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Abstract: A novel hybrid method of data reconciliation and
gross error detection, applicable for systems with a mixture
of dynamic and static system constraints, is developed for
the detection of cyber attacks. The requirements for the new
application of data reconciliation and similar methods in
cybersecurity differ from the requirements for the estab-
lished use of data reconciliation in automation and control
engineering. For the detection of cyber attacks aiming at
physical damage the main focus is on significant gross error
detection while for classical applications a robust optimiza-
tion and smoothing of measurement data is the main con-
cern. Therefore the new hybrid method of direct discrete
dynamic data reconciliation, as well as similar methods of
data reconciliation and Kalman filters with their referring
methods of gross error detection are evaluated regarding
their aptitude for attack detection in cybersecurity. All con-
sidered methods are compared regarding properties result-
ing from the specific optimization procedure and the detec-
tion. The new direct discrete dynamic data reconciliation is
indeed shown to outperform the other methods regarding
the detection of cyber attacks.
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Zusammenfassung: Fiir die Detektion von Cyberangriffen,
wurde eine neue, hybride Methode der Data Reconcilia-
tion und Grofifehlerdetektion entwickelt, die auf Syste-
me mit einer Mischung aus dynamischen und statischen
Systemgleichungen anwendbar ist. Die Anforderungen an
die Data Reconciliation und dhnliche Methoden fiir den
neuen Anwendungsfall in der Cybersecurity unterschei-
det sich deutlich von den Anforderungen der klassischen
Anwendungsfélle in Automatisierung und Regelungstech-
nik. Zur Detektion von Cyberangriffen, die auf physika-
lische Schédden abzielen, liegt der Fokus auf der Detek-
tion relevanter Grofifehler, wiahrend fiir die klassischen
Anwendungsfélle hauptsachlich eine robuste Optimierung
und Glattung der Messdaten bendtigt wird. Daher werden
die neue hybride direkte diskrete dynamische Data Re-
conciliation, ebenso wie dhnliche Methoden der Data Re-
conciliation und Kalmanfilter, mit den jeweils zugehorigen
Grofifehlerdetektionsmethoden gepriift, ob sie zur Angriffs-
detektion in der Cybersecurity geeignet sind. Alle betrach-
teten Methoden werden hinsichtlich der Eigenschaften ver-
glichen, die aus dem jeweiligen Optimierungsprozess und
der Detektion folgen. Hierbei zeigt sich, dass die neue di-
rekte diskrete dynamische Data Reconciliation den anderen
Methoden hinsichtlich der Detektion von Cyberangriffen
uberlegen ist.

Schlagworter: Grofifehlerdetektion; Cyber-Physikalische
Systeme; Cybersicherheit; False Data Injection; Dynamische
Data Reconciliation; Kalman Filter

1 Introduction

Cyber-physical systems are not only threatened by com-
mon cyber-attacks, damaging or stealing data, but also by
new cyber-attacks aiming at damages in the physical part
of the system. Security measures in the systems ensure
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compliance of the system states with restrictions that pre-
vent damages. Therefore, cyber-attacks aiming at physical
damages have to use false data injection to undermine those
measures. These new cyber-attacks are the subject of the
detection methods in this paper. For detection of false data
injection in connected cyber-physical systems physical cor-
relations can be considered. In addition, the new detection
method utilizes prior knowledge regarding informational
properties of the systems components like degree of exposi-
tion or commonalities as described in Reibelt [1]. The quality
of this cyber-attack detection relies on the full chain of data
preparation, anomaly detection and the new consideration
of informational properties. Based on models, describing
the physical correlations and constraints, there are several
methods for improving measurement data and detection
of gross errors, which can be understood as anomaly, indi-
cating a cyber attack. Gross errors are errors greater than
the measurement noise, classically considered to indicate a
sensor fault, outage, or leakage but are also feasible to detect
false data injection. The methods differ regarding their opti-
mization and detection process. The comparison of differ-
ent methods for evaluating the measurements regarding
the physical information for cybersecurity shows significant
differences in the influence of the procedures, in particular
between methods of data reconciliation and Kalman filters.
Thereby, confusion in the naming of methods can be found
in the literature, as the traditional method of Dynamic Data
Reconciliation [2] indeed is a kind of Kalman filter but not a
real data reconciliation method.

