KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient accelerator operation with artificial intelligence based optimization methods

Matzoukas, Evangelos ORCID iD icon 1; Xu, Chenran ORCID iD icon 2; Blomley, Edmund ORCID iD icon 2; Bründermann, Erik ORCID iD icon 2; Gethmann, Julian ORCID iD icon 2; De Carne, Giovanni ORCID iD icon 1; Müller, Anke-Susanne ORCID iD icon 2
1 Institut für Technische Physik (ITEP), Karlsruher Institut für Technologie (KIT)
2 Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruher Institut für Technologie (KIT)

Abstract:

Poster of IPAC´25 conference: Tuning injectors is a challenging task for the operation of accelerator facilities and synchrotron light sources, particularly during the commissioning phase. Efficient tuning of the transfer line is essential for ensuring optimal beam transport and injection efficiency. This process is further complicated by challenges such as beam misalignment in quadrupole magnets, which can degrade beam quality and disrupt operations. Traditional tuning methods are often time-consuming and insufficient for addressing the complexities of high-dimensional parameter spaces. In this work, we explore the use of advanced AI methods, including Bayesian optimization, to automate and improve the tuning process. Initial results, demonstrated on the transfer line of KARA (Karlsruhe Research Accelerator) at KIT (Karlsruhe Institute of Technology), show promising improvements in beam alignment and transport efficiency, representing first steps toward more efficient and reliable accelerator operation. This study is part of the RF2.0 project, funded by the Horizon Europe program of the European Commission, which focuses on advancing energy-efficient solutions for particle accelerators.


Volltext §
DOI: 10.5445/IR/1000189490
Veröffentlicht am 12.01.2026
Originalveröffentlichung
DOI: 10.5281/zenodo.16040563
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Institut für Technische Physik (ITEP)
Publikationstyp Poster
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000189490
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Veranstaltung 16th IPAC'25 - International Particle Accelerator Conference (IPAC 2025), Taipeh, Taiwan, 01.06.2025 – 06.06.2025
Externe Relationen Siehe auch
Schlagwörter Artificial Intelligence, Cheetah, Bayesian Optimization, BAX
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page