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ABSTRACT

We consider acoustic scattering of a non-periodic incident field by locally perturbed periodic
structures. Our goal is to propose an efficient, high-order numerical method for solving such
direct scattering problems.

As a first step, we focus on purely periodic domains. Here, the non-periodicity of the incident
field prevents classical reduction to a bounded cell. However, due to the periodicity of the domain,
we can apply the Floquet—Bloch (FB) transform. This yields a decoupled family, indexed by
the Floquet parameter, of periodic problems posed in a single bounded cell. As our first main
result, we derive a representation of the transformed solution that highlights the structure of
its singularities with respect to the Floquet parameter. This allows us to develop a tailor-made
numerical scheme adapted to the singularities. For locally perturbed periodic structures, the
direct application of the FB transform is not possible due to the lack of periodicity in the domain.
To address this issue, we employ a coordinate transformation that eliminates the perturbation,
resulting in an equation with non-constant coefficients. This reformulation enables the use of the
FB transform, but introduces a coupling in the resulting family of problems. Proposing a tailored
numerical method here significantly increases computational complexity due to the coupling.
To improve efficiency, we approximate the solution using the perfectly matched layer (PML).
We prove exponential convergence of the PML approximation of the solution, with respect to
the PML parameter, on every compact set. We also show that the PML approximation of the
transformed solution is analytic with respect to the Floquet parameter. Therefore, this allows us
to compute solutions of original scattering problems by considering fewer members of this family.
Furthermore, we propose a fast and parallel solver using recursive Schur complements.

Finally, we apply our fast direct solver to inverse scattering problems in order to reconstruct
unknown perturbations. To employ iterative regularization schemes, we prove that the scattered
field is Fréchet differentiable with respect to the perturbation. Through numerical examples, we
demonstrate the efficacy of our methods.
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CHAPTER 1

INTRODUCTION

Scattering theory generally describes how waves are affected by irregularities or obstacles in their
path. In particular, an incident wave encounters an obstacle and interacts with its boundary or
the medium in its interior. This interaction generates a scattered field, whose behavior depends
on the incident field as well as the shape and physical properties of the obstacle. The objective
in direct scattering problems is to determine the scattered field from this known information.
Mathematically, the scattered field satisfies a partial differential equation in the exterior domain,
together with boundary conditions (e.g., sound-soft or sound-hard conditions) imposed on the
boundary of the obstacle. Additionally, a radiation condition must be imposed at infinity to
guarantee uniqueness.

In literature, obstacles are generally classified into two main categories: bounded and unbounded.
For bounded obstacles, the scattering problem is well-understood. The scattered field behaves
asymptotically like an outgoing spherical wave. This behaviour in the acoustic case is modeled by
the Sommerfeld radiation condition. To compute the scattered field numerically, the unbounded
exterior domain can be truncated in the radial direction by standard techniques like perfectly
matched layer (PML) or Dirichlet-to-Neumann (DtN) map. For an overview over these types
of problems, we refer to monographs by Colton and Kress [31], Monk [90] and Kirsch and
Hettlich [70].

In contrast to bounded obstacles, scattering by unbounded structures involves obstacles whose
geometry extends to infinity in one or more directions. Such structures include examples like
rough surfaces [100], open waveguides [67, 97], and periodic media [35]. Since these obstacles
lack compact boundaries, the analysis and numerical treatment present additional challenges.
Specifically, the classical Sommerfeld radiation condition is usually not applicable, and standard
approaches for proving existence and uniqueness of solutions — such as Fredholm theory and
Rellich’s lemma — may be unusable, depending on the geometry and boundary conditions. To
obtain a bounded computational domain for numerical simulation, the unbounded structure must
be truncated typically both horizontally and vertically.

Motivated by these challenges, in this work we focus on time-harmonic acoustic waves interacting
with unbounded surfaces. More precisely, let the unbounded scatterer I' be represented as the
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(a) Periodic structure (b) Perturbed structure

FIGURE 1.1. Two possible structures of the unbounded domain §2.

graph of a function ¢: R! - R for d = 2,3, i.e.,
ri={(7¢(@): 7 e R}
Moreover, we define the unbounded domain 2 as the region lying above the surface I,
Q= {(5, 2q) 1T R 2y > C(%)}.