The present paper extends a new direct discrete
dynamic data reconciliation introduced in Reibelt [1] by
including both dynamic and static system relations for
applicability in common systems. This method is set-up with
methods of gross error detection for the detection of cyber
attacks. The new method and similar, preexisting methods
are evaluated in terms of their usability for the first two
steps of detecting false data injection, the data optimiza-
tion and gross error detection. Some advantages of classical
static datareconciliation regarding gross error detection are
only transferred to dynamic systems by the new method
of direct discrete dynamic data reconciliation introduced
in Section 2.2. For enabling a reasonable selection for new
applications in general, the present paper shows a detailed
comparison of the effects of the different optimization pro-
cesses especially with regard to gross error detection.

2 Methods

Methods of data reconciliation for dynamic systems are
developed from traditional static data reconciliation. The
new method (Section 2.2), as well as three preexisting ones,
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are based on the time-discrete, linearized representation
of the system model. The introductions of these methods
(Section 2.3) and an additional one using polynomial series
expansion (Section 2.4) already focus on commonalities
and differences. Traditional dynamic data reconciliation
(Section 2.6) is described after the Kalman filter (Section 2.5)
is introduced, as there is a close affinity.

2.1 Introduction to data reconciliation (DR)

For DR all relations and laws for measurements and input
values are described in the system equation using the array
of variables y and the system matrix A:

A-yt)=0 6))

For optimizing the variables, the difference between
the measured y(t) and the reconciled values y(¢) is min-
imized with respect to their variance and with the sys-
tem equation as side condition [3]. This means, in DR the
reconciled variable values y(t) strictly fulfill the system
equation (1). Conventionally, the optimization is solved by
Lagrange variation, but it is not limited to this method [4].
Gross Error Detection of DR utilizes either the measurement
deviation (difference between measured/input values and
reconciled values) or the residuals of the system equation (1)
for detection and localization of the error.

Classical DR is used for steady-state system equations,
that sufficiently describe the behavior in a stationary oper-
ation point in chemical facilities where data reconciliation
is traditionally used. Dynamic system equations are conven-
tionally given in the form

dx/dt = A - x(t) + B - u(t) @)

where for most applications u is the array of the input
variables with the input matrix B and x(t) is the array of
states/measurements. For DR the division of the variables in
u and x is just considered as separation between variables
appearing in derivative form and variables only appearing
directly. Therefore both, A and B are regarded as system
matrices. So the main task is to treat the derivative part
dx/dt in (2).

In classical DR several methods are considered for gross
error detection. The measurement test uses the measure-
ment deviation for detection and localization of gross errors
[5]. The global test evaluates the sum of the equation resid-
uals [6]. The hypotheses test compares actual residuals to
expectation values referring to the possible gross errors [7],
[8] and the nodal test identifies the variables included in
the equations or contributing to nodes enabling a balance
evaluation, that show residuals above the amount explica-
ble by statistical errors only [9].
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2.2 New method of direct discrete dynamic
data reconciliation (D4R)

The dynamic system equations can be expressed in a time-
discrete manner:

x(k+1)=A,-x(k)+ B, - u(k) 3)
in addition to the static system equations:
y(k) = C-x(k)+ D - uk) 4)

Matrices C and D in (4) are identical to the ones in time
continuous representation. There are different approaches
for determining A, and B, in (3) from the time continuous
matrices A and B in (2), depending on the model used for
signal reconstruction. For the following examples A, = e4T*
and B, = eA™-B is used.

