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Abstract

Background The Global Carbon Project provides annual updates on anthropogenic and natural components of the
Global Carbon Budget. Dynamic Global Vegetation Models (DGVMs) contribute to these estimates and are used to
simulate the evolution of terrestrial carbon sinks. However, DGVMs are known to poorly represent disturbances such
as fire, leading to uncertainties in estimates of mean, interannual variability (IAV), and trends in land carbon fluxes.

To address this issue, we propose a hybrid-process-based assessmentby constraining three DGVMs (OCN, JULES-
INFERNO, and ORCHIDEE-MICT) with remotely-sensed burned areas from ESA CCI (FIRECCI51) and climate data from
ERAS reanalysis. We aim to improve the representation of the spatio-temporal variability of regional carbon budgets,
namely fire emissions, above-ground biomass carbon (AGC), and vegetation-related variables—Ileaf area index (LAI)
and gross primary productivity (GPP).

Results Prescribing burned area (BA) in DGVMs reveals contrasting patterns between prognostic (model simulations)
and diagnostic (simulations with prescribed BA) runs. As prognostic tends to overestimate BA, particularly across
tropical and high-latitude regions, diagnostic simulations correct this issue, by reducing bias and improving the IAV
and the agreement with satellite-based datasets of BA and fire emissions in these regions. Moreover, enhanced 1AV

of AGC is simulated by diagnostic runs, essentially due to better representation of biomass carbon in the mentioned
regions. Although moderate improvements are found in LAl and GPP, as the differences between the two runs are
more limited, the improvements between prognostic and diagnostic are more evident in their IAV, particularly for LA,
rather than on long-term means, indicating that prescribed fire can improve the representation of some variability
patterns.

Conclusions Prescribing remotely-sensed BA in models can lead to a better representation of global BA, fire

emissions and AGC, particularly improving the IAV, reducing bias and enhancing the agreement with satellite
datasets. The moderate improvements in vegetation-related variables underscore the need to better constrain fire
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impacts and vegetation dynamics in models, to enhance the simulation of spatio-temporal variability and dynamics

of regional-scale vegetation and carbon-related fluxes.

Keywords DGVMs, Satellite-based data, FIRECCI51, Global Carbon Stocks, Burned Area, Model Benchmarking,

RECCAP2

Introduction

The Global Carbon Budget (GCB), integrated into the
Global Carbon Project (GCP), provides annual updates
of anthropogenic influence on carbon stocks from local
to global scales [28, 40, 41]. Global spatially explicit mod-
els contribute to GCB by estimating net carbon sources,
sinks, and their exchanges over time. However, the
net annual carbon balance between the anthropogenic
sources and sinks estimated by the process-based models
does not always match the measures of atmospheric CO,
growth [4, 8, 51]. This imbalance can be largely attributed
to limitations in datasets and uncertainties in represent-
ing different fluxes, mainly related to deforestation, net
ecosystem exchange, changes in land cover, land use and
management practices [8, 29, 66, 68].

Despite the identified discrepancies at smaller scales,
Dynamic Global Vegetation Models (DGVMs) are key
tools to simulate local and global terrestrial carbon bud-
gets. Ongoing efforts to enhance the representation of
carbon dynamics allow these models to better attribute
changes in those budgets to different processes, such as
land-use, land-cover change and management (LULCC),
elevated CO, levels, nutrient deposition (e.g., NO,), and
fires [13, 48, 68]. In this context, the pilot project from
the European Space Agency—Climate Change Initiative
(ESA CCI), REgional Carbon Cycle Assessment and Pro-
cesses project phase 2 (hereafter, RECCAP2), integrated
in GCP, has been delivering accurate global budgets of
carbon dioxide, methane, and nitrogen, and promot-
ing synergies between process-based models and Earth
Observation (EO)-based datasets, including satellite data
for Greenhouse Gas (GHG) estimations and atmospheric
inversions of GHG fluxes [18, 22, 37, 39, 61]. As a result,
estimations of net carbon stocks and biomass change
have been adjusted and improved, helping to identify and
correct the uncertainties already mentioned [10, 21, 49].

Climate extremes and disturbances, particularly fire,
remain major sources of uncertainty [30]. Poor repre-
sentations of disturbances and models’ ability to realisti-
cally simulate the impacts of fire and following recovery
further affects the estimations of carbon uptake by the
regrowing vegetation in the following years [43, 49, 54].
Intercomparison projects, such as “Trends and drivers
of the regional scale terrestrial sources and sinks of car-
bon dioxide” (TRENDY), that consists on a set of DGVM
simulations using a common protocol and set of driv-
ing datasets [60, 61] have been essential in assessing the
impacts of droughts and heatwaves on local-regional

carbon budgets [6, 9, 42, 57], as well as in evaluating
burned areas and fire emissions [5, 16, 17, 24]. However,
these studies consistently show that models still struggle
to simulate fire seasons length, fuel build-up—especially
in drylands and savannas—and, more importantly, rep-
resent the interannual variability of burned area [7, 30].
Fire-enabled DGVMs typically represent fire as an emer-
gent process from interactions between climate, vegeta-
tion and human activity. Burned areas are simulated as
a function of ignitions and fire spread, depending on
fuel availability, moisture and weather conditions [30,
55]. The combustion of biomass transfers carbon from
live and dead pools to the atmosphere (fire emissions),
using emissions factors that vary across biomes and fire
regimes. Following fire, the regrowth of vegetation is
primarily driven by net primary production (NPP), with
biomass pools recovering according to prescribed turn-
over times that represent background disturbance [55].
Although the algorithm may differ across DGVMs, com-
mon challenges remain in simulating realistic fire season
length, biomass combustion, and post-fire vegetation
recovery, therefore leading to discrepancies in estimating
fire emissions, carbon losses, and impacts on vegetation
dynamics.