The acoustic scattering phenomenon is governed by the Helmholtz equation with the wave number
k>0, ie.,
Au+k*u® =0  inQ, (1.1)

where u® denotes the scattered field. In the case of sound-soft scattering, the scattered field
corresponding to the incident field u’ satisfies the boundary condition

u® = —u' onI. (1.2)

The formulation of the scattering problem is not complete without a radiation condition,
which ensures that the solution is unique and physically meaningful. We consider the upward
propagating radiation condition, which guarantees that the scattered field u® is propagating
upwards from I'. For a detailed analysis, we refer to Chandler-Wilde and Monk [25] and Arens
and Hohage [4]. This radiation condition is equivalent to a transparent boundary condition on
a flat surface above the scatterer I'. It allows waves to pass through the flat surface without
any reflection. This boundary condition can be formulated using the DtN map and additionally
enables us to truncate the domain vertically (see [23, 25]).

In this work, we concentrate specifically on wave scattering by periodic surfaces (see Figure 1.1a),
which may include localized perturbations (see Figure 1.1b). The study of wave propagation in
periodic media has its roots in the work of Lord Rayleigh, who conducted one of the first analyses
of diffraction by gratings. Since then, it has become an important topic of modern mathematical
physics, with applications in thin solar cells, photonic crystals, and organic LED optimization



(see [3, 12, 61, 62]). Various numerical approaches have been used to study scattering in such
media, including recursive doubling [37, 38, 102] and propagation techniques [44, 63]. These
methods are typically designed for specific periodic geometries, limiting their extension to more
general or locally perturbed structures. Furthermore, in the special case where the incident field
is (quasi-)periodic and the scatterer is sufficiently smooth and periodic, the scattering problem
can be directly reduced to a single bounded cell of periodicity (see, e.g., [66, 96]). This cell
problem can then be solved efficiently using well-established numerical techniques, such as integral
equations [89] or finite element methods [10]. However, in more general situations, where either
the incident field or the surface is not periodic, this direct reduction no longer works. As a result,
the development of novel numerical schemes is essential to efficiently solve these problems.

One way to tackle such problems is to use the Floquet-Bloch (FB) transform, which was
introduced in [15, 46], with further analysis by Kuchment [77] and Lechleiter [81]. This transform
decomposes the original problem in the unbounded periodic domain into a family of decoupled
periodic problems indexed by the Floquet parameter. Since these problems involve only periodic
fields, they can be formulated in a single bounded cell. Fach of them depends only on the spatial
variable and can be solved by a classical numerical method. We call the solutions of these problem
the transformed fields.

In this procedure, the numerical error is a combination of two components: the error of the
spatial discretization and the error resulting from the approximation of the inverse FB transform.
In literature, this transform has most often been applied to two-dimensional scattering problems.
Detailed numerical results can be found in [29, 55, 83, 85], while theoretical analyses are provided
in [81, 82]. However, the application of FB transform in three dimensions can only be found
in [73, 84], where the convergence of the numerical method with respect to the Floquet parameter
remains relatively slow. In this work, we present a high-order, efficient method for inverting the
FB transform, significantly improving the convergence rate compared to existing approaches.
This requires proving regularity properties of the transformed field with respect to the Floquet
parameter: the inverse FB transform essentially consists of an integral of the transformed field
over a bounded domain, but the integrand has a particular structure of singularities. Based on
these regularity results, one of the main results presented in this work is a tailor-made quadrature
rule to numerically obtain the scattered field of the original non-periodic problem.

Pure periodicity is rarely found in real media; instead, disruptions appear in small, localized
regions (see [20, 101]). Various methods have been employed to analyze scattering in such media
including the Lippmann-Schwinger equation [29], a volume integral approach [55], a perturbation
technique [18, 19, 92] and a numerical scheme specially designed to obtain the exact boundary
conditions on the vertical segments of a waveguide in [44, 45, 63]. These approaches are applied
in the absorbing case (i.e., for complex wave number), which avoids the presence of singularities.

