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Abstract: Autonomous surface vehicles (ASVs) have gained significant attention across a range
of applications, yet a primary challenge lies in developing accurate mathematical models to
describe their complex dynamical behavior. Given the partial submersion of surface vessels in
water, deriving a first-principles description proves difficult. In general, data-driven approaches,
particularly black-box and gray-box models, are increasingly employed to avoid the need of
structural first-principle models. Among the range of supervised learning approaches, Gaussian
Process Regression (GPR) models stand out due to their simplistic and nonparametric nature.
This paper presents an approach to modeling the dynamics of surface vessels using GPRs. The
work outlines the process of generating synthetic data, training the GPR model, and applying
it to the vessel maneuvers of path-following and dynamic positioning.
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1. INTRODUCTION

Autonomous surface vehicles (ASVs) have seen growing
popularity in recent years, with a wide range of appli-
cations and use cases emerging across different domains.
A common challenge is the need to derive an abstract
description of the dynamical behavior of the vessel. Typi-
cally, this involves the development of a mathematical de-
scription. However, finding structural mathematical mod-
els and identifying the necessary parameters and degrees
of freedom is a complex and challenging task. Surface
vessels are rigid bodies that are partially submerged, and
as such, comprise rigid-body kinetics and the multiphase
interaction of the submerged body with air and water.
Achieving such a description typically relies on making
assumptions and exploiting sophisticated approximations
of reality. Due to these complexities, black-box and gray-
box models, which minimize the need for explicitly defined
structures have become of considerable interest. These
models often rely on data-driven approaches. Ultimately,
the goal is the development of an in-place substitution of
the nominal systems model in the control loop, particularly
with respect to its numerical robustness and useability.
Supervised learning and data-driven approaches, such as
machine learning, offer significant advantages in model de-
velopment. Gaussian Process (GP) models, in particular,
eliminate the need for optimizing complex model struc-
tures due to their nonparametric nature. A key feature of
GP regression models (GPR) is the use of a stationary
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covariance function, which differentiates them from other
black-box models. One of the main advantages of this
approach is the ability to assess prediction variance, which
can be leveraged in model validation, guarantees or chance
constraints.
GPRs have been extensively researched since decades,
but are increasingly adopted as data-based modeling ap-
proaches in the context of control of autonomous systems.
Basics of GPRs are presented in the work of Rasmussen
and Williams (2008). Applications to dynamical systems
can be found in Kocijan et al. (2004), Kocijan (2016),
Hewing et al. (2020), Umlauft et al. (2018). In the domain
of ASVs, GPs are employed in the context of trajectory
generation for longer passages. Finding usage in the re-
gression of the dynamics is sparse but can be found e.g.
in Chen et al. (2021), Ouyang et al. (2023) and Liu et al.
(2023).
This contribution describes a comprehensive blueprint of
using GPRs in the domain of modeling the maneuvering
dynamics of surface vessels. The focus is here on the
inclusion of a priori knowledge of the vessel in the form
of input dynamics and therefore the hybrid modeling. A
way of generating data, training the GPR and performing
different maneuvers is shown and explained.
First, in Section 2, a brief introduction into GPRs is
given. It is shown how to learn a discrete-time dynamical
system with previous knowledge. Afterwards, in Section
3, the model consisting of the known nominal dynamics
and GRPs is used to perform path-following and dynamic
positioning maneuvers. Finally, Section 4 concludes this
contribution.
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2. GAUSSIAN PROCESS REGRESSION FOR
SYSTEM IDENTIFICATION

A GP can be understood as defining a distribution over
functions, with inference occurring directly within the
space of functions, a perspective referred to as the function
space view, see Rasmussen and Williams (2008). GPRs
are closely connected to supervised learning, which is the
problem of learning input-output mappings from empirical
data. As a generalization of the Gaussian distribution, GPs
are a collection of random variables characterized by a
joint multivariate Gaussian distribution, (Kocijan et al.,
2004). The GPR model is typically expressed as

f(z) ∼ GP(m(z),Cov(z, z′)), (1)

where z is the input vector to the GP, meaning it can be
completely specified by the mean and covariance

m(z) = E[f(z)] (2a)

