power consumption of connected devices through voltage and
current measurements. Modifying the firmware of these smart plugs enables reconfigura-
tion to communicate with a custom server, rather than the manufacturer’s default server,
and transmit measured data to this alternative server. It appears that smart plugs have the
potential to provide voltage measurements with sufficient accuracy for distribution grid
monitoring applications. This suggests a possible opportunity for leveraging these devices
in the context of grid monitoring.
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Figure 3.1: Exemplary depiction of the constant offset of the smart plug voltage magnitude
measurements. Originally published in [GFH24b]
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Figure 3.2: Exemplary depiction of the fluctuating error of the smart plug voltage magnitude
measurements. Originally published in [GFH24b]

The raw voltage data acquired from the smart plug instrumentation is subject to mea-
surement error. This error can be broken down into two components: a systematic bias and
a stochastic error. The systematic bias manifests as a constant offset, introducing a fixed
deviation to all measurements, independent of the true voltage magnitude. This type of
error is caused by persistent effects, such as offsets from factory calibration or the tolerance
of passive components like voltage-divider resistors. A conceptual representation of this
constant offset is provided in Figure 3.1. The second error component is a varying error
that introduces non-systematic fluctuations in the measured data. This random error can
include thermal noise within the electronic components, quantization errors due to the
finite resolution of the analog-to-digital converter, and potential artifacts introduced by
signal interpolation. This varying error is illustrated in Figure 3.2. To improve the fidelity
of the measurements, a calibration procedure can be performed to mitigate the systematic
bias. By monitoring the smart plug measurements for a prolonged duration, the constant
offset can be quantified. A correction can then be applied by subtracting this calculated
offset from the measured voltage magnitude. The resulting corrected measurements are
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effectively centered on the true value, with the residual uncertainty being characterized by
the varying stochastic error.

Yet, even using widely available smart plugs as measurement devices, complete grid
coverage is hard to achieve. Therefore, it is necessary to substitute missing measurement
data, for example, with pseudo-measurements. These artificial measurements can be de-
rived from historical measurement data or from data collected by existing measurement
devices. However, several requirements must be fulfilled to ensure the practicability of
pseudo-measurements. The generation of these measurements must be rapid, enabling a
timely response to fast fluctuations in the grid. This implies that the computational effort
required for generating the measurements needs to be relatively low. Furthermore, the
produced measurements must exhibit a level of accuracy that is sufficient for power grid
monitoring purposes. For established techniques, historical data or typical load profiles are
often necessary [Ang+16; Man+12; SPJ10; Zha+23]. Due to the ever-changing distribution
grid infrastructure and connected appliances, relying solely on historical data may not yield
accurate results for the current grid state. Therefore, deriving pseudo-measurement data
from the available measurements without the inclusion of historical data is advantageous.
Graph-based algorithms can be used for such tasks, as power grids can be represented as
graphs. In the test cases considered in the present work, graphs representing distribution
grids are cycle-free. Furthermore, the graph’s nodes representing the transformers, house-
holds, and other connected facilities in the grid have homophilic characteristics. These
features are the voltage and voltage angle, which are very similar at neighboring nodes.
Thus, algorithms exploiting these homophilic properties can be applied.

The heat diffusion equation models the heat transfer within a material due to a tempera-
ture gradient. Fourier’s law of conduction describes this relationship with

𝑄 ∝ 𝐴𝜕𝑇
𝜕𝑥
. (3.1)

In Equation 3.1, 𝑄 is the heat transferred, 𝐴 is the area over which the heat is transferred,
and 𝜕𝑇

𝜕𝑥 is the temperature gradient [Geo24].
When discretized, the material exhibits homophily, with neighboring elements having

similar temperatures. Rossi et al. have developed a graph feature propagation algorithm
based on the heat diffusion equation, demonstrating its effectiveness in generating accurate
features in homophilic graphs through neighbor-based aggregation [Ros+21].

In the present thesis, smart plugs provide the available measurement data. They measure
the voltage at a single phase at a standard power outlet, and the feature propagation algo-
rithm is used to generate voltage pseudo-measurements at nodes that are not instrumented.
However, without loss of generality, this method can be applied to all three phases of the
grid, enabling comprehensive monitoring.
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This chapter commences with a comprehensive review of the relevant literature, first
covering state-of-the-art measurement devices in distribution grids. The review then delves
into methods for enhancing the state estimation, generating pseudo-measurements, and
imputing missing data. Following this literature review, the chapter details the proposed
methodology, beginning with the data collection process, followed by an explanation
of the feature propagation algorithm. The subsequent evaluation is twofold: first, the
intrinsic accuracy of the raw smart plug measurements is assessed. Second, leveraging
the measured data, the efficacy of the feature propagation approach for generating robust
pseudo-measurements is evaluated with varying amounts of missing values. The chapter
concludes by synthesizing these findings and exploring their broader implications for the
field of distribution grid monitoring.
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3.2 Related Work

Accurate voltage measurements at multiple nodes in the grid are the foundation for as-
sessing the state of the distribution grid [And+11; FPL20]. For example, calculations of
the hosting capacity are based on the voltage levels within the grid. The hosting capacity
determines the extent to which renewable generation systems such as solar panels and wind
turbines can be integrated into the existing power grid without threatening its stability,
reliability, or power quality [EB11]. Because the hosting capacity of PV systems depends on
many factors, such as grid layout, topology, connection type, and others, individual mea-
surements do not allow conclusions to be drawn about an entire grid area. When assessing
the hosting capacity in a distribution grid area, it is essential to determine the minimum
and maximum voltage levels that occur over a specified time frame, which necessitates
conducting long-term voltage measurements.

Previously, the absence of measurement hardware in the distribution grid led to simula-
tions relying on limited measurement data and pseudo-measurements [AAM22; Dah+20;
PL17]. However, the integration of smart meter measurement data into the state estimation
can also increase observability in the distribution grid [Ali+14; JCL13; KH22; Wan+19].

The measurement fidelity of smart meters has been demonstrated to be sufficient for en-
hancing load forecasting accuracy [Qui+15], improving state estimation precision [Sam+11],
and detecting errors and faults within the grid infrastructure [Ara+19; TF17]. To address
the challenge of grid state estimation under conditions of limited observability from a
limited number of smart meters, network topology reduction can be employed [KH22].
Furthermore, the inherent asynchronicity of measurements from multiple smart meters
presents a challenge for accurate state estimation. To mitigate this issue, a preprocessing
methodology can be employed wherein individual measurements are weighted prior to
estimation [Ali+14]. In particular, the weights assigned to each measurement are calculated
as a function of the measurement’s age. This technique has been demonstrated to yield
superior accuracy compared to traditional state estimation algorithms, which erroneously
assume simultaneous data acquisition. Nonetheless, professional electricians are needed
to install smart meters, and these meters typically capture measurements at 15-minute
intervals [Wan+19].

Utilizing this already existing Advanced Metering Infrastructure (AMI) in the distribution
grid results in cost savings and reduced expenditures, albeit at the expense of data timeliness
and, consequently, the immediate accuracy of grid state estimation [San+17]. The absence
of measurement hardware also results in imprecise distribution grid transformer loading
data. AMI can be incorporated into analyses to calculate transformer load profiles and
assess whether the current infrastructure could support potential new loads without risk
of overloading [LHL14]. While installing monitoring devices on all transformers could
address this issue, it is not economically feasible to replace working infrastructure [LHL14].
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Additional information sources, such as temperature, geographic, customer, and facility
management data, can be integrated to enhance grid models and more accurately estimate
transformer peak loads. The near real-time optimization of the distribution network through
smart grid technology represents a substantial advancement for the efficient operation of
the grid [LHL14].

In the research conducted by Dimitriou et al. [Dim+14], a smart plug capable of real-time
voltage and frequency monitoring is developed. The measured data is transmitted via
Bluetooth to a smartphone, which subsequently uploads the information to a web server.
This implementation illustrates the feasibility of measuring voltages at various household
outlets within the distribution grid and estimating the grid’s real-time status based on these
measurements. The device serves as a proof of concept for a cost-effective alternative to
traditional AMI hardware. However, the study does not specify the measurement accuracy
or any associated time delays. In their 2011 study, Abart et al. put forth a proposal for
the utilization of specialized voltage meters for the purpose of monitoring the electrical
grid [And+11]. Their proposed methodology incorporates a synchronization of measure-
ments and the execution of grid state analyses through the implementation of load flow
simulations based on sequential snapshots of the grid. Furthermore, the foundational grid
model refinement is achieved by incorporating insights derived from discrepancies between
the calculated and observed voltages at various nodes [And+11]. In the study by Ganu et
al. [Gan+12], a smart plug is designed for DSM. The authors developed software capable
of toggling the connected load based on the detected voltage levels, demonstrating that
widespread deployment of these smart plugs within the grid allows for effective peak shav-
ing. However, the device lacks a communication mechanism, rendering the measured data
unsuitable for distribution grid monitoring. The hardware remains in the prototype stage
and is unavailable for commercial purchase. Melo et al. [Mel+21] develop a cost-effective
data logger equipped with LoRa wireless communication to monitor meteorological vari-
ables and PV generation. LoRa is a modulation technique for the transmission of small
data packets using low power, while achieving a long range [bad23; LoR]. This device
transmits data to a LoRa Gateway, which then forwards it to an MQTT (a message queue
with publishers and subscribers) broker [And+19], with subsequent storage in the Google
Cloud Platform. Despite the innovative design, these devices are custom-built and not
readily available on a commercial scale, thus limiting their potential for widespread adoption.

Vanting et al. [VMJ21] demonstrate that by integrating various input variables, including
historical data, weather conditions, and daily features, the loads on the distribution grid can
be accurately forecasted using deep neural networks. These forecasts can then be used to
infer the grid’s state [VMJ21]. However, due to averaging effects, the aggregation of loads
from multiple distribution grid participants results in a less volatile total load compared
to that of a single household [VMJ21]. Nevertheless, when attempting to predict the load
of a single household, additional external factors must be considered, such as occupancy
behavior and building characteristics. Consequently, effectively monitoring a single branch
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of the distribution grid with only a few participants necessitates detailed information about
the occupants. In the work by Manandhar et al., Kalman filters are employed to estimate
various state variables within the distribution grid [Man+14]. Discrepancies between the
Kalman filter estimates, derived from a mathematical model of the power grid, and actual
measurement data serve as indicators for triggering alarms. In their study, attacks and faults
in the grid are detected by comparing predicted and measured states. These predictors
provide a thorough estimate of distribution grid measurement values, offering an alternative
to traditional monitoring methods [Man+14].

According to Markovic et al. [MBH23], effective monitoring of the distribution grid is
contingent upon the availability of sufficient measurement data. For nodes lacking di-
rect measurement hardware, measurement data can be inferred from alternative sources.
For instance, the authors employ estimates from preceding time steps to create pseudo-
measurements, thereby enhancing grid monitoring capabilities [MBH23]. As Manitsas et al.
emphasize, when typical load profiles are available for missing measurement values, they
can be integrated into the process of generating pseudo-measurements [Man+12]. However,
actual load profiles frequently deviate significantly from these typical profiles, necessitating
the application of corrective measures [Ang+16]. Alternative methodologies assume that
loads within the distribution grid adhere to probabilistic density functions, facilitating the
generation of pseudo-measurements based on these distributions [SPJ10]. Alternatively,
multiple data sources can be combined within a machine learning framework to produce
accurate voltage pseudo-measurements [Zha+23]. This approach integrates historical data
with current measurements, achieving high voltage estimation accuracy and performing
computations in a matter of milliseconds [Zha+23]. The method demonstrates particular
robustness in scenarios characterized by high penetration of PV systems.

A feature propagation algorithm is proposed in [Ros+21] that enables the generation
of missing data features without reliance on prior time steps, conventional load profiles,
or statistical load distributions. This approach utilizes a graph structure to diffuse known
features, thereby reconstructing the missing features. Rossi et al. [Ros+21] conceptual-
ize feature propagation as a low-pass filter, stating that it is particularly well-suited for
homophilic graph data. In homophilic graphs, adjacent nodes exhibit similar features, a
characteristic that applies to voltages in the distribution grid, where the voltage values
of neighboring nodes tend to be closely aligned [Cos+11]. To evaluate the effectiveness
of feature propagation, node classification tasks are conducted using a GCN on various
benchmark datasets. A GCN is a type of GNN that exhibits invariance or equivariance
with the input data. Consequently, permutations of the input nodes either leave the output
nodes unchanged or permute them correspondingly. This characteristic enables a GCN
to generalize across all node permutations within a graph [KP19]. Incorporating both the
propagated and original features into a GCN, the method proposed by Rossi et al. results
in only a marginal accuracy reduction of 4 % even with 99 % of features missing [Ros+21].
They demonstrate in their evaluation that this feature propagation approach surpasses four

33



Chapter 3 Distribution Grid Monitoring

other methods for reconstructing missing features on benchmark datasets, including Cora,
Citeseer, and PubMed.

Spinelli et al. propose an alternative methodology for estimating missing values within a
dataset [SSU20]. They construct a similarity graph from the training data to represent the
connections between individual features, with the edges’ weights quantifying the similarity
between nodes. This approach allows for the creation of a graph representation of tabular
data. The resulting similarity graph is then encoded into a higher-dimensional intermediate
graph using a GCN autoencoder. Subsequently, another GCN decodes this intermediate
representation back into the original data dimension, incorporating the imputed features.
In comparison to other data imputation algorithms, this method achieves superior results
in most instances.

In the present thesis, an approach for monitoring distribution grids through feature
propagation is presented, first outlined in [GFH24a]. The feature propagation algorithm
is heavily influenced by the work of Rossi et al. [Ros+21]. Unlike machine-learning tech-
niques [Man+12] or probabilistic mixture models [SPJ10] that are traditionally employed to
generate pseudo-measurements, the presented method leverages the homophilic properties
of nodes within the distribution grid. This approach obviates the necessity of defining
typical load profiles for grid participants and mitigates concerns about substantial deviations
from these profiles, which can occur due to the increasing integration of renewable genera-
tion components. To our knowledge, this feature propagation method has not previously
been applied to electricity grids in the existing literature. The Graph Imputation Neural
Network (GINN) algorithm presented by Spinelli et al. [SSU20] serves as a benchmark for
comparison with the approach presented in the present thesis.
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3.3 Method
This section details the methodology designed to address the first research question: To
what extent can smart plugs be used for distribution grid monitoring? To this
end, a monitoring framework utilizing smart plug measurements is implemented. How-
ever, practical constraints prevent the installation of smart plugs at every node within the
distribution grid, resulting in sparse measurement data. To overcome this limitation and
ensure network observability, a pseudo-measurement generation technique is employed to
augment the real data. To evaluate the performance of this technique, it is benchmarked
against a state-of-the-art GINN algorithm. This comparative analysis directly addresses the
second research question: How viable is the use of a feature propagation algorithm for
pseudo-measurement generation in distribution grids compared to other related
methods?

3.3.1 Measurement Hardware
Smart plugs contain various measurement hardware. Commonly employed energy mea-
surement integrated circuits (ICs) include the Shanghai Belling BL0937 and BL0940 [Tas22].
The Nous A1T, Gosund SP1, and Shelly Plug S smart plugs utilized in this study contain
the BL0937 Integrated Circuit (IC). The prevalence of this IC across a multitude of smart
plug models suggests that the measurement accuracy of these smart plugs is uniform, and
consequently, the tested smart plugs exhibit consistent measurement characteristics.

Variations in calibration across the smart plugs are observable. Manufacturing tolerances
and disparate environmental conditions experienced by individual units contribute to inter-
device variability in measured voltage and current levels, even within identical product
models and production batches. To mitigate this, a constant offset bias is calculated for
each smart plug independently. This bias is determined by quantifying the mean deviation
between voltage measurements obtained from the smart plug and those acquired from a
calibrated reference meter, a Janitza UMG 604EP-PRO power analyzer [Jan19]. Subsequently,
the determined offset voltage is subtracted from the raw voltage measurements during a
pre-processing stage. Following this correction, the mean voltage values obtained from
all smart plugs subjected to a common, stable voltage source exhibit convergence. Before
operational deployment, the initial offset voltage calibration must be conducted for each
individual smart plug.

3.3.2 Measurement Data Acquisition
Smart plugs can interface with various network technologies, including Zigbee, a low-power
personal area wireless network, LoRaWAN, and Wi-Fi. Each of these technologies exhibits
distinct performance attributes, including strengths and limitations, which are summarized
in Table 3.1. The smart plugs can be actuated remotely through smartphone applications or

35



Chapter 3 Distribution Grid Monitoring

a smart home hub, and some smart plugs contain hardware for measuring the electrical
power consumption of connected devices, as well as the line voltage of the socket outlet.
The resulting measurement data is generally transmitted to a server maintained by the
device manufacturer. This infrastructure enables users to monitor the measured parameters
through a web service.

Protocol Hub needed Data Rate Range Prerequisite
Wi-Fi no high low numerous access points
LoRaWAN yes low high few access points
Zigbee yes medium medium some access points

Table 3.1: The selection of appropriate communication protocols for smart home devices is
determined by factors including grid topology and internet connectivity. Source: [Son+17].

However, with customized firmware, certain smart home devices have the capability to
connect to IoT gateways other than the manufacturer’s server. These gateways can transmit
the collected data, encapsulated in standardized message formats, to a message broker. This
enables the remote monitoring and logging of voltage levels and power consumption for
connected devices. The primary objective of smart home devices is not grid monitoring, and
manufacturers typically omit specifications regarding the accuracy of their measurement
data. Moreover, the potential for firmware modifications introduces a variable that can
affect both the precision and sampling frequency of the measurements.

This study employs Wi-Fi-enabled smart plugs reprogrammed with a tailored implemen-
tation of the Tasmota open-source firmware1. This modification enables the devices to
capture voltage measurements at a one-second sampling rate. The acquired voltage data is
subsequently transmitted to an MQTT broker.