In Reibelt et al. [10] a new method of Data Reconcilia-
tion handling dynamics using the discrete equation form (3)
is introduced. The variable arrays x(k) and u(k) containing
known (measured and input) values are expanded by sev-
eral time steps, indicated by an index ¢. Then x,(k + 1) can
be expressed by a matrix multiplication with

01,0 ---

00 1, "

Q= => Xt(k +1)=¢Q- Xt(k) (5)

With (5) the dynamic system equations become
(Ag— Q) - x,(K)+ By - uk)=0 (6)

To return to the original form of the system equations
in DR, with its known optimization solution, the variable
arrays representing a piece of signal in the considered time
span x,(k) and u,(k) are combined to one common variable
array and the matrices of (6) are combined into one matrix:

C X ]
A, B; -1, 0 0 u (k)
0 0 A; B; -1, Jxk+Dl=0
uk+1)
= Adyn yt(k) =0 )

For equation (7), the optimization result is already
known from classical data reconciliation.

This form introduced in Reibelt et al. [10] considers
dynamic relations only.

To consider static relations as they frequently appear it
has to be extended.
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If the system considered also includes static system
relations conventionally matching the form

k k
<X‘ ’) ~[cn]- (’“ ’) ®
u(k) u(k)

The static relations (8) can be included by extending the
system matrix respectively.

4, B, -1, 0 0
1X OX
C— D-— 0 0 0
ou 1u
1X 0X
0 0 C—- D-— 0
Ou 1u
9
[ x(k)
u (k)
Jdqxk+D|=0 9)
uk+1

The form in equation (9) enables the application of
classical DR optimization for the traces in the chosen time
period. Within this new D4R approach, three methods are
considered for gross error detection: The measurement test,
the global test, and the hypotheses test [10].

2.3 Preexisting methods using discrete
system equations

For system equations matching the pattern

x(k) = xtk — 1) + B, - u(k) (10)

the idea of using a discrete system equation and creating a
variable vector of x,(k) and u,(k) including two time steps
is shown in Rolins et al. [11]. The treatment of several time
steps is done by determining the reconciled value each time
instant by averaging over the previous and the following
step. This Two Step Averaging (TSA) results in values that
do not fulfill the system equation completely. Applying Data
Reconciliation to this system using several time steps is
presented in Darouach et al. [12]. This solution can be con-
sidered equivalent to D4R, but is limited to the simplified
case of a system matching the pattern

xtk+1) =x(k)+B; -uk+1 1)
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with the identity matrix being the system matrix A, like in
TSA. Moreover, the considered input values u(k + 1) are the
ones of the future time step.

An approach by Yin et al. [13] considers the difference
of the values of two neighboring time steps in the vari-
able arrays. The system matrices are adapted accordingly.
This results in a static system description with the known
solution. Although the new set of values in this approach
of Difference Variables (DV) fulfills its system equation, for
those variables appearing only in derivative form, only the
differences are reconciled. This solution in Yin et al. [13]
only considers one instant in time and the previous one
for creating the differences. Only reconciling the differences
can lead to a slow deflection of the reconciled values from
the measurement. For gross error detection and localiza-
tion, the nodal test is applied, followed by a measurement
test of the suspected variables. Residuals are evaluated for
the pre-selection of suspected variables and the measure-
ment deviation is used for the final determination of the
faulty variable.

2.4 Polynomial series expansion (PSE)

One approach from Bagajewicz et al. [14] and Bennouna
et al. [15] is accessing the derivative using the polynomial
series expansion of the variable values:

x=iak-tk u=iﬂk-tk
k=0 k=0

With (12) the derivative can be directly expressed as:

(12)

s—1

S
dx/dt =Y k-7 =Y apyy - k+ 1)K (13)
k=0 k=0

Inserting (12) and (13) the system equation becomes

s—1 s s
Yty K+ =4 (Zak-t"> +B- <Zﬂk't">
k=0 k=0 k=0

(14)
which leads to the side condition (k+1) - a1 =A-ay +B-

B The polynomial series expansion can be expressed using
a time matrix T

100 - - -
1t1tf--~

T =
1t2t§--~ (15)

> ).(.(tl'....tz) =T-a u(t..t)=T-p

This shows that the optimization of the polynomially
approximated variables x and u can be expressed by an
optimization of a and f that can be calculated. For gross
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error detection and gross error localization, then the mea-
surement deviation is evaluated [15].