Cov(z, z′) = E[(f(z)−m(z))[f(z′)−m(z′))]. (2b)

In practical applications, measurements usually include
noise. The joint distribution over joint values with noisy
observations is[

y
f∗

]
∼ N

(
0,

[
K(Z,Z) + σ2

nI K(Z,Z∗)
K(Z∗, Z) K(Z∗, Z∗)

])
(3a)

∼ N
(
0,

[
K + σ2

nI K∗
K∗ K∗∗

])
, (3b)

where K denotes the covariance matrix computed from
the training inputs Z, and K∗ represents the covariance
between training inputs Z and test inputs Z∗ and K∗∗
between the test inputs respectively. From (3) and the
introduction of K ′ = K + σ2

nI the predictive equations
for the GPR are

µ(z) = K∗(K
′)−1y, (4a)

Σ(z) = K∗∗ −K∗(K
′)−1K∗∗, (4b)

where the vector α = (K ′)−1y is based on the training
data and can be computed ahead of simulation time.
For training, a dataset D with inputs to the GP and
observations of size M are necessary, which is defined as

D = {y = [y0,y1, . . . ,yM ]⊤ ∈ RM×ny , (5a)

z = [z0, z1, . . . ,zM ]⊤ ∈ RM×nz}, (5b)

where y are the measurements of the system and z =
[x⊤,u⊤]⊤ is the extended vector of regressors, hinting at
state and input values. In this contribution the squared
exponential kernel function

ki,j(zi, zj) = σ2
f,ae

(− 1
2 (zi−zj)

⊤L−1
a (zi−zj)), (6)

is used for calculating the covariance (2), where σf,a is
the signal variance, determining the overall variance of the
function outputs, and La is the length-scale, representing
the influences of how rapidly the covariance decays with
distance between two input vectors. These values describe
degrees of freedom in the training of the model. This
kernel is chosen based on the smoothness assumption and
no further knowledge about the process is introduced. To
determine values for these parameters, the log marginal
likelihood is optimized, which quantifies how well the
model fits the observed data.

2.1 Discrete-time dynamical system

The expression in (4) enables us to predict the expectation
value of an unknown function using only measured data.
Taking advantage of this, the aim is to model the a discrete
time system in the form of

xk+1 = f∆(xk,uk), x0 = x0, (7a)

yk = c⊤xk, (7b)

where f∆ is the mapping from the current state xk ∈
X ⊆ Rnx and input uk ∈ U ⊆ Rnu to the next state.
Oftentimes GPRs are exploited to model some affine model
error acting on the system, but it can also be used to
model part of the desired system. Since the use of GPRs
in itself describe a black-box approach to regression, or
system identification, no knowledge of the to be identified
system is necessary. This does not mean, that it is not
beneficial to introduce some knowledge. The hybrid model
consisting of known dynamics, which can be first-principle,
and unknown dynamics reads

xk+1 = f̃∆(xk, τ k) + G(xk, τ k) (8a)

= f̃∆(xk, τ k) +Bd(g(xk, τ k) +wk), (8b)

where f̃∆ is the discretized known part part of our system
dynamics, Bd ∈ Rnx×ng is the mapping between the
subspaces, g ∈ Rng are the unknown dynamics and wk

is the process noise. Typically, only a subset of states is
modeled by GPs, meaning ng < nx. The expression for
the observations for training the GPs, utilized to form
the dataset D in (5), necessary for training in the hybrid
approach reads

yk = B†
d(xk+1 − f̃∆(xk, τ k)) = g(xk, τ k) +wk. (9)

It is important to note that, if the unknown dynamics are
not scalar, every dimension is learned independently and
concatenate them together afterwards, so that g(xk,uk) =
[g0(xk,uk), g1(xk,uk), ... , gng (xk,uk)]

⊤ ∈ Rng .