The selection of Wi-Fi-enabled smart devices, as opposed to LoRaWAN or Zigbee, ob-
viates the requirement for an additional gateway, leveraging pre-existing Wi-Fi access
points. This presents a pragmatic deployment strategy within the current experimental
framework and anticipated real-world applications, characterized by omnipresent Wi-Fi
access points. Besides, the inherent higher bandwidth of Wi-Fi facilitates the transmission
of high-frequency, comprehensive measurement data streams. Specifically, the smart plug
utilized in this study exhibits a data latency typically below 100 ms, enabling near real-time
data accessibility within the simulated environment.

The transmission of data via Wi-Fi is potentially not encrypted. However, the smart plugs
employed in this study, which incorporate the ESP8266 microcontroller, support the WPA2
encryption standard to secure communication between the device and the access point. This,

1 https://github.com/si-gr/Tasmota/commit/0d5170928e4fc09a29421b43731631c5c061f42e
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in turn, safeguards the integrity of the measurement data transmitted. Furthermore, the
Mosquitto MQTT broker utilized in this research supports Transport Layer Security (TLS)
encryption. To secure the data transmission from the smart plugs, a customized Tasmota
version containing the BearSSL library is created. This lightweight SSL library enables
the ESP8266 to perform TLS-encrypted communication. The configuration of the smart
plugs with the Secure Sockets Layer (SSL) fingerprint of the MQTT broker and a pre-shared
key serves to mitigate the risk of spoofing attacks, rendering the injection of malicious or
fabricated data significantly more challenging.
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field router

Backbone router /
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Microservice
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MQTT
Publish

MQTT Subscribe

HTTPS Post

Figure 3.3: Network infrastructure between the smart plug and the InfluxDB server. Illus-
tration adapted from [GFH24b].

A microservice is implemented as an adapter between the MQTT broker and an InfluxDB
time-series database, with the microservice translating MQTT message payloads into struc-
tured data suitable for an InfluxDB storage. This mapping process enables the assignment
of measured values to pre-defined fields within the database schema. The architecture
supports the concurrent integration of diverse measurement devices, thereby enabling
comparative analysis of data, such as voltage readings, across multiple sources. Further-
more, the inclusion of metadata tags within the data stream enables the contextualization
of measurements, associating them with attributes such as power phase, geographic loca-
tion, and device manufacturer. This modular design promotes scalability and extensibility,
facilitating the rapid integration of novel sensors through the development of specialized
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microservices. The system’s flexibility extends to accommodating devices employing al-
ternative communication protocols; new microservices can be developed to bridge these
protocols with the time-series database, ensuring backward compatibility. The architecture
also permits the horizontal scaling of the data storage by integrating additional database
servers, each managed by a dedicated microservice, without requiring modifications of the
existing infrastructure. A graphical representation of the network topology is depicted in
Figure 3.3.

3.3.3 Data Processing
While the raw data stream from the smart plugs offers high temporal resolution and low
latency, it is insufficient for comprehensive grid monitoring in its raw form. Achieving
a complete and observable system state requires a two-stage process. First, the raw mea-
surements undergo a pre-processing pipeline, as detailed in Section 3.3.1. Second, pseudo-
measurements must be generated for all uninstrumented nodes to address the inherent data
sparsity.

To construct a comprehensive representation of the distribution grid area instrumented
with smart plugs, a methodology for generating synthetic measurements is employed.
This process utilizes a feature propagation algorithm, adapted from the work of Rossi et
al. [Ros+21]. Given the graph-based nature of this algorithm, the initial step involves the
construction of a graph representation of the distribution grid topology. The subsequent
sections detail the development of the graph data structure and the implementation of the
feature propagation algorithm.

3.3.4 Feature Propagation
In Figure 3.4, the input data for the feature propagation algorithm is depicted. Nodes
colored in red lack associated voltage attributes due to the absence of instrumentation at
these locations within the distribution grid. Various strategies exist for imputing these
missing features. A rudimentary baseline approach assigns the mean value of the observed
voltage values to all uninstrumented nodes. However, this method disregards the inherent
topological structure of the network and the underlying data distribution. To address this
limitation, a feature propagation algorithm, analogous to heat diffusion, is implemented.
This algorithm propagates features based on the adjacency matrix and edge weights. Specif-
ically, feature propagation is achieved through the matrix multiplication of the adjacency
matrix with the feature matrix, resulting in an updated feature matrix, effectively propagat-
ing features by one hop. The edge weights, representing line conductances, quantify the
strength of connectivity between adjacent nodes. During each propagation iteration, the
observed voltage attributes are reinstated to their original values, preserving the integrity of
empirical measurements and their associated errors. This iterative process, reminiscent of
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Figure 3.4: Illustration of the distribution grid monitoring with missing features. Nodes
colored in blue denote the instrumented nodes, where per-unit measurements are available.
Nodes marked in red lack voltage features, necessitating reconstruction. Resistances 𝑅
measured in 𝛺 represent the edge features that make up the admittance matrix with𝐺 = 1

𝑅 .
The Figure is originally published in [GFH24a].

heat diffusion originating from the instrumented nodes, generates a gradient between these
nodes, with the gradient’s slope determined by the connection strength. This procedure is
detailed in Algorithm 1.

In the feature propagation algorithm, 𝑥𝑘 contains the known features, and 𝐴 represents
the weighted adjacency matrix. Given the propagation of real-valued voltage measurements
and no voltage angles within a modeled DC grid, the adjacency matrix 𝐴 is equivalent
to the simplified DC admittance matrix. The set 𝑘 = 𝑘1, 𝑘2, ..., 𝑘𝑛 represents the indices
corresponding to the known features. The vector𝑦 (𝑖) represents the feature vector resulting
from iteration 𝑖 of the algorithm. Each iterative step necessitates a single matrix multipli-
cation, which can be computed efficiently. The matrix multiplication 𝑦 (𝑖) = 𝐴 × 𝑦 (𝑖 − 1)
is analogous to Fourier’s law of conduction as described with Equation 3.1. Just as heat
diffuses through a medium based on conductivity and temperature gradients, this algorithm
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Algorithm 1 Feature propagation algorithm as presented by Rossi et al. [Ros+21].
1: procedure FeaturePropagation(𝑥, 𝐴)
2: 𝑦 ← [0, 0, ..., 0]
3: 𝑦𝑘 (0) ← 𝑥𝑘 ⊲ Set known features
4: while |𝑦 (𝑖 − 1) − 𝑦 (𝑖) | > 𝜖 do ⊲ While not converged
5: 𝑖 ← 𝑖 + 1
6: 𝑦 (𝑖) ← 𝐴𝑦 (𝑖 − 1) ⊲ Propagate features according to adjacency matrix
7: 𝑦𝑘 (𝑖) ← 𝑥𝑘 ⊲ Reset known features
8: end while
9: return 𝑦 (𝑡)

10: end procedure

propagates voltage features through the grid based on electrical conductance and voltage
differences.

The number of iterations required for the convergence of the feature propagation algo-
rithm is influenced by the number and placement of available measurements, as well as the
topology of the distribution grid under consideration. The algorithm terminates once the
difference 𝛿 between successive iterations falls below a predefined threshold 𝜖 . For instance,
with seven available measurements and a threshold of 𝜖 = 10−5, the algorithm converges
after 153 iterations on the IEEE 37-bus system.

In contrast, the GINN algorithm [SSU20], which is used for comparison, does not rely
on a graph data structure. Instead, it imputes missing features based on training data,
which consists of the same power grid with various loads. While the grid topology remains
unchanged within the training dataset, voltage measurements vary according to the applied
loads. All voltage measurements are simulated using power flow calculations. The internal
GCNs leverage this training data to learn node relationships, eliminating the need for an
adjacency matrix as an input.
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During each iteration of the feature propagation algorithm, a matrix multiplication
operation is executed. Consequently, the computational complexity of this algorithm is
inherently dependent on the size of the matrix, which corresponds to the number of nodes
in the graph. As a result, the complexity ranges between approximately𝑂 (𝑛2.38) and𝑂 (𝑛3),
depending on the specific algorithm employed for the matrix multiplication [SV23]. In the
GINN algorithm, an internal similarity graph is constructed, a process that can be performed
efficiently [SSU20]. This graph construction is required only once per dataset during the
training phase. However, for the recurrent generation of pseudo-measurements, inference
must be performed using GCNs. The complexity of the inference is given by 𝑂 ( |𝐸 |𝐶𝐹 ),
where |𝐸 | represents the number of edges, and 𝐶 and 𝐹 denote the number of input and
output features of the GCNs, respectively [SSU20].
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3.4 Evaluation
The evaluation of the proposed methodology is structured into two distinct phases. Firstly,
the measurement accuracy of the employed smart plugs is assessed. This assessment
involves the deployment of two smart plugs within a real-world test environment, where
their measured values are compared with those obtained from calibrated, professional-grade
instrumentation. Secondly, the effectiveness of the distribution grid monitoring approach is
evaluated.

3.4.1 Evaluating the Smart Plugs Measurement Accuracy
To assess the accuracy of the voltage measurements obtained from the smart plugs, two
devices with identical measurement hardware are deployed within a real-world test envi-
ronment. The experimental setup involves the configuration of the Janitza power analyzer
to transmit measurements at a frequency of one sample per second. Given the utilization of
identical measurement hardware within the smart plugs, any discrepancies in the recorded
values can be attributed to the variations between the modified and unmodified firmware
versions.

Initially, an analysis is conducted on the measurements acquired from the smart plug
utilizing the unmodified Tasmota open-source firmware [Tas22]. This firmware version
outputs voltage measurements with a precision of one decimal place, suggesting a maximum
error of 0.1 V. However, the presence of rounding errors within the unmodified firmware
results in a larger measurement error, with the smart plug exhibiting voltage measurement
increments of at least 0.2 V, and in some instances, 0.3 V.

Figure 3.5 depicts a comparison of the measurement errors associated with the unmodified
and modified firmware versions, colored in orange and blue, respectively. This measurement
error is calculated after the preprocessing step and therefore does not contain the constant
offset as described in Section 3.3.1. The unmodified firmware transmits measurements at a
rate of one sample every ten seconds, whereas the modified firmware provides measure-
ments at a frequency of one sample per second. Consequently, within a given timeframe,
the number of measurements obtained from the modified firmware is exactly ten times that
of the unmodified firmware. The values represented on the Y-axis are normalized relative
to the total number of measurements recorded for each respective firmware version. The
measurements acquired from the smart plug utilizing the unmodified Tasmota firmware ex-
hibit greater variability than the distribution observed for the smart plug with the modified
firmware. This suggests a lower standard deviation in the measurements associated with the
modified firmware (represented in blue) relative to the unmodified firmware (represented
in orange). Quantitative analysis verifies this discrepancy, with the standard deviation
calculated as 0.33 V for the unmodified firmware and 0.27 V for the modified firmware.
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Figure 3.5: Relative frequency histogram of the measurement error of smart plugs with the
modified firmware (blue) and the unmodified firmware (orange). The depicted measurement
error is adjusted to account for the constant offset as described in Section 3.3.1. This Figure
was originally published in [GFH24b].

Statistical analysis, employing both the Anderson-Darling test for normality [M A74]
and the Shapiro-Wilk test [SW65], failed to reject the null hypothesis of normality for the
measurement error data. Specifically, the Anderson-Darling test yielded a test statistic of
0.44, which is less than the critical value of 0.57, even at a high significance level of 15 %.
Furthermore, the Shapiro-Wilk test produced a p-value of 0.54. Consequently, based on
these results, it can be concluded that the measurement error distribution is consistent with
a normal distribution or a closely related distribution.
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3.4.2 Distribution Grid Monitoring Error

For distribution grid monitoring, the Point of Common Coupling (PCC)’s voltage levels
are relevant. Regulatory authorities mandate that voltage levels at this demarcation point,
between building wiring and the distribution grid operator’s network, remain within speci-
fied allowable limits. The EN-50160 standard, for instance, defines an acceptable voltage
range of 0.9 p.u. to 1.1 p.u. Consequently, the installation of the measurement devices in
close proximity to the PCC is essential. This study asserts that the smart plugs utilized
for voltage measurement are installed at an electrical outlet located in immediate prox-
imity to the PCC, thereby ensuring that the measured voltage closely approximates the
actual PCC voltage. Consequently, the analysis of grid monitoring accuracy can be con-
strained to the inherent measurement error of the smart plug itself, obviating the need to
account for additional errors arising from the device’s placement downstream from the PCC.

The present work evaluates the accuracy of distribution grid monitoring through a
comparative analysis of simulated monitoring results against known ground truth. The
MSE is calculated to quantify the aggregate error. Specifically, the performance of the
GINN [SSU20] algorithm was assessed and contrasted with a rudimentary mean imputation
technique. This baseline comparison serves to contextualize the GINN algorithm’s effec-
tiveness in addressing data gaps within the monitoring framework.

The grid topologies "1-LV-rural3--1", "1-LV-semiurb5--2", and
"1-LV-urban6--2" from the SimBench dataset [Mei+20] with corresponding load profiles
are used for the simulation. The grids incorporate PV systems at multiple nodes and operate
at a nominal voltage of 0.4 kV. They are comprised of 118, 104, and 53 nodes, respectively.
Ground truth voltage data is obtained through power flow simulations conducted over
5000 time steps for each grid. To simulate realistic measurement scenarios, a percentage of
voltage values was systematically removed, and the remaining values were perturbed with
simulated measurement errors drawn from a normal distribution, reflecting the empirical
measurement error of the smart plugs. The resulting dataset exhibits varying levels of data
sparsity, with 50 %, 20 %, 10 %, 5 %, and 2 % of the voltage values missing (corresponding
to 50 %, 80 %, 90 %, 95 %, or 98 % data availability) for each time step and the available volt-
age values being inaccurate according to the measurement characteristics of the smart plugs.

The performance of the GINN and feature propagation algorithms, in the context of
pseudo-measurement voltage generation, is illustrated in Figure 3.6, depicting the MSE
with various amounts of missing measurement values. The associated standard deviations
are depicted as shaded areas. This evaluation is conducted using 1,000 time steps from the
three distribution grid datasets. To simulate realistic measurement scenarios with missing
data, a randomized mask is applied to the data at each time step, effectively removing a
random selection of input voltage values. The resulting dataset, comprising incomplete
voltage measurements for the three grids over 1,000 time steps, is then used as input for
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Figure 3.6: The MSE between the imputed and true values in the dataset. The shaded area
illustrates the standard deviation. Graphic originally published in [GFH24a].

both the GINN and feature propagation algorithms.

To assess the performance of the GINN algorithm, independent training and evaluation
procedures are conducted for each of the three distribution grids. This approach, which
excludes transfer learning, ensures that the algorithm’s performance is evaluated under
optimal conditions for each individual grid. Specifically, the GINN algorithm is trained and
tested exclusively on data from a single grid, and this process is replicated for each of the
three grids included in the evaluation.
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Missing Rate Averaging GINN Feature Propagation
0.5 4.375 0.121 0.030
0.8 6.668 0.300 0.105
0.9 8.019 0.503 0.242
0.95 8.792 0.640 0.431
0.98 11.630 1.146 0.626

Table 3.2: MSE of the distribution grid monitoring in 10−3 𝑝.𝑢. from 1000 time steps of the
grids “1-LV-rural3–1”, “1-LV-semiurb5–2”, and “1-LV-urban6–2”. Data originally published
in [GFH24a].

The feature propagation algorithm exhibits a high degree of efficacy in reconstructing
missing voltage features, maintaining accuracy even under conditions of low numbers
of available measurements (95 % and 98 % missing values). While the GINN algorithm’s
performance improves with increasing data density, the feature propagation algorithm
consistently achieves superior reconstruction accuracy across all tested levels of data
sparsity. Quantitatively, with 95 % missing voltage values, the feature propagation algorithm
yields an MSE of 0.43 · 10−3 p.u., equivalent to 0.099 V in a 230 V grid. Conversely, the GINN
algorithm produces an MSE of 0.64 · 10−3 p.u., corresponding to 0.147 V in a 230 V grid,
under the same sparsity conditions. The naive approach of mean imputation results in
substantially higher MSE values. Detailed results are tabulated in Table 3.2.
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3.5 Discussion

The voltage standard deviation of 0.27 V (≈ 0.12%) achieved by the modified firmware-
equipped smart plugs exceeds the performance stated in prior studies, which report accept-
able ranges of 0.6 % [Sam+11] and 0.3 % to 0.9 % [JCL13]. The spatial distribution of multiple
smart plugs within a distribution grid segment contributes to improved measurement
precision. A key advantage of the modified firmware lies in its high temporal resolution,
providing voltage measurements at a rate of up to 1 Hz, thereby enabling near-instantaneous
grid state evaluation. This contrasts with the comparatively low sampling and transmission
rates of traditional smart meters, which often operate with 15-minute measurement inter-
vals and 6-hour data transmission delays [San+17]. The smart plugs also offer significant
logistical advantages, with a rapid deployment process that requires minimal technical
expertise, enabling uncomplicated field implementation through simple Wi-Fi configuration.

In electrical distribution systems, smart meters are generally installed near the PCC. In
contrast, smart plugs are connected to individual outlets and measure the voltage at that
point. This difference in installation location leads to a notable difference, as voltage mea-
surements obtained by smart plugs inherently include the voltage drop occurring within the
residential electrical grid [GFH23]. Similar to the voltage drop in the distribution grid that is
depicted in Figure 2.1, this voltage drop is unique for every household and varies depending
on the load conditions within the household’s electrical system. It is, therefore, non-constant.
To minimize inaccuracies in voltage measurement caused by this internal voltage drop
along the local circuit, the smart plugs should be installed as close as possible to the PCC.
Additionally, smart plugs are designed to monitor only a single phase of the electrical supply.

The use of widely accessible smart plugs for monitoring the distribution grid is pri-
marily constrained by privacy concerns, access to the communication infrastructure, and
the accuracy of the measurements, particularly when compared to those obtained from
calibrated smart metering systems or power analyzers. Associating the measurement data
from individual smart plugs with a specific distribution grid customer could disclose daily
routines or installed appliances. Positioning the smart plugs away from the PCC may
compromise the validity of the measurements, and the inherent offset of each device must
be identified and corrected. Nevertheless, the high frequency of measurements could allow
for the mitigation of these limitations, such as through the application of filters. Another
practical challenge in field implementation is ensuring access to a reliable Wi-Fi connection
for transmitting measurement data. Offering customers the ability to use the smart plug’s
switching functionality might incentivize them to permit access to their private Wi-Fi
networks. From a consumer’s standpoint, the configuration process of the device and its
functionality would be analogous to that of commercially available smart home devices.

