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High resolution physically based
modelling reveals malaria incidence
reduction by vector control
measures
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Malaria continues to cause over 600,000 deaths annually in sub-Saharan Africa, disproportionately
affecting children under five. Despite sustained control efforts, transmission remains highly sensitive
to local environmental and climatic variability, underscoring the need for physically grounded models
capable of capturing these dynamics. To address this challenge, we developed a high-resolution hybrid
modeling framework linking WRF/WRF-Hydro and VECTRI. The framework integrates atmospheric,
hydrological, ecological, and intervention processes at 1 km and 50 m resolutions and includes a

new compartment for insecticide-treated net (ITN) coverage. Using data from 2007-2022 in western
Kenya, a period of large-scale ITN deployment, the model reproduced observed malaria trends with

a mean monthly deviation of +100-150 cases. Simulations showed that ITN coverage reduced the
entomological inoculation rate and malaria incidence by 58% and 41%, respectively, with the highest
efficacy under warm (= 29°C) and moderately wet (150-250 mm) conditions. The findings suggest
that integrating environmental process modeling with optimized, targeted control strategies provides
a cost-effective and operationally relevant framework for sustainable malaria management under
changing climatic conditions.

Keywords Malaria transmission dynamics, Model coupling and optimization, Health and demographic
surveillance systems, Bet net use

Malaria remains a pervasive and devastating public health challenge, particularly in endemic rural areas of
Sub-Saharan Africa (SSA), where its socioeconomic burden is disproportionately high. Between 2000 and 2024,
malaria represented approximately 21% of outpatient consultations and 20% of inpatient admissions, with some
countries reporting figures as high as 70%".

In Kenya, malaria alone represented approximately 15% of outpatient consultations in 20222 with an
estimated 3.3 million malaria cases in 2023"*. However, counties with high transmission rates, such as Siaya
in western Kenya, reported a malaria prevalence of approximately 28.8% among children between 6 months
and 14 years old*®. Furthermore, the World Health Organization (WHO) reported that 546 out of every 1,000
people in Siaya county were infected with malaria in 2020, which required over KSh200 million (approx. 1.54
million USD) worth of medicine for treatment. Given the high burden of malaria in Kenya, particularly in high-
risk regions such as Siaya, targeted intervention strategies have been implemented to mitigate transmission and
improve public health®.

Standard malaria interventions include the widespread distribution of insecticide-treated nets (ITNs), indoor
residual spraying (IRS), improved case management, the distribution of chemoprophylaxis and community-
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based surveillance programs’. Although these interventions have contributed to a decline in malaria transmission
in susceptible human populations®, their long-term effectiveness is influenced by environmental, climatic, and
socio-economic factors”’. Among these malaria control measures, ITNs are the primary vector control method
in many SSA countries because of their ease of large-scale distribution. A systematic literature review underlined
that evidence is strong for the protective effect of ITN interventions in malaria prevention!!!?, reflecting their
proven effectiveness against night-biting mosquitoes. In 2021, a total of 17.9 million ITNs were distributed
in Kenya by national malaria programmes (NMPCs), and 11.8 million were delivered by manufacturers'.
Approximately 1 in 2 households (49%) in Kenya owned at least one ITN, and 29% of households have at least
one ITN for every two people!®. While NMCPs have made progress in increasing ITNs coverage, it seems that
modelling approaches coupled with high-resolution climate, hydrological, and remote sensing information are
proving to be powerful predictors!'® and essential tools for guiding and optimizing malaria interventions.

Which modelling approaches can best capture key epidemiological challenges, such as identifying important
disease drivers, disease hotspots, and seasonality of vector activity and disease transmission from climate
variability/change to human interventions? Traditionally, the interaction between malaria interventions and
climate variability has been examined primarily using statistical models. Statistical models utilise historical
data to identify correlations between climatic factors (temperature, rainfall, and humidity) and socio-economic
indicators (vulnerability, control effort estimates, including data on ITNs and IRS covariates, and malaria
factors)!®17. They are essential for disease mapping, burden assessment, and resource distribution amid
uncertainty. In this context, the Malaria Atlas Project uses Bayesian geostatistical models to estimate malaria
burden across Africa. A notable example is the study by'’, which employed statistical approaches to assess
changes in malaria mortality in Siaya County from 2008 to 2019. The study found that environmental factors,
particularly rainfall and vegetation cover, were significantly associated with malaria mortality, explaining up to
30% of the variation in mortality rates at the sub-county level. Interestingly, temperature was not identified as a
significant predictor in their analysis. In addition, the study highlighted the role of non-climatic factors, showing
that the scale-up of vector control interventions, such as ITN coverage, contributed to reductions in mortality
of up to 20%. Yet, these effects varied geographically and were influenced by baseline transmission intensity and
access to health services. Elsewhere, studies have independently assessed how variations in climate modulate the
effectiveness of malaria interventions. In Zambia'®, reported that a combination of changing rainfall patterns,
potentially associated with El Nifio events, and reduced vector control coverage explained much of the spatial
and temporal variation in malaria prevalence from 2006 to 2012. Consequently, this highlights the inherent
constraints of this approach to simulate the causal, nonlinear, and feedback-driven mechanisms that govern
transmission dynamics, particularly in the context of changing climate and intervention scenarios.

Challenging the conventional approach, dynamical models provide a mechanistic understanding of how
environmental factors, such as rainfall, temperature, soil moisture, land use and land cover changes, influence
mosquito habitats, vector dynamics and ultimately malaria transmission. They are well-suited to conduct
climate change risk assessments under different Shared Socioeconomic Pathways- Representative Concentration
Pathways (SSP-RCPs) climate scenarios!*?’. For example, the HYDREMATS model (Hydrology-Entomology
and Malaria Transmission Simulator) has been used to simulate the formation and persistence of breeding sites
in relation to hydrological conditions and landscape features?!. Several studies have incorporated the effects
of LLING, IRS, treatment strategies, and behavioral adaptations into dynamic models of malaria transmission,
often using compartmental or stochastic approaches’>?*. These models have demonstrated how changes
in intervention coverage, efficacy decay, and insecticide resistance influence transmission dynamics and
intervention cost-effectiveness®*.