GPR Training Training the GPR with measured data is
a straightforward process. However, the dimensions of the
matrix K ∈ RM×M can pose a challenge when the number
of data points and observations becomes high. As the
dataset grows larger, calculating the inverse of K becomes
increasingly computationally expensive. Addressing this
issue, sparse matrix approximations can be utilized. In this
context, the fully-independent training conditional (FITC)
is assumed, which posts that the training set observations
are independent of each other. This assumption allows us
to introduce inducing points, see Snelson and Ghahramani
(2005), meaning to approximate the GPR on a state-space
grid. For now a uniformly spaced grid on all regressors with
Mi data points is assumed. This way the number of data
points is reduced from M to Mr =

∑ng

i=0 Mi.

Uncertainty Propagation Modeling the dynamical sys-
tem using GPRs, future predicted states are stochastic
distributions. Following the common approach, i.e.,

µi = f(µx, µu) +Bdµd(µx, µi) (10a)

Σi = ÃiΣÃ
⊤
i +Bd(Σ(µx, µi) + Σw)B

⊤
d , (10b)

where Ãi = ∇(f(x, µu + Kix) + Bdµd(x, µu + Kix))|µx
,

while Σu = KiΣKi, allows for predicting the mean and
covariance values. This enables us to propagate not only
the mean value of the GP, but also the covariance in time.

2.2 Derivation of the nominal system dynamics

The modeling of the system dynamics of an ASV is
typically guided by requirements, while the main objective
is always to model the system as simple as possible, but
as complex as necessary. Task dependent, employing a
simplified yaw dynamics model, such as a Nomoto model,
or a more comprehensive model, such as a full three
degrees of freedom (3-DOF) model is possible. The 3-DOF
model of a surface vessel can be determined using either
Newtonian or Lagrangian mechanics and reads

η = R(ψ)ν (11a)

M ν̇ = τ (u)− C(ν)−D(ν)ν, (11b)

where C(ν) is the Coriolis matrix, D(ν) the damping
matrix of linear and non-linear damping terms and τ
the control input. The state-space can be separated into
pose η = [x, y, ψ]⊤ and the body-frame velocities ν =
[u, v, r]⊤, which results in x = [η⊤,ν⊤]⊤. Here, τ =
[X,Y,N ]⊤ describes the generalized control input. The
configuration of the 3-DOF vessel is illustrated in Fig. 1.
For a more detailed derivation refer to, e.g., Fossen (2002).
The coordinate transformation matrix is given by

R(ψ) =


cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


, (12)

whereas the parameterization of the inertia matrix can be
described by

M =


m11 0 0
0 m22 m23

0 m32 m33


=


m−Xu̇ 0 0

0 m− Yv̇ −Yṙ

0 −Nv̇ Izz −Nṙ


. (13)

Coriolis and damping matrices are given by

C(ν) = C(ν)⊤ =


0 0 c13
0 0 c23

−c13 −c23 0


, (14)

where

c13 = −m22v −
m23 +m32

2
r, c23 = m11u,

and

D(ν) =



Xu +X|u|u|u| 0 0

0 Yv + Y|v|v|v| Yr

0 Nv Nr +N|r|r|r|


 . (15)

The structural model needs to be parameterized. For sim-
ulation tasks in this paper the parameters for Cybership
2 are used, see, e.g., Skjetne et al. (2004a).
Based on the structured and parameterized formulation
in (11), the components of the vessel model that can be
reasonably assumed to be known can be systematically
identified. First, the separation of kinematics and kinetics,
i.e. η and ν is exploited. These subsystems are connected
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Fig. 1. 3-DOF surface vessel with position x, y, heading ψ
and velocities in the body-frame u, v and r.

by an integration, which would make it redundant to learn
the states of η. Instead, it appears reasonable to further
decompose the model into the rigid-body and the affine
input system, as in

ν̇ = M−1τ  
input-part

−M−1(C(ν) +D(ν)ν)  
to be learned

. (16)

The modeling of the affine input system is part of the
design of the propulsion system. The actual values of the
generalized input τ depend on the actual actor configura-
tion.

