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Abstract: A novel hybrid method of data reconciliation and

gross error detection, applicable for systems with a mixture

of dynamic and static system constraints, is developed for

the detection of cyber attacks. The requirements for the new

application of data reconciliation and similar methods in

cybersecurity differ from the requirements for the estab-

lished use of data reconciliation in automation and control

engineering. For the detection of cyber attacks aiming at

physical damage themain focus is on significant gross error

detection while for classical applications a robust optimiza-

tion and smoothing of measurement data is the main con-

cern. Therefore the new hybrid method of direct discrete

dynamic data reconciliation, as well as similar methods of

data reconciliation and Kalman filters with their referring

methods of gross error detection are evaluated regarding

their aptitude for attack detection in cybersecurity. All con-

sidered methods are compared regarding properties result-

ing from the specific optimization procedure and the detec-

tion. The new direct discrete dynamic data reconciliation is

indeed shown to outperform the other methods regarding

the detection of cyber attacks.
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Zusammenfassung: Für die Detektion von Cyberangriffen,

wurde eine neue, hybride Methode der Data Reconcilia-

tion und Großfehlerdetektion entwickelt, die auf Syste-

me mit einer Mischung aus dynamischen und statischen

Systemgleichungen anwendbar ist. Die Anforderungen an

die Data Reconciliation und ähnliche Methoden für den

neuen Anwendungsfall in der Cybersecurity unterschei-

det sich deutlich von den Anforderungen der klassischen

Anwendungsfälle in Automatisierung und Regelungstech-

nik. Zur Detektion von Cyberangriffen, die auf physika-

lische Schäden abzielen, liegt der Fokus auf der Detek-

tion relevanter Großfehler, während für die klassischen

Anwendungsfälle hauptsächlich eine robuste Optimierung

und Glättung der Messdaten benötigt wird. Daher werden

die neue hybride direkte diskrete dynamische Data Re-

conciliation, ebenso wie ähnliche Methoden der Data Re-

conciliation und Kalmanfilter, mit den jeweils zugehörigen

Großfehlerdetektionsmethoden geprüft, ob sie zur Angriffs-

detektion in der Cybersecurity geeignet sind. Alle betrach-

teten Methoden werden hinsichtlich der Eigenschaften ver-

glichen, die aus dem jeweiligen Optimierungsprozess und

der Detektion folgen. Hierbei zeigt sich, dass die neue di-

rekte diskrete dynamische Data Reconciliation den anderen

Methoden hinsichtlich der Detektion von Cyberangriffen

überlegen ist.

Schlagwörter: Großfehlerdetektion; Cyber-Physikalische

Systeme; Cybersicherheit; False Data Injection; Dynamische

Data Reconciliation; Kalman Filter

1 Introduction

Cyber-physical systems are not only threatened by com-

mon cyber-attacks, damaging or stealing data, but also by

new cyber-attacks aiming at damages in the physical part

of the system. Security measures in the systems ensure
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compliance of the system states with restrictions that pre-

vent damages. Therefore, cyber-attacks aiming at physical

damages have to use false data injection to undermine those

measures. These new cyber-attacks are the subject of the

detection methods in this paper. For detection of false data

injection in connected cyber-physical systems physical cor-

relations can be considered. In addition, the new detection

method utilizes prior knowledge regarding informational

properties of the systems components like degree of exposi-

tion or commonalities as described in Reibelt [1]. The quality

of this cyber-attack detection relies on the full chain of data

preparation, anomaly detection and the new consideration

of informational properties. Based on models, describing

the physical correlations and constraints, there are several

methods for improving measurement data and detection

of gross errors, which can be understood as anomaly, indi-

cating a cyber attack. Gross errors are errors greater than

the measurement noise, classically considered to indicate a

sensor fault, outage, or leakage but are also feasible to detect

false data injection. Themethods differ regarding their opti-

mization and detection process. The comparison of differ-

ent methods for evaluating the measurements regarding

the physical information for cybersecurity shows significant

differences in the influence of the procedures, in particular

between methods of data reconciliation and Kalman filters.