Recent tools such as AnophelesModel have simplified the modelling of vector bionomics and interventions?.
However, fewer studies have combined this intervention modelling with environmentally explicit hydrological
or land surface models that mechanistically simulate the formation of breeding sites, the dynamics of surface
water, or microclimate variability. The study by?*® developed a mathematical model to evaluate the effectiveness
of various malaria control strategies in endemic regions. The authors constructed a SEIR-type transmission
model that incorporates the effect of interventions such as LLINs, IRS, and localized individual preventive
measures. Through sensitivity analysis, they identified key parameters such as mosquito biting rate and the
decay rate of intervention programs positively influence the number of new malaria cases, while treatment
rate and intervention uptake negatively impact malaria prevalence. Following the recent tradition of linking
pixels to people in human-environment systems, the VECTRI malaria model?” simulates spatially explicit
malaria transmission dynamics (i.e. grid point-based) by using daily hydro-climate data (precipitation, 2 m
air temperature and surface water) and demographic data to simulate both the vector and parasite life cycles,
offering a powerful framework for dynamically assessing the role of environmental factors in malaria spread'®.

While climate change is expected to alter malaria transmission, research has grown significantly in the
field of climate-driven infectious disease modelling and intervention planning®®-32. However, limited work has
empirically explored how population dynamics, intervention strategies, and local hydro-climatic variability
interact at high spatial and temporal resolutions to shape malaria transmission, forming a closed loop from
atmospheric physics to human disease outcomes. This represents a critical research gap, especially in highly
endemic and hydrologically dynamic regions such as Western Kenya Health and Demographic Surveillance
System (HDSS). Our study addresses this gap by employing a hybrid modelling framework that combines
physically based climate-hydrology simulations (WRF/WRF-Hydro) with a climate-sensitive disease model
(VECTRI), and a parameter calibration method®® to simulate malaria transmission dynamics and optimize
intervention (ITNs) effectiveness across varying environmental conditions. The key innovation of this work is
not just predicting that a climate change will affect malaria, but explicitly modelling how it happens through the
chain of physical hydrology and vector ecology.
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In this paper, we move beyond traditional modelling approaches by simulating how convective rainfall
events and localized warming captured by WRF generate transient surface water dynamics through WRE-
Hydro, leading to the formation of ephemeral mosquito breeding sites. These environmental processes, together
with temperature-driven parasite development, are coupled within an extended version of the VECTRI model
that includes a novel intervention compartment to account for insecticide-treated bed net (ITN) coverage. This
hybrid and spatially explicit framework enables the forecasting of hyper-local malaria outbreaks that are often
overlooked by coarse-scale models, while also providing insights into the spatial variability in the effectiveness
of vector control interventions. We adopt a two-step analytical approach. First, we use our coupled model system
driven by climate and hydrological variables to simulate spatially and temporally resolved malaria transmission
dynamics under ITN coverage. Vector-related parameters are then optimized using the best fit of simulated
cases with reported data. Second, we validate the model outputs and quantify the effectiveness of ITNs across
environmental gradients, thereby identifying thresholds for optimized intervention planning.

Data and methods

Study site description

The Siaya Health and Demographic Surveillance System (HDSS) is located in Siaya County. It spans Asembo,
Gem and Karemo subcounties, respectively, in the western region of Kenya near the northeastern shores of
Lake Victoria (Fig. 1A, B). Siaya lies between 0.26 °S to 0.18°S and 34.16°E to 34.28°E, covering an area of
about 220 km2 characterized by a combination of rural and peri-urban settlements. Siaya is a malaria-endemic
area, contributing to a significant malaria burden in Kenya®34. The climate in Siaya is classified as tropical with
two distinct rainy seasons. Long rains typically occur between March and May, while short rains fall between
October and December. The annual average rainfall ranges from 1,000 to 1,800mm, with the highest rainfall
occurring in areas closer to Lake Victoria®®. Dry periods, between January and February, and June to September,
often experience reduced agricultural productivity, influencing food security, household vulnerability and
potential exposure to malaria®. The average annual temperature in the region ranges from 21°C to 28°C,
with daytime temperatures occasionally rising above 30°C during the drier months. The combination of warm
temperatures and the presence of permanent water bodies provides optimal breeding conditions for Anopheles
vectors (Fig. 1C), contributing to sustained malaria transmission throughout the year”. In recent years, Siaya
has experienced the impacts of extreme weather events®. Episodes of intense rainfall have led to flooding, which
increases mosquito breeding sites and exacerbates malaria transmission®. However, dry conditions often lead
to an increased dependence of populations on stagnant water sources, which can still act as breeding sites for
malaria vectors®’.

Satellite observations

The surface water maps were derived from Level-1 ground range detection Sentinel-1 data in VV polarization
from the descending orbit with a 10-meter spatial resolution (later aggregated to model resolution at 50 m)
from 2015 to 2020, providing a robust approach to high-precision hydrological and environmental monitoring.
Sentinel-1 satellite data is often used in inundation mapping, due to its sensitivity to water. The data was
preprocessed into calibrated, topographically normalized backscatter images. To classify individual Sentinel-1
scenes, a fully automated approach was then applied, using dynamic thresholds defined over permanent water
bodies based on the Global Surface Water Explorer (GSWE*!). The individually classified scenes are then
combined into monthly surface water composites, in which false positives (mainly radar shadows) are removed
by the use of the Multi-resolution Valley Bottom Flatness (MrVBF) index*? derived from the Copernicus Digital
Elevation Model (DEM). This method is valuable for flood risk assessment, wetland monitoring, and water
resource management, offering timely and detailed information on surface water dynamics. The soil moisture
volumetric content daily dataset was derived from the Climate Change Initiative (CCI) of the European Space
Agency (ESA®), at a spatial resolution of 0.25° (about 25 km x 25 km). This daily dataset integrates multiple
active and passive microwave satellite observations, providing a consistent, long-term record of global soil
moisture dynamics. This observed dataset is a valuable resource for hydrological modelling, climate studies, and
the validation of land surface models.

