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Abstract

This thesis is concerned with the time integration of three classes of wave-type partial differential equati-
ons. Each of these equations has numerical challenges, including nonlocal-in-time material laws, nontrivial
boundary conditions, and an unbounded spatial domain. We construct tailor-made schemes and provide
a rigorous numerical analysis.

We consider the semiclassical magnetic Schrödinger equation on the full space Rd with possibly time-
dependent magnetic and electric potentials. For the approximation we use an appropriate Gaussian ansatz
function, which leads to a set of ordinary differential equations. We show that in a special case, this an-
satz function is the exact solution to the magnetic Schrödinger equation. Furthermore, we provide error
bounds with respect to the semiclassical parameter in L2-norm and we improve the error bound for re-
levant physical quantities of interest.

The second setting is concerned with a scattering problem for Maxwell’s equations on an unbounded
domain. The scatterer consists of a nonlocal-in-time material, which is modeled as a convolution in Max-
well’s equations. In this situation, we use a coupling on the scatterer’s bounded interface and derive a
boundary integral equation. For the discretization we employ a convolution quadrature combined with a
boundary element method. Finally, we show that this numerical approach is stable and we prove conver-
gence rates.

For a semilinear viscoacoustic wave equation with a retarded material law and kinetic boundary conditi-
ons, we construct and analyze an implicit-explicit (IMEX) scheme. The IMEX scheme is computationally
efficient, since it avoids the solution of nonlinear systems. The material law is described by a convolution
term with exponential kernels. After applying an appropriate shift, we couple the convolution term as
an auxiliary variable to the first-order system of partial differential equations. For the kinetic boundary
conditions we make use of suitable bulk-surface Sobolev spaces to show wellposedness.

iii





Contents

1 Introduction 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Results of variational Gaussians for the magnetic Schrödinger equation . . . . . . . . . . . 6
1.3 Results of time-dependent electromagnetic scattering from dispersive materials . . . . . . 10
1.4 Results of implicit-explicit scheme for semilinear and nonlocal wave equations with kinetic

b.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Variational approximation for the magnetic Schrödinger equation 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Variational equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Equations of motion in the limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 L2-error bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.5 Observable error bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Equations of motions: proof of Theorem 2.6 and corollary 2.8 . . . . . . . . . . . . . . . . 34
2.4.1 Equations of motion for a general Hamiltonian . . . . . . . . . . . . . . . . . . . . 36

2.5 L2-error bound: proof of Lemma 2.12 and Theorem 2.13 . . . . . . . . . . . . . . . . . . . 41
2.6 Expectation values: proof of Lemma 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Error bound for averages of observables: proof of Theorem 2.15 . . . . . . . . . . . . . . 44

2.7.1 Error representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.2 Egorov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7.3 Averages with respect to Gaussian wave packets . . . . . . . . . . . . . . . . . . . 49
2.7.4 Proof of Theorem 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 Appendix: Gaussian moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Electromagnetic scattering from dispersive materials 59
3.1 Introduction and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



3.1.1 Dispersive Maxwell’s equations on a single domain Ω . . . . . . . . . . . . . . . . . 60
3.1.2 Examples of retarded material laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 The time-dependent scattering problem . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Outline and contributions of the paper . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Reformulation of the problem and mathematical framework . . . . . . . . . . . . . . . . . 64
3.2.1 Reformulation of the time-dependent scattering problem . . . . . . . . . . . . . . . 64
3.2.2 Passivity conditions for the dispersive permittivities ε±(s) and permeabilities µ±(s) 65
3.2.3 Temporal convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.4 The tangential trace and the trace space XΓ . . . . . . . . . . . . . . . . . . . . . 66

3.3 A time-harmonic transmission problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.1 Potential operators and representation formulas . . . . . . . . . . . . . . . . . . . . 67
3.3.2 Transmission problems and boundary operators . . . . . . . . . . . . . . . . . . . 69
3.3.3 Time-harmonic boundary integral operators and the Calderón operator . . . . . . 71

3.4 The time-harmonic scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.1 The time-harmonic boundary integral equation . . . . . . . . . . . . . . . . . . . . 73
3.4.2 Well-posedness of the boundary integral equation . . . . . . . . . . . . . . . . . . . 74

3.5 The time-dependent scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 The time-dependent boundary integral equation . . . . . . . . . . . . . . . . . . . 76
3.5.2 Well-posedness of the time-dependent scattering problem . . . . . . . . . . . . . . 77

3.6 Semi-discretization in time by Runge–Kutta convolution quadrature . . . . . . . . . . . . 78
3.6.1 Recap: Runge–Kutta convolution quadrature . . . . . . . . . . . . . . . . . . . . . 78
3.6.2 Convolution quadrature for the scattering problem . . . . . . . . . . . . . . . . . . 80

3.7 Full discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.8 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8.1 Scattering from a sphere: Convergence plots . . . . . . . . . . . . . . . . . . . . . . 86
3.8.2 Scattering from two cubes: Visualization of the numerical solution . . . . . . . . . 86

4 IMEX scheme for nonlocal semilinear wave equations with kinetic boundary condi-
tions 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Analytical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Auxiliary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 Wellposedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Time discretization – implicit-explicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Construction of the IMEX scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Wellposedness and reformulation of the IMEX scheme . . . . . . . . . . . . . . . . 98
4.3.3 Error analysis of the IMEX scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 106





1

CHAPTER 1

Introduction

The rich world of wave propagation appears in all kind of areas in everyday life, in scientific experiments,
as well as in nature. Waves are the solution to a certain type of partial differential equations (PDEs).
Thus, PDEs are a prolific tool for modeling the behavior of various scientific phenomena, which makes
the understanding of wave-type PDEs valuable.

In quantum mechanics, the states of particles are described by wave functions, which depend on the
particles position and time, cf. [58]. The most well-known application here is the propagation of light
in free space, without any obstacles. However, in most applications we are interested in the interaction
between waves and materials that have certain physical properties. This makes the wave-type PDE much
more involved.

In geology, waves are used to discover the composition of the earth’s surface by measuring the inter-
action of waves with the earth’s different layers. The two main components of materials are a spring,
i.e., elastic material, and a dashpot, which leads to a damping of the wave, cf. [101].

In optics, Maxwell’s equations can be used to model the propagation of electromagnetic light waves
and to investigate the influence of metamaterials on the waves. Possible observations include reflection,
diffraction and absorption, cf. [37, 105].

However, the solution to a wave-type PDE is often not given analytically, which leads to the interest in
approximating the solution to a PDE and the observation of its behavior over time. Numerical simulations
of wave phenomena are desirable, e.g., in order to provide forecasts, or if experiments cannot be executed
at the current situation. There are two major ideas to compute the numerical simulation. While space-
time methods discretize time and space simultaneously in a common domain, we choose to separate
time and space discretization. One advantage thereof is the possibility to use well-established solvers or
tailor-made methods for either the space or time discretization.

One of the oldest numerical schemes is the method of lines, cf. [65], which leaves the time variable
continuous and discretizes in space. The idea is to first perform a space discretization, which transforms
the PDE into a system of ordinary differential equations that only depends on time and then apply a
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time discretization.
If we decide to discretize in time first, also known as Rothe’s method, cf. [39], we obtain a sequence

of stationary PDEs to be solved in each time step. An advantage of Rothe’s method is the possibility to
adapt the space discretization in each time step according to the properties of the resulting stationary
PDEs. This is particularly practicable for problems, where the solution changes its spatial support.

This thesis focuses on time integration of PDEs. We distinguish between implicit and explicit meth-
ods. In general, an implicit scheme takes the current approximated variable and solves a system of
possibly nonlinear equations. However, after employing a space discretization, if nonlinear systems need
to be solved, this may leads to prohibitively high computational costs.

In contrast, an explicit scheme calculates the next step by using only previously calculated approxi-
mations. However, in certain numerical experiments with explicit schemes, unexpected behavior of the
approximation has been observed, cf. [64, Chap. 1]. This includes, e.g., very small stepsizes in order to
obtain the desired accuracy even for problems that provide a smooth solution. This is caused by the fact
that the stepsize is not determined by accuracy, but by stability. An example is the setting of chemical
reactions, when fast reactions as well as slow reactions take place at the same time. We call a problem a
stiff problem, if the approximation with an explicit scheme does not work, e.g., it will lead to an immense
stepsize restriction in time or it produces oscillations, even though the exact solution does not oscillate.
In this case, implicit schemes have lead to better results.

Each application we intend to simulate comes with its specialties and numerical difficulties. In this
thesis, the following challenges arise.

■ The spatial domain, on which the wave equation is posed, can be unbounded. Then, the space dis-
cretization with standard methods requires a truncation of the domain, such that nontrivial boundary
conditions have to be imposed. Moreover, some applications require a high dimension of the domain,
which leads to huge systems to be solved and high computational costs. This is also known as the
curse of dimension. Our aim is to minimize this computational effort by providing more enhanced
approximation techniques.

■ A convolution term can model a certain type of materials. Since a standard time discretization of a
convolution requires to store the discrete solution at all times, it produces a high memory cost.

■ Nontrivial boundary conditions commonly appear in wave propagation. However, they are not covered
by standard numerical analysis techniques and make the analysis much more involved. It is crucial
to couple the dynamics on the boundary to the equation in such a way, that the resulting problem is
well-posed. Furthermore, to ensure that the solution fulfills the boundary conditions, suitable function
and discretization spaces need to be chosen. For the numerical discretization, a stable coupling of the
wave equations on the boundary and the domain is required.

■ Nonlinearities not only create analytical difficulties regarding wellposedness, a nonlinearity also has a
major effect on the computational effort of a numerical method. This is due to the fact that a nonlinear
inhomogeneity usually leads to solving a nonlinear system in each step of the time discretization.



3

■ Oscillations in space of the exact solution to a wave-type equation, are difficult to approximate with
standard mesh-based discretization methods. This is due to the fact, that we would have to use a
very fine mesh, in order to obtain a reasonable approximation. However, this can lead to immense
computational costs.

A priori knowledge of characteristics of solutions to wave-type equations can be used to find an
appropriate method for simulating the behavior of the corresponding waves. It is our interest, to adjust a
numerical method, such that it captures a certain quantity of interest, e.g., a physical property. However,
the efficient implementation can be a challenging task.

In this thesis we consider three different settings of wave-type equations, where the numerical treat-
ment is tailor-made for the respective property or challenge. The schemes are introduced and analyzed
in two papers and one preprint, which are included in separate chapters. In Section 1.2, Section 1.3 and
Section 1.4 we give short summaries of the main results for each topic.

The paper [31], included in Chapter 2, considers the approximation of the solution of a semiclassically
scaled magnetic Schrödinger equation which describes the dynamics of charged particles under the influ-
ence of a magnetic field. The magnetic Schrödinger equation is posed in an unbounded domain. To tackle
this difficult problem, we use an approximating manifold of complex Gaussians. A variational approach
leads to ordinary differential equations for time-dependent parameters characterizing the approximating
Gaussian. A novelty is, that we consider time-dependent electric and magnetic potentials.

If we intend to describe the magnetic potential by PDEs, we obtain Maxwell’s equations. These are
considered in Chapter 3, which contains the content of [113], accepted for publication in IMA Journal
of Numerical Analysis. In this setting, the PDE is posed on an unbounded domain as well, but now we
consider a scattering problem, where the wave travels through a bounded obstacle. Furthermore, the
solution to Maxwell’s equations fulfills a continuity requirement on the boundary. Here, we handle the
challenge of approximating a wave on an unbounded domain by coupling the functions, inside and outside
of the obstacle, on the boundary. Then, the space discretization is transferred to the boundary.

We emphasize, that the setting in Chapter 2 and Chapter 3 have in common, that the PDE is posed
on an unbounded domain. In both cases, we use representation formulas. In Chapter 3 the exact solution
can be described by a representation formula, which we then discretize. In contrast, in Chapter 2, we
approximate by a representation formula. In both cases, the numerical approximations of the formulas
lead to schemes that are numerically more favorable. The setting of Chapter 3 additionally contains a
convolution, describing a nonlocal material, which is numerically treated by convolution quadrature.

Whereas the above mentioned papers deal with PDEs on an unbounded domain, in the preprint [32]
included in Chapter 4, we consider the wave equation on a bounded domain with a smooth boundary.
As in Chapter 3, the wave equation has a convolution term, which describes a nonlocal-in-time material
law and a nontrivial boundary condition. In contrast to the scattering setting in Chapter 3, we do not
use convolution quadrature, because the convolution kernels admit an additional differential equation,
which can be coupled to the PDE. Moreover, the difficulty of the action on the boundary is solved by
using bulk-surface Sobolev spaces. Since the domain is bounded, it is not necessary to restrict the space
discretization to the boundary, but can be done with isoparametric finite elements.
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1.1 Notation

Throughout this thesis, we denote the partial derivative with respect to time by ∂tu = u′ = ut and
similarly for higher-order time derivatives.

Let Ω ⊂ Rd. We denote by C(Ω) the space of continuous functions on Ω. Furthermore, for k-times
continuously differentiable functions on Ω, we use the notation Ck(Ω), where k ∈ N. For the classical
Lebesgue spaces we use the notation Lp(Ω), where p ≥ 1, and S(Rd) for the Schwartz space of rapidly
decreasing functions. For f, g ∈ L2(Ω), we denote the L2(Ω) scalar product by

〈
f, g
〉

=
〈
f | g

〉
=
∫

Ω
f(x)g(x) dx.

We also use the dot product of v, w ∈ Rd or v, w ∈ Cd as v · w := vTw = v1w1 + · · ·+ vdwd.
Let α = (α1, . . . , αd) ∈ Nd0 be a multi-index and |α| = α1 + . . . + αd. For a sufficiently often weakly

differentiable function f we define ∂αf = ∂α1
1 · · · ∂

αd

d f . Let k ∈ N0, the k-th order Sobolev space is given
by

Hk(Ω) = {f : Ω→ C | ∂αf ∈ L2(Ω), |α| ≤ k}.

We equip Hk(Ω) with the scalar product

(
f, g
)
Hk(Ω) =

∑
|α|≤k

∫
Ω
∂αf(x) ∂αg(x) dx.

The Sobolev space Hk(Ω) with this scalar product is a Hilbert space. The canonical norm on Hk(Ω) is
given by

∥f∥2
Hk(Ω) =

(
f, f

)
Hk(Ω).

Let Ω ⊂ Rd be bounded with boundary Γ = ∂Ω. We introduce the notation

L2(Ω,Γ) = H0(Ω,Γ) = L2(Ω)× L2(Γ)

and define the following bulk-surface Sobolev spaces,

Hk(Ω,Γ) =
{
v ∈ Hk(Ω)

∣∣ γD(v) ∈ Hk(Γ)
}
, k ≥ 1,

of Hk(Ω)-functions with Hk(Γ)-traces, where γD denotes the Dirichlet trace operator, cf. [82]. We further
equip Hk(Ω,Γ) with a scalar product, which induces the norm

∥v∥2
Hk(Ω,Γ) = ∥v∥2

Hk(Ω) + ∥γD(v)∥2
Hk(Γ) , k ≥ 0.

According to [72, Cor. 6.7] we know that H1(Ω,Γ) is dense in L2(Ω,Γ) and C∞(Ω) is dense in H1(Ω,Γ).
Whenever necessary, we will make use of weighted spaces. That is, for a Hilbert V with scalar product
(·, ·)V we define the weighted Hilbert space

(
Vµ, (·, ·)Vµ

)
, for some µ > 0, by V equipped with the

weighted scalar product, i.e.,
(x, y)Vµ

= µ(x, y)V for x, y ∈ V.

Let Γ be C1-regular. For a function v ∈ H1(Ω) and the outer unit normal vector n, we define the
surface gradient

∇Γv = (∂j,Γv)dj=1 = (I − nnT )∇v
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and the Laplace-Beltrami operator

∆Γv =
d∑
j=1

∂2
j,Γv. (1.2)

Let X,Y be Banach spaces and K : X → Y a bounded linear operator. We define the operator norm

∥K∥Y←X = max
x∈X, ∥x∥X =1

∥Kx∥Y .

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary Γ = ∂Ω or the complement of the closure of
such a domain. Furthermore, let v be a vector field on Ω, and we employ the standard weak definition
of the curl operator and denote the corresponding Sobolev space by

H(curl,Ω) = {v ∈ L2(Ω) | curl v ∈ L2(Ω)}.

For a continuous vector field v : Ω→ C3, we define the tangential trace

γTv = v|Γ × n on Γ, (1.3)

where n denotes the unit normal vector pointing into the exterior (unbounded) domain.
For continuous tangential vector fields on the boundary ϕ, ψ : Γ → C3, we define a skew-hermitian

sesquilinear form,
[ϕ, ψ]Γ =

∫
Γ
(ϕ× n) · ψ dσ. (1.4)

The trace can be extended to a surjective bounded linear operator γT : H(curl,Ω)→ γT (H(curl,Ω)),
cf. [30] and [29, Sect. 2.2]. We define the trace space XΓ = γT (H(curl,Ω)), which is a Hilbert space.The
pairing [·, ·]Γ can be extended to a continuous sesquilinear form on XΓ×XΓ, such that XΓ is its own dual.

Let X be a Hilbert space. We denote by Hr(R, X) the Sobolev space of order r of X-valued functions
on R. On a finite interval (0, T ) we define

Hr
0 (0, T ;X) = {g|(0,T ) | g ∈ Hr(R, X) with g = 0 on (−∞, 0)}, (1.5)

where the subscript 0 in Hr
0 only indicates the vanishing condition for the left end-point of the interval.

Let s ∈ C with Re s > 0 and let f be a possibly vector-valued function on the nonnegative real line.
We denote Laplace transform by

f̂(s) = L(f)(s) =
∫ ∞

0
f(t) e−ts dt, (1.6)

whenever it is well-defined. Provided that f is sufficiently regular, the Laplace transform f̂ is an analytic
function on the right half plane {s ∈ C | Re s > 0}.
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1.2 Results of Gaussians for the magnetic Schrödinger equation

The semiclassical magnetic Schrödinger equation describes the behavior of particles exposed to the force
of an external magnetic vector potential A with divA = 0. That is, we seek ψ, such that

iε∂tψ(t) = H(t)ψ(t), ψ(0) = ψ0, t ∈ R (1.7a)

on Rd with the magnetic Hamiltonian

H(t) = −ε
2

2 ∆ + iεA(t) · ∇+ Ṽ (t), Ṽ (t) = 1
2 |A(t)|2 + V (t), (1.7b)

initial value ψ0 ∈ L2(Rd), and with a semiclassical parameter 0 < ε ≪ 1. The scalar potential V acts
as an electric potential. One can interpret the small semiclassical parameter as the mass ratio of light
electrons and heavy nucleons which appear in a molecule.

For the numerical simulation, the magnetic Schrödinger equation is challenging for several reasons.
First, it is posed on the full space Rd, which means, one has to truncate the area of simulation. Second, the
solution to the magnetic Schrödinger equation is highly oscillatory. In order to capture these oscillations,
we would have to use a fine discretization. In realistic applications, where molecules are considered, we
have a large number of electrons and protons, leading to a high-dimensional problem. Combined with the
small stepsize, this leads to a huge computational effort, making the discretization with standard finite
elements unfeasible.

To overcome this difficulty, in [98], Lubich suggests to take a manifold M of ansatz functions, which
contains, under certain conditions, the exact solution to the Schödinger equation. These ansatz functions,
which we also refer to as Gaussian wave packets, are localized Gaussians of the form

u(t, x) = exp
( i
ε

(1
2(x− q(t))TC(t)(x− q(t)) + (x− q(t))T p(t) + ζ(t)

))
,

where q, p ∈ Rd can be interpreted as position center and momentum, C ∈ Cd×d is the width matrix of
the packet. The matrix C has a positive definite imaginary part, which characterizes the slope around
the position. Finally, we have a phase and weight parameter ζ ∈ C. Numerically, the main advantage
of the Gaussians is, that they are fully described by their time-dependent parameters q, p, C, and ζ. For
these parameters, we derive ordinary differential equations (ODEs) to approximate the solution to the
magnetic Schrödinger equation.

Next, we sketch the approximation by a Gaussian wave packet. To this end, we mention that the
set of Gaussian wave packets forms a manifold M. The tangential space at u(t) is denoted by Tu(t)M.
The approximating Gaussian wave packet is characterized by the Dirac–Frenkel variational formulation,
cf. [87, 98], i.e., seek u(t) ∈M such that for all t ∈ R it holds

∂tu(t) ∈ Tu(t)M,
〈
iε∂tu(t)−H(t)u(t)|v

〉
= 0 for all v ∈ Tu(t)M,

with initial value u(0) = u0 ∈ M. Employing the orthogonal projection Pu : L2(Rd) → TuM onto the
tangent space, this can be reformulated to

iε∂tu(t) = Pu(t)
(
H(t)u(t)

)
, u(0) = u0 ∈M. (1.8)

It is crucial to use the composition of the tangent space. In this case, it is made up of Gaussians multiplied
with a d-variate polynomial of degree at most two. The next key step is to properly investigate the
projection onto the tangent space and observe that here, it can be reduced to a multiplication operator.
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The approximation by Gaussian wave packets seems appropriate due to the following exactness result.

Proposition 1.1 ([87, Prop. 3.2]). Let V (t, ·) be quadratic and A(t, ·) be linear in space for all t ∈ R. If
ψ0 ∈ M is a Gaussian, then the variational approximation u defined by (1.8) is exact, i.e., u(t) = ψ(t),
where ψ denotes the solution of (1.7a).

We measure the quality of the approximation by the Gaussian wave packets in the L2-norm and
using a physically motivated observable error bound, which will be given with respect to the semiclassical
parameter ε. We derive these two error bounds provided that the following assumption is fulfilled.

Assumption 1.2. The scalar potential Ṽ : R×Rd → R and the vector valued potential A = (Aj)j=1,...,d :
R× Rd → Rd are infinitely often differentiable and in addition

(a) Ṽ is subquadratic, i.e., ∇kṼ is bounded for all k ≥ 2, and

(b) A is sublinear, i.e., ∇kA is bounded for all k ≥ 1, and satisfies divA = 0.

The following error estimate extends the well-known error bound, e.g., [87], to the magnetic case.

Theorem 1.3. Let ψ, u be the solution of (1.7a) and (1.8), respectively, and let ψ0 = u0 ∈ M be
L2-normalized Gaussians. Then, the error bound

∥ψ(t)− u(t)∥L2 ≤ tc
√
ε, t ∈ [0, T ],

holds with a constant c which depends on the parameters’ growth for the time-interval [0, T ], in particular
on the width matrix C, and on the potentials, but is independent of ε and t.

In classical mechanics, at a time t ∈ R, a single particle is characterized by its position and momentum
variables q̃(t), p̃(t) ∈ R3, [98, Chapt 1]. The setting is readily extended to the case of multiple particles.
Then, a potential V acting on the position variables of N particles describes their interaction and the
total kinetic energy T is given as the sum of kinetic energies,

V (q̃) = V (q̃1, . . . , q̃N ) and T (p̃) = 1
2

N∑
j=1
|p̃j |2 .

This can be generalized to smooth functions a = a(q̃, p̃) ∈ C∞(R2d), where d = 3N , acting on the
position and momentum variables. We call them classical observables. The classical equations of motion
for charged particles in a magnetic field are given by the Hamilton system, which is induced by the
time-dependent Hamiltonian function, cf. [58, 67],

h(t, q̃, p̃) = 1
2 |p̃|

2 −A(t, q̃) · p̃+ Ṽ (t, q̃), (t, q̃, p̃) ∈ R× R2d. (1.9)

The Hamilton system then reads

˙̃q(t) = p̃(t)−A(t, q̃(t)), q̃(0) = q̃0,

˙̃p(t) = JTA (t, q̃(t))p̃(t)−∇Ṽ (t, q̃(t)), p̃(0) = p̃0,
(1.10)

where JA denotes the Jacobian matrix with respect to the spatial variable of A. Employing standard
ODE theory, we see that (1.10) admits a global solution. This gives rise to the classical propagator

Φt,s : R2d → R2d, (q̃(s), p̃(s)) 7→ (q̃s(t), p̃s(t)),
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that maps initial values at time s to the solution of (1.10) at time t.
In the quantum mechanic case, the current state of N particles is characterized by a wave function

ψ : R × Rd → C with d = 3N . For every classical observable a ∈ C∞(R2d), we associate a quantum
observable A = opWeyl(a) via the Weyl quantization, i.e., formally, for a Schwartz function φ ∈ S(Rd),
we define

opWeyl(a)φ(x) := 1
(2πε)d

∫
R2d

a
(x+ q̃

2 , p̃
)

eip̃·(x−q̃)/εφ(q̃) d(q̃, p̃) x ∈ Rd.

It has the property that

opWeyl(q̃)φ = −iε∇ψ, and opWeyl(p̃)φ = xφ,

and for the energy we have

opWeyl(h(t, q̃, p̃))φ = H(t)φ

with the classical Hamiltonian function (1.9). The propagation of the observable along the solution to
the Schrödinger equation (1.7a) is of physical interest. It is defined by averages ⟨A⟩ψ with respect to the
L2-scalar product, i.e.,

⟨A⟩ψ =
〈
ψ|Aψ

〉
=
∫
Rd

ψ(x)(Aψ)(x) dx.

For a certain class of quantum observables we compare their propagation along the exact and variational
solution, and show an improved semiclassical error bound. For the proof it is crucial to relate quantum
observables and classically propagated observables, which results in a time-dependent version of Egorov’s
theorem, that is proven in Chapter 2. The version of Egorov’s theorem, which is well-established in
semiclassical analysis, is only provided for a time-independent setting.

Theorem 1.4. Let ψ, u be the solution of (1.7a) and (1.8), respectively, and let ψ0 = u0 ∈ M be L2-
normalized Gaussians. Moreover, let A = opWeyl(a) be a quantum observable stemming from a classical
observable, such that a and the composition with the classical flow a ◦ Φt,s have bounded derivatives of
order ≥ 1. Then we have the error bound∣∣〈ψ(t)|Aψ(t)

〉
−
〈
u(t)|Au(t)

〉∣∣ ≤ t c ε2

for all t ∈ [0, T ]. The error constant c depends on the parameters’ growth for the time-interval [0, T ], in
particular on the width matrix C, on the potentials A, Ṽ , and on a, but is independent of ε and t.

The initial idea to investigate the problem (1.7a) relies on the results in the review article by Lasser
and Lubich, where Gaussian approximations and their corresponding ODEs are known for the case A = 0
and time-independent, electric potential Ṽ . There, Lasser and Lubich introduce a new observable error
bound of order O(ε). This error bound was improved by Ohsawa to the order O(ε3/2). Our contribution,
which is given in Chapter 2 and published in [31], relies in extending the results to the magnetic case
and including time-dependent electric and magnetic potentials. Furthermore, in [31], we generalize to the
case, where the Hamilton operator in the Schrödinger equation (1.7a) is generated by a smooth, classical
Hamiltonian function, which has bounded derivatives of order ≥ 2. Finally, we were able to improve the
observable error bound to the order O(ε2).
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Outlook The idea of approximation by Gaussian wave packets can be extended to the approximation
by an element made up of an orthonormal basis of Gaussians with a polynomial prefactor. These are
called the Hagedorn wave packets. This has been done in, e.g., [59–61] and [87, Sec. 4] for the non-
magnetic case. Hagedorn wave packets for the magnetic Schrödinger equation with a linear magnetic
potential are considered in [56, 57]. We are confident, that the results shown in [31] can also be shown for
Hagedorn wave packets. Possibly, higher-order approximations in terms of the semiclassical parameter ε
can be achieved. The authors of the preprint [79] consider an approach with a mixture of time-dependent
Hagedorn wave packets and time-independent basis functions.

A new representation of square-integrable function by a superposition of Gaussian wave packets is
analyzed in [20]. Our results are the basis for the paper [124], dealing with the efficient implementation
of the parameters’ ODEs by Boris algorithm. For a more detailed literature review, see the references
in [31].
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1.3 Results of time-dependent electromagnetic scattering from
dispersive materials

We consider the propagation of electromagnetic waves on a possibly unbounded domain Ω ⊂ R3. In
this setting, we assume vanishing current and charge. Then the situation can be modeled by the time-
dependent Maxwell’s equations. That is, we seek E and H, such that

ε0(∂tE + P (∂tE))− curlH = 0,

µ0(∂tH +M(∂tH)) + curlE = 0,
in Ω,

where ε0 and µ0 denote the constant permittivity and permeability, respectively, and the polarization
field P and the magnetization field M are given by a convolution in time

P (E)(t) =
∫ t

0
χe(θ)E(t− θ) dθ, M(H)(t) =

∫ t

0
χm(θ)H(t− θ) dθ,

with scalar susceptibility kernels χe and χm. These are characterized by physical properties of the
material. In the case of vanishing susceptibility kernels, this model describes the situation of vacuum.
Common metamaterials that fit into this framework are provided by the Drude or Lorentz model. The
Lorentz oscillators, for example, use the susceptibility kernels with ℓ ∈ {e,m}

χℓ(t) = βℓ
λℓ

e−
αℓ
2 t sin(λℓt), λℓ =

√
ω2
ℓ −

αℓ
4 , (1.11)

where ωℓ is the resonance frequency, 0 < αℓ < 4ω2
ℓ is a damping coefficient and βℓ > 0 gives the strength.

For more information, we refer to the survey [37].
The physical properties of the material are usually obtained from experiments in the frequency domain,

i.e., the susceptibility kernels are given as a transfer function with respect to a frequency variable s ∈ C
as opposed to a time-dependent function. Employing the Laplace transforms (χ̂±e (s), χ̂±m(s)) of the
susceptibility kernels (χ±e (t), χ±m(t)), cf. (1.6), we define the time-harmonic kernels

ε±(s) = ε0(1 + χ̂±e (s)), µ±(s) = µ0(1 + χ̂±m(s)). (1.12)

Without providing further details, let us note, that the time-harmonic kernels are bounded and fulfill a
strong passivity condition. This has physical applications, as explained in [37, after Definition 2.5].

From now on, we consider an incoming electromagnetic wave (Einc,Hinc) that travels in R3 and hits
a bounded scatterer Ω− ⊂ R3, which we refer to as the interior domain. Furthermore, we assume, that
at the beginning of the observation, the incoming wave is away from the scatterer, leading to vanishing
initial conditions at the boundary. When the incoming electromagnetic wave reaches Ω−, the scatterer
interacts with the wave, e.g., by reflection, and travels on as a scattered wave. We distinguish between
the scattered wave (E+,H+) in the exterior domain Ω+ and the scattered wave (E−,H−) inside of the
scatterer. In the present situation, the scatterer consists of a nonlocal material, i.e., an interaction with
the wave has a non-instantaneous effect on the scatterer. More precisely, any prior interaction with the
scatterer also has an impact on the scattered wave at later times. The scattering problem reads

ε0(∂tE− + P (∂tE−)) − curlH− = 0,

µ0(∂t H− +M(∂tH−)) + curlE− = 0,
in the interior domain Ω−, (1.13a)
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and
ε0∂tE

+ − curlH+ = 0,

µ0∂tH
+ + curlE+ = 0,

in the exterior domain Ω+. (1.13b)

Furthermore, the electromagnetic waves behave continuously along the interface of the scatterer Γ = ∂Ω±.
Thus, we enforce transmission conditions

γTE
− = γTE

+ + γTEinc,

γTH
− = γTH

+ + γTHinc,
on Γ,

with the tangential trace γT , defined in (1.3).
Numerically, the scattering problem (1.13) has two main challenges. First, the nonlocal-in-time behav-

ior of the convolution term demands for a standard time discretization method to store a complete history
of the solution. Second, the exterior domain Ω+ is unbounded, making a standard space discretization
impractical, since the domain will then need a truncation.

To overcome these difficulties, we use the following techniques. Our focus lies on the traces of the
electromagnetic waves on the scatterer’s bounded interface Γ and we derive a time-harmonic boundary
integral equation (BIE). This BIE maps the given boundary traces of the external incoming waves to the
traces of the scattered exterior and interior fields, respectively. Then, we employ a representation formula
based on the fundamental solutions to Maxwell’s equations. This formula only uses the information on
the boundary and restores the electromagnetic fields (E±,H±) in the outer and inner domain. We
show wellposedness of the time-harmonic BIE by applying a Lax-Milgram theorem. Finally, we employ
a Runge-Kutta based convolution quadrature for the time discretization.

Time-harmonic scattering and transmission problem As mentioned before, in applications we
typically are given a transfer function with respect to a frequency variable s ∈ C. To relate functions on
the frequency domain to the time domain we employ the Heaviside notation. That is, let g : [0,∞)→ R
be sufficiently regular and extended by 0 for t < 0 and let ε be an analytic function for Re s > 0. Then,
we associate to ε a time-dependent convolution

ε(∂t)g(t) =
∫ ∞

0
(L−1ε)(θ) g(t− θ) dθ, t > 0, (1.14)

with the differential calculus ∂t and the inverse Laplace transform L−1. For example, the function ε(s) = s

corresponds to the time derivative ∂t in the time domain, provided g has vanishing initial conditions.
Moreover, it is well known that the Laplace transform of a convolution translates into a multiplication
of the Laplace transformed convolution kernels. The previous considerations give rise to applying the
Laplace transform to the scattering problem (1.13). We denote the Laplace transformed electromagnetic
fields by Ê = L(E), cf. (1.6). Then, with the time-harmonic kernels (1.12), the time-harmonic scattering
problem reads

ε±(s)sÊ± − curl Ĥ± = 0

µ±(s)sĤ± + curl Ê± = 0
in Ω±,

with the transmission conditions

γT Ê
+ + γT Ê

+
inc = γT Ê

−

γT Ĥ
+ + γT Ĥ

+
inc = γT Ĥ

−
on Γ. (1.15a)
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To state the representation formula, which enables us to handle the unbounded domain, we reformulate
the time-harmonic scattering problem (1.15) into an electromagnetic transmission problem on R3 \ Γ.
The transmission problem includes jumps and averages for the tangential traces defined by

[γT ] = γ+
T − γ

−
T , {γT } = 1

2
(
γ+
T + γ−T

)
.

Before stating the transmission problem, let us point out the following important observation. If the
electromagnetic wave (Ê, Ĥ) on R3 \Γ solves the time-harmonic transmission problem, then the restric-
tions Ê± = Ê|Ω± and Ĥ± = Ĥ|Ω± solve the time-harmonic scattering problem (1.15) with boundary
densities (φ̂, ψ̂) = (−γT Ĥ+

inc, γT Ê
+
inc).

Let (φ̂, ψ̂) be sufficiently regular boundary densities. The time-harmonic transmission problem reads

ε(s)sÊ − curl Ĥ = 0 in R3 \ Γ, (1.16a)

µ(s)sĤ + curl Ê = 0 in R3 \ Γ, (1.16b)

[γT ]Ĥ = φ̂ , (1.16c)

−[γT ]Ê = ψ̂ . (1.16d)

It is solved by the electromagnetic fields (Ê, Ĥ) given by

Ê = −
√
µ(s)√
ε(s)

Sε,µ(s)φ̂+ Dε,µ(s)ψ̂, Ĥ = −Dε,µ(s)φ̂−
√
ε(s)√
µ(s)

Sε,µ(s) ψ̂, (1.17)

where Sε,µ(s), Dε,µ(s) are potential operators, based on the fundamental solution of the time-harmonic
Maxwell’s equations. We will not go into detail here and refer to [29, 106] for further information. The
identities in (1.17) are representation formulas for the solutions Ê, Ĥ, which can be derived from known
jump relations, cf. [29, 106]. We emphasize that the representation formulas map boundary densities to
electromagnetic fields on the inner and the outer domain.