Thereby, confusion in the naming of methods can be found

in the literature, as the traditional method of Dynamic Data

Reconciliation [2] indeed is a kind of Kalman filter but not a

real data reconciliation method.

The present paper extends a new direct discrete

dynamic data reconciliation introduced in Reibelt [1] by

including both dynamic and static system relations for

applicability in common systems. Thismethod is set-upwith

methods of gross error detection for the detection of cyber

attacks. The new method and similar, preexisting methods

are evaluated in terms of their usability for the first two

steps of detecting false data injection, the data optimiza-

tion and gross error detection. Some advantages of classical

static data reconciliation regarding gross error detection are

only transferred to dynamic systems by the new method

of direct discrete dynamic data reconciliation introduced

in Section 2.2. For enabling a reasonable selection for new

applications in general, the present paper shows a detailed

comparison of the effects of the different optimization pro-

cesses especially with regard to gross error detection.

2 Methods

Methods of data reconciliation for dynamic systems are

developed from traditional static data reconciliation. The

new method (Section 2.2), as well as three preexisting ones,

are based on the time-discrete, linearized representation

of the system model. The introductions of these methods

(Section 2.3) and an additional one using polynomial series

expansion (Section 2.4) already focus on commonalities

and differences. Traditional dynamic data reconciliation

(Section 2.6) is described after the Kalman filter (Section 2.5)

is introduced, as there is a close affinity.

2.1 Introduction to data reconciliation (DR)

For DR all relations and laws for measurements and input

values are described in the system equation using the array

of variables y and the system matrix A:

A · y(t) = 0 (1)

For optimizing the variables, the difference between

the measured y(t) and the reconciled values ŷ(t) is min-

imized with respect to their variance and with the sys-

tem equation as side condition [3]. This means, in DR the

reconciled variable values ŷ(t) strictly fulfill the system

equation (1). Conventionally, the optimization is solved by

Lagrange variation, but it is not limited to this method [4].

Gross Error Detection of DR utilizes either themeasurement

deviation (difference between measured/input values and

reconciled values) or the residuals of the systemequation (1)

for detection and localization of the error.

Classical DR is used for steady-state system equations,

that sufficiently describe the behavior in a stationary oper-

ation point in chemical facilities where data reconciliation

is traditionally used. Dynamic system equations are conven-

tionally given in the form

dx∕dt = A · x(t)+ B · u(t) (2)

where for most applications u is the array of the input

variables with the input matrix B and x(t) is the array of

states/measurements. For DR the division of the variables in

u and x is just considered as separation between variables

appearing in derivative form and variables only appearing

directly. Therefore both, A and B are regarded as system

matrices. So the main task is to treat the derivative part

dx/dt in (2).

In classical DR severalmethods are considered for gross

error detection. The measurement test uses the measure-

ment deviation for detection and localization of gross errors

[5]. The global test evaluates the sum of the equation resid-

uals [6]. The hypotheses test compares actual residuals to

expectation values referring to the possible gross errors [7],

[8] and the nodal test identifies the variables included in

the equations or contributing to nodes enabling a balance

evaluation, that show residuals above the amount explica-

ble by statistical errors only [9].
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2.2 Newmethod of direct discrete dynamic
data reconciliation (D4R)

The dynamic system equations can be expressed in a time-

discrete manner:

x(k + 1) = Ad · x(k)+ Bd · u(k) (3)

in addition to the static system equations:

y(k) = C · x(k)+ D · u(k) (4)

Matrices C and D in (4) are identical to the ones in time

continuous representation. There are different approaches

for determining Ad and Bd in (3) from the time continuous

matrices A and B in (2), depending on the model used for

signal reconstruction. For the following examplesAd = eA·Ts

and Bd = eA·Ts·B is used.