Malaria and bed net reported data

We validated the malaria modelling framework using a dataset previously published by the Kenya Medical
Research Institute (KEMRI) in collaboration with the Centers for Disease Control and Prevention (CDC). The
researchers implemented population-based infectious disease surveillance (PBIDS) across 33 HDSS villages
in Asembo!?. Data collection occurred monthly from 2007 to 2022, providing a continuous temporal record
for analysis. This data set includes the number of reported malaria cases and the ITNs coverage. Analysis of
ITN usage patterns reveals two distinct phases (see'’) from 2008 to 2011, bed net use increased rapidly from
approximately 75 to 93 (%/month), reflecting a major scale-up of ITN distribution likely associated with
intensified national malaria campaigns. From 2012 onward, usage stabilised at high levels (93-98%), indicating
sustained intervention coverage, with possible reinforcement through periodic mass distribution campaigns
every three to four years. Despite minor fluctuations, the overall trend demonstrates consistently high coverage
over the long term. Furthermore, HDSS population density data were used to address demographic variations
and their possible influence on malaria transmission dynamics. Annual malaria cases were documented by the
Global Burden of Diseases (GBD*?), a collaborative network across 50 locations in Kenya from 2000 to 2022.
The Kriging interpolation method*® was used to produce continuous spatial estimates of observational data
at a resolution of 1 km for the Siaya HDSS region. This spatial interpolation method uses existing point data
to estimate values at unsampled locations, resulting in a 1km high-resolution dataset on an annual scale. This
interpolated GBD dataset is used for model validation and parameter optimization.
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Fig. 1. A The two WRF model simulation domains (d01, d02) nested within each other with horizontal
resolution at 5 and 1 km, respectively. B The topography of the finest domain (d02) of the KEMRI-CDC health
and demographic surveillance system (HDSS) area. C The observed percent occurrence of climate conditions
(accumulated rainfall [> 80 mm], average air temperature [18°C > T < 32°C], relative humidity [>60%])
suitable for malaria transmission during 2007-2022.

Driving climate and population data
We validated and evaluated our coupled simulations with various data sources from 2007 to 2022. Daily
precipitation data (Pr) were derived from the Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS*) at a resolution of 5km, offering long-term rainfall estimates. Temperature data (Tas) was obtained
from the Climate Hazards InfraRed Temperature with Stations (CHIRTSY) dataset, for the period 2007-2016
at the same 5km spatial resolution. Furthermore, daily climate observations were improved by incorporating
in situ weather station data (precipitation, air temperature, minimum and maximum temperature, and relative
humidity) from the Kenya Meteorological Department to enhance the accuracy of atmospheric forcing inputs.
The WREF output at 1 km resolution was initially resampled using the nearest neighbour method to match
the CHIRPS 5 km resolution, thereby ensuring consistency in spatial comparison. We employed the t-test to
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statistically assess the significance of differences between simulated and observed climate drivers, including
temperature and precipitation, across various periods. Significance was evaluated at the 95% confidence level (p
< 0.05), ensuring that only substantial differences were included in the interpretation of model outcomes.

Overall modelling chain description

Our approach isbest described as a hybrid modeling framework combining the Weather Research and Forecasting
(WRF) model version 4.0, widely used for weather and climate research at multiple spatial scales*, coupled with
its hydrological component WRF-Hydro (version 5.2)*°, and the VECtor-borne disease community model of
ICTP, TRIeste (VECTRI?”) model for simulating malaria transmission dynamics (see'®), extended to include
public health intervention dynamics. The WREF/WRF-Hydro modelling system simulates climate, surface, and
subsurface hydrology variables at high spatial resolution. Model outputs include soil moisture and surface water
accumulation, which are important variables in modelling mosquito breeding sites. The VECTRI component
simulates disease transmission states within host and vector populations, along with the progression through
all life stages of mosquitoes, from the eggs to larval and adult stages. The vector and parasite dynamics are
driven by environmental inputs, such as rainfall, temperature, and the presence of water bodies, as provided by
WRF/WRE-Hydro at resolutions of 1 km for the atmosphere and 50 m for the surface. The simulation core is
coupled with a Genetic Algorithm (GA, see®®), which employs evolutionary optimization to efficiently explore
the high-dimensional vector-related parameter space and enhance model performance (see Table 1). Table 1
presents a comprehensive summary of the variables and parameters utilized in the model, highlighting their
roles within the analysis. Each parameter is described alongside its definition, default value, best-fit estimate,
and a key reference, enabling readers to understand the model’s structure and application while promoting
transparency and reproducibility.

Model setup and calibration process

A two-nested domain was established at 5 km and 1 km, respectively, for the fully coupled and standalone WRF
simulations spanning from 2000 to 2023. The configuration of the model included 40 vertical levels. The initial
and boundary conditions were derived from the ERA5 reanalysis dataset, which operates at a 31 km resolution.
The configuration of the WRF utilized in this study is thoroughly detailed in'°. The innermost domain D02 was
activated for WRF-Hydro, encompassing an area of 200 x 200 km?* (Fig. 1A). The land surface model (LSM)
was configured with a spatial resolution of 1 km, and the lateral runoff routing processes were addressed at
a resolution of 50 m. The datasets used for WRF-Hydro were derived from the standard output of the WRF
simulation for domain DO02. The variables include precipitation, near-surface air temperature, humidity,
wind, surface pressure, and both short- and longwave downward radiation. A coupling time-step of 1 hour
was employed, facilitating the dynamic exchange of atmospheric and hydrological fluxes with high temporal

