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Abstract
Background  The Global Carbon Project provides annual updates on anthropogenic and natural components of the 
Global Carbon Budget. Dynamic Global Vegetation Models (DGVMs) contribute to these estimates and are used to 
simulate the evolution of terrestrial carbon sinks. However, DGVMs are known to poorly represent disturbances such 
as fire, leading to uncertainties in estimates of mean, interannual variability (IAV), and trends in land carbon fluxes. 
To address this issue, we propose a hybrid-process-based assessmentby constraining three DGVMs (OCN, JULES-
INFERNO, and ORCHIDEE-MICT) with remotely-sensed burned areas from ESA CCI (FIRECCI51) and climate data from 
ERA5 reanalysis. We aim to improve the representation of the spatio-temporal variability of regional carbon budgets, 
namely fire emissions, above-ground biomass carbon (AGC), and vegetation-related variables—leaf area index (LAI) 
and gross primary productivity (GPP).

Results  Prescribing burned area (BA) in DGVMs reveals contrasting patterns between prognostic (model simulations) 
and diagnostic (simulations with prescribed BA) runs. As prognostic tends to overestimate BA, particularly across 
tropical and high-latitude regions, diagnostic simulations correct this issue, by reducing bias and improving the IAV 
and the agreement with satellite-based datasets of BA and fire emissions in these regions. Moreover, enhanced IAV 
of AGC is simulated by diagnostic runs, essentially due to better representation of biomass carbon in the mentioned 
regions. Although moderate improvements are found in LAI and GPP, as the differences between the two runs are 
more limited, the improvements between prognostic and diagnostic are more evident in their IAV, particularly for LAI, 
rather than on long-term means, indicating that prescribed fire can improve the representation of some variability 
patterns.

Conclusions  Prescribing remotely-sensed BA in models can lead to a better representation of global BA, fire 
emissions and AGC, particularly improving the IAV, reducing bias and enhancing the agreement with satellite 
datasets. The moderate improvements in vegetation-related variables underscore the need to better constrain fire 
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Introduction
The Global Carbon Budget (GCB), integrated into the 
Global Carbon Project (GCP), provides annual updates 
of anthropogenic influence on carbon stocks from local 
to global scales [28, 40, 41]. Global spatially explicit mod-
els contribute to GCB by estimating net carbon sources, 
sinks, and their exchanges over time. However, the 
net annual carbon balance between the anthropogenic 
sources and sinks estimated by the process-based models 
does not always match the measures of atmospheric CO2 
growth [4, 8, 51]. This imbalance can be largely attributed 
to limitations in datasets and uncertainties in represent-
ing different fluxes, mainly related to deforestation, net 
ecosystem exchange, changes in land cover, land use and 
management practices [8, 29, 66, 68].

Despite the identified discrepancies at smaller scales, 
Dynamic Global Vegetation Models (DGVMs) are key 
tools to simulate local and global terrestrial carbon bud-
gets. Ongoing efforts to enhance the representation of 
carbon dynamics allow these models to better attribute 
changes in those budgets to different processes, such as 
land-use, land-cover change and management (LULCC), 
elevated CO2 levels, nutrient deposition (e.g., NO2), and 
fires [13, 48, 68]. In this context, the pilot project from 
the European Space Agency—Climate Change Initiative 
(ESA CCI), REgional Carbon Cycle Assessment and Pro-
cesses project phase 2 (hereafter, RECCAP2), integrated 
in GCP, has been delivering accurate global budgets of 
carbon dioxide, methane, and nitrogen, and promot-
ing synergies between process-based models and Earth 
Observation (EO)-based datasets, including satellite data 
for Greenhouse Gas (GHG) estimations and atmospheric 
inversions of GHG fluxes [18, 22, 37, 39, 61]. As a result, 
estimations of net carbon stocks and biomass change 
have been adjusted and improved, helping to identify and 
correct the uncertainties already mentioned [10, 21, 49].

Climate extremes and disturbances, particularly fire, 
remain major sources of uncertainty [30]. Poor repre-
sentations of disturbances and models’ ability to realisti-
cally simulate the impacts of fire and following recovery 
further affects the estimations of carbon uptake by the 
regrowing vegetation in the following years [43, 49, 54]. 
Intercomparison projects, such as “Trends and drivers 
of the regional scale terrestrial sources and sinks of car-
bon dioxide” (TRENDY), that consists on a set of DGVM 
simulations using a common protocol and set of driv-
ing datasets [60, 61] have been essential in assessing the 
impacts of droughts and heatwaves on local–regional 

carbon budgets [6, 9, 42, 57], as well as in evaluating 
burned areas and fire emissions [5, 16, 17, 24]. However, 
these studies consistently show that models still struggle 
to simulate fire seasons length, fuel build-up—especially 
in drylands and savannas—and, more importantly, rep-
resent the interannual variability of burned area [7, 30]. 
Fire-enabled DGVMs typically represent fire as an emer-
gent process from interactions between climate, vegeta-
tion and human activity. Burned areas are simulated as 
a function of ignitions and fire spread, depending on 
fuel availability, moisture and weather conditions [30, 
55]. The combustion of biomass transfers carbon from 
live and dead pools to the atmosphere (fire emissions), 
using emissions factors that vary across biomes and fire 
regimes. Following fire, the regrowth of vegetation is 
primarily driven by net primary production (NPP), with 
biomass pools recovering according to prescribed turn-
over times that represent background disturbance [55]. 
Although the algorithm may differ across DGVMs, com-
mon challenges remain in simulating realistic fire season 
length, biomass combustion, and post-fire vegetation 
recovery, therefore leading to discrepancies in estimating 
fire emissions, carbon losses, and impacts on vegetation 
dynamics.