One question that arises is whether our proposed approach for the purely periodic case remains
effective when extended to the locally perturbed case. Although approaches based on the FB of
the DtN map combined with tailor-made inversion formulas are possible, they require substantial
computational effort, especially in three dimensions (see, for example, [6]). Let us now outline
some of the challenges.

In the locally perturbed case, applying the FB transform directly is not possible due to the lack
of periodicity in the structure. Since the periodic surface and the local perturbation are considered
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known, the perturbation can be removed via a coordinate transformation. This comes at the
cost of dealing with a perturbed Helmholtz equation with non-constant coefficients. However, as
the domain becomes periodic, we are able to apply the FB transform. This yields a family of
periodic problems in a bounded cell, which are coupled because of the variable coefficients. From
the regularity analysis of the non-perturbed case, we know that the structure of the DtN map
leads to singularities in the transformed field with respect to the Floquet parameter. Therefore,
a discretization of the inverse FB transform requires evaluating the transformed field for a large
number of Floquet parameters. Furthermore, the coupling prevents solving these problems in
parallel, which hence requires a high computational time. This can be understood from [83, 104]
for the two-dimensional case and from [6] for the three-dimensional case. Hence the necessity of
proposing a fast solver for such scattering problems becomes more pronounced.

To improve efficiency, inspired by [26, 71], we use the PML instead of the DtN map to
truncate the domain in the vertical direction. The PML was originally introduced by Berenger for
electromagnetic waves [13]. Since then, it has been widely applied in various wave propagation
problems. These include scattering by bounded obstacles [28, 30, 33], rough surface scattering [26],
electromagnetic optics [90], and seismology [43].

Applying the FB transform to the PML-truncated problem has the advantage that the
transformed field depends analytically on the Floquet parameter. This enables us to evaluate the
inverse FB transform accurately from relatively few values of the Floquet parameter. However,
setting up and solving the discretized system directly is still time-consuming due to the coupling.
Using the Schur complement recursively allows us to rewrite the complete system in such a
way that the matrix-vector multiplications are reduced to sums of terms that can be evaluated
independently. Therefore, we can benefit greatly from parallelizing these evaluations by solving
the linear system with an iterative method.

From the theoretical point of view, the convergence rate of the PML has been proven to be
globally linear with respect to the PML parameter for rough surfaces [26]. Additionally, it has
been shown that for flat scatterers the convergence is exponential in every compact set. In the
conclusion of [26], the question of whether the local exponential convergence can be extended to
rough surfaces was stated as an open problem. A partial answer has been provided in [28, 105] by
proving the local exponential convergence in the pure periodic case. We extend the exponential
convergence results of [26, 105] to the locally perturbed case in two dimensions.

So far, we have assumed a known, local perturbation (or defect) in a periodic structure and
focused on computing the scattered field. However, detecting and reconstructing such localized
defects is critical for optimizing the performance of devices based on periodic media (see [20,
50, 101]). These defects can be viewed as perturbations of the pure periodic structure. We
now consider the inverse scattering problem: An incident field is directed into the medium, and
the scattered field is measured at multiple observation points above the scatterer. Using these
measurements, the goal is to detect or reconstruct the unknown perturbation on the periodic
surface.

To detect the support of the perturbation, we refer to [86] for a linear sampling method and [17]
for a factorization method when the periodic background is known. Furthermore, approaches that
require less a priori knowledge of periodic structures have been developed in [21, 22]. However,
each of these methods requires sending and measuring waves from all directions.
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In this thesis, we make the assumption that the location of the perturbation is known. Our
focus is only on the reconstruction of the perturbation using the measured data from a single
incident field.

This inverse problem can be formulated as an optimization problem, described as follows:
Among the set of admissible perturbations X, find the optimal perturbation §* € X, for which
0" = argmin J(9),
0eX
where J: X — R is the objective function depending on the measured data. Computing J often
involves solving a direct scattering problem, where § € X modifies the domain in which the
equation is posed. At this point, we profit from our fast direct solver as the key component of a

method to reconstruct the perturbation.