Installing custom firmware on smart plugs for distribution grid monitoring generally
voids their warranty. To avoid this, manufacturers would need to offer a software interface
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for data collection or enable the smart plugs to connect to custom servers without requiring
firmware modifications. Without such support, DSOs would have to flash custom firmware
onto the devices before distributing them to customers. The smart plugs evaluated in this
study can be remotely flashed without physical access, streamlining scalability. Given the
low data transfer requirements, thousands of smart plugs can connect to a single server.
If the number of installed devices increases significantly, the workload can be distributed
across multiple servers.

With these results, the first research question can be answered: To what extent can
smart plugs be used for distribution grid monitoring? Similar to related grid monitor-
ing devices, smart plugs can be used for distribution grid monitoring. They have a higher
temporal resolution than typical smart meters. However, smart plugs must be installed
close to the PCC to provide accurate measurements.

The proposed method for generating pseudo-measurements allows for comprehensive
monitoring of the distribution grid with minimal measuring devices. As shown in Table 3.2,
simply substituting missing values with the average of measured values yields suboptimal
results. By exploiting the homophilic properties of neighboring nodes, known features
can be propagated through the graph representing the distribution grid. This approach
is computationally efficient, as the features are propagated by multiplying matrices of
size 𝑛 × 𝑛. In the evaluated test cases, feature propagation outperforms simple averaging
of the available measurements, reconstruction using the GINN algorithm, and feature
generation using the method proposed in [GFH24b]. The publication by Grafenhorst et
al. [GFH24a] outlines the first application of feature propagation in electricity grids. The
evaluation demonstrates that this method can reconstruct missing measurements with high
accuracy, achieving an MSE of 0.431 p.u. (equivalent to 0.099 V) when 95 % of measurements
are unavailable. This surpasses the GINN algorithm by Spinelli et al. [SSU20], which
yields an MSE of 0.640 p.u. (or 0.147 V) under similar conditions. This answers the second
research question: How viable is the use of a feature propagation algorithm for
pseudo-measurement generation in distribution grids compared to other related
methods?
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3.6 Conclusion and Outlook
The increasing penetration of distributed renewable generation and new loads, such as
electric vehicle charging infrastructure, places unprecedented stress on low-voltage dis-
tribution grids. This creates an urgent need for cost-effective, high-resolution monitoring
techniques to proactively identify and mitigate grid constraint violations. This chapter
evaluates the viability of using ubiquitous, consumer-grade smart plugs as the foundation
for such a monitoring system.

First, the measurement accuracy of the hardware is evaluated. By developing a custom,
open-source firmware modification, the voltage measurement accuracy of commercially
available smart plugs is significantly enhanced, achieving a standard deviation of 0.27 V
when benchmarked against a professional-grade power analyzer. The methodology lever-
ages inexpensive smart home hardware that does not require a professional installation
and is connected via a WiFi access point to a standard time-series database.

To address the inherent data sparsity of the deployment of such devices, a novel feature
propagation algorithm is proposed for generating pseudo-measurements at unmetered
nodes. This computationally efficient algorithm, based on the principles of heat diffusion,
outperforms both a previously published method [GFH24b] and a state-of-the-art feature
imputation algorithm [SSU20] in accuracy while demanding substantially lower computa-
tional complexity.

The combination of validated, low-cost hardware and a lightweight algorithm enables
real-time grid monitoring. This facilitates the identification of impending congestion and
allows for targeted scheduling of DERs to provide ancillary services based on local measure-
ments, enhancing the electricity grid’s capability in hosting renewable generation systems
and high-power appliances.

Future work will focus on validating the scalability of the feature propagation algorithm
on larger, more complex grid topologies with diverse load profiles. Additionally, the propa-
gation of the phase angle 𝜃 will also be evaluated. Furthermore, the underlying principle of
leveraging electricity grid homophily will be explored as a method to accelerate solutions
for other critical grid optimization problems, such as the Optimal Power Flow (OPF).
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Distribution grid voltage monitoring is a prerequisite for deploying congestion mitigation
strategies. Upcoming congestion scenarios can be detected in advance, and grid-supporting
Distributed Energy Resources (DERs) can be scheduled to alleviate such issues. However,
determining the optimal sizing and operational schedule of a multi-energy DER is a com-
plex, non-trivial optimization problem. The existence of multiple, competing optimization
strategies addressing this problem motivates the third research question of this work: What
are the advantages and disadvantages of optimizing a multi-energy DER using an
evolutionary algorithm, an MILP, and an MIQP? This chapter presents a comparative
analysis of these methods to identify the most effective approach for scheduling DERs.

The chapter is based on the publications “Heuristic vs. Analytical Energy Hub Opti-
mization: Design, Implementation, and Trade-Offs" [Gra+24b] and “Grid Aware Portfolio
Optimization of a Multi-Energy DER" [GFH24a].

4.1 Introduction
Multi-energy DERs can be operated to achieve various objectives. At its core, a multi-
objective function is minimized. This function typically encapsulates not only monetary
costs but can also incorporate penalties for greenhouse gas emissions or deviations from a
target power curve mandated by the DSO. The target power can be based on the real-time
grid monitoring and congestion management, such that a DER can support the grid by
purposefully adjusting power demand or power injection. Furthermore, a complete analysis
of the costs of a DER requires accounting for the capital expenditure during its planning and
installation. Therefore, an economically optimal DER operation must also incorporate asset
depreciation, which is dependent on the asset size. On the other hand, this relationship
allows for the isolated minimization of operating costs, excluding depreciation, by assuming
fixed component sizes.

Suitability of an optimization algorithm is assessed against several performance criteria.
A primary criterion is computational speed. Load and generation forecasts, as well as grid
state estimations, are frequently updated. To continuously recompute the optimal schedule
using the most recent data, the algorithm needs to execute at the same cadence as forecast
and state-estimation updates. Consequently, minimizing execution time is essential to
enabling the timely implementation of the updated schedule.
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The algorithm’s adaptability is a second critical requirement, given the wide variability
of use-cases for multi-energy DERs and diverse component portfolios. Consequently, the
framework must facilitate the integration of novel components and the modification of
existing ones.

Finally, the quality of the optimization is an essential criterion. An optimal operational
schedule for a multi-energy DER consists of operating points for each component across all
time steps while pursuing one or more predefined objectives. Objectives include minimizing
carbon emissions, enhancing local grid stability, reducing operational expenditures, or
a combination of those. The optimization algorithm must identify the optimal solution
to the scheduling problem, irrespective of whether the problem consists of a single or
multiple objectives. The evaluation of optimization quality can be conducted quantitatively
by examining error metrics, such as the MSE.

An optimization algorithm that meets these criteria enables a grid operator to effectively
manage the multi-energy DER. The accurate tracking of the target power curve and the
timely implementation of the optimized schedule form the foundation for the DSO coor-
dination mechanism proposed in [Ner+25]. The core contribution of this publication is a
structured, iterative negotiation between the multi-energy DER optimization algorithm
and the DSO. While the interface to the DSO is possible from a modeling standpoint, it
needs to be developed as the next practical step. The envisioned exchange begins when
the optimization algorithm publishes an initial schedule based solely on the objective of
minimizing operational costs of the DER. Subsequently, the DSO can analyze this sched-
ule and request specific changes to mitigate grid congestion. In response, the algorithm
re-solves the optimization problem with the new constraints imposed by the DSO. Cru-
cially, the system then computes and publishes the cost difference between the original
minimized-cost schedule and the newly requested schedule. This provides the DSO with a
transparent, monetized trade-off for its request. Based on this information, the DSO is able
to either accept the new schedule and its associated cost—effectively procuring a flexibility
service, or request other changes, initiating a new cycle of negotiation. The framework
moves beyond simple dispatch commands, creating an economically grounded dialogue for
managing grid constraints [Ner+25].

52



Introduction Section 4.1

The primary focus of this chapter is a comparative analysis of two optimization algo-
rithms - a heuristic EA and an analytical MILP or MIQP. The algorithms are tasked with
the operational scheduling of a multi-energy DER, as this optimization problem is already
implemented with an EA. Furthermore, the scheduling algorithm can serve as a foundation
for a more comprehensive sizing and planning tool for multi-energy DERs. The framework
can be easily advanced to incorporate capital expenditure, such as depreciation. However, to
facilitate a direct and equitable comparison between the heuristic and analytical approaches,
the scope of this investigation is intentionally confined to a specific multi-energy DER.
Consequently, only the operational scheduling aspect is considered.

This chapter continues with a discussion of work related to various techniques to optimize
the schedule and design of DERs. A summary of DERs and the Energy Hub can be found in
Section 2.1 and is not part of this chapter. The subsequent methods section describes the
DER model, which is implemented for an MILP, an MIQP, and an EA. To evaluate these
two approaches, the optimization techniques are compared. In the evaluated scenario, the
optimization algorithms minimize the difference between a target power curve requested by
a DSO and the power curve resulting from scheduling the components of the multi-energy
DER. The resulting findings are discussed in the final section of this chapter.
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4.2 Related Work
Common approaches to scheduling the operation of the components of a multi-energy DER
fall into two main categories: data-driven heuristics, such as EAs, and analytical methods,
including MILP and MIQP. Indeed, the original Energy Hub by Geidl et al. employs an
MILP model [Gei+07]. MILP has since been applied in various contexts, including battery
storage scheduling by Chouhan et al. [Cho+16] and by Najafi et al. for a DER model incor-
porating uncertainty considerations [Naj+22]. Illustrating another analytical technique,
Zhong et al. [Zho+22] optimized the schedule for integrated sector-coupling systems using
MIQP. The choice of MIQP was driven by their objective function, which, being analogous
to an Root Mean Squared Error (RMSE), inherently defines a quadratic optimization problem.

Heuristic optimization techniques, such as EAs [Ela+20] and Particle Swarm Optimiza-
tion [BAL17], provide an alternative by permitting the direct use of complex, non-linear
objective functions and models, thereby obviating the need for linearization [LRM17].
EAs are inspired by the principles of biological evolution. The fundamental process involves
iteratively refining a collection of candidate solutions to navigate complex search spaces
and identify near-optimal solutions. The core algorithmic loop is defined by a structured
sequence as follows.

In the beginning, a population is initialized, representing a collection of candidate solu-
tions. This initial population can be generated randomly to ensure a broad and unbiased
exploration of the solution space, or it can be seeded with heuristic-based or educated
guesses to potentially accelerate convergence. Each individual solution within this pop-
ulation is formally referred to as a chromosome. A chromosome serves as an encoded
representation of a potential solution, and a pre-defined model dictates how this repre-
sentation can be decoded into a problem-specific solution. Structurally, a chromosome is
composed of one or more genes, where each gene encapsulates a set of variables that define
a particular aspect or component of the overall solution [BJ09; Pop24].

The iterative cycle of an EA proceeds through the following distinct steps [BJ09; Pop24]:

1. Initial population generation: Initialize the algorithm’s population based on heuristics
or guesses.

2. Evaluation: Evaluate every individual in the current population by decoding each
chromosome and applying a fitness function to quantify its performance.

3. Parent selection: Select a subset of individuals based on their evaluated fitness to act
as parents for the subsequent generation.

4. Reproduction: Generate offspring out of the parents through the application of genetic
operators, primarily recombination and mutation. Recombination combines the
genetic material from two or more parents to create new chromosomes, resulting in
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the inheritance of beneficial traits. Mutation introduces small, random perturbations
to an offspring’s chromosome, promoting exploration of new regions within the
search space.

5. Evaluation of offspring: Evaluate newly generated candidate solutions using the
fitness function.

6. Termination Check: Check a set of pre-defined termination criteria, for example,
reaching a fixed maximum number of iterations, observing that the population’s
fitness has converged (i.e., improvements have stagnated below a certain threshold
𝜖), or achieving a pre-determined target value for the goal function.

If the termination criteria are not satisfied, the cycle repeats, starting with step 3. A new
set of parents is selected from the current population, and another iteration of reproduction
and evaluation is executed. This iterative process continues, progressively guiding the
population toward regions of the search space containing higher-quality solutions.

A practical application is the operational optimization of the Energy Hub Gas [Pop+23a],
which utilizes the GLEAM evolutionary algorithm [BJ09]. Within this framework, chro-
mosomes produced by the EA are interpreted and translated into Energy Hub schedules.
The efficacy of each schedule is then determined through simulations of individual com-
ponent responses, where operational setpoints are mapped to energy flows (inputs and
outputs), and the overall schedule performance is quantified via multiple objective functions.

To decode a chromosome into a schedule for the DER, the individual genes are decoded
as described by Poppenborg et al. [Pop+23a] and Jakob et al. [Jak+17]. This gene model
describes how the individual decision variables that are encapsulated within a gene are
decoded. In this instance, a gene consists of four variables: the component ID, the start
time of this setpoint, the duration for which the setpoint is valid, and the setpoint itself,
expressed as a fraction of the component’s rated power. Each chromosome consists of 120
to 240 genes, allowing for up to 240 individual setpoints in a one-day schedule of the DER.
Five components are scheduled in the Energy Hub Gas [Pop+23a]: a Combined Heat and
Power (CHP) plant, a gas storage system, a Proton Exchange Membrane (PEM) electrolyzer,
a methanization system, and a Battery Energy Storage System (BESS). A conventional
time-discretized formulation would necessitate defining 480 independent setpoints (5 com-
ponents with 96 time intervals). In contrast, the proposed EA employs a more compact
representation. As each gene defines not only a power fraction but also its duration, a single
gene can span multiple time intervals. Consequently, a complete 24-hour schedule requires
significantly fewer genes to be described, which reduces the necessary computational effort,
but possibly also the quality of the solution.
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The formulation of analytical optimization problems is commonly done using stan-
dalone Algebraic Modeling Languages [Byn+21]. However, modern frameworks such as
Pyomo [Byn+21] facilitate this process directly within a high-level programming envi-
ronment like Python, offering a more integrated workflow [Byn+21]. To facilitate future
development of the optimization algorithm, the Pyomo framework is employed for modeling
the multi-energy DER.

Although EAs and MILP models are both widely employed for DER scheduling and
operational optimization, they possess distinct strengths and weaknesses. The selection
of the most appropriate algorithm significantly impacts the quality and feasibility of the
resulting DER schedule. Apart from the work “Grid Aware Portfolio Optimization of a
Multi-Energy DER" by Grafenhorst et al. [GFH24a], a systematic comparative study of these
distinct algorithmic strategies within this context appears to be an unaddressed area in the
published research.
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4.3 Method

In this section, the EA, MILP, and MIQP optimization techniques for a multi-energy DER are
outlined. The Energy Hub Gas implementation, as detailed by Poppenborg et al. [Pop+23a],
represents the EA optimization.

4.3.1 Evolutionary Algorithms

The Energy Hub Gas model [Pop+23a] component representations are based on lookup
tables, which delineate the relationship between input and output energy vectors. These ta-
bles can be populated either through detailed simulations of individual components or from
empirical data obtained from physical components. A key advantage of this data-driven
approach is the circumvention of explicit mathematical formulations or model simplifica-
tions to characterize these input-output relationships. Consequently, the modeling process
becomes largely agnostic to the underlying physical or operational intricacies of the specific
components.

The General Learning Evolutionary Algorithm and Method (GLEAM) EA, as utilized in
the Energy Hub Gas [Pop+23a], generates candidate solutions. Each solution comprises a
series of operational setpoints for all constituent components over a defined time horizon.
An Energy Management System (EMS) subsequently evaluates the aggregate energy inputs
and outputs of the entire DER by referencing these pre-computed lookup tables for each
component. This evaluation enforces operational constraints, including battery State of
Charge (SoC) limits, maximum CHP power generation, and maximum PEM electrolyzer
load. The process of candidate generation and evaluation is repeated until a predefined con-
vergence criterion is reached. Upon termination, the algorithm outputs the best-performing
solution identified during the search. For the comparative analysis herein, this Energy Hub
Gas workflow is adopted and visually represented in Figure 4.1.

4.3.2 Analytical Model

An MILP optimizes a linear objective function subject to linear constraints. For problems
involving quadratic relationships, an MIQP formulation can be suitable. Such quadratic
formulations become necessary when the objective function incorporates a quadratic error
metric, for instance, the MSE. In these scenarios, an MIQP can yield more accurate solutions.

In the MILP formulation of a multi-energy DER, the components are represented by
linearized models, wherein the input-output relationships and inter-component interactions
are defined by systems of linear equations. This modeling approach employs a generalized
class for all storage systems, irrespective of their technology (e.g., hydrogen or battery
storage). Input power is denoted as 𝑃𝑖𝑛, and the corresponding energy as 𝐸𝑖𝑛 = 𝑃𝑖𝑛 · 𝑡 .
Output power and energy are defined analogously. This generalized storage system model
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Figure 4.1: The EA optimization process used for comparison. The process is based
on [Pop+23a]. The single-component simulation and the generation of the lookup tables
only need to happen once. The illustration is adapted from [Gra+24b].

is formally presented by

𝑠𝑜𝑐 (𝑡 + 1) = 𝑠𝑜𝑐 (𝑡) + 𝐸𝑖𝑛 · 𝜂𝑖𝑛 − 𝐸𝑜𝑢𝑡 · 𝜂𝑜𝑢𝑡
𝑐𝑎𝑝

(4.1a)

0 ≤ 𝑃𝑖𝑛 ≤ 𝑃𝑖𝑛,𝑚𝑎𝑥 (4.1b)
0 ≤ 𝑃𝑜𝑢𝑡 ≤ 𝑃𝑜𝑢𝑡,𝑚𝑎𝑥 (4.1c)
0 ≤ 𝐸𝑖𝑛 ≤ 𝑐𝑎𝑝 − 𝑠𝑜𝑐 (𝑡) · 𝑐𝑎𝑝 (4.1d)
0 ≤ 𝐸𝑜𝑢𝑡 ≤ 𝑠𝑜𝑐 (𝑡) · 𝑐𝑎𝑝. (4.1e)

To calculate the state of charge 𝑠𝑜𝑐 of the next time step 𝑡 + 1, the 𝑠𝑜𝑐 of the current time
step is modified by adding the energy input 𝐸𝑖𝑛 multiplied by the charging efficiency 𝜂𝑖𝑛
and subtracting the energy output 𝐸𝑜𝑢𝑡 multiplied by a discharge efficiency coefficient 𝜂𝑜𝑢𝑡 .