Remote-sensing datasets offer opportunities to improve
fire representation in DGVMs, and consequently vegeta-
tion dynamics and carbon fluxes. In this work, we analyse
the influence of uncertainties associated with simulated
fire regimes in carbon and vegetation-related Essential
Climate Variables (ECVs), by testing the feasibility of a
hybrid process-based between DGVMs and EO-based
data, where models are constrained by satellite-driven
burned area data from ESA CCI product, FIRECCI51
[45] and climate data from ERA5 [32]. By combining
prognostic DGVMs with remote-sensing datasets, this
approach allows for delivering improved updates of fire
emissions (fFire), natural Above-ground Biomass Car-
bon (AGC), Leaf Area Index (LAI) and Gross Primary
Production (GPP), from regional to global scale. By con-
trolling the uncertainties in fire occurrence and extent,
we further aim to inform fire-enabled DGVMs and their
host Earth System Models (ESMs) on improvements to
fire-related algorithms.

Data and methods

Forcing data

To prescribe the burned area (BA) in DGVMs, we use
the product FIRECCI51 from ESA CCI [45]. FIRECCI51
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Table 1 Characteristics of the models used in this study
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Table 2 Model experiments conducted in this study

Model Spatial Fire model Prescribed

resolution burned area
OCN 0.50°x0.50° Thonicke et al, [62] Natural PFTs
JULES 1.25°x1.875° INFERNO [15, 46] All PFTs
ORCHIDEE-MICT 0.50°x0.50° SPITFIRE [71]

is a global product, available with spatial resolutions of
250 m and 0.25 degrees and monthly time-step for the
period 2001-2020. This dataset combines information
from MODIS to generate and detect the global BA by
using the thermal anomalies product (MCD14ML) and
the near-infrared reflectance product (MOD09Q1). The
algorithm first identifies candidate seed pixels and then
applies a region-growing technique to aggregate the
active fires and the affected surrounding areas. The algo-
rithm of FIRECCI51 allows to achieve similar or better
accuracies among different global BA datasets of burned
area detection and omission errors, with a better capture
of small BA patches particularly over African savannas,
but also in the forests of northern boreal regions, which
is relevant for the purpose of our analysis [20, 25, 26, 45].
The algorithm, combined with the detailed spatial resolu-
tion, provides a more accurate monitoring of global BA,
constituting a suitable dataset for our study.

For all simulations, climate forcing data from ERA5
[32] were used, at 0.25° spatial resolution and hourly
time-step, initially from 1950 to 2020, later revised to
the period 1960-2020 because of identified preliminary
issues with precipitation of ERA5 forcing in the 1950s
[11]. The atmospheric CO, forcing is based on global-
ice core + NOAA annual resolution used in GCB (1960—
2020), the LULCC maps are based on LUH2v2h database
[19] and the land cover map is kept fixed to 2010 (same
forcing as TRENDY-GCB2021, [61]) at the spatial resolu-
tion of 0.25¢.

Model simulations protocol

Modeled burned areas, terrestrial carbon fluxes and veg-
etation-related variables are derived from three differ-
ent DGVMs: OCN [62], JULES-INFERNO [15, 46], and
ORCHIDEE-MICT [71]. Table 1 provides more details
about each process-based model.

OCN and ORCHIDEE-MICT outputs are provided at
0.50° latitude x 0.50° longitude of spatial resolution. For
JULES, as outputs are provided at 1.25° latitude x 1.875°
longitude of spatial resolution, we remap them to the
common grid of 0.50°x 0.50° from its coarser resolution,
using an area-conservative weighted remapping tech-
nique. We find residual differences between the global
totals, which are due to the land/ocean mask between the
different models and at different resolutions.

In OCN, BA is prescribed only for natural PFTs,
whereas in JULES and ORCHIDEE-MICT is prescribed

Simulation  Co, Climate LUC Initialise  Purpose
Spin-up Fixed Randomize Fixed Initialize
Prognostic (1960) 1960-1969 (2010) carbon
LUH2v2h pools
SO End of Control
S2 Time- Time- Spin-up Evalu-
Prognostic vary-  varying Prognostic  ate BA
ing 1960- simu-
1960- Dec2020 lated by
2020 models
S2 Time- 31 De- Com-
Diagnostic vary- cember pare
ing 2002 for S2 - with
2003- Prognostic  obser-
2020 vations

for all PFTs. It is important to note that JULES simu-
lates its own Plant Functional Type (PFT) distribution
and thus, any biases in model simulations disturbance
will have a feedback on natural vegetation dynamics. In
OCN and JULES, nitrogen input datasets are available
via the Nitrogen Model Intercomparison Project (NMIP)
datasets [64] and data are available until 2014. Hence, we
assume that nitrogen input data remained unchanged
between 2015 and 2020.

The protocol description for each model’s spin-up and
simulations with burned area is shown in Table 2. For the
spin-up, climate data, firstly regridded to the common
grid of 0.50°x0.50°, are cycled multiple times from 1960—
1969 for OCN and JULES, while for ORCHIDEE-MICT
the years are randomly mixed up.

In BA simulated by models (hereafter named prognos-
tic runs) fire is simulated with constant CO, concentra-
tion and LU maps from 2010 until the carbon pools are
in equilibrium. For the simulations with prescribed BA
(hereafter named diagnostic runs), BA from FIRECCI51
is used. Since FIRECCI51 dataset covers two decades,
and to avoid a long spin-up calculation time, we con-
duct a first test in which the diagnostic BA simulation is
initialised directly from the equilibrium state of the cor-
responding prognostic simulation. Due to limitations
found in the protocol for the first two years of data from
FIRECCI51, the diagnostic runs are initialised in 2003.