One question in inverse problems is how to ensure that the measured data uniquely determines
the perturbation. As mentioned in [11, 40, 57], when the wave number is real, establishing global
uniqueness using only a single incident plane wave remains an open problem. So far, uniqueness
results have been proven under certain assumptions on the regularity of the structure (see [1,
11, 57, 69] for sufficiently smooth periodic structures and [39, 40, 42] for polygonal periodic
structures). For local perturbations, uniqueness from measured data generated by point source
waves has been established in [59], using a finite number of incident fields when the defect’s size
and height are known; otherwise, infinitely many incident fields are required.

Furthermore, such inverse problems are ill-posed, meaning that small changes in the measured
data can lead to large errors in the estimated position and shape of perturbations. Consequently,
the resulting optimization problems are also unstable. One common approach to solving such ill-
posed problems involves iterative regularization methods. Some of these methods are formulated
using derivatives with respect to boundary variations (see [56, 86]). Therefore, an essential
preliminary step is to prove that the objective function is Fréchet differentiable with respect to
the boundary. This has been established in [66] for (quasi-)periodic scattering problems with
respect to periodic surfaces. In this work, we extend these results to non-periodic scattering
problems.

The Fréchet derivative can be computed by solving an additional boundary value problem for
each admissible perturbation. To apply a Newton—type algorithm, several admissible perturbations
must be considered in each iteration. Therefore, using a fast direct solver for the scattering
problem significantly improves the performance of the reconstruction algorithm. Thus, we can
use the fast iterative solver proposed in an earlier section of the thesis.

1.1. OUTLINE OF THE THESIS

In Chapter 2, we introduce and discuss some fundamental tools that are essential for the entire
thesis. These include function spaces on unbounded structures, two vertical truncation methods
— the DtN map and the PML — as well as the FB transform. We also review the properties of
the FB transform and describe how it decomposes a non-periodic problem in a periodic domain
into a family of periodic problems in a single bounded cell.

Chapter 3 is devoted to solving non-periodic scattering problems in unbounded periodic
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structures. We truncate the domain in the vertical direction using the DtN map. Then, we
apply the FB transform to obtain a decoupled family of problems in a bounded cell. From the
theoretical point of view, we analyze the regularity of the transformed field with respect to
the Floquet parameter. For this purpose, we provide a representation reflecting the expected
structure of singularities, which arise from the DtN map. We propose a tailor-made quadrature
rule adapted to the singularities of the transformed field, which allows us to evaluate the inverse
FB transform with higher accuracy. We additionally obtain an error estimate of the proposed
numerical approach. Numerical examples demonstrating the performance of the proposed scheme
are included.

In Chapter 4, we focus on solving non-periodic scattering problems in locally perturbed periodic
structures. We introduce two formulations of the truncated problem: one based on the exact
DtN map and the other based on its PML approximation. Afterwards, we restore periodicity of
the domain via a coordinate transformation, which allows us to apply the FB transform. This
yields a coupled family of periodic problems posed in a bounded cell. We prove the unique
solvability of the PML-truncated problem. Moreover, we show that, in two dimensions, the
PML approximation converges exponentially to the solution of the DtN-truncated problem,
with respect to the PML parameter, on every compact set. To numerically compute the PML
approximation of the scattered field, we propose a fast iterative solver. At each iteration, the
matrix-vector products corresponding to different Floquet parameters can be evaluated in parallel.
As a conclusion, by using this technique, we are able to significantly reduce the computational
time. Some numerical results illustrate the efficiency and the convergence rate of the proposed
method.

Chapter 5 is concerned with solving an inverse scattering problem for compactly supported
perturbations. The objective is to reconstruct the unknown perturbation from near-field obser-
vations corresponding to a non-periodic incident field. This requires inverting the scattering
functional, which maps the perturbation to the observed scattered field. This inverse problem
can be framed as an optimization problem. To solve it with a Newton—type method, we prove
the differentiability of the scattering operator and thus obtain its Fréchet derivative. To stabilize
the optimization problem, we introduce a penalty term and determine its Fréchet derivative.
We bring together all these requirements to establish an efficient Gauss—Newton algorithm to
reconstruct the unknown perturbation. Numerical results demonstrating the performance of the
proposed method are provided.

The final part of this thesis contains three appendices: Appendix A provides the technical
computations necessary for Chapters 3 and 4. Appendix B compares the computational cost of
the proposed iterative method in Chapter 4 with the direct solver in [98, Thm. 2.2]. Appendix C
summarizes useful properties of Green’s function.