Constraints (4.1b) and (4.1c) limit the maximum charge and discharge rate of the storage
system. Constraint (4.1e) prevents the use of more energy than is stored, and the constraint
(4.1d) limits the stored energy to the maximum capacity.
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Since the DER is connected to multiple energy grids, the individual connections to the
grids are modeled by

𝑟𝑒𝑣 (𝑡) = (𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛) · 𝑐 (𝑡) (4.2a)
0 ≤ 𝑃𝑖𝑛 ≤ 𝑃𝑖𝑛,𝑚𝑎𝑥 (4.2b)
0 ≤ 𝑃𝑜𝑢𝑡 ≤ 𝑃𝑜𝑢𝑡,𝑚𝑎𝑥 . (4.2c)

To calculate the revenue that is generated by selling and importing energy, in equation
(4.2a) the difference between the exported energy 𝐸𝑜𝑢𝑡 and imported energy 𝐸𝑖𝑛 is multiplied
by the energy cost 𝑐 (𝑡) at every time step. The cost of importing energy is assumed to
be equal to the revenue from selling energy. The constraints (4.2a) and (4.2b) limit the
maximum power for importing and exporting in a single time step.

𝑟𝑒𝑣 (𝑡) = 𝐸𝑜𝑢𝑡 · 𝑐 (𝑡) (4.3a)
0 ≤ 𝑃𝑜𝑢𝑡 ≤ 𝑃𝑜𝑢𝑡,𝑚𝑎𝑥 (4.3b)

The modeling approach for generation components mirrors that of the grid connection.
A simplifying characteristic, however, is their inability to import energy; this unidirectional
constraint results in a more concise set of descriptive Equations (4.3).

−
∑︁
𝑎∈𝑃𝑖𝑛

𝑎(𝑡) =
∑︁
𝑏∈𝑃𝑜𝑢𝑡

𝑏 (𝑡) · 𝛽𝑏 (4.4a)

∀𝑎 ∈ 𝑃𝑖𝑛 : 𝑃𝑎,𝑚𝑖𝑛 ≤ 𝑎(𝑡) ≤ 𝑃𝑎,𝑚𝑎𝑥 (4.4b)
∀𝑏 ∈ 𝑃𝑜𝑢𝑡 : 𝑃𝑏,𝑚𝑖𝑛 ≤ 𝑏 (𝑡) ≤ 𝑃𝑏,𝑚𝑎𝑥 (4.4c)

∀𝑏 ∈ 𝑃𝑜𝑢𝑡 : 𝛾𝑏 (𝑡) =
𝑏 (𝑡)
𝑃𝑏,𝑚𝑎𝑥

(4.4d)

∀𝑏 ∈ 𝑃𝑜𝑢𝑡 : 𝛾𝑏 (𝑡 + 1) − 𝛾𝑏 (𝑡) < 𝑅𝑏,𝑢𝑝 (4.4e)
∀𝑏 ∈ 𝑃𝑜𝑢𝑡 : 𝛾𝑏 (𝑡) − 𝛾𝑏 (𝑡 + 1) < 𝑅𝑏,𝑑𝑜𝑤𝑛 (4.4f)

With Equation (4.4a), the relation between the total energy input as a sum of all forms
of energy inputs 𝑎 ∈ 𝑃𝑖𝑛 and the total energy output 𝑏 ∈ 𝑃𝑜𝑢𝑡 is described. To quantify
the losses introduced by the energy conversion processes, the coefficient 𝛽 is introduced,
representing the efficiency of the specific energy output. For each form of energy, con-
straints (4.4b) and (4.4c) define the minimum and maximum input and output power and
equation (4.4d) defines the setpoint 𝛾 of each converter component. This setpoint can only
be changed by a maximum ramp-up 𝑅𝑏,𝑢𝑝 or ramp-down 𝑅𝑏,𝑑𝑜𝑤𝑛 value as expressed by (4.4e)
and (4.4f).
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A set of three complementary objective functions is implemented that can be selectively
combined. To minimize the deviation from the grid operator’s target power profile 𝑃𝑡 (𝑡),
Equation (4.5a) calculates the sum over all time steps of the absolute difference between
the target power and the DER power. The economic objective, specified in Equation (4.5b),
aims to minimize the operational cost, calculated as the difference between energy input
expenditures (𝐶𝑎 (𝑡)) and energy sales revenues (𝑅𝑏 (𝑡)). A final objective, presented in Equa-
tion (4.5c), enables following a target power curve by penalizing deviations according to the
RMSE. Consequently, the introduction of this quadratic term reclassifies the optimization
problem, converting it from an MILP to an MIQP.

min 1
𝑇

∑︁
𝑡∈𝑇

𝑎𝑏𝑠 (𝑃𝑖𝑛 (𝑡) − 𝑃𝑜𝑢𝑡 (𝑡) − 𝑃𝑡 (𝑡)) (4.5a)

min
∑︁
𝑡∈𝑇
(
∑︁
𝑎∈𝑃𝑖𝑛

𝑎(𝑡) ·𝐶𝑎 (𝑡)) − (
∑︁
𝑏∈𝑃𝑜𝑢𝑡

𝑏 (𝑡) · 𝑅𝑏 (𝑡)) (4.5b)

min
√︄

1
𝑇

∑︁
𝑡∈𝑇
(𝑃𝑖𝑛 (𝑡) − 𝑃𝑜𝑢𝑡 (𝑡) − 𝑃𝑡 (𝑡))2 (4.5c)

Start
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Figure 4.2: The MILP optimization process. Development of the component models only
has to be done once. The illustration is adapted from [Gra+24b].

Figure 4.2 outlines the optimization process using the MILP model. First, linear equations
representing component behavior are derived from either simulation or empirical evalua-
tion. Next, component-level constraints are formally imposed. The resulting constrained
optimization problem is then solved using external computational solvers. The model is
implemented in Python environment using the Pyomo library [Byn+21; HWW11].
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4.4 Evaluation

4.4.1 Optimization Results
A comparative performance assessment of the MILP and EA optimization methods is per-
formed, wherein both algorithms are tasked with the identical objective of tracking a
predefined power target according to the functions in Equations (4.5a) and (4.5c).

The performance evaluation includes a case study for two exemplary days in April 2022,
as well as a comprehensive analysis of the entire year 2022. The use of real-world energy
prices and solar irradiation data ensures a realistic test environment. As a standard initial
condition, all daily simulations start with the battery state of charge at 50 %.

0 20 40 60 80
Timestep

−2

−1

0

1

2

3

Po
w

er
[M

W
]

EA
Target
MILP

Figure 4.3: Comparison of the generated schedules from the MILP and the EA for one
exemplary day in April 2022. The Figure is adapted from [Gra+24b].
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In times without enough generation to match the DSOs target power curve, the schedule
optimized with the MILP using the linear error metric (Mean Absolute Error (MAE)) varies
between exactly matching the target and differing by a large amount. This is due to the
battery storage sometimes supplying enough power to match the target, and at other times
not supplying any power at all.
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Figure 4.4: Comparison of the generated schedules from the MIQP, and the EA for the
same exemplary day as is used to generate Figure 4.3. The Figure is adapted from [Gra+24b].

In contrast to the MILP, which minimizes the linear absolute error, the MIQP optimizes
the schedule using the RMSE objective function denoted in Equation (4.5c). Consequently,
the schedule generated by the MIQP keeps a constant deviation from the target curve in
the times with insufficient generation capacity at the start and the end of the day. During
these times, the BESS is being discharged at a constant rate. Doing so minimizes the sum of
the quadratic error, while the sum of the absolute error as calculated with Equation (4.5a) is
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equivalent to the solution generated using the MILP.
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Figure 4.5: Comparison of the generated schedules from the MILP, the MIQP, and the
EA for a separate exemplary day. In this case, the results of the MILP and the MIQP are
identical and match the target exactly.
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Figure 4.5 illustrates the optimized DER schedule for another day. In this specific scenario,
both the MILP and MIQP algorithms result in an identical component schedule. This result
is attributable to the sufficient capacity of the DER components, which allows the target
power curve to be tracked perfectly. Notably, the EA maintains its scheduling performance
observed in Figure 4.3, continuing to employ a limited number of setpoint adjustments
rather than adjusting the DER’s power at every time step.

While the MILP formulation penalizes deviations linearly using the absolute difference
(Equation (4.5a)), the EA and MIQP employ the RMSE (Equation (4.5c)). This quadratic ob-
jective function disproportionately penalizes larger deviations. This fundamental difference
in the objective function explains why the MIQP consistently yields schedules with a lower
or the same RMSE compared to the MILP optimization, a conclusion substantiated by the
comprehensive statistical analysis for an entire year, as documented in Table 4.1.

RMSE (MWh) EA MILP MIQP
Average 0.97 0.21 0.14
95th percentile 1.18 0.46 0.34
Standard Deviation 0.14 0.16 0.12

Table 4.1: Results of optimizations for every day of the year 2022. The RMSE is calculated
for every day in one year. The data was first published in [Gra+24b].

The EA is a heuristic algorithm that terminates upon meeting a convergence criterion
(Figure 4.1). Consequently, it provides an approximation of the optimal solution rather than
the exact optimum. Furthermore, the optimization’s precision is constrained by the use of
discretized lookup tables for component modeling, which, due to their finite number of
entries, do not offer an exact representation of component behavior.

An observational difference is that the EA produces schedules with fewer setpoint changes
compared to the MILP and the MIQP. This behavior is a direct consequence of the solution
encoding scheme. As described by Poppenborg et al. [Pop+23a] and Jakob et al. [Jak+17],
each chromosome contains decision variables encapsulated in genes that represent the
DER’s component, start time, duration, and power fraction. However, this chromosome
structure is limited by the number of genes and cannot account for individual power settings
for each component in each time interval.

Figure 4.5 compares the 96-timestep schedules optimized by the three algorithms for the
DER. Among the methods, the schedules generated by the MILP and MIQP demonstrate
the highest degree of accuracy in following the specified target power profile.
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4.4.2 Runtime
The runtime comparison focuses solely on the optimization task, as the one-time model
generation cost is excluded from the analysis of the daily DER scheduling. For a 96-timestep
daily schedule, the MILP model requires 1.6 seconds to solve with GUROBI [Gur23] on a
modern office computer, while the MIQP requires 2.0 seconds. In contrast, the employed
EA, which must evaluate many potential schedules, has a significantly higher runtime of
approximately 20 minutes.

4.4.3 Configurability
The EA utilizes lookup tables populated by Functional Mock-up Unit (FMU) simulations.
This methodology enables straightforward component integration, requiring only the simu-
lation of a new component’s FMU.

The MILP model for DER optimization is manually formulated by expressing all com-
ponents and their interactions as linear equations. While this initial linearization is time-
consuming, the model architecture supports future expansion. New components can be
added by either creating new linear representations or by combining the models of existing
components.

The MILP and MIQP models are open-source. This allows other researchers to use them
as a foundation, avoiding the time-intensive process of creating similar models from scratch.
Furthermore, its architecture supports the integration of other open-access models, such as
those in [Sas+20].
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4.5 Discussion
The results of this study demonstrate the practical utility of the MILP modeling approach
for the operational scheduling of DERs and their coordination with a DSO. The MILP
algorithm computes the exact, globally optimal solution for its underlying linear model.
However, because the model itself is an approximation, this optimality does not extend to
the real multi-energy DER. Inaccuracies are introduced during the required linearization
of system components (Figure 4.2). Therefore, while the algorithm provides a calculated,
optimal result, this result is subject to the modeling errors introduced by the linearization
of the components and objective functions.

As outlined in the previous section, the EA produces schedules with a low temporal
resolution. This phenomenon is a direct consequence of the solution encoding, wherein a
single gene represents a constant power output over multiple time intervals. In contrast,
the target power curve fluctuates, hindering precise tracking of the target power curve.
To address this limitation, Poppenborg et al. develop a more sophisticated two-stage dy-
namic optimization algorithm [Pop+23b], based on the original Energy Hub Gas EA. Their
approach performs an initial optimization run, followed by a second, targeted run that
focuses on refining the schedule during periods of high tracking error. While this method
yields improved accuracy, it does so at the cost of a substantial increase in computational
effort. With the applied enhancements, the EA-based method exhibits improved accuracy
but still falls short of the tracking performance of MIQP. This implies that alternative,
untested EA variants could potentially outperform MIQP in accuracy. Nevertheless, the
findings of this chapter indicate that EAs are unlikely to exceed MIQP in computational effi-
ciency, at least for multi-energy DER optimization with a similar number of linear equations.

All evaluated algorithms can be extended in order to support new components. For
the EA, a simulation or real-world evaluation of the component is necessary. To generate
the required look-up table, it is necessary to test all conceivable power set-points, along
with their respective input and output powers. However, the configuration of the EA is
a complex challenge that necessitates either a dedicated hyperparameter search or the
adoption of parameters from existing literature [BJ09]. These hyperparameters include the
chromosome length, initialization of the genes, offspring selection method, crossover and
mutation functions, and evaluation function. The integration of novel components may
lead to new local and global minima. Consequently, the hyperparameters must be adjusted
to ensure that the EA finds the global minimum. Since Poppenborg et al. extensively
optimized hyperparameters for the multi-energy DER use case [Pop+23a], their approach
is taken as representative of the broader family of EAs. Adapting another EA to this use
case is beyond the scope of this work, as the required hyperparameter tuning would be too
resource-intensive.
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For the MILP and MIQP, new components can be added by linearizing the components’
behavior. The effort required for this process is contingent upon the specific component
in question. However, the developed model’s modular and object-oriented design enables
novel components to inherit the generic functionality of an energy storage system, an
energy conversion system, an energy generation system, or a generic load.

Given that the DER scheduling problem is well-defined and the constituent component
models can be linearized with negligible loss of fidelity, an MILP model provides a natural
and appropriate optimization approach. For the test case, the MILP solver outperformed an
EA, yielding superior results in significantly less time. The model can also be extended to an
MIQP formulation to directly optimize quadratic objectives like the RMSE. These findings
answer the third research question: What are the advantages and disadvantages of
optimizing a multi-energy DER using an evolutionary algorithm, an MILP, and an
MIQP?
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4.6 Conclusion and Outlook
This chapter investigates two distinct approaches to scheduling a multi-energy DER: a
heuristic method, represented by an EA, and an analytical method, represented by MILP
and MIQP models. The EA’s models are built using a co-simulation of a DER. Consequently,
the optimization is restricted to operational scheduling, and the MILP cost function likewise
omits depreciation. The behavior of the co-simulation components is individually approxi-
mated through linear functions, as described in Equations (4.1), (4.2), (4.3), (4.4), and (4.5).

While the presented evaluation focuses on two exemplary days, the results are gen-
eralizable. Both algorithms consistently exhibit comparable performance profiles and
distinguishing characteristics across all tested days. This is exemplified in Figure 4.5, which
illustrates a day where the MILP and MIQP formulations result in an identical, optimal
schedule. In this scenario, the EA again displays its characteristic behavior of infrequent
setpoint adjustments. This results in lower performance compared to the MILP and MIQP
optimizations, because the fluctuating target power can not be met accurately.

Two primary research directions are identified to advance the optimization of DER
scheduling. First, the process of manually formulating mathematical models presents a
bottleneck. Future work should focus on the development of automated modeling tools that
can generate the MILP or MIQP representations from a high-level component description
or simulated components. This would not only substantially reduce development effort but
also enhance the scalability of the optimization approach. Second, extended benchmarks
are required to evaluate the performance of the optimization algorithms across varying
problem sizes. It is hypothesized that for large-scale problem instances, the computational
efficiency of an EA may surpass that of a deterministic MILP solver. However, the problem
size, structure, and parameterization at which an EA becomes more effective than an MILP
has not yet been investigated and is subject to future research.
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Planning and sizing of a DER must take into account the physical limitations of its host-
ing energy grids. This is particularly important for constrained energy systems that are
operating close to or at their limits. Therefore, this work develops an integrated approach,
explicitly modeling the constraints imposed by the surrounding electricity grid within the
optimization framework for the design of the DER. This chapter addresses configuring
and sizing a DER, extending the operational scheduling optimization from the previous
chapter. The primary objective remains economic optimization, aiming to minimize the total
operating cost, including asset depreciation. In alignment with the findings of the preceding
analysis, an MILP/MIQP model is utilized. The key distinction of this advanced model is the
inclusion of capital expenditure. This is achieved by augmenting the linear model to include
component depreciation, thereby creating a model that balances initial investment against
long-term operational savings. By implementing and evaluating this model, the fourth
research question is answered: How does the annual cost of a DER designed to provide
grid supporting services compare to the annual cost of themost economical design?

This chapter is based on the publication “Grid Aware Portfolio Optimization of a Multi-
Energy DER" [Gra+24a].

5.1 Introduction
As detailed in the previous chapter, the schedule of a DER can follow a target power curve.
By demanding or injecting power according to the target power curve, the grid is supported.
To avoid excessive increases in the cost of operation of the DER, the deviation from the
most economical power curve should be minimized. To achieve this, the target power
curve should only constrain the DERs power at times when it is necessary. Respecting such
constraints is also necessary during the planning and sizing of the individual components of
a DER to achieve the cost-optimal configuration for a multi-energy DER that can fulfill the
grid’s needs. Calculating these constraints requires an analysis of the grid area surrounding
the DER in conjunction with optimizing the composition of a DER.