Boundary integral equation and representation We now turn towards the derivation of the BIE.
To this end, the Calderón operator plays an important role by linking the interior and exterior domain.
For s ∈ C with Re s > 0 the Calderón operator Cε,µ(s) : X2

Γ → X2
Γ is constructed, cf. [85], such that it

maps jumps of the solution (Ê, Ĥ) to (1.16) to their averages,

Cε,µ(s)
(

[γT ]Ĥ
−[γT ]Ê

)
=
(
{γT }Ê
{γT }Ĥ

)
. (1.18)

Crucial properties of the Calderón operator are boundedness and coercivity. For the coercivity, we note
that the skew-hermitian pairing [·, ·]Γ defined in (1.4) is extended from XΓ×XΓ to X2

Γ×X2
Γ in the natural

way, [(
φ

ψ

)
,

(
υ

ξ

)]
Γ

= [φ,υ]Γ + [ψ, ξ]Γ.

The family of linear operators is of positive type, i.e., for Re s > 0 and all (φ, ψ) ∈ X2
Γ, we have

Re
[(
φ

ψ

)
,Cε,µ(s)

(
φ

ψ

)]
Γ

≥ C(ε, µ,Γ) Re s
|s|2 + 1

(∥∥φ∥∥2
XΓ

+
∥∥ψ∥∥2

XΓ

)
, (1.19)
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where the constant C(ε, µ,Γ) depends on bounds of the physical functions ε, µ and the boundary Γ.
Furthermore, it satisfies the bound

∥Cε,µ(s)∥X2
Γ←X2

Γ
≤ C(ε, µ,Γ) |s|

2 + 1
Re s , (1.20)

where C(ε, µ,Γ) depends on bounds of the physical functions ε, µ and the boundary Γ. To derive the
BIE, we introduce the notation

ϕ̂+ =
(
φ̂+

ψ̂+

)
=
(
γ+
T Ĥ

+

−γ+
T Ê

+

)
, ϕ̂− =

(
φ̂−

ψ̂−

)
=
(
−γ−T Ĥ−

γ−T Ê
−

)
, ĝinc = 1

2

(
γ+
T Ê

+
inc

γ+
T Ĥ

+
inc

)
. (1.21)

Further, we use relation (1.18) and the transmission conditions (1.15a), which yield

Cε+,µ+(s)ϕ̂+ = −Jϕ̂− − ĝinc and Cε−,µ−(s)ϕ̂− = Jϕ̂+ + ĝinc

with an appropriate block operator J . This is collected in the time-harmonic BIE

A(s)
(
ϕ̂+

ϕ̂−

)
=
(
−ĝinc

ĝinc

)
, where A(s) =

(
Cε+,µ+(s) J

−J Cε−,µ−(s)

)
: X4

Γ → X4
Γ. (1.22)

This BIE is considered in its weak formulation. For Re s > 0 and given ĝinc ∈ X2
Γ, find (ϕ+,ϕ−) ∈ X4

Γ

such that, for all (υ, ξ) ∈ X4
Γ[(

υ

ξ

)
,A(s)

(
ϕ+

ϕ−

)]
Γ

=
[(
υ

ξ

)
,

(
−ĝinc

ĝinc

)]
Γ

.

The family of analytic operators A(s) satisfies the following bound for Re s > 0,

∥A(s)∥X4
Γ←X4

Γ
≤ C(ε, µ,Γ) |s|

2 + 1
Re s + 1

2 ,

where C(ε, µ,Γ) depends on bounds of the physical functions ε, µ and the boundary Γ. Moreover, the
boundary integral operator inherits the coercivity property from the Calderón operator. More precisely,
for Re s > 0 the bound (1.19) holds, when Cε,µ(s) is replaced by A(s). With boundedness and coercivity,
we employ the Lax-Milgram theorem to obtain a bounded inverse operator of (1.22). More precisely, the
BIE has the unique solution (

ϕ̂+

ϕ̂−

)
= A(s)−1

(
−ĝinc

ĝinc

)
∈ X4

Γ, (1.23)

and A(s)−1 satisfies the bound

∥A(s)−1∥X4
Γ←X4

Γ
≤ C(ε, µ,Γ) |s|

2 + 1
Re s , (1.24)

where C(ε, µ,Γ) depends on bounds of the physical functions ε, µ and the boundary Γ. From this
equation, we can clearly see, that traces ĝinc of the given incoming electromagnetic fields can be mapped
by a bounded linear operator A(s)−1 to the tangential traces of the desired scattered fields ϕ̂+ and ϕ̂−,
see (1.21).

Next, we concatenate the representation formula (1.17) with the inverse boundary integral operator.
The composed operator is denoted by U±(s). We point out, that U± maps the given time-harmonic
incoming traces ĝinc to the Laplace transforms (Ê±, Ĥ±) of the desired electromagnetic fields. For
further details, see Section 3.6.2. Moreover, we obtain the bound

∥U±(s)∥H(curl,Ω±)2←X2
Γ
≤ Cσ

|s|3

(Re s)3/2 , for Re s ≥ σ > 0. (1.25)
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Convolution quadrature The concept of convolution quadrature was first constructed by Lubich
for multistep methods and then extended to Runge-Kutta methods, see, e.g., [16]. We make use of a
convolution quadrature based on an m-stage implicit Runge–Kutta method, see [63], for the discretization
of the initial value problem

y′ = f(t, y), y(0) = y0.

Let τ > 0 be the time stepsize and let yn be the approximation to y(tn) at time tn = nτ . Furthermore,
let Y ni be the internal stages to approximate y(tn + ciτ), obtained as the solution to

Y ni = yn + τ

m∑
j=1

aijf(tn + cjτ, Y
nj), i = 1, . . . ,m,

yn+1 = yn + τ

m∑
j=1

bjf(tn + cjτ, Y
nj).

The method is determined by its coefficients

A = (aij)mi,j=1, b = (b1, . . . , bm)T , and c = (c1, . . . , cm)T ,

where we always assume that A is invertible. To construct the convolution quadrature weights, we use
the Runge–Kutta differentiation symbol

∆(ζ) =
(
A + ζ

1− ζ 1b
T
)−1
∈ Cm×m, ζ ∈ C with |ζ| < 1.

For example, the well-known implicit Euler method corresponds to the symbol ∆impEuler(ζ) = 1 − ζ.
Concerning the wellposedness and eigenvalues of ∆(ζ), more information can be found in Chapter 3.

Let X, Y be Banach spaces and let K(s) : X → Y be an analytic family of linear operators for
Re s ≥ σ0 > 0, such that for κ ∈ R and ν ≥ 0 we have

∥K(s)∥Y←X ≤Mσ
|s|κ

(Re s)ν . (1.26)

Let g : [0, T ]→X be sufficiently regular and extended to 0 for t < 0. The Heaviside notation (1.14) nat-
urally extends to the Banach-space-valued functions, such that the operator K is a convolution operator
K(∂t) : Hr+κ

0 (0, T ;X)→Hr
0 (0, T ;Y ) for arbitrary real r, cf. (1.5). For two compatible operators K,L

we have the composition
K(∂t)L(∂t)g = (KL)(∂t)g. (1.27)

To deal with the convolution K(∂t)g numerically, we replace the differential calculus ∂t by a discrete
calculus ∂τt = ∆(ζ)/τ and expand into a generating function, cf. [65],

K
(∆(ζ)

τ

)
=
∞∑
n=0

Wn(K)ζn.

Here, the convolution quadrature “weights” are operatorsWn(K) : Xm → Y m. For the given function g,
we define the sequence of values g̃ = (g̃n) with g̃n =

(
g(tn+ciτ)

)m
i=1, adjusted to the Runge–Kutta stages.

Then, the discrete convolution of K with g̃ is given as

(
K(∂τt )g̃

)n =
n∑
j=0

Wn−j(K)g̃j ∈ Y m.
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According to [11, Theorem 4.2], we have the approximation property

i-th component of the vector
(
K(∂τt )g̃

)n ≈
(
K(∂t)g

)
(tn + ciτ). (1.28)

In particular, we use the Radau IIA methods, i.e., cm = 1, such that tn−1 + cmτ = tn in (1.28).
Consequently, the m-th, i.e., the last component of the vector

(
K(∂τt )g̃

)n−1 approximates the continuous
convolution at tn, (

K(∂t)g
)
(tn) ≈

[(
K(∂τt )g̃

)n−1
]
m
∈ Y .

An important property of the convolution quadrature is that it inherits the composition rule (1.27),
which is also true for the continuous convolution. That is, for two analytic families of operators K(s)
and L(s) mapping into compatible spaces, the convolution quadrature discretization satisfies, see, e.g., [95,
Equation (3.5)],

K(∂τt )L(∂τt )g̃ = (KL)(∂τt )g̃. (1.29)

The composition rule (1.29) is crucial, since it allows us to equivalently discretize the BIE with the inverse
operator.

The time discretization for the scattering problem is based on the following error bound for Runge–
Kutta convolution quadrature from [15] applied to Radau IIA methods [63, Section IV.5]. We draw
attention to the bounds (1.20), (1.24), and (1.25), which are of the same type as (1.26) and play an
important role for the next result.

Lemma 1.5 ([15, Theorem 3]). Let K(s) : X → Y , Re s > σ0 ≥ 0, be an analytic family of linear
operators between Banach spaces X and Y satisfying the bound (1.26) with exponents κ and ν. Consider
the Runge–Kutta convolution quadrature based on the Radau IIA method with m stages. Let 1 ≤ q ≤ m

(the most interesting case is q = m) and r > max(2q + κ, 2q − 1, q + 1). Let g ∈ Cr([0, T ],X) satisfy
g(0) = g′(0) = ... = g(r−1)(0) = 0 and let g̃ be the corresponding sequence of values. Then, the following
error bound holds at tn = nτ ∈ [0, T ]∥∥∥[(K(∂τt )g̃

)n−1
]
m
− (K(∂t)g)(tn)

∥∥∥
Y

≤ CM1/T τ
min(2q−1,q+1−κ+ν)

(
∥g(r)(0)∥X +

∫ t

0
∥g(r+1)(θ)∥X dθ

)
.

The constant C is independent of τ , g, and Mσ of (1.26), but depends on the exponents κ and ν in (1.26)
and on the final time T .

Convolution quadrature for the scattering problem At this stage, we return back from the
frequency domain to the time domain, employing the Heaviside notation (1.14). To obtain a time-
dependent version of the BIE (1.22), we formally insert the differentiation operator ∂t in place of the
frequency variable s. Given ginc : [0, T ] → X2

Γ, we seek time-dependent boundary densities (ϕ+,ϕ−) :
[0, T ]→ X2

Γ ×X2
Γ such that

A(∂t)ϕ = g with ϕ(t) =
(
ϕ+(t)
ϕ−(t)

)
∈ X4

Γ, g(t) =
(
−ginc(t)
ginc(t)

)
∈ X4

Γ. (1.30)

Recall that the inverse operator A−1(s) from (1.23) satisfies the bound (1.24). Employing the Heaviside
notation (1.14) and the composition rules A−1(∂t)A(∂t) = Id and A(∂t)A−1(∂t) = Id, we obtain the
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unique solution of (1.30) as

ϕ = A−1(∂t)g.

We apply the Runge–Kutta based convolution quadrature discretization to the BIE (1.30)

A(∂τt )ϕτ = g, or equivalently, ϕτ = A−1(∂τt ) g, (1.31)

with ϕ and g defined in (1.30). The two equations above are equivalent due to the discrete composition
rule (1.29). Then, we obtain the time discretization of the electromagnetic fields by inserting the boundary
densities from (1.31) into the representation formulas (1.17) and applying the convolution quadrature.

Recall the time-harmonic representation operator U±, which concatenates the representation formula
(1.17) with the inverse boundary integral operator. Applying the composition rule (1.27) yields a repre-
sentation operator U±(∂t) for the solution to the time-dependent scattering problem (1.13). Crucially,
with the discrete composition rule (1.29), it is equivalent to apply the convolution quadrature U±(∂τ )
to the given incoming boundary traces ginc, or to apply convolution quadrature A−1(∂τ ) to g and apply
another convolution quadrature and the representation formula (1.17).

In the upcoming theorem, we apply an m−stage Radau IIA convolution quadrature for the time
discretization and k-th order Raviart–Thomas boundary elements for the space discretization, cf. [119].
We find that, in general, we obtain an order reduction on Ω±. However, in [113], we show, that on
a domain Ω±d = {x ∈ Ω | dist(x,Γ) > d} with d > 0, away from the boundary, we have full-order
convergence. This stems from an improved bound with respect to the frequency variable s. This bound
decays exponentially in Re s, which dominates any polynomial growth in s.

Theorem 1.6 (Error bound of the full discretization). Consider the time-dependent scattering problem
(1.13) and let g ∈ Hr+3

0 (0, T ; X4
Γ) for some arbitrary r ≥ 0.

For r > 2m+ 4 we assume the incoming waves to satisfy g ∈ Cr([0, T ],X4
Γ). Moreover, we assume g to

vanish at t = 0 together with its first r− 1 time derivatives. Furthermore, it is assumed that the solution
ϕ of the boundary integral equation (1.30) is sufficiently regular and vanishes at t = 0 together with its
time derivatives.
Let τ be the time stepsize and h the mesh width of the k-th order boundary element discretization. Then,
the approximations to the electromagnetic fields at time tn, both in the interior and the exterior domain,(

E±τ,h

)n
=
[
(E±τ,h)n−1]

m
and

(
H±τ,h

)n
=
[
(H±τ,h)n−1]

m
,

satisfy the following error bound of order m− 1/2 in time and order k+ 3/2 in space at tn = nτ ∈ [0, T ]:∥∥∥(E±τ,h)n −E(tn)
∥∥∥
H(curl,Ω±)

+
∥∥∥(H±τ,h)n −H(tn)

∥∥∥
H(curl,Ω±)

≤ C
(
τm−1/2 + hk+3/2).

For r > 2m + 4, we obtain the full order 2m − 1 in time away from the interface Γ, on the domains
Ω±d = {x ∈ Ω : dist(x,Γ) > d} with d > 0, which reads∥∥∥(E±τ,h)n −E(tn)

∥∥∥
C1(Ω±

d )3
+
∥∥∥(H±τ,h)n −H(tn)

∥∥∥
C1(Ω±

d )3
≤ Cd

(
τ2m−1 + hk+3/2).

The constants C and Cd are independent of n, τ , and h, but depend on the final time T and on the
regularity of the incoming traces g and (φ, ψ) as stated. Cd additionally depends on the distance d.
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The motivation for the problem formulation summarized here (see Chapter 3 and [113]) builds on
[38], where the authors provide a numerical analysis for time-dependent electromagnetic scattering from
dielectric penetrable obstacles. Our contribution is the rigorous numerical analysis of a scattering problem
from dispersive materials, which are modeled by nonlocal convolutional material laws in the time domain
and frequency-dependent permittivities and permeabilities ε and µ in the Laplace domain. In contrast
to previous papers, the functions ε and µ are not set to constants, but depend on the frequency variable.
The extension to nonlocal materials inside and outside of the scatterer can be carried out in a straight-
forward way. A major challenge in this work involved finding an appropriate problem formulation that
balances the modeling of physically relevant assumptions for dispersive materials, and also leads to
wellposedness of the corresponding BIEs. Furthermore, we provide the first numerical approximation
scheme for time-dependent electromagnetic scattering from dispersive materials based on time-dependent
boundary integral equations, together with a rigorous error analysis. The techniques that we used here
were originally applied to the analogue acoustic problem setting without nonlocal materials, cf. [18, 19],
and further developed in [84, 112] for the electromagnetic case.
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1.4 Results of implicit-explicit scheme for semilinear and non-
local wave equations with kinetic b.c.

The viscoacoustic wave equation is given by

∂ttu(t)− c2∆u(t) +
∫ t

−∞
b(t− θ)∆u(θ) dθ = fΩ(t, u), u(0) = u0, ut(0) = v0, on Ω, (1.32a)

where Ω ⊂ Rd is a bounded domain with smooth boundary Γ, and for θ < 0 we set u(θ) = u0. It is a well-
established equation for describing the impact of a mechanical-energy wave to a nonlocal material. The
material may show dissipation and memory at the same time, cf. [101]. Nonlocality refers to materials,
where the material’s response is not immediate. Instead, its recent history plays a major role. We say that
the material has a memory. The dependence on the past is modeled by a convolution. The convolution
kernel b is determined by physical properties and describes the viscosity of the material.

In applications, wave propagation is often modeled with dynamic boundary conditions. That is, the
wave solves another differential equation on the boundary. An example is a vibrating membrane being
disturbed by linear tension and with nonvanishing mass density, see [54, Sec. 5&6], [91, S.56]. This can be
described by kinetic boundary conditions with d = 2. Another application of kinetic boundary conditions
can be found in [107, Sec. 3.2]. It models the membrane of a bass drum with a hole in the interior and
thick border.

We equip (1.32a) with kinetic boundary conditions, i.e., on Γ we require the solution to solve

∂ttu(t)− c2∆Γu(t) + c2n · ∇u+
∫ t

−∞
b(t− s)∆Γu(s) ds−

∫ t

−∞
b(t− s)n · ∇u(s) ds = fΓ(t), (1.32b)

with the Laplace-Beltrami operator ∆Γ defined in (1.2). To simplify the presentation, we define the
extended Laplace operator

∆Ω,Γ =

∆, in Ω,

∆Γ − n · ∇, on Γ.

Thus, with f = (fΩ, fΓ) we abbreviate (1.32) as,

∂ttu(t)− c2∆Ω,Γu(t) +
∫ t

−∞
b(t− s)∆Ω,Γu(s)ds = f(t, u), u(0) = u0, ut(0) = v0. (1.33a)

In the preprint [32], we provide a general framework which covers Dirichlet conditions as well. However, in
this short summary, we focus on kinetic boundary conditions and therefore use the bulk-surface Sobolev
spaces defined in (1.1).

In a common model studied in geophysical literature, e.g., [34, Chap. 2] and [68], the kernel b is given
by a linear combination of exponentials. For convenience, we only consider the case of a single exponential
kernel in this summary, i.e.,

b(t) = βe−λt, β, λ > 0. (1.33b)

The setting can be transferred to the case of multiple kernels. The exponential kernel controls how the
past influences the present. More precisely, more recent states have a greater impact on the material
than the history lying further away in the past, cf. [34, Sec. 2.1.1]. The material has a fading memory.

From a numerical point of view, the viscoacoustic wave equation with kinetic boundary conditions
is challenging for two major reasons. First, the additional convolution makes standard time integration
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schemes unfeasible, since we would have to keep track of all former values, resulting in large storage
requirements. Second, the kinetic boundary condition is posed on a smooth boundary, such that, in
general, a standard polygonal space discretization can not approximate the boundary correctly. This
leads to the difficulty that the numerical approximation does not live on the same spatial domain as the
exact solution, meaning the approximation space is not a subset of the space containing the exact solution.
Consequently, the comparison of the exact solution and the numerical approximation is more involved.
Then, a lift operator from the approximation space to the exact space can be used, cf. [76, 77, 91].

To avoid a huge storage for the time discretization, we replace the convolution by an additional
variable, called the auxiliary memory variable. Due to the exponential kernels (1.33b), the memory
variable solves a first-order differential equation, which can be coupled to the first-order system of the
wave equation. However, it is not trivial to find a suitable definition of the memory variable to obtain
wellposedness. In [51], the author uses an evolution equation setting and interprets the memory variable
as a bounded or sufficiently small relatively bounded perturbation to a wave-type operator. However, in
our situation, this is not possible, due to the Laplace operator acting on the convolution. We follow the
literature [2] and perform a shift in the convolution, to obtain∫ t

−∞
βe−λ(t−θ)∆Ω,Γu(θ) dθ = β

λ
∆Ω,Γu(t)− β∆Ω,ΓM(t),

with the auxiliary variable

M(t) =
∫ t

−∞
e−λ(t−θ)(u(t)− u(θ)

)
dθ, t ≥ 0.

Taking the derivative with respect to time of the auxiliary variable M and calculating the remaining
integral, we couple the additional differential equation to the wave equation and obtain the first-order in
time coupled PDE,

∂tu = v, u(0) = u0,

∂tv = α∆Ω,Γu+ β∆Ω,ΓM + f, v(0) = v0, α = c2 − β

λ
,

∂tM = −λM + 1
λ
v, M(0) = 0.

We write (1.34) in an evolution equation setting,

x′ +Ax = F,

where

x =


u

v

M

 , A =


0 −I 0

−α∆Ω,Γ 0 −β∆Ω,Γ

0 − 1
λ λ

 , F =


0
f

0

 .

To show that (1.35) is well-posed in a suitable space X and for a sufficiently regular right-hand sidef , we
employ the Lumer-Phillips theorem. To this end, we show monotonicity, i.e., there exists a constant cm
such that (

Ax, x
)
X
≥ −cm ∥x∥2

X , (1.36)

where cm = 0 for homogeneous Dirichlet boundary conditions and cm > 1
2 is sufficiently large, depending

on the parameters α, β and λ, for kinetic boundary conditions. To obtain the monotoncity (1.36) we add
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the weights α and µ = βλ > 0 to the canonical space H1(Ω,Γ)×L2(Ω,Γ)×H1(Ω,Γ). Now, using [115],
it follows that the monotone operator A generates a contractive, strongly continuous semigroup on the
Hilbert space,

X = H1
α(Ω,Γ)× L2(Ω,Γ)×H1

µ(Ω,Γ).

For the right-hand side f we require sufficient regularity and that it fulfills a growth condition, such
that a local Lipschitz property follows from a Sobolev embedding theorem. Thus, in contrast to the stiff
linearity A, the right-hand side has the property of being locally Lipschitz. This will be exploited for the
efficiency of the numerical time stepping, which we introduce next.

Let τ > 0 be the time stepsize. For the discretization of the differential equation of M, we introduce
the notation

γ± = 1± τλ

2 , γ = γ−
γ+

.

Furthermore, we denote the modified scalars

α̃ =
(
α+ β

λγ+

)
> α, and β̃ = β(1 + γ)

2 ∈ [0, β).

The implicit-explicit (IMEX) time discretization scheme is constructed by combining the Crank-Nicolson
with the leapfrog scheme, cf. [77, Section 2.2.]. For n ∈ N, we abbreviate tn = nτ and fn = f(tn, un) for
the evaluation of the right-hand side at the numerical approximation un ≈ u(tn). We denote

ΦΩ,Γ,τ (u, v,M) = τ

2 ∆Ω,Γ
(
αu+ β̃M

)
+τ2

4 α̃∆Ω,Γv

and formulate the IMEX scheme in a half-step formulation

vn+ 1
2 = vn + ΦΩ,Γ,τ

(
un,Mn, vn+ 1

2
)
+τ

2f
n, (1.37a)

un+1 = un + τvn+ 1
2 ,

Mn+1 = γMn + γ−1
+
τ

λ
vn+ 1

2 ,

vn+1 = vn+ 1
2 + ΦΩ,Γ,τ

(
un,Mn, vn+ 1

2
)
+τ

2f
n+1. (1.37b)

Note that ΦΩ,Γ,τ appears in the same way in the half and the full steps, (1.37a) and (1.37b). Subtracting
(1.37a) and (1.37b) gives an equivalent and computationally more efficient way to obtain vn+1, see also
[77, Remark 2.6]. Hence we have

vn+1 = −vn + 2vn+1/2 + τ

2 (fn+1 − fn).

We note that in the above scheme (1.37), the stiff linear part, which corresponds to A, is treated implicitly
in order to avoid severe stepsize restrictions for fine meshes. For the Crank-Nicolson scheme, the time
stepping for the inhomogeneity would be τ

4 (fn + fn+1) for both vn+1 and vn+ 1
2 , leading to a nonlinear

system to be solved in each update step. A remarkable advantage of the rearrangement is, that the
right-hand side is only evaluated at previously calculated approximations. This makes the IMEX scheme
more efficient, since only linear systems need to be solved. The wellposedness of the IMEX scheme can
be shown by an induction.

The error analysis of the IMEX scheme crucially exploits the fact, that it can be written into an
equivalent first-order formulation

xn+1 = Rxn + τ

2R
−1
+ yn + τ2

4 R
−1
+ zn, where R± = Id± τ

2A, R = R−1
+ R−, (1.38a)
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and

yn =


0
1
0

 (fn + fn+1), zn =


1
0
1
λ

 (fn − fn+1). (1.38b)

This allows the interpretation of the IMEX scheme as a perturbation of the Crank-Nicolson scheme. To
show an error bound for the IMEX scheme, we first insert the exact solution into the IMEX scheme,
which yields a provably stable error recursion. Afterwards, we bound the occurring defects.

We briefly discuss the main difficulties in bounding the defects. Since we interpret the IMEX scheme
as a perturbation of the Crank-Nicolson scheme, the IMEX defect δℓIMEX = δℓCN + δ̃ℓ in each step ℓ ∈ N
of the error recursion consists of a Crank-Nicolson defect and an additional perturbation defect δ̃. While
the Crank-Nicolson defect is easily bounded of order O(τ3), the additional defect δ̃ℓ is more tricky. We
denote by ∼ the exact evaluation, then we follow [91, p. 41] and split δ̃ℓ into two parts

δ̃ℓ+1 = δ̃ℓ+1
1 + δ̃ℓ+1

2 with δ̃ℓ+1
1 , δ̃ℓ+1

2 ∈ O
(
τ(f̃ ℓ − f̃ ℓ+1)

)
.

The difference τ(f̃ ℓ − f̃ ℓ+1) is of order O(τ2), which is insufficient due to the summation for the global
error, leading to the loss of one order of τ . The important step towards a second-order convergence is
the combination of two defects for two different time steps to gain an extra order of τ , i.e., with R from
(1.38), we arrive at

δ̃ℓ+1
1 +Rδ̃ℓ2 ∈ O

(
τ(f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1)

)
.

Then, recovering the finite difference quotient, we have the bound τ
∥∥∥f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1

∥∥∥
L2(Ω,Γ)

≤ Cτ3,
which leads to the desired global second-order error bound.

Theorem 1.7 (Error bound IMEX scheme). Assume that the solution x = (u, v,M) of (1.34) satisfies
u ∈ C4([0, T ], L2(Ω,Γ)) ∩ C3([0, T ], H1(Ω,Γ)) and αu + βM ∈ C2([0, T ], H2(Ω,Γ)) and that τ > 0 is
sufficiently small. Then, the approximation xn ≈ x(tn), tn = nτ given in (1.37) satisfies the error bound

∥xn − x(tn)∥X ≤ CeKtnτ2,

where K = cm + Lf (1+
√

2)√
α−Lfτ(1+

√
2) . The constant C only depends on u and T , and Lf is the local Lipschitz

constant of f .

The main contribution of this work is the construction and the rigorous error analysis of a new
IMEX scheme for a wave equation that includes a nonlocal-in-time material law and is equipped with
kinetic boundary conditions. We provide a uniform second-order error bound for the time discretization.
Compared to the setting in [77], the block structure of the operator in the first-order formulation has at
least three components, making calculations more involved than in [77]. Moreover, defining the auxiliary
variable which leads to a well-posed evolution equation needs proper considerations. In particular, we
included an adequate shift, cf. [2], and derived a framework using weighted Sobolev spaces.

Outlook The full discretization, which has not been treated here, is a direct combination of isoparamet-
ric finite elements, cf. [46], which are suitable for a smooth boundary Γ, with the error analysis presented
here. More precisely, we perform the IMEX scheme and its error analysis in the space of isoparametric
finite elements, as indicated for the method of lines.
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For more general convolution kernels, we can consider convolution quadrature. In this case, the
admissible convolution kernels as well as the convergence are determined by stability of the Laplace
transformed equation. In particular, it will be possible to allow for fractional kernels, cf. [101]. However,
this is out of the scope of this thesis.
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CHAPTER 2

Variational Gaussian approximation for the magnetic Schrödinger equation

The content of the following chapter was published in the Journal of Physics. A., cf. [31]. Here, we added
several details of calculations, which are marked in the color grey.

The authors of this paper are Selina Burkhard, Benjamin Dörich, Marlis Hochbruck and Caroline
Lasser1.

In the present chapter we consider the semiclassical magnetic Schrödinger equation, which describes
the dynamics of particles under the influence of a magnetic field. The solution of the time-dependent
Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–
Frenkel variational principle. For the approximation we derive ordinary differential equations of motion
for the parameters of the variational solution. Moreover, we prove L2-error bounds and observable error
bounds for the approximating Gaussian wave packet.

1Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 352 – Project-ID
470903074.
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2.1 Introduction

In the present paper we study the semiclassical magnetic Schrödinger equation

iε∂tψ(t) = H(t)ψ(t), ψ(0) = ψ0, t ∈ R, (2.1a)

on Rd with magnetic Hamiltonian

H(t) = 1
2
(
iε∇x +A(t, x)

)2 + V (t, x), (2.1b)

and initial value ψ0 ∈ L2(Rd) with semiclassical parameter 0 < ε ≪ 1. Here, A is a magnetic vector
potential, and V is the electric potential. This equation arises in the modeling of the quantum dynamics
of nuclei in a molecule subject to external magnetic fields, cf. [6, 7] or [58, Sec. 4.3.]. From a numerical
point of view, solving this time-dependent partial differential equation raises three major problems. First,
it is a high-dimensional problem, since the space dimension is typically given by d = 3N , where N is the
number of nuclear particles in the system. Further, the computational domain Rd is naturally unbounded,
and thus most numerical methods require truncation before discretization. For the method of lines (first
discretize space, then time), high dimension combined with an unbounded domain leads to inadequately
if not unattractably large systems that have to be integrated in time. Another challenge is given by the
high oscillations induced by the small semiclassical parameter ε. For standard time integration schemes
severe stepsize restrictions have to be imposed and leave these methods impracticable.

We consider the case that the initial value ψ0 is strongly localized and given by a Gaussian wave
packet,

ψ0(x) = exp
( i
ε

(1
2(x− q)TC(x− q) + (x− q)T p+ ζ

))
,

where q, p ∈ Rd are the packet’s position and momentum center, C ∈ Cd×d is the width matrix of the
envelope, and ζ ∈ C a phase and weight parameter. For A = 0 it is well established that it is possible
to reasonably approximate the solution by a Gaussian wave packet with parameters that are evolved
according to ordinary differential equations. First studies in this direction are due to K. Hepp [71]
and G. Hagedorn [59] from the perspective of mathematical physics, and E. Heller [69, 70] as well as
R. Coalson, M. Karplus [41] with already an eye on numerical computation. The evolution equations for
the parameters of all Gaussian wave packet approximations can be classified in two categories:

Variational: The variational approach relies on the time-dependent Dirac–Frenkel principle for de-
riving the parameter equations of motion. By the variational construction, the Gaussian wave packet
automatically inherits several conservation properties of the exact solution.

Semiclassical: The semiclassical approach expands the wave packet ansatz with respect to the semi-
classical parameter ε and derives ε independent parameter equations by matching terms with the same
order.

Both types of ordinary differential equations have the advantageous property, that their solutions are
non-oscillatory. Both approximations have the same convergence order with respect to the semiclassical
parameter ε in L2-norm, and both reproduce the exact solution for the special case of Schrödinger
operators with linear magnetic potential A and quadratic electric potential V . For a further discussion,
we refer to [35, Chapter 10.2] for a monograph that covers the semiclassical construction, to [98, Chapter
II.4] or [87, Chapter 3] for a short book and a review presenting the variational case, and to [127] for a
general presentation of Gaussian wave packet dynamics.
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Gaussian L2-norm observables

semiclassical O(
√
ε) O(ε)

variational O(
√
ε) O(ε2)

Table 2.1: Error bounds for the semiclassical and the variational approximation of magnetic Schrödinger
dynamics according to Theorem 2.13 and Theorem 2.15. The variational observable error estimate extends
and improves previously known results.

Contributions of the paper

Our main contribution in this paper is to first show that for the magnetic Schrödinger equation the
variational approximation is still given by a system of ordinary differential equations for the parameters
defining the Gaussian wave packet. Second, we prove rigorous error bounds for this approximation on
finite time intervals [0, T ] in terms of the semiclassical parameter ε. The presented results generalize
the bounds established in [87, 98] to non-vanishing magnetic potentials A and further allow for time-
dependencies in both the electric and the magnetic potential. We also treat the more general case
where the dynamics are generated by the Weyl quantization of a smooth and subquadratic Hamiltonian
function. This includes convergence in the L2-norm with order O(

√
ε) as well as for expectation values

of observables, which resemble certain measurable physical quantities of the wave function, with order
O(ε2). These estimates extend and improve the observable bound of [87, Theorem 3.5] and the result of
[114] from the case of vanishing magnetic potential. Let us point out that the design and the analysis
of time integrators for the magnetic variational equations of motion are currently under investigation, in
particular for the numerical simulation of magnetotunneling.

Further wave packet results for A = 0

Hagedorn wave packets [59–61] are a multivariate anisotropic generalization of the Hermite functions.
They are Gaussian wave packets with a polynomial prefactor, such that a family of them constitutes
an orthonormal basis of L2(Rd). In [21, 49, 55], time splitting integrators for Hagedorn wave packet
approximations are proposed, that combine parameter propagation by ordinary differential equations
with a Galerkin step. A spawning method for several families of Hagedorn wave packets is introduced
in [121]. For variational Gaussian wave packets, a time splitting integrator, which is robust in the
semiclassical parameter ε, is proposed in [48]. Recently in [114], T. Oshawa has analysed the expectation
values of position and momentum for a variational Gaussian wave packet and proved O(ε3/2) accuracy.
Our results here generalize and improve this error bound in two ways: First, we allow for general sublinear
observables. Second, our method of proof shows O(ε2) observable accuracy also for the case A ̸= 0. It
is worthwhile emphasizing, that from the perspective of the observable error variational Gaussians are
more accurate than their semiclassical counterparts.

Related wave packet results for A ̸= 0

The most general result for the semiclassical wave packet approach is given in [122, Theorem 21] of
the monograph by D. Robert and M. Combescure. There, the propagation of Gaussian and Hagedorn
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wave packets is covered for a general class of time-dependent Hamiltonian operators H(t), that includes
the magnetic Schrödinger operator. The error analysis is with respect to the L2-norm, but not for
observables. The semiclassical construction there also receives corrections, such that it can be accurate
to order O(εk/2) for any k ≥ 1. In [23], magnetic Schrödinger operators with polynomially bounded,
time-independent magnetic fields and zero potential are considered. The initial coherent state has zero
initial energy and its propagation is analysed for the long-time horizon [0, T/ε]. In [83], N. King and
T. Ohsawa derive the equations of motion for variational Gaussians in the presence of a magnetic field.
They conduct numerical experiments for the expectation value of the position and the momentum operator
suggesting that the variational Gaussians are more accurate than the semiclassical ones. An extension
of the Hagedorn Galerkin method [49] to the case of magnetic Schrödinger equations is studied in [135],
including an error analysis with respect to the L2-norm. However, no error bounds for the observables
are investigated there. For linear magnetic potentials of a particular structure, in [57] a problem adapted
splitting method for Hagedorn wave packets is derived but without error analysis. A slightly different
approach, called the Gaussian wave packet transform, is proposed for the magnetic Schrödinger equation
in [136]. There, the ordinary differential equations for the Gaussian parameters are the semiclassical ones
except for an additional term for the scalar parameter ζ.