2.5 Kalman filter (KF)

In the KFs [16], the variables are divided in input values
u, internal parameters x and the observable variables or
system states y. Model inaccuracy and noise are contained in
variable z. The system is discretely described by equations:

Xk+D=A;- xK+B; - uk)+G,;-z(k)

and y(k)=C-x(K)+D-u(k) (16)

The optimization is divided into two steps. The first
step is the prediction of the internal parameters x(k + 1)
based on the current input values u(k) and the estimated
parameters X(k) of the previous time step using the system
model

R(k+1) = Ay - X(K) + By - u(k) 17)

The second step takes place in the next time step and
optimizes the predicted value from (17) using the mea-
sured value. The correction summand consists of the differ-
ence between predicted and measured value weighted by a

Kalman gain K(k):
x(k) = &(k) + K(k) - (y(k) — C-%(k) —D - u(k))  (18)

In parallel the covariance matrix P(k) of the error of
estimation £(k) = x(k) — X(k) is predicted in the first step

P(k+1)=A;-P(k)- AT + G- Q(k) - G (19)
and optimized in the second step
P(k) = (1—K(k) - C) - P(k) (20)

The optimization includes the variance Q(k) of model
inaccuracy and noise z(k). As the index k already implies,
the Kalman gain K(k) is also adapted every time step
through

K(k) = Py - C" - (c Py T + R(k)>_1 @1)

with respect to the predicted covariance matrix of the error
of estimation and the variance R(k) of the measurement
noise v(k).

For gross error detection based on Kalman Filter, the
postulated error is included as an internal parameter in
array x(k) and its amplitude is estimated in every time step
[16]. So for false data injection, where the measured or
input values affected are unknown, this leads to a limitation
of detectable manipulations or a huge effort for calculat-
ing several ‘Kalman Filters’ considering all possible fault
hypotheses.
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2.6 Dynamic data reconciliation (DDR)

The dynamic data reconciliation according to [2] expects
model errors 6, (, = x; + 6,) in addition to measurement
errors g, (y, = x; + &,) just like Kalman Filters. It starts with
a model based prediction y,, where the procedure is not
described in detail. These predicted values y, are corrected
by adding the weighted measurement deviation:

X =)A’t+K()’t_)A’t) (22)

Thus, DDR (22) is a predictor-corrector-algorithm just
like in the KF. In contrast to the KF correction, the gain is not
adapted every time step, but only depends on the variance
matrices of the measurement errors V and the model errors
R that are supposed to be known [2]:

K=(V'+R) . v'=(1+V-R) 2] @

The resulting values %, do not fulfill the model com-
pletely and can be considered as estimation. Thus the DDR
presented by Bai is not actually a DR method. As errors
are only reduced with respect to the variance, the measure-
ment deviation still contains information for the detection
of gross errors but it is distorted. For gross error detection,
a nodal test is applied to the residuals. For every residual
a test is conducted, if the respective residual is explicable
by statistical errors only. If residual values are suspicious
above a predefined significance, variables appearing in all
suspicious residuals but nowhere else are tested using the
measurement deviation [17].

3 Comparison of methods

The different methods are compared regarding the opti-
mization process and its effects. In particular, the effects on
the gross error detection are evaluated. A brief summary is
given in Table 1.