In Reibelt et al. [10] a new method of Data Reconcilia-

tion handling dynamics using the discrete equation form (3)

is introduced. The variable arrays x(k) and u(k) containing

known (measured and input) values are expanded by sev-

eral time steps, indicated by an index t. Then xt(k + 1) can

be expressed by a matrix multiplication with

Q =
⎡⎢⎢⎢⎣

0 1x 0 · · ·
0 0 1x ⋱
...
... ⋱⋱

⎤⎥⎥⎥⎦
=> xt(k + 1) = Q · xt(k) (5)

With (5) the dynamic system equations become

(
Ad − Q

)
· xt(k)+ Bd · ut(k) = 0 (6)

To return to the original form of the system equations

in DR, with its known optimization solution, the variable

arrays representing a piece of signal in the considered time

span xt(k) and ut(k) are combined to one common variable

array and the matrices of (6) are combined into one matrix:

⎡⎢⎢⎢⎢⎣

Ad Bd −1x 0 0 · · ·
0 0 Ad Bd −1x ⋱

... ⋱ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x (k)

u (k)

x (k + 1)

u (k + 1)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (7)

⇒ Adyn · yt(k) = 0 (7)

For equation (7), the optimization result is already

known from classical data reconciliation.

This form introduced in Reibelt et al. [10] considers

dynamic relations only.

To consider static relations as they frequently appear it

has to be extended.

If the system considered also includes static system

relations conventionally matching the form

(
x(k)

u(k)

)
=

[
C D

]
·
(
x(k)

u(k)

)
(8)

The static relations (8) can be included by extending the

system matrix respectively.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ad Bd −1x 0 0 · · ·

C −
[
1x

0u

]
D−

[
0x

1u

]
0 0 0 · · ·

0 0 Ad Bd −1x ⋱

0 0 C −
[
1x

0u

]
D−

[
0x

1u

]
0 · · ·

... ⋱ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x (k)

u (k)

x (k + 1)

u (k + 1)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (9)

The form in equation (9) enables the application of

classical DR optimization for the traces in the chosen time

period. Within this new D4R approach, three methods are

considered for gross error detection: Themeasurement test,

the global test, and the hypotheses test [10].

2.3 Preexisting methods using discrete
system equations

For system equations matching the pattern

x(k) = x(k − 1)+ Bd · u(k) (10)

the idea of using a discrete system equation and creating a

variable vector of xt(k) and ut(k) including two time steps

is shown in Rolins et al. [11]. The treatment of several time

steps is done by determining the reconciled value each time

instant by averaging over the previous and the following

step. This Two Step Averaging (TSA) results in values that

do not fulfill the system equation completely. Applying Data

Reconciliation to this system using several time steps is

presented in Darouach et al. [12]. This solution can be con-

sidered equivalent to D4R, but is limited to the simplified

case of a system matching the pattern

x(k + 1) = x(k)+ Bd · u(k + 1) (11)
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with the identity matrix being the system matrix Ad like in

TSA. Moreover, the considered input values u(k + 1) are the

ones of the future time step.

An approach by Yin et al. [13] considers the difference

of the values of two neighboring time steps in the vari-

able arrays. The system matrices are adapted accordingly.

This results in a static system description with the known

solution. Although the new set of values in this approach

of Difference Variables (DV) fulfills its system equation, for

those variables appearing only in derivative form, only the

differences are reconciled. This solution in Yin et al. [13]

only considers one instant in time and the previous one

for creating the differences. Only reconciling the differences

can lead to a slow deflection of the reconciled values from

the measurement. For gross error detection and localiza-

tion, the nodal test is applied, followed by a measurement

test of the suspected variables. Residuals are evaluated for

the pre-selection of suspected variables and the measure-

ment deviation is used for the final determination of the

faulty variable.