Remote-sensing datasets offer opportunities to improve 
fire representation in DGVMs, and consequently vegeta-
tion dynamics and carbon fluxes. In this work, we analyse 
the influence of uncertainties associated with simulated 
fire regimes in carbon and vegetation-related Essential 
Climate Variables (ECVs), by testing the feasibility of a 
hybrid process-based between DGVMs and EO-based 
data, where models are constrained by satellite-driven 
burned area data from ESA CCI product, FIRECCI51 
[45] and climate data from ERA5 [32]. By combining 
prognostic DGVMs with remote-sensing datasets, this 
approach allows for delivering improved updates of fire 
emissions (fFire), natural Above-ground Biomass Car-
bon (AGC), Leaf Area Index (LAI) and Gross Primary 
Production (GPP), from regional to global scale. By con-
trolling the uncertainties in fire occurrence and extent, 
we further aim to inform fire-enabled DGVMs and their 
host Earth System Models (ESMs) on improvements to 
fire-related algorithms.

Data and methods
Forcing data
To prescribe the burned area (BA) in DGVMs, we use 
the product FIRECCI51 from ESA CCI [45]. FIRECCI51 

impacts and vegetation dynamics in models, to enhance the simulation of spatio-temporal variability and dynamics 
of regional-scale vegetation and carbon-related fluxes.
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is a global product, available with spatial resolutions of 
250  m and 0.25 degrees and monthly time-step for the 
period 2001–2020. This dataset combines information 
from MODIS to generate and detect the global BA by 
using the thermal anomalies product (MCD14ML) and 
the near-infrared reflectance product (MOD09Q1). The 
algorithm first identifies candidate seed pixels and then 
applies a region-growing technique to aggregate the 
active fires and the affected surrounding areas. The algo-
rithm of FIRECCI51 allows to achieve similar or better 
accuracies among different global BA datasets of burned 
area detection and omission errors, with a better capture 
of small BA patches particularly over African savannas, 
but also in the forests of northern boreal regions, which 
is relevant for the purpose of our analysis [20, 25, 26, 45]. 
The algorithm, combined with the detailed spatial resolu-
tion, provides a more accurate monitoring of global BA, 
constituting a suitable dataset for our study.

For all simulations, climate forcing data from ERA5 
[32] were used, at 0.25º spatial resolution and hourly 
time-step, initially from 1950 to 2020, later revised to 
the period 1960–2020 because of identified preliminary 
issues with precipitation of ERA5 forcing in the 1950s 
[11]. The atmospheric CO2 forcing is based on global-
ice core + NOAA annual resolution used in GCB (1960–
2020), the LULCC maps are based on LUH2v2h database 
[19] and the land cover map is kept fixed to 2010 (same 
forcing as TRENDY-GCB2021, [61]) at the spatial resolu-
tion of 0.25º.

Model simulations protocol
Modeled burned areas, terrestrial carbon fluxes and veg-
etation-related variables are derived from three differ-
ent DGVMs: OCN [62], JULES-INFERNO [15, 46], and 
ORCHIDEE-MICT [71]. Table 1 provides more details 
about each process-based model.

OCN and ORCHIDEE-MICT outputs are provided at 
0.50º latitude × 0.50º longitude of spatial resolution. For 
JULES, as outputs are provided at 1.25º latitude × 1.875º 
longitude of spatial resolution, we remap them to the 
common grid of 0.50º × 0.50º from its coarser resolution, 
using an area-conservative weighted remapping tech-
nique. We find residual differences between the global 
totals, which are due to the land/ocean mask between the 
different models and at different resolutions.

In OCN, BA is prescribed only for natural PFTs, 
whereas in JULES and ORCHIDEE-MICT is prescribed 

for all PFTs. It is important to note that JULES simu-
lates its own Plant Functional Type (PFT) distribution 
and thus, any biases in model simulations disturbance 
will have a feedback on natural vegetation dynamics. In 
OCN and JULES, nitrogen input datasets are available 
via the Nitrogen Model Intercomparison Project (NMIP) 
datasets [64] and data are available until 2014. Hence, we 
assume that nitrogen input data remained unchanged 
between 2015 and 2020.

The protocol description for each model’s spin-up and 
simulations with burned area is shown in Table 2. For the 
spin-up, climate data, firstly regridded to the common 
grid of 0.50ºx0.50º, are cycled multiple times from 1960–
1969 for OCN and JULES, while for ORCHIDEE-MICT 
the years are randomly mixed up.

In BA simulated by models (hereafter named prognos-
tic runs) fire is simulated with constant CO2 concentra-
tion and LU maps from 2010 until the carbon pools are 
in equilibrium. For the simulations with prescribed BA 
(hereafter named diagnostic runs), BA from FIRECCI51 
is used. Since FIRECCI51 dataset covers two decades, 
and to avoid a long spin-up calculation time, we con-
duct a first test in which the diagnostic BA simulation is 
initialised directly from the equilibrium state of the cor-
responding prognostic simulation. Due to limitations 
found in the protocol for the first two years of data from 
FIRECCI51, the diagnostic runs are initialised in 2003.

The land cover map was fixed to 2010, and regridded to 
0.50ºx0.50º common grid, and is implemented following 
the “S2” simulation protocol of TRENDY-GCB2021 [27, 
61], so that our simulations include the effects of elevated 
CO2 and climate change but do not account for changes 
in land cover. Therefore, and since satellite-based BA 
from FIRECCI51 does not allow distinguishing between 
human-made and natural fires, we avoid potential dou-
ble-counting of fire emissions from deforestation and 
management, and the resulting spatio-temporal patterns 
of carbon fluxes and biomass changes reflect, therefore, 

Table 1  Characteristics of the models used in this study
Model Spatial

resolution
Fire model Prescribed 

burned area
OCN 0.50º × 0.50º Thonicke et al., [62] Natural PFTs

JULES 1.25 º × 1.875º INFERNO [15, 46] All PFTs

ORCHIDEE-MICT 0.50º × 0.50º SPITFIRE [71]

Table 2  Model experiments conducted in this study
Simulation Co2 Climate LUC Initialise Purpose
Spin-up 
Prognostic

Fixed 
(1960)

Randomize
1960–1969

Fixed 
(2010)
LUH2v2h

- Initialize 
carbon 
pools

S0 End of 
Spin-up 
Prognostic

Control

S2
Prognostic

Time-
vary-
ing
1960–
2020

Time-
varying
1960-
Dec2020

Evalu-
ate BA 
simu-
lated by 
models

S2
Diagnostic

Time-
vary-
ing
2003–
2020

31 De-
cember 
2002 for S2 
Prognostic

Com-
pare 
with 
obser-
vations
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mostly natural variability components, but also include 
effects of human-driven fires.

