KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerical simulation and experimental validation of NO emissions in a heavy-duty H$_2$DI engine considering injector needle dynamics and multi-cycle analysis

Reinbold, Marcel 1; Liang, Mingyi; Bucherer, Manuel ORCID iD icon 2; Wijeyakulasuriya, Sameera; Bui, Thai An 3; Senecal, Kelly; Koch, Thomas
1 Institut für Technische Thermodynamik (ITT), Karlsruher Institut für Technologie (KIT)
2 Institut für Kolbenmaschinen (IFKM), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrogen direct-injection engines offer a promising pathway for decarbonizing heavy-duty transportation, but accurate
prediction of mixture formation and NO$_x$ emissions remains challenging due to complex injector dynamics and strong
cycle-to-cycle variability. This work presents a comprehensive computational and experimental investigation of supersonic
H$_2$ direct injection, mixing, combustion, and NO formation in a single-cylinder heavy-duty hydrogen engine operated at
1100 rpm and λ = 2.6. A detailed three-dimensional CFD model is developed, coupling a pressure-based injection bound-
ary condition with a realistic Bosch F2 prototype injector needle-lift profile to capture valve-bounce effects. The model
is validated against measured in-cylinder pressure, fuel and air mass, and NO emission data. Multi-cycle combustion
behavior and NO emission variability are analyzed using the concurrent perturbation method (CPM), with 20 statistically
independent realizations at reduced computational cost. Results show that near-spark mixtures with higher fuel concentra-
tion accelerate flame propagation and increase peak NO by a factor of two (76 ppm vs. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189507
Veröffentlicht am 12.01.2026
Originalveröffentlichung
DOI: 10.1007/s41104-025-00165-7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Kolbenmaschinen (IFKM)
Institut für Technische Thermodynamik (ITT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2365-5135
KITopen-ID: 1000189507
Erschienen in Automotive and Engine Technology
Verlag Springer
Band 11
Heft 1
Seiten 3
Vorab online veröffentlicht am 08.01.2026
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page