Outline of the paper

The rest of the paper is structured as follows. For our error analysis we introduce the analytical framework
and the variational Gaussian wave packet ansatz in Section 2.2. We present our main results for the
magnetic Schrödinger equation in Section 2.3, including the equations for the parameters, the conservation
of different quantities, the convergence in the L2-norm and the convergence of the observables. The proofs
of the corresponding results are given in Sections 2.4 to 2.7.

Notation

Throughout the paper, we denote by Lp(Rd) the classical Lebesgue spaces, and by S(Rd) the Schwartz
space of rapidly decreasing functions. Further, we make use of the multiindex notation and let for
α = (α1, . . . , αd) ∈ Nd0, x ∈ Rd, f ∈ S(Rd)

|α| := α1 + . . .+ αd, xα := xα1
1 . . . xαd

d , ∂αf := ∂α1
1 . . . ∂αd

d f.

For a function W : Rd → RL, L ≥ 1, we define the average

⟨W ⟩u := ⟨u|Wu⟩ =
∫
Rd

W (x)|u(x)|2 dx,

if the integral exists. For a linear operator A acting on L2(Rd), we denote

⟨A⟩u :=
〈
u|Au

〉
=
∫
Rd

u(x)(Au)(x) dx,

whenever the integral is well-defined. We also use the dot product of v, w ∈ CL as v · w := vTw =
v1w1 + · · ·+ vLwL.
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2.2 General setting

We first discuss the analytic framework for our analysis and introduce the Gaussian wave packets. We
further call some results on the wellposedness from the literature. For the vector potential we choose the
Coulomb gauge, i.e., divA = 0. In order to shorten notation, we rewrite the Hamiltonian in (2.1b) as

H(t) = −ε
2

2 ∆ + iεA(t) · ∇+ Ṽ (t), Ṽ := 1
2 |A|

2 + V . (2.2)

Assumption 2.1. The scalar potential Ṽ : R×Rd → R and the vector valued potential A = (Aj)j=1,...,d : R×
Rd → Rd are infinitely often differentiable and in addition

(a) Ṽ is subquadratic, i.e. ∇kṼ is bounded for all k ≥ 2, and

(b) A is sublinear, i.e. ∇kA is bounded for all k ≥ 1, and satisfies divA = 0.

If in addition to Assumption 2.1, we assume that ∂tA is sublinear, then it can be shown that the
initial value problem (2.1a) is well-posed for initial values in L2, cf. [134, sec. 4] or the remarks after [122,
Def. 1] or [104, Rem. 5.14]. In particular, the following wellposedness result on the unitarity of the time
evolution guarantees that the norm of the solution of (2.1a) is the same as the one of the initial data.
However, for our analysis here, only Assumption 2.1 will be used.

Theorem 2.2 ([134, sec. 4]). Let Assumption 2.1 hold and assume that ∂tA is sublinear. There exists a
unitary evolution family (U(t, s))t,s∈R on L2(Rd) such that for all initial data ψ0 ∈ L2(Rd) the solution
ψ of (2.1a) is given by

ψ(t) = U(t, 0)ψ0. (2.3)

In the case of time-independent potentials the evolution family (U(t, s))t,s∈R reduces to the unitary
group (e−it/εH)t∈R on L2(Rd), which which is given by the spectral theorem and commutes with the
Hamiltonian.

Following [87, Chapter 3], we approximate the solution ψ of (2.1a) in the manifold M of Gaussian
wave packets given by

M =
{
g ∈ L2(Rd)

∣∣ g(x) = exp
( i
ε

(1
2(x− q)TC(x− q) + (x− q)T p+ ζ

))
,

q, p ∈ Rd, C = CT ∈ Cd×d, Im C positive definite, ζ ∈ C
}
. (2.4)

The approximating Gaussian wave packet is characterized by the Dirac–Frenkel variational formula-
tion, cf. [87, 98]: seek u(t) ∈M such that for all t ∈ R it holds

∂tu(t) ∈ Tu(t)M,
〈
iε∂tu(t)−H(t)u(t)|v

〉
= 0 for all v ∈ Tu(t)M,

with initial value u(0) = u0 ∈ M. Using the orthogonal projection Pu : L2(Rd) → TuM we can
equivalently write

iε∂tu(t) = Pu(t)
(
H(t)u(t)

)
, u(0) = u0 ∈M. (2.5)

We note that (2.5) can also be stated in terms of the symplectic projection onto the tangent space, see
C. Lubich’s blue book [98, II.1.3].
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Remark 2.3. In the time-independent and non-magnetic case, one can also treat initial values ψ0 /∈ M
using continuous superpositions of thawed and frozen Gaussians, see [87, Ch. 5]. The extension of these
to the case (2.1b), however, is beyond the scope of the present work.

For the manifold M defined in (2.4) the tangent space TuM takes the following simple form.

Lemma 2.4 ([87, Lemma 3.1]). For u ∈M we have

TuM = {φu |φ d-variate complex polynomial of degree at most 2} .

The approximation by Gaussian wave packets seems appropriate due to the following exactness result,
which is a consequence of Lemma 2.4 together with (2.5) and Theorem 2.2.

Proposition 2.5 ([87, Prop. 3.2]). Let V (t, ·) be quadratic and A(t, ·) be linear in space for all t ∈ R.
If ψ0 ∈ M, then the variational approximation u defined by (2.5) is exact, i.e., u(t) = ψ(t), where ψ

denotes the solution of (2.1a).

We emphasize that in the situation of Proposition 2.5 the equations of motion (2.8) for the variational
parameters (Theorem 2.6) simplify considerably. In particular, the expectation values become point
evaluations and many terms vanish. Proposition 2.5 also includes the special case of linear magnetic vector
potential and zero electrostatic potential, which is known for its dynamics with breathing oscillations,
see e.g. [7, §VI].

In the next section we derive a system of ordinary differential equations to determine parameters of
the variational solution u ∈M and present error bounds for the variational approximation.

2.3 Main results

In the remaining paper we consider (2.1a) and (2.5) for initial data satisfying

ψ0 = u0 ∈M and ∥u0∥L2 = 1. (2.6)

Our first step is to derive equations of motions for the parameters defining the variational solution u.
Then we show that in the limit ε→ 0, these equations tend to classical equations of motions. Moreover,
we study geometric properties of the solution and the variational approximation. Finally, we state
error bounds for the solution in the L2-norm and for averages of observables. Our work generalizes the
results in [87] in the sense that we treat time-dependent, magnetic Hamiltonians. We also generalize the
results of [83, 114] from the position and momentum operator to sublinear observables in the sense of
Assumption 2.1. For the sake of readability, we postpone the proofs to Sections 2.4 to 2.7.

2.3.1 Variational equations of motion

In order to write equations of motion for the parameters of a Gaussian wave packet u ∈ M we use the
short notation

CR = Re C, CI = Im C,

v = (vj)dj=1, A = (Aj)dj=1,

JA =
(
∂jAk

)d
j,k=1, (D2

A,v)k,l =
∑d
j=1∂l∂kAjvj .
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We start by deriving two equivalent sets of equations for 0 < ε≪ 1. In the following section, we discuss
the limit ε→ 0 and show that the two sets lead to the classical equations of motion for charged particles
in a magnetic field given by the time-dependent Hamiltonian function

h(t, q̃, p̃) = 1
2 |p̃|

2 −A(t, q̃) · p̃+ Ṽ (t, q̃), (t, q̃, p̃) ∈ R× R2d, (2.7)

cf. [58, 67]. The first set of equations of motion reads:

Theorem 2.6. Let u0 satisfy (2.6) and be given by its parameters q0, p0, C0, ζ0 defined in (2.4). Then,
the parameters of the solution u ∈M of (2.5) satisfy

q̇ = p− ⟨A⟩u, (2.8a)

ṗ = ε

2
〈
∇tr

(
JTACRC−1

I
)〉
u

+ ⟨JA⟩Tu p− ⟨∇Ṽ ⟩u, (2.8b)

Ċ = −C2 + ⟨D2
A,p⟩u + ⟨JA⟩TuC + C⟨JA⟩u − ⟨∇2Ṽ ⟩u. (2.8c)

+ ε

2
〈
∇2tr

(
JTACRC−1

I
)〉
u
,

ζ̇ = 1
2 |p|

2 + ε

2
〈
tr
(
JTACRC−1

I
)〉
u

+ iε
2 tr(C) (2.8d)

− ε

4tr
(
C−1

I
(ε

2
〈
∇2tr

(
JTACRC−1

I
)〉
u

+ ⟨JA⟩Tu CR + CR⟨JA⟩u + ⟨D2
A,p⟩u

))
− ⟨Ṽ ⟩u + ε

4tr
(
C−1

I
〈
∇2Ṽ

〉
u

)
,

with initial data (q(0), p(0), C(0), ζ(0)) = (q0, p0, C0, ζ0).

The proof of Theorem 2.6 is given in Section 2.4. We observe that in terms of the classical Hamiltonian
function h defined in (2.7), the equations of motion (2.8) can be rewritten as

q̇ = ⟨∇ph⟩u, (2.9a)

ṗ = −⟨∇qh⟩u, (2.9b)

Ċ = −⟨∇qqh⟩u − ⟨∇qph⟩uC − C⟨∇pqh⟩u − C⟨∇pph⟩uC, (2.9c)

ζ̇ = −⟨h⟩u + ε

4 tr(B CI
−1) + pT ⟨∇ph⟩u. (2.9d)

with the matrix B ∈ Cd×d given by

B =
(

Id, C
)
⟨∇2h⟩u

(
Id
C

)
.

Later on, in Theorem 2.17 we extend these findings to the variational dynamics induced by a general a
subquadratic Hamiltonian.

Remark 2.7. In order to solve (2.8) numerically, one might adapt the Boris algorithm originally proposed
in [24] and recently analyzed in [62, 66]. This algorithm is constructed for the classical equations of
motion for charged particle systems. Details or an efficient numerical algorithm are ongoing work which
will be presented elsewhere. The averages appearing in the equations can be computed numerically by
using Gauss-Hermite quadrature, cf. [87, Sec. 8]. In the special case of a linear potential A and quadratic
potential V , the averages turn into point evaluations.
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An alternative approach presented in [87] makes use of a factorization of the width matrix C due to
Hagedorn. For the magnetic Schrödinger equation, it leads to differential equations for the factors of C
instead of (2.8c). By [87, Lemma 3.16], we can write

C = PQ−1 and Im C = (QQ∗)−1, (2.10)

with complex and invertible matrices P and Q. In addition, it holds Y TJY = J , where

Y :=
(

ReQ ImQ

ReP ImP

)
and J :=

(
0 −Id
Id 0

)
∈ R2d×2d, (2.11)

i.e., Y is symplectic, or equivalently

QTP − PTQ = 0, (2.12a)

Q∗P − P ∗Q = 2i Id. (2.12b)

In fact, if Q and P are complex matrices satisfying (2.12), then Q and P are invertible and the matrix
C = PQ−1 is symmetric with positive definite imaginary part (QQ∗)−1. This allows us to write the
Gaussian wave packet (2.4) as

u(·, x) = exp
( i
ε

(1
2(x− q)TPQ−1(x− q) + pT (x− q) + ζ

))
(2.13)

and to derive equations of motion for the parameters (q, p,Q, P, ζ).

Corollary 2.8. Let u0 satisfy (2.6) and be given by the parameters q0, p0, C0, ζ0. Then the Gaussian
wave packet (2.13) with parameters (q, p,Q, P, ζ) solving

Q̇ = P − ⟨JA⟩uQ, (2.14a)

Ṗ = ⟨JA⟩TuP + ε

2
〈
∇2tr

(
JACRC−1

I
)〉
u
Q+

〈
D2
A,p

〉
u
Q−

〈
∇2Ṽ

〉
u
Q, (2.14b)

and (2.8a), (2.8b), and (2.8d) is the variational solution (2.5) with initial data

(q(0), p(0), C(0), ζ(0)) = (q0, p0, C0, ζ0).

If the initial matrices Q0 and P0 are symplectic, then Q(t) and P (t) are symplectic for all times t ∈ R.

The proof of Corollary 2.8 is given in Section 2.4.

2.3.2 Equations of motion in the limit ε→ 0

The classical Hamiltonian function (2.7) induces the non-autonomous classical Hamiltonian system(
˙̃q(t)
˙̃p(t)

)
= J−1∇h(t, q̃(t), p̃(t))

=
(

p̃(t)−A(t, q̃(t))
JTA (t, q̃(t))p̃(t)−∇Ṽ (t, q̃(t))

) (2.15)

with initial data q̃(s) = q̃s, p̃(s) = p̃s and with J defined in (2.11). Since A(t, q̃) and Ṽ (t, q̃) are sublinear
and subquadratic with respect to q̃, the right-hand side for the ordinary differential equation (2.15) is
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locally Lipschitz continuous. There is no blow-up, since

1
2∂t
(
|q̃|2 + |p̃|2

)
= q̃T (p̃−A(q̃)) + p̃T (JTA (q̃)p̃−∇Ṽ (q̃))

≤ C
(
1 + |q̃|2 + |p̃|2

)
,

where the constant C > 0 depends on bounds of the potentials. By Gronwall’s lemma, there is no finite
time blow-up. This provides the existence of a unique global solution. The bound in [87, Lemma 3.15]
states that ⟨·⟩u tend to point evaluations at q as ε → 0, i.e., ⟨A⟩u → A(q). Hence, we observe that the
magnetic equations of motion (2.8a) and (2.8b) tend to classical equations (2.15) as ε→ 0 and (2.8d) to

ζ̇ = 1
2 |p|

2 − Ṽ (·, q).

In order to link the set of equations (2.14) to classical mechanics, we consider the linearization of (2.15)
along the position and momentum parameters (q, p), i.e.,(

Q̇

Ṗ

)
= J−1∇2h(·, q̃, p̃)

(
Q

P

)

=

 P − JA(·, q̃)Q(
D2
A(·,q̃),p̃

−∇2Ṽ (·, q̃)
)
Q+ JA(·, q̃)TP

 .

(2.16)

By the same reasoning, we observe that the equations (2.14) tend to the linearized equations classical
equations (2.16) as ε→ 0.

2.3.3 Averages

A further remarkable property of Gaussian wave packets is the conservation of several physical quantities.
In the following, we recall the definitions of the linear and angular momentum for quantum dynamical
systems.

Let x = (x1, . . . , xN ), where xk ∈ R3, k = 1, . . . , N and d = 3N , be position variables. We recall the
follwoing definition given in [87, Chapter 3].

Definition 2.9. (a) The quantum mechanical total linear momentum operator is given by

P := −iε
N∑
k=1
∇xk

.

(b) The quantum mechanical total angular momentum operator is given by

L :=
N∑
k=1

xk × (−iε∇xk
) = −iε

N∑
k=1


xk2∂k3 − xk3∂k2

xk3∂k1 − xk1∂k3

xk1∂k2 − xk2∂k1

 .

Next, we state sufficient conditions on the potentials A and V , which lead to the conservation of
averages of the observables from Definition 2.9.

Definition 2.10. We call a potential W = (Wj)j=1,...,d : (R3)N → Rd
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(a) translation invariant, if
Wj(x1, . . . , xN ) = Wj(x1 + r, . . . , xN + r),

for all r ∈ R3 and j = 1, . . . , d,

(b) rotation invariant if for all orthogonal matrices R ∈ R3×3 with detR = 1 it holds

Wj(x1, . . . , xN ) = Wj(Rx1, . . . , RxN ),

where j = 1, . . . , d.

In the next lemma we provide a representation for the energy and state conservation properties of the
momenta.

Lemma 2.11. The following assertions hold.

(a) We have ∥ψ(t)∥L2 = ∥u(t)∥L2 = ∥u0∥L2 for all t ∈ R.

(b) If the potentials A and V are both time-independent, then

⟨H⟩ψ(t) = ⟨H⟩ψ0 and ⟨H⟩u(t) = ⟨H⟩u0 .

(c) For φ = ψ, u the energy ⟨H⟩φ is given by

⟨H(t)⟩φ(t) = ⟨H(0)⟩φ(0) +
∫ t

0

〈
iε∂sA(s) · ∇

〉
φ(s) +

〈
∂sṼ (s)

〉
φ(s) ds.

(d) For P and L from Definition 2.9 we have:

(i) If V and A = (Aj)dj=1 given in Assumption 2.1 are invariant under translations

⟨P⟩ψ(t) = ⟨P⟩ψ0 and ⟨P⟩u(t) = ⟨P⟩u0 .

(ii) If Ṽ defined in (2.2) is invariant under rotations and A(·, x) = α(·)x for some α(·) ∈ R, then

⟨L⟩ψ(t) = ⟨L⟩ψ0 and ⟨L⟩u(t) = ⟨L⟩u0 .

The proof of Lemma 2.11 is given in Section 2.6.

2.3.4 L2-error bound

In this section, we present the approximation property of the Gaussian wave packet with respect to the
L2-norm. Since our error bounds depend on parameters characterizing the Gaussian wave packet in
(2.4), we first consider the boundedness of these parameters up to a fixed but arbitrary finite time T > 0
specified by ODE-theory.

Lemma 2.12. For all times T > 0, the set of equations (2.8) is well-posed on [0, T ] independently of ε.
Furthermore, the solution parameters are bounded independently of ε, i.e.

|ν| ≤ cν0 , for all ν ∈ {q, p, C, ζ},

uniformly on [0, T ], where cν0 depends on the parameters of the initial Gaussian u0, on the potentials
V,A, and on T .
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We note that by Corollary 2.8 the matrix CI is real symmetric, positive definite for all times t. To
formulate the following results, we denote by ρ > 0 a lower bound on the smallest eigenvalue of CI on the
finite time horizon [0, T ]. For a discussion of relevant time scales on which ρ is sufficiently large compared
to ε, called the Ehrenfest time, we refer to [87, Sec. 3.6]. With this, we can state our approximation
result.

Theorem 2.13. Let ψ, u be the solution of (2.1a) and (2.5), respectively, and let u0 satisfy (2.6). Then
the error bound

∥ψ(t)− u(t)∥L2 ≤ tc
√
ε, t ∈ [0, T ],

holds with a constant c which depends on ρ, the bounds on the parameters from Lemma 2.12 and on the
potentials, but is independent of ε and t.

We provide the details and the proof of the theorem in Section 2.5.

2.3.5 Observable error bound

In classical mechanics physical states are described by the position and momentum parameters q̃, p̃ ∈ Rd.
Observables are functions depending smoothly on (q̃, p̃) ∈ Rd × Rd, see, for example, [67, 131]. Classical
mechanics can be linked to quantum mechanics via Weyl quantization, which asigns a classical observable
to a quantum mechanical one using semiclassical Fourier transformation, cf. [47, Thm. 4.14] or [67, 103].
Formally, for φ ∈ S(Rd) and an observable a, we define

opWeyl(a)φ(x) := 1
(2πε)d

∫
R2d

a
(x+ q̃

2 , p̃
)

eip̃·(x−q̃)/εφ(q̃) d(q̃, p̃).

The Weyl quantization of the projections to the first or second component of the classical variables are

opWeyl(p̃)φ = −iε∇φ and opWeyl(q̃)φ = xφ.

Further examples of physically relevant observables stemming from classical symbols are

opWeyl(|p̃|2)ψ(x) = −ε2∆ψ(x)

and, due to divA = 0,

opWeyl(A(q̃) · p̃)ψ(x) = 1
2 (A(x) · (−iε∇) + (−iε∇) ·A(x))ψ(x)

= (A(x) · (−iε∇))ψ(x),

and, of course,
opWeyl(h(t))ψ(x) = H(t)ψ(x)

for the Hamiltonian function (2.7) and the magnetic Schrödinger operator (2.1b). An observable A =
opWeyl(a) defines for an L2-normalised function φ ∈ S(Rd) an expectation value,

〈
φ|Aφ

〉
=
∫
Rd

φ(x)(Aφ)(x)dx,

and we investigate how expectation values issued by the variational approximation u(t) differ from the
ones of the true solution ψ(t). For an error estimate relying on L2 bounds, we have to restrict ourselves
to sublinear classical observables.
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Definition 2.14. The class of sublinear classical symbols is defined as smooth functions a : R2d → R
such that for α ∈ N2d

0 with |α| ≥ 1 there exists Cα > 0

|∂αa(q̃, p̃)| ≤ Cα

for all (q̃, p̃) ∈ Rd × Rd.

For the expectation values of classical sublinear observables, we obtain the following error estimate
that generalizes and improves the findings of N. King and T. Ohsawa [83, 114], where asymptotic accuracy
of the order ε3/2 has been observed and proved for the variational position and momentum expectation
value.

Theorem 2.15. Let ψ, u be the solution of (2.1a) and (2.5), respectively, and let u0 satisfy (2.6).
Moreover, let A = opWeyl(a) be an observable stemming from a classical sublinear observable a in the
sense of Definition 2.14 such that a ◦ Φt,s is sublinear. Then we have the error bound∣∣〈ψ(t)|Aψ(t)

〉
−
〈
u(t)|Au(t)

〉∣∣ ≤ t c ε2,

for all t ∈ [0, T ]. The error constant c depends on the parameter bounds of Lemma 2.12 for the time-
interval [0, T ], in particular on the bounds for the width matrix C, on the potentials, and on a, but is
independent of ε and t.

Note that the convergence in the observables is of order ε2, while the convergence in the L2-norm
presented in Theorem 2.13 is of order

√
ε. This is an improvement of the results obtained in [87, Theo-

rem 3.5], where O(
√
ε) norm accuracy and an O(ε) estimate for the non-magnetic observable error were

proved. The rest of the paper is devoted to the proofs of the equations of motion and the error estimates
presented in this section.

2.4 Equations of motions: proof of Theorem 2.6 and corol-
lary 2.8

In this section we derive equations of motion for the parameters (q, p, C, ζ) as well as for the factorization
matrices Q and P . To do so, we compute both sides of (2.5) and compare the coefficients.

Proof of Theorem 2.6. In order to use the formula for the orthogonal projection derived in [87, Prop. 3.14]
for (2.5), we observe that derivatives with respect to x of a Gaussian wave packet turn into scalar functions
of x times u. For notational simplicity, we omit the time-dependence and in the potentials A and V we
omit the space variable x. In particular, we have

iεA · ∇u = −A ·
(
C(x− q) + p

)
u, (2.17a)

−ε
2

2 ∆u =
(1

2(x− q)TC2(x− q) + pTC(x− q) + 1
2 |p|

2 − iε
2 tr(C)

)
u, (2.17b)

and for the time derivative it holds that

iε∂tu(·, x) =
(
−1

2(x− q)T Ċ(x− q) + q̇TC(x− q)− ṗT (x− q) + pT q̇ − ζ̇
)
u. (2.18)
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Motivated by the classical magnetic Hamiltonian system (2.15), we eliminate one degree of freedom by
setting q̇ = p− ⟨A⟩u, see [58, 67]. Incorporating the above formulas, we compare the coefficients in x on
both sides of (2.5) and arrive at equations of motions of the form

q̇ = p− ⟨A⟩u,

ṗ =
〈
JTACR(x− q)

〉
u

+
〈
JA
〉T
u
p−

〈
∇Ṽ

〉
u
,

Ċ = −C2 +
〈
D2
A,CR(x−q)

〉
u

+
〈
D2
A,p

〉
u

+
〈
JA
〉T
u
C + C

〈
JA
〉
u
−
〈
∇2Ṽ

〉
u
,

ζ̇ = 1
2 |p|

2 +
〈
ATCR(x− q)

〉
u

+ iε
2 tr(C)

− ε

4tr
(
C−1

I
(〈
D2
A,CR(x−q)

〉
u

+ ⟨JA⟩Tu CR + CR⟨JA⟩u + ⟨D2
A,p⟩u

))
− ⟨Ṽ ⟩u + ε

4tr
(
C−1

I
〈
∇2Ṽ

〉
u

)
.

It remains to extract the additional power of ε from the terms that contain the difference x− q. From

|u(x)|2 = exp
(
−1
ε

(x− q)TCI(x− q)−
2
ε

Im ζ
)

we obtain the derivative

∇|u(x)|2 = −2
ε
CI(x− q)|u(x)|2, (2.19)

and apply integration by parts to obtain〈
ATCR(x− q)

〉
u

=
〈
ATCRC−1

I CI(x− q)
〉
u

=
∫
Rd

ATCRC−1
I CI(x− q)|u(x)|2dx

= ε

2
〈
tr
(
JTACRC−1

I
)〉
u
.

Similarly, we gain an order of ε for(〈
JTACR(x− q)

〉
u

)
i

=
(〈
JTACRC−1

I CI(x− q)
〉
u

)
i

= ε

2
〈
∂itr

(
JTACRC−1

I
)〉
u
,

as well as for (〈
D2
A,CR(x−q)

〉
u

)
ij

=
(〈
D2
A,CRCIC−1

I (x−q)

〉
u

)
ij

=
〈 d∑
k,l,m=1

∂i∂jAkCR,kl(C−1
I )lm

d∑
n=1
CI,mn(xn − qn)

〉
u

= ε

2

〈 d∑
k,l,m=1

∂m∂i∂jAkCR,kl(C−1
I )lm

〉
u
.

By the identity

∂ijtr
(
JTACRC−1

I
)

=
d∑

k,m,l=1
∂ij∂mAkCR,kl(C−1

I )lm,

we conclude the equations of motion stated in (2.8).

We now turn to the equations of motion for the Hagedorn factorization (2.10). The idea is to show
that the product PQ−1 solves the same differential equation as C and conclude with the uniqueness of
the variational solution u.
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Proof of Corollary 2.8. We employ the differential identity

∂t(Q−1) = −Q−1∂tQQ
−1,

and the product rule to find that C = PQ−1 satisfies the differential equation

Ċ = −PQ−1Q̇Q−1 + ṖQ−1

with ∂tQ = Q̇. Then, using (2.14), we see that this is the differential equation for C in (2.8c) and use
(2.14) to find that C = PQ−1 satisfies the differential equation with ∂tQ = Q̇

Ċ = −PQ−1Q̇Q−1 + ṖQ−1

Ċ = P∂t(Q−1) + ṖQ−1

= −PQ−1 (P − ⟨JA⟩uQ)Q−1

+
(〈
D2
A,CR(x−q)

〉
u
Q+

〈
D2
A,p

〉
u
Q+ ⟨JA⟩TuP −

〈
∇2Ṽ

〉
u
Q
)
Q−1

= −C2 + C⟨JA⟩u +
〈
D2
A,CR(x−q)

〉
u

+
〈
D2
A,p

〉
u

+ ⟨JA⟩TuC −
〈
∇2Ṽ

〉
u
,

which are the differential equations for C in (2.8c).
Concerning the symplectic relation in (2.12), we have

∂t(QTP − PTQ) = Q̇TP +QT Ṗ − ṖTQ− PT Q̇,

and by inserting the differential equations of P,Q given in (2.14),

Q̇TP = PTP −QT ⟨JA⟩TuP

QT Ṗ = QT
(〈
D2
A,CR(x−q)

〉
u

+
〈
D2
A,p

〉
u
−
〈
∇2Ṽ

〉
u

)
Q+QT ⟨JA⟩TuP

ṖTQ = QT
(〈
D2
A,CR(x−q)

〉T
u

+
〈
D2
A,p

〉T
u
−
〈
∇2Ṽ

〉T
u

)
Q+ PT ⟨JA⟩uQ

PT Q̇ = PTP − PT ⟨JA⟩uQ,

we see that QTP −PTQ is constant. The same calculation holds for ∂t(Q∗P −P ∗Q) with ∗ replaced by
T . Since p, q, A and V are real valued, we conclude

∂t(Q∗P − P ∗Q) = Q̇∗P +Q∗Ṗ − Ṗ ∗Q− P ∗Q̇ = 0,

which means that (2.12) holds true for all times.

2.4.1 Equations of motion for a general Hamiltonian

The findings of Theorem 2.6 for the magnetic Schrödinger operator H(t) extend to the dynamics for
general Hamiltonian operators that are the Weyl quantization of a smooth function h : R× R2d → R of
subquadratic growth, that is, for all α ∈ N2d

0 with |α| ≥ 2 there exists Cα > 0 such that

|∂αh(t, q̃, p̃)| ≤ Cα (2.20)

for all t ∈ R and (q̃, p̃) ∈ R2d. Note that the classical magnetic Hamiltonian function (2.7) is not
subquadratic, but our analysis works for both cases.
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A first step for the generalization is the construction of a suitable orthonormal basis of the tangent
space of a Gaussian wave packet, which is done in [87, Lemma 3.12 and Theorem 4.1] for the non-
magnetic case, where only the modulus squared of the wave packet matters. For convenience, we state
the representation formulas of the basis functions that we use. Consider a Gaussian wave packet u ∈M
of unit norm, ∥u∥ = 1. The family {φn}|n|≤2 with

φ0 = u, (2.21a)

φej =
√

2
ε

(
Q−1(x− q)

)
j
u, (2.21b)

φej+ek
= 1√

δkj + 1

(
2
ε

(
Q−1(x− q)

)
j

(
Q−1(x− q)

)
k
− (Q∗Q−T )j,k

)
u, (2.21c)

is an orthonormal basis of the tangent space TuM of M at u. For calculating the orthogonal projection
to the tangent space, we make use of another representation via the raising and lowering operators A†j
and Aj . These are the jth component of the vector-valued operators

A† = i√
2ε
(
P ∗opWeyl(q̃ − q)−Q∗opWeyl(p̃− p)

)
,

A = − i√
2ε
(
PT opWeyl(q̃ − q)−QT opWeyl(p̃− p)

)
,

respectively. Using the complete family of Hagedorn functions constructed by the infinite ladder process,
we obtain that {φn}|n|≤2 with

φ0 = u, φej
= A†ju, φek+ej

= 1√
δkj + 1

A†j A
†
ku, (2.22)

see also [98, Chapter V.2] or [61, Theorem 3.3].
Equipped with the orthonormal basis (2.21) and (2.22), we can give an explicit formula for the

quadratic polynomial generated by the orthogonal projection when acting on a general Hamiltonian
operator.

Proposition 2.16 (Orthogonal projection). Let h : R2d → R be smooth and of polynomial growth. Let
u ∈M be a Gaussian wave packet of unit norm, ∥u∥ = 1, with phase space center z0 = (q, p) ∈ Rd ×Rd.
Then,

Pu(opWeyl(h)u) = p2u,

where p2 is the quadratic polynomial

p2 : Rd → C,

p2(x) = β + bT (x− q) + 1
2(x− q)TB(x− q)

given by the complex coefficients

β = ⟨h⟩u −
ε

4 tr(B CI
−1),

b =
(

Id C
)
⟨∇h⟩u ∈ Cd,

B =
(

Id C
)
⟨∇2h⟩u

(
Id
C

)
∈ Cd×d.

The notation ⟨a⟩u = ⟨u | opWeyl(a)u⟩ refers to the expectation value of a quantized smooth observable
a : R2d → RL with respect to the Gaussian state u.
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Proof. We use the Hagedorn wave packets {φn}|n|≤2 associated with the Gaussian wave packet u as an
orthonormal basis of the tangent space TuM, see (2.21) and (2.22), and write the orthogonal projection
as

Pu(opWeyl(h)u) =
∑
|n|≤2

⟨φn | opWeyl(h)u⟩ φn.

Starting with the contribution for n = 0, we have

⟨φ0 | opWeyl(h)u⟩ = ⟨u | opWeyl(h)u⟩ = ⟨h⟩u.

For the following, it will be useful to introduce the slim rectangular matrix Z = (Q;P ) ∈ C2d×d with
column vectors Z1, . . . , Zd ∈ C2d and to write the ladder operators more compactly as

A† = i√
2ε

Z∗JopWeyl(z̃ − z), A = − i√
2ε

ZTJopWeyl(z̃ − z).

For n = ej we have by (2.21), [87, Lemmas 4.1, and 4.2] that

⟨φej
| opWeyl(h)u⟩ = ⟨u | AjopWeyl(h)u⟩ = ⟨u | [Aj , opWeyl(h)]u⟩.

Since the symbol of Aj is linear, we can use pseudodifferential calculus without remainders and obtain
that the commutator satisfies

[Aj , opWeyl(h)] = − i√
2ε

[
opWeyl(ZTj J(z̃ − z)), opWeyl(h)

]
= − i√

2ε
ε

i opWeyl({ZTj J(z̃ − z), h})

=
√
ε

2 opWeyl(ZTj ∇h), (2.23)

where we have calculated the Poisson bracket according to

{ZTj Jz, h} = ∇(ZTj Jz) · J∇h = −ZTj ∇h.

Therefore,

⟨φej | opWeyl(h)u⟩ =
√
ε

2Z
T
j ⟨∇h⟩u.

After summation, we therefore obtain that
d∑
j=1
⟨φej | opWeyl(h)u⟩φej =

d∑
j=1
⟨∇h⟩TuZejeTj Q−1(x− q)u

= ⟨∇h⟩TuZQ−1(x− q)u

= ⟨∇h⟩Tu

(
Id
C

)
(x− q)u,

which concludes the computation of the first order contributions. For the second order wave packets, we
analogously compute the projection coefficient as

⟨φej+ek
| opWeyl(h)u⟩ = 1√

δkj + 1
⟨A†kA

†
ju | opWeyl(h)u⟩

= 1√
δkj + 1

⟨A†ju | [Ak, opWeyl(h)]u⟩

= 1√
δkj + 1

⟨u | [Aj , [Ak, opWeyl(h)]]u⟩.
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Using (2.23) twice, we obtain that the double commutator satisfies

[
Aj , [Ak, opWeyl(h)]

]
=
√
ε

2
[
Aj , opWeyl(ZTk ∇h)

]
= ε

2 opWeyl(ZTj ∇(ZTk ∇h))

= ε

2 opWeyl(ZTj ∇2hZk).

This implies for the coefficient that

⟨φej+ek
| opWeyl(h)u⟩ = ε

2
√
δkj + 1

ZTj ⟨∇2h⟩uZk.

We now calculate the sum of all the second order contributions. We have∑
|n|=2

⟨φn | opWeyl(h)u⟩φn =
d∑
j=1

j∑
k=1
⟨φej+ek

| opWeyl(h)u⟩φej+ek

=
d∑

j,k=1

ε

2
√

2
ZTj ⟨∇2h⟩uZk

1√
2
A†jA

†
ku,

where the complete summation over the full square of indices is compensated by a change in normalisation
of the contributions for j ̸= k. For the part of the sum that generates a constant prefactor for the Gaussian,
we have

−ε4

d∑
j,k=1

ZTj ⟨∇2h⟩uZk (Q∗Q−T )j,k = −ε4tr(Q∗Q−TZT ⟨∇2h⟩uZ)

= −ε4tr(
(

Id C
)
⟨∇2h⟩u

(
Id
C

)
QQ∗).

For the quadratic prefactor, we similarly obtain

1
2

d∑
j,k=1

ZTj ⟨∇2h⟩uZk
(
Q−1(x− q)

)
j

(
Q−1(x− q)

)
k

= 1
2(x− q)T

(
Id C

)
⟨∇2h⟩u

(
Id
C

)
(x− q).