To prescribe burned areas from FIRECCI51, we first 
convert BA per vegetation type to their correspond-
ing plant functional type (PFT) that can be affected 
by fire in each model (see Table  1). The global BA for 
diagnostic runs of JULES (JULESDIAG) and ORCHI-
DEE-MICT (ORCHIDEE-MICTDIAG) coincides exactly 
with FIRECCI51 as expected, given that all vegetation 
types—natural vegetation and cropland fires—are con-
sidered, while diagnostic runs of OCN (OCNDIAG) only 
include fires in natural vegetation. Therefore, the global 
BA in OCNDIAG is expected to be slightly lower than for 
the other models. Furthermore, OCN distributes burned 
area fraction by gridcell coverage of the natural PFTs, 
weighted by an estimate of PFT-specific flammability 
and fire resistance, resulting in small differences with 
FIRECCI51. In contrast, JULES and ORCHIDEE-MICT 
allocate BA in proportion to gridcell PFT coverage.

Following the spin-up, we conduct the model’s prog-
nostic and diagnostic simulations, and then analyse the 
corresponding fire emissions, above-ground biomass car-
bon, leaf area index, and gross primary production sim-
ulated by the three DGVMs. To assess the performance 
of the prognostic and diagnostic simulations, we further 
compare their outputs against multiple satellite-based 
datasets.

Satellite-based Essential Climate Variable (ECV) data for 
model benchmarking
The details of satellite-based ECVs data used in this study 
for model benchmarking are described in Table  3. We 
compare the model simulations for BA with two other 
satellite-based datasets: Global Fire Emissions Data-
base (GFED4.1s, [67]) and FIRECCILT11 (Óton et al., 
[50]). GFED4.1s includes small fires, combining satellite 
information on fire activity and vegetation productivity 
to estimate monthly burned area at 0.50º spatial resolu-
tion. The database spans from 1997 to 2023, estimating 
BA and fFire at a gridded 0.25º × 0.25º. The FIRECCILT11 
(hereafter referred to as AVHRR-LTDR) was also devel-
oped by ESA CCI for the period 1982–2018, encom-
passing global monthly composites estimated at 0.05º 
pixel resolution. This product uses combined spectral 
information from both Advanced Very High-Resolution 
Radiometer (AVHRR) sensor produced by the National 
Oceanic and Atmospheric Administration (NOAA) and 
Land Long Term Data Record (LTDR) v5, which is pro-
duced by the National Aeronautics and Space Adminis-
tration (NASA). These products are suitable for our study 
because the time-series is quite long and thus allows for 
the benchmarking of mean, IAV and trends of burned 
areas simulated by DGVMs. For fire emissions estimates, 
alongside GFED4.1s, we compare the model outputs with 
Global Fire Assimilation System v1.2 (GFAS1.2) from 
Copernicus Atmosphere Monitoring Service (CAMS) 
[36]. This product provides fire emissions from 2003 to 
present with a spatial resolution of 0.10º, relying on satel-
lite observations of fire radiative power (FRP), which is 
directly related to the biomass combustion rate [69].

We further assess the influence of prescribing BA on 
vegetation and carbon-related ECVs for which global 
datasets are available: AGC, LAI and GPP.

To evaluate AGC, model outputs are compared with 
the satellite-based dataset from ESA CCI, the ESA CCI 
BIOMASS project, version 4.0 Santoro et al., [59]. This 
dataset provides annual forest above-ground biomass 
(AGB) density maps for the years 2010, 2017, 2018, 2019 
and 2020 with a spatial resolution of 100 m. The product 
is generated by integrating multiple observations, includ-
ing ESA’s C-band, JAXA’s L-band Synthetic Aperture 
RADAR and space borne LIDAR, and using advanced 
AGB retrieval algorithms of improved allometries. 
Because DGVMs simulate total living biomass—includ-
ing both above- and below-ground components—we 
scale the modelled biomass carbon values so that we 
consider only the above-ground carbon. Specifically, we 
use the above-to-below-ground biomass ratios map from 
Huang et al. [31] that estimates the fraction of total bio-
mass carbon allocated above ground. The distribution of 
the AGC fraction is closer to 1 in higher latitudes of the 
Northern Hemisphere and closer to 0.7–0.8 in equatorial 

Table 3  Description of temporal coverage and the native spatial 
resolution of satellite-based ECV datasets used to compare with 
the model’s outputs
Variable Dataset Temporal 

coverage
Native 
spatial 
resolution

Reference

Burned Area FIRECCI51 2001–2020 250 m Lizundia-Loio-
la et al., [45]

GFED4.1s 1997–2016 0.25º van der Werf 
et al., [67]

AVHRR-LTDR 1982–2018 0.05º Óton et al., 
[50]

Fire 
Emissions

GFED4.1s 1997–2020 0.25º van der Werf 
et al., [67]

GFAS1.2 2003–2020 0.10º Kaiser et al., 
[36]

Above 
Ground 
Biomass

ESA CCI 2010
2017–2020

100 m Santoro et al., 
[59]

Leaf Area 
Index

GLOBMAP 1982–2020 0.08º Liu et al., [44]

MODIS 2001–2020 500 m Myneni et al., 
[47]

Gross 
Primary 
Productivity

MODIS 2001–2020 500 m Running et al., 
[58]

FLUXCOM 2001–2020 0.50º Jung et al., 
[35]
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and tropical latitudes, as shown in Figure S1. Then, we 
apply a similar conversion to the ESA CCI AGB dataset. 
First, we convert the original units, i.e., MgC/ha in kgC/
m2 by multiplying by a scale of 0.1 and then, to obtain 
the amount of carbon of the biomass in each pixel, we 
applied a biomass-to-carbon conversion factor of 0.47. 
This factor is recommended by the 2006 IPCC Guidelines 
for National Greenhouse Gas Inventories (see 2006 IPCC 
guidelines for national greenhouse gas inventories [1]) 
and has been widely used in empirical studies to convert 
dry biomass into its carbon equivalent.