1.2. PRIOR PUBLICATION

Some results of Chapter 3 have already been published in [6].



CHAPTER 2

FUNDAMENTAL TOOLS

In this chapter, we collect some mathematical tools which are required for analyzing and solving
scattering problems in unbounded domains. We start with the definition of some useful function
spaces. Afterwards, we explain some approaches to reformulate the problem in a bounded domain.

2.1. SOBOLEV SPACES

To construct Sobolev spaces of non-integer order, we follow [88] and begin with the Schwartz
space of rapidly decreasing complex-valued C* functions (see [88, p. 72]).

Definition 2.1. The Schwartz space S(R?) is defined by

zC€R4

S(RY) = {qﬁ € C*(RY) : sup xaaﬁé(x)‘ < oo for all multi-indices a, 5 € Nd} .

For all multi-indices o and 3, we consider the semi-norms [¢|, 5 == sSup,cpe lz0Pp(z)]. A
sequence {@;}, .y C S(R?) is said to converge to ¢ € S(R?) if |¢; — ¢|, 5 — 0asj—ooforall a
and 5.

That means, this space consists of smooth functions whose derivatives, as well as the function
itself, decay at infinity faster than any polynomial. The topology of this space is induced by the
countable family of semi-norms |¢|, 4.

Now, we introduce the Fourier transform of functions in the space S(R?) as in [88, p. 72].

Definition 2.2. The Fourier transform F: S(RY) — S(RY) is given by

(Fo)(€) = (2m) ™/ / , e €Th(x)dx  for all £ € RY,
R
with the inverse Fourier transform

(F o) (x) = (2m) 2 / 7o) de for all z € RY.

Rd
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Since (F(0%¢))(&) = (i&)*(F¢)(&) and F((—ix)*¢(z)) = 0*(F¢), the action of the Fourier
transform on the functions in the Schwartz space is well defined and continuous.

Remark 2.3. A straightforward consequence of [88, Cor. 3.5 and Thm. 3.12] is that the Fourier
transform can be extended by density to an isometry F: L?(R?) — L2(R%).

The dual of the Schwartz space, denoted by S*(R?), is known as the space of temperate
distributions, which contains all continuous linear functionals on S(R?). The duality pairing
between these spaces is written as (-,-)g«(ra)xsmae)- For readability, we henceforth use the
simplified notation (-, -)ga-

The Fourier transform can be extended by duality to an operator F: S*(RY) — S*(R9), i.e
for ¢ € S*(R?)

(Fo,)pa = (¢, Fh)ga for all ¢ € S(RY).

Using the recalled preliminaries, we define Sobolev spaces of non-integer order as in [88, p. 76].

Definition 2.4. The Sobolev space H*(R?) of order s € R is defined by
HY(RY) = {cb eS'®RY: (1+ ) Fg e LZ(R%} -
This space is a Hilbert space equipped with the inner product

(6.8) oy = (O 1B Fo 1R

which induces the norm
s/2

5/2

Fo

s = 1+2 .
ol = |0+ 1) Fo|

The corresponding weighted Sobolev space can be defined based on [81, Sec. 3].
Definition 2.5. The weighted Sobolev space H(RY), for any s, € R, is given by

IR = {6 e S @Y s (L4110 € HrY |

and it is equipped with the norm

r 2
167ty = H(l Ry

‘HS(IR{UZ) '
For r € R, L2(R?) := HY(R?). The dual of H?(RY) is H_?(R?).
Remark 2.6. If s € N, the following is an equivalent definition for the latter norm

o (s 1")

2

16T @ay = D

meN? |m|<s

L2(RY)

We now introduce a class of subspaces of H*(R%), namely Sobolev spaces containing o-
quasiperiodic functions for a € R? as in [81, Eq. (8)]. This includes periodic functions, corre-
sponding to a = 0.
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Definition 2.7. For a given a € R, a function ¢: RY — R? is an a-quasiperiodic function with
fundamental period L > 0 if

o(x+ Lj) = eX¥Ip(z)  for z e R, jezd.
The corresponding Sobolev space Hz(RY) for s € R is given by
Hy(RY) = {6 € H'(R?) : ¢(a + Lj) = -7 g(x) for z € RY, j € 2},
equipped with the norm
16025 ey = 30 (14 133 6a )]
jezd

where qg;(j) denotes the j-th Fourier coefficient of ¢(x)e 7, i.e.,

dulj) = L~/? / b(x) e" 10 TemiCT/D)jw gy
[-L/2.L/2)°

For s < 0, the integral above can be understood as a dual pairing.