Actuator dynamics Given the use of a simulation en-
vironment, a simplified actor configuration is adopted,
consisting of a propeller-rudder system, as depicted in Fig.
1. The derivation is taken from Skjetne et al. (2004b). To
model the thrust of the propeller, it is assumed to be fixed
in place and aligned with the vessel. The thrust T of the
propeller is given by

T (ω,x) =


c+ww|ω|ω − c+wu|ω|up, if ω ≥ 0

c−ww|ω|ω − c−wu|ω|up, if ω < 0,
(17)

where c+ww, c
+
wu, c

−
ww, c

−
wu are positive coefficients, ω is the

propeller revolutions and up is the relative velocity at the
propeller, which can be assumed close to the surge speed
of the vessel, i.e. up ≈ u. The resulting force vector results
is given by fprop(ω) = [T, 0]⊤.
Modeling the rudder, it is necessary to derive expressions
for the drag and lift forces, such that the rudder force
vector is given by f rud(δ) = [−D,L]⊤. Elementary for the
lift forces of the rudder is the relative fluid velocity at the
hydrodynamic foil. If the rudder is standalone, the velocity
at the rudder can be assumed to be the general surge
velocity. Whereas, if the rudder is mounted sufficiently
close to a propeller the fluid velocity at the rudder is
increased by the propeller slipstream so that

ur = u+ ku


8

πρd2
T + u2 − u


, (18)

where ku is a positive gain coefficient. The relative velocity
ur can be used to calculate the lift force L

L =





L+
δ δ − L+

|δ|δ|δ|δ

|ur|ur, ur ≥ 0

L−
δ δ − L−

|δ|δ|δ|δ

|ur|ur, ur < 0,

(19)

where δ is the rudder angle as depicted in Fig. 1. Combin-
ing the thrust of the propeller with the lift of the rudder,
the resulting force vector for the rudder is

τ (u) = BT

�
fprop(ω) + f rud(δ)


= BT


T −D

L


, (20)

where u = [ω, δ]⊤ and BT is the thrust configuration
matrix, describing the mounting position of the actors,
which are in this case assumed to centered at the same
point. It is also possible to model the propulsion dynamics
or the static mapping of actual control values via a GP.
In contrast to (7), which is a discrete-time model, the
model in (11) is continuous time. To connect these models,
as in (8), a discretization the model according to the ∆t
of the GPR model

x̃k+1 = f̃∆(xk,uk), (21)

is necessary, which can be achieved by any discretization
technique.
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The modeling of the system dynamics of an ASV is
typically guided by requirements, while the main objective
is always to model the system as simple as possible, but
as complex as necessary. Task dependent, employing a
simplified yaw dynamics model, such as a Nomoto model,
or a more comprehensive model, such as a full three
degrees of freedom (3-DOF) model is possible. The 3-DOF
model of a surface vessel can be determined using either
Newtonian or Lagrangian mechanics and reads

η = R(ψ)ν (11a)

M ν̇ = τ (u)− C(ν)−D(ν)ν, (11b)

where C(ν) is the Coriolis matrix, D(ν) the damping
matrix of linear and non-linear damping terms and τ
the control input. The state-space can be separated into
pose η = [x, y, ψ]⊤ and the body-frame velocities ν =
[u, v, r]⊤, which results in x = [η⊤,ν⊤]⊤. Here, τ =
[X,Y,N ]⊤ describes the generalized control input. The
configuration of the 3-DOF vessel is illustrated in Fig. 1.
For a more detailed derivation refer to, e.g., Fossen (2002).
The coordinate transformation matrix is given by

R(ψ) =


cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1
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whereas the parameterization of the inertia matrix can be
described by

M =
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
=


m−Xu̇ 0 0

0 m− Yv̇ −Yṙ
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. (13)

Coriolis and damping matrices are given by

C(ν) = C(ν)⊤ =


0 0 c13
0 0 c23

−c13 −c23 0


, (14)

where

c13 = −m22v −
m23 +m32
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r, c23 = m11u,

and

D(ν) =



Xu +X|u|u|u| 0 0

0 Yv + Y|v|v|v| Yr

0 Nv Nr +N|r|r|r|


 . (15)

The structural model needs to be parameterized. For sim-
ulation tasks in this paper the parameters for Cybership
2 are used, see, e.g., Skjetne et al. (2004a).
Based on the structured and parameterized formulation
in (11), the components of the vessel model that can be
reasonably assumed to be known can be systematically
identified. First, the separation of kinematics and kinetics,
i.e. η and ν is exploited. These subsystems are connected
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Fig. 1. 3-DOF surface vessel with position x, y, heading ψ
and velocities in the body-frame u, v and r.

by an integration, which would make it redundant to learn
the states of η. Instead, it appears reasonable to further
decompose the model into the rigid-body and the affine
input system, as in

ν̇ = M−1τ  
input-part

−M−1(C(ν) +D(ν)ν)  
to be learned

. (16)

The modeling of the affine input system is part of the
design of the propulsion system. The actual values of the
generalized input τ depend on the actual actor configura-
tion.