LAI quantifies the area of green leaves covering the 
ground surface [23] and we compare model simula-
tions with two satellite-based datasets: MODIS [47] and 
GLOBMAP [44]. The MODIS LAI is available from 2001 
to present, and the algorithm derives from the spectral 
information captured in red and near-infrared bands, 
using a Biome Property Look-Up Table [38] while the 
GLOBMAP LAI has a temporal coverage from 1982 to 
2020 and the algorithm consists of the long-term combi-
nation of both AVHRR and MODIS datasets. Both datas-
ets have a temporal resolution of 8-day, with the primary 
difference being their spatial resolution: MODIS has a 
native spatial resolution of 0.005º, while GLOBMAP is at 
0.08º.

GPP quantifies the ecosystem-scale photosynthetic 
flux, and model simulations are compared with EO-based 
GPP estimates from MODIS Running et al., [58] and 
FLUXCOM [35]. MODIS GPP has been available since 
2001 and is derived using a light-use efficiency algorithm 
that combines satellite-derived absorbed photosyntheti-
cally active radiation (APAR), surface meteorological 
data, and biome-specific radiation conversion efficiency 
[72]. FLUXCOM GPP, on the other hand, spans from 
2001 to 2020 and the product is generated by an upscal-
ing eddy-covariance flux tower measurements using 
multiple machine learning algorithms trained with mete-
orological measurements and satellite data, including 
LAI, Middle Infrared Reflectance (MIR), or the Normal-
ized Difference Vegetation Index (NDVI) [65]. Both data-
sets provide GPP with an 8-day temporal resolution, but 
they significantly differ in spatial resolution: MODIS has 
a native resolution of 0.005º, while FLUXCOM operates 
at a coarser 0.50º resolution.

All the satellite-based datasets were re-gridded to the 
common spatial resolution of 0.50º using area-conserva-
tive weighted remapping technique.

Statistical metrics
To assess the effect of BA prescription, we average the 
values of BA for the common period 2003–2016 among 
prognostic, diagnostic, and satellite-based datasets, and 
calculate the differences between model simulations. For 
fFire, LAI, and GPP, the common period of both DGVMs 

runs and satellite-based datasets is 2003–2020, and for 
AGC, the common period of 5 years includes 2010 and 
2017–2020 due to the availability of ESA CCI product.

The interannual variability (IAV) is determined based 
on annual standard deviation applied to prognostic and 
diagnostic runs for the common period of the variable, 
as well as the root mean square error (RMSE). Spatial 
Pearson correlation coefficients between the model’s 
simulation and respective satellite-based datasets are also 
determined. It should be noted that for AGC, the tempo-
ral range of the ESA CCI dataset is short, but for the rea-
sons previously described, it is the only product suitable 
for our analysis.

Results
Burned areas
We first compare the global annual burned areas simu-
lated by the three DGVMs with prognostic (1960–
2020) and diagnostic (2003–2020) runs with BA from 
GFED4.1s and AVHRR-LTDR (Fig. 1, top panel).

Since the 2000s, both OCNPROG and JULESPROG runs 
simulate higher global BA than satellite-based datas-
ets (about 8 Mkm2 yr−1 and about 6 Mkm2 yr−1, respec-
tively). In comparison, ORCHIDEE-MICTPROG estimates 
a global BA of about 4 Mkm2 yr−1, a value already closer 
to (but lower than) the set of EO-based BA datasets, 
which generally agree with a global BA of 4.5 Mkm2 yr−1. 
The prescription of BA from FIRECCI51 results in lower 
estimates of global BA compared to prognostic runs, with 
OCNDIAG simulating about 4 Mkm2 yr−1 while JULESDIAG 
and ORCHIDEEDIAG match exactly with FIRECCI51, as 
expected given the simulation protocol. Moreover, the 
three prognostic runs simulate an increasing global trend 
that is at odds with the sustained long-term decline of BA 
simulated by the three diagnostic runs, as well as the set 
of satellite-based datasets.

Regional contrasts between prognostic and diagnostic 
runs of DGVMs are illustrated in Fig. 1, bottom panels. 
OCNDIAG and JULESDIAG simulate lower BA over regions 
where the prognostic runs overestimate BA, particu-
larly across tropical and semi-arid regions of the South-
ern Hemisphere, such as Cerrado in South America 
and Sahel in Africa. On the other hand, JULESDIAG and 
ORCHIDEE-MICTDIAG estimate higher BA over sub-
tropical regions of southern Africa and northern Aus-
tralia. In extratropical zones, especially in boreal regions 
of North America and Siberia, the three diagnostic runs 
show an increase of BA, with differences between prog-
nostic and diagnostic of about 500 km2 yr−1.

Important differences are detected in the interannual 
variability (IAV) of global BA, in correlations with inde-
pendent EO-based datasets, and in root mean square 
error (RMSE). These differences are illustrated in the fol-
lowing Taylor diagrams (Fig. 2). Globally (left panel), the 
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IAV decreases from OCNPROG to OCNDIAG, contrasting 
with an increase in global IAV in JULESDIAG and ORCHI-
DEE-MICTDIAG. Additionally, the prescription of BA also 
enhances the global agreement of model runs with satel-
lite-based datasets, as correlation coefficients shift from 
about 0.5 (ORCHIDEE-MICTPROG) and 0.7 (JULESPROG) 
to approximately 0.95–0.99 in diagnostic simulations, 
alongside a reduction of RMSE across the three mod-
els. These global improvements are mainly driven by 
alterations in the BA simulation within the tropical 

band (central panel). Here, JULESDIAG and ORCHIDEE-
MICTDIAG reveal an evident increase in IAV, likely due to 
higher standard deviation in Australia and African tropi-
cal forests. In contrast, OCNDIAG shows a reduction in 
IAV, mainly driven by reductions of standard deviation 
in Amazonia and northern Australia (see Figure S2 for 
standard deviation maps). Diagnostic runs in the tropi-
cal band exhibit not only correlation coefficients up to 
0.95–0.99 but also a significant reduction in RMSE, par-
ticularly for OCN, from about 0.60 Mkm2 to about 0.20 