This work proposes an algorithm to determine the optimal economic sizing of DER
components while ensuring the sufficient provision of flexibility to mitigate grid congestion.
The methodology integrates the DER optimization presented in the previous chapter with
power system analysis, necessitating complete grid monitoring. As the optimal placement
of DERs constitutes a high-dimensional, non-convex problem [GGK18], it is deliberately
excluded from the scope of the present analysis. Consequently, the multi-energy DER is
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assumed to be situated at a fixed location. In practice, the locations that are feasible for the
installation of a DER are often governed by non-electrical factors, such as the availability
of land and points of grid interconnection. This lends credence to a fixed-location analysis.
The process unfolds as follows: first, power flow calculations identify grid congestion events
and determine the requisite active power adjustment to restore normal operation. Second,
these requirements constrain an optimization problem that co-optimizes the sizing of the
DER components and their operational schedule. An iterative procedure is essential due to
the inter-temporal dependencies; shifting a load from one time step to another necessitates a
re-evaluation of the grid state and the optimal schedule across the entire horizon. A central
contribution of this work is the model’s capacity to directly incorporate the operational
needs of the surrounding electrical grid, enabling the systematic design of cost-effective,
grid-enhancing energy systems. The optimization framework utilizes realistic input data,
such as historical German electricity prices from 2019 and corresponding PV generation
profiles, to inform the analysis. Specifically, the model can be constrained by time-series
data defining the required minimum and maximum power generation or load at each time
step. This ensures that the final optimized DER design is explicitly provisioned to fulfill
these predefined grid support functions. The total costs calculated within the presented
study represent the asset depreciation and operating costs for a whole year.

The next section reviews work related to grid-dependent optimization, including various
approaches that integrate a secondary objective. Afterwards, a method is developed to
optimize the composition of a DER for a specific grid area. Based on the findings presented
in the previous Chapter 4, an MILP is chosen as the optimization algorithm. In the following
case studies, this method is applied to two distinct scenarios. The chapter concludes with
a discussion of the results, answering the fourth research question: What is the most
economical design of a DER for a specific grid area?
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5.2 Related Work
When planning and sizing a DER, constraints stemming from the surrounding grid need to
be modeled. An illustrative example of a decoupled approach is the work of Ghasemi et al.,
who employ a bi-level decomposition strategy to separate the DER’s design optimization
from grid expansion planning [Gha+22]. This technique successfully reduces computational
complexity at the cost of sacrificing guaranteed global optimality. More fundamentally, by
treating the electrical grid as an external element rather than an integral part of the primary
optimization, their planning methodology does not account for the operational constraints
the grid imposes. Consequently, the resulting DER design and dispatch schedules may not
be viable when deployed within capacity-constrained or weak grids [Gha+22].

Existing MILP-based approaches for grid-aware planning often face scalability and accu-
racy limitations. Mashayekh et al. consider the surrounding grid but limit their scope to
small microgrids with less than 10 nodes, employing power flow linearization [Mas+17].
In the domain of gas grids, Shao et al. use piecewise linearization to formulate a single,
comprehensive MILP for system planning [Sha+17]. The primary drawback of such mono-
lithic approaches is that for large grids, they become either computationally expensive
or necessitate simplifications that degrade solution accuracy. A further constraint is the
inflexible requirement to model the entire grid within the MILP framework.

In the domain of grid-integrated energy storage, Grover-Silva et al. present an approach
based on an optimal power flow algorithm for the simultaneous optimization of battery
placement and sizing [GGK18]. They demonstrate the method’s applicability to large distri-
bution networks (137 nodes) and over extended time periods (130 time steps). The central
contribution, as declared by the authors, is the unified consideration of both the locational
and capacity-planning aspects of battery deployment. While significant, the scope of their
optimization is intentionally narrow, being exclusively confined to battery storage systems.
Consequently, it does not address the more complex and multifaceted problem of optimizing
the composition and sizing of a multi-energy DER.

La Scala et al. formulate a nonlinear, multiobjective optimization problem designed to
simultaneously minimize energy costs for meeting demand while ensuring robust and reli-
able grid operation [LVZ14]. Their framework models a multi-carrier energy grid wherein
multiple, distinct components are interconnected. The optimization focuses on controlling
these interconnections to manage the energy flows between the systems optimally. Notably,
the scope of their approach is confined to the interaction between these systems; it does
not extend to the optimization of the internal component composition of the individual
energy systems themselves.
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Poppenborg et al. concentrate on the detailed modeling of energy hub components, partic-
ularly for renewable gas systems, with an EMS determining the optimal schedule [Pop+21].
Key limitations of their approach include a fixed energy hub composition, as the compo-
nent mix is not subject to optimization. Additionally, a related study assumes the hub is
controlled via an external signal from the grid operator, rather than through a real analysis
of the surrounding energy grids [Pop+22].
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5.3 Method
In this context, grid congestion is analogous to a line’s utilization exceeding a limit
during specific time steps. The line utilization in Pandapower [Thu+18] is defined as
𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝐼

𝐼𝑚𝑎𝑥
· 100. To reduce the line utilization, the DER must possess the neces-

sary load or generation power. This presents a dual optimization challenge: the component
composition of the DER must be strategically designed to provide the required power, while
its operational schedule must be concurrently optimized to deploy these assets in the most
economically efficient manner.

The cost of an asset is assumed to scale linearly with its size, resulting in a constant
cost per unit of power for each component within the multi-energy DER. These costs
are divided into Capital Expenditures (CAPEXs), covering procurement, and Operational
Expenditures (OPEXs), for asset operation. The CAPEX is amortized over the lifetime of
the respective asset. To ensure realistic modeling, hourly European electricity price data is
utilized2. A summary of all cost assumptions is provided in Table 5.1.

Component 𝑪𝒄𝒂𝒑𝒆𝒙 𝑪𝒐𝒑𝒆𝒙 Lifetime (years)
PV system 1300 €/𝑘𝑊 - 20
CHP plant 550 €/𝑘𝑊 12 €/𝑘𝑊 · 𝑎 15
PEM 520 €/𝑘𝑊 12 €/𝑘𝑊 · 𝑎 20
BESS 350 €/𝑘𝑊ℎ 5 €/𝑘𝑊ℎ · 𝑎 10

Table 5.1: Cost assumptions for the individual components of the multi-energy DER.

In optimizing the DER’s composition for a specific location, a primary objective is to
impose minimal a priori restrictions on the solution space while simultaneously ensuring
computational efficiency. Two naive approaches to incorporating grid constraints present
significant drawbacks. A static, brute-force application of a single, worst-case constraint
across all time steps results in an overly conservative and oversized DER design, as it fails
to account for temporal variations in grid conditions. A multi-energy DER dimensioned for
the worst-case constraint would have to be able to supply the required load or generation for
the worst-case scenario at every time step. Conversely, an exhaustive, a priori calculation
of precise constraints for every individual time step imposes unnecessary computational
expense, rendering the problem intractable for realistic time horizons.

Therefore, an adaptive constraint calculation strategy is developed. Instead of static
and exhaustive constraints, the presented approach identifies and incorporates constraints
dynamically, only for the specific time steps where operational limits are violated. The
iterative procedure that implements this constraint calculation is presented in Algorithm 2.

2 https://github.com/EnergieID/entsoe-py
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Algorithm 2 Optimization of the composition of the DER
1: procedure optimize(Grid 𝑔, Bus 𝑏, Line 𝑙 , UtilLim 𝑙𝑖𝑚)
2: 𝑇𝑐𝑟𝑖𝑡 = [] ⊲ Critical time steps
3: repeat
4: Power[] 𝑃𝑀𝐼𝐿𝑃 = SolveMILP(constraints)
5: 𝑔(𝑏).setPower(𝑃𝑀𝐼𝐿𝑃 )
6: 𝑇𝑐𝑟𝑖𝑡 = []
7: 𝑙𝑇

𝑢𝑡𝑖𝑙
= calcPowerFlow(𝑔𝑇 ) ⊲ ∀𝑡 ∈ 𝑇

8: for all 𝑡 ∈ 𝑇 do
9: if 𝑙𝑡

𝑢𝑡𝑖𝑙
> 𝑙𝑖𝑚 then

10: 𝑇𝑐𝑟𝑖𝑡 .add(𝑡 )
11: end if
12: end for
13: for all 𝑡 ∈ 𝑇𝑐𝑟𝑖𝑡 do
14: 𝑃 𝑡𝑇 = reduceUtil(𝑔𝑡 , 𝑏, 𝑙 , 𝑙𝑖𝑚, 𝑡 )
15: setConstraints(𝑃 𝑡𝑇 , 𝑃 𝑡𝑀𝐼𝐿𝑃 , 𝑡 )
16: end for
17: until 𝑇𝑐𝑟𝑖𝑡 .empty()
18: end procedure

The iterative process is initialized by computing an optimal configuration and schedule of
the multi-energy DER using the MILP solver, initially without considering grid constraints
(line 4). This resulting power profile is then applied to the bus 𝑏 in the grid (line 5), and
a power flow analysis is executed for all time steps (line 7). The subsequent for all loop
(line 8) iterates the results to identify the set of critical time steps,𝑇𝑐𝑟𝑖𝑡 , where line utilization
limits are violated. For each identified violation, a second loop calculates a new target
power 𝑃 𝑡𝑇 , restricting the DER’s generation or load. This power target is then incorporated
into the MILP as a new constraint (line 15) via the procedure in Algorithm 4. In case the
DER’s injected power needs to be limited or the load of the DER needs to be increased
(𝑃 𝑡𝑇 > 𝑃 𝑡𝑀𝐼𝐿𝑃 ), a lower power limit is set. Otherwise, when the injected power needs to be
increased or the load needs to be lowered, an upper power limit is set. This entire loop
is repeated, with the MILP being re-solved in each iteration, until no grid violations are
detected, at which point the 𝑐𝑟𝑖𝑡𝑖𝑎𝑙𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 list is empty and the algorithm terminates.
To calculate the target power (𝑃 𝑡𝑇 ) needed to reduce the line’s utilization at timestep 𝑡 below
the predefined limit 𝑙𝑖𝑚, the following Algorithm 3 is called (line 14 in Algorithm 2).
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Algorithm 3 Reduction of the utilization of line 𝑙
1: procedure reduceUtil(Grid 𝑔𝑡 , Bus 𝑏, Line 𝑙 , UtilLim 𝑙𝑖𝑚, TimeStep 𝑡 )
2: 𝑙𝑡

𝑢𝑡𝑖𝑙
= calcPowerFlow(𝑔𝑡 ) ⊲ line utilization

3: 𝑚 = 1 ⊲ modifier
4: 𝜖 = 0.1
5: while𝑚 > 𝜖 do
6: 𝑔𝑡 (𝑏).add(𝑚) ⊲ modify DER power
7: 𝑙

𝑝𝑟𝑒𝑣
𝑢𝑡𝑖𝑙

= 𝑙𝑡
𝑢𝑡𝑖𝑙

8: 𝑙𝑡
𝑢𝑡𝑖𝑙

= calcPowerFlow(𝑔𝑡 )
9: if abs(𝑙𝑡

𝑢𝑡𝑖𝑙
- 𝑙𝑖𝑚) > abs(𝑙𝑝𝑟𝑒𝑣

𝑢𝑡𝑖𝑙
- 𝑙𝑖𝑚) then

10: 𝑚 =𝑚 · −0.5
11: end if
12: end while
13: return 𝑔𝑡 (𝑏)
14: end procedure

The Algorithm 4 functions as a simplified optimal power flow where the only variable
is the active power at the DER’s bus, 𝑔𝑡 (𝑏). The algorithm iteratively modifies the power
value (line 6), calculates the power flow, and checks the new line utilization 𝑙𝑡

𝑢𝑡𝑖𝑙
. If the

deviation from the line utilization limit increases, the step-size modifier𝑚 is multiplied by
−0.5 to reduce the step size and reverse the search direction. This process, which is closely
related to a binary search, terminates when the modifier𝑚 is less than a tolerance 𝜖 and the
utilization converges to the limit. The resulting power at bus 𝑏 becomes the DER’s target
power 𝑃 𝑡𝑇 for time step 𝑡 . The algorithm can be parallelized by creating individual processes
for each time step, yielding a linear speedup.
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Algorithm 4 Generation of MILP constraints
1: procedure setConstraints(Power 𝑃 𝑡𝑇 , Power 𝑃 𝑡𝑠𝑡𝑎𝑟𝑡 , TimeStep 𝑡 )
2: if 𝑃 𝑡𝑇 > 0 then
3: if 𝑃 𝑡𝑠𝑡𝑎𝑟𝑡 > 𝑃

𝑡
𝑇 then

4: setMaxLoad(t, 𝑃 𝑡𝑇 )
5: else
6: setMaxGen(t, −1 · 𝑃 𝑡𝑇 )
7: end if
8: else
9: if 𝑃 𝑡𝑠𝑡𝑎𝑟𝑡 > 𝑃

𝑡
𝑇 then

10: setMaxGen(𝑡 , 𝑃 𝑡𝑇 )
11: else
12: setMaxLoad(𝑡 , −1 · 𝑃 𝑡𝑇 )
13: end if
14: end if
15: end procedure

The power value calculated by Algorithm 3 corresponds to the approximate operational
point at which the line’s utilization reaches its maximum permissible value. Consequently,
this power value defines the boundary for the DER’s power (i.e., its maximum power injec-
tion or demand) without violating grid constraints. This operational boundary is then used
to formulate a new constraint for the MILP model. The nature of this boundary constraint
is determined by comparing it to the power level in the original, unconstrained schedule at
the same time step (line 3). This either limits the load or generation and ensures that the
new schedule remains within the feasible region.

The algorithm’s constraint generation mechanism is best illustrated by an example.
Assuming the DER is asked to provide a load and 𝑃 𝑡𝑇 is positive, the unconstrained DER
may request more power than is required for reducing the line’s utilization. Therefore, the
line’s utilization is below the maximum permissible value while the DER operates at the
most economical setpoint. In this case, the maximum generation is set to the calculated
maximum load value (line 4), but the new constraint does not influence the DERs schedule.
Conversely, a different scenario arises when the unconstrained DER demand is below the
calculated power limit that is needed to reach the line’s maximum permissible utilization. In
this case, grid conditions necessitate increased consumption, for instance, to absorb surplus
local generation and prevent power transmission across highly utilized lines. The DER
therefore needs to increase its load. In this case, a lower bound on consumption is enforced,
equivalent to limiting negative generation (line 6). This principle of constraint application
is mirrored for cases where the DER must inject power and 𝑃 𝑡𝑇 is negative, enabling the
algorithm to enforce either an upper or a lower bound on its generation as required by the
grid.
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5.4 Case Studies
The proposed algorithms facilitate the optimization of a DER design that is tailored to the
requirements of a local grid area. In this study, line utilization is employed as the primary
metric to demonstrate how power flow solutions can be integrated into the MILP model to
generate grid-aware constraints. The algorithm is, however, extensible. Other metrics, for
example nodal voltage magnitudes, can be readily incorporated with minor modifications
to Algorithm 3. A necessary consequence of incorporating these grid constraints is that the
total cost of the DER exceeds that of an unconstrained, economically optimal solution.
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Grid Node

Multi-Energy DER

Line
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Figure 5.1: Illustration of the SimBench grid used in the case studies. The red triangle
depicts the location of the multi-energy DER, and the green line depicts the congested line.
Orange dots illustrate nodes.
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5.4.1 Case Study 1: Proof of Concept
The developed method is demonstrated on the 140-node SimBench grid
"1-MVLV-rural-4.101". The objective is to reduce high line utilization caused by a
wind turbine to below a limit of 85 %. A controllable multi-energy DER shall be located
at the same node (Figure 5.1). The initial case study illustrates the iterative optimization
process for a DER comprising only a PV system and a battery storage system, formulated as
an MILP model. The analysis covers 1344 quarter-hour time steps (14 days). The time frame
may be adjusted to accommodate either a full year of operation or a specified number of days.
The duration of this time frame is directly proportional to the number of time steps that
exceed the line utilization limit. Consequently, the algorithm requires a greater amount of
time to compute. The components of the multi-energy DER are dimensioned to meet the cal-
culated requirements of the selected days; thus, choosing representative days across the year
results in a multi-energy DER capable of satisfying requirements throughout the entire year.

Upon integrating the cost-optimal multi-energy DER into the grid, the line utilization limit
of 85 % is violated at multiple time steps (Figure 5.2). In response, the algorithm generates
new constraints specifically for these critical time steps. This intervention successfully
reduces the line utilization to approximately 85 % during these critical time steps. Minor
deviations from the exact limit are attributable to the numerical approximation inherent in
the method. Following the imposition of these constraints, the MILP solver re-optimizes
the schedule, reallocating energy to charge the battery in the most economically efficient
manner possible while adhering to the newly calculated constraints. A notable outcome of
this re-optimization is the shifting of load, which can increase line utilization at previously
unconstrained time steps. In response to line utilization limit violations, new constraints
are calculated using Algorithm 3 and set via Algorithm 4. However, intermittent violations
of the 85 % limit persist, indicating that the algorithm has not yet converged and requires
further iterations. After eight steps, the limit of 85 % utilization is no longer exceeded. The
initial line utilization, the line utilization after the second, and after the eighth iteration are
depicted in Figure 5.2.

This case study illustrates the iterative optimization process and underscores the neces-
sity of planning and sizing the DER for the specific grid location. The initial, unconstrained
optimization yields a multi-energy DER composition that excludes a BESS. However, the
target power curve 𝑃 𝑡𝑇 mandated by the DSO requires the DER to function not only as a
generator but also as a load at specific times. In the scope of this case study, the only compo-
nent capable of fulfilling this energy consumption requirement is the BESS. Consequently,
as the iterative algorithm incorporates these grid-support constraints, the inclusion and
sizing of the BESS become imperative, leading to its progressive increase in capacity in
subsequent iterations.
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Figure 5.2: Line load at the start, after the second, and after the eighth iteration of Al-
gorithm 2. “Each time step represents 15 minutes, with the 1344 time steps shown in the
figure corresponding to 14 days.” [Gra+24a]

The optimization algorithm initially provisions the smallest possible BESS capacity
necessary to meet operational requirements. This minimal sizing is a direct economic
consequence of the energy price structure, where the purchase price of electricity exceeds
the selling price, rendering energy arbitrage unprofitable. Nevertheless, even this mini-
mal BESS capacity induces temporal load shifting in the dispatch schedule, as illustrated
in Figure 5.2. As the iterative process continues, additional constraints mandate greater
operational flexibility, which in turn necessitates a progressive increase in the BESS capac-
ity. This enlargement of the BESS directly corresponds to an increase in the total system cost.