Let h : R × R2d → R be continuous with respect to time t ∈ R, and smooth, and of subquadratic
growth in the sense of (2.20). Denote H(t) = opWeyl(h(t)). Then, the time-dependent Schrödinger
equation

iε∂tψ(t) = H(t)ψ(t), ψ(0) = ψ0

has a unique solution ψ(t) = U(t, 0)ψ0 for all times t ∈ R for all square integrable initial data ψ0 ∈ L2(Rd),
see [104] or [122, Def. 1]. The corresponding variational Gaussian wave packet obeys the following
equations of motion.

Theorem 2.17 (Equations of motion for a general Hamiltonian). Let u0 ∈M satisfy (2.6) and be given
by its parameters q0, p0, C0, ζ0 defined in (2.4). Then, the parameters of the variational approximation

iε∂tu(t) = Pu(t)(H(t)u(t)), u(0) = u0
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satisfy the following set of ordinary differential equations (2.9) subject to initial data (q(0), p(0), C(0), ζ(0)) =
(q0, p0, C0, ζ0), where h is now the given general subquadratic classical Hamiltonian function. The Hage-
dorn parameter matrices of the variational wave packet satisfy:

Ṗ = −⟨∇qqh⟩uQ− ⟨∇qph⟩uP, Q̇ = ⟨∇pqh⟩uQ+ ⟨∇pph⟩uP.

Moreover, the matrix factors Q, P are symplectic, provided that the initial matrices Q0, P0 of the factor-
ization C0 = P0Q

−1
0 are symplectic.

Proof. We again use (2.18) and Proposition 2.16 and compare the coefficients with respect to the spatial
variable x. We have one degree of freedom and set, inspired by (2.8a),

q̇ = ⟨∇ph⟩u.

Now, the claim follows by a direct calculation.

The equations of motion given in Theorem 2.17 are indeed a generalization of the magnetic ones
derived in Theorem 2.6 as we verify next.

Corollary 2.18. In the special space of the magnetic Hamiltonian given in (2.7) we rediscover the
equations of motion (2.8). Moreover, if ε → 0 and averages tend to point evaluations at the center
point q, then the equations (2.9a) and (2.9b) tend to classical equations of motion for a general classical
Hamiltonian function h.

Proof. We have that

⟨∇ph⟩u = p− ⟨A⟩u, and − ⟨∇qh⟩u = −iε⟨JTA∇⟩u − ⟨∇Ṽ ⟩u.

Furthermore, it is

∇2h(·, q, p) =
(
∇2Ṽ (·, q)−D2

A(·,q),p −JTA
−JA Id

)
,

such that the trace part appearing in (2.9d) contains the terms

−⟨∇qqh⟩u = ⟨D2
A,−iε∇⟩u − ⟨∇2Ṽ ⟩u, −⟨∇qph⟩uC = ⟨JTA ⟩uC,

−C⟨∇pqh⟩u = C⟨JA⟩u, −C⟨∇pph⟩uC = − C2.

For the scalar contribution of the projection Proposition 2.16 we observe by (2.17),

⟨h⟩u = −ε
2

2 ⟨∆⟩u + iε⟨A · ∇⟩u + ⟨Ṽ ⟩u

= 1
2 |p|

2 + ε

4tr
(

(CR
2 + CI

2)C−1
I

)
− ⟨AT

(
(CR + iCI)((x− q) + p)

)
⟩u + ⟨Ṽ ⟩u

= 1
2 |p|

2 + ε

4tr
(

(CR
2 + CI

2)C−1
I

)
− ⟨AT

(
CR(x− q) + p

)
⟩u + ⟨Ṽ ⟩u.

Finally, we calculate the following trace, appearing in (2.9d), as

−tr
(

(CR
2 + CI

2)C−1
I

)
+ tr

(
C2C−1

I

)
= tr

((
CR

2 − CI
2 + i(CICR + CRCI)

)
C−1

I

)
= −2 tr(CI) + 2i tr(CR)

= 2i tr(C),
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such that, together with

pT ⟨∇ph⟩u = |p|2 − pT ⟨A⟩u,

we obtain the differential equation (2.8d).

2.5 L2-error bound: proof of Lemma 2.12 and Theorem 2.13

This section is devoted to the wellposedness of the equations of motion (2.8) and the approximation
quality of the variational solution in the L2-norm.

We first state the following lemma which will be used frequently to obtain error bound with respect
to ε. We recall that the lower bound on the eigenvalues of CI was denoted by ρ > 0.

Lemma 2.19 ([87, Lemma 3.8]). For any m ≥ 0 there exists a constant cm such that for all ε > 0 it
holds

(πε)− d
4 det(CI)

1
4

(∫
|x|2m exp

(
− 1
ε
xTCIx

)
dx
) 1

2 ≤ cm
( ε
ρ

)m
2
,

where cm is independent of ε and ρ.

We now prove the wellposedness result for (2.8) and show the boundedness of the parameters solving
(2.8).

Proof of Lemma 2.12. We show that the right-hand side of (2.8) satisfies a local Lipschitz condition
with Lipschitz constant independent of ε. To this end it is sufficient if the derivatives with respect to
parameters q, p, CR, CI, ζ are bounded on a bounded domain. Then, we obtain a local solution and, as in
Section 2.3.2, we can show that there is no blow-up.

The potentials in the averages of the equations of motion in (2.8) do not depend on ε. However,
we need to carefully treat the absolute values of the Gaussian wave packet, since they contain ε in the
denominator. By the chain rule, it is sufficient to first calculate the derivatives of averages of some
arbitrary potential Û , which is independent of the parameters. Then, the average has the form

⟨Û⟩u =
√

det(CI)
(πε) d

2

∫
Û(x) exp

(
−1
ε

(x− q)TCI(x− q)
)

dx,

from which we see that, in this case, the average only depends on q and CI. Let u be a Gaussian wave
packet with ∥u∥L2 = 1. By (2.19) we obtain√

det(CI)
(πε) d

2
∂q exp

(
−1
ε

(x− q)TCI(x− q)
)

=
√

det(CI)
(πε) d

2

2
ε
CI(x− q) exp

(
−1
ε

(x− q)TCI(x− q)
)

= −∇|u(x)|2,

thus, using integration by parts, the derivative of the average with respect to to q is given by

∂q⟨Û(x)⟩u = ⟨∇Û(x)⟩u.
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We continue with derivatives with respect to CI. For a differentiable matrix function F : Rd×d → R
and a general invertible, symmetric matrix M = (mij)i,j=1,...,d we define the componentwise derivation
matrix

∂MF (M) := (∂mij
F (M))i,j=1,...,d ∈ Rd×d.

By [78, Part 0.8.10] we have

∂Ma
TMb = abT and ∂M det(M) = det(M)M−1

and consequently,

∂M
√

det(M) = 1
2
√

det(M)M−1.

Hence, it follows that

∂CI exp
(
−1
ε

(x− q)TCI(x− q)
)

= −1
ε

(x− q)(x− q)T exp
(
−1
ε

(x− q)TCI(x− q)
)

and

∂CI⟨Û(x)⟩u = −1
ε

〈
(x− q)(x− q)T Û(x)

〉
u

+ 1
2I
−1〈Û(x)

〉
u
.

By Lemma 2.19 we have
∣∣〈(x− q)(x− q)T Û(x)

〉
u

∣∣ ≤ Cε for parameters on a bounded domain.
For potentials depending on the parameters, we use again that we are on a bounded domain and that

the dependence on ε of the potentials in (2.8) is such that ε does not enter the denominator.

We now turn to the L2-error bound and adapt the proof of [87, Theorem 3.5] to the magnetic case
and note that the multiplication potential Ṽ is already covered. In order to demonstrate the dependence
of the constant in the error bound, we carry out the proof for the advection term.

Proof of Theorem 2.13. From the proof of [87, Theorem 3.5] we know that

∥∥ψ(t)− u(t)
∥∥
L2 ≤

∫ t

0

1
ε

∥∥Hu− Pu(Hu)
∥∥
L2 ds.

(a) We write the action of the magnetic Schrödinger operator H on a Gaussian u with width C and phase

space center (q, p) as

Hu = −ε
2

2 ∆u+ Y u+ Ṽ u

with
Yu := −A · (C(x− q) + p). (2.25)

We perform a second order Taylor expansion of the potentials Yu and Ṽ around the point q and denote
by Wq and W̃q the respective remainders. Then,

(Id− Pu)(Hu) = (Id− Pu)(Wqu+ W̃qu)

and ∥∥ψ(t)− u(t)
∥∥
L2 ≤

∫ t

0

1
ε

∥∥Wqu+ W̃qu
∥∥
L2 ds.
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Since

Wq = 1
2
∑
|α|=3

(x− q)α
∫ 1

0
(1− θ)2∂αYu

(
q + θ(x− q)

)
dθ,

we bound
∥∥Wqu

∥∥
L2 by finding a bound on ∂αYu

(
q + θ(x− q)

)
, which then leads us to

|Wq(x)|2 ≤ C|x− q|6.

By norm conservation and Lemma 2.19 the claim that
∥∥Wqu

∥∥
L2 = O(ε3/2) follows. For the third

derivative of ∂lmnYu where l,m, n = 1, . . . , d, we have

∂lmnYu = (∂lmnA)TC(x− q) + (∂lmnA)T p

+
(
(∂lmA)TC

)
n

+
(
(∂lnA)TC

)
m

+
(
(∂mnA)TC

)
l
,

(2.26)

where ∂lmnA is meant component wise. The term x− q in (2.26) evaluated at x = q + θ(x− q) has the
form

θ(∂lmnA)TC(x− q).

By Lemma 2.19 we gain additional orders of ε, and we thus neglect the first summand in (2.26). The
remaining terms are bounded again using Lemma 2.19.

(b) In the general subquadratic case, we use that the action of a semiclassical pseudodifferential operator
on a Gaussian wave packet can be approximated by a polynomial prefactor, see [122, Lemma 14 in §2.3].
For any ℓ ∈ N there exists a polynomial Qℓ of degree ℓ, such that

Hu = Qℓ u+O(ε(ℓ+1)/2),

i.e., we have
Hu− Pu(Hu) = Wu,ℓ u+O(ε(ℓ+1)/2), (2.27)

with a remainder potential Wu,ℓ. We now fix ℓ = 2 and denote the corresponding cubic remainder
potential Wu = Wu,2. The proof then works along the lines of the magnetic case.

2.6 Expectation values: proof of Lemma 2.11

In this section we adapt the proofs of [87, Section 3.2] on conservation properties to the time-dependent,
magnetic case. Due to time-dependence, the energy will not be a conserved quantity.

Let ψ be the exact solution of (2.1a) and u the variational solution (2.5) such that (2.6) holds.

Proof of Lemma 2.11. The proof of norm conservation and the energy formula can be done in the same
way as in [87]. We only show the conservation of total linear and angular momentum.

By [98, Theorem 1.3] or [48, Lemma 4.1] it is sufficient to show that H(t) commutes with P and L,
respectively, for each t ∈ [0, T ]. By [87] it follows that PAkj = 0 for all k ∈ {1, . . . , N} and j ∈ {1, 2, 3}.
We further calculate

P(A · ∇)ψ =
N∑
k=1

3∑
j=1

(PAkj )∂kjψ +AkjP∂kjψ = (A · ∇)Pψ.
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Furthermore, a tedious calculation shows that (A · ∇)Lψ = L(A · ∇)ψ if and only if

N∑
l=1


Al2∂l3 −Al3∂l2
Al3∂l1 −Al1∂l3
Al1∂l2 −Al2∂l1

ψ =
N∑
k=1

3∑
j=1

N∑
l=1


xl2(∂l3Akj

)∂kj
− xl3(∂l2Akj

)∂kj

xl3(∂l1Akj )∂kj − xl1(∂l3Akj )∂kj

xl1(∂l2Akj )∂kj − xl2(∂l1Akj )∂kj

ψ
holds true. This condition is fulfilled if

∂lmAkj
= αδlm,kj

und Aln = αxln

holds true for some α ∈ R, j, n,m ∈ {1, 2, 3}, and k, l ∈ {1, . . . , N} and thus, if A(·, x) = α(·)x holds.

2.7 Error bound for averages of observables: proof of Theo-
rem 2.15

In this section we give the proof of Theorem 2.15. We proceed in three steps: First, we follow [87,
Section 6.7] and establish an integral representation for the error that involves a commutator with the
time-evolved observable. Second, we prove Egorov’s theorem for the time-evolution of observables in
the general context of magnetic Schrödinger operators. Third, we derive a semiclassical expansion of
averages with respect to Gaussian wave packets. The combination of these steps then allows us to prove
Theorem 2.15. We note that the semiclassical expansion of the averages is crucial for improving the
observable estimate in [87, Theorem 3.5]. This section applies for both the magnetic and the general
subquadratic hamiltonian case. For better readability, some arguments will be provided for the magnetic
case only, but with natural slight modifications they also apply for the general subquadratic case.

2.7.1 Error representation

We start with a useful a posteriori representation for the observable error. To this end, let U(t, s) be the
evolution family given by Theorem 2.2 and A an observable. We introduce the notation

Ã(t, s) := U(s, t)AU(t, s), t, s ∈ R.

Lemma 2.20. Let ψ be the solution of (2.1a) and u the solution of (2.5). If the initial value ψ0 = u0 ∈M
is a Gaussian wave packet with ∥u0∥L2 = 1, then the error of the observables takes the form〈

ψ(t)|Aψ(t)
〉
−
〈
u(t)|Au(t)

〉
(2.28)

=
∫ t

0

1
iε
〈
u(s)

∣∣∣ (Wu(s)Ã(t, s)− Ã(t, s)Wu(s)

)
u(s)

〉
ds,

where the remainder potential Wu : Rd → C depends on the Gaussian wave packet u. In the general
subquadratic case, it has been previously defined in (2.27). In the magnetic Schrödinger case, it satisfies

Wu = Xu(q)− ⟨Xu⟩u + ε

4tr(CI
−1⟨∇2Xu⟩u) + (∇Xu(q)− ⟨∇Xu⟩u)T (x− q)

+ 1
2(x− q)T

(
∇2Xu(q)− ⟨∇2Xu⟩u

)
(x− q) +R(Xu),

(2.29)

with Xu = Yu + Ṽ defined in (2.25) and (2.2), respectively, and R(Xu) being the remainder potential of
the quadratic Taylor expansion of Xu around the point q. For the non-magnetic Schrödinger case A = 0,
we have Yu = 0 and Wu : Rd → R.
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Proof. Let U(t, s) be the evolution family, such that the exact solution of (2.1a) is given by (2.3). Using
ψ0 = u0 and U(t, t) = Id we calculate

⟨u(t)|Au(t)⟩ − ⟨ψ(t)|Aψ(t)⟩

= ⟨u(t)|U(t, t)AU(t, t)u(t)⟩ − ⟨U(t, 0)u(0)|AU(t, 0)u(0)⟩

= ⟨u(t)|U(t, t)AU(t, t)u(t)⟩ − ⟨u(0)|U(0, t)AU(t, 0)u(0)⟩

=
∫ t

0

∂

∂s
⟨u(s)|U(s, t)AU(t, s)︸ ︷︷ ︸

=Ã(t,s)

u(s)⟩ds.

Employing the differential properties of the evolution family, that is, iε∂tU(t, s) = H(t)U(t, s) and
−iε∂tU(s, t) = U(s, t)H(t), we obtain

∂

∂s
Ã(t, s) = 1

iε
(
H(s)U(s, t)AU(t, s)− U(s, t)AU(t, s)H(s)

)
= 1

iε
(
H(s)Ã(t, s)− Ã(t, s)H(s)

)
. (2.30)

Since the variational evolution satisfies iε∂tu(t) = Pu(t)H(t)u(t), we then have

∂

∂s
⟨u(s)|Ã(t, s)u(s)⟩ = 1

iε

(
⟨(Id− Pu(s))H(s)u(s)|Ã(t, s)u(s)⟩

)
−⟨u(s)|Ã(t, s)(Id− Pu(s))H(s)u(s)⟩

)
.

We arrive at (2.28), using that

(Id− Pu(s))H(s)u(s) = Xu(s)u(s)− Pu(s)(Xu(s)u(s)) = Wu(s)u(s).

The claimed form of the remainder potential Wu(s) : Rd → C follows from [87, Proposition 3.14], since
the proof of the projection formula there also applies for the potential function Xu(s) even though it is
complex-valued.

2.7.2 Egorov’s theorem

Further, to prove Theorem 2.15 we have to establish a variant of Egorov’s theorem, which connects the
time-evolved quantum observable Ã(t, s), in case it originates from a Weyl-quantized A = opWeyl(a),
with the evolution map of the classical Hamiltonian system. Recall that since A and Ṽ are sublinear
and subquadratic, respectively, we obtain a unique global solution to the ordinary differential equation
(2.15). We denote by

Φt,s : R2d → R2d, (q̃s, p̃s) 7→ (q̃s(t), p̃s(t))

the classical propagator, which maps initial values at time s to the solution of (2.15) at time t. For any
z̃ = (q̃, p̃), it satisfies the evolution equation

∂tΦt,s(z̃) = −J(∇
z̃
h)(t,Φt,s(z̃)), (2.31)

Φs,s(z̃) = z̃.
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Both in the magnetic and the general subquadratic case, the classical propagator Φt,τ is a diffeomorphism
with inverse (Φt,τ )−1 = Φτ,t. For time-independent, subquadratic Hamiltonians it is well-established that

Ã(t, 0) = opWeyl
(
a ◦ Φt,0

)
+O(ε2).

However, to the best of our knowledge, in the literature a proof of the Egorov approximation for the
non-autonomous case is not available, and the proofs presented for example in [25], [137, Chapter 11],
or [122, Thm. 12] assume time-independent or compactly supported Hamiltonians and thus do not cover
our more general situation. The main difficulties are the time-dependence of the Hamiltonian operator
H(t), which prevents energy conservation, and the allowed sublinear growth of the observables.

Proposition 2.21 (time-dependent Egorov–theorem). Let A = opWeyl(a) be a quantum observable
stemming from a smooth, sublinear classical observable a in the sense of Definition 2.14. Further, let
ã : R× R× R2d → R, (t, s, z̃) 7→ ã(t, s, z̃) be defined by

ã(t, s, z̃) = a ◦ Φt,s(z̃). (2.32)

We consider two cases.

(a) The Hamiltonian operator stems from a classical, subquadratic function h. Then, the observable
given in (2.32) is sublinear and for all φ ∈ L2(Rd) we have∥∥(Ã(t, s)− opWeyl (ã(t, s))

)
φ
∥∥
L2 ≤ C ε2 eC|t−s| ∥φ∥L2

for all s, t ∈ R.

(b) The Hamiltonian operator is a magnetic Schrödinger operator. We assume that the observable given
in (2.32) is of time-exponential growth in the following sense. There exists a smooth nonnegative
function Γ(t, s) ≥ 0 such that for any α ∈ N2d there exists Cα > 0 with

|∂α
z̃

ã(t, s, z̃)| ≤ Ca,α exp(|α|Γ(t, s))

for all z̃ ∈ R2d and all t, s ∈ R. Then, for any φ ∈ L2(Rd) such that opWeyl(z̃)φ ∈ L2(Rd), we then
have ∥∥∥(Ã(t, s)− opWeyl (ã(t, s))

)
φ
∥∥∥
L2
≤ C ε2 eC|t−s|

∥∥opWeyl(z̃)φ
∥∥
L2 ,

for all s, t ∈ R.

The constant C > 0 depends on derivative bounds of the potentials A, V and the observable a, but not
on ε, t, s. In particular, C = 0 for A linear and V quadratic.

Proof. (1) We start by discussing the growth of the function ã(t, s, z̃) for case (a). For first order
derivatives with respect to (q̃, p̃) of the classical propagator we have

DΦt,s = Id + J−1
∫ t

s

∇2h(τ,Φτ,s)DΦτ,s dτ,

and thus ∥∥DΦt,s
∥∥
∞ ≤ 1 +

∫ t

s

sup
z̃∈R2d

∥∇2
z̃
h(τ, z̃)∥ ∥DΦτ,s∥∞ dτ.
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Since the Hamiltonian function h(t, ·) is subquadratic, we have

Γ(t, s) :=
∫ t

s

sup
z̃∈R2d

∥∇2
z̃
h(τ, z̃)∥dτ <∞,

and by Gronwall’s lemma ∥∥DΦt,s
∥∥
∞ ≤ exp(Γ(t, s)).

Moreover, for any α ∈ N2d with |α| ≥ 1 there exists a constant Cα > 0 such that

|∂α
z̃

Φt,s(z̃)| ≤ Cα exp(|α|Γ(t, s))

for all t, s ∈ R and all z̃ ∈ R2d, see [25, Lemma 2.2] for a proof that literally applies to the non-autonomous
case. Then, the same argument as for [25, Lemma 2.4] yields that for every α ∈ N2d with |α| ≥ 1 there
exists a constant Ca,α > 0 such that

|∂α
z̃

ã(t, s, z̃)| ≤ Ca,α exp(|α|Γ(t, s))

for all t, s ∈ R and all z̃ ∈ R2d. In particular, ã(t, s, ·) is sublinear.

(2) Next we compare the operators opWeyl(ã(t, s)) and Ã(t, s) = U(s, t)AU(t, s). Since on the diagonal
ã(t, t, ·) = a and U(s, s) = Id, we obtain similarly as for (2.30)

Ã(t, s)− opWeyl (ã(t, s))

=
∫ t

s

U(s, τ)
( i
ε

[
H(τ), opWeyl (ã(t, τ))

]
+ opWeyl (∂τ ã(t, τ))

)
U(τ, s) dτ

=
∫ t

s

U(s, τ)
(

opWeyl({h(τ), ã(t, τ)}) + opWeyl (∂τ ã(t, τ))
)
U(τ, s) dτ + ρ(t, s),

where the last equation relies on the product rule of Weyl quantization [122, Theorem]. Here,

{h(τ), ã(t, τ)} = ∇
p̃
h(τ) · ∇

q̃
ã(t, τ)−∇

q̃
h(τ) · ∇

p̃
ã(t, τ)

= ∇
z̃
h(τ) · J∇

z̃
ã(t, τ)

denotes the Poisson bracket of h(τ) and ã(t, τ). It remains to show that the integral vanishes and that
the remainder ρ(t, s) is of order ε2.

(3) For the estimation of the remainder, we use that

ρ(t, s) = ε2
∫ t

s

U(s, τ)opWeyl(r(t, τ))U(τ, s) dτ,

where r(t, τ, ·) is a smooth function depending on the derivatives of the order ≥ 3 of the function h(τ, ·)
and of the sublinear ã(t, τ, ·). In order to estimate

∥∥ρ(t, s)φ
∥∥
L2 ≤ ε2

∫ t

s

∥∥opWeyl(r(t, τ))U(τ, s)φ
∥∥
L2 dτ,

we investigate the above integrand.
(i) If h is subquadratic, then, due to the estimates given in (a), for all α ∈ N2d

0 there exist c1,α, c2,α > 0
such that

|∂α
z̃
r(t, τ, z̃)| ≤ c1,α exp(c2,α|t− τ |)
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for all t, τ ∈ R and z̃ ∈ R2d, and the Calderón–Vaillancourt Theorem, see e.g. [122, Theorem 4], provides
the claimed constant C > 0 for part (a).

(ii) In the magnetic case, we rewrite the remainder function

r(q̃, p̃) = r(·, ·, q̃, p̃) = b0(q̃, p̃) + b(q̃, p̃)T p̃,

where b0 : R × R × R2d → R and b : R × R × R2d → Rd are bounded with all their derivatives. For
the first summand, we proceed as in the subquadratic case, using Calderón–Vaillancourt. For the second
summand containing an unbounded linearity in p̃, we use the product rule and obtain that

opWeyl
(
r2(q̃, p̃)

)
= −opWeyl

(
b(q̃, p̃)

)
· iε∇+O(ε).

Then, the boundedness of b provides Cb > 0 such that∥∥opWeyl(b(t, τ))ε∇
(
U(τ, s)φ

)∥∥
L2 ≤ Cb

∥∥ε∇(U(τ, s)φ
)∥∥
L2 .

In the next step, we analyse
∥∥ε∇(U(τ, s)φ

)∥∥
L2 .

(4) Let t ≥ s and set f(t) = opWeyl(z̃)U(t, s)φ. We argue as in the proof for [35, Lemma 10.4] and
observe that f(t) solves the perturbed magnetic Schrödinger equation

iε∂tf(t) = opWeyl(z̃)H(t)U(t, s)φ = H(t)f(t) + δ(t)

with source term

δ(t) = [opWeyl(z̃), H(t)]U(t, s)φ = ε

i

(
opWeyl(p̃−A(q̃))

opWeyl
(
∇Ṽ (q̃)−∇A(q̃) · p̃

))U(t, s)φ,

where we used the product rule for the second equation. In the same spirit as in step (3), we estimate∥∥δ(t)∥∥
L2 ≤ Cε

∥∥opWeyl(z̃)U(t, s)φ
∥∥
L2 = Cε

∥∥f(t)
∥∥
L2 ,

where we exploited the sublinearity of A and that Ṽ is subquadratic. By the variation of constants
formula followed by Gronwall’s lemma, we obtain that∥∥f(t)

∥∥
L2 ≤ eC(t−s)∥∥f(s)

∥∥
L2 = eC(t−s)∥∥opWeyl(z̃)φ

∥∥
L2 .

(5) In the following step we show that ã satisfies the transport equation

∂τ ã(t, τ) = −{h(τ), ã(t, τ)}, (2.33a)

ã(t, t) = a (2.33b)

for τ ∈ [s, t]. Then the integrand in question indeed vanishes, and we obtain

Ã(t, s) = opWeyl(ã(t, s)) +O(ε2),

as claimed. We rewrite the transport equation (2.33) as

∂τ ã(t, τ) = J∇
z̃
h(τ) · ∇

z̃
ã(t, τ), (2.34)

ã(t, t) = a.
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The following argument crucially uses that Φt,τ is a diffeomorphism with inverse (Φt,τ )−1 = Φτ,t. We
observe that ã(t, τ,Φτ,t(z̃)) = a(z̃) for all z̃ ∈ R2d and calculate

0 = ∂τa(z̃)

= ∂τ ã(t, τ,Φτ,t(z̃))

= (∂τ ã)(t, τ,Φτ,t(z̃))− J(∇
z̃
h)(τ,Φτ,t(z̃)) · (∇

z̃
ã)(t, τ,Φτ,t(z̃)),

where, we used in the last step, the chain rule and (2.31). Since Φτ,t is a diffeomorphism, this proves
that ã(t, τ) indeed solves the transport equation (2.34).

2.7.3 Averages with respect to Gaussian wave packets

The a posteriori error representation of Lemma 2.20 involves an average with respect to the variational
solution. By Egorov’s theorem, Proposition 2.21, the time-evolved quantum observable can be approx-
imated by the Weyl-quantized classical observable evolved along the classical flow. We therefore derive
an asymptotic expansion of averages of Weyl-quantized operators with respect to Gaussian wave packets.
For obtaining this expansion, the following phase space moments will be useful.

Lemma 2.22 (Gaussian moments). We consider a Gaussian u ∈M of unit norm, ∥u∥ = 1, with phase
space center z = (q, p) ∈ R2d and width matrix C ∈ Cd×d. We denote by

ρℓ(C) = π−d
∫
R2d

z̃ℓ exp(−z̃ ·Gz̃) dz̃ with G =
(
CI + CRC−1

I CR −CRC−1
I

C−1
I CR C−1

I

)
,

where G ∈ R2d×2d is symmetric, positive definite and symplectic. Then, for any multi-index ℓ =
(ℓ1, . . . , ℓ2d) ∈ N2d

0 , we have
⟨(z̃ − z)ℓ⟩u = ε|ℓ|/2ρℓ(C).

If the length |ℓ| of the multi-index is odd, then we have ⟨(z̃ − z)ℓ⟩u = 0.

Proof. The claimed representation becomes evident, when using the Wigner function of the Gaussian
wave packet u. The Wigner function of a Gaussian wave packet centered in z satisfies

Wu(z̃) = (πε)−d exp(− 1
ε (z̃ − z) ·G(z̃ − z)),

where the matrix G is symplectic, symmetric, positive definite, see [87, Proposition 6.15]. The average
of any Weyl-quantized observable can be written as the phase space integral of the symbol versus the
Wigner function, see for example [87, Theorem 6.5]. In particular,

⟨(z̃ − z)ℓ⟩u =
∫
R2d

(z̃ − z)ℓWu(z̃) dz̃

= (πε)−d
∫
R2d

(z̃ − z)ℓ exp(− 1
ε (z̃ − z) ·G(z̃ − z)) dz̃

= π−dε|ℓ|/2
∫
R2d

z̃ℓ exp(−z̃ ·Gz̃) dz̃,

where we have used that symplecticity implies det(G) = 1. We observe, that if the length |ℓ| of the
multi-index is odd, then the above integral vanishes, and consequently ⟨(z̃ − z)ℓ⟩u = 0 as well.
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We now use these moments for expanding Gaussian averages with respect to general observables.

Proposition 2.23 (Gaussian averages). We consider a Gaussian u ∈ M of unit norm, ∥u∥ = 1, with
phase space center z = (q, p) ∈ R2d and complex width matrix C ∈ Cd×d. Then, for any smooth function
a : R2d → R with bounded sixth order derivatives,

⟨a⟩u = a(z) + εf2(a, C) + ε2f4(a, C) + ρε(a, C),

where
fk(a, C) =

∑
|ℓ|=k

1
ℓ! ∂

ℓa(z) ρℓ(C), k = 2, 4.

The second order contribution satisfies

f2(a, C) = 1
4 tr(∇2a(z)C CI

−1)

with

∇2a(z)C =
(

Id C∗
)
∇2a(z)

(
Id
C

)
∈ Cd×d. (2.35)

The remainder satisfies |ρε(a, C)| ≤ Cε3 with a constant C > 0 that only depends on sixth order derivatives
of a as well as on the width matrix C.

Proof. We start by Taylor expanding the symbol around z with sixth order remainder,

a(z̃) =
∑
|k|≤5

1
k!∂

ka(z)(z̃ − z)k + r6(z̃; z),

where
r6(z̃; z) =

∑
|k|=6

rk(z̃; z)(z̃ − z)k, rk(z̃; z) = 6
k!

∫ 1

0
(1− ϑ)5∂ka(z + ϑ(z̃ − z)) dϑ.

We have
⟨r6(z̃; z)⟩u =

∑
|k|=6

∫
R2d

rk(z̃; z) (z̃ − z)kWu(z̃) dz̃.

Therefore, using Lemma 2.22,

⟨a⟩u = a(z) + εf2(a, C) + ε2f4(a, C) + ⟨r6(z̃; z)⟩u,

and, with the same substitution as in the proof of Lemma 2.22, we bound

|⟨r6(z̃; z)⟩u| ≤ C(a, C) ε3 with C(a, C) =
∑
|k|=6

∥rk(·; z)∥∞ |ρk(C)| .

The constant C(a, C) > 0 depends on fourth order derivatives of a and on the width matrix C. It remains
to rewrite the second order contribution as

f2(a, C) = π−d
∑
|ℓ|=2

1
ℓ!∂

ℓa(z)
∫
R2d

(G−1/2z̃)ℓ exp(−|z̃|2) dz̃

= 1
2 π−d

∫
R2d

z̃ ·G−1/2∇2a(z)G−1/2z̃ exp(−|z̃|2) dz̃

= 1
4 tr(∇2a(z)G−1).
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Since G is symplectic and symmetric, its inverse satisfies

G−1 = JGJ−1 =
(
C−1

I C−1
I CR

CRC−1
I CI + CRC−1

I CR

)
.

We decompose the Hessian ∇2a(z) in block form as

∇2a(z) =
(
A B

BT D

)
. (2.36)

Using the cyclicity of the trace, we calculate that

tr(∇2a(z)G−1) = tr((A+BCR + CRB
T + CIDCI + CRDCR)C−1

I )

= tr(∇2a(z)C C−1
I ),

where ∇2a(z)C was defined in (2.35) and has the form

∇2a(z)C = A+BC + C∗BT + C∗DC,

which gives the claim.

For our analysis of the observable error, we will use Proposition 2.23 also for observables that are prod-
ucts of two functions. One of the factors will have a controlled semiclassical expansion, when evaluated
in the position center of the variational solution.

Corollary 2.24 (Gaussian averages). In the situation of Proposition 2.23 applied to a sublinear classical
observable a : R2d → R, we additionally consider a smooth and subquadratic function bε : Rd → R,
x 7→ bε(x). Then,

f2(bε, C) = 1
4 tr(∇2bε(q)CI

−1).

(a) If the function satisfies
bε(q),∇bε(q) = O(ε),

then
⟨abε⟩u = a(z) (bε(q) + εf2(bε, C)) +O(ε2).

(b) If the function satisfies
bε(q) = O(ε2), ∇bε(q),∇2bε(q) = O(ε),

then

⟨abε⟩u = a(z)
(
bε(q) + εf2(bε, C) + ε2f4(bε, C)

)
+ εF1,1(a, bε, C) + ε2F1,3(a, bε, C) +O(ε3)

with

F1,n(a, bε, C) =
∑
|ℓ|=n+1

∑
β≤ℓ,|β|=1

1
(ℓ− β)! ∂

βa(z) ∂ℓ−βbε(q) ρℓ(C), n = 1, 3.
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Proof. For the trace formula, it is enough to observe that the matrices B and D in the block matrix
(2.36) vanish, since bε only depends on x.

For proving the expansions of the averages, we crucially use the Leibniz formula for the ℓth derivative
of the product, that is,

∂ℓ(abε)(z) =
∑
β≤ℓ

(
ℓ

β

)
∂βa(z) ∂ℓ−βbε(q)

for any multi-index ℓ ∈ N2d
0 .

(a) In the situation of statement (a), we only consider |ℓ| = 2 and obtain

ε∂ℓ(abε)(z) = εa(z)∂ℓbε(q) +O(ε2).

Then, Proposition 2.23 implies

⟨abε⟩u = a(z)bε(q) + εf2(abε, C) +O(ε2)

= a(z) (bε(q) + εf2(bε, C)) +O(ε2).

(b) In the situation of statement (b), we aim for a higher order expansion and need to consider second
and fourth derivatives. In the same spirit as the proof of part (a), Proposition 2.23 implies the
claimed expansion of the average ⟨abε⟩u.

Remark 2.25. The estimates of Corollary 2.24 also apply to functions bε(x) of the form bε(x) = Bε(x)·(x−
q), where Bε(x) ∈ Rd is sublinear with uniform bounds in ε. A derivative ∂αbε(x) additively decomposes
into a bounded function and the function ∂αBε(x) · (x − q), which can be controlled by the arguments
used in the proof of Theorem 2.13 (a).

2.7.4 Proof of Theorem 2.15

We now have everything at hand to estimate the error of observables and to conclude our final main
result. In the following proof, we use Assumption 2.1 on the potentials and the representation (2.29) of the
remainder potential Wu only to the extent that the arguments literally also apply to the dynamics induced
by general subquadratic hamiltonians. Thus, the proof improves known observable error estimates in full
generality.