Actuator dynamics Given the use of a simulation en-
vironment, a simplified actor configuration is adopted,
consisting of a propeller-rudder system, as depicted in Fig.
1. The derivation is taken from Skjetne et al. (2004b). To
model the thrust of the propeller, it is assumed to be fixed
in place and aligned with the vessel. The thrust T of the
propeller is given by

T (ω,x) =


c+ww|ω|ω − c+wu|ω|up, if ω ≥ 0

c−ww|ω|ω − c−wu|ω|up, if ω < 0,
(17)

where c+ww, c
+
wu, c

−
ww, c

−
wu are positive coefficients, ω is the

propeller revolutions and up is the relative velocity at the
propeller, which can be assumed close to the surge speed
of the vessel, i.e. up ≈ u. The resulting force vector results
is given by fprop(ω) = [T, 0]⊤.
Modeling the rudder, it is necessary to derive expressions
for the drag and lift forces, such that the rudder force
vector is given by f rud(δ) = [−D,L]⊤. Elementary for the
lift forces of the rudder is the relative fluid velocity at the
hydrodynamic foil. If the rudder is standalone, the velocity
at the rudder can be assumed to be the general surge
velocity. Whereas, if the rudder is mounted sufficiently
close to a propeller the fluid velocity at the rudder is
increased by the propeller slipstream so that

ur = u+ ku


8

πρd2
T + u2 − u


, (18)

where ku is a positive gain coefficient. The relative velocity
ur can be used to calculate the lift force L

L =





L+
δ δ − L+

|δ|δ|δ|δ

|ur|ur, ur ≥ 0

L−
δ δ − L−

|δ|δ|δ|δ

|ur|ur, ur < 0,

(19)

where δ is the rudder angle as depicted in Fig. 1. Combin-
ing the thrust of the propeller with the lift of the rudder,
the resulting force vector for the rudder is

τ (u) = BT

�
fprop(ω) + f rud(δ)


= BT


T −D

L


, (20)

where u = [ω, δ]⊤ and BT is the thrust configuration
matrix, describing the mounting position of the actors,
which are in this case assumed to centered at the same
point. It is also possible to model the propulsion dynamics
or the static mapping of actual control values via a GP.
In contrast to (7), which is a discrete-time model, the
model in (11) is continuous time. To connect these models,
as in (8), a discretization the model according to the ∆t
of the GPR model

x̃k+1 = f̃∆(xk,uk), (21)

is necessary, which can be achieved by any discretization
technique.
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3. SYNTHETIC DATA GENERATION, TRAINING
AND SIMULATION

Now, the focus is on modeling the system dynamics using
GPRs, integrated in a discrete-time model the discrete-
time model (7). For the necessary training data, time-series
of the states are needed. In practice, this would involve
performing identification maneuvers. To simulate this pro-
cess, a parameterized 3-DOF model is taken to generate
time-series data. The identification maneuver is desired to
cover as much of the vessel’s state space as possible. For
this reason, the vessel’s objective is to perform sharp turns
in all directions. Since no information about the model is
available, despite the vessel’s propulsion system, a model-
free path-following method needs to be derived.
For this purpose, a guidance system with PI control, as
presented in Fig. 2, is utilized. The guidance is based on
combined speed and Line-Of-Sight (LOS) reference genera-
tion. This means, that the PI controller receives a reference
speed over ground (SOG), as well as a heading reference.
The SOG is set constant, but the heading reference de-
pends on a sequence of waypoints and the current position
of the vessel. The LOS heading reference computes as

ψi,ref(p) = ψi + ψLOS(p) (22a)

= ψi + arctan

(
−exte(WPi,WPi+1,p)

∆LOS

)
(22b)

where exte is the cross-track-error and ∆LOS is the looka-
head distance, which as seen in Fig. 3, is the distance the
vessel looks ahead along the track. The scenario can be
executed and the data now represents the desired time
series. The resulting time series is 300 s long and sampled
with a discretization time step of dt = 0.1 s, which results
in N = 3000 data points and observations. As presented
in Fig. 2, the control loop does not in include an observer
so that the simulated state vectors is considered as our
observations. State space coverage is described in Tab. 1,
where also the hyper-parameters of the GPR are given.