Remark 2.8. Note that an a-quasiperiodic function becomes periodic when multiplied by e™*%.
For a = 0, we write Hser(Rd) instead of H§(RY) to emphasize the periodicity.
Lemma 2.9. For o € RY, let My: ¢ — ¢l If ¢ € H (RY), then Mq¢ € HE(RY) and
191l 7z5... ey = Madll g may -
Proof. Using the definition of these norms yields
2
Madllggay =170 3 (14| [ M_aMade @RI | = 4% g -
” ¢HHQ(R4) JEZZd ( ‘J‘ ) [_L/27L/2]d ¢ H¢|’Hpcr(Rd) -

So far, we have defined Sobolev spaces on the full space R?. For any non-empty open set
Q C R4, we define (see [88, p. 77])

Hy(Q) = {o = ¢lo: ¢ € HI (R},

equipped with the norm
s = inf s .
1l b2 0 d)eHg(Rd)HngHr(Rd)
dlo=w
Let C™~ b1 for m € N be the set of functions whose (m — 1)-th derivative is Lipschitz (see [88,
p. 90]). Let the boundary of the domain  be denoted by 9Q = Q\  and assume that it is the

graph of a O™~ bl function ¢ for m € N. For ¢: 0Q — C, we define ¢¢: R¥1 — C by

¢C($) = ¢(z,((x)) forzxze R,
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Now, Sobolev spaces on the boundary 0f2 are given by (see [88, pp. 98-99])

L2(09) = {6 € L8.(09) : ¢c € LR}, forr € R,

loc

HY(09) = {¢ € LA0Q) : ¢c € HI (R )}, for0<s<mandreR,

equipped with the norm {|¢|[ 7« (90) = quCHHg(]Rd*l)‘ Moreover, by

"¢‘|H:S(QQ) = H 1+ |VC|2¢CHHS(Rdl) for0 <s<m,

the space H, *(09) can be defined as the completion of L?(9Q) with respect to this norm.
To define the restriction of a function to the boundary, we make use of the trace operator,
which is defined as

Yp: C5°(Q) — C5°(09Q),  Ypd = ¢lyq -

According to [88, Thm. 3.37], 7p has a unique bounded extension yp: H(2) — Hrs_l/z(@Q) for
r € R when the boundary of Q is a graph of C"~1!-functions and 1/2 < s < m. Moreover, this
extension is surjective.

Since this operator is bounded, there exists a constant ¢ > 0 such that

D0l s=1/25) < cll@lpz)  forall ¢ € H(Q). (2.1)

The trace operator allows us to define the Sobolev spaces of functions which are zero on the
boundary. For s > 1, we define

H () = {6 € HI(Q) : 1p = 0}

We next introduce the conormal derivative which can be used to describe Neumann boundary
conditions based on [88, Lem. 4.3, 49, Thm 2.2]. Let

HY(A,Q) = {¢ e H'(Q): A € LZ(Q)} ,

with H(;S||§{1(A7Q) = ||¢||12gl(9) + ||A¢H%2(Q). Then, there exists a unique bounded linear operator
ynv: HY(A, Q) — H1/2(9Q) such that Green’s first identity is satisfied, i.e.,

<V¢,W>Q - <A¢’E>Q + <7N¢’W>BQ

for all ¢» € H'(Q). Note that for ¢ € C1(Q), Yn¢ = n- V|s,, where n denotes the outward unit
normal vector on the surface 9.

2.2. UPWARD PROPAGATING RADIATION CONDITION

A common radiation condition for the scattering problem (1.1)—(1.2) in the unbounded domain
2 is to assume that the scattered field is propagating away from the scatterer I' (represented by
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2

Qn

~ N\

FIGURE 2.1. A two-dimensional sketch of the unbounded domains Qg and Q}}

the graph of ¢) and does not reflect back into the computational domain €.