The land cover map was fixed to 2010, and regridded to
0.50°x0.50° common grid, and is implemented following
the “S2” simulation protocol of TRENDY-GCB2021 [27,
61], so that our simulations include the effects of elevated
CO, and climate change but do not account for changes
in land cover. Therefore, and since satellite-based BA
from FIRECCI51 does not allow distinguishing between
human-made and natural fires, we avoid potential dou-
ble-counting of fire emissions from deforestation and
management, and the resulting spatio-temporal patterns
of carbon fluxes and biomass changes reflect, therefore,
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mostly natural variability components, but also include
effects of human-driven fires.

To prescribe burned areas from FIRECCI51, we first
convert BA per vegetation type to their correspond-
ing plant functional type (PFT) that can be affected
by fire in each model (see Table 1). The global BA for
diagnostic runs of JULES (JULESy;,g) and ORCHI-
DEE-MICT (ORCHIDEE-MICTp,¢) coincides exactly
with FIRECCI51 as expected, given that all vegetation
types—natural vegetation and cropland fires—are con-
sidered, while diagnostic runs of OCN (OCNp,¢) only
include fires in natural vegetation. Therefore, the global
BA in OCNp,, is expected to be slightly lower than for
the other models. Furthermore, OCN distributes burned
area fraction by gridcell coverage of the natural PFTs,
weighted by an estimate of PFT-specific flammability
and fire resistance, resulting in small differences with
FIRECCI51. In contrast, JULES and ORCHIDEE-MICT
allocate BA in proportion to gridcell PFT coverage.

Following the spin-up, we conduct the model’s prog-
nostic and diagnostic simulations, and then analyse the
corresponding fire emissions, above-ground biomass car-
bon, leaf area index, and gross primary production sim-
ulated by the three DGVMs. To assess the performance
of the prognostic and diagnostic simulations, we further
compare their outputs against multiple satellite-based
datasets.

Table 3 Description of temporal coverage and the native spatial
resolution of satellite-based ECV datasets used to compare with
the model's outputs

Variable Dataset Temporal Native Reference
coverage spatial
resolution
Burned Area  FIRECCI51 2001-2020 250 m Lizundia-Loio-
laetal, [45]
GFED4.1s 1997-2016 0.25° van der Werf
etal, [67]
AVHRR-LTDR 1982-2018 0.05° Oton et al,
[50]
Fire GFEDA4.1s 1997-2020 0.25° van der Werf
Emissions etal, [67]
GFAS1.2 2003-2020 0.10° Kaiser et al.,
[36]
Above ESA CCl 2010 100 m Santoro et al,,
Ground 2017-2020 [59]
Biomass
Leaf Area GLOBMAP 1982-2020 0.08° Liu et al,, [44]
Index MODIS 2001-2020 500 m Myneni et al,
[47]
Gross MODIS 2001-2020 500 m Running et al,,
Primary [58]
Productivity  FLUXCOM 2001-2020 0.50° Jungetal,
[35]
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Satellite-based Essential Climate Variable (ECV) data for
model benchmarking

The details of satellite-based ECVs data used in this study
for model benchmarking are described in Table 3. We
compare the model simulations for BA with two other
satellite-based datasets: Global Fire Emissions Data-
base (GFED4.1s, [67]) and FIRECCILT11 (Oton et al,
[50]). GFEDA4.1s includes small fires, combining satellite
information on fire activity and vegetation productivity
to estimate monthly burned area at 0.50° spatial resolu-
tion. The database spans from 1997 to 2023, estimating
BA and fFire at a gridded 0.25° x 0.25°. The FIRECCILT11
(hereafter referred to as AVHRR-LTDR) was also devel-
oped by ESA CCI for the period 1982-2018, encom-
passing global monthly composites estimated at 0.05°
pixel resolution. This product uses combined spectral
information from both Advanced Very High-Resolution
Radiometer (AVHRR) sensor produced by the National
Oceanic and Atmospheric Administration (NOAA) and
Land Long Term Data Record (LTDR) v5, which is pro-
duced by the National Aeronautics and Space Adminis-
tration (NASA). These products are suitable for our study
because the time-series is quite long and thus allows for
the benchmarking of mean, IAV and trends of burned
areas simulated by DGVM:s. For fire emissions estimates,
alongside GFED4.1s, we compare the model outputs with
Global Fire Assimilation System v1.2 (GFAS1.2) from
Copernicus Atmosphere Monitoring Service (CAMS)
[36]. This product provides fire emissions from 2003 to
present with a spatial resolution of 0.10°, relying on satel-
lite observations of fire radiative power (FRP), which is
directly related to the biomass combustion rate [69].

We further assess the influence of prescribing BA on
vegetation and carbon-related ECVs for which global
datasets are available: AGC, LAl and GPP.

To evaluate AGC, model outputs are compared with
the satellite-based dataset from ESA CCI, the ESA CCI
BIOMASS project, version 4.0 Santoro et al.,, [59]. This
dataset provides annual forest above-ground biomass
(AGB) density maps for the years 2010, 2017, 2018, 2019
and 2020 with a spatial resolution of 100 m. The product
is generated by integrating multiple observations, includ-
ing ESA’s C-band, JAXA’s L-band Synthetic Aperture
RADAR and space borne LIDAR, and using advanced
AGB retrieval algorithms of improved allometries.
Because DGVMs simulate total living biomass—includ-
ing both above- and below-ground components—we
scale the modelled biomass carbon values so that we
consider only the above-ground carbon. Specifically, we
use the above-to-below-ground biomass ratios map from
Huang et al. [31] that estimates the fraction of total bio-
mass carbon allocated above ground. The distribution of
the AGC fraction is closer to 1 in higher latitudes of the
Northern Hemisphere and closer to 0.7-0.8 in equatorial
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and tropical latitudes, as shown in Figure S1. Then, we
apply a similar conversion to the ESA CCI AGB dataset.
First, we convert the original units, i.e., MgC/ha in kgC/
m? by multiplying by a scale of 0.1 and then, to obtain
the amount of carbon of the biomass in each pixel, we
applied a biomass-to-carbon conversion factor of 0.47.
This factor is recommended by the 2006 IPCC Guidelines
for National Greenhouse Gas Inventories (see 2006 IPCC
guidelines for national greenhouse gas inventories [1])
and has been widely used in empirical studies to convert
dry biomass into its carbon equivalent.