2.4 Polynomial series expansion (PSE)

One approach from Bagajewicz et al. [14] and Bennouna

et al. [15] is accessing the derivative using the polynomial

series expansion of the variable values:

x =
s∑

k=0
𝛼k · tk u =

s∑
k=0

𝛽k · tk (12)

With (12) the derivative can be directly expressed as:

dx∕dt =
s∑

k=0
𝛼k · k · tk−1 =

s−1∑
k=0

𝛼k+1 · (k + 1) · tk (13)

Inserting (12) and (13) the system equation becomes

s−1∑
k=0

𝛼k+1 · (k + 1) · tk = A ·
(

s∑
k=0

𝛼k · tk
)
+ B ·

(
s∑

k=0
𝛽k · tk

)

(14)

which leads to the side condition (k + 1) · 𝛼k+1 = A · 𝛼k + B ·
𝛽k . The polynomial series expansion can be expressed using

a time matrix T

T =

⎡⎢⎢⎢⎢⎣

1 0 0 · · ·
1 t1 t

2
1
· · ·

1 t2 t
2
2
· · ·

...
...
... ⋱

⎤⎥⎥⎥⎥⎦
⇒ x

(
t1… t2

)
= T · 𝛼 u

(
t1… t2

)
= T · 𝛽

(15)

This shows that the optimization of the polynomially

approximated variables x and u can be expressed by an

optimization of 𝛼 and 𝛽 that can be calculated. For gross

error detection and gross error localization, then the mea-

surement deviation is evaluated [15].

2.5 Kalman filter (KF)

In the KFs [16], the variables are divided in input values

u, internal parameters x and the observable variables or

system states y.Model inaccuracy andnoise are contained in

variable z. The system is discretely described by equations:

x (k + 1) = Ad · x (k)+ Bd · u (k)+ Gd · z (k)
and y (k) = C · x (k)+ D · u (k)

(16)

The optimization is divided into two steps. The first

step is the prediction of the internal parameters x̂(k + 1)

based on the current input values u(k) and the estimated

parameters x̃(k) of the previous time step using the system

model

x̂(k + 1) = Ad · x̃(k)+ Bd · u(k) (17)

The second step takes place in the next time step and

optimizes the predicted value from (17) using the mea-

sured value. The correction summand consists of the differ-

ence between predicted and measured value weighted by a

Kalman gain K(k):

x̃(k) = x̂(k)+ K(k) ·
(
y(k)− C · x̂(k)− D · u(k)

)
(18)

In parallel the covariance matrix P̂(k) of the error of

estimation 𝜀̂(k) = x(k)− x̂(k) is predicted in the first step

P̂(k + 1) = Ad · P̃(k) · AT
d
+ Gd · Q(k) · GT

d
(19)

and optimized in the second step

P̃(k) = (1− K(k) · C) · P̂(k) (20)

The optimization includes the variance Q(k) of model

inaccuracy and noise z(k). As the index k already implies,

the Kalman gain K(k) is also adapted every time step

through

K(k) = P̂(k) · CT ·
(
C · P̂(k) · CT + R(k)

)−1
(21)

with respect to the predicted covariance matrix of the error

of estimation and the variance R(k) of the measurement

noise v(k).

For gross error detection based on Kalman Filter, the

postulated error is included as an internal parameter in

array x(k) and its amplitude is estimated in every time step

[16]. So for false data injection, where the measured or

input values affected are unknown, this leads to a limitation

of detectable manipulations or a huge effort for calculat-

ing several ‘Kalman Filters’ considering all possible fault

hypotheses.
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2.6 Dynamic data reconciliation (DDR)

The dynamic data reconciliation according to [2] expects

model errors 𝛿t (ŷt = xt + 𝛿t) in addition to measurement

errors 𝜀t (yt = xt + 𝜀t) just like Kalman Filters. It starts with

a model based prediction ŷt, where the procedure is not

described in detail. These predicted values ŷt are corrected

by adding the weighted measurement deviation:

x̂t = ŷt + K
(
yt − ŷt

)
(22)