Fig. 1  Top panel: Time-series of global annual burned area in Mkm2 yr−1 simulated by OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for the 
prognostic (thin lines) and diagnostic (bold lines) simulations. The model simulations are compared with satellite-driven datasets, FIRECCI51 (black, over-
lapping with both JULESDIAG and ORCHIDEE-MICTDIAG simulations), GFED4.1s (dark grey), and AVHRR-LTDR (light grey). The shaded area represents the 
common period of three DGVMs and satellite-based datasets of BA, 2003–2016; Bottom panel: Spatial patterns of mean burned area in km2 yr−1 for the 
common period 2003–2016 simulated by the DGVMs between the prognostic (left panels), diagnostic (central panels), and difference between prognos-
tic and diagnostic simulations (right panels)
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Mkm2. Similar patterns are also evident in extratropi-
cal latitudes (right panel), as the three DGVMs estimate 
an increase in their IAV from prognostic to diagnostic 
runs, mainly due to higher standard deviation in Siberia 
(Figure S2). Additionally, for the three models, the cor-
relations increase in the diagnostic runs, especially for 
JULESDIAG and ORCHIDEE-MICTDIAG, but RMSE does 
not significantly change.

Fire emissions
In this section, we compare global annual fire carbon 
emissions simulated by the three DGVMs with both 
prognostic (1960–2020) and diagnostic (2003–2020) 
runs against the satellite-based datasets, GFED4.1s and 
GFAS1.2 (Fig.  3). Both OCNPROG and JULESPROG simu-
late higher fFire (4 PgC yr−1 and 3 PgC yr−1, respectively) 
than the EO-based datasets, GFED4.1s and GFAS1.2, 
which is strongly associated with an overestimation of 
BA, as seen in Fig.  1, whereas ORCHIDEE-MICTPROG 
estimates slightly more than 1 PgC yr−1. All three prog-
nostic runs show poor agreement with GFED4.1s and 
GFAS1.2, which simulate a global fFire of approximately 
2–2.5 PgC yr−1. The prescription of BA, which led to a 
reduction of global BA (seen in the previous section) also 
results in a reduction of global fFire. Although the esti-
mates of both OCNDIAG and JULESDIAG become closer 
to the satellite-based datasets, ORCHIDEE-MICTDIAG 
still underestimates fFire relative to the other DGVMs, 
as well as to GFED4.1s and GFAS1.2. Overall, a decline 

followed by a recent stabilisation of fFire is observed in 
the DGVMs and is in good agreement with the satellite-
based ECVs.

The maps of Fig.  3, bottom panels, show that spatial 
differences in mean annual fFire between the prognos-
tic and diagnostic simulations roughly match the dif-
ferences in simulated BA in each model (see maps of 
Fig. 1). Despite the decline in global BA, the time-series 
of diagnostic simulations, particularly the OCNDIAG and 
JULESDIAG, indicate that global fFire has been relatively 
stable over the past two decades (2003–2020), that may 
be attributed to reductions in fire emissions over savan-
nas and semi-arid regions, especially in regions such as 
the Brazilian Cerrado, parts of southern Africa and the 
Sahel, and northern Australia. Nevertheless, for JULES-
DIAG and ORCHIDEE-MICTDIAG, some regions with 
higher BA in the diagnostic runs show lower fFire, e.g., 
in parts of the Sahel and transitional tropical African 
forests, and in ORCHIDEE-MICTDIAG, the reduction of 
fFire is more pronounced in southern Africa and over 
parts of the Sahel. In boreal regions of the Northern 
Hemisphere, the prescription of BA in the three DGVMs 
leads to a higher fFire, particularly in OCNDIAG, which is 
mainly driven by the increase of simulated BA in these 
regions.

The Taylor diagrams of Fig. 4 highlight important con-
trasts in the IAV of fFire. Globally (left panel), the IAV 
simulated by OCN decreases from prognostic to diag-
nostic runs, associated with the reduction of standard 

Fig. 2  Taylor diagrams of the BA simulations of OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for prognostic runs (circles) and diagnostic runs 
(diamonds), compared with GFED4.1s (coloured) and AVHRR-LTDR (uncolored) in a global scale (left panel), in the tropical band between 20ºN—20ºS 
(central panel), and in the extratropical band of northern Hemisphere between 45º N—90ºN (right panel). The standard deviation of reference (black 
dashed contour) corresponds to the mean of all runs. JULESDIAG and ORHIDEE-MICTDIAG overlap. The units of standard deviation and RMSE are Mkm2
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deviation (see maps of Figure S3), and increases from 
prognostic to diagnostic runs of JULES and ORCHIDEE-
MICT. In parallel, more consistent correlation coeffi-
cients are observed, particularly with GFED4.1s, which 
change from approximately 0.60 (ORCHIDEE-MICT-
PROG) and 0.70 (OCNPROG and JULESPROG) to about 0.80 
in diagnostic runs of the three models. This greater agree-
ment with EO-datasets is due to changes in fFire estima-
tions, particularly in extratropical regions (diagram of 
the right panel). The higher IAV and RMSE observed in 
diagnostic runs are intimately related to evident changes 

in fFire in boreal regions, particularly in Siberia, as previ-
ously discussed and also observed in maps of IAV of Fig-
ure S3.

We find that the bias reduction (see global maps in 
Figure S4) is especially pronounced in semi-arid tropical 
and subtropical regions of Southern America, Africa, and 
Oceania. The overestimation of fFire by OCNPROG and 
JULESPROG is reduced, as improved fFire over the regions 
mentioned before is detected. Nevertheless, high fFire in 
tropical forests of Africa in JULESDIAG is still noticeable. 
Regarding ORCHIDEE-MICT, the bias differences are 

Fig. 3  Top panel: Time-series of global annual fFire simulated by OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for the prognostic (thin lines) 
and diagnostic (bold lines) simulations. The model simulations are compared with the fFire satellite-based datasets, GFED4.1s (black) and GFAS1.2 (grey). 
The shaded area represents the common period of three DGVMs and remotely-sensed datasets of fFire, 2003–2020; Bottom panel: Spatial patterns of 
mean fFire in gC m−2 yr−1 for the common period 2003–2020 simulated by the DGVMs between the prognostic (left panels), diagnostic (central panels), 
and the difference between prognostic and diagnostic simulations (right panels)
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smaller, but some regions also have a switch in the sign 
of the mean fFire bias, such as Sahel, tropical Africa, and 
Cerrado. Furthermore, a change in the signal of bias from 
prognostic to diagnostic runs of fFire in boreal regions, 
particularly in Eurasia and Siberia, is detected.