Symbol Parameters (definition) Default | Best fit | Unit Source
neggmn Average number of laid eggs per batch that result in female vectors 80 119 eggs 27,50,51
rbiteratio Biting rate 0.6 0.37 days 27,50
rhostclear Clearance rate for non-immune adults 30 58 - 2
rpthost2vect_I Probability of transmission from infected host to vector 0.2 0.84 - 27,50
rpthost2vect_R Probability of transmission from recovered (R) vector to host 0.04 0.37 - 7
rptvect2host Probability of transmission from vector to host 0.3 0.6 - 27,50
rrainfall_factor Rainfall scaling factor 1.0 0.9 - 27,51
rbiocapacity Maximum larval biomass perm 2 of suitable water body 300 134 - 2
rlarvsurv Base survival rate due to predation events 0.98 0.9 - 27
rimmune_gain_eira | Annual EIR required to gain full immunity 100 220 - 7
rimmune_loss_tau | e-folding timescale for immunity loss 365 309 - z
rlarv_flushmin Minimal daily larval survival (L1) rate after intense rainfall 0.4 0.9 - 27,5152
rlarv_flushtau e-folding factor for larval decay from flushing by rainfall 20 32 mm.day~! | 75053
rbitehighrisk Ratio of rate of bites for high risk to low risk 5 18 - 2
rlarv_tmax Maximum temperature for larvae survival 37.0 36 °C 27,51,54
rlarv_tmin Minimum temperature for larvae survival 12 15 °C 27,51,54
rlarv_eggtime Time for egg hatching 1.0 0.8 days 275155
rlarv_pupaetime Time for pupal stages 1.0 1.4 days 27,55
rtgono Threshold temperature for gonotrophic cycle (egg development in vector) 7 13 °C 27,51
dgono Degree-days to complete a full gonotrophic cycle 37.0 39 °C. day™?t | 7515
rtsporo Minimum temperature threshold for sporogonic cycle (parasite development in vector) | 18.0 15 days 27,5051
dsporo Degree-days to complete a full sporogonic cycle 111 87 °C. day~?1 | 7515

Table 1. List of parameters with their modified values in the VECTRI model set up for the Siaya region (“-”
symbol indicates unitless).
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resolution. The output frequency of the WRF/WRF-Hydro was set to a daily interval, enabling prompt and
thorough evaluations of atmospheric conditions.

The VECTRI model includes parameters and thermal traits related to the Anopheles gambiae s.s. vector
and the Plasmodium falciparum parasite. These parameters and traits are derived from field and laboratory
studies; however, these parameters still have a certain level of uncertainty. Using the GA methodology from™,
we calibrated VECTRTI’s simulated malaria incidence against observed malaria incidence data. 22 parameters,
including mosquito survival, bite rates, and larval development time, were perturbed to calibrate the malaria
model outputs for the study site (see Table 1). The GA has been successfully employed to model malaria
dynamics for a single location in Kenya® and Aedes albopictus vector dynamics in multiple locations in Italy®. It
distinguishes itself from a free parameter search by sampling and selecting parameter values within the bounds
of their previously estimated uncertainty during the calibration process. GA is a powerful optimization method
derived from the principles of natural selection. Potential solutions are developed through several iterations
(“generations”) to identify the best set of parameters. This method is well-suited to address the intricate,
non-linear relationships between environmental factors and malaria transmission. The GA is configured to
iteratively perturb 22 parameters (Table 1) to minimize the root mean square error (RMSE) between simulated
and observed malaria incidence for the whole district. The calibration process incorporates cross-validation
to prevent overfitting. We utilized 80 ensemble members (n_ens) and 40 generations (n_gen), to explore the
parameter space and drive model convergence towards an optimal configuration. In addition to the calibration
step, we conducted a sensitivity analysis to evaluate the relative influence of each model parameter on the model’s
outputs.

Interventions compartment

ITNs reduce disease transmission through three main mechanisms: they act as a physical barrier to vectors,
they increase mortality in adult mosquito populations, and they consequently reduce infection rates in humans.
In the VECTRI model, malaria interventions are simulated using compartments for ITNs, IRS, and the sterile
insect techniques (SIT). The ITN compartment is handled using either diagnostic (observational) or prognostic
(dynamical) modes, depending on the model setting. In diagnostic mode (Case 1), the model directly assigns
bednet coverage, rcover (2, y), (x denotes longitude and vy latitude) based on the input field data, rinput(z, y),
and computes the proportion of treated nets, Treat (Z, ¥), by applying a fixed treatment ratio, 7reatratio, to the
coverage:

Diagnostic mode (input = total coverage rate)
Tcover(mq y) = Tinput (1‘7 y) 5 (1)

Ttreat (CC, Z/) = rinput(my y) * T'treatratio - (2)

Conversely, in prognostic mode (Case 2), the model simulates the time evolution of net coverages and treatment
levels based on a decay rate over time, Tireat, using the first-order explicit update

Prognostic mode (input = coverage rate per day per m?)

At

T(ﬁjvler(m7 y) - T(tzover(xa y) : (1 - T> + Tinput (-T7 Y, t) N (3)
At

Tg;zit(x7 y) = r:reat (.Z', y) ) (1 - Tt t) + Tinput ($, Y, t) . (4)

Here, 7 and Tireat represent the characteristic decay times (lifespan) of bednet coverage and insecticide
effectiveness, respectively, and At is the model timestep. In the default case (absence of coverage information),
both coverage and treated values are set to zero, disabling the effect of intervention in the model. As a
compartmental susceptible-exposed-infected-recovered (SEIR) model, VECTRI incorporates ITN effects in
both host-to-vector (Infected human to Susceptible mosquito) and vector-to-host (Infectious mosquito to
Susceptible human) transmission pathways. For host-to-vector transmission, ITNs (rbednet_cover) primarily
reduce the probability that a mosquito successfully bites an infectious human, thereby lowering the chances
of the mosquito becoming infected. For vector-to-host transmission, ITNs reduce the effective biting rate,
Zbednet covfac and thus the infection risk (e.g., as estimated using the entomological inoculation rate, EIR).
Both cases yield the following reduction factor:

Zbednet covfac = 1- Tbite night * T'bednet cover - (5)