Thus, DDR (22) is a predictor-corrector-algorithm just

like in the KF. In contrast to the KF correction, the gain is not

adapted every time step, but only depends on the variance

matrices of themeasurement errorsV and themodel errors

R that are supposed to be known [2]:

K =
(
V
−1 + R

−1)−1 · V−1 =
(
1+ V · R−1)−1 [2] (23)

The resulting values x̂t do not fulfill the model com-

pletely and can be considered as estimation. Thus the DDR

presented by Bai is not actually a DR method. As errors

are only reduced with respect to the variance, the measure-

ment deviation still contains information for the detection

of gross errors but it is distorted. For gross error detection,

a nodal test is applied to the residuals. For every residual

a test is conducted, if the respective residual is explicable

by statistical errors only. If residual values are suspicious

above a predefined significance, variables appearing in all

suspicious residuals but nowhere else are tested using the

measurement deviation [17].

3 Comparison of methods

The different methods are compared regarding the opti-

mization process and its effects. In particular, the effects on

the gross error detection are evaluated. A brief summary is

given in Table 1.

To illustrate the effects described in the following com-

parison, two basic example systems were used. All of the

methods discussed except of DV (i.e. D4R, TSA, PSE, KF, and

DDR) are treating real dynamic equations. The dynamic

system equations used for the following demonstration

example are (24) and (25):

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1∕1

0.25∕2

0.75∕3

0

0

−1∕2

0

1∕4

0

0

−1∕3

1∕4

0

0

0

−1∕4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1∕1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏟⏟

B

· u1

(24)

⎛⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

·

⎛⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎠

+

⎡⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟

D

· u1 (25)

Input signal u1 is a sinewave, all initial values are

zero. Discretization was done by the c2d Matlab func-

tion using the default zero-order hold. For DV indeed

a static system model is used reconciling the differ-

ences of the variables between the time steps. The sys-

tem equation used for the following example of DV is

(26)

⎡⎢⎢⎢⎢⎢⎣

1

0

0

0

−1
1

0

0

−1
0

1

0

0

−1
0

1

0

0

−1
1

0

0

0

−1

⎤⎥⎥⎥⎥⎥⎦

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛥x1

𝛥x2

𝛥x3

𝛥x4

𝛥x5

𝛥x6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (26)

where the x2-trace as well as its share of 0.25 of x1 was

adopted from the dynamic example to create a comparable

plot. Normal distributed errors were added to all variables.

In all cases x2 was plotted.

3.1 What are the application cases of the
methods and the consequences for their
capabilities?

The methods belonging directly to Data Reconciliation, PSE,

D4R, DV, and TSA are used for monitoring systems with

noisy measurements. Their purpose is the identification of

the most probable ‘true value’ of measurements and input

values. PSE, D4R, and DV also contain gross error detection

methods for detection of leakages, sensor outages, and cali-

bration issues.

KFs, as well as DDR, focus on the estimation of the

system state to provide sustainable information for robust

and stable controlling of the process which requires explicit

smoothing of traces. Gross error detection in KFs and DDR

is used for the purpose of correcting the knowledge of the

system state. It is not meant to inform about the error or

takemeasures against its root cause. Especially in KFs, gross

error detection is limited to a few selected measurement

variables within in the system that are expected to show

sensor drifts.
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Figure 1: For DDR the next value is predicted and then corrected

towards the actual measurement, just like for KF. The correction provides

some trace smoothing. The model constraints are not fulfilled, resulting

in a deviation shown in the lower plot.

3.2 Whats the conditions and proceedings
of smoothing by the methods?

Smoothing in the time dimension helps to reduce statistical

faults, but can also mask actual deviations. For both, KF

and DDR, estimated values are smoothed by a correction

after predicting the value using the model. In both cases the

correction depends on the difference between themeasured

and the predicted values weighted by a correction factor

(Figures 1 and 2). For DDR the correction factor depends on

the variances of themeasurements and themodel faults and

therefore is time invariant. In contrast in KFs, the Kalman

gain is adapted every time step minimizing the covariance

of the estimation error. So the smoothing and adaption

depends on the previous values.