Figure 5.3 depicts the component configuration and total cost for each stage of the
optimization. In the initial, unconstrained step, the optimal solution does not include a
BESS. The primary economic components are the PV system, which incurs a depreciation
cost, and the revenue generated from selling its electrical output. Within the diagram, the
cost associated with the PV system is represented by the yellow bar, while the profit from
electricity sales is indicated by the green bar. The net result for this initial configuration is
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Figure 5.3: Illustration of the evolution of the DER composition and its associated costs for a
whole year in each iteration of the optimization process. A clear trend emerges: as new grid-
aware constraints are introduced in each iteration, the total system cost exhibits a monotonic
increase. In the chart, total expenditures are represented by the thicker, upward-extending
bars, while revenues from energy sales are depicted as thinner, downward-extending bars.

a total profit (negative cost) of 458k € for an exemplary year, denoted by the black line at
the bottom of the green bar. In the subsequent iterations, the total system cost increases
in direct proportion to the required BESS capacity. This increasing cost of the BESS is
visually represented by the red bar in Figure 5.3. Although the DER continues to generate
revenue from electricity sales, this income is insufficient to offset the capital cost of the
BESS, resulting in a positive total cost from the first constrained iteration (step 1) onward.
The optimization converges to a final configuration with a total cost of 5202k € for an
exemplary year. This value represents the minimum economic investment required to
satisfy the complete set of grid constraints.
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5.4.2 Case Study 2: Large Energy Systems
In this second case study, the MILP model is expanded to incorporate a wider range of
components. The portfolio from the first case study, consisting of a PV system, BESS, and
an electrical grid connection, is augmented with a CHP plant and a PEM electrolyzer. The
heat and natural gas produced by these components can be sold to the grid.

Upon performing the initial, unconstrained DER optimization, the resulting line load
time series is qualitatively similar to that observed in Case Study 1. However, a notable
distinction emerges following the first application of grid constraints. In stark contrast to
the previous case, a single iteration is sufficient to bring the line utilization below the 85 %
limit for nearly all time steps, as depicted in Figure 5.4.
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Figure 5.4: Line load at the start, after the first, and after the second iteration.

In the second iteration, only minimal adjustments to the constraints are necessary, as the
DER now almost complies with the 85 % utilization limit. The algorithm terminates after
this iteration as the line utilization is below 85 % at every time step. The final composition
of the energy system is presented in Figure 5.5.
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In the initial, unconstrained step, the optimal DER configuration requires no battery,
PEM, or CHP plant. The total cost of operation for one year, including asset depreciation, is
-485k €, which means that the DER is profitable and comparable to the initial state of Case
Study 1. Afterwards, the algorithm makes a significant adjustment to meet the new grid
constraints, incorporating all available components into the DERs design. This increases
the total cost to -206k €, reducing the system’s profitability but maintaining a net profit. In
the final iteration, the new constraints are only marginally stricter. The DER configuration
from the first iteration possesses sufficient flexibility to meet these new demands without
requiring changes to its composition or incurring additional costs. The total cost, therefore,
remains at -206k €.

A comparative analysis reveals the superior economic performance of the DER design
from the second case study. This enhanced cost-efficiency is primarily attributable to
the substantial capital cost of the large BESS necessitated by the grid constraints in Case
Study 1. In contrast, the expanded component portfolio in the second case study provides
more economic options to provide flexibility. The Power-to-Gas (PtG) plant serves as a
dispatchable load, which not only aids in grid support but also generates additional revenue
through the sale of the produced methane to the gas grid. Furthermore, the CHP plant
provides on-demand power generation. The synergistic operation of these components
substantially diminishes the required BESS capacity, as visually confirmed in Figure 5.5.
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Figure 5.5: Composition of the energy system after each optimization step. Costs increase
as constraints increase. This figure is adapted from [Gra+24a].
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5.5 Discussion
To validate the efficacy of the proposed method, two case studies are conducted. This allows
for an assessment of the algorithm’s performance across different hardware configurations.
The developed method is flexible and can be applied to various grids and DER compositions.
However, the most relevant use-case for multi-energy DERs is within 20 kV medium-voltage
distribution grids, close to or at the 400 V feeders. This focus is motivated by the growing
trend of renewable generation in the 400 V grids and demanding EV charging infrastruc-
ture, directly integrated into 20 kV distribution grids. The successful application in these
scenarios serves to demonstrate the algorithm’s practical viability and immediate relevance.

In both case studies, the initial configuration of the DER is optimized exclusively for
economic objectives, maximizing revenue at the expense of fulfilling requirements from the
local distribution grid. A BESS is omitted from this configuration because the difference be-
tween peak and off-peak electricity prices makes price arbitrage infeasible, and the storage
system itself lacks an independent revenue stream. In the subsequent design iteration, a
minimally sized BESS is incorporated into the design to meet grid constraints. However,
in scenarios where grid support demands exceed the power or energy rating of the small
BESS, the optimization algorithm must dispatch additional assets. These secondary assets
include a CHP plant and a PEM electrolyzer.

Although this process yields thermal energy (heat) from the CHP and hydrogen from the
PEM electrolyzer, the revenue generated by selling these products is limited. Furthermore,
the cost of buying methane from the gas grid substantially outweighs the income from
selling hydrogen to the grid. Therefore, dispatching the CHP and PEM to ensure grid com-
pliance incurs significant operational costs, highlighting a direct conflict between providing
grid support and operating economically. By enabling the integration of new renewable
generation or high-demand consumers, the additional investment in a “grid-friendly” DER
may be justifiable due to substantial capital savings realized from obviating the need for
expensive grid infrastructure upgrades or restrictions on the connected appliances.

While the presented method calculates the economically optimal DER composition that
satisfies the imposed grid requirements, some limitations need to be acknowledged. As the
calculation of the target load curve of the DER in Algorithm 3 is based on the line utilization,
it is only driven by active power.
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The computational runtime of the algorithm is variable, as it is dependent on three
primary factors: the specific problem instance, the number of iterations required for con-
vergence, and the underlying complexity of the MILP model used to represent the DER.
For the case studies, each iteration required approximately two minutes to complete on a
standard office computer equipped with an AMD 4750G processor.

As the performance of this algorithm is not fully optimized, significant reductions in
computation time should be achievable with further algorithmic refinements. A key area
for enhancement lies in the initialization of Algorithm 3. Instead of a naive starting point,
employing an estimation technique to approximate the maximum utilization would provide
a more informed initial guess. This would substantially accelerate the convergence of the
search procedure, thereby reducing overall computation times.
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5.6 Conclusion and Outlook
This chapter introduces a novel methodology for optimizing the design of DERs to include
operational constraints derived from the local distribution grid. The core of this contribu-
tion is an iterative algorithm that combines the MILP-based DER design with power flow
analysis. This process generates grid-dependent constraints that guide the optimization
toward a multi-energy DER configuration capable of mitigating line congestions. The
iterative nature of the algorithm is critical. It ensures that operational changes in the DER
intended to solve a constraint violation do not inadvertently create new violations at other
times. Through two case studies on an exemplary distribution grid, it is demonstrated that
the proposed algorithm successfully computes a DER design that maintains line utilization
below a predefined threshold. This grid-supportive capability comes at an increase in total
cost, which converges as the algorithm iteratively refines the design until all grid constraints
are satisfied.

Future work should focus on three key areas. First off, the algorithm should be extended
to incorporate a broader range of grid parameters, such as voltage limits and transformer
loading. Secondly, the algorithm’s computational efficiency should be enhanced to reduce
the computation time. Finally, the impact of the placement of the DER within the grid on
the overall cost and efficacy of the solution should be investigated.
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The run time of the algorithm discussed in the previous chapter is a major barrier to its
practical application. The execution time of the algorithm is mainly driven by the slow,
numerous power flow calculations. While machine learning techniques are commonly
employed as surrogates for power flow calculations, this chapter proposes a more holistic,
end-to-end neural network architecture. Two distinct GNN models are developed and
evaluated: a two-stage, pre-trained model utilizing power flow calculations as a first stage
and a single-stage, cold-start model. This analysis addresses the fifth research question:
How effective is a pre-trained GNN compared to a cold-start GNN for inferring the
optimal DER power?

The research presented in this chapter builds substantially upon the publication “Aug-
mented Pre-trained Graph Neural Networks for Grid-Supportive Flexibility Control” [Gra+25].
While the core methodology is retained, this chapter provides a significantly extended and
more comprehensive evaluation of the proposed approach.

6.1 Introduction
Predictive scheduling of flexible resources and fast decision-making processes are essential
for the reliable operation of modern distribution grids. These require fast power flow
calculations [De +22]. Power flow calculations enable the identification and mitigation of
congestion scenarios through the dispatch of flexible loads or generators based on the line
utilization, nodal voltage magnitude, and phase angle. Section 2.4 offers a comprehensive
overview of power flow analysis.

An alternative approach to solving power flow calculations is the employment of ma-
chine learning techniques [PR02]. Neural networks can be trained to approximate the
input-output mapping of a conventional power flow solver, such as Newton-Raphson. Once
trained, the neural network can approximate power flow solutions at a fraction of the com-
putational cost of the original solver. Contemporary research further advances this approach
through the application of GNNs [De +22; Lia+22; Lin+24]. A defining characteristic of these
graph-based neural networks is their ability to learn the intrinsic topological properties and
physical foundations of power grids. This capability enables them to generalize and accu-
rately infer power flow solutions even for grid topologies not included in the training dataset.

While the iterative algorithm presented in the previous chapter is effective, it is computa-
tionally expensive. At the same time, it is based on power flow calculations. Recent literature
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demonstrates that GNNs can approximate power flows with high accuracy. This motivates
researching a GNN that can be trained to function as a surrogate, capable of accurately
approximating the results of the optimization algorithm at much lower computational cost.
The present thesis presents a novel GNN architecture that extends beyond conventional
power flow approximation. The GNN not only infers the power flow solution but also di-
rectly infers the active power required from a DER to mitigate an electricity line congestion.
This latter, downstream task is accomplished by augmenting the power flow approximating
GNN with more neural network layers that approximate the load or generation needed from
a DER. The downstream task is one of many grid optimization and planning tasks based
on power flow calculations. Other possible tasks include the calculation of the available
load shifting capability of a grid, the minimization of power losses in the grid, and the
optimization of the placement of DERs [SS17].

The central hypothesis investigated in this chapter is that employing a pre-trained GNN
specialized in power flow inference as a first-stage model will both accelerate the training
process for the downstream model and enhance predictive performance compared to a
monolithic model trained end-to-end from scratch. To achieve robust generalization, the
models are trained on heterogeneous dataset configurations. The individual datasets, which
comprise multiple electrical grid topologies and realistic load scenarios, are combined in
configurations designed to test the model’s predictive accuracy on previously unseen net-
work configurations. While pre-trained GNNs are an established technique [Liu+24], their
application in the energy domain is a novel contribution of this work. Furthermore, this
work uses realistic data. Unlike prior studies that often rely on synthetic profiles derived
from statistical load distributions [BRZ19; De +22; Lin+24], the present work utilizes au-
thentic SimBench load profiles and grid topologies as well as real-world grids. This allows
for a realistic performance evaluation of the developed architectures.

This chapter continues as follows: The subsequent section outlines work related to
previous applications of Artificial Neural Networks (ANNs) in power systems and discusses
research on two-stage training of machine learning models. Afterwards, the developed GNN
design and the process for generating training data are presented. This includes the design
of a single-stage baseline model for comparison. In the evaluation, this baseline model is
compared to the pre-trained model for three distinct dataset configurations. The results of
this evaluation are then discussed in the final section of this chapter, answering the final
research question: How effective is a pre-trained GNN compared to a cold-start GNN
for inferring the optimal DER power?
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6.2 Related Work

The application of ANNs to power system analysis dates back over three decades [Kal00;
SP89]. Early methods employ ANNs to solve power flows for specific grid topologies. A
representative approach involves training a neural network using the diagonal elements of
a grid’s admittance matrix as input features to predict the power flow solution [PR02]. A
significant limitation of this paradigm, however, is its inherent lack of transferability. A
model trained in this manner is limited to a single grid topology, and its generalization
capability is restricted to unknown load scenarios within that topology.

GNNs have recently found application in the field of power system analysis [De +22;
Lin+24]. This class of neural networks is specifically designed to leverage the topology of
graph-structured data, enabling them to learn underlying physical properties while being
invariant to the permutation of nodes and edges [Sca+09]. To approximate power flow
solutions while explicitly exploiting the spatial nature of the grid, spatial-based GCNs have
become a widely adopted approach [BRZ19; De +22; Lia+22]. The operational principle
of these GNNs is a message-passing algorithm that facilitates the diffusion of information
across the graph. In this process, which unfolds over multiple iterations corresponding to
neural network layers, each node iteratively exchanges and aggregates information with its
neighbors up to a distance of 𝐾 hops. The suitability of this architecture for power system
analysis is self-evident, as power grids can be intuitively represented as graphs where gen-
erators and loads constitute the nodes, and transmission lines form the edges, see Section 2.5.

Conventional power flow and optimal power flow solvers often rely on iterative optimiza-
tion algorithms [De +22], which impose a significant computational burden, particularly for
large power grids. To address this challenge, the work by de Jongh et al. [De +22] utilizes a
physics-informed GNN to estimate grid states with high accuracy. The authors specifically
highlight an architecture comprising TAGConv [Du+17] layers, noting its ability to achieve
low MSE values even under conditions of incomplete sensor data.

In a recent publication, Lin et al. introduce the PowerFlowNet GNN architecture for
the approximation of power flows [Lin+24]. Their method achieves substantial compu-
tational speedups for AC power flow calculations while delivering accuracy superior to
that of conventional DC power flow approximations. The model contains five layers with
a hidden dimension of 𝑑 = 512, and utilizes a message-passing scheme that propagates
information over three hops (𝐾 = 3). The edge features, consisting of the line resistance and
reactance, are aggregated by the one-hop message passing step. Information about voltage
magnitude, voltage angle, injected active power, and reactive power is then collected from
the whole neighborhood using the K-hop TAGConv. Lin et al. state that by combining
the two principles in the PowerFlowNet layer, it is possible to approximate power flows
with high quality [Lin+24]. Their evaluation includes three grid topologies and four power
flow approximation techniques, next to the PowerFlowNet model. While their developed
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architecture has longer run times than other machine learning architectures, such as a
three-layer MLP or a three-layer GCN, the errors are consistently lower.

Two-stage training methodologies are a well-established approach in machine learn-
ing [Hus+18; Sha+21; Tzi+20]. The initial stage involves pre-training a portion of a neural
network to capture foundational data representations or behaviors. A common technique
for this pre-training phase is imitation learning [Hus+18]. In this paradigm, an agent is
trained on instances of expert actions to learn a policy for solving a given task, as detailed
in [Hus+18].

In the second training stage, the GNN is augmented with additional layers, while the
weights of the pre-trained layers are frozen. These newly appended layers are then trained
to perform a more specific downstream task by building upon the foundational features
learned in the first stage. The objective is to refine the learned representations for a spe-
cialized application or to model more complex relationships that are not included in the
initial pre-training. This two-stage approach is effective because the initial layers provide a
pre-processing, simplifying the problem for the subsequent layers, which then only need to
learn a mapping from these high-level features to the final output [Sch15].

The concept of pre-training a model on broad data for subsequent adaptation to a range
of downstream tasks is conceptually aligned with the paradigm of foundation models, as
defined by Bommasani et al. [Bom+22] and Hamann et al. [Ham+24]. However, it is crucial
to note that the model presented herein diverges from this definition in two fundamental
aspects. First, the presented model does not employ the self-supervised training methodol-
ogy characteristic of foundation models. Second, it possesses a substantially lower number
of trainable parameters. Consequently, while sharing a similar high-level philosophy, the
present approach does not satisfy the key criteria necessary to be classified as a foundation
model under the definition of Bommasani et al. [Bom+22].
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6.3 Method
In the following, the architectures of the GNNs, including both a pre-trained model and a
cold-start model for baseline comparison, are outlined. The method employs a two-stage
process. First, a GNN is pre-trained to infer power flow solutions across various grid states.
Subsequently, this base model is augmented with additional layers and fine-tuned for a
specific downstream task: approximating the active power generated or drawn by a DER
needed to mitigate line congestion.

6.3.1 Training Data
To ensure the models are trained on a diverse and realistic set of conditions, the training
data is drawn from both the SimBench benchmark datasets grids 1-MV-urban, 1-MV-comm,
and 1-MV-rural [Mei+20], and a real-world Medium Voltage (MV) distribution grid from
the city of Kiel. The SimBench dataset offers realistic grid topologies and full-year load and
generation profiles at a 15-minute temporal resolution. Each time step from these profiles
is treated as an independent sample for model training.

The generation of the training dataset involves a two-part procedure. Initially, a power
flow calculation is performed for every time step using the Newton-Raphson solver as
implemented in Pandapower to establish the ground truth grid state. In any instance where
this analysis reveals line utilization exceeding a predefined limit, a secondary computation
is executed. The iterative procedure detailed in Algorithm 2 is then employed to determine
the precise active power required to mitigate this congestion.

This process yields a comprehensive set of features for each node and edge, structured as
follows:

• Node Features: For each node, a feature vector is constructed, comprising its voltage
magnitude (p.u.), phase angle, active power, and reactive power. To support the
downstream task, this vector is augmented with two additional features: the target
mitigation power as calculated by Algorithm 2, and a one-hot encoding that identifies
the specific node where the DER is located.

• Edge Features: Similarly, for each edge, the feature set includes its impedance and a
one-hot encoding indicating which line is the target for reducing the utilization.

In accordance with published best practices for machine learning model development,
data preprocessing is implemented [Jun22]. This includes the normalization of relevant
input features. The process consists of two sequential steps. First, the data is centered
by removing the sample mean. For each feature vector 𝑥 , its mean 𝑥 is calculated across
all samples and subsequently subtracted from every observation within that feature, as
described by Equation (6.1). This operation ensures that each feature has a resulting mean
of zero.
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𝑥 =
1
𝑛

𝑛∑︁
1
𝑥 (𝑛)

𝑥 (𝑛) = 𝑥 (𝑛) − 𝑥
(6.1)

Second, the features are scaled to have unit variance. Each feature value is divided by
the standard deviation 𝜎 of that feature. The standardization for a given feature vector 𝑥
can be expressed as

𝜎 (𝑥)2 = 1
𝑛

𝑛∑︁
1
(𝑥 (𝑛))2,

𝑥 (𝑛) =
𝑥 (𝑛)

𝜎 (𝑥) .
(6.2)

These node and edge features are then compiled into arrays, forming the final input data
for the model.