After analysing how prescribing BA affects fire emis-
sions, we assess how it affects vegetation-related vari-
ables, as these have an influence on changes in available 
fuel to burn and fire emission factors.

Biomass and vegetation
Here, we analyse how the prescription of burned area 
from FIRECCI51 changes the vegetation-related vari-
ables of above-ground carbon (AGC), leaf area (LAI) and 
gross primary production (GPP).

Global maps of AGC distribution (Fig.  5) show the 
three models simulating higher biomass carbon stocks 
in the forest regions of the tropics, temperate, and boreal 
regions. OCNPROG simulates the highest AGC densities, 
particularly over the tropical forests and in transitional 
areas between the Amazon forest and the Brazilian Cer-
rado regions. JULESPROG estimates a sharp decrease in 
the transition between high biomass density in the Ama-
zon forest and low biomass in the semi-arid region of 
Cerrado. This is because JULES simulates dynamically 
the natural vegetation distribution and with the inclu-
sion of fire and related feedbacks leads to sharp biome 
boundaries. In contrast, both OCNPROG and ORCHI-
DEE-MICTPROG, which prescribe natural vegetation dis-
tribution, estimate smoother transitions between tropical 
forests and drylands.

The simulations with prescribed BA result in higher 
biomass in the transitional regions between the Amazon 
forest and Cerrado in both OCNDIAG and JULESDIAG. 
This increase in AGC may be driven by lower BA in diag-
nostic runs in these regions, as previously shown. On the 
contrary, in transitional areas between humid forests and 
semi-arid regions in tropical Africa and Asia, as well as 
over arid regions of South America and parts of southern 
Africa, OCNDIAG and JULESDIAG estimate lower biomass 
carbon stocks than in the prognostic runs, consistent 
with the zonal patterns of higher BA in the diagnostic 
runs. The same is observed in boreal Eurasia, particu-
larly in Siberia, mainly resulting from the increase of BA 
in diagnostic runs across these regions. JULESDIAG also 
reports an increase in biomass stocks in North Amer-
ica and parts of northern Europe. On the other hand, 
ORCHIDEE-MICT shows small differences in biomass 
between the two simulations.

The Taylor diagrams of Fig.  6 show that, by prescrib-
ing BA from FIRECCI51, the IAV of AGC in JULESDIAG 
increases in both tropical (middle panel) and extratropi-
cal (right panel) bands. In turn, OCNDIAG reports an 
increase of IAV in the tropical band that is partially coun-
terbalanced by the decrease in extratropical latitudes, 
resulting in small changes in global IAV. In ORCHIDEE-
MICTDIAG, a small increase of IAV in the extratropical 
band is detected, which can be linked to the increase 
of BA simulated in the boreal regions of Siberia. Even 
though the common period of analysis is short to deter-
mine the correlation coefficients between the models and 
the satellite-based dataset, the Taylor diagrams reveal 

Fig. 4  Same as Fig. 2, but for fFire simulations, which are compared with GFED4.1s (coloured) and GFAS1.2 (uncolored). The units of standard deviation 
and RMSE are PgC
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Fig. 6  Same as Fig. 2 and 4, but for AGC simulations, which are compared with the satellite-driven dataset from ESA CCI. The AGC units of standard devia-
tion and RMSE are PgC

 

Fig. 5  Comparison of spatial patterns of annual mean AGC in gC m−2 yr−1 for the 5-year period (2010, 2017–2020) simulated by the OCN (yellow), JULES 
(red), and ORCHIDEE-MICT (purple) between the prognostic (left panels), diagnostic (central panels) and the difference between prognostic and diag-
nostic (right panels)
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no meaningful changes in global correlations within the 
three DGVMs, which range from 0.75 in JULES, 0.90 in 
ORCHIDEE-MICT and about 0.95 in OCN.

We then compared how prescribing BA affects LAI and 
GPP. According to the maps of Fig. 7 (LAI) and Figure S6 
(GPP), the regions where the LAI and GPP are the high-
est, such as the tropical forests of South America, Africa, 
and Asia, roughly match the areas where the AGC is 
maximum. Furthermore, LAI and GPP over transitional 
areas between forest and semi-arid territories, like the 
Brazilian Cerrado and the African Sahel, have the same 
spatial pattern as AGC. In these areas, JULES estimates 
a sharp decrease in LAI, whereas OCN and ORCHIDEE-
MICT simulate a smoother transition in values.

The prescription of BA leads to more significant 
changes in vegetation-related variables in OCNDIAG and 
JULESDIAG. An increase in mean LAI and GPP occurs in 
regions where a decrease in BA and fFire is verified, such 
as the Brazilian Cerrado and some territories of south-
ern Africa, while mean LAI and GPP decrease where an 
enhancement of BA in diagnostic runs are observed, such 
as in the humid forests and semi-arid regions of tropical 
Africa and Asia, as well as in the arid regions of South 
America. These changes are evident in OCNDIAG run and 
especially in JULESDIAG. Moreover, the increase in mean 

LAI may lead to higher GPP in transitional semi-arid 
areas of South America and the decrease in LAI leads to 
lower mean GPP over the tropical forests of Africa and 
Asia.

Diagnostic simulations also show differences in LAI 
and GPP across the extratropical Northern Hemisphere, 
compared to prognostic runs. In OCNDIAG and JULES-
DIAG, mean values decrease at boreal latitudes of Eurasia, 
particularly in Siberia, where higher BA is detected. By 
contrast, only JULESDIAG estimates a strong increase in 
LAI and GPP in North America, which may be attributed 
to the higher AGC estimation promoted by lower BA 
and also fFire. In ORCHIDEE-MICTDIAG, the global dif-
ferences in mean LAI and GPP between simulations are 
almost negligible, although some points in the tropical 
areas of Africa show positive differences, i.e., a decrease 
in LAI.