LAI quantifies the area of green leaves covering the
ground surface [23] and we compare model simula-
tions with two satellite-based datasets: MODIS [47] and
GLOBMAP [44]. The MODIS LALI is available from 2001
to present, and the algorithm derives from the spectral
information captured in red and near-infrared bands,
using a Biome Property Look-Up Table [38] while the
GLOBMAP LAI has a temporal coverage from 1982 to
2020 and the algorithm consists of the long-term combi-
nation of both AVHRR and MODIS datasets. Both datas-
ets have a temporal resolution of 8-day, with the primary
difference being their spatial resolution: MODIS has a
native spatial resolution of 0.005°, while GLOBMAP is at
0.08°.

GPP quantifies the ecosystem-scale photosynthetic
flux, and model simulations are compared with EO-based
GPP estimates from MODIS Running et al, [58] and
FLUXCOM [35]. MODIS GPP has been available since
2001 and is derived using a light-use efficiency algorithm
that combines satellite-derived absorbed photosyntheti-
cally active radiation (APAR), surface meteorological
data, and biome-specific radiation conversion efficiency
[72]. FLUXCOM GPP, on the other hand, spans from
2001 to 2020 and the product is generated by an upscal-
ing eddy-covariance flux tower measurements using
multiple machine learning algorithms trained with mete-
orological measurements and satellite data, including
LAI Middle Infrared Reflectance (MIR), or the Normal-
ized Difference Vegetation Index (NDVI) [65]. Both data-
sets provide GPP with an 8-day temporal resolution, but
they significantly differ in spatial resolution: MODIS has
a native resolution of 0.005°, while FLUXCOM operates
at a coarser 0.50° resolution.

All the satellite-based datasets were re-gridded to the
common spatial resolution of 0.50° using area-conserva-
tive weighted remapping technique.

Statistical metrics

To assess the effect of BA prescription, we average the
values of BA for the common period 2003—-2016 among
prognostic, diagnostic, and satellite-based datasets, and
calculate the differences between model simulations. For
fFire, LAI, and GPP, the common period of both DGVMs
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runs and satellite-based datasets is 2003—-2020, and for
AGC, the common period of 5 years includes 2010 and
2017-2020 due to the availability of ESA CCI product.

The interannual variability (IAV) is determined based
on annual standard deviation applied to prognostic and
diagnostic runs for the common period of the variable,
as well as the root mean square error (RMSE). Spatial
Pearson correlation coefficients between the model’s
simulation and respective satellite-based datasets are also
determined. It should be noted that for AGC, the tempo-
ral range of the ESA CCI dataset is short, but for the rea-
sons previously described, it is the only product suitable
for our analysis.

Results

Burned areas

We first compare the global annual burned areas simu-
lated by the three DGVMs with prognostic (1960-
2020) and diagnostic (2003—-2020) runs with BA from
GFED4.1s and AVHRR-LTDR (Fig. 1, top panel).

Since the 2000s, both OCNprng and JULESprog runs
simulate higher global BA than satellite-based datas-
ets (about 8 Mkm? yr™! and about 6 Mkm? yr!, respec-
tively). In comparison, ORCHIDEE-MICT o estimates
a global BA of about 4 Mkm? yr~}, a value already closer
to (but lower than) the set of EO-based BA datasets,
which generally agree with a global BA of 4.5 Mkm? yr ™.
The prescription of BA from FIRECCI51 results in lower
estimates of global BA compared to prognostic runs, with
OCNp, g simulating about 4 Mkm? yr~* while JULES;
and ORCHIDEE R, match exactly with FIRECCI51, as
expected given the simulation protocol. Moreover, the
three prognostic runs simulate an increasing global trend
that is at odds with the sustained long-term decline of BA
simulated by the three diagnostic runs, as well as the set
of satellite-based datasets.

Regional contrasts between prognostic and diagnostic
runs of DGVMs are illustrated in Fig. 1, bottom panels.
OCNp; ¢ and JULES 5 simulate lower BA over regions
where the prognostic runs overestimate BA, particu-
larly across tropical and semi-arid regions of the South-
ern Hemisphere, such as Cerrado in South America
and Sahel in Africa. On the other hand, JULESy;, and
ORCHIDEE-MICTyp ¢ estimate higher BA over sub-
tropical regions of southern Africa and northern Aus-
tralia. In extratropical zones, especially in boreal regions
of North America and Siberia, the three diagnostic runs
show an increase of BA, with differences between prog-
nostic and diagnostic of about 500 km? yr~'.

Important differences are detected in the interannual
variability (IAV) of global BA, in correlations with inde-
pendent EO-based datasets, and in root mean square
error (RMSE). These differences are illustrated in the fol-
lowing Taylor diagrams (Fig. 2). Globally (left panel), the
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Fig. 1 Top panel: Time-series of global annual burned area in Mkm? yr" simulated by OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for the
prognostic (thin lines) and diagnostic (bold lines) simulations. The model simulations are compared with satellite-driven datasets, FIRECCI51 (black, over-
lapping with both JULESy g and ORCHIDEE-MICTp g simulations), GFED4.1s (dark grey), and AVHRR-LTDR (light grey). The shaded area represents the
common period of three DGVMs and satellite-based datasets of BA, 2003-2016; Bottom panel: Spatial patterns of mean burned area in km? yr™' for the
common period 2003-2016 simulated by the DGVMs between the prognostic (left panels), diagnostic (central panels), and difference between prognos-

tic and diagnostic simulations (right panels)