Proof of Theorem 2.15. By Lemma 2.20 we only have to bound the commutator in the representation
formula (2.28).

(a) We start by recalling, that in the proof of Theorem 2.13, we have estimated∥∥Wu(s)u(s)
∥∥
L2 =

∥∥(Id− Pu(s))H(s)u(s)
∥∥
L2 ≤ Cε3/2. (2.37)

(b) We denote ã(t, s) = a ◦ Φt,s and expand

1
iε
〈
Wu(s)Ã(t, s)− Ã(t, s)Wu(s)

〉
u(s)

= 1
iε
〈
Wu(s)opWeyl (ã(t, s))− opWeyl (ã(t, s))Wu(s)

〉
u(s) + r1(s, t).
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Using first Cauchy-Schwarz and then (2.37) together with Proposition 2.21 and norm conservation, we
bound the remainder by

|r1(s, t)| ≤ 2
ε

∥∥Wu(s)u(s)
∥∥
L2

∥∥(Ã(t, s)− opWeyl (ã(t, s))
)
u(s)

∥∥
L2 ≤ c ε5/2.

(c) As in the proof of Proposition 2.21, we use the product rule of Weyl calculus and expand the com-
mutator. For notational simplicity, we suppress the dependence on t and s. We have by symmetry of the
real part with respect to the L2 scalar product and anti-symmetry of the Poisson bracket〈

Wu opWeyl (ã)− opWeyl (ã)Wu

〉
u

= 2
i
〈
ImWuã

〉
u

+ ε

i
〈
{ReWu, ã}

〉
u

+ ε2

4i
〈
∇2ImWuJ∇2ãJ

〉
u

+O(ε3),

where the constant in O(ε3) depends on phase space derivatives of the remainder potential Wu(s) and of
ã(t, s) of the order ≥ 3. Since ã(t, s) is sublinear and Wu(s) consists of subquadratic summands and a
non-subquadratic summand which can be handled by Remark 2.25, the Calderón–Vaillancourt Theorem
applies for the remainder term. We will prove below that〈

opWeyl (ImWuã)
〉
u

= O(ε3), (2.38a)〈
opWeyl ({ReWu, ã})

〉
u

= O(ε2), (2.38b)〈
opWeyl

(
∇2ImWuJ∇2ãJ

) 〉
u

= O(ε), (2.38c)

which allows us to conclude that
1
iε
〈
WuÃ− ÃWu

〉
u

= O(ε2).

In order to do so, we first aim at the application of Corollary 2.24 statement (a) for bε = ∂jReWu and
statement (b) for bε = ImWu; see also Remark 2.25 for the non-subquadratic terms in Wu.

(d) From now on, we notationally focus on the magnetic Schrödinger case, but the analysis works the
same for the general case. We denote the phase space center of the variational Gaussian u by z = (q, p).
The width matrix of u is C and has imaginary part CI. We recall that the cubic remainder R(Xu) in
(2.29) vanishes together with its first and second derivatives when evaluated in q.

We first apply the analysis to the Poisson bracket that involves the real part of the remainder potential.
For any j = 1, . . . , d, we use (2.29) and Proposition 2.23 and obtain ∂jReWu(q) = O(ε). Furthermore,
by [87, Lemma 3.15] we have

∇∂jReWu(q) = ∇∂jReXu(q)− ⟨∇∂jReXu⟩u = O(ε),

∇2∂jReWu(q) = ∇2∂jReR(Xu)(q) = ∇2∂jReXu(q).

Hence, the function bε = ∂jReWu fulfills the assumptions of statement (a) in Corollary 2.24, and together
with Proposition 2.23, we obtain

⟨∂jReWu∂pj ã⟩u = O(ε2).

After summation over j, we have proven (2.38b).

(e) Similarly, the first and second derivatives of ImWu satisfy

∇ImWu(q), ∇2ImWu(q) = O(ε). (2.39)
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Moreover, Proposition 2.23 implies for the point evaluation of the imaginary part of the remainder
potential that

ImWu(q) = ε

4 tr
((
⟨∇2ImXu⟩u −∇2ImXu(q)

)
CI
−1)+O(ε2)

= O(ε2). (2.40)

At this point, a simple application of Proposition 2.23 and (2.39) yields (2.38c).

(f) The expansions in (2.39) and (2.40) show that bε = ImWu satisfies the assumptions of statement (b)
in Corollary 2.24. In order to prove (2.38a), we analyse the expansion obtained from Corollary 2.24 in
two steps, aiming at

ImWu(q) + εf2(ImWu, C) + ε2f4(ImWu, C) = O(ε3), (2.41a)

εF1,1(ã, ImWu, C) + ε2F1,3(ã, ImWu, C) = O(ε3). (2.41b)

(g) We start with proving the first estimate (2.41a). For this, we need a slightly more accurate assessment
of ImWu(q) than developed previously. Using (2.29), Proposition 2.23, and (2.39), we have

ImWu(q) =− εf2(ImXu, C)− ε2f4(ImXu, C) + εf2(⟨ImXu⟩u, C) +O(ε3)

=− ε2f4(ImXu, C) + ε2f2(f2(ImXu, C), C) +O(ε3).

Similarly, we obtain for the second term in (2.41a) that

εf2(ImWu, C) = −ε2f2(f2(ImXu, C), C) +O(ε3).

Therefore, ImWu(q) cancels both the contributions from the second and the fourth derivatives, and we
have proven (2.41a).

(h) We next target the terms on the left hand side of equation (2.41b), that is,

εF1,1(ã, ImWu, C) = −ε2
∑
|k|=2

F1,1(ã, ∂kImXu, C) ρk(C) +O(ε3)

and

F1,3(ã, ImWu, C) = F1,3(ã, ImXu, C).

In Lemma 2.27, we provide the combinatorial argument that shows (2.41b) as a consequence of Isserlis’
theorem on the higher moments of multivariate normal distributions. Hence, we have proven ⟨ImWuã⟩u =
O(ε3), that is, (2.38a).

Remark 2.26. The crucial estimates of the previous proof, namely (2.38a) and (2.38b) are one order worse
for the semiclassical Gaussian approximation, since it lacks the compensating averaging factors of the
remainder potential. Therefore, for the semiclassical Gaussians only O(ε) observable accuracy can be
expected.
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2.8 Appendix: Gaussian moments

By an application of Isserlis’ theorem, the fourth order Gaussian moments can be written as sums of
products of second order moments. That is, for a 2d-dimensional Gaussian random vector

(X1, . . . , X2d) ∼ N (0, G)

with mean zero 0 ∈ R2d and covariance matrix G ∈ R2d×2d, the fourth order moments satisfy

E(X4
i ) = 3g2

ii,

E(X3
iXj) = 3giigij ,

E(X2
iX

2
j ) = giigjj + 2g2

ij

E(X2
iXjXk) = giigjk + 2gijgik

E(XiXjXkXℓ) = gijgkℓ + gikgjℓ + giℓgjk

with i, j, k, ℓ ∈ {1, . . . , 2d}. We crucially use this for proving that the fourth order summations that
appeared in the proof of Theorem 2.15 can be expressed in terms of second order summations.

Lemma 2.27 (Resummation). For any family (aβ,m)β,m of real numbers, indexed by m ∈ N2d
0 and β ≤ m

with |β| = 1, we have∑
|m|=4

∑
β≤m,|β|=1

1
(m− β)! aβ,m ρm(C) =

∑
|k|=2

∑
|ℓ|=2

∑
β≤ℓ,|β|=1

1
k! aβ,k+ℓ ρk(C)ρℓ(C).

Proof. We write a multi-index m ∈ N2d
0 of order |m| = 4 as

m = ⟨j1⟩+ ⟨j2⟩+ ⟨j3⟩+ ⟨j4⟩

with coordinates j1, . . . , j4 ∈ {1, . . . , 2d}, where the bracket ⟨j⟩ = ej denotes the jth canonical basis
vector of R2d. We distinguish five different cases for the order four multi-index m.

(a) m has one non-zero component, that is, m = 4⟨j⟩ with j = 1, . . . , 2d. Then,
1

(m− β)! aβ,m ρm(C) = 1
3! a⟨j⟩,4⟨j⟩ 3ρ2⟨j⟩(C)2

= 1
k! aβ,k+ℓ ρk(C)ρℓ(C)

with k = 2⟨j⟩ = ℓ and β = ⟨j⟩.

(b) m has two different non-zero components, that is, m = 3⟨j1⟩ + ⟨j2⟩ with j1 ̸= j2. In this case, m
dominates two multi-indices β of order one, and generates the terms(

1
2! a⟨j1⟩,m + 1

3! a⟨j2⟩,m

)
3ρ2⟨j1⟩(C)ρ⟨j1⟩+⟨j2⟩(C)

= 1
2!
(
a⟨j1⟩,m + a⟨j2⟩,m

)
ρ2⟨j1⟩(C)ρ⟨j1⟩+⟨j2⟩(C)

+ 1
1! a⟨j1⟩,m ρ⟨j1⟩+⟨j2⟩(C)ρ2⟨j1⟩(C).

This amounts to the two (k, ℓ) pairs

k = 2⟨j1⟩, ℓ = ⟨j1⟩+ ⟨j2⟩, β ∈ {⟨j1⟩, ⟨j2⟩},

k = ⟨j1⟩+ ⟨j2⟩, ℓ = 2⟨j1⟩, β = ⟨j1⟩.
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(c) m has two identical non-zero components, that is, m = 2⟨j1⟩ + 2⟨j2⟩ with j1 ̸= j2. In this case, m
again dominates two multi-indices β of order one, and we have to consider

1
2!
(
a⟨j1⟩,m + a⟨j2⟩,m

) (
ρ2⟨j1⟩(C)ρ2⟨j2⟩(C) + 2ρ⟨j1⟩+⟨j2⟩(C)

2)
= 1

2!a⟨j2⟩,m ρ2⟨j1⟩(C)ρ2⟨j2⟩(C) + 1
2!a⟨j1⟩,m ρ2⟨j2⟩(C)ρ2⟨j1⟩(C)

+ 1
1!
(
a⟨j1⟩,m + a⟨j2⟩,m

)
ρ⟨j1⟩+⟨j2⟩(C)

2.

This amounts to the three pairs

k = 2⟨j1⟩, ℓ = 2⟨j2⟩, β = ⟨j2⟩

k = 2⟨j2⟩, ℓ = 2⟨j1⟩, β = ⟨j1⟩

k = ⟨j1⟩+ ⟨j2⟩ = ℓ, β ∈ {⟨j1⟩, ⟨j2⟩},

that satisfy k + ℓ = m.

(d) m has three non-zero components, that is, m = 2⟨j1⟩+ ⟨j2⟩+ ⟨j3⟩ with pairwise distinct j1, j2, j3. In
this case, m dominates three multi-indices β of order one. The contributions are(

a⟨j1⟩,m + 1
2! a⟨j2⟩,m + 1

2! a⟨j3⟩,m

)
×
(
ρ2⟨j1⟩(C)ρ⟨j2⟩+⟨j3⟩(C) + 2ρ⟨j1⟩+⟨j2⟩(C)ρ⟨j1⟩+⟨j3⟩(C)

)
= 1

2!
(
a⟨j2⟩,m + a⟨j3⟩,m

)
ρ2⟨j1⟩(C)ρ⟨j2⟩+⟨j3⟩(C)

+ 1
1! a⟨j1⟩,m ρ⟨j2⟩+⟨j3⟩(C)ρ2⟨j1⟩(C)

+
(
a⟨j1⟩,m + a⟨j3⟩,m

)
ρ⟨j1⟩+⟨j2⟩(C)ρ⟨j1⟩+⟨j3⟩(C)

+
(
a⟨j1⟩,m + a⟨j2⟩,m

)
ρ⟨j1⟩+⟨j3⟩(C)ρ⟨j1⟩+⟨j2⟩(C).

This amounts to the four pairs

k = 2⟨j1⟩, ℓ = ⟨j2⟩+ ⟨j3⟩, β ∈ {⟨j2⟩, ⟨j3⟩},

k = ⟨j2⟩+ ⟨j3⟩, ℓ = 2⟨j1⟩, β = ⟨j1⟩,

k = ⟨j1⟩+ ⟨j2⟩, ℓ = ⟨j1⟩+ ⟨j3⟩, β ∈ {⟨j1⟩, ⟨j3⟩},

k = ⟨j1⟩+ ⟨j3⟩, ℓ = ⟨j1⟩+ ⟨j2⟩, β ∈ {⟨j1⟩, ⟨j2⟩},

which satisfy k + ℓ = m.

(e) m has four non-zero components, that is, m = ⟨j1⟩+ · · ·+ ⟨j4⟩ with distinct j1, . . . , j4. In this case,
m dominates four multi-indices β of order one, and we have to consider

(
a⟨j1⟩,m + · · ·+ a⟨j4⟩,m

) (
ρ⟨j1⟩+⟨j2⟩(C)ρ⟨j3⟩+⟨j4⟩(C)+

+ρ⟨j1⟩+⟨j3⟩(C)ρ⟨j2⟩+⟨j3⟩(C) + ρ⟨j1⟩+⟨j4⟩(C)ρ⟨j2⟩+⟨j3⟩(C)
)
.
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This product results in twelve summands, that have an obvious regrouping according to the six (k, ℓ)
pairs

k = ⟨j1⟩+ ⟨j2⟩, ℓ = ⟨j3⟩+ ⟨j4⟩, β ∈ {⟨j3⟩, ⟨j4⟩},

k = ⟨j1⟩+ ⟨j3⟩, ℓ = ⟨j2⟩+ ⟨j4⟩, β ∈ {⟨j2⟩, ⟨j4⟩},

k = ⟨j1⟩+ ⟨j4⟩, ℓ = ⟨j2⟩+ ⟨j3⟩, β ∈ {⟨j2⟩, ⟨j3⟩},

k = ⟨j2⟩+ ⟨j3⟩, ℓ = ⟨j1⟩+ ⟨j4⟩, β ∈ {⟨j1⟩, ⟨j4⟩},

k = ⟨j2⟩+ ⟨j4⟩, ℓ = ⟨j1⟩+ ⟨j3⟩, β ∈ {⟨j1⟩, ⟨j3⟩},

k = ⟨j3⟩+ ⟨j4⟩, ℓ = ⟨j1⟩+ ⟨j2⟩, β ∈ {⟨j1⟩, ⟨j2⟩}.

We note, that all k have their factorials equal to one, and that k + ℓ = m.

In the previous five cases (a)–(e), that follow the sparsity pattern of order four multi-indices, we obtain
the appropriate format of the resulting summands, that is,

1
k!

∑
β≤ℓ,|β|=1

aβ,k+ℓ ρk(C) ρℓ(C)

with k, ℓ ∈ N2d
0 such that |k| = |ℓ| = 2 and k + ℓ = m. For concluding the proof, we have to verify that

any possible (k, ℓ) pairing of order two multi-indices has appeared in one of the five cases (a)–(e). Let
i1, . . . , i4 ∈ {1, . . . , 2d} be such that

k = ⟨i1⟩+ ⟨i2⟩, ℓ = ⟨i3⟩+ ⟨i4⟩.

The combinatorics of this situation falls into the following five cases:

(α) All four coordinates agree, that is, i1 = · · · = i4 =: j. Then, k + ℓ = 4⟨j⟩, and we recognize the
previous case (a).

(β) Three of the four coordinates coincide with each other, that is, i1 = i2 = i3 =: j1 and i4 =: j2 is
distinct from the other three ones, or the analogous three possible placements of an outlier. Then,
k + ℓ = 3⟨j1⟩+ ⟨j2⟩, which is case (b).

(γ) The four coordinates form two different pairs, that is, i1 = i2 =: j1 and i3 = i4 =: j2 or the other
two possible pairings. Then, k + ℓ = 2⟨j1⟩+ 2⟨j2⟩, and we are in case (c).

(δ) Two of the four coordinates agree, while the other two are different. That is, i1 = i2 =: j1 and
i3 ̸= i4 and different to j1, or the other two possible pairings. Then, k + ℓ = 2⟨j1⟩ + ⟨i3⟩ + ⟨i4⟩,
which is case (d).

(ε) All four coordinates are distinct as in case (e).

Hence, the combinatorics of the order four multi-indices and the one of pairs of order two multi-indices
are the same, and we have indeed proven that the two different summation formats yield the same result
as claimed.
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CHAPTER 3

Time-dependent electromagnetic scattering from dispersive materials

The content of this chapter was published in [113]. The authors are Jörg Nick, Selina Burkhard and
Christian Lubich.

This chapter studies time-dependent electromagnetic scattering from obstacles that are described by dis-
persive material laws. We consider the numerical treatment of a scattering problem in which a dispersive
material law, for a causal and passive homogeneous material, determines the wave-material interaction in
the scatterer. The resulting problem is nonlocal in time inside the scatterer and is posed on an unbounded
domain. Wellposedness of the scattering problem is shown using a formulation that is fully given on the
surface of the scatterer via a time-dependent boundary integral equation. Discretizing this equation by
convolution quadrature in time and boundary elements in space yields a provably stable and convergent
method that is fully parallel in time and space. Under regularity assumptions on the exact solution we
derive error bounds with explicit convergence rates in time and space. Numerical experiments illustrate
the theoretical results and show the effectiveness of the method.
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3.1 Introduction and setting

Since the pioneering work of [128], dispersive materials and their interaction with electromagnetic waves
have attracted much scientific interest. Metamaterials, whose interaction with electromagnetic waves is
often described by dispersive material laws, promises to advance many applications in the context of
optical devices and imaging. A collection of applications is found in [93, Section 5].

A survey of the mathematical literature is given by [93] and a coherent presentation of basic mathemat-
ical results is given by [37]. Following that paper, we require the causality principle and homogeneity for
the dispersive material law, and we consider the fundamental class of (strongly) passive materials. Study-
ing the time domain setting of dispersive has recently been further motivated by [36], which presents a
numerical study that indicates that the limiting amplitude principle does not generally hold for dispersive
material laws.

In the approach to time-dependent scattering taken here, the scattering problem posed in the exterior
domain and the dispersive bounded scattering object is reduced to a time-dependent boundary integral
equation for the tangential traces of the electric and magnetic fields. From the tangential traces, the
electromagnetic fields inside and outside the scatterer are then obtained via representation formulas.
We show well-posedness of the boundary integral equation and the scattering problem for causal and
passive homogeneous dispersive materials. We use convolution quadrature and boundary elements for
the numerical discretization and provide a fully discrete error analysis. Numerical experiments illustrate
the theoretical results and show the effectiveness of the method.

The numerical simulation of wave propagation problems on exterior domains by discretizing time-
dependent boundary integral equations with convolution quadrature in time and boundary elements in
space originates from [95]. This approach has been taken up in the numerical literature both in the
acoustic case, e.g. [12, 13, 18, 19, 86, 123], and in the electromagnetic case, e.g. [9, 38, 40, 84, 112]. In
[42], a convolution quadrature discretization has been applied to dispersive electromagnetic material laws
in combination with finite volume techniques.

Further related literature is, e.g., [118], which considers the acoustic wave equation and a reformulation
as retarded boundary integral equation. The discretization is provided by a Galerkin semi-discretization
in space and convolution quadrature in time. In contrast to us, this paper uses evolution equation
techniques for the fully discrete system. In [44], a formulation of an acoustic wave transmission problem
with mixed boundary conditions as a retarded potential integral equation is derived and wellposedness
is shown. [38] solve dielectric scattering with a homogeneous penetrable obstacle, by using boundary
integral methods and convolution quadrature.

For a recent overview on convolution quadrature with applications to scattering problems, we refer
to [14].

3.1.1 Dispersive Maxwell’s equations on a single domain Ω

Let Ω ⊂ R3 be an interior or exterior domain. We are interested in time-dependent (possibly dispersive)
electromagnetic waves, which are modeled by Maxwell’s equations (here assumed with vanishing current
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and charge)

∂tD − curlH = 0

∂tB + curlE = 0
in Ω. (3.1)

These equations are complemented by the material laws

D = ε0E + P (E), B = µ0H +M(H), (3.2)

with the constant permittivity ε0 and permeability µ0 of vacuum and with the polarization field P and
the magnetization field M . For homogeneous materials, as will be considered here, these fields are of the
form of a temporal convolution

P (E)(t) = ε0

∫ t

0
χe(θ)E(t− θ) dθ, (3.3)

M(H)(t) = µ0

∫ t

0
χm(θ)H(t− t′) dθ, (3.4)

with the scalar susceptibility kernels χe and χm.

3.1.2 Examples of retarded material laws

We present various material laws, which can be found in [33, 37]. The reaction of material, different from
vacuum, is non-instantaneous when exposed to stress. It depends on the past, it has a memory.

A common example used in the literature is the Debye model, for which the susceptibility kernel is
given by

χe(t) = βe−λt, for λ, β > 0, (3.5a)

with relaxation parameter 1/λ. Here the distraction of the material depends stronger on the more recent
past, this is captured by the exponential damping. Kernels in physical applications often consist of sums
of the type given above or, more generally, are completely monotonic functions (cf. [133])

χe(t) =
∫ ∞

0
e−λtβ( dλ) with a positive measure β.

Another class of material laws simultaneously damps the system and introduces a temporal delay, by
some fixed t∗ > 0. The analysis of such systems has received significant attention, for example in [108]
and, for scattering problems, in [117]. In our setting, such models are described by the convolution with
the shifted Heaviside function

χe(t) = α1 + α2Θ(t− t∗) =

α1 + α2, t ≥ t∗

α1, t < t∗.
(3.5b)

We always assume that the parameters satisfy α1 ≥ α2 > 0. In [108], the respective material law in
the acoustic setting has been shown to be exponentially stable for α1 > α2 > 0. The authors further
construct, for the converse case of α2 > α1, arbitrary small shifts t∗ that destabilize the system. In the
next sections we will show that the corresponding electromagnetic scattering problem is well-posed and
stable under the stated constraints.

Popular models for the propagation of light and its interaction with matter are the Drude and Lorentz
models in nanophotonics; see [33, 37]. The Drude model can be used to model metal under the influence
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of an external electric field. Then, the conduction electrons behave as charged free particles, they form
an ideal classical gas. With the collision frequency γD and the plasma frequency ωD, the temporal
susceptibility kernel is given by

χ(t) = ω2
D

γD

(
1− e−γDt

)
. (3.5c)

The Drude model has to be modified for metals in the visible regime, where interband transitions of the
electrons occur due to higher photon energies. In this case Lorentz oscillators provide a simple model:
with

χ(t) = βL
λL

e−
αL

2 t sin(λLt), λL =
√
ω2
L −

αL
4 , (3.5d)

where ωL is the resonance frequency, 0 < αL < 4ω2
L is the damping coefficient and βL > 0 gives the

strength.
More involved models contain fractional derivatives, such as the Havriliak-Negami model, which mod-

els dielectric relaxation in complex systems, cf. [132] and [53]: with positive coefficients β and γ and the
exponent 0 < η < 2,

ε0
(
(1 + γ)∂t + β∂1+η

t

)
E − curl

(
1 + β∂ηt

)
H = 0. (3.5e)

This can be reformulated as (3.2) with (3.3), where χe(t) is the convolution kernel given by its Laplace
transform χ̂e(s) = γ/(1 + βsη).

3.1.3 The time-dependent scattering problem

We decompose the complete space R3 into the exterior domain Ω+, the interior (bounded) domain Ω− and
the interface Γ = ∂Ω+ = ∂Ω−, which yields the disjoint union R3 = Ω−∪Γ∪Ω+. Inside the scatterer, i.e.
in the bounded domain Ω−, we enforce a retarded material law and couple it with Maxwell’s equations
with physical parameters corresponding to a vacuum in the exterior domain Ω+. We then arrive at the
following equations in their respective domains:

In the interior domain Ω−:

ε0∂tE
− + P (∂tE−) − curlH− = 0,

µ0∂t H
− +M(∂tH−) + curlE− = 0.

In the exterior domain Ω+:

ε0∂tE
+ − curlH+ = 0,

µ0∂tH
+ + curlE+ = 0.

Initially, we assume the system to be at rest with vanishing electromagnetic fields in the interior and
the exterior. The system is excited by an exterior incoming electromagnetic wave (Einc,Hinc), a solution
of the exterior Maxwell’s equations with support initially away from the surface Γ of the scatterer. The
unknown exterior fields (E+,H+) are referred to as the scattered fields. They uniquely identify, together
with the incoming wave, the total electromagnetic fields via Etot = E++Einc andHtot = H++Hinc. In-
side the scatterer there is only the initially vanishing scattered wave (E−,H−), making such a distinction
unnecessary.

Along the interface of the scatterer Γ = ∂Ω±, we enforce continuity of the tangential components of
the total electric and magnetic fields, which reads

γTE
− = γTE

+ + γTE
+
inc,

γTH
− = γTH

+ + γTH
+
inc

on Γ. (3.6)
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The numerical treatment of this scattering problems needs to overcome the following main challenges
of the problem above:

■ The material laws (3.3)–(3.4) are nonlocal in time and therefore require, for general susceptibilities
(χe, χm), the whole history of the solution at any time t, which leads to a memory tail with standard
time-stepping discretizations.

■ The exterior domain Ω+ is unbounded.

The natural formulation of this scattering problem considers vacuum in the unbounded exterior do-
main. However, the case of retarded material laws in the exterior domain, as is encountered e.g. when
the scattering is caused by a small inclusion in a dispersive material, does not introduce any additional
difficulty. We therefore impose, for the rest of the paper, different dispersive material laws on Ω− and
Ω+ respectively, which is a general setting that includes the natural case of a dispersive scatterer in a
dielectric background medium.

3.1.4 Outline and contributions of the paper

The present problem formulation is partly inspired by [38], which gives the first numerical analysis for
time-dependent electromagnetic scattering from dielectric penetrable obstacles. In this paper, we go
beyond the existing literature by a thorough numerical analysis for scattering from dispersive materials,
which are described by non-local convolutional material laws in the time domain and frequency-dependent
permittivities and permeabilities in the Laplace domain. The mathematical theory describing such ma-
terials has been extensively developed in the last years, see for example [37] for an excellent overview.

We transfer the techniques developed in [84] and [112], which in turn originate in the acoustic ana-
logues of [18] and [19], respectively. On the analytical side, we show that the assumptions made on
the mathematical models for dispersive materials lead to well-posed boundary integral equations. On
the numerical side, employing a temporal discretization based on the convolution quadrature method
combined with a boundary element space discretization, we provide the first provably stable and con-
vergent numerical method for time-dependent electromagnetic scattering from dispersive materials based
on time-dependent boundary integral equations. In the following, we give an outline and discuss the
contributions of each section.

In Section 4.2, we recall the foundation of dispersive Maxwell’s equations and describe the framework
of passive material laws used in the subsequent sections. Lemma 3.1 shows that all examples from the
introduction are included in the setting.

Section 3.3 formulates and analyses a basic dispersive time-harmonic transmission problem, for which
a central bound for the electromagnetic fields is shown in Lemma 3.3. As a consequence, bounds for the
potential and boundary operators corresponding to the time-harmonic dispersive Maxwell’s equations
are deduced. Moreover, the fundamental Calderón operator is constructed for the dispersive Maxwell’s
equations, which is differently scaled than its dielectric counterpart in the previous work by [84]. Assuming
passivity of the material law, we obtain the crucial time-harmonic coercivity result of Lemma 3.6.

In Section 3.4, we apply the previously established operators to derive a well-posed and stable time-
harmonic boundary integral equation and prove the equivalence to the time-harmonic scattering problem
of interest in Proposition 3.10. Moreover, s-specific bounds are shown which estimate the solution of
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the scattering problem in terms of the incoming wave. Assuming a stronger passivity assumption on the
material law, we obtain simplified bounds of all operators, which can be transported into the time-domain.

Section 3.5 carries the time-harmonic analysis over to the time-domain. The time-dependent boundary
integral equation is formulated in (3.35) and its central properties are collectively shown in Theorem 3.13.
In particular, we show the wellposedness of the boundary integral equation, the equivalence to the time-
dependent scattering problem and give estimates on the solution in terms of the incoming waves. All of
these results are the direct consequence of their time-harmonic counterparts.

In Section 3.6 we apply a convolution quadrature time discretization, based on the Radau IIA Runge–
Kutta methods, to the boundary integral equation, which yields a temporally discrete scheme for the
approximation of the scattering problem. We introduce some basic results surrounding the convolution
quadrature method and crucial notation for the error analysis in the subsequent section, but omit the
formulation of semi-discrete error bounds.

Section 3.7 introduces the spatial discretization based on Raviart–Thomas boundary elements and
cites the best-approximation result used in this paper. The main part of this section consists of the error
analysis, which leads to the main result of Theorem 3.18. Here, the bulk of the previous analysis enters,
however the structure of the proof is carried over from [112, Theorem 6.1]. A complication on the way
towards pointwise estimates away from the boundary is overcome by requiring additional regularity on
the data (by following the ideas of the proof of Lemma 3.2 and (3.53)).

Finally in Section 3.8 we describe the numerical experiments conducted for the present setting. A
fractional material law is used with a simple domain to compute empirical convergence rates in space and
time, which illustrate the error bounds of the previous sections. An example with two cubes demonstrates
the use of the method and closes the paper.

3.2 Reformulation of the problem and mathematical framework

3.2.1 Reformulation of the time-dependent scattering problem

Via the Laplace transforms (χ̂±e (s), χ̂±m(s)) of the susceptibility kernels (χ±e (t), χ±m(t)), we define the
functions

ε±(s) = ε0(1 + χ̂±e (s)), µ±(s) = µ0(1 + χ̂±m(s)),

which are the Laplace transforms of the distributions ε0(δ + χ±e ) and µ0(δ + χ±m) (with Dirac’s delta
distribution). We use the Heaviside notation for temporal convolution: for a function g defined on the
real line,

ε±(∂t)g = (L−1ε±) ∗ g, µ±(∂t)g = (L−1µ±) ∗ g,

where L−1 denotes taking the inverse Laplace transform. (We will later use this notation also for tempo-
ral convolutions related to other Laplace transforms.) We then arrive at the following reformulation of
the scattering problem:

In the interior domain Ω−:

ε−(∂t) ∂tE− − curlH− = 0,

µ−(∂t) ∂tH− + curlE− = 0.

In the exterior domain Ω+:

ε+(∂t) ∂tE+ − curlH+ = 0,

µ+(∂t) ∂tH+ + curlE+ = 0.
(3.7)
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This is completed by enforcing continuity of the tangential parts of the electromagnetic fields along
the boundary, as in (3.6).

3.2.2 Passivity conditions for the dispersive permittivities ε±(s) and perme-
abilities µ±(s)

As is explained in [37, after Definition 2.5], passivity and causality of the time-varying material law result
from the following property :

Re
(
ε±(s)s

)
> 0 and Re

(
µ±(s)s

)
> 0 for Re s > 0. (3.8)

This will be assumed throughout this paper. For our purposes it will sometimes be useful to assume a
stronger passivity condition:

Re
(
ε±(s)s

)
≥ ε0Re s and Re

(
µ±(s)s

)
≥ µ0Re s for Re s > 0. (3.9)

This condition is equivalent to Re (χ̂±e (s)s) ≥ 0 and Re (χ̂±m(s)s) ≥ 0 for Re s > 0.
We further assume a bound for ε±(s) and µ±(s): for every σ > 0, there exists Mσ <∞ such that∣∣ε±(s)

∣∣ ≤Mσε0 and
∣∣µ±(s)

∣∣ ≤Mσµ0 for Re s ≥ σ > 0. (3.10)

Lemma 3.1. All examples of (3.5) satisfy the strong passivity condition (3.9) and the bound (3.10).

Proof. (3.5a) For the Debye model with λ > 0 and β > 0 we have, for Re s > 0,

χ̂e(s) = (Lχe)(s) = β

s+ λ
and hence Re

(
χ̂e(s)s

)
= β

|s+ λ|2
(
|s|2 + λRe s

)
≥ 0.

More generally, by the same argument we also obtain the strong passivity for completely monotonic
susceptibility kernels χe.

(3.5b) The Laplace transform of the susceptibility kernel corresponding to the shifted Heaviside func-
tion χe(t) = α1 + α2Θ(t− t∗) reads

χ̂e(s) = s−1 (α1 + α2e−t∗s
)
,

for which we obtain the strong passivity under the condition α1 ≥ α2.

(3.5c) The Laplace transform of the susceptibility kernel corresponding to the Drude model reads

χ̂e(s) = ω2
D

s(s+ γD) , such that Re
(
χ̂e(s)s

)
= ω2

D

|s+ γD|2
(
γD + Re s

)
≥ 0.

(3.5d) The Lorentz model is determined by

χ̂e(s) = β

s(s+ α) + ω
, such that Re

(
χ̂e(s)s

)
= β

|s(s+ α) + ω|2
Re
(
|s|2 s+ |s|2 α+ sω

)
≥ 0.

(3.5e) The susceptibility kernel describing the fractional material law is characterized by the Laplace
domain function with β > 0, λ > 0 and 0 < η < 2,

χ̂e(s) = β

sη + λ
, with Re

(
χ̂e(s)s

)
=
β
(
Re (s sη) + λRe s

)
|sη + λ|2

=
β
(
|s|2η

(
Re s1−η + λRe s

)
|sη + λ|2

≥ 0.

The bound (3.10) is obvious for each example.
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3.2.3 Temporal convolution

Let K(s) : X → Y , for Re s > 0, be an analytic family of bounded linear operators between two Hilbert
spaces X and Y . We assume that K is polynomially bounded: there exists a real κ, and for every σ > 0
there exists Mσ <∞, such that

∥K(s)∥Y←X ≤Mσ |s|κ , Re s ≥ σ > 0. (3.11)

This bound ensures that K is the Laplace transform of a distribution of finite order of differentiation
with support on the non-negative real half-line t ≥ 0. For a function g : [0, T ]→ X, which together with
its extension by 0 to the negative real half-line is sufficiently regular, we use the Heaviside operational
calculus notation

K(∂t)g = (L−1K) ∗ g

for the temporal convolution of the inverse Laplace transform of K with g. For the identity operator
Id(s) = s, we have Id(∂t)g = ∂tg, the time derivative of g. For two such families of operators K(s) and
L(s) mapping into compatible spaces, the associativity of convolution and the product rule of Laplace
transforms yield the composition rule

K(∂t)L(∂t)g = (KL)(∂t)g. (3.12)

For a Hilbert space X, we let Hr(R, X) be the Sobolev space of order r of X-valued functions on R,
and on finite intervals (0, T ) we let

Hr
0 (0, T ;X) = {g|(0,T ) : g ∈ Hr(R, X) with g = 0 on (−∞, 0)},

where the subscript 0 in Hr
0 only refers to the left end-point of the interval. For integer r ≥ 0, the

norm ∥∂rt g∥L2(0,T ;X) is equivalent to the natural norm on Hr
0 (0, T ;X). The Plancherel formula yields

the following bound [95, Lemma 2.1]: If K(s) is bounded by (3.11) in the half-plane Re s > 0, then
K(∂t) extends by density to a bounded linear operator K(∂t) from Hr+κ

0 (0, T ;X) to Hr
0 (0, T ;Y ) with

the bound
∥K(∂t)∥Hr

0 (0,T ;Y )←Hr+κ
0 (0,T ;X) ≤ eM1/T

for arbitrary real r. Here the bound on the right-hand side arises from the bound eσTMσ on choosing
σ = 1/T . We note that for any integer k ≥ 0 and α > 1/2, we have the continuous embedding
Hk+α

0 (0, T ;X) ⊂ Ck([0, T ];X).