To illustrate the effects described in the following com-
parison, two basic example systems were used. All of the
methods discussed except of DV (i.e. D4R, TSA, PSE, KF, and
DDR) are treating real dynamic equations. The dynamic
system equations used for the following demonstration
example are (24) and (25):

X -1/1 0 0 0 X 1/1
dalx 025/2 —1/2 o 0 X, 0
E = . + uy
Y, 0.75/3 0 -1/3 o X 0
X, 0 1/4 /4 —1/a| (x, 0
A B

24

K. Reibelt et al.: D4R: direct discrete dynamic data reconciliation method =39

W 1 0 0 O Xy 0
01 0 O X 0
- P+ ‘u; (25
Vs 0 0 1 0 X3 0
A 00 0 1 X, 0
~- 4 N~——
c D

Input signal w, is a sinewave, all initial values are
zero. Discretization was done by the c2d Matlab func-
tion using the default zero-order hold. For DV indeed
a static system model is used reconciling the differ-
ences of the variables between the time steps. The sys-
tem equation used for the following example of DV is
(26)

Axq
1 -1 -1 0 0o O Ax,
0 1 0 -1 o O . Ax; —0 8
0 0 0 -1 0 Ax,
0 0 0 1 1 Ax;
Axg

where the x,-trace as well as its share of 0.25 of x; was
adopted from the dynamic example to create a comparable
plot. Normal distributed errors were added to all variables.
In all cases x, was plotted.

3.1 What are the application cases of the
methods and the consequences for their
capabilities?

The methods belonging directly to Data Reconciliation, PSE,
D4R, DV, and TSA are used for monitoring systems with
noisy measurements. Their purpose is the identification of
the most probable ‘true value’ of measurements and input
values. PSE, D4R, and DV also contain gross error detection
methods for detection of leakages, sensor outages, and cali-
bration issues.

KFs, as well as DDR, focus on the estimation of the
system state to provide sustainable information for robust
and stable controlling of the process which requires explicit
smoothing of traces. Gross error detection in KFs and DDR
is used for the purpose of correcting the knowledge of the
system state. It is not meant to inform about the error or
take measures against its root cause. Especially in KFs, gross
error detection is limited to a few selected measurement
variables within in the system that are expected to show
sensor drifts.
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Dynamic Data Reconciliation (DDR)

variable values

deviation
from model
o

0.1 L L . L . L L L L
0 1 2 3 4 5 6 7 8 9 10

time
--- true values — measured values
prediction ee¢ correction
— deviation from model constraints

estimated values

Figure 1: For DDR the next value is predicted and then corrected
towards the actual measurement, just like for KF. The correction provides
some trace smoothing. The model constraints are not fulfilled, resulting
in a deviation shown in the lower plot.

3.2 Whats the conditions and proceedings
of smoothing by the methods?

Smoothing in the time dimension helps to reduce statistical
faults, but can also mask actual deviations. For both, KF
and DDR, estimated values are smoothed by a correction
after predicting the value using the model. In both cases the
correction depends on the difference between the measured
and the predicted values weighted by a correction factor
(Figures 1 and 2). For DDR the correction factor depends on
the variances of the measurements and the model faults and
therefore is time invariant. In contrast in KFs, the Kalman
gain is adapted every time step minimizing the covariance
of the estimation error. So the smoothing and adaption
depends on the previous values.

In both KF and DDR, the estimated values can still vio-
late the systems equations since they result from a weighted
mean of predictions and possibly model-violating measure-
ments. Actual faults can be masked. KF and DDR need to
smooth the traces, but smoothing is not limited to them. In
TSA a smoothing effect is achieved by averaging the solu-
tions of the neighboring time steps (Figure 3). This only pro-
vides a small reduction of statistical faults. In PSE the traces
are smoothed by the series expansion, prior to the data rec-
onciliation. The extent of the smoothing strongly depends
on the order of the series expansion, which must suit the
shape of the considered traces (Figure 4). This smoothing
by serial expansion masks a lot of artefacts. In the D4R

K. Reibelt et al.: D4R: direct discrete dynamic data reconciliation method

.