An increase in the IAV of global LAI and GPP is 
observed from prognostic to diagnostic simulations of 
OCN, and particularly of JULES (Fig.  8 and Figure S7). 
This increase is primarily driven by heightened IAV 
across the extratropical band, especially in the boreal 
zones of Eurasia and North America. Prognostic simula-
tions already demonstrate strong correlations with sat-
ellite-based datasets (GLOBMAP and MODIS for LAI, 

Fig. 7  Comparison of spatial patterns of annual mean leaf area index (LAI) for the period 2003–2020 simulated by OCN (yellow), JULES (red), and ORCHI-
DEE-MICT (purple) between the prognostic (left panels), diagnostic (central panels) and the difference between prognostic and diagnostic (right panels). 
The unit of LAI is m2m−2
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and FLUXCOM and MODIS for GPP), with coefficients 
ranging from approximately 0.70 in JULES to 0.80–0.90 
in OCN and ORCHIDEE-MICT, showing no significant 
changes in diagnostic simulations.

Discussion of results
Impacts of prescribed burned area on regional fire 
dynamics
The results with prescribed BA from FIRECCI51 show 
a general decrease of global BA from prognostic to 
diagnostic runs in the OCN and JULES. Over the tropi-
cal band of the Southern Hemisphere, the decrease of 
BA extension was more noticeable, due to its decline 
over African savannahs, associated with changes in fuel 
driven by hydrological changes, landscape fragmentation, 
and agricultural activity [3, 33, 34]. At the same time, 
ORCHIDEE-MICTDIAG reveals a contrasting pattern by 
simulating higher BA in the same regions. These higher 
burned area extension might be related to human-related 
fires considered in FIRECCI51 but not in the “S2” simula-
tions by DGVMs. The model’s simulations run with fixed 
land cover maps (except JULES, which simulates dynami-
cally natural vegetation), so they do not necessarily cap-
ture these environmental and human-driven changes in 
fuel and landscape connectivity. Therefore, they are likely 
to have a stronger coupling between fire weather and BA. 
Nevertheless, it should be noted that recent trends and 
variability in BA are under scrutiny, given the potential 
underestimation of global BA products based on coarse 
resolution remote-sensing and the prevalence of unde-
tected small fires, e.g., in Africa [56]. Furthermore, we 

detected an evident prognostic-diagnostic contrast in 
BA between African and South American savannas, 
particularly in OCN and JULES, which may be associ-
ated with biome/region-specific fire response thresholds 
to moisture and fuel loads, as shown by Alvarado et al., 
[2], implying that the DGVMs should not use common 
parameter values for the globe.

The prescription of BA in DGVMs generally increased 
the IAV and the agreement of modeled fire emissions, 
which directly depend on BA, with independent satel-
lite-based datasets. According to the results, the differ-
ences in global IAV of fFire between simulations showed 
a consistent and similar pattern to the difference in the 
variance of BA. Moreover, a greater global agreement 
with GFED4.1s and GFAS1.2 emissions was noticeable, 
likely due to improvements in global fFire estimations, 
especially among high latitudes [12], where fFire has 
increased over the past years [34]. However, in JULES-
DIAG and ORCHIDEE-MICTDIAG, some regions with 
higher BA showed lower fFire, e.g., parts of the Sahel and 
transitional tropical African forests, which might result 
from lower fuel accumulation under higher fire inten-
sity [56], at least for the JULES model. For ORCHIDEE-
MICTDIAG, an increase in fFire in some tropical forests, 
e.g., around the humid tropical forests in Africa, was 
reported by GFED4.1s, but the DGVMs do not match 
it. This can be attributed to our simulations not includ-
ing the effect of land cover and land use change (S2-like 
runs) while GFED4.1s includes biome-specific emission 
factors and uses monthly maps of land cover. Results also 
described that global fFire has been relatively stable in 

Fig. 8  Same as Fig. 2 and 4, but for LAI simulations, which are compared with GLOBMAP (coloured) and MODIS (uncolored). The LAI units of standard 
deviation and RMSE are m2m−2
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the last decades despite the declines in global BA, agree-
ing with Zheng et al., [73] findings. This can be linked to 
the decrease in BA that mostly occurred over African 
savannas and other semi-arid regions [33, 73]. However, 
the diagnostic BA output across the three DGVMs likely 
overestimated the global decline in fFire until around 
2010. This could be attributed to the protocol-introduced 
discontinuity in the fire regime in 2003, as well as to other 
factors influencing fire emissions that may not be fully 
represented in DGVMs, such as changes in fuel availabil-
ity and type, moisture conditions and burning behaviour, 
that are largely driven by smouldering combustion of 
woody debris in Amazon and Cerrado regions [24].

Vegetation-related ECVs response to prescription of 
burned area
We further show how prescribing BA from satellite-data 
in DGVMs affects estimates of carbon and vegetation-
related variables. The IAV of AGC increases in diagnos-
tic runs over tropics and boreal regions of Eurasia, even 
though its prognostic runs already show strong agree-
ment with satellite-based AGC data.

In regions where LAIPROG is underestimated, prescrib-
ing BA leads to modest changes. OCN strongly over-
estimates LAI values, especially across tropical bands, 
likely due to other processes such as nitrogen cycling 
and elevated CO2 effects [63]. In semi-arid regions, the 
overestimation of mean BA and its IAV by OCN can be 
explained by the excessive available fuel, as seen in the 
analysis of LAI and AGC. This reflects the overestimated 
turnover times in above ground biomass due to the 
lack of representation of disturbances, both natural and 
anthropogenic, in DGVMs [70]. We expect that changing 
BA estimation should modify the fire regimes, and thus 
impacts the vegetation-related variables. However, the 
DGVMs, especially OCN, already tend to overestimate 
LAI, so that it might be closer to its maximum in many 
regions. Hence, reducing BA does not produce a relevant 
impact on mean values but rather has a greater influence 
on IAV. This highlights the importance of capturing the 
interannual variability, especially in semi-arid ecosys-
tems, which is one of the major contributors to the global 
carbon cycle IAV [52].