3.2.4 The tangential trace and the trace space XΓ

Let Ω be a bounded Lipschitz domain in R3 with boundary surface Γ = ∂Ω or the complement of the
closure of such a domain. For a continuous vector field u : Ω→ C3, we define the tangential trace

γTu = u|Γ × n on Γ,

where n denotes the unit surface normal pointing into the exterior domain. We note that the tangential
component of u|Γ is uT = (I − nn⊤)u|Γ = −(γTu)× n.

By the version of Green’s formula for the curl operator, we have for sufficiently regular vector fields
u,v : Ω→ C3 that ∫

Ω

(
curlu · v− u · curl v

)
dx =

∫
Γ
(γTu× n) · γTv dσ,
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where the dot · stands for the Euclidean inner product on C3, i.e., a · b = a⊤b for a, b ∈ C3. The right-
hand side in this formula defines a skew-hermitian sesquilinear form on continuous tangential vector fields
on the boundary, say ϕ, ψ : Γ→ C3, which we write as

[ϕ, ψ]Γ =
∫

Γ
(ϕ× n) · ψ dσ.

As it was shown in [3] for smooth domains and extended by [30] for Lipschitz domains (see also the survey
in [29, Sect. 2.2]), the trace operator γT can be extended to a surjective bounded linear operator from
the space that appears naturally for Maxwell’s equations, H(curl,Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
to the

trace space: a Hilbert space denoted XΓ, with norm ∥ · ∥XΓ .

This space is characterized as the tangential subspace of the Sobolev space H−1/2(Γ) with surface diver-
gence in H−1/2(Γ) (see the papers cited above for the precise formulation). It has the property that the
pairing [·, ·]Γ can be extended to a non-degenerate continuous sesquilinear form on XΓ × XΓ. With this
pairing the space XΓ becomes its own dual.

3.3 A time-harmonic transmission problem

For the derivation of the parameter-dependent operators and representation formulas we write in this
section ε(s) and µ(s) either for ε+(s) and µ+(s) or for ε−(s) and µ−(s). The single and double layer
potentials and the Calderón operator are defined for the same material parameters in the inner and outer
domain. In the derivation of the boundary integral equation, this suits the situation, since the solutions of
Maxwell’s equations are extended to R3 \Γ, by setting them to zero on either the inner or outer domain.
For notational simplicity, in the proofs we omit the frequency-dependence in the notation.

Formally applying the Laplace transform to Maxwell’s equation and inserting the material law (3.2)
in (3.1) yields the time-harmonic Maxwell’s equations

ε(s)sÊ − curl Ĥ = 0

µ(s)sĤ + curl Ê = 0
in R3 \ Γ

with the complex-valued analytic functions ε and µ that satisfy the passivity condition (3.8).

3.3.1 Potential operators and representation formulas

The fundamental solution of the time-harmonic Maxwell’s equations with ε = µ = 1 reads

G(s, x) = e−s|x|

4π |x| , Re s > 0, x ∈ R3 \ {0}.

The electromagnetic single layer potential operator is denoted by S(s). Applied to a complex-valued
boundary function φ of sufficient regularity for the expressions to be finite, and evaluated at a point
x ∈ R3 \ Γ away from the boundary, it reads

S(s)φ(x) = −s
∫

Γ
G(s, x− y)φ(y)dy + s−1∇

∫
Γ
G(s, x− y) divΓφ(y)dy.
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The electromagnetic double layer potential operator is denoted by D(s) and is given in the same
context by

D(s)φ(x) = curl
∫

Γ
G(s, x− y)φ(y)dy.

By construction, the potential operators satisfy the relations

sS(s)− curl ◦D(s) = 0, sD(s) + curl ◦S(s) = 0. (3.13)

This section relies heavily on electromagnetic transmission problems, formulated on R3 \ Γ. Jumps
and averages for the tangential traces are defined by

[γT ] = γ+
T − γ

−
T , {γT } = 1

2
(
γ+
T + γ−T

)
.

The composition of the jumps with the potential operators reveals the jump relations

[γT ] ◦ S(s) = 0, [γT ] ◦D(s) = −Id. (3.14)

For general ε, µ, we use the potential operators

Sε,µ(s) = S
(
s
√
ε(s)µ(s)

)
, Dε,µ(s) = D

(
s
√
ε(s)µ(s)

)
. (3.15)

The identities (3.13) and the jump relations (3.14) imply that any sufficiently regular boundary densities
(φ̂, ψ̂) are associated with electromagnetic fields (Ê, Ĥ) by

Ê = −
√
µ(s)√
ε(s)

Sε,µ(s)φ̂+ Dε,µ(s)ψ̂, (3.16)

Ĥ = −Dε,µ(s)φ̂−
√
ε(s)√
µ(s)

Sε,µ(s) ψ̂, (3.17)

which solve the transmission problem

ε(s)sÊ − curl Ĥ = 0 in R3 \ Γ, (3.18a)

µ(s)sĤ + curl Ê = 0 in R3 \ Γ, (3.18b)

[γT ]Ĥ = φ̂ , (3.18c)

−[γT ]Ê = ψ̂ . (3.18d)

Up to this point, this section was restricted to the presentation of established operators and identities,
which hold for boundary densities of sufficient regularity. The next subsection provides bounds in terms
of the appropriate norms, which in particular gives a rigorous setting for the previously defined operators.
Before that, we turn to some useful estimates of the terms in formulas (3.15) and (3.16)–(3.17).

The following lemma shows that Sε,µ(s) and Dε,µ(s) behave well for Re s > 0.

Lemma 3.2. Under the passivity condition (3.8), the argument appearing in the definition of the potential
operators Sε,µ(s) and Dε,µ(s) has positive real part:

Re
(
s
√
ε(s)µ(s)

)
> 0 for Re s > 0.

Under the strong passivity condition (3.9), we have with c−1 = √ε0µ0

Re
(
s
√
ε(s)µ(s)

)
≥ c−1 Re s for Re s > 0. (3.19)
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Proof. We write ε(s)s = |ε(s)s| eiφε and µ(s)s = |µ(s)s| eiφµ , with φµ, φε ∈ (−π/2, π/2) due to the
positivity (3.8). We then have

Re
(
s
√
ε(s)µ(s)

)
= |ε(s)s|1/2 |µ(s)s|1/2 Re ei(φµ+φε)/2,

which is positive since Re ei(φµ+φε)/2 = cos((φµ + φε)/2) > 0. The inequality (3.19) follows from the
general inequality, for a, b ∈ C with Re a ≥ 0 and Re b ≥ 0,

Re
√
ab ≥

√
Re a · Re b.

This inequality is proved using polar coordinates for a = |a| eiα and b = |b|eiβ and the inequalities

cos
( 1

2 (α+ β)
)
≥ 1

2
(
cosα+ cosβ

)
≥
√

cosα · cosβ,

where the first inequality results from the concavity of the cosine on [−π/2, π/2] and the second inequality
is the arithmetic-geometric mean inequality.

In view of (3.16)–(3.17) we further note that under the strong passivity condition (3.9) and the bound
(3.10) we have the bounds, for Re s ≥ σ > 0,∣∣∣∣∣

√
µ(s)√
ε(s)

∣∣∣∣∣ =

∣∣∣∣∣
√
µ(s)s√
ε(s)s

∣∣∣∣∣ ≤
(
µ0 Mσ

ε0

)1/2 |s|1/2

(Re s)1/2 and

∣∣∣∣∣
√
ε(s)√
µ(s)

∣∣∣∣∣ ≤
(
ε0 Mσ

µ0

)1/2 |s|1/2

(Re s)1/2 . (3.20)

3.3.2 Transmission problems and boundary operators

The right-hand side of the representation formula, namely the operator associated to the linear map
(φ̂, ψ̂) 7→ (Ê, Ĥ), extends by density to a bounded linear operator from the trace space XΓ

2 toH(curl,Ω)2.
The following lemma proves this and further provides an s-explicit bound. A related result can be found
in [38, Lemma 6.4].

Lemma 3.3. Let (φ̂, ψ̂) ∈ XΓ
2 be some complex-valued boundary functions in the trace space. There

exist time-harmonic electromagnetic fields (Ê, Ĥ), that are defined by the representation formulas (3.16)–
(3.17), which solve the transmission problem (3.18a)–(3.18d) for Re s > 0 and are bounded by∥∥∥∥∥

(
Ê

Ĥ

)∥∥∥∥∥
H(curl,R3\Γ)2

≤ CΓ max
(
|ε(s)s|2 + 1

Re ε(s)s ,
|µ(s)s|2 + 1

Reµ(s)s

)∥∥∥∥∥
(
φ̂

ψ̂

)∥∥∥∥∥
XΓ2

,

where the constant CΓ = ∥{γT }∥XΓ←H(curl,R3\Γ) is the operator norm of the tangential average trace
operator.

Proof. Throughout the proof, we omit the frequency variable s in the material parameters ε(s) and µ(s).
Green’s formula in combination with the time-harmonic Maxwell’s equations reads

±
[
γ±T Ĥ, γ±T Ê

]
Γ

=
∫

Ω±

(
curl Ĥ · Ê − Ĥ · curl Ê

)
dx

=
∫

Ω±

(
ε̄s̄
∣∣Ê∣∣2 + µs

∣∣Ĥ∣∣2) dx. (3.21)

Recall that Ω− and Ω+ refer to the interior and exterior domain, respectively. The conjugation of the
Laplace parameter in the first summand stems from the anti-linearity of the inner product, which has
been defined via a · b = a⊤b on C3. Summation of these two terms yields the identity

I :=
∫
R3\Γ

ε̄s̄
∣∣Ê∣∣2 + µs

∣∣Ĥ∣∣2dx =
[
γ+
T Ĥ, γ+

T Ê
]

Γ
−
[
γ−T Ĥ, γ−T Ê

]
Γ
. (3.22)
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Any part of the time-harmonic electromagnetic fields can always be rewritten in terms of each others
curl, by inserting (3.18a) and (3.18b) respectively. Using the separation I = (1−θ)I+θI and inserting the
time-harmonic Maxwell problem in the second summand reformulates the left-hand side to the expression

I =
∫
R3\Γ

(
(1− θ1)ε̄s̄

∣∣Ê∣∣2 + θ2µs
∣∣(µs)−1 curl Ê

∣∣2
+ (1− θ2)µs

∣∣Ĥ∣∣2 + θ1ε̄s̄
∣∣(εs)−1 curl Ĥ

∣∣2)dx.

Taking the real part on both sides slightly simplifies the right-hand side to

Re I =
∫
R3\Γ

(
(1− θ1)Re εs

∣∣Ê∣∣2 + θ2 |µs|−2 Reµs
∣∣ curl Ê

∣∣2
+ (1− θ2)Reµs

∣∣Ĥ∣∣2 + θ1 |εs|−2 Re εs
∣∣ curl Ĥ

∣∣2)dx.

The parameters (θ1, θ2) are free and chosen in such a way that the preceding factors of the summands
agree, which is achieved by setting 1−θ1 = θ1|εs|−2 and 1−θ2 = θ2|µs|−2. Rearranging this requirement
leads to the choice of θ1 = 1/(1 + |εs|−2)and θ2 = 1/(1 + |µs|−2). Inserting these particular choices of θ1

and θ2 yields the estimate

Re I ≥ min
(

Re εs
|εs|2 + 1 ,

Reµs
|µs|2 + 1

)(
∥Ê∥2

H(curl,R3\Γ) + ∥Ĥ∥2
H(curl,R3\Γ)

)
. (3.23)

The stated result follows now from following the proof of [112, Lemma 3.1] on from the identity (3.14).
To keep the proof self-contained, we conclude with the arguments given there.

The real part of I is, due to the right-hand side of (3.22), also characterized by

Re I = Re
([
γ+
T Ĥ, γ+

T Ê
]

Γ
−
[
γ−T Ĥ, γ−T Ê

]
Γ

)
.

Rewriting the right-hand side in terms of jumps and averages bysumming several mixed terms and using
the transmission conditions (3.18c)–(3.18d) yields

Re I = Re
([

[γT ]Ĥ, {γT }Ê
]

Γ
+
[
−[γT ]Ê, {γT }Ĥ

]
Γ

)
(3.24)

= Re
([
φ̂, {γT }Ê

]
Γ

+
[
ψ̂, {γT }Ĥ

]
Γ

)
.

The self-duality of XΓ implies a Cauchy–Schwarz type inequality with the corresponding norm and the
duality pairing [·, ·]Γ. Combined with the Cauchy–Schwarz inequality on R2, this yields

Re I ≤ ∥φ̂∥XΓ ∥{γT }Ê∥XΓ + ∥ψ̂∥XΓ ∥{γT }Ĥ∥XΓ =
(
∥φ̂∥XΓ

∥ψ̂∥XΓ

)
·

(
∥{γT }Ê∥XΓ

∥{γT }Ĥ∥XΓ

)

≤
(
∥φ̂∥2

XΓ
+ ∥ψ̂∥2

XΓ

)1/2(
∥{γT }Ê∥2

XΓ
+ ∥{γT }Ĥ∥2

XΓ

)1/2
.

To estimate the second factor of the above expression, we intend to use the bound of the tangential
trace {γT } : H(curl,R3 \ Γ)→ XΓ. The time-harmonic electromagnetic fields Ê and Ĥ are in the local
Sobolev space Hloc(curl,R3 \ Γ) (c.f. [29]). Moreover, the tangential trace {γT } extends to a bounded
operator from H(curl,ΩΓ) to XΓ, where ΩΓ is a bounded domain large enough to contain the boundary
Γ. Hence, the left-hand side Re I is bounded and the electromagnetic fields are in the global Sobolev
space H(curl,R3 \ Γ). With the operator norm of the tangential average CΓ = ∥{γT }∥XΓ←H(curl,R3\Γ),
the right-hand side is therefore bounded via

Re I ≤ CΓ

(
∥φ̂∥2

XΓ
+ ∥ψ̂∥2

XΓ

)1/2(
∥Ê∥2

H(curl,R3\Γ) + ∥Ĥ∥2
H(curl,R3\Γ)

)1/2
.
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Inserting (3.23) on the left-hand side and dividing through the second factor on the right-hand side yields
the stated bound.

In both the time-dependent and time-harmonic situation, our approach consists of determining the
tangential traces of the Maxwell solutions by the respective boundary integral equation, and inserting
these into the representation formulas to obtain the electromagnetic fields. In this situation, the boundary
densities reduce to the tangential traces of the interior and exterior fields respectively, which is a setting
that enables an improvement of the bound described in Lemma 3.3. The following Lemma gives these
improved bounds.

Lemma 3.4. In the situation of Lemma 3.3 further assume that the interior (exterior) tangential traces
of Ê and Ĥ are identically 0, which implies γ−T Ĥ = φ̂ (−γ+

T Ĥ = φ̂) and −γ−T Ê = ψ̂ (γ+
T Ê = ψ̂).

Then, the bound of Lemma 3.3 improves to∥∥∥∥∥
(
Ê

Ĥ

)∥∥∥∥∥
H(curl,Ω±)2

≤ 1√
2

(
max

(
|ε(s)s|2 + 1

Re ε(s)s ,
|µ(s)s|2 + 1

Reµ(s)s

))1/2
∥∥∥∥∥
(
φ̂

ψ̂

)∥∥∥∥∥
XΓ2

.

Furthermore, we have the L2-bound∥∥∥∥∥
(
Ê

Ĥ

)∥∥∥∥∥
L2(Ω±)2

≤ 1√
2

(
max

(
1

Re ε(s)s ,
1

Reµ(s)s

))1/2
∥∥∥∥∥
(
φ̂

ψ̂

)∥∥∥∥∥
XΓ2

.

Proof. The proof of the H(curl,Ω±) bound is identical to that of Lemma 3.3 down to (3.24), which now
implies the bound Re I ≤ 1

2
(
∥φ̂∥2

XΓ
+ ∥ψ̂∥2

XΓ

)
and yields the stated result. The proof of the L2-bound is

even simpler, working directly with (3.22) instead of (3.23).

3.3.3 Time-harmonic boundary integral operators and the Calderón operator

The composition of the tangential averages with the potential operators defines the electromagnetic single
and double layer boundary operators, which operate on the trace space XΓ and are defined as

Vε,µ(s) = {γT } ◦ Sε,µ(s), Kε,µ(s) = {γT } ◦Dε,µ(s).

The Calderón operator is a block operator consisting of these boundary operators and has, with a
different scaling with respect to the magnetic permeability, been introduced in the dielectric setting (i.e.
real-valued and positive ε and µ) by [84] (note the sign correction from [110]). In the present setting we
obtain the following Calderón operator, which reads

Cε,µ(s) =

−
√
µ(s)√
ε(s)

Vε,µ(s) Kε,µ(s)

−Kε,µ(s) −
√
ε(s)√
µ(s)

Vε,µ(s)

 , (3.25)

where the form of the block operator on the right originates in the representation formula (3.16)–(3.17).
Consider outgoing solutions of the time-harmonic Maxwell’s equations Ê, Ĥ, thus characterized by the
representation formulas. The composition of the tangential averages with the representation formulas
reveals the jump relations of the Calderón operator (see (3.18a)–(3.18d)):

Cε,µ(s)
(

[γT ]Ĥ
−[γT ]Ê

)
=
(
{γT }Ê
{γT }Ĥ

)
. (3.26)
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The application of this operator is thus equivalent to transform jumps of the transmission problem to
averages, which directly implies bounds from above through Lemma 3.3.

As a direct consequence, we obtain the following bound, equivalent to [112, Lemma 3.4] in the dielectric
case. Earlier, slightly different bounds can be found in the dielectric case in [9, Theorem 4.4] and [84,
Lemma 2.3], which are of the order O(|s|2) .

Lemma 3.5. For s with positive real part, the Calderón operator is a linear operator family on the trace
space Cε,µ(s) : XΓ

2 → XΓ
2 and satisfies the bound

∥Cε,µ(s)∥XΓ2←XΓ2 ≤ CΓ max
(
|ε(s)s|2 + 1

Re ε(s)s ,
|µ(s)s|2 + 1

Reµ(s)s

)
,

where again CΓ = ∥{γT }∥XΓ←H(curl,R3\Γ). The identical bound holds for the components of the Calderón
operator (3.25) and for the electromagnetic single and double layer boundary operators Vε,µ(s) and
Kε,µ(s).

The skew-hermitian pairing [·, ·]Γ is notationally extended from XΓ ×XΓ to XΓ
2 ×XΓ

2 in the natural
way: [(

φ

ψ

)
,

(
υ

ξ

)]
Γ

= [φ,υ]Γ + [ψ, ξ]Γ.

As was shown in [84, Lemma 3.1] in the dielectric case with positive and real-valued ε and µ, the
Calderón operator C(s) is positive with respect to this extended skew-symmetric pairing [·, ·]Γ. The
following lemma transfers this key property to the present setting of analytic ε(s) and µ(s).

Lemma 3.6. The Calderón operator is of positive type: For Re s > 0,

Re
[(
φ

ψ

)
,Cε,µ(s)

(
φ

ψ

)]
Γ

≥ c−2
Γ min

(
Re ε(s)s
|ε(s)s|2 + 1 ,

Reµ(s)s
|µ(s)s|2 + 1

) (∥∥φ∥∥2
XΓ

+
∥∥ψ∥∥2

XΓ

)
for all (φ, ψ) ∈ XΓ

2. The constant is the norm of the jump operator associated to the tangential trace,
i.e. cΓ = ∥[γT ]∥XΓ←H(curl,R3\Γ).

Proof. Consider (φ̂, ψ̂) ∈ XΓ
2 and let the time-harmonic fields Ê, Ĥ ∈ H(curl,R3 \ Γ) be given through

the representation formula, therefore solving the associated transmission problem of Lemma 3.3. The
result is then given by the following chain of inequalities, taken from the proof of [112, Lemma 3.5]∥∥∥∥∥

(
φ̂

ψ̂

)∥∥∥∥∥
2

XΓ×XΓ

=

∥∥∥∥∥
(

[γT ]Ĥ
−[γT ]Ê

)∥∥∥∥∥
2

XΓ×XΓ

by (3.18c)–(3.18d)

≤ c2
Γ

(∥∥Ĥ∥∥2
H(curl,R3\Γ) +

∥∥Ê∥∥2
H(curl,R3\Γ)

)
by def. of cΓ

≤ c2
Γ max

(
|εs|2 + 1

Re εs ,
|µs|2 + 1

Reµs

)
Re
[(

[γT ]Ĥ
−[γT ]Ê

)
,

(
{γT }Ê
{γT }Ĥ

)]
Γ

by (3.23)–(3.24)

= c2
Γ max

(
|εs|2 + 1

Re εs ,
|µs|2 + 1

Reµs

)
Re
[(

[γT ]Ĥ
−[γT ]Ê

)
,Cε,µ(s)

(
[γT ]Ĥ
−[γT ]Ê

)]
Γ

by (3.26)

= c2
Γ max

(
|εs|2 + 1

Re εs ,
|µs|2 + 1

Reµs

)
Re
[(
φ̂

ψ̂

)
,Cε,µ(s)

(
φ̂

ψ̂

)]
Γ

by (3.18c)–(3.18d).
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3.4 The time-harmonic scattering problem

The time-harmonic problem formulation reads

ε±(s)sÊ± − curl Ĥ± = 0

µ±(s)sĤ± + curl Ê± = 0
in Ω±, (3.27)

completed by the transmission conditions, which enforce the continuity of the time-harmonic electromag-
netic fields Ê and Ĥ:

γT Ê
+ + γT Ê

+
inc = γT Ê

−

γT Ĥ
+ + γT Ĥ

+
inc = γT Ĥ

−
on Γ. (3.28)

3.4.1 The time-harmonic boundary integral equation

In this subsection we derive the time-harmonic boundary integral equation, which determines the bound-
ary densities to be inserted into the representation formulas for the electromagnetic fields. Assuming
that we are given solutions to the time-harmonic Maxwell’s equations in the exterior or interior domain
Ω±, we obtain solutions on R3 \Γ by extension to zero on Ω∓. Then, jumps and averages reduce to outer
or inner traces, respectively. We start by collecting the (supposed) solutions of the boundary integral
equations in the vectors

ϕ̂+ =
(
φ̂+

ψ̂+

)
=
(
γ+
T Ĥ

+

−γ+
T Ê

+

)
, ϕ̂− =

(
φ̂−

ψ̂−

)
=
(
−γ−T Ĥ−

γ−T Ê
−

)
,

and denote the block operator J and the trace of the incoming wave ĝinc by

J = 1
2

(
−Id

Id

)
, ĝinc = 1

2

(
γ+
T Ê

+
inc

γ+
T Ĥ

+
inc

)
.

In order to derive the boundary integral equation, we first use (3.26), followed by the transmission
conditions (3.28). This yields

Cε+,µ+(s)ϕ̂+ = 1
2

(
γ+
T Ê

+

γ+
T Ĥ

+

)
= 1

2

(
γ−T Ê

−

γ−T Ĥ
−

)
− ĝinc = −Jϕ̂− − ĝinc,

and

Cε−,µ−(s)ϕ̂− = 1
2

(
γ−T Ê

−

γ−T Ĥ
−

)
= 1

2

(
γ+
T Ê

+

γ+
T Ĥ

+

)
− ĝinc = Jϕ̂+ + ĝinc.

Introducing the family of operators A(s) : XΓ
4 → XΓ

4 defined as

A(s) :=
(
Cε+,µ+(s) J

−J Cε−,µ−(s)

)
,

we arrive at the time-harmonic boundary integral equation

A(s)
(
ϕ̂+

ϕ̂−

)
=
(
−ĝinc

ĝinc

)
. (3.29)
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This boundary integral equation will be considered in its weak formulation: For Re s > 0 and given
ĝinc ∈ XΓ

2, find (ϕ+,ϕ−) ∈ XΓ
4 such that, for all (υ, ξ) ∈ XΓ

4[(
υ

ξ

)
,A(s)

(
ϕ+

ϕ−

)]
Γ

=
[(
υ

ξ

)
,

(
−ĝinc

ĝinc

)]
Γ

. (3.30)

Crucially, the bilinear form on the left-hand side is coercive, as will be shown next.

3.4.2 Well-posedness of the boundary integral equation

This section is dedicated to the well-posedness of the time-harmonic boundary integral equation, which
is shown by employing the Lax-Milgram Lemma. To simplify the expressions in this section, we use the
abbreviation

m
ε,µ

(s) := max
(
|ε+(s)s|2 + 1

Re ε+(s)s ,
|µ+(s)s|2 + 1

Reµ+(s)s ,
|ε−(s)s|2 + 1

Re ε−(s)s ,
|µ−(s)s|2 + 1

Reµ−(s)s

)
. (3.31)

Under the strong passivity condition (3.9) there is a convenient upper bound for mε,µ(s): (3.9)–(3.10)
imply that for every σ > 0 there exists Cσ <∞ such that

m
ε,µ

(s) ≤ Cσ
|s|2

Re s for Re s ≥ σ.

We start by giving a bound for the boundary integral operator.

Lemma 3.7. The analytic operator family A(s) : XΓ
4 ← XΓ

4 satisfies, for Re s > 0, the bound

∥A(s)∥XΓ4←XΓ4 ≤ CΓ mε,µ(s) + 1
2 ,

where CΓ = ∥{γT }∥XΓ←H(curl,R3\Γ).

Moreover, we have the following coercivity result for the integral operator corresponding to the bound-
ary integral equation.

Lemma 3.8. The operator family A(s) satisfies the following coercivity property: for Re s > 0 we have
the bound

Re
[(
ϕ+

ϕ−

)
,A(s)

(
ϕ+

ϕ−

)]
Γ

≥ c−2
Γ m

ε,µ
(s)−1

(∥∥ϕ+∥∥2
XΓ2 +

∥∥ϕ−∥∥2
XΓ2

)
,

for all (ϕ+,ϕ−) ∈ XΓ
2 ×XΓ

2, where cΓ = ∥[γT ]∥XΓ←H(curl,R3\Γ).

Proof. We split the operator in the pairing

Re
[(
ϕ+

ϕ−

)
,A(s)

(
ϕ+

ϕ−

)]
Γ

= Re
[(
ϕ+

ϕ−

)
,

(
Cε+,µ+(s)

Cε−,µ−(s)

)(
ϕ+

ϕ−

)]
Γ

+ Re
[(
ϕ+

ϕ−

)
,

(
J

−J

)(
ϕ+

ϕ−

)]
Γ

,

where the first summand is bounded from below by the coercivity of the Calderón operators given in
Lemma 3.6. The second summand vanishes due to symmetry of J , which we verify next. We have

2 Re
[
ϕ̃ , Jϕ

]
Γ

= Re
[
ϕ1 , −ϕ̃2

]
Γ

+ Re
[
ϕ2 , ϕ̃1

]
Γ

= 2Re
[
ϕ , Jϕ̃

]
Γ
,
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and therefore,

Re
[(
ϕ+

ϕ−

)
,

(
J

−J

)(
ϕ+

ϕ−

)]
Γ

= Re
[
ϕ+,Jϕ−

]
Γ − Re

[
ϕ−,Jϕ+]

Γ = 0,

such that the claim follows.

In view of this coercivity, we obtain the following wellposedness result.

Proposition 3.9 (Well-posedness of the time-harmonic boundary integral equation). Consider the
boundary integral equation (3.29) for Re s > 0. The boundary integral equation has a unique solution(

ϕ̂+

ϕ̂−

)
= A(s)−1

(
−ĝinc

ĝinc

)
∈ XΓ

4,

which satisfies ∥∥∥∥∥
(
ϕ̂+

ϕ̂−

)∥∥∥∥∥
XΓ4

≤ c2
Γ mε,µ

(s)
√

2
∥∥ĝinc∥∥

XΓ2 .

The constant cΓ is again the norm of the tangential jump operator, and mε,µ(s) is defined in (3.31).

Proof. The statement follows directly from the Lax–Milgram lemma with the coercivity of Lemma 3.8.

Using the above properties, we prove the following result, where the domain Ω stands for either Ω+

or Ω−.

Proposition 3.10 (Well-posedness of the time-harmonic scattering problem). For Re s > 0 there exists
a unique solution (Ê, Ĥ) ∈ H(curl,R3 \Γ)×H(curl,R3 \Γ) to the time-harmonic transmission problem
(3.27)–(3.28). This solution is characterized by the representation formulas (3.16)–(3.17), where the
tangential traces are given by the unique solution of the boundary integral equation (3.29) via

ϕ̂+ =
(
γ+
T Ĥ

+

−γ+
T Ê

+

)
, ϕ̂− =

(
−γ−T Ĥ−

γ−T Ê
−

)
.

The scattered electromagnetic fields are bounded by∥∥∥∥∥
(
Ê

Ĥ

)∥∥∥∥∥
H(curl,R3\Γ)2

≤ CΓ
(
m

ε,µ
(s)
)3/2 ∥∥ĝinc∥∥

XΓ2 . (3.32)

Proof. Let (φ̂+, ψ̂+, φ̂−, ψ̂−) be the solution of the time-harmonic boundary integral equation (3.29).
We insert the boundary densities into the representation formulas and obtain electromagnetic fields
(Ê+, Ê−, Ĥ+, Ĥ−), each defined on R3 \ Γ, such that

ϕ̂+ =
(
φ̂+

ψ̂+

)
=
(

[γT ]Ĥ+

−[γT ]Ê+

)
and ϕ̂− =

(
φ̂−

ψ̂−

)
=
(

[γT ]Ĥ−

−[γT ]Ê−

)
.

The first two components of the left-hand side of boundary integral equation read

−ĝinc = Cε+,µ+(s)ϕ̂+ + Jϕ̂− =
(
{γT }Ê+

{γT }Ĥ+

)
+ 1

2

(
[γT ]Ê−

[γT ]Ĥ−

)
(3.33)
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and the last two read

ĝinc = −Jϕ̂+ +Cε−,µ−(s)ϕ̂− = 1
2

(
−[γT ]Ê+

−[γT ]Ĥ+

)
+
(
{γT }Ê−

{γT }Ĥ−

)
. (3.34)

Subtraction of these components yields precisely the transmission conditions (3.6), namely(
γ+
T Ê

+
inc

γ+
T Ĥ

+
inc

)
=
(
−γ+

T Ê
+ + γ−T Ê

−

−γ+
T Ĥ

+ + γ−T Ĥ
−

)
.

The fields (Ê+, Ĥ+)|Ω+ and (Ê−, Ĥ−)|Ω− therefore uniquely solve the transmission problem of interest.
Summation of the components (3.33)–(3.34) yields conversely(

γ−T Ê
+ + γ+

T Ê
−

γ−T Ĥ
+ + γ+

T Ĥ
−

)
= 0.

In the following, we test these equations via the anti-symmetric pairing and specific test functions.
Inserting the test function γ−T Ĥ

+ in the first component and γ+
T Ê
− in the second component yields

0 = Re
[
γ−T Ĥ

+, γ−T Ê
+ + γ+

T Ê
−
]

Γ
+ Re

[
γ+
T Ê
−, γ−T Ĥ

+ + γ+
T Ĥ

−
]

Γ

= Re
[
γ−T Ĥ

+, γ−T Ê
+
]

Γ
− Re

[
γ+
T Ĥ

−, γ+
T Ê
−
]

Γ
.

As the direct consequence of (3.21), we observe that (Ê+, Ĥ+)|Ω− and (Ê−, Ĥ−)|Ω+ vanish.
To obtain the bound (3.32), observe that we are now in the situation of Lemma 3.4, and the claim

follows together with the bounds given in Proposition 3.9. Finally, the uniqueness of the boundary integral
equation implies that there exists only a unique solution characterized by the representation formulas.
We obtain the uniqueness of the fields (Ê, Ĥ) ∈ H(curl,R3 \ Γ) by observing that for Re s > 0, any
Maxwell solution in H(curl,R3 \ Γ) is characterized by the representation formula.

Remark 3.11. In view of the L2-bound of Lemma 3.4, we further obtain an improved L2-bound for the
solution of the time-harmonic scattering problem. Under the strong passivity condition (3.9) we have the
bound ∥∥∥∥∥

(
Ê

Ĥ

)∥∥∥∥∥
L2(Ω±)2

≤ CΓ,σ
|s|2

(Re s)3/2

∥∥ĝinc∥∥
XΓ2 for Re s ≥ σ > 0.

3.5 The time-dependent scattering problem

3.5.1 The time-dependent boundary integral equation

Throughout this section we assume strong passivity condition (3.9). The time-dependent version of the
boundary integral equation (3.29) is obtained by formally replacing the Laplace transform variable s by
the time differentiation operator ∂t: Given ginc : [0, T ] → XΓ

2, find time-dependent boundary densities
(ϕ+,ϕ−) : [0, T ] → XΓ

2 × XΓ
2 (of temporal regularity to be specified later) such that for almost every

t ∈ [0, T ] we have (
Cε+,µ+(∂t) J

−J Cε−,µ−(∂t)

)(
ϕ+

ϕ−

)
=
(
−ginc

ginc

)
. (3.35)
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We abbreviate this as

A(∂t)ϕ = g with ϕ(t) =
(
ϕ+(t)
ϕ−(t)

)
∈ XΓ

4, g(t) =
(
−ginc(t)
ginc(t)

)
∈ XΓ

4. (3.36)

In view of the bound of Proposition 3.9 on the operator family A(s)−1 for Re s > 0, the temporal
convolution operator

A−1(∂t)g = L−1A−1 ∗ g

is well-defined, and by the composition rule we have A−1(∂t)A(∂t) = Id and A(∂t)A−1(∂t) = Id. So we
have the temporal convolution

ϕ = A−1(∂t)g

as the unique solution of (3.36). More precisely, with the argument given above and the convolution
bound of [95, Lemma 2.1], we obtain the following result. Here Hr

0 (0, T ; XΓ
4) is the space of functions

on the interval (0, T ) taking values in XΓ
4 that have an extension to the real line that is in the Sobolev

space Hr(R,XΓ
4).

Theorem 3.12 (Well-posedness of the time-dependent boundary integral equation). Let r ≥ 0. For
g ∈ Hr+3

0 (0, T ; XΓ
4), the boundary integral equation (3.36) has a unique solution ϕ ∈ Hr+1

0 (0, T ; XΓ
4),

and
∥ϕ∥Hr+1

0 (0,T ;XΓ4) ≤ CT ∥g∥Hr+3
0 (0,T ;XΓ4) .

Here, CT depends on T and on the boundary Γ via norms of tangential trace operators.

3.5.2 Well-posedness of the time-dependent scattering problem

With the time-dependent boundary densities ϕ = (ϕ+,ϕ−)T of Theorem 3.12, the scattered wave is
obtained by the time-dependent representation formula, compactly denoted by the exterior and interior
block operators W±(∂t) via(

E±

H±

)
= W±(∂t)ϕ± =

−√µ±

ε± (∂t)S±ε,µ(∂t)φ± + D±ε,µ(∂t)ψ±

−D±ε,µ(∂t)φ± −
√

ε±

µ± (∂t)S±ε,µ(∂t)ψ±

 , (3.37)

where we used (3.16) and (3.17).
We now give the well-posedness result for the time-dependent scattering problem, which follows from

the time-harmonic well-posedness result Proposition 3.10.