As explained in [9, 25], a classical approach to deriving this radiation condition is to first
introduce a flat surface 'y :== R4"! x {H} for some H > ||¢||,,. This surface divides the domain
Q) into two unbounded regions: the interior domain 2z and the exterior domain Qj{l, as depicted
in Figure 2.1. The next step is to solve the exterior problem in QJ}} together with a boundary
condition on I'y. This means, for g € H,}/2(FH) with |r| < 1, we need to solve the exterior
problem in the weak sense

Au® + E*u® =0 in QF, (2.2a)
u®=g on 'y, (2.2b)
u® is outgoing . (2.2c)

Let & denote the first d — 1 components of z € R? for d = 2,3. The solution to (2.2) can
formally be obtained by applying the Fourier transform with respect to the first d — 1 variables:

(Fu®)(& zq) = (2m) (D72 /R(H ¢ (T, 2g) AT, EERYY, mg > H.

Applying the Fourier transform to the Helmholtz equation (2.2a) yields the following ordinary
differential equation

05, (Fu) (& xa) + (K = [€°)(Fu*)(€,2a) =0, E€RTY 24> H, (2.3)

together with the boundary value u*(§, H) = g(&, H). The general solution to this ordinary
differential equation is given by

(Fus) (€, zq) = C1(€)eVF Iy Cp(g)e VP e e R 2y > H (24

for some complex-valued coefficients C; and Cs. Note that when |£| < k, the value of /k? — |£|?
is a positive real number, hence both exp(iy/k? — [£[2x4) and exp(—i\/k? — [£]?z4) are oscillatory.
On the other hand, when |¢| > k, the value of \/k? — [£[? is purely imaginary, which implies
that exp(iy/k2 — [€[2x4) is exponentially decaying and exp(—i\/k? — [£]?z4) is exponentially
growing as xg increases. Since the solution with respect to x4 is assumed to be outgoing and
exp(—i/k? — [€]2z4) is incoming, we conclude that Cy = 0. By imposing the boundary condition,
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we obtain the following representation

(Fu®) (&, 2a) = (Fg)(&, H)eVE @) ¢ c i1 4/ > |

in which \/k? — |£]? has a non-negative imaginary part. Thus, by applying the inverse Fourier
transform, we recover the solution for z4 > H by

u® =Dg,

where the operator D: H%/2(FH) — HL.(2);) is defined by

(Dg)(x) = (2m)~ "D/ /Rd TV et (Foy (¢ HYde we Q). (25)
This operator is well defined (see [23, Sec. 2]) for |r| < 1. Moreover, it indicates that the
radiating solution u® is a superposition of the homogeneous and non-homogeneous upward
propagating plane waves exp(i% ¢ +1iVkZ = [€2(xg — H)) for |¢] < k and evanescent waves
exp(i7 - € — /[€]2 — k2(wq — H)) for €] > k.

What follows is a summary of some results from [23, Sec. 2] to clarify why the input of the
operator D is a function in the Sobolev space H3/2(FH) with the weight r restricted to |r| < 1.
We will first point out in Lemma 2.10 that the integral on the right-hand side of (2.5) exists only
for g € H, /2 (I'g) with 7 > —1. However, we will show that the interior boundary value problem
in Qg together with the upward propagating radiation condition is not solvable in general for
r>1.

Lemma 2.10. The integral on the right-hand side of (2.5) exists for all g € H;/Z(Rd_l) if and
only if r > —1.