In both KF and DDR, the estimated values can still vio-

late the systems equations since they result from aweighted

mean of predictions and possibly model-violating measure-

ments. Actual faults can be masked. KF and DDR need to

smooth the traces, but smoothing is not limited to them. In

TSA a smoothing effect is achieved by averaging the solu-

tions of the neighboring time steps (Figure 3). This only pro-

vides a small reduction of statistical faults. In PSE the traces

are smoothed by the series expansion, prior to the data rec-

onciliation. The extent of the smoothing strongly depends

on the order of the series expansion, which must suit the

shape of the considered traces (Figure 4). This smoothing

by serial expansion masks a lot of artefacts. In the D4R

Figure 2: For KF, the next value is predicted and then corrected towards

the actual measurement. The correction provides some trace smoothing.

The model constraints are not fulfilled, resulting in a deviation shown

in the lower plot.

Figure 3: For TSA data reconciliation is applied for all neighboring

values. This gives two reconciled values for every time instant. To get

the optimized value these two values are averaged, which provides some

smoothing. The optimized values deviate from model constraints (lower

plot).

discrete treatment, data reconciliation returns a solution

fulfilling the dynamic system equations, a continuously dif-

ferentiable trace, which is a kind of smooth trace within the

considered time span, but does not result from smoothing

(Figure 5). So actual faults are not masked. The reduction
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Figure 4: This plot illustrates the difficulties with series expansion prior

to data reconciliation. Whether the traces are described properly,

strongly depends on the order of series expansion. The smoothing also

depends on the order of series expansion and does not respect

the model constraints.

Figure 5: D4R consequently requires the fulfillment of the model

constraints, thus the deviation is 0. This also leads to smoothing

and strongly reduces statistical errors.

of statistical faults depends on the length of the considered

time span. A long time span leads to small statistical faults,

but requires a long data history and causes high calculation

effort and time. Therefore the length of the considered time

span is limited by the response time required for defense

measures against cyber attacks. DV does not provide any

smoothing (Figure 6).

Figure 6: DV requires the fulfillment of the model constraints, thus

the deviation is 0. As only the differences between two time steps are

reconciled, there is no smoothing and the reconciled traces are slightly

deflected.

3.3 How is data improved by the different
methods?

In PSE, D4R, DV, and TSA an optimization is undertaken

by minimizing the square difference between measure-

ment/input values and reconciled values weighted by their

variance with the system model as a side condition. These

reconciled values fulfill the system equations. In TSA, as

a subsequent step, the two neighboring values are aver-

aged to the final values, which do not fulfill the system

equations anymore. In contrast in PSE, D4R, and DV the final

reconciled values do fulfill the system equations. Although

the reconciled values in D4R fulfill the system equations,

they do not follow the true values exactly (Figure 5). The

improvement of the correction factor in KFs is an optimiza-

tion minimizing the estimation error. But for KFs and DDR

no actual optimization of the measurement values is done.

The estimate of the previous time step is trusted and used to

predict the current values, and the current measurements

are only included for correction of the predicted values

limited by the correction factor. KF and DDR are causal, only

previous values have influence on the estimate of future

values, but future values are not used for improvement of

previous values. Together with the damping effect of the

correction factor, this also leads to a slight time delay of

the estimated values in case of fast state changes (Figure 7).

In DV, the optimization only includes the current and the

previous point in time. So DV is causal, too. In contrast, PSE,
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Figure 7: In KFs the adaptive correction can follow a slowly increasing

gross error and therefore impede the detection as the measurement

deviation keeps oscillating around 0. For dynamic behavior KFs always

have a slight time delay.