Theorem 3.13 (Well-posedness of the time-dependent scattering problem). Consider the time-dependent
scattering problem (3.7) equipped with (3.6) and ginc ∈ Hr+3

0 (0, T ; XΓ
2) for some arbitrary r ≥ 0.

(a) This problem has a unique solution

(E±,H±) ∈ Hr
0 (0, T ;H(curl,Ω±)2) ∩Hr+1

0 (0, T ; (L2(Ω±))2)

given by the representation formulas (3.37). The tangential traces are uniquely determined by the solution
of the system of boundary integral equations of Theorem 3.12,

(φ±, ψ±) = (γTH±,−γTE±) ∈ Hr+1
0 (0, T ; XΓ ×XΓ).
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(b) The electromagnetic fields are bounded by

∥E±∥Hr
0 (0,T ;H(curl,Ω±)) + ∥H±∥Hr

0 (0,T ;H(curl,Ω±)) ≤ CT ∥ginc∥Hr+3
0 (0,T ;XΓ2),

and the same bound is valid for the Hr+1
0 (0, T ; (L2(Ω±))2) norms. Here, CT depends polynomially on T ,

on the boundary Γ via norms of tangential trace operators, and on the bounds of the frequency dependent
material parameters ε, µ.

Proof. The proof is identical to [112, Thm. 4.2].

Remark 3.14 (On the assumption r ≥ 0). In the Theorems 3.12–3.13, the assumption r ≥ 0 ensures that
the scattered wave is at least square integrable in time. By the general result [95, Lemma 2.1], our results
generalize to incoming waves with less regularity, although the scattered wave is then (temporally) only
bounded in a Sobolev space with a negative order.

3.6 Semi-discretization in time by Runge–Kutta convolution quadra-
ture

3.6.1 Recap: Runge–Kutta convolution quadrature

To approximate the omnipresent temporal convolutions K(∂t)g, we will employ the convolution quadra-
ture method based on Runge–Kutta time stepping schemes. In order to introduce the notation, we recall
an m-stage implicit Runge–Kutta discretization of the initial value problem y′ = f(t, y), y(0) = y0; see
[63]. For some constant time step τ > 0, the approximations yn to y(tn) at time tn = nτ , and the internal
stages Y ni approximating y(tn + ciτ), are computed by solving the system

Y ni = yn + τ

m∑
j=1

aijf(tn + cjτ, Y
nj), i = 1, . . . ,m,

yn+1 = yn + τ

m∑
j=1

bjf(tn + cjτ, Y
nj).

The method is uniquely defined by the Butcher-tableau, which collects its coefficients

A = (aij)mi,j=1, b = (b1, . . . , bm)T , and c = (c1, . . . , cm)T .

The stability function of the Runge–Kutta method is given by R(z) = 1 + zbT (I − zA )−1
1, where

1 = (1, 1, . . . , 1)T ∈ Rm. We always assume that A is invertible.
Runge–Kutta methods can be used to construct convolution quadrature methods. Such methods

were first introduced in [99] in the context of parabolic problems and were studied for wave propagation
problems in [15] and subsequently, e.g., in [10–12, 17]. Runge–Kutta convolution quadrature was studied
for the numerical solution of some exterior Maxwell problems in [9, 40, 112] and of an eddy current
problem with an impedance boundary condition in [75]. For wave problems, Runge–Kutta convolution
quadrature methods such as those based on the Radau IIA methods, see [63, Section IV.5], often enjoy
more favourable properties than their BDF-based counterparts, which are more dissipative and cannot
exceed order 2 but are easier to understand and slightly easier to implement.
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Let K(s) : X → Y , Re s ≥ σ0 > 0, be an analytic family of linear operators between Banach spaces
X and Y , satisfying the bound, for some exponents κ ∈ R and ν ≥ 0,

∥K(s)∥Y←X ≤Mσ
|s|κ

(Re s)ν , Re s ≥ σ > σ0. (3.38)

This yields a convolution operator K(∂t) : Hr+κ
0 (0, T ;X) → Hr

0 (0, T ;Y ) for arbitrary real r. For
functions g : [0, T ]→ X that are sufficiently regular (together with their extension by 0 to the negative
real half-axis t < 0), we wish to approximate the convolution (K(∂t)g)(t) at discrete times tn = nτ with
a step size τ > 0, using a discrete convolution.

To construct the convolution quadrature weights, we use the Runge–Kutta differentiation symbol

∆(ζ) =
(
A + ζ

1− ζ 1b
T
)−1
∈ Cm×m, ζ ∈ C with |ζ| < 1.

This is well-defined for |ζ| < 1 if R(∞) = 1− bTA −1
1 satisfies |R(∞)| ≤ 1, as is seen from the Sherman–

Woodbury formula. Moreover, for A-stable Runge–Kutta methods (e.g. the Radau IIA methods), the
eigenvalues of the matrices ∆(ζ) have positive real part for |ζ| < 1 [15, Lemma 3].

To formulate the Runge–Kutta convolution quadrature for K(∂t)g, we replace the complex argument
s in K(s) by the matrix ∆(ζ)/τ and expand

K
(∆(ζ)

τ

)
=
∞∑
n=0

Wn(K)ζn.

The operators Wn(K) : Xm → Y m are used as the convolution quadrature “weights”. For the discrete
convolution of these operators with a sequence g = (gn) with gn = (gni )mi=1 ∈Xm we use the notation

(
K(∂τt )g

)n =
n∑
j=0

Wn−j(K)gj ∈ Y m. (3.39)

Given a function g : [0, T ]→X, we use this notation for the vectors gn =
(
g(tn+ ciτ)

)m
i=1 of values of g.

The i-th component of the vector
(
K(∂τt )g

)n is then an approximation to
(
K(∂t)g

)
(tn + ciτ); see [11,

Theorem 4.2].
In particular, if cm = 1, as is the case with Radau IIA methods, the continuous convolution at tn is

approximated by the m-th, i.e. last component of the m-vector (3.39) for n− 1:(
K(∂t)g

)
(tn) ≈

[(
K(∂τt )g

)n−1
]
m
∈ Y .

This discretization (3.39) inherits the composition rule (3.12): For two analytic families of operators
K(s) and L(s) mapping into compatible spaces, the convolution quadrature discretization satisfies

K(∂τt )L(∂τt )g = (KL)(∂τt )g; (3.40)

see e.g. [95, Equation (3.5)].
The following error bound for Runge–Kutta convolution quadrature from [15], here directly stated for

the Radau IIA methods [63, Section IV.5] and transferred to a Banach space setting, will be the basis
for our error bounds of the time discretization.

Lemma 3.15 ([15, Theorem 3]). Let K(s) : X → Y , Re s > σ0 ≥ 0, be an analytic family of linear
operators between Banach spaces X and Y satisfying the bound (3.38) with exponents κ and ν. Consider
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the Runge–Kutta convolution quadrature based on the Radau IIA method with m stages. Let 1 ≤ q ≤ m

(the most interesting case is q = m) and r > max(2q + κ, 2q − 1, q + 1). Let g ∈ Cr([0, T ],X) satisfy
g(0) = g′(0) = ... = g(r−1)(0) = 0. Then, the following error bound holds at tn = nτ ∈ [0, T ]:∥∥∥[(K(∂τt )g

)n−1
]
m
− (K(∂t)g)(tn)

∥∥∥
Y

≤ CM1/T τ
min(2q−1,q+1−κ+ν)

(
∥g(r)(0)∥X +

∫ t

0
∥g(r+1)(θ)∥X dθ

)
.

The constant C is independent of τ and g and Mσ of (3.38), but depends on the exponents κ and ν in
(3.38) and on the final time T .

3.6.2 Convolution quadrature for the scattering problem

Throughout the following sections, we assume strong passivity (3.9) for the frequency dependent param-
eters ε(s), µ(s). Applying a Runge–Kutta based convolution quadrature discretization to the temporal
convolution equation (3.36) reads

A(∂τt )ϕτ = g, or equivalently, ϕτ = A−1(∂τt ) g,

where ϕ and g are defined in (3.36), and the equivalence of the two formulations is a consequence of the
discrete composition rule (3.40).

This formulation, which is equivalent to discretizing the boundary integral equation (3.36) with the
convolution quadrature method and inverting the quadrature weights, interprets the solution of the dis-
cretized boundary integral equation as a forward convolution quadrature. The error of this formulation is
then bounded by the error estimate of Lemma 3.15, through the bound ofA−1(s) given in Proposition 3.9.
This argument for the stability of the formulation and the resulting path to error estimates originates
from [95], for a time-dependent boundary integral equation derived in the context of an acoustic problem.

The time discretizations of the electromagnetic fields are then obtained by applying the convolution
quadrature to the representation formulas (3.37) with ϕ±τ = (φ±τ , ψ±τ ):(

E±τ

H±τ

)
= W±(∂τt )ϕ±τ =

−√µ±

ε± (∂τt )S±ε,µ(∂τt )φ±τ + D±ε,µ(∂τt )ψ±τ
−D±ε,µ(∂τt )φ±τ −

√
ε±

µ± (∂τt )S±ε,µ(∂τt )ψ±τ

 .

By the discrete composition rule (3.40), this is the convolution quadrature discretization of the composed
operator (

E±τ

H±τ

)
= U±(∂τt )ginc of

(
E±

H±

)
= U±(∂t)ginc, (3.41)

where we have by Theorem 3.13 that is given by

U±(s) = W±(s)P±A−1(s)N , (3.42)

with the auxiliary maps P± : XΓ
4 → XΓ

2 projecting on the exterior and interior boundary densities
respectively and N : XΓ

2 → XΓ
4 expanding the terms of the incident wave via

P+ =
(

Id 0
)
, P− =

(
0 Id

)
and N =

(
−Id Id

)⊤
.
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Under the stronger passivity condition, we then have by Proposition 3.10 and Remark 3.11 the bound

∥U±(s)∥H(curl,Ω±)2←XΓ2 ≤ Cσ
|s|3

(Re s)3/2 , for Re s ≥ σ > 0. (3.43)

Moreover, away from the boundary on Ω±d = {x ∈ Ω± : dist(x,Γ) > d} with d > 0, bounds that
decay exponentially with the real part of s hold. The following lemma is a direct consequence of [112,
Lemma 3.8] and of Lemma 3.2 to obtain the following parameter-dependent bound.

Lemma 3.16. Under the strong passivity condition (3.9), we have the following bounds at x ∈ R3 \ Γ
with d = dist(x,Γ) > 0 and for Re s ≥ σ > 0∣∣(Sε,µ(s)φ

)
(x)
∣∣ ≤ Cσ |s|2 e−dcRe s ∥φ∥XΓ

,∣∣(Dε,µ(s)φ
)
(x)
∣∣ ≤ Cσ |s|2 e−dcRe s ∥φ∥XΓ

.

for all φ ∈ XΓ.

Combining Lemma 3.16 and Proposition 3.9 yields, under the assumption of strong passivity (3.9)
and using (3.20),

∥U±(s)∥(C1(Ω±
d )3)2←XΓ2 ≤ Cσ

|s|1/2

(Re s)1/2
|s|4

Re se
−dcRe s ∥∥ĝinc∥∥

XΓ2 , (3.44)

for Re s ≥ σ > 0. The C1(Ω±d )-norm denotes the maximum norm on continuously differentiable functions
and their derivatives on the closure of the domains Ω±d respectively.

For the sake of brevity, we omit a formulation of error bounds for the temporal semi-discretization
and continue with a full discretization for the boundary integral equation.

3.7 Full discretization

Finally, we combine a convolution quadrature time discretization of (3.36) with a spatial Galerkin ap-
proximation of the boundary operators, based on a boundary element space Xh ⊂ XΓ, which corresponds
to a family of triangulations with decreasing mesh width h→ 0. Throughout this paper, we use Raviart–
Thomas boundary elements of order k ≥ 0, which are defined on the unit triangle K̂ by

RTk(K̂) =
{
x 7→ p1(x) + p2(x)x : p1 ∈ Pk(K̂)2, p2 ∈ Pk(K̂)

}
,

where Pk(K̂) contains all polynomials of degree k on K̂. The definition is then extended to arbitrary
triangles in the standard way via pull-back to the reference element. Details are found in the original
paper [119].

The following approximation result holds with respect to the XΓ-norm; see also the original references
[26, Section III.3.3] and [28]. Here we use the same notation Hp

×(Γ) = γTH
p+1/2(Ω) as in [29].

Lemma 3.17 ([29, Theorem 14]). Let Xh be the k-th order Raviart–Thomas boundary element space on
Γ. There exists a constant C, such that the best-approximation error of any ξ ∈ XΓ∩Hk+1

× (Γ) is bounded
by

inf
ξh∈Xh

∥ξh − ξ∥XΓ ≤ Chk+3/2∥ξ∥Hk+1
× (Γ).
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The full discretization of boundary integral equation (3.36) on X4
h then reads

[ξh , A(∂τt )ϕτh]Γ = [ ξh , ginc]Γ ∀ ξh ∈ (X4
h)m. (3.45)

This formulation determines the approximate boundary densities, by

(ϕτh)n =
(

(φ+
τ,h)n, (ψ+

τ,h)n, (φ−τ,h)n, (ψ+
τ,h)n

)⊤
∈X4

h,

where φ±τ,h =
(
(φ±τ,h)n

)
with (φ±τ,h)n =

(
(φ±τ,h)ni

)m
i=1 ∈ X

m
h . The electric densities ψ±τ,h are defined

in the same way. The approximations to the electromagnetic fields are obtained via the time-discrete
representation formulas on the interior domain Ω− and the exterior domain Ω+:

E±τ,h = −
√
µ

ε
(∂τt )Sε,µ(∂τt )φ±τ,h + Dε,µ(∂τt )ψ±τ,h, (3.46)

H±τ,h = −Dε,µ(∂τt )φ±τ,h −
√
ε

µ
(∂τt )Sε,µ(∂τt )ψ±τ,h. (3.47)

These fully discrete approximations satisfy the following error bounds, obtained under regularity assump-
tions that are presumably stronger than necessary.

Theorem 3.18 (Error bound of the full discretization). Consider the setting and assumptions of Theo-
rem 3.13 and further let ε± and µ± satisfy the strong passivity (3.9).

Consider the fully discrete scheme (3.45) and the temporally discrete representation formulas (3.46)–
(3.47), where the m−stage Radau IIA convolution quadrature discretization and k-th order Raviart–
Thomas boundary element discretization have been employed as described in the previous sections.
For r > 2m + 4 we assume the incoming waves to satisfy ginc ∈ Cr([0, T ],XΓ

4). Moreover, we assume
ginc to vanish at t = 0 together with its first r − 1 time derivatives. Furthermore, it is assumed that the
solution ϕ of the boundary integral equation (3.36) is at least in C10([0, T ], Hk+1

× (Γ)2), vanishing at t = 0
together with its time derivatives.
Then, the approximations to the electromagnetic fields at time tn, both in the interior and the exterior
domain, (

E±τ,h

)n
=
[
(E±τ,h)n−1]

m
and

(
H±τ,h

)n
=
[
(H±τ,h)n−1]

m
,

satisfy the following error bound of order m− 1/2 in time and order k+ 3/2 in space at tn = nτ ∈ [0, T ]:∥∥∥(E±τ,h)n −E(tn)
∥∥∥
H(curl,Ω±)

+
∥∥∥(H±τ,h)n −H(tn)

∥∥∥
H(curl,Ω±)

≤ C
(
τm−1/2 + hk+3/2).

For r > 2m + 4, we obtain the full order 2m − 1 in time away from the interface Γ, on the domains
Ω±d = {x ∈ Ω : dist(x,Γ) > d} with d > 0, which reads∥∥∥(E±τ,h)n −E(tn)

∥∥∥
C1(Ω±

d )3
+
∥∥∥(H±τ,h)n −H(tn)

∥∥∥
C1(Ω±

d )3
≤ Cd

(
τ2m−1 + hk+3/2).

The constants C and Cd are independent of n, τ and h, but depend on the final time T and on the
regularity of ginc and (φ, ψ) as stated. Cd additionally depends on the distance d.

Proof. The proof is, due to the similarities of the time-harmonic bounds, essentially identical to the proof
of [112, Theorem 6.1]. We repeat the arguments given there and apply them to the present setting, to
keep the paper self-contained. We structure the proof into three parts (a)–(c).
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(a) (Discretized time-harmonic boundary integral equation). We start with the time-harmonic bound-
ary integral equation (3.30), for Re s > 0. We denote by Lh(s) : XΓ

4 →X4
h the solution operator ĝ 7→ ϕ̂h

of the Galerkin approximation in X4
h,[

ξh,A(s)ϕ̂h
]

Γ
= [ξh, ĝ]Γ ∀ ξh ∈X4

h,

which by the bound of A(s) in Lemma 3.7, the coercivity estimate of Lemma 3.8 and the Lax–Milgram
lemma yields, for Re s ≥ σ > 0, the bound

∥Lh(s)∥X4
h
←XΓ4 ≤ Cσ

|s|2

Re s , (3.48)

where Cσ depends on the surface Γ and σ. The associated Ritz projection Rh(s) : XΓ
4 → X4

h maps
(ϕ̂) ∈ XΓ

4 to ϕ̂h ∈X4
h, determined by[

ξh,A(s)ϕ̂h
]

Γ
=
[
ξh,A(s)ϕ̂

]
Γ

∀ ξh ∈X4
h.

Again by Lemmas 3.7 and 3.8 and the Lax–Milgram lemma, this problem has a unique solution (φ̂h, ψ̂h) ∈
X4
h, and by Céa’s lemma, where the right-hand side is further bounded by Lemma 3.17. With the stronger

passivity, we arrive at the bound∥∥∥ϕ̂h − ϕ̂∥∥∥
XΓ4
≤ Cσ

cσ

(
|s|2

Re s

)2

inf
ξh∈X4

h

∥∥∥ξh − ϕ̂∥∥∥
XΓ4

,

for all Re s ≥ σ > 0.
In combination with the approximation result of Lemma 3.17, we can thus bound the associated

error operator Eh(s) = Rh(s) − Id in the operator norm from Hk+1
× (Γ)4 to XΓ

4 with the bound, for
Re s ≥ σ > 0,

∥Eh(s)∥VΓ×XΓ←Hk+1
× (Γ)2 ≤ C̃σ

|s|4

(Re s)2 h
k+3/2. (3.49)

(b) (Error of the spatial semi-discretization). We continue with the spatial semi-discretization of the
time-dependent boundary integral equation (3.36), which reads

[ξh,A(∂t)ϕ] = [ξh, g]Γ ∀ ξh ∈X4
h.

This formulation has the unique solution

ϕh = Lh(∂t)g = Rh(∂t)ϕ,

where ϕ = A−1(∂t)g is the solution of (3.36). With the exterior and interior potential operators collected
in the block operators W±(s) and the auxiliary operators P± and N defined in (3.42) we set

U±h (s) = W±(s)P±Lh(s)N : XΓ
2 → H(curl,Ω±)2. (3.50)

With the established bounds from Lemma 3.3 and (3.48), this operator family is bounded by

∥U±h (s)∥H(curl,Ω±)2←XΓ2 ≤ C̄σ
|s|4

(Re s)2 .

The spatial semi-discretization of the scattering problem is then the forward convolution of U±h (∂t) with
the incident wave, which reads (

E±h

H±h

)
= U±h (∂t)ginc.
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In view of (3.41), its error is(
E±h

H±h

)
−

(
E±

H±

)
= U±h (∂t)ginc − U±(∂t)ginc = W±(∂t)ϕ±h −W±(∂t)ϕ±

= W±(∂t)(Rh − Id)ϕ± = W±(∂t)Eh(∂t)ϕ±.

Using the bound of Lemma 3.3 for the potential operator W±(s), the bound (3.49) for the error operator
Eh(s), and the temporal Sobolev bound stated in [95, Lemma 2.1] (with κ = 6) for their composition,
and finally the Sobolev embedding H1(0, T ;H) ⊂ C([0, T ], H) for any Hilbert space H, we obtain for the
error of the spatial semi-discretization

max
0≤t≤T

∥∥∥∥∥
(
E±h (t)
H±h (t)

)
−

(
E±(t)
H±(t)

)∥∥∥∥∥
H(curl,Ω±)2

(3.51)

≤ C

∥∥∥∥∥
(
E±h

H±h

)
−

(
E±

H±

)∥∥∥∥∥
H1

0 (0,T ;H(curl,Ω±)2)

≤ CT hk+3/2 ∥∥ϕ±∥∥
H7

0 (0,T ;Hk+1
× (Γ)2) .

Using the same argument with the pointwise bounds away from the boundary given by Lemma 3.16, we
further obtain

max
0≤t≤T

∥∥∥∥∥
(
E±h (t)
H±h (t)

)
−

(
E±(t)
H±(t)

)∥∥∥∥∥
C1(Ω±

d )2

≤ CT hk+3/2 ∥∥ϕ±∥∥
H9

0 (0,T ;Hk+1
× (Γ)4) .

(c) (Error of the full discretization). The total error is (omitting here the omnipresent superscript n)(
E±τ,h

H±τ,h

)
−

(
E±τ

E±τ

)
+

(
E±τ

E±τ

)
−

(
E±

H±

)
. (3.52)

The second difference is the error of the temporal semi-discretization, which is bounded by applying
Lemma 3.39 with the time-harmonic bounds on U±(s) due to(

E±τ

H±τ

)
−

(
E±

H±

)
=
(
U±(∂τt )− U±(∂t)

)
ginc.

With the time-harmonic bound (3.43), we obtain an estimate of the order O(τm−1/2) in the H(curl,Ω±)-
norm, whereas applying the time-harmonic (3.44) yields an error estimate of the order O(τ2m−1) in the
C1(Ω±d )-norm.

The first difference of the total error (3.52) is rewritten as

W±(∂τt )Eh(∂τt )ϕ± =
(
W±(∂τt )Eh(∂τt )ϕ± −W±(∂t)Eh(∂t)ϕ±

)
+ W±(∂t)Eh(∂t)ϕ±.

The final error term is the spatial semi-discretization studied in part (b), which is therefore bounded by
(3.51). To bound the remaining difference, which is a convolution quadrature error, we employ Lem-
ma 3.15. This gives an O(hk+3/2) error in the H(curl,Ω±)2 norm, using that by Lemma 3.3 and (3.49)
we have here Mσ ≤ Cσh

k+3/2, κ = 6, ν = 3 in (3.38) with W(s)Eh(s) in the role of K(s), and choosing
q = 2 and r = 10 > 2q − 1 + κ. Note that here min(2q − 1, q + 1− κ+ ν) = q − 2 = 0. Altogether, this
yields the stated O(τm−1/2 + hk+3/2) error bound in the H(curl,Ω±)2 norm.
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The full-order error bound away from the boundary can be shown without requiring this additional
assumption on r. To show this bound, we rewrite the error as(E±τ,h)n(

H±τ,h

)n
−(E±h (tn)

E±h (tn)

)
+

(
E±h (tn)
E±h (tn)

)
−

(
E±(tn)
H±(tn)

)
.

The second difference is the error of the spatial semi-discretization studied in part (b). The first
difference is a convolution quadrature error for the transfer operator U±h (s) of (3.50):(E±τ,h)n(

H±τ,h

)n
−(E±h (tn)

H±h (tn)

)
=
[(
U±h (∂τt )ginc)n−1

]
m
− U±h (∂t)ginc(tn).

Using this argument to bound the error in the H(curl,Ω±) norm by Lemma 3.15 would reduce the
predicted error rate to O(τm−1), hence the different argument structure before.

The exponential decay in the bound (3.44) exceeds any polynomial decay, which gives with (3.48) a
constant Cσ,d, depending only on σ and d, such that

∥U±h (s)∥(C1(Ω±
d )3)2←XΓ2 ≤ Cσ,d

|s|
9
2

(Re s)
3
2 +m+1

∥∥ĝinc∥∥
XΓ2 , (3.53)

for Re s ≥ σ > 0, by using e−x ≤ Cx−m−1 for x ≥ σ. We then obtain the stated full convergence rates
in the H(curl,Ω±d ) norm and the C1(Ω±d ) norm by Lemma 3.15, with r > 2m + 7/2 and κ, ν chosen
accordingly to the bound above.

Remark 3.19 (On regularity assumptions). Theorem 3.18 imposes rather strict regularity assumptions
on the exact solution and predicts, under these assumptions, optimal temporal convergence rates. Under
lower regularity assumptions on the exact solution, we do not expect our error analysis to be optimal.
Possible extensions of our theory could be based on semigroup theory (see [12]) or on energy estimates (see
[109, Theorem 2]). None of these approaches, however, can be used to derive pointwise error estimates
of full classical order, as they appear in Theorem 3.18.

3.8 Numerical experiments

We complement the theory of the previous sections by the following experiments. The boundary element
approximations of the boundary and potential operators of the Maxwell problem were realized by the
library Bempp, which is described in [126]. The codes used to generate the simulation data and the
figures are available via github.1

All experiments have been conducted with the following setting. One or several scatterers are illumi-
nated by an incoming plane wave of the form

Einc(x, t) = pe−c∥d·x+t−t0∥2
, (3.54)

The polarization vector is set to p = 1√
2 (−1, 0,−1)T , the direction to d = 1√

2 ((−1, 0, 1)T and the temporal
shift to t0 = 4. The incoming wave is smooth, however its tangential trace γT at the time t = 0 does

1https://github.com/joergnick/cqExperiments, last accessed on 25/10/2023.

https://github.com/joergnick/cqExperiments
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not vanish. Consequently, the regularity assumptions of the error analysis (see e.g. Theorem 3.18) are
technically not fulfilled, although the margin of error falls well beyond the machine precision and has no
apparent effect on our experiments. From the point of view of this paper, we can interpret these defects
as roundoff errors and refer the reader to [14, Section 3.4], for a discussion on their effects. We observe
the interaction of the wave with different scatterers until the final time T = 8. The physical constants
in the exterior domain Ω+ are set to one, i.e. ε+ = µ+ = 1. Inside the obstacle, we enforce a fractional
material law, which reads

ε−(s) = 1
2 + 1

1 + s1/2 , µ−(s) = 1
2 . (3.55)

The corresponding time-varying material law includes fractional time derivatives and is therefore nonlocal
in time. Moreover, since ε−(s) is not a rational function, techniques based on memory variables are not
available.

3.8.1 Scattering from a sphere: Convergence plots

To investigate empirical convergence rates, we consider the following simple setting. The exterior of a
unit sphere centered at the origin is initially at rest and excited by the plane wave (3.54) with c = 10.
A sequence of grids, with the mesh widths hj = 2−j/2 for j = 0, ..., 5 is used with 0-th order Raviart–
Thomas elements as the space discretization. As the time discretization, we employ the convolution
quadrature method based on the 2-stage Radau IIA method, for Nj = 8 · 2j for j = 0, ..., 7. The
numerical approximations are compared with a reference solution obtained by the same discretization,
that has been computed with h = 2−4, which corresponds to a boundary element space of 12534 degrees
of freedom, and N = 2048 time steps.

3.8.2 Scattering from two cubes: Visualization of the numerical solution

In the second experiment, we choose the union of two unit cubes, separated by a gap of length l = 0.5, as
the interior domain Ω−. The plane wave (3.54) illuminates the scatterers, and c = 100. Figure 3.3 depicts
the approximation of the total wave, evaluated in the y = 0.5 plane, which cuts through the middle of the
cubes, at several time points. The scheme has been used with a 0− th order Raviart–Thomas boundary
element discretization with 11088 degrees of freedom and the convolution quadrature time discretization
based on the 2–stage Radau IIA method with N = 2096 time steps.
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Figure 3.1: Time convergence plot of the fully discrete system for a spherical scatterer, for 0th order
Raviart–Thomas boundary elements and the 2-stage Radau IIA based Runge–Kutta convolution quadra-
ture method.

Figure 3.2: Space convergence plot of the fully discrete system for a spherical scatterer, for 0th order
Raviart–Thomas boundary elements and the 2-stage Radau IIA based Runge–Kutta convolution quadra-
ture method.
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Figure 3.3: Scattering from two cubes, where the time-fractional material law determined by (3.55) is
enforced.
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CHAPTER 4

An implicit-explicit time discretization scheme for second-order semilinear
wave equations with a nonlocal material law and kinetic boundary conditions

The content of this chapter is submitted as [32]. The authors are Selina Burkhard, Marlis Hochbruck
and Malik Scheifinger.

In this chapter we construct and analyze an implicit-explicit (IMEX) scheme for the semilinear vis-
coacoustic wave equation with a retarded material law. It contains a convolution term with exponential
kernels and is thus nonlocal in time. Furthermore, the wave equation is equipped with kinetic bound-
ary conditions. We treat the convolution term via additional variables. In order to make the problem
well-posed, it is essential to perform an appropriate shift to derive auxiliary differential equations which
are coupled to the first–order formulation of the wave equation. For the kinetic boundary conditions, we
consider these equations in weighted bulk-surface Sobolev spaces. Second–order error bounds in time are
proven for the IMEX scheme and are supported by numerical experiments, where the IMEX scheme is
combined with an isoparametric finite element discretization in space.



90 Chapter 4. IMEX scheme for nonlocal semilinear wave equations with kinetic boundary conditions

4.1 Introduction

In this paper, we consider the viscoacoustic wave equation with a convolution term of the form

∂ttu(t)− c2∆u(t) +
∫ t

−∞
b(t− θ)∆u(θ) dθ = f(t, u), u(0) = u0, ut(0) = v0, (4.1a)

in a domain Ω ⊂ Rd with smooth boundary Γ and we set u(θ) = u0 for θ < 0. The viscoacoustic
wave equation can be seen as a simplified model of the viscoelastic wave equation. The convolutionary
memory term is determined by physical properties and describes the viscosity of the material. It makes
the equation nonlocal in time, which is numerically challenging. Here, we study convolution kernels given
by a linear combination of exponentials,

b(t) =
m∑
j=1

βje−λjt, βj , λj > 0. (4.1b)

This model that can be found in geophysical literature, e.g., [34, Chap. 2] and more specific in seismology
[68]. The model problem using exponential kernels describes the case that most recent history has more
influence on the materials reaction and diminishes in the past further away, cf. [34, Sec. 2.1.1]. We say,
the material has a fading memory. In mechanical modeling this is used for the standard linear solid,
where λ−1 is the relaxation time, cf. [101, p. 32]. We assume that the material properties do not change
over time, cf. [34]. The kernels (4.1b) are of a special form, which enables us to derive additional auxiliary
differential equations, which are coupled to the wave equation. For more general kernels, one can consider
convolution quadrature, see e.g., [14, 27, 96, 97, 100, 107, 111].

To complement equation (4.1), we impose appropriate boundary conditions. In particular, we consider
both Dirichlet and kinetic boundary conditions in a general framework. The latter are a special kind of
dynamic boundary conditions, which take the form of another differential equation posed on the boundary.
In two dimensions, kinetic boundary conditions admit the physical interpretation of a vibrating membrane
with boundary mass density exposed to linear tension, see [54, Sec. 5&6], [91, p.56]; An example is the
membrane of a bass drum which has a hole in the interior that has a thick border, cf. [107, Sec. 3.2]. In
[54, 82], dynamic boundary conditions are considered for modeling heat conduction, where heat is created
on the boundary.

For the time integration of (4.1) we employ a new implicit-explicit scheme in order to solve the stiff
linear part implicitly and we avoid solving a nonlinear system in each step by treating the inhomogeneity
explicitly. Due to the smooth boundary we combine this with a nonconforming space discretization with
isoparametric finite elements.

In [129, 130] there are analytical results of wave equations with dynamic boundary conditions. In
[4], the authors show wellposedness of a parabolic equation with dynamic boundary conditions. Other
authors have investigated numerics for kinetic boundary conditions. Examples are [72, 73, 76] for linear
and semilinear equations without nonlocal materials. A bulk-surface splitting method is proposed in [5].

The authors of [80] consider the viscoelastic wave equation and simulate its solution using a symmetric
interior penalty discontinuous Galerkin method. In [43], space-time methods are used for the linear
viscoacoustic equation. Several authors have investigated the viscoelastic or viscoacoustic wave equation
as an inverse problem. Examples are [120], [1] with a finite difference method, and [22]. The goal of
the last paper is a full wave form inversion of the viscoacoustic wave equation in a div-grad first-order
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formulation. The viscoelastic wave equation with standard boundary conditions is considered in [27] for
several models. The authors show plots of the displacement function, using convolution quadrature and
the finite element method. Furthermore, space-time plots are shown. However, this paper did not focus
on the error analysis.

The literature on wave equations with auxiliary differential equations mostly deals with the analy-
sis and stability including a different variable and possibly a delay term, cf. [2]. In [102], promising
experiments for the viscoelastic wave equation with a nonlinear stress-strain relation are shown. For
the numerical simulation, the ADE system of equations is discretized in time using a second order semi-
implicit scheme. It is combined with a second-order time-stepping algorithm and a fourth-order staggered
grid finite difference spatial discretization. However, the authors did not provide an error analysis.

There is a broad literature on implicit-explicit (IMEX) schemes, e.g., [52, 81, 92, 116]. The authors
of [45] propose an IMEX scheme combined with multiscale methods. A Crank-Nicolson-leapfrog IMEX
scheme was constructed in [88, 89]. However, the schemes therein are not equivalent to our IMEX scheme.

The author of [50, 51] considers a related problem to (4.1), where the solution to a Maxwell system
with exponential non-locality is approximated. However, in the setting there, the nonlocality is a bounded
perturbation, which is not applicable in our situation.

The main contribution of this paper is the construction and the rigorous error analysis of a new IMEX
scheme for a wave equation that has a nonlocality in time and is equipped with dynamic boundary condi-
tions. In contrast to the setting in [77], the block structure of the operator in the first-order formulation
has at least three components, which is why the calculations here are more involved than in [77]. In
particular, we first derive a framework using weighted Sobolev spaces suitable for the wellposedness as
well as for the error analysis. Moreover, defining the auxiliary variables is not straight forward, since an
appropriate shift has to be included, cf. [2]. Finally, we show a uniform second-order error bound for the
time discretization.

In this paper, for the sake of presentation, we do not carry out the full discretization, since it can be
done along the lines of [77].

Outline of the paper

In Section 4.2, we state the problem, introduce auxiliary variables and the corresponding system of
differential equations and investigate the wellposedness. In Section 4.3, we construct and analyze the
numerical approximation by an implicit-explicit (IMEX) scheme in time. We conclude with numerical
examples in Section 4.4.

Notation

For the partial derivative with respect to time we use the notation ∂tu = u′ = ut. In this paper, we will
consider (4.1a) with Dirichlet boundary conditions (D) or with kinetic boundary conditions (K). This
will require different spaces, as defined next. We introduce the following bulk-surface Sobolev spaces,

Hk(Ω,Γ) =
{
v ∈ Hk(Ω)

∣∣ γD(v) ∈ Hk(Γ)
}
, k ≥ 1,
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of Hk(Ω)-functions with Hk(Γ)-traces, where γD denotes the Dirichlet trace operator, cf. [82]. We further
equip Hk(Ω,Γ) with the scalar product, which induces the norm

∥v∥2
Hk(Ω,Γ) =

∥∥Hk(Ω)
∥∥2
v

+ ∥γD(v)∥2
Hk(Γ) .