Results

WRF-based results

The performance of the WRF model in simulating precipitation and temperature over the Siaya-HDSS is
evaluated by comparing the spatial distribution of accumulated seasonal rainfall and averaged temperature with
the CHIRPS (2007-2022) and CHIRTS datasets for the period 2007-2016 (Fig. 2). Consistent with previous
studies assessing regional WRF performance in East Africa (e.g*®*’.,), we observed a dry bias of up to 20 mm
during the heavy rainfall period (March-May), and a wet bias of up to 15 mm is simulated during the short
rainy season (October-December). Temperature biases demonstrate a consistent pattern across both rainy
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Fig. 2. A Mean seasonal accumulated rainfall (mm) for the short (Oct-Nov-Dec) and long (Mar-Apr-May)
rainy seasons based on WRF simulations (left), CHIRPS observations (middle) and mean rainfall bias (WRF
minus CHIRPS, right). B Mean seasonal temperature (°C) for the short and long rains for WRF simulations
(left), CHIRTS observation (middle) and associated bias (right). Averages were calculated for the period 2007-
2022, with dotted areas indicating significant differences at the 5% significance level < 0.05(p < 0.05).

seasons, characterized by a cold bias of —1.5°C in Asembo and a warm bias up to 1.2 °C in the northern region,
in agreement with prior regional evaluations®®. The regional temperature biases underline the WRF model’s
tendency to underestimate precipitation during peak rainfall periods slightly and to overestimate it during
shorter seasons. The temperature bias also indicates that WRF generally simulates lower temperature values,
especially in Asembo. A Mean Absolute Percentage Error (MAPE) of 15% for both rainfall and temperature over
the whole region suggests a high level of prediction accuracy, consistent with commonly accepted thresholds in
regional climate modelling (10-20%; e.g™.,).

WRF-hydro-based results

The water fraction (potential ponding water, in %) is analyzed using WRF-Hydro and Sentinel-1 data from
February 2015 to July 2020. The WRE-Hydro simulations exhibit seasonal fluctuations, with well-captured wet
and dry periods that follow the two main rainy seasons in the region (Fig. 3A). The variability of simulated
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Fig. 3. Monthly variations in A simulated WRF-Hydro and observed Sentinel-1 water fraction (%). B
observed CHIRPS and simulated WRF monthly rainfall (mm). C Simulated (WRF-Hydro in black) and
observed (ESA-CCI in red) mean weekly soil moisture (m3/m3) for the period 2015-2020. The blue solid line
depicts simulated water fraction (%) by WRE-Hydro.

water fraction closely follows the observed monthly rainfall distribution (Fig. 3B). This result indicates a strong
coupling between precipitation and simulated surface water dynamics. Water fraction derived from the Sentinel-1
satellites rarely exceeds 2%, with the largest values observed in Asembo, in the southern part of the domain.
Simulated water fraction values typically range between 1% and 3%, with larger values simulated in April 2015
(8%), November 2015 (5%), March-May 2018 (5.5%), and October-December 2019 (18%). We compare the
mean weekly WRF-Hydro soil moisture outputs with observed ESA soil moisture data for the period 2015-2020
(Fig. 3C). This comparison seeks to provide deeper insights into the representation of hydrological conditions
by the WRF-Hydro model, ensuring that the simulated infiltration, runoff, and subsurface water storage are
consistent with satellite-based observations. The model reproduces seasonal soil moisture dynamics, with higher
values observed during the long rainy season, consistent with precipitation-driven soil moisture variations.
Previous studies have demonstrated model’s capability to accurately translate rainfall events into realistic soil
moisture dynamics (Fig. 3) across diverse environments'>%6!, highlighting their relevance in the context of
mosquito habitat suitability and malaria transmission dynamics.
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Since the VECTRI model accounts for daily rainfall, the observed biases translating to minor daily differences
(0.2 mm/day, Fig. 2) are unlikely to substantially affect the model’s representation of mosquito breeding site
dynamics at the seasonal scale (Fig. 3). Moreover, malaria transmission exhibits a lag relative to rainfall, with
peaks occurring approximately two months after rainfall events, suggesting that these small daily biases are
unlikely to meaningfully alter the timing of transmission.

VECTRI-based results

We first compare the spatial distribution of simulated annual malaria cases with the GHDx dataset over the Siaya
HDSS for the period 2007-20. Then we focus on Asembo, where higher-quality observed malaria case data were
available from 2007 to 2022.

Annual variations

Figure 4 compares observed (GHDx) and simulated (VECTRI, with and without the effect of intervention) mean
annual malaria incidence for the period 2007-2020. In the upper row, the observed annual incidence shows a
relatively homogeneous distribution, with slightly higher values in the western and central parts of the region,
reaching a maximum of 210 cases per 1000 population. The spatial distribution of malaria cases from the GHDx
dataset appears strongly correlated with rainfall patterns, reflecting the typical zonal gradient of precipitation
in the region. Contrary to our expectations, simulated malaria incidence does not follow this zonal pattern and
is more heterogeneous with hotspots over Gem and Karemo (see Fig. 1). This also indicate that rainfall has a
positive effect on the incidence of malaria, but alone is an insufficient predictor and that local, mediating factors,
particularly those governing the retention and pooling of water are the true determinants of transmission
risk. It is this hydrological template that the VECTRI model uses to simulate the patchy distribution of vector
breeding sites and subsequent malaria transmission hotspots. Such a heterogeneous pattern was observed in
previous research conducted over Siaya!®. VECTRI simulations, without the effect of ITNs, overestimate malaria
incidence over most of the domain, particularly in the northern and southeastern regions, with positive bias
values exceeding 400 cases per 1 (Fig. 4). In contrast, VECTRI simulations that include the effect of ITNs usage,
show lower incidence values (Fig. 4, bottom row), closely aligning with observed estimates. Such improvement
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is reflected in the bias map, where the overestimation of malaria incidence by the model is significantly reduced
(Fig 4). These results indicate that the inclusion of ITN intervention strategies modulates malaria transmission
dynamics in the VECTRI model. Without the effect of ITNs, correlations are spatially heterogeneous, ranging
from - 0.75 to 0.5, indicating limited model skill in reproducing the interannual variability in malaria incidence.
When considering the effect of ITN, correlation coefficients slightly increase, particularly over the southern part
of the domain. The reduction in the mean bias and increase in correlation coefficient values when considering
the effect of ITN intervention validate the new version of the VECTRI model and its potential applicability for
forecasting and public health decision-making.