Fire emissions are quite sensitive to changes in avail-
able fuel. AGC, LAI and GPP differences suggest that 
these changes contribute more to differences in fire emis-
sion factors than BA differences. This finding contrasts 
with Poulter et al. [53], who, using only one DGVM (LPJ), 
found that different EO-based BA datasets resulted in 
differences in global biomass carbon of up to 300PgC. 
Although our simulation protocol differs from Poulter et 
al. [53], we would rather expect stronger discontinuities 
in the mentioned variables at the onset of the diagnostic 
simulations, which is not the case. This is likely associated 

with the fact that we prescribe vegetation cover for two 
of the three models, limiting the effects of changing fire 
regimes that are not evidenced in our annual globally 
integrated time-series and decade-long averages for spa-
tial distribution assessments.

Implications for model development
Here, we assess how simulations with DGVMs con-
strained by satellite-data on poorly simulated processes, 
such as fire, can be used to support regional carbon bud-
get assessments. Prescribing BA from a remotely-sensed 
product, FIRECCI51, improves the bias, the interannual 
variability, and the spatial distribution of burned area, 
fire emissions, and above-ground biomass carbon simu-
lated by DGVMs. This indicates that improving burned 
area representation by DGVMs is key for better regional 
carbon budget assessments, particularly in fire-prone 
regions such as semi-arid tropical regions. However, we 
found only moderate improvements in the spatio-tem-
poral variability of LAI and GPP when prescribing BA, 
possibly due to factors such as limitations in the proto-
col, short common period of analysis among DGVMs 
and satellite-based datasets, or poor simulation of fire 
impacts in DGVMs. None of the models distinguishes 
between burned/non-burned PFT sub-grid tiles. Instead, 
the biomass is simply reduced after burning, and the 
fire effects are thereby diluted. This represents a limita-
tion of our study, and may help explain why no signifi-
cant changes in vegetation-related variables are detected 
between prognostic and diagnostic runs, particularly in 
ORCHIDEE-MICT.

We note that FIRECCI51 does not distinguish between 
natural and anthropogenic fires, which limits our ability 
to attribute the changes in burned areas and fire carbon 
emissions, as anthropogenic fires are often seasonal and 
tied to agricultural activity or deforestation, particularly 
in tropical regions, while natural fires are more sensitive 
to climate and fire weather conditions [3, 67]. Addition-
ally, despite the better accuracy on detecting smaller 
burned areas patches, FIRECCI51 still underrepresents 
the global cropland burned areas, particularly over 
regions with high cropland extensions, such as boreal 
Eurasia or Brazilian Cerrado [26], leading to an under-
estimation of burned area extensions and fire emissions 
estimation that should be considered. Future steps may 
involve extending the period of analysis, as the timeframe 
used here can be heavily influenced by large-scale atmo-
spheric patterns like ENSO, which induces anomalous 
and persistent dry conditions in tropical regions [5]. Fur-
thermore, it would also be interesting to run the DGVMs 
with LULCC to disentangle wildfires from land-manage-
ment and deforestation fires. This approach could help 
better constrain the model’s estimates of burned area and 
fire emissions, particularly in regions affected by land 
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management and ecosystem fragmentation, such as the 
Sahel.

An important issue that may hinder improvements in 
vegetation-related variables is the simulation of vegeta-
tion regrowth following fire. Current DGVMs typically 
represent recovery as a simple NPP-driven process with 
fixed biomass turnover rates [55], which limits their abil-
ity to estimate long-term carbon uptake and biomass 
accumulation. According to Bond et al. [14] and Pugh 
et al. [54], the often rapid burned vegetation recovery 
simulated by models is largely due to simplified rep-
resentations of forest biomass, growth constraints, as 
well as fire-induced changes in soil properties. There-
fore, improving the representation of post-fire recov-
ery remains an important direction for future model 
development.

We note that many of the satellite-based datasets that 
are used here as references are also partly modelled, 
e.g., GFED4.1s fire emissions or MODIS LAI, and they 
also may have associated uncertainties, especially over 
regions affected by small fires. Therefore, independent 
evaluation of fire emissions and vegetation-related vari-
ables simulated by the DGVMs should be performed, 
based on more reliable local data (e.g., eddy-covariance 
tower fluxes) or based on atmospheric constraints (e.g., 
CO for fire emissions). Such an exercise is beyond the 
scope of the current study and project, but can be con-
tinued in the future, especially as the pressure towards 
fast-track assessments of carbon budgets from local to 
global scales, and from sub-seasonal to multi-annual 
time scales, increases.

Conclusions
This study proposes a hybrid process-based between 
dynamic vegetation models and satellite-driven data, 
where models are constrained by EO data of burned 
area from ESA CCI product, FIRECCI51, and climate 
from ERA5. As disturbances, such as fire, are poorly rep-
resented in DGVMs, this framework aims to deliver an 
improved model’s estimation of burned area, and there-
fore, a better representation of spatio-temporal variabil-
ity of regional carbon fluxes, such as fire emissions and 
above-ground biomass carbon, and vegetation, namely 
LAI and GPP.

The results show that prescribing BA in DGVMs can 
improve the simulation of burned area and fire emissions, 
particularly their interannual variability, and can reduce 
annual bias relative to satellite-based data. The improve-
ments are evident over tropical and semi-arid regions 
of Africa and South America, but also over boreal areas 
of the northern Hemisphere. We note that the effects of 
prescribing BA on DGVMs are moderate for vegetation-
related variables, although improvements are detected in 
their IAV, essentially over tropical regions.

The overall consistency of our results shows that the 
synergy between remote-sensing and modelled data can 
improve the representation of regional and global burned 
areas and fire emissions, particularly their interannual 
variability, for different ecosystems. However, the meth-
odology does not fully resolve the mismatches in veg-
etation responses to fire. Therefore, future efforts should 
focus on refining the representation of fire impacts and 
vegetation dynamics, expanding the simulation period, 
but also enhancing the observation-based constraints for 
more robust model benchmarking.
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