Kalman Filter (KF)

T T T

02

041 | A

variable values

01

deviation
from model

01 . . . L . L . .
0 1 2 3 4 5 6 7 8 9 10

time
--- true values — measured values — estimated values
prediction eee correction

— deviation from model constraints

Figure 2: For KF, the next value is predicted and then corrected towards
the actual measurement. The correction provides some trace smoothing.
The model constraints are not fulfilled, resulting in a deviation shown

in the lower plot.

Two Step Averaging (TSA)

01

variable values

01F 1

deviation
from model
o

0.1 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

time
optimized values
averaging

-- true values — measured values
— Data Reconciliation of two values
— deviation from model constraints

Figure 3: For TSA data reconciliation is applied for all neighboring
values. This gives two reconciled values for every time instant. To get

the optimized value these two values are averaged, which provides some
smoothing. The optimized values deviate from model constraints (lower

plot).

discrete treatment, data reconciliation returns a solution
fulfilling the dynamic system equations, a continuously dif-
ferentiable trace, which is a kind of smooth trace within the
considered time span, but does not result from smoothing
(Figure 5). So actual faults are not masked. The reduction
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ol Polynomial Series Expansion

0.25

variable values

-0.1

-0.15

02 L A L A

0 2 4 6 8 10
order of

series expansion

-+ true values == measured values -- series expansion

Figure 4: This plot illustrates the difficulties with series expansion prior
to data reconciliation. Whether the traces are described properly,
strongly depends on the order of series expansion. The smoothing also
depends on the order of series expansion and does not respect

the model constraints.

Direct Discrete Dynamic Data Reconciliation (D4R)

02 1

01f 8

variable values

-0.2

deviation
from model

03 ; . ; i i i
0 1 2 3 4 5 6 7 8 9 10

time
- true values — measured values = reconciled values

— deviation from model constraints

Figure 5: D4R consequently requires the fulfillment of the model
constraints, thus the deviation is 0. This also leads to smoothing
and strongly reduces statistical errors.

of statistical faults depends on the length of the considered
time span. A long time span leads to small statistical faults,
but requires a long data history and causes high calculation
effort and time. Therefore the length of the considered time
span is limited by the response time required for defense
measures against cyber attacks. DV does not provide any
smoothing (Figure 6).
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Figure 6: DV requires the fulfillment of the model constraints, thus
the deviation is 0. As only the differences between two time steps are
reconciled, there is no smoothing and the reconciled traces are slightly
deflected.

3.3 How is data improved by the different
methods?

In PSE, D4R, DV, and TSA an optimization is undertaken
by minimizing the square difference between measure-
ment/input values and reconciled values weighted by their
variance with the system model as a side condition. These
reconciled values fulfill the system equations. In TSA, as
a subsequent step, the two neighboring values are aver-
aged to the final values, which do not fulfill the system
equations anymore. In contrast in PSE, D4R, and DV the final
reconciled values do fulfill the system equations. Although
the reconciled values in D4R fulfill the system equations,
they do not follow the true values exactly (Figure 5). The
improvement of the correction factor in KFs is an optimiza-
tion minimizing the estimation error. But for KFs and DDR
no actual optimization of the measurement values is done.
The estimate of the previous time step is trusted and used to
predict the current values, and the current measurements
are only included for correction of the predicted values
limited by the correction factor. KF and DDR are causal, only
previous values have influence on the estimate of future
values, but future values are not used for improvement of
previous values. Together with the damping effect of the
correction factor, this also leads to a slight time delay of
the estimated values in case of fast state changes (Figure 7).
In DV, the optimization only includes the current and the
previous point in time. So DV is causal, too. In contrast, PSE,
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Figure 7: In KFs the adaptive correction can follow a slowly increasing
gross error and therefore impede the detection as the measurement
deviation keeps oscillating around 0. For dynamic behavior KFs always
have a slight time delay.