IAV decreases from OCNppng to OCNp s contrasting
with an increase in global IAV in JULES 5 and ORCHI-
DEE-MICTp . Additionally, the prescription of BA also
enhances the global agreement of model runs with satel-
lite-based datasets, as correlation coefficients shift from
about 0.5 (ORCHIDEE-MICT ) and 0.7 (JULESproc)
to approximately 0.95-0.99 in diagnostic simulations,
alongside a reduction of RMSE across the three mod-
els. These global improvements are mainly driven by
alterations in the BA simulation within the tropical

band (central panel). Here, JULESy;, and ORCHIDEE-
MICT;zg reveal an evident increase in IAV, likely due to
higher standard deviation in Australia and African tropi-
cal forests. In contrast, OCNp, shows a reduction in
IAV, mainly driven by reductions of standard deviation
in Amazonia and northern Australia (see Figure S2 for
standard deviation maps). Diagnostic runs in the tropi-
cal band exhibit not only correlation coefficients up to
0.95-0.99 but also a significant reduction in RMSE, par-
ticularly for OCN, from about 0.60 Mkm? to about 0.20
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Fig. 2 Taylor diagrams of the BA simulations of OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for prognostic runs (circles) and diagnostic runs
(diamonds), compared with GFED4.1s (coloured) and AVHRR-LTDR (uncolored) in a global scale (left panel), in the tropical band between 20°N—20°S
(central panel), and in the extratropical band of northern Hemisphere between 45° N—90°N (right panel). The standard deviation of reference (black
dashed contour) corresponds to the mean of all runs. JULESp;c and ORHIDEE-MICTp, ¢ overlap. The units of standard deviation and RMSE are Mkm?

Mkm? Similar patterns are also evident in extratropi-
cal latitudes (right panel), as the three DGVMs estimate
an increase in their IAV from prognostic to diagnostic
runs, mainly due to higher standard deviation in Siberia
(Figure S2). Additionally, for the three models, the cor-
relations increase in the diagnostic runs, especially for
JULESpzg and ORCHIDEE-MICTy,, but RMSE does
not significantly change.

Fire emissions

In this section, we compare global annual fire carbon
emissions simulated by the three DGVMs with both
prognostic (1960-2020) and diagnostic (2003-2020)
runs against the satellite-based datasets, GFED4.1s and
GFAS1.2 (Fig. 3). Both OCNyprog and JULESpro¢ simu-
late higher fFire (4 PgC yr~' and 3 PgC yr?, respectively)
than the EO-based datasets, GFED4.1s and GFAS1.2,
which is strongly associated with an overestimation of
BA, as seen in Fig. 1, whereas ORCHIDEE-MICT pyo¢
estimates slightly more than 1 PgC yr~'. All three prog-
nostic runs show poor agreement with GFED4.1s and
GFASL1.2, which simulate a global fFire of approximately
2-2.5 PgC yr'. The prescription of BA, which led to a
reduction of global BA (seen in the previous section) also
results in a reduction of global fFire. Although the esti-
mates of both OCNp,¢ and JULES 4o become closer
to the satellite-based datasets, ORCHIDEE-MICT 5
still underestimates fFire relative to the other DGVM:s,
as well as to GFED4.1s and GFAS1.2. Overall, a decline

followed by a recent stabilisation of fFire is observed in
the DGVMs and is in good agreement with the satellite-
based ECVs.

The maps of Fig. 3, bottom panels, show that spatial
differences in mean annual fFire between the prognos-
tic and diagnostic simulations roughly match the dif-
ferences in simulated BA in each model (see maps of
Fig. 1). Despite the decline in global BA, the time-series
of diagnostic simulations, particularly the OCNp;, and
JULESp A, indicate that global fFire has been relatively
stable over the past two decades (2003-2020), that may
be attributed to reductions in fire emissions over savan-
nas and semi-arid regions, especially in regions such as
the Brazilian Cerrado, parts of southern Africa and the
Sahel, and northern Australia. Nevertheless, for JULES-
piag and ORCHIDEE-MICTp g, some regions with
higher BA in the diagnostic runs show lower fFire, e.g.,
in parts of the Sahel and transitional tropical African
forests, and in ORCHIDEE-MICTyy ¢, the reduction of
fFire is more pronounced in southern Africa and over
parts of the Sahel. In boreal regions of the Northern
Hemisphere, the prescription of BA in the three DGVMs
leads to a higher fFire, particularly in OCNp,, which is
mainly driven by the increase of simulated BA in these
regions.

The Taylor diagrams of Fig. 4 highlight important con-
trasts in the IAV of fFire. Globally (left panel), the IAV
simulated by OCN decreases from prognostic to diag-
nostic runs, associated with the reduction of standard
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Fig. 3 Top panel: Time-series of global annual fFire simulated by OCN (yellow), JULES (red), and ORCHIDEE-MICT (purple) for the prognostic (thin lines)
and diagnostic (bold lines) simulations. The model simulations are compared with the fFire satellite-based datasets, GFED4.1s (black) and GFAS1.2 (grey).
The shaded area represents the common period of three DGVMs and remotely-sensed datasets of fFire, 2003-2020; Bottom panel: Spatial patterns of
mean fFire in gC m™? yr" for the common period 2003-2020 simulated by the DGVMs between the prognostic (left panels), diagnostic (central panels),
and the difference between prognostic and diagnostic simulations (right panels)

deviation (see maps of Figure S3), and increases from
prognostic to diagnostic runs of JULES and ORCHIDEE-
MICT. In parallel, more consistent correlation coeffi-
cients are observed, particularly with GFED4.1s, which
change from approximately 0.60 (ORCHIDEE-MICT-
prog) and 0.70 (OCNprog and JULES,o¢) to about 0.80
in diagnostic runs of the three models. This greater agree-
ment with EO-datasets is due to changes in fFire estima-
tions, particularly in extratropical regions (diagram of
the right panel). The higher IAV and RMSE observed in
diagnostic runs are intimately related to evident changes

in fFire in boreal regions, particularly in Siberia, as previ-
ously discussed and also observed in maps of IAV of Fig-
ure S3.