D4R, and TSA are non-causal because there is no dedicated

direction of influence for optimization.

3.4 How are gross errors detected in the
various methods?

PSE, D4R, DV, and TSA trust in the model and consider the

system states consisting of themeasurements and input val-

ues as affected by statistical errors and potentially by gross

errors. In contrast, KF and DDR trust the input values and

consider the models as faulty and only the measurements

as affected by statistical errors. Potential gross errors in KF

are modeled and estimated for selected measurement vari-

ables only. In DDR gross errors are potentially expected in

all measurement variables, while input values are trusted.

For gross error detection in DDR, two methods are pro-

posed. Either the measurement deviations are evaluated,

which is the deviation from the model constraints in the

last step, weighted by the correction factor. Or the gross

error is modeled as time constant bias of the measurements

that is co-calculated during the reconciliation process. This

means it represents the average bias of the measurement

errors in the considered time interval. In KFs gross errors

are calculated by modeling them as additional variables

and estimating them in every time step. This method is

limited to a few selected measurement variables that are

suspected to be contaminated by a gross error, usually a

sensor drift. For all other measurements, a gross error

cannot be detected but might appear as pretended gross

errors in related variables due to smearing effects. For ‘KFs’

the deviation between measured and estimated values is

minimized and does not provide reliable information about

gross error, so ameasurement test cannot be applied. Slowly

and steadily increasing gross errors are compensated by

the correction gain and therefore not detectable (Figure 7).

In contrast in D4R increasing gross errors are represented

by increasing measurement deviations (Figure 8). In addi-

tion to the measurement deviation, the residuals of the

system equations are used for gross error detection in D4R.

Both contain reliable information about gross errors as the

data improvement in D4R provides significant reduction of

statistical faults without distorting the data. In PSE gross

error detection is also based on evaluating measurement

deviations. The detection performance strongly depends

on the extent the data is properly described by the series

expansion. For DV first a so-called nodal test is applied to

the residuals. If values in the residual array are suspicious,

variables appearing in all equations of these residuals, are

tested using the measurement deviation. The performance

is similar to gross error detection in steady-state data rec-

onciliation. For TSA no gross error detection is proposed.

As the reduction of statistical errors is only based on two

instants in time, only a limited improvement is achievable.

In addition, the averaging adds a deviation from the system

model (Figure 3). So deviations between measurements or

input values and the optimized values by TSA are distorted

and therefore difficult to evaluate.

Figure 8: D4R request strict model fulfillment and the slowly, but

systematically increasing measurement deviations enables the detection

of a slowly increasing gross error.
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4 Discussion

The differences observed affect the aptitude and applicabil-

ity for systems and purposes. The restrictions and advan-

tages of the consideredmethods is discussed in the following

section.

KF perfectly fulfills its commonuse for improving noisy

measurement data. It is very tolerant towards imprecise

models due to the continuously tuned correction term.With

this correction also faults in input variables are treated

implicitly. But as the correction depends on the previous

values, the results are hardly traceable or explicable. For

gross error detection, KF is only feasible if integrity can be

guaranteed for most of the measurement variables.

DDR requires knowledge of the variance of the model

fault for determining the correction factor and considers

the model error as normally distributed. The correction

treats a certain amount of model faults and to some extent

compensates faults in input variables. Although the depen-

dency of the previous values is smaller compared to the

KF as the correction gain is constant, it still is included in

the prediction of values and therefore the improved values

are not completely explicable. Gross error detection is only

applicable for gross errors inmeasurement variables. Gross

errors in input variables are not detectable so input values

have to be reliable. This might not apply to all kind of actors

and for manipulation detection, manipulation of input val-

ues has to be considered.

For PSE value traces have to be well followed by series

expansion of a certain, known order. For system equations

containing higher than first-order derivatives, PSE is very

useful. The traces are smoothed by the series expansion and

therefore are distorted to some extent before data reconcil-

iation. So for gross error detection evaluating the difference

between raw data and series expanded and reconciled data,

the origin of the measurement deviation is not only gross

errors.