D4R, and TSA are non-causal because there is no dedicated
direction of influence for optimization.

3.4 How are gross errors detected in the
various methods?

PSE, D4R, DV, and TSA trust in the model and consider the
system states consisting of the measurements and input val-
ues as affected by statistical errors and potentially by gross
errors. In contrast, KF and DDR trust the input values and
consider the models as faulty and only the measurements
as affected by statistical errors. Potential gross errors in KF
are modeled and estimated for selected measurement vari-
ables only. In DDR gross errors are potentially expected in
all measurement variables, while input values are trusted.
For gross error detection in DDR, two methods are pro-
posed. Either the measurement deviations are evaluated,
which is the deviation from the model constraints in the
last step, weighted by the correction factor. Or the gross
error is modeled as time constant bias of the measurements
that is co-calculated during the reconciliation process. This
means it represents the average bias of the measurement
errors in the considered time interval. In KFs gross errors
are calculated by modeling them as additional variables
and estimating them in every time step. This method is
limited to a few selected measurement variables that are
suspected to be contaminated by a gross error, usually a
sensor drift. For all other measurements, a gross error
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cannot be detected but might appear as pretended gross
errors in related variables due to smearing effects. For ‘KFs’
the deviation between measured and estimated values is
minimized and does not provide reliable information about
gross error, so a measurement test cannot be applied. Slowly
and steadily increasing gross errors are compensated by
the correction gain and therefore not detectable (Figure 7).
In contrast in D4R increasing gross errors are represented
by increasing measurement deviations (Figure 8). In addi-
tion to the measurement deviation, the residuals of the
system equations are used for gross error detection in D4R.
Both contain reliable information about gross errors as the
data improvement in D4R provides significant reduction of
statistical faults without distorting the data. In PSE gross
error detection is also based on evaluating measurement
deviations. The detection performance strongly depends
on the extent the data is properly described by the series
expansion. For DV first a so-called nodal test is applied to
the residuals. If values in the residual array are suspicious,
variables appearing in all equations of these residuals, are
tested using the measurement deviation. The performance
is similar to gross error detection in steady-state data rec-
onciliation. For TSA no gross error detection is proposed.
As the reduction of statistical errors is only based on two
instants in time, only a limited improvement is achievable.
In addition, the averaging adds a deviation from the system
model (Figure 3). So deviations between measurements or
input values and the optimized values by TSA are distorted
and therefore difficult to evaluate.
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Figure 8: D4R request strict model fulfillment and the slowly, but
systematically increasing measurement deviations enables the detection
of a slowly increasing gross error.
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4 Discussion

The differences observed affect the aptitude and applicabil-
ity for systems and purposes. The restrictions and advan-
tages of the considered methods is discussed in the following
section.

KF perfectly fulfills its common use for improving noisy
measurement data. It is very tolerant towards imprecise
models due to the continuously tuned correction term. With
this correction also faults in input variables are treated
implicitly. But as the correction depends on the previous
values, the results are hardly traceable or explicable. For
gross error detection, KF is only feasible if integrity can be
guaranteed for most of the measurement variables.

DDR requires knowledge of the variance of the model
fault for determining the correction factor and considers
the model error as normally distributed. The correction
treats a certain amount of model faults and to some extent
compensates faults in input variables. Although the depen-
dency of the previous values is smaller compared to the
KF as the correction gain is constant, it still is included in
the prediction of values and therefore the improved values
are not completely explicable. Gross error detection is only
applicable for gross errors in measurement variables. Gross
errors in input variables are not detectable so input values
have to be reliable. This might not apply to all kind of actors
and for manipulation detection, manipulation of input val-
ues has to be considered.