Simulated annual Entomological Inoculation Rates (EIR) are presented in Fig. 5A. Figure 5B compares
simulated malaria cases with observed data derived from GHDX for 2007-2020. Simulated EIR, without the
effect of interventions (Fig.5A), range between 10 and 20 infectious bites per person per year. Simulated EIR
values, with the effect of malaria control intervention, are lower, with an average of about 5 infectious bites
per person per year over the study period. We also found a marked decline after 2017, further indicating the
effectiveness of ITN-based vector control measures. Seasonal and inter-annual variations in simulated EIRs
persist despite the incorporation of ITNs in the model. Simulated malaria incidence exhibits a similar pattern
(Fig. 5B) in the Siaya HDSS. In the absence of interventions, simulated malaria incidence values are consistently
large (between 200 and 400). When considering the effect of ITNs, malaria incidence values are lower and in
better agreement with observed estimates from GHDx. A large interannual variability exists in reported GHDX
malaria incidence values over the region. The better agreement between VECTRI simulations, which include
the effect of ITN intervention, and GHDX data indicates that the malaria model effectively reflects the overall
impact of interventions from 2010 onward. Discrepancies between simulated and observed malaria incidence
at interannual scale remain. Such differences could be associated with other socio-economic factors impacting
malaria burden!?.

Monthly variations in malaria cases over Asembo-county

The simulated and reported number of malaria cases over Asembo are shown in Fig. 6. The number of
reported malaria cases exhibits large interannual variability, with peaks and troughs reflecting seasonal malaria
transmission dynamics. The!® forecasting model suggests that bed net use contributed to reductions with nuance
in lags and interaction effects. The magnitude of the observed error (£100-150 cases/month) is likely within
the inherent uncertainty of the malaria surveillance system itself®’. Refining vector-related parameters (e.g.,
biting rates, ITN effectiveness, and environmental influences) during the calibration stage has increased the
model’s ability to replicate observed malaria transmission dynamics. This improvement is crucial to improving
the accuracy of the prediction, but some parameters may require further refinement.

Compound effect of hydro-climate factors on ITN effectiveness
To quantify the impact of ITNs under varying environmental conditions, we computed the ITN coverage impact
as the monthly difference in malaria cases between model simulations with and without ITN coverage (Fig. 7).
Figure 7A shows that the effect of ITN generally increases with increasing temperature, peaking around 27-29°
C. This finding is consistent with the fact that both vector and parasite development rates accelerate within this
thermal range, boosting transmission potential and thereby amplifying the effect of ITN use. Similarly, rainfall
positively correlates with ITN impact (Fig. 7B), particularly within the 150-250 mm range, which corresponds
to optimal breeding conditions for mosquitoes.

However, above 300 mm, this impact plateaus or declines slightly, possibly due to excessive rainfall flushing
out breeding sites in the model. A nonlinear relationship between surface water fraction and ITN effectiveness
is shown in Fig. 7C, with maximum values observed between 0.01 and 0.03. Moderate surface water presence
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year) with (red line) and without (black line) the effect of ITN usage. B Comparison of simulated malaria
incidence with GHDx observations (blue line) from 2007 to 2020.
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Fig. 6. VECTRI-simulated model parameters vs. reported malaria incidence in Asembo: A without and B with
the effect of ITNs for the period 2007-2022.

supports stable mosquito populations that ITNs can effectively suppress. Conversely, very low or high water
availability limits breeding, reducing both malaria transmission risk and potential gains related to the use of
ITNs. The heatmaps in Fig. 7D and E show the combined effects of temperature, rainfall and surface water on
simulated malaria cases. The largest ITN impacts (>600 cases avoided) occur where temperatures range between
26 and 29°C, rainfall ranges between 150 and 250 mm (Fig. 7D), and the surface water fraction ranges between
0.01 and 0.03 (Fig. 7E). The optimal environmental envelope for ITN intervention lies in warm, moderately wet,
and hydrologically active settings (Fig. 7F). These findings emphasize that the simulated effectiveness of ITNs is
not uniform across space and time but is significantly modulated by climatic and hydrological variability.

Discussion

While regional risk factors critically shape malaria transmission patterns, assessing their relative importance
requires an integrated approach that combines spatial and temporal ground-based data with physically explicit
modelling tools. Such an integrated approach is essential for understanding malaria dynamics, predicting trends,
assessing the effectiveness of intervention methods, and guiding targeted control strategies and elimination
efforts. To this end, we developed a high-resolution dynamical modelling framework that integrates WRE, WRE-
Hydro, and VECTRI at 1 km spatial resolution in a malaria-endemic region of western Kenya.

Our results show that WREF (Fig. 2) slightly over- or underestimates precipitation during the long rainy season
(roughly +25 mm in March-May) and the short rainy season (about —15 mm in October-December), which
is consistent with previous regional climate modelling studies®®®. Simulated surface air temperature shows a
better agreement with CHIRTS data, with a small negative bias. The findings align with known challenges in
regional climate modelling over East Africa. > attributed similar WRF model biases to difficulties in simulating
the precise dynamics of mesoscale convective systems during heavy rainfall events and the model’s sensitivity
to convective parameterization schemes. Our study, which uses a different model configuration and focuses
specifically on Siaya, corroborates this broader pattern. This consistency suggests that the bias is not merely a
product of our specific setup but a more general characteristic of the model in this region’s complex topographic
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Fig. 7. Environmental modulation of ITN impact across mean temperature (°C), rainfall (mm), and surface
water availability in Asembo for the period 2007-2022. Spatial averages were derived from gridded model
outputs of malaria incidence, temperature, rainfall, and surface water fraction across the study domain.
Environmental drivers were binned into discrete intervals: temperature (1°C), rainfall (50 mm), and surface
water fraction (0.01 unit). For each bin, we calculated the mean ITN-attributable case reduction and associated
95% confidence intervals. The bivariate heatmap was generated to assess the combined effects of temperature

and rainfall/

water fraction on ITN efficacy.