Guidance Feedback

Vessel

Actuator Model

Vessel Dynamics

[u∗, ψ∗
ref ]

⊤
[nc, δc]

⊤

x

Fig. 2. Closed-loop data generation with LOS-guidance
and PI speed and heading control.
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Fig. 3. Heading reference generation setting with a linear
waypoint segment.

Figure 4 shows the applied state space grid, as well as
the chose indcung points as mentionend in Section 2.1.1.
Training and hyper-parameter optimization is performed
by MATLAB’s fitgpr as summarized in (3).

Path-following Performing the same maneuver with the
hybrid model, i.e., following the same waypoints with
the same guidance system and controller as in the data
generation phase results in the data shown in Figure 5, 6
and 7. It directly becomes clear that the hybrid model is
performing the task qualitatively similar to the nominal
model. After half the scenario, there appears to be a
small shift in time, as the hybrid model can perform the
task slightly faster. As the model is integrated over time,
the slightest difference in the dynamics accumulates and
leads to a significant deviations at the end. This result is
anticipated, since the in the path following task, the most
dominant dynamics is the yaw of the vessel. This is one
reason why most of the times, for path following, simplified
model structures (Nomoto models) can be utilized. These
are easier to identify since they only depend on two
parameters describing the yaw-dynamics.

Dynamic Positioning In another simulation case the
hybrid model is used for a dynamic positioning task. The

Table 1. State space coverage of the data.

state min max σf La

u in m s−1 -0.0888 0.3223 0.0117 0.5977
v in m s−1 -0.2125 0.2041 0.0144 0.6047
r in rad s−1 -0.4624 0.4699 0.0459 0.6004
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Fig. 4. Data samples in the vessel’s state space.
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Fig. 5. Top-down view of the path-following maneuver,
blue refers to the time series used for training, orange
refers to the path taken by the GPR model.
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Fig. 7. Input trajectories for the path-following task, blue
refers to the time series used for training, orange refers
to the path taken by the GPR model.

goal is to translate between two two defined poses η0,ηf in
a given time T . The path directly connecting the positions
is blocked by two obstacles. To perform this maneuver an
optimal control problem (OCP) is formulated.

min
w

l =

∫ T

0

||ηk − ηf ||2 dt (23a)

s.t. (23b)

xk+1 = f̃∆(xk, τ k) +Bd(g(xk, τ k) +wk) (23c)

uk ∈ U (23d)

∅ = V(xk) ∩ {O1,O2} (23e)

0 2 4 6

0

2

4

East in m

N
or
th

in
m

Fig. 8. Top-down view of the environment for the dynamic
positioning task, blue refers to the time series used for
training, orange refers to the path taken by the GPR
model.

where w = [x,u,µ,λ]. The obstacle avoidance constraints
are given by

dsafe +
(λm)⊤d(x) + (µm)⊤bm

∥(Am)⊤µm∥2
≤ ϵm, (24a)

C⊤(x)λm + (Am)⊤µm = 0, (24b)

µm,λm ≥ 0, (24c)

where C(x) = C̃R⊤(ψ) and d(x) = d̃ + C̃R⊤(ψ)pb
n and

C̃, d̃ depend on the shape of the controlled vessel. The
(dual) decision variables λm and µm therefore need to be
included in the OCP for all m = 1, . . . ,K. See Helling
et al. (2021) for more details on the dual approach. The
results are shown in Figure 8, 9 and 10. The OCP is
solved using Ipopt (Wächter and Biegler, 2006) and Casadi
(Andersson et al., 2019) is used for effectively generating
gradients. It is important to note that in this case the actor
configuration is left out and the the generalized forces are
seen as the system’s input. After solving the OCP, the
comparison of trajectories can be seen in Fig. 8, 10 and
9. In these figures, the solution of the OCP is compared
to the feed-forward simulation of the ground truth model.
This way a statement can be made over the suitability of
using the hybrid model in the planning process. In this
case a larger error as in the path-following case is visible.
This is due to the fact the this is a high dynamic maneuver.
Since the rather simple time series used for training is not
representing all possible states of the vessel, the model is
not as accurate in these situations.