6.3.2 Power Flow Model

The model’s architecture is centered around a stack of LPF PowerFlowNet layers [Lin+24].
Each of these layers integrates a two-layer MLP for message processing with a TAGConv
operator for graph convolution [Du+17]. The MLP aggregates features of the immediate
neighbors and adjacent edges. A comprehensive overview of the TAGConv layer can be
found in Section 2.5.1. The initial layer processes an input feature vector of dimension
two, corresponding to the active (𝑃 ) and reactive (𝑄) power at each node, and maps it to a
higher-dimensional representation of size d. The hidden dimension d is a hyperparameter
that determines the model’s number of learnable parameters, which in turn dictates the
trade-off between computational performance and inference accuracy. A larger d increases
the model’s memory footprint and inference latency. Furthermore, an insufficient d leads
to underfitting, where the model cannot accurately represent the relationships within the
datasets. On the other hand, an excessive d leads to overfitting, where the model memorizes
training dataset artifacts, resulting in poor performance on the validation set. After the last
TAGConv layer, a two-layer MLP reduces the dimension to the final output dimension of
two.

To determine the optimal model configuration, a comprehensive hyperparameter sweep
is conducted. This sweep explores variations in the number of layers (LPF ), the hidden
dimension (d), and the size of the neighborhood (𝐾-hop number). The training procedure is
run for 100 epochs with a learning rate of 𝛼 = 0.001. This learning rate is recommended
in the original publication of the Adam optimizer [KB17] as a “good default setting”. Fur-
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Figure 6.1: GNN architecture of the power flow model. A two-layer MLP aggregates
the features of the adjacent nodes and edges. The TAGConv incorporates all features of
the nodes within the distance 𝐾 . The voltage magnitude |𝑉 | and the voltage angle 𝜃 are
approximated for every node in the grid.

thermore, the PowerFlowNet [Lin+24] also implements this learning rate. To mitigate
overfitting, an early stopping mechanism is employed. Throughout the training process,
the model’s performance is continuously evaluated on the validation dataset. The training
epoch where the model achieves the best performance (e.g., lowest validation loss) is saved
for the final evaluation. Consequently, the model utilized for testing is the one with the
highest validated generalization performance, which does not necessarily correspond to
the model from the final training epoch. An overview of the GNN architecture for power
flow inference is depicted in Figure 6.1.

To facilitate comprehensive hyperparameter testing, several datasets are aggregated into
distinct configurations. Each of the individual datasets contains approximately 35,000 time
steps, corresponding to a full year of operational data recorded at a fifteen-minute resolution.
To facilitate a realistic evaluation, a dataset from Kiel, a city in northern Germany, is also
included. The dataset stems from the local DSO in Kiel and is not available publicly.

The following three distinct dataset configurations C1 , C2 , and C3 are formulated:

C1 The training and validation data contain the 1-MV-comm and
1-MV-urban SimBench grids with approximately 70,000 individual
time steps. The final performance evaluation (test dataset) is con-
ducted using the real-world dataset. The objective of this configuration
is to evaluate the generalization performance of the models, specifi-
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cally their ability to transfer knowledge from the synthetic SimBench
datasets to the empirical, real-world data from Kiel.

C2 Training and validation are conducted using the 1-MV-comm,
1-MV-urban, and 1-MV-rural SimBench datasets and the real-world
dataset from Kiel with a total of about 735,000 data points. The test
dataset consists of the 1-MV-comm grid and the real-world data. This
configuration serves as a benchmark and is expected to yield the high-
est model accuracy because it contains the largest training dataset and
a test set comprised exclusively of known grid topologies.

C3 In this configuration, the models are trained and validated exclusively
on data from the real-world dataset. Subsequently, performance is
evaluated on a test dataset composed solely of the 1-MV-comm and
1-MV-urban grids from the synthetic SimBench dataset. The objective
of this configuration is to assess the model’s ability to generalize from
empirical data to a synthetic environment. This serves as a complemen-
tary analysis to the first configuration, which evaluates the sim-to-real
transfer.

For all dataset configurations, the data is partitioned into training and validation sets
using a 70/30 split, allocating 70 % of the data for training and the remaining 30 % for
validation. The following Table 6.1 sums up all three configurations with their respective
datasets.

Configuration Training / Validation Test
C1 1-MV-comm

1-MV-urban
Kiel

C2 1-MV-comm
1-MV-urban
1-MV-rural

Kiel

1-MV-comm
Kiel

C3 Kiel 1-MV-comm
1-MV-urban

Table 6.1: Overview of the three dataset configurations for training, validation, and testing.

The results of the hyperparameter evaluation are summarized in the Table 8.1, 8.2, and
8.3 that can be found in the appendix. For clarity, each of these tables displays only the
ten models that achieve the lowest test loss. In Table 6.2, the test and validation losses for
each model are summed, and the table presents the ten models with the lowest aggregate loss.
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LPF 𝒅 𝑲 Avrg. Validation MSE Avrg. Test MSE Avrg. Rank
3 256 3 1.24 1.67 7
2 512 4 0.22 3.87 9
5 128 2 1.09 2.81 9
4 256 5 1.19 2.17 10
3 192 2 0.18 3.10 13
4 256 4 0.46 8.25 13
4 192 3 0.81 259.54 13
3 128 2 0.52 1.91 14
2 256 4 1.25 2.79 14
3 512 5 0.11 20.48 14

Table 6.2: Performance average of various power flow model configurations on all three
dataset configurations. The models are sorted by their average ranking across the tests on
the three dataset configurations.

The evaluation phase highlights a trade-off between performance on the validation and
test datasets. Different models excel in different metrics. Specifically, when examining the
inference accuracy on the test set, the model with LPF = 3 layers, a hidden dimension of
𝑑 = 256, and 𝐾 = 3 hops demonstrates the lowest losses on average. In contrast, the model
with LPF = 4 layers, a hidden dimension of 𝑑 = 128, and 𝐾 = 2 hops yields the lowest
test loss average, while the model with LPF = 5 layers, a hidden dimension of 𝑑 = 192,
and 𝐾 = 3 hops performs the best on the validation set. In selecting the ideal architecture
for the first stage of the pre-trained model, a holistic performance perspective is critical.
Therefore, the model with the highest average ranking in the hyperparameter tests on the
three dataset configurations is chosen, as this indicator is interpreted as a sign of greater
robustness across diverse dataset configurations and grid topologies, making it the most
reliable candidate.

6.3.3 Model Architecture for Mitigating Congestion
To approximate the power required for congestion mitigation, two model architectures are
developed and compared. One is pre-trained on power flow data, and a baseline model is
trained from a cold start. The hyperparameter optimization for both models explores a
comprehensive search space. This includes varying the hidden dimension 𝑑 from 64 to 512,
the number of hops (𝐾 ) from two to six, and the number of layers in the downstream task
(LDER) from two to seven.

The input data for the second stage of the pre-trained architecture necessitates the in-
ference of the power flow model. The second training process, therefore, does not use
ground-truth power flow data. Rather, it is based on the power flow approximation gener-
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ated by the first-stage GNN. This implies that any approximation errors from the initial
stage are propagated into the subsequent one. However, this is the case during training as
well as during testing, which could potentially reduce the impact of the approximation error.
Nevertheless, the implications of this inaccuracy are challenging to estimate in advance
and are evaluated separately.

All hyperparameter tests and evaluations are conducted using the same power flow model
with LPF = 3 layers, a hidden dimension of 𝑑 = 256, and 𝐾 = 3 hops. This model resembles
the best trade-off between the models tested in the previous section, as can be seen in
Table 6.2. The downstream, second GNN for inferring the power required for congestion
mitigation consists of LDER = 2 layers, a hidden dimension of 𝑑 = 256, and 𝐾 = 2 hops, as
this configuration achieves the highest average rank during testing (Table 6.3).

LDER 𝒅 𝑲 Avrg. Validation MAPE Avrg. Test MAPE Avrg. Rank
2 256 2 0.02 0.55 2
3 256 2 0.03 0.60 3
3 128 2 0.05 1.01 4
2 128 2 0.09 1.07 5
4 128 3 0.03 1.46 6
3 512 4 0.03 1.54 7
3 128 5 0.03 0.70 8
3 64 6 0.03 1.66 8
2 64 6 0.03 1.72 9
4 512 4 0.03 1.88 11

Table 6.3: Performance average of various pre-trained model configurations on all three
datasets. The models are sorted by their average rank.

To optimize the training process, the datasets are filtered to include only time steps
with utilization limit violations. This targeted sampling avoids heavily underestimating
the needed DER power adjustment caused by the numerous samples where the target
DER adjustment is zero, which could otherwise impede effective learning of the required
non-zero power values. The training of the models is performed over 100 epochs, using
the Adam optimizer with a learning rate set to 𝑙𝑟 = 0.001. This number of epochs allows
both models to converge to a minimum on their respective training losses. An extensive
explanation of the Adam optimizer is given in Section 2.5.3. As with the power flow training,
the model’s performance is continuously validated during training. The model of the epoch
exhibiting the lowest validation loss is saved for evaluation on the test dataset. This early
stopping prevents overfitting the model to the training dataset and results in a model with
“hopefully better test set error” [GBC16].
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Figure 6.2: GNN architecture of the pre-trained model for congestion mitigation. The
green features of the nodes in the input graph denote features approximated by the power
flow GNN, and the feature 1∗ denotes the one-hot encoded location of the DER. The MLP
after the last TAGConv layer reduces the feature dimension to one. Although this feature
is present at all nodes, only the one-hot encoded target node, colored in red, is of relevance.

The pre-trained model consists of a base power flow model and a downstream GNN,
which acts as a surrogate for the iterative optimization algorithm. After the initial training
of the power flow model, the model’s weights are fixed. The power flow model is depicted
in Figure 6.1 and outputs voltage magnitudes |𝑉 | and phase angles 𝜃 for all nodes in the
graph. The task-specific second stage then learns to map a combination of the power flow
model’s output and the initial input features (active power 𝑃 , reactive power 𝑄 , and a DER
location indicator 1∗) to the final output 𝑃𝑇 . This second stage is depicted in Figure 6.2.
The two-stage design is contrasted with the cold-start model (Figure 6.3), which is a single,
end-to-end GNN trained directly on the same task.

As indicated in Table 6.4, the cold-start model configured with three layers (LDER =
3), a hidden dimension of 𝑑 = 128, and 𝐾 = 3 hops consistently outperforms all other
hyperparameter configurations, achieving the best performance on each of the three dataset
configurations, ranking number one in each of them.
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Figure 6.3: GNN architecture of the cold-start model for congestion mitigation. The target
node where the DER is located is colored in red.

LDER 𝒅 𝑲 Avrg. Validation MAPE Avrg. Test MAPE Avrg. Rank
3 128 3 0.03 0.77 1
3 512 3 0.02 1.21 2
4 512 3 0.01 1.35 3
3 256 4 0.02 1.40 5
2 256 4 0.04 1.41 5
5 128 3 0.08 1.50 6
5 512 3 0.02 1.54 7
4 256 3 0.03 1.60 7
3 256 3 0.03 2.04 10
2 256 5 0.03 2.17 12

Table 6.4: Performance average of various cold-start model hyperparameter configurations
on all three datasets. The models are sorted by their average rank.

6.4 Evaluation

This section evaluates the best-performing model configurations identified during the
hyperparameter search. The analysis focuses on the Mean Absolute Percentage Error
(MAPE) on the test dataset, as it is designed to represent the real-world impact of the error.
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6.4.1 Power Flow Model

During the hyperparameter search in the previous section, a three-layer model with a
hidden dimension of 𝑑 = 256 and 𝐾 = 3 hops demonstrates sufficient performance across
all evaluated datasets. Although it does not perform the best in every validation and test
case, it performs well consistently across all dataset configurations, making it a broadly
applicable solution.

Model Test MAPE C1 Test MAPE C2 Test MAPE C3
LPF = 3, 𝑑 = 256, 𝐾 = 3 0.65 0.45 3.92

Table 6.5: Performance evaluation of the power flow inference model with the best perfor-
mance during the hyperparameter tests on the three dataset configurations. All values are
MAPE.

10 20 30 40 50 60 70 80 90 100

10−1

100

Epochs

Tr
ai

ni
ng

M
A

PE

C1
C2
C3

Figure 6.4: Training losses of the model with LPF = 3 layers, a hidden dimension of
𝑑 = 256, and 𝐾 = 3 hops.

The denormalized test MSE after 100 epochs of training this model (LPF = 3, 𝑑 = 256,
𝐾 = 3) ranges from 7.62 · 10−3 p.u. for the first dataset configuration C1 to 33.97 · 10−3 p.u.
for the third dataset configuration C3 . As illustrated in Figure 6.4, the training score
of the model on the third dataset configuration C3 is also the highest among the tested
configurations. This finding is consistent with the observed behavior of other models during
the hyperparameter search.
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6.4.2 Training the Pre-Trained and Cold-Start Models
For both the pre-trained and the cold-start architectures, three training runs are performed
on the same dataset configuration. Since all training procedures exhibit very similar behav-
ior, no additional runs are conducted.

As shown in Figures 6.5, 6.6, and 6.7, the pre-trained model achieves better training losses
than the cold-start model. This advantage is particularly evident in Figure 6.5, which shows
that the MAPE of the pre-trained model trainings are lower than the MAPE of the cold-start
model trainings after almost every epoch.
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Figure 6.5: Comparison of the training losses on the first dataset configuration C1 . The
figure includes three exemplary runs from the pre-trained model and the cold-start model,
respectively.

The second dataset configuration C2 generally shows high accuracies for both models.
Between the individual runs of the same model, the loss is almost identical and the volatility
is low, as can be seen in Figure 6.6.
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Figure 6.6: Comparison of the training losses on the second dataset configuration C2 in
three exemplary training runs.

The training process for the third dataset configuration C3 is characterized by sig-
nificantly higher volatility compared to the other two. Figure 6.7 depicts the periodic
fluctuations, during which performance temporarily declines and the loss increases. Still, a
clear downward trend can be seen in the training and validation loss for both architectures.
However, the pre-trained model remains superior with this configuration: after the entire
training period of 100 epochs, it shows lower loss than the cold-start model.
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Figure 6.7: Comparison of the training losses on the third dataset configuration C3 in
three exemplary training runs.

6.4.3 Performance Evaluation of the Pre-Trained and Cold-Start
Models

A comparative analysis of the training, validation, and test losses of the pre-trained and
cold-start models is conducted to evaluate their final performance. In addition, a third
two-stage model is assessed as a benchmark. The model is supplied with accurate power
flow calculations as input for its second stage, both during the training and the evaluation
phases. This evaluation is designed to isolate the model’s performance from any inaccuracies
introduced by the first-stage power flow approximating GNN.

C1 Model / Loss Training
(MAPE)

Validation
(MAPE)

Test
(MAPE)

MSE Test
(W)

Pre-Trained 0.006 % 0.023 % 1.206 % 37.06
Cold-Start 0.024 % 0.045 % 1.454 % 49.97
Only Second Stage 0.005 % 0.017 % 0.906 % 20.93

Table 6.6: Performance evaluation on the first dataset configuration C1 after 100 epochs
of training.
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In the first data set configuration C1 , the pre-trained model achieves better training,
validation, and test scores than the cold-start model. As depicted in Figure 6.5, the pre-
trained model has an advantage over the cold-start model throughout the whole training
process. The pre-trained model can be further improved by utilizing a perfect power flow
input. In this configuration, the use of a conventional power flow solver as the primary
stage would result in a performance improvement.

C2 Model / Loss Training
(MAPE)

Validation
(MAPE)

Test
(MAPE)

MSE Test
(W)

Pre-Trained 0.007 % 0.022 % 0.224 % 6.98
Cold-Start 0.010 % 0.020 % 0.21 % 48.39
Only Second Stage 0.004 % 0.004 % 0.058 % 0.51

Table 6.7: Performance evaluation on the second dataset configuration C2 after 100 epochs
of training.

For the second dataset configuration C2 , the pre-trained model demonstrates superior
performance in comparison to the cold-start model during the training process. Nevertheless,
the final performance evaluation reveals what appears to be a contradiction in the test loss.
The cold-start model shows a lower MAPE on validation and test data but a higher test
MSE.

C3 Model / Loss Training
(MAPE)

Validation
(MAPE)

Test
(MAPE)

MSE Test
(W)

Pre-Trained 0.011 % 0.009 % 0.233 % 157.79
Cold-Start 0.027 % 0.047 % 0.505 % 3,555.30
Only Second Stage 0.013 % 0.014 % 0.489 % 545.41

Table 6.8: Performance evaluation on the third dataset configuration C3 after 100 epochs
of training.

As shown in detail in Table 6.8, the evaluation of the third dataset configuration shows
consistently higher MSE during testing compared to the other two dataset configurations.
This increased difficulty is evident throughout the training process and results in a higher
final test loss. This trend is particularly pronounced in the cold-start model, whose test
MSE exceeds 3.5 kW. In this training scenario, the pre-trained model outperforms the cold-
start model in all loss functions. This configuration leads to a counterintuitive result. The
two-stage model using perfect power flow data as inputs for the second stage performs
worse than the model that relies on estimates derived from the first-stage GNN.
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6.5 Discussion
The power flow model achieves a test MSE between 7.62 · 10−3 p.u. and 33.97 · 10−3 p.u.
Although these results are higher than those reported by Lin et al. [Lin+24], they are com-
parable to the results of De Jongh et al. [De +22]. This discrepancy is probably due to the
type of data used: This study uses real data and realistic SimBench datasets, whereas Lin
et al. train and test their model using synthetic data with a specific distribution [Lin+24].
Furthermore, the model architecture was chosen for its ability to generalize across different
datasets, rather than being specialized for optimal performance on a single dataset. As
shown in Table 6.5, such specialization would have led to better performance for individual
dataset configurations, underscoring the deliberate trade-off between maximum accuracy
for individual use-cases and good performance on all evaluated dataset configurations.