structure®®%4, Tt should be noted that CHIRPS and CHIRTS prove especially valuable in regions with sparse or
inconsistent weather station networks, though some bias may persist in high-elevation areas, which should be
considered when interpreting model performance. In general, WRF-Hydro can account for observational data,
such as rainfall datasets to reduce bias and spatial displacement, but the data at 1km is not available.
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Surface hydrology also plays a critical role in providing mosquitoes’ breeding sites, particularly in areas with
temporary water bodies and slow-draining wetlands. Discrepancies between surface water maps generated
by the WRF-Hydro model and those derived from Sentinel-1 observations (Fig. 3A) might be attributed to
the fundamental representational differences inherent to each dataset. First, WRF-Hydro’s grid-cell averaged
representation of soil saturation and water depth results in a spatially smoother and more diffuse wetness signal
compared to the observations. Second, Sentinel-1 data is valuable, but could have limitations in different eco-
regions due to caveats associated with temporal sampling*!, vegetation interference®, hydrological variability®,
and soil and land surface properties*!. These inconsistencies are particularly large in Siaya county, a region
that experiences two rainy seasons and dense vegetation cover. These factors likely contributed to Sentinel-1’s
limitations in accurately detecting surface water dynamics. Sentinel-1 is a radar-based synthetic aperture radar
(SAR) system that takes measurements every five days, but sensor limitations and environmental factors restrict
its ability to capture transient and small-scale water bodies®.

In contrast to our previous work in Nouna'®, a semi-arid region of Burkina Faso characterized by a
single rainy season and sparse vegetation, Sentinel-1 well captured surface water extent, likely due to fewer
obstructions from dense vegetation and a reduced presence of transient water bodies. Indeed, the interplay of
factors influencing vector transmission differs significantly across regions, rendering generalizations potentially
misleading. The WRF-Hydro model accurately captures the seasonal cycle of ponding and reproduces major
hydrological extremes (2015, 2018, and 2019, Fig. 3B) in consensus with the findings of existing literature®’=%,
demonstrating strong agreement with observed rainfall, soil moisture patterns. This improved representation
of hydrological features is essential to identify high-risk zones for malaria transmission, particularly in low-
lying areas where water stagnation can last for 7 to 21 days’’. Our model captures the synoptic-scale hydrologic
conditions that must be met for widespread mosquito breeding to occur. When our model indicates sustained
surface saturation in a region, it reflects a landscape where the topographic, soil, and meteorological conditions
are conducive to creating the numerous small-scale habitats that”! so effectively model. However, unlike Asare’s
work, which focuses primarily on static or empirically derived habitat distributions, our coupled WRF/WRF-
Hydro-VECTRI framework dynamically simulates the physical processes governing water accumulation and
drainage over complex terrain. This allows us to resolve the transient and spatially heterogeneous nature of
breeding site formation in response to short-term convective rainfall and land surface feedbacks factors that are
often oversimplified or omitted in purely statistical or spatial correlation models.

While environmental factors create suitable conditions for malaria transmission, human interventions
can substantially modify transmission dynamics. This study incorporates the effect of ITNs into the VECTRI
malaria model to assess the impact of control measures on transmission risk. The effect of ITN intervention
in simulations significantly reduces annual entomological inoculation rates (EIR) up to 57%, leading to more
realistic values with respect to observed reported case estimates in Siaya. In?! model simulations, the high ITN
usage was necessary to achieve a substantial decrease in clinical incidence in high-EIR settings, up to levels
approaching 80-90%. While the Kenya Malaria Strategy’? reports county-level incidence rates ranging from
200 to 450 cases per 1,000 population in high-transmission areas, the GHDx dataset for the Siaya HDSS reports
a lower maximum of only 210 cases per 1000 (Fig. 4). This fundamental discrepancy suggests that uncertainty
(under-reporting biases) on reported malaria cases, spatial interpolation of local hotspots or aggregation
methods of health facility-based reporting used in the GHDx dataset may under-represent malaria burden
in low-level high-risk regions. This creates a validation gap where models are forced to be evaluated against
data that is fundamentally incompatible with their inherent resolution, masking potential inaccuracies in the
simulated processes. VECTRI simulations that include the effect of interventions yield more consistent estimates
with respect to values reported in the national policy report’. This divergence highlights the need to critically
evaluate global burden datasets when applied at subnational scales, especially where localized surveillance data
suggest significantly higher transmission intensity.

In Asembo, malaria incidence simulated by VECTRI without accounting for ITN coverage significantly
overestimated observed cases, while including intervention data reduced the model error by nearly 41% (Fig. 6).
Comparative modelling studies in coastal regions of Kenya (50%) have reported lower reductions in incidence,
around 32%, likely due to regional differences in ITN ownership and usage rates. Given that ITN coverage and
utilization tend to be higher (63%) in the Lake Victoria basin (where Asembo is located) our findings align
with the hypothesis that the effectiveness of ITNs is not only intervention-dependent but also shaped by local
environmental and behavioral contexts.