We denote the spaces

H =

L2(Ω), for (D)

L2(Ω)× L2(Γ), for (K)
and V =

H1
0 (Ω), for (D)

H1(Ω,Γ), for (K)
. (4.2a)

In [72, Cor. 6.7] it is shown, that H1(Ω,Γ) is dense in L2(Ω)× L2(Γ) and C∞(Ω) is dense in H1(Ω,Γ).
We will make use of weighted spaces. Let V be a Hilbert space as defined in (4.2a) with scalar product

⟨·, ·⟩, then we define the weighted Hilbert space Vα for some α > 0 as the space V combined with the
weighted scalar product, i.e.,(

Vα, (·, ·)
)
, where (x, y) 7→ α⟨x, y⟩ for x, y ∈ V.

Let Γ be C1-regular. For a function v ∈ H1(Ω) and the outer unit normal vector n, we define the
surface gradient

∇Γv = (∂j,Γv)dj=1 = (I − nnT )∇v

and the Laplace-Beltrami operator

∆Γv =
d∑
j=1

∂2
j,Γv.

For the weak formulation of our PDEs we will make use of the well-known Gauss theorem, which also
holds for the above surface operators, see also [82, p. 111],

−
∫

Ω
(∆u)φdx =

∫
Ω
∇u∇φdx−

∫
Γ
(n · ∇u)φdx,

−
∫

Γ
(∆Γu)φdx =

∫
Γ
∇Γu∇Γφdx.
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4.2 Analytical framework

Throughout this paper, we consider (4.1a) with Dirichlet boundary conditions as well as kinetic boundary
conditions. In this section, we describe the framework for the two types of boundary conditions and how
both cases will be handled in the further course of this paper. We will derive auxiliary differential
equations for the treatment of the convolution and investigate its wellposedness by means of evolution
equations in suitable spaces.

4.2.1 Problem statement

We assume Γ to be the smooth boundary of the domain Ω ⊂ Rd and impose kinetic boundary conditions,
i.e.,

∂ttu(t)− c2∆u(t) +
∫ t

−∞
b(t− s)∆u(s) ds = fΩ(t),

∂ttu(t)− c2∆Γu(t) + c2n · ∇u+
∫ t

−∞
b(t− s)∆Γu(s) ds

−
∫ t

−∞
b(t− s)n · ∇u(s) ds = fΓ(t)

u(0) = u0, ∂tu(0) = v0,

(4.4)

where we again set u(s) = u0 for s < 0. In order to abbreviate the notation, we further define the
extended Laplace operator

∆Ω,Γ =

∆, in Ω,

∆Γ − n · ∇, on Γ.

Note that for u ∈ H1
0 (Ω), the extended Laplace operator only acts on the inner domain. Then, (4.1a)

with Dirichlet or kinetic boundary conditions can be summarized as

∂ttu(t)− c2∆Ω,Γu(t) +
∫ t

−∞
b(t− s)∆Ω,Γu(s)ds = f(t). (4.5)

4.2.2 Auxiliary differential equations

In this subsection we derive auxiliary differential equations for the treatment of the convolution in (4.5)
and investigate its wellposedness in the setting of an evolution equation. Following [2], we perform a shift
of the variable in the convolution term and obtain∫ t

−∞
βje−λj(t−θ)∆Ω,Γu(θ) dθ = βj

λj
∆Ω,Γu(t)− βj∆Ω,ΓMj(t), j = 1, . . . ,m,

with the auxiliary variables

Mj(t) =
∫ t

−∞
e−λj(t−θ)(u(t)− u(θ)

)
dθ, t ≥ 0.

We introduce the notation

M = (Mj)mj=1, β = (βj)mj=1, 1 = (1)mj=1, Λ = diag(λ1, . . . , λm).
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Then, we obtain the following first-order in time coupled PDE system for (4.5)

∂tu = v, u(0) = u0,

∂tv = α∆Ω,Γu+ ∆Ω,Γβ
TM + f, v(0) = v0, α = c2 −

m∑
j=1

βj
λj
,

∂tMj = −λjMj + 1
λj
v, Mj(0) = 0, j = 1, . . . ,m.

In a compact form, (4.6) can be written as

x′ +Ax = F, (4.7a)

where

x =


u

v

M

 , A =


0 −I 0

−α∆Ω,Γ 0 −β ⊗∆Ω,Γ

0 −Λ−11 Λ

 , F =


0
f

0

 . (4.7b)

Remark 4.1. In applications, we often know the Laplace transformation B rather than the kernel b itself,
see, e.g., [34, 68]. The Laplace transform of the differential equation (4.1) with frequency variable s ∈ C
is given as (

s2 − (c2 −B(s))∆Ω,Γ
)
U(s) = F (s), B(s) =

m∑
j=1

βj
s+ λj

,

where U(s), F (s) denote the Laplace transformations of u, f , respectively. Since −∆Ω,Γ is a positive
semidefinite operator, assuming

α = c2 −
m∑
j=1

βj
λj

> 0 (4.8)

is sufficient to ensure that, for a given F (s), this equation has a unique solution U(s) for all Re s = σ > 0.
Hence we assume (4.8) in the remaining manuscript.

4.2.3 Wellposedness

Next we consider the wellposedness of the coupled PDE system (4.6) for Dirichlet (D) and for kinetic
(K) boundary conditions. We will show that, in both cases, A generates a monotone operator on the
respective Hilbert space

X = Vα ×H ×
m×
j=1

Vµj
(4.9)

with Vα defined in (4.2) for α > 0 and µj = βjλj > 0. In particular, A is monotone, i.e.,

(Ax, x)X ≥ −cm ∥x∥X 2 for all x ∈ X, (4.10)

cf. [91, Assumption 2.3]. For Dirichlet boundary conditions, we have cm = 0, which means that A
generates a contractive semigroup, while for kinetic boundary conditions, (4.10) holds for

cm >
1
2 , cm >

α+ 1Tβ
2 , λjcm >

1
2 − λ

2
j , j = 1, . . . ,m. (4.11)
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Theorem 4.2. Let A and x be given as in (4.7b), describing the first-order formulation of (4.5).

(D) The operator −A with domain

D(A) =
{
x ∈ H1

0 (Ω)m+2 ∣∣αu+ βTM ∈ H2(Ω)
}

(K) For cm chosen such that (4.11) holds, the shifted operator −(A+ cmI) with domain

D(A+ cmI) =
{
x ∈ H1(Ω,Γ)m+2 ∣∣αu+ βTM ∈ H2(Ω,Γ)

}
generates a contractive C0-semigroup on X defined in (4.9).

In order to obtain local wellposedness of (4.7a) we make the following assumption on the inhomo-
geneity.

Assumption 4.3. [77, Assumption 4.1] Let Θ ∈ {Ω,Γ}.

(a) The inhomogeneities f = fΘ, in (4.4) satisfy

fΘ ∈ C1([0, T ]×Θ× R;R)

and can be split into

f(t, ξ, u) = f1(t, ξ) + f2(ξ, u) or f(t, ξ, u) = f1(t, ξ) + f2(t, u).

(b) Furthermore, we assume the growth conditions, that there exist

ζΩ

<∞, d = 2,

≤ d
d−2 d ≥ 3,

and ζΓ

<∞, d = 2, 3,

≤ d−1
d−3 d ≥ 4,

such that for all (t, ξ, u) ∈ [0, T ]×Θ× R it holds that

|fΘ(t, ξ, u)| ≤ C(1 + |u|ζΘ), |∇fΘ(t, ξ, u)| ≤ C(1 + |u|ζΘ−1).

Remark 4.4. If Assumption 4.3 holds, then, (4.7a) is locally wellposed, i.e., for every initial value x0 ∈ X
there exists t⋆(x0) > 0 such that for all T < t⋆(x0), (4.7a) has a unique solution

x ∈ C1([0, T ], X) ∩ C([0, T ],D(A)).

The evolution equation (4.7a) fits into the framework of [72, 74, 91].

Proof of Theorem 4.2. For better readability, we only show the proof in the case m = 1, i.e., the case of
one exponential kernel. We demonstrate the calculations for the wave equation with kinetic boundary
conditions, the case of Dirichlet boundary conditions works analogously. Employing the Gauss theorems
(4.3), we see that the kinetic boundary condition leads to solving (4.7b) on the space given in (4.9).

We will use the Lumer-Phillips theorem [115, Sec.1.3]. To this end, we show that A+ cmId is densely
defined, monotone, and has full range.
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For the monotonicity we calculate by using partial integration (4.3) and Young

(Ax+ cmx, x)X
= − α⟨v, u⟩L2(Ω,Γ) + cmα∥∇u∥2

L2(Ω,Γ) + cmα∥u∥2
L2(Ω,Γ) + cm∥v∥2

L2(Ω,Γ)

+ βλ2∥∇M∥2
L2(Ω,Γ) + βλ2∥M∥2

L2(Ω,Γ) − β⟨v,M⟩L2(Ω,Γ)

+ cmµ∥∇M∥2
L2(Ω,Γ) + cmµ∥M∥2

L2(Ω,Γ)

≥ − α

2

(
∥v∥2

L2(Ω,Γ) + ∥u∥2
L2(Ω,Γ)

)
− β

2

(
∥v∥2

L2(Ω,Γ) + ∥M∥2
L2(Ω,Γ)

)
+ cm∥v∥2

L2(Ω,Γ) + cmα∥u∥2
L2(Ω,Γ) + βλ2∥M∥2

L2(Ω,Γ) + cmµ∥M∥2
L2(Ω,Γ)

= α∥u∥2
L2(Ω,Γ)

(
cm −

1
2

)
+ ∥v∥2

L2(Ω,Γ)

(
cm −

α+ β

2

)
+ ∥M∥2

L2(Ω,Γ)

(
cmµ−

β

2 + βλ2
)

≥ 0.

To show that A has full range, let γ > cm, y := (f, g, h) ∈ X. We claim that there exists x := (u, v,M) ∈
D(A) such that (γ +A)x = y

γu = v + f, (4.12a)

γv = α∆Ω,Γu+ β∆Ω,ΓM + g, (4.12b)

γM = −λM + 1
λ
v + h. (4.12c)

We aim to insert

u = 1
γ

(v + f), M = 1
γ + λ

( 1
λ
v + h)

into (4.12b) and solve for v. To do so, we use the operator

∆Ω,Γ : H1(Ω,Γ)→ H−1(Ω,Γ)

for the moment. Then, we have to solve

γv = α

γ
∆Ω,Γ(v + f) + β

γ + λ
∆Ω,Γ( 1

λ
v + h) + g

which is equivalent to

v − 1
γ

(α
γ

+ β

λ(γ + λ)
)
∆Ω,Γv = α

γ2 ∆Ω,Γf + β

γ(γ + λ)∆Ω,Γh+ 1
γ
g. (4.13)

The weak formulation is given as: find v ∈ H1(Ω,Γ) such that

⟨v, φ⟩L2(Ω,Γ) + 1
γ

(α
γ

+ β

λ(γ + λ)
)
⟨∇v,∇φ⟩L2(Ω,Γ)

=− α

γ2 ⟨∇f,∇φ⟩L2(Ω,Γ) −
β

γ(γ + λ) ⟨∇h,∇φ⟩L
2(Ω,Γ) + 1

γ
⟨g, φ⟩L2(Ω,Γ),

for all φ ∈ H1(Ω,Γ). By the Lax–Milgram theorem we obtain a unique solution v ∈ H1(Ω,Γ) of (4.13).
Inserting this solution into (4.12a) and (4.12c) gives us u,M ∈ H1(Ω,Γ) such that

α∆Ω,Γu+ β∆Ω,ΓM = α

γ
∆Ω,Γ(v + f) + β

γ + λ
∆Ω,Γ( 1

λ
v + h)
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In order to make sure, that x = (u, v,M) ∈ D(A), we test the above equation with φ ∈ H1(Ω,Γ) which
yields

⟨∇(αu+ βM),∇φ⟩L2(Ω,Γ) = α

γ
⟨∇(v + f),∇φ⟩L2(Ω,Γ) + β

γ + λ
⟨∇( 1

λ
v + h),∇φ⟩L2(Ω,Γ)

= ⟨g − γv, φ⟩L2(Ω,Γ),

and using g ∈ L2(Ω,Γ) and v ∈ H1(Ω,Γ) shows x = (u, v,M) ∈ D(A).
Note that the full range of γ +A was shown for arbitrary γ > cm. The fact that A is densely defined

therefore follows by [125, Prop. I.4.2].

4.3 Time discretization – implicit-explicit scheme

In this section, we introduce the IMEX scheme for the time discretization of the solution to (4.1a) and
its properties.

4.3.1 Construction of the IMEX scheme

Following [77], we set up the IMEX scheme as a perturbation of the Crank-Nicolson scheme. The latter
one computes xn ≈ x(tn) for tn = nτ , where τ > 0 denotes the step size via

xn+1 = xn + τ

2
(
−A(xn + xn+1) + Fn + Fn+1),

where

Fn =


0
fn

0

 , and fn = f(tn, un). (4.14a)

Equivalently we can write this as

R+x
n+1 = R−x

n + τ

2
(
Fn + Fn+1), R± = Id± τ

2A. (4.15)

With the parameters βj and λj of the convolution kernel (4.1b), we define the following scalars, which
will be used in the discretization of the differential equation of M,

γj,± = 1± τλj
2 , γj = γj,−

γj,+
.

Furthermore, we introduce a modification of the matrix Λ as

Λ̃ = diag(λ1γ1,+, . . . , λmγm,+), (4.16)

and the modified scalars

α̃ = α+ βT Λ̃−11 =

α+
m∑
j=1

βj
λjγj,+

 > α. (4.17)

We further introduce the notation

β̃ = 1
2
(
β1(1 + γ1), . . . , βm(1 + γm)

)
, (4.18)
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and note that βj(1 + γj)/2 ∈ [0, βj) for j = 1, . . . ,m.
Similarly to [77, Lem. 2.5] it can be shown that with j = 1, . . . ,m and fn defined in (4.14a), the

Crank-Nicolson scheme (4.14) is equivalent to

un+1 = un + τvn+ 1
2 ,

vn+ 1
2 = vn + τ

2α∆Ω,Γu
n + τ

2 ∆Ω,Γβ̃
TMn + τ2

4 α̃∆Ω,Γv
n+ 1

2 + τ

4 (fn + fn+1),

Mn+1
j = γjM

n
j + γ−1

j,+
τ

λj
vn+ 1

2 ,

vn+1 = vn+ 1
2 + τ

2α∆Ω,Γu
n + τ

2 ∆Ω,Γβ̃
TMn + τ2

4 α̃∆Ω,Γv
n+ 1

2 + τ

4 (fn + fn+1).

If the right hand side f is nonlinear, we will have to solve a nonlinear system in each step of the Crank-
Nicolson scheme, which is very expensive. To overcome this difficulty, we use the IMEX scheme instead.
The idea of the IMEX scheme is to treat the stiff linear part implicitly and the non-stiff non-linear part
explicitly, such that the solution of one linear system of equations in each time step is sufficient.

Following [77, Section 2.2.], we derive the scheme via a combination of the Crank-Nicolson and with
the leapfrog scheme and, with j = 1, . . . ,m, arrive at

vn+ 1
2 = vn + τ

2α∆Ω,Γu
n + τ

2 ∆Ω,Γβ̃
TMn + τ2

4 α̃∆Ω,Γv
n+ 1

2 + τ

2f
n, (4.19a)

un+1 = un + τvn+ 1
2 ,

Mn+1
j = γjM

n
j + γ−1

j,+
τ

λj
vn+ 1

2 ,

vn+1 = vn+ 1
2 + τ

2α∆Ω,Γu
n + τ

2 ∆Ω,Γβ̃
TMn + τ2

4 α̃∆Ω,Γv
n+ 1

2 + τ

2f
n+1. (4.19b)

An equivalent way to compute vn+1 is obtained by subtracting (4.19a) and (4.19b) as

vn+1 = −vn + 2vn+1/2 + τ

2 (fn+1 − fn),

see also [77, Remark 2.6]. In the scheme (4.19), the nonlinearity f is treated explicitly.

4.3.2 Wellposedness and reformulation of the IMEX scheme

To prove wellposedness of the IMEX scheme define the operators

Q± = I ±
(
− τ2

4 α̃∆Ω,Γ
)
, (4.20)

with weak formulation: for given z ∈ V find y ∈ H such that

⟨z, w⟩H ± ⟨∇z,∇w⟩H = ⟨y, w⟩H for all w ∈ V,

we define y = Q±z. With this notation, we can characterize the half step vn+ 1
2 via

Q+v
n+ 1

2 = vn + τ

2 ∆Ω,Γ
(
αun + β̃TMn

)
+ τ

2f
n.

For our error analysis we will use bounds on the operators Q± using the spaces defined in (4.2a). Up to
the weighting constants the following lemma was given in [77, Lemma 2.7].
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Lemma 4.5. Let Q± be defined as in (4.20) with α̃ as in (4.17). Then Q+ : D(∆Ω,Γ)→ H is invertible
and we have ∥∥∥∥τ2

4 α̃∆Ω,ΓQ
−1
+

∥∥∥∥
H←H

≤ 1, (4.21a)

where ∥·∥H←H denotes the operator norm. Furthermore, for τ > 0 in case (D) and 0 < τ <
√

2
α̃

in case
(K), we have the bounds

∥∥Q−1
+
∥∥
V←H ≤

1
τ

√
2
α̃
, (4.21b)∥∥Q−Q−1

+
∥∥
H←H ≤ e τ2

2 .

Employing the invertibility of Q+ we obtain wellposedness of the IMEX scheme as in [91, Cor. 4.7]
and [77, Cor. 2.8].

Lemma 4.6. The IMEX scheme is wellposed. We define β̂ = (β̂j)mj=1 with β̂j ∈ [−βj , βj ]. Then for
initial values u0, v0 ∈ V and M0 = 0m, we have for j = 1, . . . ,m that

un,Mn
j ∈ V, vn+ 1

2 ∈ D(∆Ω,Γ), vn+1 ∈ H, ∆Ω,Γ(αun + β̂TMn) ∈ H.

Proof. As in [77, Cor. 2.8], the claim is proven by induction over n ∈ N0. Due to M0
j = 0, the statement

is true for n = 0. Then, exploiting the fact that β̃j ∈ [0, βj) for each j = 1, . . . ,m, such that α∆Ω,Γu
n +

∆Ω,Γβ̃
TMn ∈ H, the claim follows.

We derive an equivalent first–order formulation for the IMEX scheme, cf. [91, Lemma 4.8] and [77,
Lemma 2.10], where we make use of the notation introduced in (4.16) and (4.18).

Lemma 4.7. Let τcm < 2 and if we have kinetic boundary conditions let τ <
√

2
α̃

. Then, the matrix
R+ from (4.15) is invertible and, with S+ = Q−1

+ ∆Ω,Γ and R = R−1
+ R− we have

R =



1 + τ2

2 αS+ τQ−1
+

τ2

2 β̃
T ⊗ S+

ταS+ Q−Q
−1
+ ταβ̃T ⊗ S+

τ2

2 αΛ̃−1 ⊗ S+1 τ Λ̃−1 ⊗Q−1
+ 1 Λ + τ2

2
(
(Λ̃−1β̃)T ⊗ 1

)
⊗ S+


and

R−1
+ =



Id + τ2

4 αS+
τ
2Q
−1
+

τ2

4 β
TΛΛ̃−1 ⊗ S+

τ
2αS+ Q−1

+
τ
2β

TΛΛ̃−1 ⊗ S+

τ2

4 αΛ̃−1 ⊗ S+1 τ
2 Λ̃−1 ⊗Q−1

+ 1 ΛΛ̃−1 + τ2

4 Λ̃−11βTΛΛ̃−1 ⊗ S+


.

Furthermore, the matrix R−1
+ : X → D(A) satisfies

∥∥R−1
+
∥∥ ≤ 1 and R has a continuous extension on X

and ∥R∥ ≤ eτcm .
The IMEX scheme is equivalent to the first-order formulation

xn+1 = Rxn + τ

2R
−1
+ yn + τ2

4 R
−1
+ zn,
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where

yn =


0
1
0m

⊗ (fn + fn+1), zn =


1
0

Λ−11

⊗ (fn − fn+1).

Proof. The proof of the invertibility and the bounds follow along the lines of [77, Lemma 2.10] and [72,
Lemma 2.14]. For the ease of presentation we only treat the case m = 1. A direct calculation shows that
R and R−1

+ are given as above. Let x = (u, v,M)T ∈ X and we will first use ∆Ω,Γ mapping from V to
its dual, this means that S+ : V → V . Then we have that the components of

w := R−1
+ x

are given by

w1 =
(
Id + α

τ2

4 S+
)
u+ τ

2Q
−1
+ v + τ2

4
β

γ+
S+M,

w2 = α
τ

2S+u+Q−1
+ v + α

τ

2
β

γ+
S+M,

w3 = α
τ

4λγ+
S+u+ τ

2λγ+
Q−1

+ v + 1
γ+

(
Q−1

+ − α
τ2

4 S+
)
M,

and lie in V . We further obtain

∆Ω,Γ
(
αw1 + βw3

)
= α∆Ω,ΓQ

−1
+ u+

(ατ
2 + βτ

2λγ+

)
∆Ω,ΓQ

−1
+ v + β

γ+
∆Ω,ΓQ

−1
+ M ∈ H,

by Lemma 4.5, i.e., we verified that R−1
+ : X → D(A).

The proof of the equivalence is done analogously to [91, Lemma 4.8].

4.3.3 Error analysis of the IMEX scheme

We now turn to the error estimation of the IMEX scheme. The main idea is, that the defect of the
IMEX scheme can be written as the defect of the Crank-Nicolson scheme with an additional term. By
Assumption 4.3, the inhomogeneity f is locally Lipschitz continuous, i.e., for ∥u∥V , ∥v∥V ≤ ρ it holds

∥f(·, ·, u)− f(·, ·, v)∥H ≤ Lρ ∥u− v∥V , Lρ = C(1 + ρζΩ−1 + ρζΓ−1), (4.23)

where C is a constant which is independent of ρ.
The following result can be found for the wave equation without retarded material laws in [77], for

the more detailed version we reference to [90].

Theorem 4.8 (Error bound IMEX scheme). Assume that the solution x = (u, v,M) of (4.7) satisfies
u ∈ C4([0, T ], H)∩C3([0, T ], V ) and x ∈ C2([0, T ],D(A)) and that τ > 0 is sufficiently small. Then, the
approximation xn ≈ x(tn), tn = nτ given in (4.22) satisfies the error bound

∥xn − x(tn)∥X ≤ CeKtnτ2,

where K = cm + Lρ(1+
√

2)√
α−Lρτ(1+

√
2) and the constant C only depends on u and T , and Lρ defined in (4.23).
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Proof. For the ease of presentation we only present the case m = 1. During this proof we again use a ∼
for an exact evaluation, e.g., we write x̃n = x(tn).

(1) Error recursion. Denote the first-order error by

en = xn − x̃n.

We insert the exact solution into the IMEX scheme (4.22) and obtain as in [91, (4.29)] that

x̃n+1 = Rx̃n + τ

2R
−1
+ ỹn + τ2

4 R
−1
+ z̃n − δn+1

IMEX, (4.24)

with

δn+1
IMEX = R−1

+ δn+1
CN + δ̃n+1, δ̃n+1 = τ2

4


1

τ
2 α̃∆Ω,Γ

1
λγ+

⊗Q−1
+ (f̃n − f̃n+1) (4.25)

and δn+1
CN is the defect from the Crank-Nicolson scheme (4.14). As in [91, Thm. 4.3], it can be seen that∥∥δn+1

CN
∥∥
X
≤ Cτ3. Substracting (4.24) from (4.22) we obtain the error recursion

en+1 = Ren + τ

2R
−1
+ (yn − ỹn) + τ2

4 R
−1
+ (zn − z̃n) + δn+1

IMEX,

cf. [91, (4.31)]. With
△f j = f j − f̃ j − f j+1 + f̃ j+1 (4.26)

we have

yn − ỹn =


0
1
0

△f j and zn − z̃n =


1
0
1
λ

△f j .
(2) Stability. For e0 = 0 it holds that

en =
n∑
ℓ=1

Rn−ℓ
(
τ

2R
−1
+ (yℓ−1 − ỹℓ−1) + τ2

4 R
−1
+ (zℓ−1 − z̃ℓ−1) + δℓIMEX

)
.

Analogously to [91, (4.32)], taking the norm and using the triangle inequality, we obtain the estimate

∥en∥X ≤ τ
n∑
ℓ=1

e(n−ℓ)τcm

(
1
2
∥∥yℓ−1 − ỹℓ−1∥∥

X
+ τ

4
∥∥R−1

+ (zℓ−1 − z̃ℓ−1)
∥∥
X

)

+

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

, (4.27)

Recalling the spaces from (4.2), we estimate similarly to [91, (4.33)]∥∥yℓ − ỹℓ∥∥
X

=
∥∥△f ℓ∥∥

H
≤ Lρ

( ∥∥uℓ − ũℓ∥∥
V

+
∥∥uℓ+1 − ũℓ+1∥∥

V

)
≤ Lρ√

α

( ∥∥eℓ∥∥
X

+
∥∥eℓ+1∥∥

X

)
.

Therefore, we obtain

1
2

n∑
ℓ=1

e(n−ℓ)τcm
∥∥yℓ−1 − ỹℓ−1∥∥

X
≤

n∑
ℓ=1

e(n−ℓ)τcm
Lρ

2
√
α

( ∥∥eℓ∥∥
X

+
∥∥eℓ−1∥∥

X

)
≤

n∑
ℓ=0

Lρ√
α

e(n−ℓ)τcm
∥∥eℓ∥∥

X
.
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From

R−1
+ zn =


1

α̃τ
2 ∆Ω,Γ

1
λγ+

⊗Q−1
+ (fn − fn+1),

and the notation (4.26) we obtain

τ

4
∥∥R−1

+ (zℓ − z̃ℓ)
∥∥
X

= 1
2

(
α
∥∥∥τ2Q−1

+ △f ℓ
∥∥∥2

V
+
∥∥∥∥τ2

4 α̃∆Ω,ΓQ
−1
+ △f ℓ

∥∥∥∥2

H

+ µ

∥∥∥∥τ2 1
λγ+

Q−1
+ △f ℓ

∥∥∥∥2

V

) 1
2

and from (4.21a) and (4.21b) we conclude

α
∥∥∥τ2Q−1

+ w
∥∥∥2

V
≤ α

2α̃ ∥w∥
2
H ,

µ

∥∥∥∥τ2 1
λγ+

Q−1
+ w

∥∥∥∥2

V

≤ µ

2(λγ+)2α̃
∥w∥2

H .

This yields

n∑
ℓ=1

τe(n−ℓ)τcm

4
∥∥R−1

+ (zℓ−1 − z̃ℓ−1)
∥∥
X

≤
n∑
ℓ=1

Lρe(n−ℓ)τcm

√
2α

( ∥∥uℓ − ũℓ∥∥
Vα

+
∥∥uℓ−1 − ũℓ−1∥∥

Vα

)
≤

n∑
ℓ=0

Lρ
√

2√
α

e(n−ℓ)τcm
∥∥eℓ∥∥

X
.

Inserting these bounds yields

∥en∥X ≤
τLρ√
α

(1 +
√

2)
n∑
ℓ=0

e(n−ℓ)τcm
∥∥eℓ∥∥

H
+

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

.

(3) Bound of defects from (4.25). Since we already know that the Crank-Nicolson defect is bounded by
Cτ3, it remains to bound δ̃ℓ+1. We follow [91, p. 41] and split it into two parts

δ̃ℓ+1 = δ̃ℓ+1
1 + δ̃ℓ+1

2

with

δ̃ℓ+1
1 = τ

4


τQ−1

+

Q−Q
−1
+

τ
λγ+

Q−1
+

⊗ (f̃ ℓ − f̃ ℓ+1), δ̃ℓ+1
2 = τ

4


0

−(f̃ ℓ − f̃ ℓ+1)
0

 ,

and then combine terms from two different steps to gain an extra order of τ . We observe that

δ̃ℓ+1
1 +Rδ̃ℓ2 = τ

2


τ
2Q
−1
+

1
2Q−Q

−1
+

τ
2λγ+

Q−1
+

⊗ (−f̃ ℓ−1 + 2f̃ ℓ − f̃ ℓ+1). (4.28)
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For the difference quotients we have the bounds∥∥∥δ̃ℓ+1
2

∥∥∥
X

= τ

4

∥∥∥f̃ ℓ − f̃ ℓ+1
∥∥∥
H
≤ Cτ2, τ

∥∥∥f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1
∥∥∥
H
≤ Cτ3. (4.29)

To be more precise, we denote by Iℓ = [tℓ−1, tℓ+1] and as in [91, (4.36)] we obtain, due to the regularity
assumptions on u, that

τ
∥∥∥f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1

∥∥∥
H
≤ Cτ3 ∥∥∂2

t

(
u′′ −∆Ω,Γ(αu− βTM)

)∥∥
L∞(Iℓ,H)

≤ Cτ3
(∥∥∥u(4)

∥∥∥
L∞(Iℓ,H)

+
∥∥∂2

t

(
αu+ βTM

)∥∥
L∞(Iℓ,H2)

)
.

where H2 = H2(Ω) for (D) and H2 = H2(Ω,Γ) in the case (K). Using the same arguments, we find that
defects δ̃1

1 , δ̃n2 are of order τ2. Therefore, we estimate

τ
∥∥∥f̃ ℓ − f̃ ℓ+1

∥∥∥
H
≤ Cτ2 ∥∥∂t(u′′ −∆Ω,Γ(αu− βTM)

)∥∥
L∞(Iℓ,H)

≤ C ′τ2
(∥∥∥u(3)

∥∥∥
L∞(Iℓ,H)

+
∥∥∂t(αu+ βTM

)∥∥
L∞(Iℓ,H2)

)
.

Then, using (4.25) we split∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

≤

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδℓCN

∥∥∥∥∥
X

+

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓ(δ̃ℓ1 + δ̃ℓ2)

∥∥∥∥∥
X

and with an index shift and the previous calculations, we see∥∥∥∥∥
n∑
ℓ=1

Rn−ℓ(δ̃ℓ1 + δ̃ℓ2)

∥∥∥∥∥
X

=

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδ̃ℓ1 +Rn−ℓ−1Rδ̃ℓ2

∥∥∥∥∥
X

=

∥∥∥∥∥Rn−1δ̃1
1 + δ̃n1 +

n∑
ℓ=2

Rn−ℓ(δ̃ℓ1 +Rδ̃ℓ2)

∥∥∥∥∥
X

≤ enτcm

(∥∥∥δ̃1
1

∥∥∥
X

+
∥∥∥δ̃n2 ∥∥∥

X
+

n∑
ℓ=2

∥∥∥δ̃ℓ1 +Rδ̃ℓ2

∥∥∥
X

)
≤ CeT cmτ2.

In the last estimate we used tn ≤ T , (4.28), (4.29), and that
∥∥τQ−1

+
∥∥
V←H ≤ C and

∥∥Q−Q−1
+
∥∥
H←H ≤ C

by Lemma 4.5.
With the stability bound (4.27), we see

e−tncm ∥en∥X ≤
τLρ√
α

(
1 +
√

2
) n∑
ℓ=0

e−ℓτcm
∥∥eℓ∥∥

X
+ e−tncm

∥∥∥∥∥
n∑
ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

≤ τLρ√
α

(
1 +
√

2
) n∑
ℓ=0

e−ℓτcm
∥∥eℓ∥∥

X
+ Cτ2.

Finally, the desired error bound follows from applying Grönwall’s Lemma provided that xn is uniformly
bounded in X. The latter follows along the lines of [90, Thm. 4.9].

Remark 4.9. The full discretization can be done analogously to [77] with isoparametric finite elements,
see also [46]. Using the time discretization error analysis from the previous section, the full error estimate
is a combination thereof with the one shown in [77]. When it comes to lift and reference operators for
the error of space discretization, the additional variables Mj are treated in the same manner as u.
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4.4 Numerical experiments

In this section we show numerical examples to support our theoretical results. We consider the wave
equation (4.1) with kinetic boundary conditions on the unit disc B(0, 1) ⊂ R2. In order to measure
exact numerical errors, we extend an example from [77] by including a convolution with m = 4 and the
parameters α = 1, β1 = 1, β2 = 1.5, β3 = 2, β4 = 1.25 and λ1 = 0.2, λ2 = 1, λ3 = 1.5, λ4 = 2. We choose
the nonlinearities

fΩ(t, ξ, u) = |u|u+ ηΩ(t, ξ),

fΓ(t, ξ, u) = |u|2 u+ ηΓ(t, ξ),

where

ηΩ(t, ξ) = −
(
4π2 + |sin(2πt)ξ1ξ2|

)
sin(2πt)ξ1ξ2,

ηΓ(t, ξ) = (6c2 − 4π2)ξ1ξ2 sin(2πt)−
(
sin(2πt)ξ1ξ2

)3

− 12π
m∑
j=1

βj
4π2 + λj

(
e−λjt− cos(2πt) + λj

2π sin(2πt)
)
.

The initial values are set to be

u(0, ξ) = 0, ∂tu(0, ξ) = 2πξ1ξ2,

and the exact solution to this example is given by

u(t, ξ) = sin(2πt)ξ1ξ2.

The codes to reproduce our results are available at

https://github.com/MalikScheifinger/WaveKineticBC.git

The space discretization software is based on the FEM library deal.II [8] version 9.5.0, using quadrilat-
eral mesh elements and isoparametric finite elements with polynomial degree p = 2 and maximal mesh
width hmax ≈ 0.014. Our implementation follows [91, Chapter 6.2]. We shortly specify the notation we
use and state our in space discretized IMEX scheme. We denote by M ∈ RN×N the mass matrix, by
S ∈ RN×N the stiffness matrix and the load vector by fn after choosing the standard nodal basis. Then
the scheme reads

Mvn+ 1
2 = Mvn − τ

2 S(αun + β̃TMn)− τ2

4 α̃Svn+ 1
2 + τ

2f
n, (4.30a)

un+1 = un + τvn+ 1
2 ,

Mn+1
j = γjM

n
j + γ−1

j,+
τ

λj
vn+ 1

2 ,

Mvn+1 = −Mvn + 2Mvn+ 1
2 + τ

2 (fn+1 − fn).

The linear system (4.30a) is equivalent to

Q+v
n+ 1

2 = Mvn − τ

2 S(αun + β̃TMn) + τ

2f
n, Q+ = M + τ2

4 α̃S.

We solve this linear system with the conjugate gradient method and SSOR preconditioning.

https://github.com/MalikScheifinger/WaveKineticBC.git
https://www.dealii.org
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In Figure 4.1 we show the numerical approximation of (4.1) using the data given in Section 4.4 at
four different times.

Figure 4.1: Snapshots of the solution at times t = 0, 0.2, 0.4, 0.6 (from top left to bottom right) using the
IMEX method with time stepsize τ = 0.1.

In Figure 4.2 we illustrate the error of our method against the time stepsize τ . The error is measured
at the endtime T = 0.8 in the Vα ×H norm. We observe second-order convergence in time.

10−3 10−2
10−4

10−3

10−2

10−1

2

time stepsize τ

V
α
×
H

er
ro

r

Figure 4.2: Error evaluated at the endtime T = 0.8 in the Vα ×H norm plotted against time stepsize τ .
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