We find that the bias reduction (see global maps in
Figure S4) is especially pronounced in semi-arid tropical
and subtropical regions of Southern America, Africa, and
Oceania. The overestimation of fFire by OCNypyo and
JULESprog is reduced, as improved fFire over the regions
mentioned before is detected. Nevertheless, high fFire in
tropical forests of Africa in JULES,¢ is still noticeable.
Regarding ORCHIDEE-MICT, the bias differences are
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smaller, but some regions also have a switch in the sign
of the mean fFire bias, such as Sahel, tropical Africa, and
Cerrado. Furthermore, a change in the signal of bias from
prognostic to diagnostic runs of fFire in boreal regions,
particularly in Eurasia and Siberia, is detected.

After analysing how prescribing BA affects fire emis-
sions, we assess how it affects vegetation-related vari-
ables, as these have an influence on changes in available
fuel to burn and fire emission factors.

Biomass and vegetation

Here, we analyse how the prescription of burned area
from FIRECCI51 changes the vegetation-related vari-
ables of above-ground carbon (AGC), leaf area (LAI) and
gross primary production (GPP).

Global maps of AGC distribution (Fig. 5) show the
three models simulating higher biomass carbon stocks
in the forest regions of the tropics, temperate, and boreal
regions. OCNprog simulates the highest AGC densities,
particularly over the tropical forests and in transitional
areas between the Amazon forest and the Brazilian Cer-
rado regions. JULES,po estimates a sharp decrease in
the transition between high biomass density in the Ama-
zon forest and low biomass in the semi-arid region of
Cerrado. This is because JULES simulates dynamically
the natural vegetation distribution and with the inclu-
sion of fire and related feedbacks leads to sharp biome
boundaries. In contrast, both OCNpyog and ORCHI-
DEE-MICTproq, which prescribe natural vegetation dis-
tribution, estimate smoother transitions between tropical
forests and drylands.

The simulations with prescribed BA result in higher
biomass in the transitional regions between the Amazon
forest and Cerrado in both OCNp,; and JULESy,q.
This increase in AGC may be driven by lower BA in diag-
nostic runs in these regions, as previously shown. On the
contrary, in transitional areas between humid forests and
semi-arid regions in tropical Africa and Asia, as well as
over arid regions of South America and parts of southern
Africa, OCNp,g and JULES 5 estimate lower biomass
carbon stocks than in the prognostic runs, consistent
with the zonal patterns of higher BA in the diagnostic
runs. The same is observed in boreal Eurasia, particu-
larly in Siberia, mainly resulting from the increase of BA
in diagnostic runs across these regions. JULESy,¢ also
reports an increase in biomass stocks in North Amer-
ica and parts of northern Europe. On the other hand,
ORCHIDEE-MICT shows small differences in biomass
between the two simulations.

The Taylor diagrams of Fig. 6 show that, by prescrib-
ing BA from FIRECCI51, the IAV of AGC in JULESy ¢
increases in both tropical (middle panel) and extratropi-
cal (right panel) bands. In turn, OCNp, ¢ reports an
increase of IAV in the tropical band that is partially coun-
terbalanced by the decrease in extratropical latitudes,
resulting in small changes in global IAV. In ORCHIDEE-
MICTpaq @ small increase of IAV in the extratropical
band is detected, which can be linked to the increase
of BA simulated in the boreal regions of Siberia. Even
though the common period of analysis is short to deter-
mine the correlation coefficients between the models and
the satellite-based dataset, the Taylor diagrams reveal
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no meaningful changes in global correlations within the
three DGVMs, which range from 0.75 in JULES, 0.90 in
ORCHIDEE-MICT and about 0.95 in OCN.

We then compared how prescribing BA affects LAI and
GPP. According to the maps of Fig. 7 (LAI) and Figure S6
(GPP), the regions where the LAI and GPP are the high-
est, such as the tropical forests of South America, Africa,
and Asia, roughly match the areas where the AGC is
maximum. Furthermore, LAI and GPP over transitional
areas between forest and semi-arid territories, like the
Brazilian Cerrado and the African Sahel, have the same
spatial pattern as AGC. In these areas, JULES estimates
a sharp decrease in LAI, whereas OCN and ORCHIDEE-
MICT simulate a smoother transition in values.

The prescription of BA leads to more significant
changes in vegetation-related variables in OCNp;,¢ and
JULESpsc- An increase in mean LAI and GPP occurs in
regions where a decrease in BA and fFire is verified, such
as the Brazilian Cerrado and some territories of south-
ern Africa, while mean LAI and GPP decrease where an
enhancement of BA in diagnostic runs are observed, such
as in the humid forests and semi-arid regions of tropical
Africa and Asia, as well as in the arid regions of South
America. These changes are evident in OCNp; 5 run and
especially in JULES; . Moreover, the increase in mean
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LAI may lead to higher GPP in transitional semi-arid
areas of South America and the decrease in LAI leads to
lower mean GPP over the tropical forests of Africa and
Asia.