It is well documented that health-facility-based malaria surveillance systems suffer from underreporting,
delayed diagnosis, and reporting biases”>’. Moreover, modeling studies (e.g*.,) have shown that input and
parameter uncertainties can introduce substantial variability into simulated incidence. Therefore, an error of
+100-150 cases/month between our simulations and reported data likely lies within the combined uncertainty
envelope of both the model and the surveillance system itself. This result supports earlier findings that vector
control strategies, particularly ITN deployment, are essential for realistically capturing malaria dynamics in
high-transmission settings'’. Field studies focusing on Anopheles gambiae & Anopheles funestus in Africa show
that ITNs reduce exposure to nighttime bites by 50-80%7>7. Despite the large reported bednet coverage in Siaya
(up to 98%) the region remains endemic, raising questions about the consistency and effectiveness of actual ITNs
usage across the population. High ownership does not necessarily equate to high utilization, and behavioral,
socio-economic, and logistical factors may limit the protective impact of ITNs. Mathematical modelling by”’
suggested that to achieve the WHO target of a 90% reduction in malaria burden and progress toward malaria-
free by 20307%7%, recommended interventions must reach and maintain at least 90% effective coverage. This
underscores the importance of not only distributing ITNs, but also ensuring their proper and sustained use
across all demographic groups.
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To assess the robustness of our simulations, we compared our modelled ITN-attributable reductions (Fig. 7)
with recent empirical and modelling studies across sub-Saharan Africa. A quantitative comparison with existing
literature reveals both consistencies and divergences. For instance®, report that the entomological efficacy of ITNs
tends to decline as insecticide resistance increases, underscoring that the effective reduction in vector abundance
may be lower than theoretical maxima. Similarly®!, demonstrate that under higher ambient temperatures and
net decay, ITN effectiveness can fall considerably over time, aligning with the lower case reductions we observe
in bins with high temperature and low rainfall or water fraction. In Kenya!’, quantified spatial heterogeneity in
the effect of ITN usage by incorporating climate variables and found that parasite prevalence reductions were not
uniform across counties, suggesting that environmental context modulates ITN impact®. found an empirical
protective effect of 32% in coastal malaria zone of Kenya, which is classified as a malaria-endemic area. ITN
users, which is a useful benchmark for interpreting our modelled case reductions. Our modelled reductions fall
within plausible bounds when considering these field and modelling studies, especially in moderate climate bins;
nevertheless, discrepancies in extreme climate bins may reflect the intensifying role of resistance, net decay, or
unmodeled behavioral and ecological factors.

The East African Community, including countries such as Kenya, aims to achieve malaria-free status by
205072, Persistent challenges such as the high costs of interventions, gaps in surveillance, limitations in vector
control, and restricted access to diagnosis and treatment in health facilities still remain”®83.

The coupling of the WRE, WRF-Hydro, and VECTRI models at high spatial resolution represents a novel
hybrid approach to bridging the gap between atmospheric, terrestrial, and epidemiological modelling, offering
valuable applications for developing malaria early warning systems and public health decision-making. Our
hybrid framework is better at simulating the “why” and “when” of malaria outbreaks based on first principles
of biology and climate, rather than just the “where” based on past correlations. However, a systematic deviation
between simulated and reported cases still remains, particularly during transmission peak periods, indicating
that further refinements in climate input data, intervention modelling, or human behaviour factors could further
improve the accuracy of the model. VECTRI model performance is largely affected by accurately parameterizing
thermal processes within the model. Our sensitivity analysis revealed that parameters related to temperature
exert the greatest influence on the model outputs. Specifically, variations in parameters governing mosquito
development rates, parasite incubation periods (degree-days for parasite development, threshold temperature
for parasite development), and mosquito survival (threshold temperature for egg development in the vector, and
maximum and minimum temperature for larvae survival), all of which are temperature-dependent produced
the most substantial changes in VECTRI-simulated malaria incidence (see Table 1). Our results require further
confirmation, initially after calibrating with the ITNs to gauge the effectiveness as a function of the base
temperature by going from the cold borderline to the peak of the borderline and then addressing the vector
Aedes albopictus responsible for dengue and chikungunya viruses. Future work could expand the model to
include human mobility patterns and socio-economic determinants, which are known to influence transmission
heterogeneity but are not yet captured in the current framework.

Conclusion

This study presents a high-resolution hybrid climate-hydrology-malaria modeling framework that integrates
environmental processes, mosquito ecology, parasite biology, and intervention dynamics to simulate malaria
transmission in western Kenya Health and Demographic Surveillance System (HDSS) villages (2007-2022).
The model reproduces observed epidemiological patterns with high fidelity and confirms the essential role of
bed-net use in shaping transmission intensity. Agreement with reported clinical cases (mean error £100-150
cases per month) falls within the range of surveillance uncertainty across Africa, and inclusion of ITN coverage
reduced simulated incidence by 41%. These results demonstrate that explicit representation of intervention
dynamics is essential for converting theoretical risk into actionable disease forecasts. Despite this strong
validation, challenges persist in obtaining bias-free environmental inputs and in parameterizing fine-scale
hydrological and biological processes under limited entomological and epidemiological data. Addressing these
constraints through multi-site analyses (using data from other HDSS locations or comparable platforms with
varying endemicity and socio-economic contexts) and the intervention module to simulate additional strategies
such as indoor residual spraying (IRS) could strengthen the model’s generalizability and reliability. The findings
of this work point to several critical directions for future research. In particular, the greatest potential of this
physically grounded framework lies in its ability to simulate scenarios of environmental change and assess their
implications for malaria transmission. Beyond methodological advances, the framework also provides a valuable
tool for exploring the co-benefits of climate-adaptive and nature-based solutions (NbS) for malaria control, such
as landscape restoration initiatives that mitigate vector breeding through hydrological modification.

Data availability

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Funk et al. (2015)) information
and data access can be obtained at https://www.chc.ucsb.edu/data/chirps. The minimum and maximum
CHIRTS-daily temperatures can be downloaded from https://data.chc.ucsb.edu/products/CHIRT Sdaily/v1.0/
(Funk et al., 2019). The gridded population density data sets can be accessed from https://sedac.ciesin.columbi
a.edu/data/set/gpw-v4-population-density-revll (Doxsey-Whitfield et al., 2015). The Malaria and bed net data
used in this study are available from the Kenya Medical Research Institute (KEMRI) CDC Data Access/Ethics
Committee for researchers who meet the criteria for access to confidential data. Any data requests may be sent to
the respective steering committee through Dr. Stephen Munga (Smunga@kemri.org). Satellite-based Sentinel-1
data information and access can be found at https://sentinel.esa.int/web/sentinel/sentinel-data-access. All analy
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and figures were drawn in the R Foundation for Statistical Computing version 4.2.2 Platform (R Core Team,

2022), Python version 3.9 (Python Software Foundation) and NCL version 6.6.2 (NCAR Command Language).
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