For PSE value traces have to be well followed by series
expansion of a certain, known order. For system equations
containing higher than first-order derivatives, PSE is very
useful. The traces are smoothed by the series expansion and
therefore are distorted to some extent before data reconcil-
iation. So for gross error detection evaluating the difference
between raw data and series expanded and reconciled data,
the origin of the measurement deviation is not only gross
errors.

TSA only considers two points in time for reconcilia-
tion, so the ability to reduce statistical errors is limited. The
averaging of the values calculated for two neighboring tran-
sitions provides additional smoothing but leads to values
that do not fulfill the system model. The remaining statistical
errors and the distortion by averaging limit the capability of
TSA for gross error detection.

In DV there are also only two points in time considered
for reconciliation, so the traces are not smoothed. Optimized
values do fulfill the system equation. Reduction of statistical
errors is only based on redundancy in the system evaluated
at one instant, values from a second time-step are only
used for creating the difference. For gross error detection,
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the deviation between measured or input values and the
reconciled values do provide information about the error.
Compared to the similar method D4R considering several
time steps, the gross error detection in DV is more disturbed
by statistical errors.

D4R does not provide explicit smoothing, but the data
reconciliation enforces compliance with the system model.
The resulting traces are therefore smooth depending on the
system equation. By considering several time steps statis-
tical errors are not only reduced using the system redun-
dancies but also by considering several time steps. As the
reconciled values fulfill the system model, the measurement
(and input value) deviation as well as the equation residuals
provide information about gross errors. The reduction of
statistical errors further improves the gross error detection.

D4R in the presented form can be applied for all lin-
earizeable systems. It seems likely to be applicable for non-
linear systems, too. This has to be investigated in future
work.

From the methods compared, D4R is the most appli-
cable method for gross error detection and thus for the
detection of cyber attacks.

5 Conclusions

Anew method of direct discrete dynamic data reconciliation
treating both, static and dynamic system equations has been
presented together with a brief summary of similar preex-
isting methods for comparison.

All methods have been evaluated and compared for dif-
ferent aspects of their procedure, preconditions and results
focusing on the aptitude for the detection of cyber attacks.

The established methods ‘Kalman Filter’ and ‘Dynamic
Data Reconciliation’ use a predictor-corrector-form and can
only detect faults in measurement variables, the ‘Kalman
Filters’ can even detect gross errors only in a few selected
measurement variables, where gross errors are previously
modeled by the ‘Kalman Filters’ designer. However, the vari-
ables affected by cyber attacks are hardly predictable and
not restricted to measurement variables. In particular, also
targeting input values is reasonable for attackers, as they
are linked to actuators. The estimated values, used as ref-
erence for gross error detection, are not completely pre-
dictable by calculation as they depend on the full history of
values. As another shortcoming of the ‘Kalman Filter’ the
Kalman gain compensates slowly increasing gross errors
and make them undetectable. Furthermore, some of the
traditional methods distort the value prior to or after the
data reconciliation by polynomial series expansion or aver-
aging (two step averaging), but not so the new direct discrete
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dynamic data reconciliation method. In these cases, it is
not possible to distinguish to what extend the reconciliation
procedure and to what extend potential gross errors con-
tribute to any residuals, which hampers their application to
the detection of cyber attacks.

The consideration of several points in time, as pre-
sented in the new direct discrete dynamic data reconcilia-
tion method, is shown to improve the reduction of statistical
errors and therefore the detectability of gross errors.

The new method of direct discrete dynamic data rec-
onciliation thus outperforms the existing methods regard-
ing the aspects considered for comparison, as it can detect
errors in all variables, and the smoothing is done based on
the system dynamics which leads to a significant reduction
of statistical errors, and the optimization leads to model
compliant values. These reduced statistical errors and the
model compliant values provide significant information for
error detection. Direct discrete dynamic data reconciliation
therefore is superior to the established methods and ready
to be applied for the detection of cyber attacks in cyber-
physical systems. In future work the applicability oft he new
method has to be validated for real world applications.
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