KIT | KIT-Bibliothek | Impressum | Datenschutz

Divergent Ozone Predictions in China Under Carbon Neutrality: Why Chemical Mechanisms Disagree

Weng, Xiang; Li, Jiawei; Zeng, Ganquan; Lu, Xiao; Forster, Grant; Nowack, Peer ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)

Abstract:

Uncertainty in air quality models can lead to divergent assessments of emission control policies. Here, we investigate why two widely used chemical mechanisms in the Weather Research and Forecasting model with Chemistry (WRF-Chem) predict inconsistent ozone levels and conflicting responses to emission reductions over major city clusters of China. By combining process analysis with an explainable machine learning technique, we reveal that these discrepancies primarily stem from differences in the rates of ozone-forming and -suppressing reactions involving hydroperoxy (HO2) and organic peroxy (RO2) radicals between the two mechanisms. This thereby underscores the need for a more accurate depiction of volatile organic compounds reactivity in models. We further quantify the impact of these discrepancies by projecting ozone levels across China from 2030 to 2060 under the carbon neutrality emission reduction scenario. Divergences peak in 2030, with the two mechanisms disagreeing on whether ozone mitigation in city clusters is achievable. Over time, their predictions begin to converge. By 2060, both mechanisms agree that nearly the entire Chinese population will experience reduced ozone levels, and support the continued reduction of nitrogen oxides (NOx) emissions as an effective strategy for curbing ozone pollutions. ... mehr


Originalveröffentlichung
DOI: 10.1021/acs.est.5c10697
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 0013-936X, 1520-5851
KITopen-ID: 1000189501
HGF-Programm 12.11.12 (POF IV, LK 01) Atmospheric chemistry processes
Weitere HGF-Programme 12.11.25 (POF IV, LK 01) Atmospheric composition and circulation changes
Erschienen in Environmental Science & Technology
Verlag American Chemical Society (ACS)
Vorab online veröffentlicht am 06.01.2026
Schlagwörter ozone, model uncertainty, chemical transport modeling, machine learning, carbon neutrality, control policy assessment
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page