While the hyperparameter evaluation includes the specific GNN architecture proposed
by Lin et al. [Lin+24], comprising four layers (LPF = 4), a hidden dimension of 𝑑 = 128,
and 𝐾 = 3 hops, it does not yield the best average performance on the evaluated datasets.
Alternative model configurations consistently achieve lower losses. This finding may be
attributed to the increased complexity of the datasets; the various grid topologies and
realistic load scenarios used in the present study are a more challenging environment than
the one investigated by Lin et al..

Compared to the previously published work “Augmented Pre-trained Graph Neural Net-
works for Grid-Supportive Flexibility Control” [Gra+25], the present work incorporates a
real-world dataset from the German city of Kiel. Consequently, further hyperparameter
tests are conducted to identify the model that optimizes the trade-off between the three
dataset configurations. The results of the experiments on the real-world dataset in this
study demonstrate the models’ capability to infer power flows on real-world grids, thereby
enhancing the method’s applicability.

A training duration of 100 epochs proves to be sufficient in all cases for the power flow,
the pre-trained models, and the cold-start models. Although the MAPE on the training
dataset continues to improve until the 100th epoch, further training leads to overfitting,
which degrades the accuracy on the validation data and confirms that a limit of 100 epochs
is appropriate.

The results for the first data set configuration C1 (Table 6.6) are in line with theoretical
expectations. While the pre-trained model slightly outperforms the cold-start model, its
performance is limited by the accuracy of the first-stage power flow GNN. Consequently,
the two-stage benchmark model, which uses perfect power flow data in the first stage and
is therefore not subject to power flow approximation inaccuracies, achieves the lowest test
loss. This demonstrates the impact of the error propagated from the first stage.
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For the second dataset configuration C2 , lower overall losses are expected due to the
more extensive training dataset and a test dataset consisting exclusively of topologies
contained in the training data. This hypothesis is confirmed by the final test results, which
show a consistent reduction in losses across all models (Table 6.7). An exception is the
MSE test loss for the cold-start model, which is comparable to the accuracy in the first
dataset configuration C1 . This discrepancy may be due to rare but significant errors
that lead to a higher MSE loss, while at the same time, a comparatively low MAPE loss is
observed. Interestingly, the performance gains of the pre-trained models are specific to
the test phase, as both the training and validation losses are comparable to those of the
first configuration. Only the cold-start model achieves significantly better losses during the
training and validation phase than in the first data set configuration.

The evaluation of the results of the third dataset configuration C3 shows significantly
lower test accuracy for all models (Table 6.8). This drop in performance can be attributed to
a fundamental challenge in generalization: models trained exclusively on a single real-world
grid topology are unable to adapt to the SimBench grids. As this challenge only exists in the
test phase, the training losses are comparable to those of the second data set configuration.
The resulting discrepancy between training and test performance is therefore to be expected
and underscores the difficulty of generalizing from such a limited training data set.

The iterative algorithm results range from 0 MW to 5 MW. The pre-trained model demon-
strates adequate inference capability with a test MAPE of 1.206 % and test MSE of 37.06 W
on dataset configuration C1 . Performance improves significantly on dataset configuration
C2 , achieving a test MAPE of 0.224 % (6.98 W). Although the MAPE on the test dataset

of dataset configuration C3 is at 0.233 % and in line with the results on the other dataset
configurations, the MSE is at 157.79 W. These results demonstrate that learned representa-
tion transferability exhibits variable difficulty. Optimal training necessitates comprehensive
datasets with diverse topological configurations to achieve maximum performance, as
demonstrated by configuration C2 .
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6.6 Conclusion and Outlook
This chapter investigates GNNs for approximating the minimum DER power (load or gener-
ation) required to relieve the grid, as formulated in Chapter 5. With a single-stage model that
directly infers the optimal DER power and a two-stage architecture that first approximates
the power flows and then, in a subsequent stage, approximates the optimal DER power
based on these approximations, a comparison is performed to evaluate the advantages and
limitations of these two approaches.

This evaluation focuses on the generalizability of the GNN models, necessary for their
practical use in real-world power grids. The accuracy of the GNN models trained on a
specific grid topology is assessed on different, previously unseen topologies. To this end,
a GNN architecture for power flow approximation used as the first stage is benchmarked
across diverse datasets using three distinct configurations. The evaluation contrasts with
prior work by Lin et al. [Lin+24] in which a comprehensive evaluation of generalization
capabilities across multiple grid topologies is missing. The evaluation conducted in the
present work leverages both real-world operational data from an active distribution network
and established synthetic SimBench grids to ensure a realistic assessment.

The evaluation shows that the power flow inferring model achieves similar accuracy
compared to other models in the literature. Especially when trained on a large dataset and
with tests that are only conducted on grid topologies that are also included in the training
dataset ( C2 ), the accuracy of the power flow inference is high with a MAPE of 0.45 %
(Table 6.5).

Implementing the power flow inference model as an initial stage, the pre-trained variant
consistently outperforms the cold-start approach in both training and testing across all
dataset configurations. During training, the cold-start model converges more slowly, requir-
ing additional epochs to match the inference accuracy of the pre-trained model. Consistent
with the power flow inference model training, utilizing SimBench grids and real-world
grid data yields the maximum dataset size while eliminating unseen topologies during
testing, thereby achieving high approximation accuracy. Conversely, evaluation on novel
grid topologies not present in the training data leads to diminished accuracy ( C1 and C3 ).

The results demonstrate that both pre-trained and cold-start models can reliably infer
the required DER power on real-world grids with improved performance when the corre-
sponding grid topologies are included in the training dataset. However, the accuracy of
the inference depends highly on the dataset used for training, underscoring the paramount
importance of training data selection and the explicit evaluation of model generalizability.
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In this chapter, it is demonstrated that a pre-trained GNN outperforms a cold-start GNN
in inferring the optimal power required from a DER to reduce line utilization. In most of
the evaluated test cases, the pre-trained model shows faster training times and more accu-
rate inference results after 100 epochs of training. This finding answers the fifth research
question: How effective is a pre-trained GNN compared to a cold-start GNN for
inferring the optimal DER power?

Further research is required to explore additional use cases of pre-trained GNN in power
grids. While this work highlights the potential and outlines possible applications, their
implementation and evaluation remain open tasks. Moreover, assessing the method on a
more comprehensive dataset that includes a larger set of real-world grids would provide
stronger evidence of its practical applicability.
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7 Summary

The proliferation of renewable electricity generation in the distribution grids and the elec-
trification of the transport and heating sectors introduce decentralized generation and
high-power loads. Legacy grid operation without control mechanisms and limited grid
monitoring is akin to navigating a complex system blind. To ensure grid stability and eco-
nomic asset management, a transition towards comprehensive grid monitoring is essential.
A cost-effective alternative to utility-grade measurement devices emerges in increasingly
popular smart home hardware, such as smart plugs.

To assess real-world applicability, a telecommunication backend is designed and imple-
mented in Chapter 3. By employing standardized database servers and message brokers,
secure communication between smart home devices and the backend is ensured. This
infrastructure enables continuous collection of voltage measurements at the socket outlets
where the smart plugs are connected. Analysis of the 10-second interval measurements
reveals two error components: a constant offset and a varying error. Averaging measure-
ments over extended periods and comparing them with a reference device allows estimation
of the constant offset, while the varying error is shown to follow a normal distribution.
Correcting the constant offset yields measurement accuracy of the smart plugs sufficient
for grid monitoring, thereby addressing research question 1: To what extent can smart
plugs be used for distribution grid monitoring?

Even inexpensive measurement devices, like smart plugs, are unlikely to be deployed at
every node within the grid. This limitation underscores the need for pseudo-measurements
to bridge the gaps in data collection. To be effective for grid monitoring, these measure-
ments must be generated rapidly, be computationally inexpensive, and remain sufficiently
accurate. The feature propagation algorithm presented in this thesis is able to generate
pseudo-measurements. This motivates research question 2: How viable is the use of a
feature propagation algorithm for pseudo-measurement generation in distribution
grids compared to other related methods?

The feature propagation algorithm is evaluated against the GINN algorithm using an
electricity grid graph. In scenarios with 50 % to 98 % of features missing, the feature
propagation algorithm demonstrates superior performance. As the method of the feature
propagation is closely related to heat propagation using the finite element method, it is not
based on historical or synthetic data for training and is simple to compute.
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The acquisition of comprehensive distribution grid monitoring data enables optimized
planning and operation of DERs. A direct comparison of algorithms for optimizing DER
schedules reveals a clear distinction between heuristic and analytical methods. When
tested on a year-long schedule optimization, the analytical MIQP algorithm significantly
outperforms heuristic approaches. The MILP and MIQP algorithms achieve a significantly
lower RMSE and are approximately 500 times faster than the EA. However, this perfor-
mance advantage introduces a trade-off in modeling effort, as the analytical MILP and MIQP
methods require manual modeling of multi-energy DER components. In contrast, the EA
utilizes component lookup tables generated from simulations. These findings collectively
address the third research question: What are the advantages and disadvantages of
optimizing a multi-energy DER using an evolutionary algorithm, an MILP, and an
MIQP?

The application of the optimization algorithms can be further expanded to include the
surrounding distribution grid area. Sizing the components of the DER to fulfill the needs of
the DSO’s congestion management often increases capital and operating costs of the DER,
as it may require oversized components or suboptimal operation.

To resolve this compromise, Chapter 5 describes an algorithm that calculates the min-
imum power generation or load required by a DER to avoid grid congestion. Two case
studies with different component portfolios evaluate the iterative algorithm. The algorithm
maintains line utilization below 85 % at all time steps while identifying economically optimal
component sizes. Total costs of the multi-energy DER increase drastically depending on
specific case conditions. This holistic calculation answers the fourth research question:
How does the annual cost of a DER designed to provide grid supporting services
compare to the annual cost of the most economical design?
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While the iterative planning process enables the optimization of a multi-energy DER, its
practicality is hampered by the high computational expense. The power flow calculations
can be substituted by a GNN surrogate model that infers results orders of magnitude faster
than conventional numerical solvers. However, calculating the optimal power required
to reduce line utilization below a certain threshold remains a significant computational
bottleneck.

To eliminate the iterative calculation, a novel two-stage GNN architecture is developed
in Chapter 6. This approach bypasses the iterative algorithm by directly approximating
the power required to mitigate congestion. Its effectiveness is validated by comparing
the two-stage, pre-trained model, which incorporates a power flow inferring model as its
first stage, against a conventional single-stage, cold-start GNN. The simpler, single-stage
model attempts to infer the required power directly without the pre-trained, multi-stage
process. Evaluating the first-stage power flow model independently, the accuracy of the
inference is found to approximate related publications. On previously unseen grid topolo-
gies, the MAPE is between 0.45 % and 3.92 %, corresponding to between 7.62 · 10−3 p.u.
and 33.97 · 10−3 p.u.. Using the power flow model as the first stage, the pre-trained model
outperforms the cold-start model across all dataset configurations. Averaged over the three
dataset configurations, the pre-trained model achieves a test MAPE of approximately 0.55 %,
compared to 0.72 % for the cold-start model. When a conventional power flow solver is
employed as the first stage, the MAPE decreases further to about 0.48 %. The evaluation
demonstrates that by splitting the complex inference task into a structured, two-stage
process, the model can use the underlying power flow calculations to learn more effectively.
It also results in more accurate and reliable predictions for real-time grid control and a
significantly accelerated multi-energy DER sizing procedure. This answers the fifth research
question: How effective is a pre-trained GNN compared to a cold-start GNN for
inferring the optimal DER power? Furthermore, the performance of both models on
real-world datasets demonstrates the practical feasibility of the proposed approach.

This thesis compiles and advances the results of the following publications:

• “Distribution Grid Monitoring Based on Widely Available Smart Plugs”, Grafenhorst
et al., published as a conference paper at the Energy Informatics Academy conference
in 2023 [GFH24b]

• “Poster Abstract: A three-phase electricity grid model of a single family house”, Grafen-
horst et al., published as a poster at the DACH+ Conference on Energy Informatics in
2023 [GFH23]

• “Distribution grid monitoring based on feature propagation using smart plugs”,
Grafenhorst et al., published as a journal paper in the Energy Informatics Journal in
2024 [GFH24a]
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• “Heuristic vs. Analytical Energy Hub Optimization: Design, Implementation, and
Trade-Offs”, Grafenhorst et al., published as a conference paper at the IEEE SEGE
conference in 2024 [Gra+24b]

• “Grid Aware Portfolio Optimization of a Multi-Energy DER”, Grafenhorst et al., pub-
lished as a conference paper at the IEEE iSPEC conference in 2024 [Gra+24a]

• “Augmented Pre-trained Graph Neural Networks for Grid-Supportive Flexibility Con-
trol”, Grafenhorst et al., published as a conference paper at the ACM E-Energy con-
ference in 2025 [Gra+25]

While this thesis establishes a proof of concept, further investigation is necessary to
validate the broader applicability and scalability of these techniques. Consequently, future
work focuses on two aspects. First, an evaluation on a wider range of more complex and
topologically diverse real-world grids is required. Assessing the performance and robustness
of the GNNs on such grids is essential to confirm their practical viability. Second, the current
analysis needs to be expanded to explore scenarios with multiple DERs located within the
same distribution grid. Multiple DERs potentially allow for synergistic and conflicting
interactions, requiring coordinated control strategies to manage multiple DERs holistically.
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8 Appendix

Rank LPF 𝒅 𝑲 Validation MSE Test MSE
1 3 256 4 0.10 0.47
2 3 512 5 0.06 0.52
3 5 128 2 0.12 0.54
4 2 512 4 0.18 0.55
5 5 256 3 0.03 0.55
6 3 128 2 0.15 0.59
7 2 256 4 0.19 0.61
8 3 256 3 0.11 0.65
9 4 192 3 0.06 1.33
10 4 128 3 0.10 1.34

Table 8.1: Performance of various power flow models using dataset configuration C1 .

Rank LPF 𝒅 𝑲 Validation Loss Test Loss
1 4 256 4 0.02 0.33
2 5 256 4 0.03 0.38
3 4 192 3 0.03 0.41
4 4 256 3 0.02 0.43
5 3 256 3 0.03 0.45
6 5 256 5 0.03 0.48
7 2 512 4 0.17 0.49
8 4 128 4 0.03 0.54
9 4 256 5 0.02 0.58
10 5 256 2 0.02 0.58

Table 8.2: Performance of various power flow models using dataset configuration C2 .
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Rank LPF 𝒅 𝑲 Validation Loss Test Loss
1 4 128 2 4.63 0.75
2 4 256 2 0.26 2.10
3 3 128 2 1.35 2.79
4 3 192 2 0.34 2.84
5 3 128 3 0.30 3.00
6 4 256 5 3.54 3.44
7 3 256 2 5.41 3.75
8 3 256 3 3.57 3.92
9 5 128 5 0.54 3.93
10 3 256 5 5.83 5.29

Table 8.3: Performance of various power flow models using dataset configuration C3 .

Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 3 128 5 0.05 0.24 %
2 2 256 2 0.02 1.21 %
3 3 256 2 0.04 1.22 %
4 3 128 2 0.07 1.73 %
5 2 128 2 0.06 1.75 %
6 3 512 4 0.02 2.82 %
7 3 64 6 0.05 3.13 %
8 4 128 3 0.03 3.15 %
9 5 256 4 0.02 3.17 %
10 2 64 6 0.05 3.30 %

Table 8.4: Performance of various pre-trained models using dataset configuration C1 .
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Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 3 128 5 0.01 0.01 %
2 2 256 2 0.02 0.22 %
3 3 256 2 0.03 0.23 %
4 3 128 2 0.05 0.52 %
5 2 128 2 0.05 0.53 %
6 3 512 4 0.04 0.66 %
7 4 128 3 0.04 0.75 %
8 2 64 6 0.02 0.82 %
9 3 64 6 0.02 0.83 %
10 3 128 3 0.03 0.83 %

Table 8.5: Performance of various pre-trained models using dataset configuration C2 .

Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 2 256 2 0.01 0.23 %
2 3 256 2 0.03 0.34 %
3 4 128 3 0.03 0.49 %
4 3 128 2 0.04 0.77 %
5 2 128 2 0.16 0.93 %
6 4 256 4 0.03 0.96 %
7 4 512 4 0.01 1.00 %
8 3 64 6 0.01 1.03 %
9 2 64 6 0.01 1.04 %
10 3 512 4 0.03 1.13 %

Table 8.6: Performance of various pre-trained models using dataset configuration C3 .
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Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 3 128 3 0.05 1.57 %
2 3 512 3 0.03 2.40 %
3 4 512 3 0.02 2.62 %
4 3 256 4 0.03 2.74 %
5 2 256 4 0.03 2.76 %
6 5 128 3 0.04 2.86 %
7 5 512 3 0.02 2.95 %
8 4 256 3 0.03 3.17 %
9 3 256 3 0.02 3.87 %
10 2 256 5 0.02 4.04 %

Table 8.7: Performance of various cold-start models using dataset configuration C1 .

Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 3 128 3 0.02 0.20 %
2 3 512 3 0.02 0.42 %
3 4 512 3 0.02 0.54 %
4 5 512 3 0.03 0.55 %
5 3 256 4 0.03 0.55 %
6 2 256 4 0.03 0.57 %
7 4 256 3 0.04 0.70 %
8 5 128 3 0.03 0.76 %
9 3 256 3 0.04 0.99 %
10 3 256 5 0.04 1.05 %

Table 8.8: Performance of various cold-start models using dataset configuration C2 .
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Rank LDER 𝒅 𝑲 Validation Loss (MAPE) Test Loss (MAPE)
1 3 128 3 0.03 0.53 %
2 3 512 3 0.00 0.80 %
3 5 128 3 0.17 0.87 %
4 4 512 3 0.00 0.89 %
5 2 256 4 0.05 0.91 %
6 3 256 4 0.01 0.91 %
7 4 256 3 0.01 0.94 %
8 2 128 5 0.90 1.00 %
9 3 128 5 0.76 1.00 %
10 5 512 3 0.00 1.12 %

Table 8.9: Performance of various cold-start models using dataset configuration C3 .
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