4. CONCLUSIONS

This contribution shows that a hybrid sparse GPR is an
effective tool for the modeling of the dynamics of surface
vessel. The applications reveal that a compact dataset,
such as one obtained from identification maneuvers or trial
runs, is enough to provide a reasonable approximation of
the underlying dynamics. The proposed hybrid system suc-
cessfully performs path following tasks based on a 3-DOF
model. Moreover, satisfactory results were achieved even
for a dynamic positioning maneuver, without extending
the dataset. In the presented approach of hybrid modeling,
the input mapping is assumed to be known. This requires
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goal is to translate between two two defined poses η0,ηf in
a given time T . The path directly connecting the positions
is blocked by two obstacles. To perform this maneuver an
optimal control problem (OCP) is formulated.

min
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where w = [x,u,µ,λ]. The obstacle avoidance constraints
are given by

dsafe +
(λm)⊤d(x) + (µm)⊤bm

∥(Am)⊤µm∥2
≤ ϵm, (24a)

C⊤(x)λm + (Am)⊤µm = 0, (24b)

µm,λm ≥ 0, (24c)

where C(x) = C̃R⊤(ψ) and d(x) = d̃ + C̃R⊤(ψ)pb
n and

C̃, d̃ depend on the shape of the controlled vessel. The
(dual) decision variables λm and µm therefore need to be
included in the OCP for all m = 1, . . . ,K. See Helling
et al. (2021) for more details on the dual approach. The
results are shown in Figure 8, 9 and 10. The OCP is
solved using Ipopt (Wächter and Biegler, 2006) and Casadi
(Andersson et al., 2019) is used for effectively generating
gradients. It is important to note that in this case the actor
configuration is left out and the the generalized forces are
seen as the system’s input. After solving the OCP, the
comparison of trajectories can be seen in Fig. 8, 10 and
9. In these figures, the solution of the OCP is compared
to the feed-forward simulation of the ground truth model.
This way a statement can be made over the suitability of
using the hybrid model in the planning process. In this
case a larger error as in the path-following case is visible.
This is due to the fact the this is a high dynamic maneuver.
Since the rather simple time series used for training is not
representing all possible states of the vessel, the model is
not as accurate in these situations.

4. CONCLUSIONS

This contribution shows that a hybrid sparse GPR is an
effective tool for the modeling of the dynamics of surface
vessel. The applications reveal that a compact dataset,
such as one obtained from identification maneuvers or trial
runs, is enough to provide a reasonable approximation of
the underlying dynamics. The proposed hybrid system suc-
cessfully performs path following tasks based on a 3-DOF
model. Moreover, satisfactory results were achieved even
for a dynamic positioning maneuver, without extending
the dataset. In the presented approach of hybrid modeling,
the input mapping is assumed to be known. This requires
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Fig. 9. State trajectories for the dynamic positioning task,
blue refers to the time series used for training, orange
refers to the path taken by the GPR model.
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Fig. 10. Input trajectories for the dynamic positioning
task, blue refers to the time series used for training,
orange refers to the path taken by the GPR model.

the inverse of the mass matrix to be parameterized, which,
in turn, requires the identification of the added mass terms.
Theoretically, these can be guessed based on the shape
of the vessel and literature values. This would also raise
the question to why not assume the Coriolis matrix to be
known, since it just depends on values of the mass matrix.
It is emphasized, that the approach was carried out in
simulation only. The next logical step is to compare the
simulation results with real world data. But even before
that, more optimizations can be done. This includes a more
detailed data selection, to reduce the size of the data set,
and a more detailed like at hyperparameter tuning and
underlying kernel functions.
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