TSA only considers two points in time for reconcilia-

tion, so the ability to reduce statistical errors is limited. The

averaging of the values calculated for two neighboring tran-

sitions provides additional smoothing but leads to values

that donot fulfill the systemmodel. The remaining statistical

errors and the distortion by averaging limit the capability of

TSA for gross error detection.

In DV there are also only two points in time considered

for reconciliation, so the traces are not smoothed. Optimized

values do fulfill the system equation. Reduction of statistical

errors is only based on redundancy in the system evaluated

at one instant, values from a second time-step are only

used for creating the difference. For gross error detection,

the deviation between measured or input values and the

reconciled values do provide information about the error.

Compared to the similar method D4R considering several

time steps, the gross error detection in DV is more disturbed

by statistical errors.

D4R does not provide explicit smoothing, but the data

reconciliation enforces compliance with the system model.

The resulting traces are therefore smooth depending on the

system equation. By considering several time steps statis-

tical errors are not only reduced using the system redun-

dancies but also by considering several time steps. As the

reconciled values fulfill the systemmodel, themeasurement

(and input value) deviation aswell as the equation residuals

provide information about gross errors. The reduction of

statistical errors further improves the gross error detection.

D4R in the presented form can be applied for all lin-

earizeable systems. It seems likely to be applicable for non-

linear systems, too. This has to be investigated in future

work.

From the methods compared, D4R is the most appli-

cable method for gross error detection and thus for the

detection of cyber attacks.

5 Conclusions

Anewmethod of direct discrete dynamic data reconciliation

treating both, static and dynamic system equations has been

presented together with a brief summary of similar preex-

isting methods for comparison.

All methods have been evaluated and compared for dif-

ferent aspects of their procedure, preconditions and results

focusing on the aptitude for the detection of cyber attacks.

The established methods ‘Kalman Filter’ and ‘Dynamic

Data Reconciliation’ use a predictor-corrector-form and can

only detect faults in measurement variables, the ‘Kalman

Filters’ can even detect gross errors only in a few selected

measurement variables, where gross errors are previously

modeled by the ‘Kalman Filters’ designer. However, the vari-

ables affected by cyber attacks are hardly predictable and

not restricted to measurement variables. In particular, also

targeting input values is reasonable for attackers, as they

are linked to actuators. The estimated values, used as ref-

erence for gross error detection, are not completely pre-

dictable by calculation as they depend on the full history of

values. As another shortcoming of the ‘Kalman Filter’ the

Kalman gain compensates slowly increasing gross errors

and make them undetectable. Furthermore, some of the

traditional methods distort the value prior to or after the

data reconciliation by polynomial series expansion or aver-

aging (two step averaging), but not so the newdirect discrete



K. Reibelt et al.: D4R: direct discrete dynamic data reconciliation method — 45

dynamic data reconciliation method. In these cases, it is

not possible to distinguish to what extend the reconciliation

procedure and to what extend potential gross errors con-

tribute to any residuals, which hampers their application to

the detection of cyber attacks.

The consideration of several points in time, as pre-

sented in the new direct discrete dynamic data reconcilia-

tionmethod, is shown to improve the reduction of statistical

errors and therefore the detectability of gross errors.

The new method of direct discrete dynamic data rec-

onciliation thus outperforms the existing methods regard-

ing the aspects considered for comparison, as it can detect

errors in all variables, and the smoothing is done based on

the system dynamics which leads to a significant reduction

of statistical errors, and the optimization leads to model

compliant values. These reduced statistical errors and the

model compliant values provide significant information for

error detection. Direct discrete dynamic data reconciliation

therefore is superior to the established methods and ready

to be applied for the detection of cyber attacks in cyber-

physical systems. In futurework the applicability oft he new

method has to be validated for real world applications.
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