Diagnostic simulations also show differences in LAI
and GPP across the extratropical Northern Hemisphere,
compared to prognostic runs. In OCNp;,¢ and JULES-
piag Mmean values decrease at boreal latitudes of Eurasia,
particularly in Siberia, where higher BA is detected. By
contrast, only JULESy;, estimates a strong increase in
LAI and GPP in North America, which may be attributed
to the higher AGC estimation promoted by lower BA
and also fFire. In ORCHIDEE-MICTYy;,(, the global dif-
ferences in mean LAI and GPP between simulations are
almost negligible, although some points in the tropical
areas of Africa show positive differences, i.e., a decrease
in LAL

An increase in the IAV of global LAI and GPP is
observed from prognostic to diagnostic simulations of
OCN, and particularly of JULES (Fig. 8 and Figure S7).
This increase is primarily driven by heightened IAV
across the extratropical band, especially in the boreal
zones of Eurasia and North America. Prognostic simula-
tions already demonstrate strong correlations with sat-
ellite-based datasets (GLOBMAP and MODIS for LAI,

OCNPROG - DIAG

m? m~2

Fig. 7 Comparison of spatial patterns of annual mean leaf area index (LAI) for the period 2003-2020 simulated by OCN (yellow), JULES (red), and ORCHI-
DEE-MICT (purple) between the prognostic (left panels), diagnostic (central panels) and the difference between prognostic and diagnostic (right panels).

The unit of LAl is m’m™
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and FLUXCOM and MODIS for GPP), with coefficients
ranging from approximately 0.70 in JULES to 0.80-0.90
in OCN and ORCHIDEE-MICT, showing no significant
changes in diagnostic simulations.

Discussion of results

Impacts of prescribed burned area on regional fire
dynamics

The results with prescribed BA from FIRECCI51 show
a general decrease of global BA from prognostic to
diagnostic runs in the OCN and JULES. Over the tropi-
cal band of the Southern Hemisphere, the decrease of
BA extension was more noticeable, due to its decline
over African savannahs, associated with changes in fuel
driven by hydrological changes, landscape fragmentation,
and agricultural activity [3, 33, 34]. At the same time,
ORCHIDEE-MICTy ¢ reveals a contrasting pattern by
simulating higher BA in the same regions. These higher
burned area extension might be related to human-related
fires considered in FIRECCI51 but not in the “S2” simula-
tions by DGVMs. The model’s simulations run with fixed
land cover maps (except JULES, which simulates dynami-
cally natural vegetation), so they do not necessarily cap-
ture these environmental and human-driven changes in
fuel and landscape connectivity. Therefore, they are likely
to have a stronger coupling between fire weather and BA.
Nevertheless, it should be noted that recent trends and
variability in BA are under scrutiny, given the potential
underestimation of global BA products based on coarse
resolution remote-sensing and the prevalence of unde-
tected small fires, e.g., in Africa [56]. Furthermore, we

detected an evident prognostic-diagnostic contrast in
BA between African and South American savannas,
particularly in OCN and JULES, which may be associ-
ated with biome/region-specific fire response thresholds
to moisture and fuel loads, as shown by Alvarado et al.,
[2], implying that the DGVMs should not use common
parameter values for the globe.

The prescription of BA in DGVMs generally increased
the IAV and the agreement of modeled fire emissions,
which directly depend on BA, with independent satel-
lite-based datasets. According to the results, the differ-
ences in global IAV of fFire between simulations showed
a consistent and similar pattern to the difference in the
variance of BA. Moreover, a greater global agreement
with GFED4.1s and GFAS1.2 emissions was noticeable,
likely due to improvements in global fFire estimations,
especially among high latitudes [12], where fFire has
increased over the past years [34]. However, in JULES-
piag and ORCHIDEE-MICTp g, some regions with
higher BA showed lower fFire, e.g., parts of the Sahel and
transitional tropical African forests, which might result
from lower fuel accumulation under higher fire inten-
sity [56], at least for the JULES model. For ORCHIDEE-
MICTp ¢ an increase in fFire in some tropical forests,
e.g., around the humid tropical forests in Africa, was
reported by GFED4.1s, but the DGVMs do not match
it. This can be attributed to our simulations not includ-
ing the effect of land cover and land use change (S2-like
runs) while GFED4.1s includes biome-specific emission
factors and uses monthly maps of land cover. Results also
described that global fFire has been relatively stable in



Ermitdo et al. Carbon Balance and Management (2026) 21:9

the last decades despite the declines in global BA, agree-
ing with Zheng et al,, [73] findings. This can be linked to
the decrease in BA that mostly occurred over African
savannas and other semi-arid regions [33, 73]. However,
the diagnostic BA output across the three DGVMs likely
overestimated the global decline in fFire until around
2010. This could be attributed to the protocol-introduced
discontinuity in the fire regime in 2003, as well as to other
factors influencing fire emissions that may not be fully
represented in DGVMs, such as changes in fuel availabil-
ity and type, moisture conditions and burning behaviour,
that are largely driven by smouldering combustion of
woody debris in Amazon and Cerrado regions [24].

Vegetation-related ECVs response to prescription of
burned area

We further show how prescribing BA from satellite-data
in DGVMs affects estimates of carbon and vegetation-
related variables. The IAV of AGC increases in diagnos-
tic runs over tropics and boreal regions of Eurasia, even
though its prognostic runs already show strong agree-
ment with satellite-based AGC data.

In regions where LAlp is underestimated, prescrib-
ing BA leads to modest changes. OCN strongly over-
estimates LAI values, especially across tropical bands,
likely due to other processes such as nitrogen cycling
and elevated CO, effects [63]. In semi-arid regions, the
overestimation of mean BA and its IAV by OCN can be
explained by the excessive available fuel, as seen in the
analysis of LAI and AGC. This reflects the overestimated
turnover times in above ground biomass due to the
lack of representation of disturbances, both natural and
anthropogenic, in DGVMs [70]. We expect that changing
BA estimation should modify the fire regimes, and thus
impacts the vegetation-related variables. However, the
DGVMs, especially OCN, already tend to overestimate
LAI so that it might be closer to its maximum in many
regions. Hence, reducing BA does not produce a relevant
impact on mean values but rather has a greater influence
on IAV. This highlights the importance of capturing the
interannual variability, especially in semi-arid ecosys-
tems, which is one of the major contributors to the global
carbon cycle IAV [52].

Fire emissions are quite sensitive to changes in avail-
able fuel. AGC, LAI and GPP differences suggest that
these changes contribute more to differences in fire emis-
sion factors than BA differences. This finding contrasts
with Poulter et al. [53], who, using only one DGVM (LPJ),
found that different EO-based BA datasets resulted in
differences in global biomass carbon of up to 300PgC.
Although our simulation protocol differs from Poulter et
al. [53], we would rather expect stronger discontinuities
in the mentioned variables at the onset of the diagnostic
simulations, which is not the case. This is likely associated
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with the fact that we prescribe vegetation cover for two
of the three models, limiting the effects of changing fire
regimes that are not evidenced in our annual globally
integrated time-series and decade-long averages for spa-
tial distribution assessments.

Implications for model development

Here, we assess how simulations with DGVMs con-
strained by satellite-data on poorly simulated processes,
such as fire, can be used to support regional carbon bud-
get assessments. Prescribing BA from a remotely-sensed
product, FIRECCI51, improves the bias, the interannual
variability, and the spatial distribution of burned area,
fire emissions, and above-ground biomass carbon simu-
lated by DGVMs. This indicates that improving burned
area representation by DGVMs is key for better regional
carbon budget assessments, particularly in fire-prone
regions such as semi-arid tropical regions. However, we
found only moderate improvements in the spatio-tem-
poral variability of LAI and GPP when prescribing BA,
possibly due to factors such as limitations in the proto-
col, short common period of analysis among DGVMs
and satellite-based datasets, or poor simulation of fire
impacts in DGVMs. None of the models distinguishes
between burned/non-burned PFT sub-grid tiles. Instead,
the biomass is simply reduced after burning, and the
fire effects are thereby diluted. This represents a limita-
tion of our study, and may help explain why no signifi-
cant changes in vegetation-related variables are detected
between prognostic and diagnostic runs, particularly in
ORCHIDEE-MICT.

We note that FIRECCI51 does not distinguish between
natural and anthropogenic fires, which limits our ability
to attribute the changes in burned areas and fire carbon
emissions, as anthropogenic fires are often seasonal and
tied to agricultural activity or deforestation, particularly
in tropical regions, while natural fires are more sensitive
to climate and fire weather conditions [3, 67]. Addition-
ally, despite the better accuracy on detecting smaller
burned areas patches, FIRECCI51 still underrepresents
the global cropland burned areas, particularly over
regions with high cropland extensions, such as boreal
Eurasia or Brazilian Cerrado [26], leading to an under-
estimation of burned area extensions and fire emissions
estimation that should be considered. Future steps may
involve extending the period of analysis, as the timeframe
used here can be heavily influenced by large-scale atmo-
spheric patterns like ENSO, which induces anomalous
and persistent dry conditions in tropical regions [5]. Fur-
thermore, it would also be interesting to run the DGVMs
with LULCC to disentangle wildfires from land-manage-
ment and deforestation fires. This approach could help
better constrain the model’s estimates of burned area and
fire emissions, particularly in regions affected by land
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management and ecosystem fragmentation, such as the
Sahel.

An important issue that may hinder improvements in
vegetation-related variables is the simulation of vegeta-
tion regrowth following fire. Current DGVMs typically
represent recovery as a simple NPP-driven process with
fixed biomass turnover rates [55], which limits their abil-
ity to estimate long-term carbon uptake and biomass
accumulation. According to Bond et al. [14] and Pugh
et al. [54], the often rapid burned vegetation recovery
simulated by models is largely due to simplified rep-
resentations of forest biomass, growth constraints, as
well as fire-induced changes in soil properties. There-
fore, improving the representation of post-fire recov-
ery remains an important direction for future model
development.

We note that many of the satellite-based datasets that
are used here as references are also partly modelled,
e.g., GFED4.1s fire emissions or MODIS LAI and they
also may have associated uncertainties, especially over
regions affected by small fires. Therefore, independent
evaluation of fire emissions and vegetation-related vari-
ables simulated by the DGVMs should be performed,
based on more reliable local data (e.g., eddy-covariance
tower fluxes) or based on atmospheric constraints (e.g.,
CO for fire emissions). Such an exercise is beyond the
scope of the current study and project, but can be con-
tinued in the future, especially as the pressure towards
fast-track assessments of carbon budgets from local to
global scales, and from sub-seasonal to multi-annual
time scales, increases.

Conclusions

This study proposes a hybrid process-based between
dynamic vegetation models and satellite-driven data,
where models are constrained by EO data of burned
area from ESA CCI product, FIRECCI51, and climate
from ERA5. As disturbances, such as fire, are poorly rep-
resented in DGVMs, this framework aims to deliver an
improved model’s estimation of burned area, and there-
fore, a better representation of spatio-temporal variabil-
ity of regional carbon fluxes, such as fire emissions and
above-ground biomass carbon, and vegetation, namely
LAI and GPP.

The results show that prescribing BA in DGVMs can
improve the simulation of burned area and fire emissions,
particularly their interannual variability, and can reduce
annual bias relative to satellite-based data. The improve-
ments are evident over tropical and semi-arid regions
of Africa and South America, but also over boreal areas
of the northern Hemisphere. We note that the effects of
prescribing BA on DGVMs are moderate for vegetation-
related variables, although improvements are detected in
their TAV, essentially over tropical regions.
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The overall consistency of our results shows that the
synergy between remote-sensing and modelled data can
improve the representation of regional and global burned
areas and fire emissions, particularly their interannual
variability, for different ecosystems. However, the meth-
odology does not fully resolve the mismatches in veg-
etation responses to fire. Therefore, future efforts should
focus on refining the representation of fire impacts and
vegetation dynamics, expanding the simulation period,
but also enhancing the observation-based constraints for
more robust model benchmarking.
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