Proof. We first focus on 7 > 0. In this case, it is clear that i (R4=1) € H/2(RI-1) C L2(RI).
Since the Fourier transform is an isometry on L%(R%!), we have Fg € L?(R?!) for any
g € H}/ 2(R“Fl). Hence, the integral on the right-hand side of (2.5) is well defined in the
Lebesgue sense if f, € L2(R?1), where f, is defined by

fx(f) — eigf-l-i\/ k2—|£? (xq—H) , te R-1
This holds because using polar coordinates leads to

) _
: I d :/ d +/ €
£ HL2(Rd 1) /R‘Fl ¢ €<k : &>k
< C(k,d) + / o 2= pt=2 dp < 0o,
0

fofs 2v/[¢)P—k2(xqg—H) d¢

Now, it remains to analyze the existence of the integral on the right-hand side of (2.5) for
g€ Hl/Q(I‘H) with < 0. In this case, for fixed x € Q;, we interpret the mapping g — (Dg)(x)

as a bounded linear functional on H, / 2( ). Now, we have to establish for which r is possible.
As g € H1/2(Rd 1), we have Fg € Hl/Q(Rd D). From the definition of the operator D, we need
to prove that f, € H™7 /2 (R4~1) which holds only for r» > —1. To show it, it is sufficient to prove
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that Ff, € H:jm(Rd_l) if and only if r > —1.
For this purpose, we first recall from [23, Sec. 2] that for g € L?(I'y), (2.5) is equivalent to

(Do) =2 [ 2,0 0)o)ds(w) =2 [ | 0,005 Ho@ H A, (26)

Ra-1

where @ is the fundamental solution of the Helmholtz equation given by

EHO (k:\:[;—y]) if d=2,
(I)(xay) = 1 etklz—yl i3
dm |z —y| ne

and Hél) is the Hankel function of the first kind of order zero.
By taking into account that the Fourier transform is unitary for functions in L?-space and
comparing the definition of D with (2.6), we have

(Ff)(y) = 202m) 20,0z, y)|, _y
and according to [27, Eq. (2.4)]

(Ffo) ()] ~ clwa — H)ly|" "2 as |y — oo, (2.7)

where the constant ¢ depends on the wave number k£ and the dimension d. Since for r < 0 we
have L? (R1) H:,}/2(]Rd_1), it is sufficient to prove that

Ffe,e L, (R™Y  forr>—1.

By using the definition of L2, (R%~!) and polar coordinates, we obtain

2
2 _ 2\=T/2 —(14d)/2
ISl oy =Cir @ [, ))<1+ )"y dy
< Cy ‘y—r - 1+d)/2‘ dy
RA-1\B(0,1)
<Cj y| >y < 03/ p 2 mdpi=2dp
RA—1\B(0,1) 1

for some constants C7, Cy and Cs. This integral exists when —2r — 3 < —1, which is equivalent
tor > —1.
We still need to show that Ff, ¢ H_ 1/2(Rd Dyforr < —1. As

BRI € HOYRY € HPYREY),

it is enough to prove Ff, ¢ Hy LR~ D). The proof is done by contradiction. We assume that
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Ff. € H ' (R?1). Using the operator norm, we have

F [z, U)pa- FFo, )
H]:szHfl(Rdﬂ) = sup M > SHPM
1 O#veHL | (Ri-1) HUHHil(qu) neN ”v"HHil(Rd*l)

)

where the sequence (v,,), oy is chosen such that

ua(y) = [y|F D2 for y| > 1,

anHHil(Rd_l) <c¢ for |y’ <1.

By a straightforward computation, we obtain

2 —2, 8—d-2/n 1 _ [ _1-9/m . _
[onllg a1y < C/Rd_l\B(O’l)lyl i dy = C/1 p dp =cin,

for a positive constant ¢; independent of n € N. By using the asymptotic behaviour of F f, given
in (2.7) and polar coordinate, we arrive at

[ forB)zas]| = | (F s T)ga o) + o P) o)
> <]:fz,m>Rd—1\B(()71)‘ - ’<]:fxym>8(0,1)’

- H}—fz”H;l(Rd—l)||UnHH£1(B(0,1))

= C/ |~ D2 0, (y) dy
RA—1\ B(0,1)

>c+ec

o0
/1 pimlm dp‘ > can,

for positive constants ¢ and ¢y independent of n. This yields

con
F 1 pd_1y > =
VPl sy 2 28 o =
This shows that Ff, ¢ Hfl(Rd_l). Consequently, F f, ¢ H:A/Q(Rd_l) for r < —1. O

So far, we have shown that the operator Dg is well defined for g € Hﬂ/Q(]Rd*I) for all » > —1.
Now we explain why we restrict the weight to » < 1. This is because the interior boundary
value problem in g is not solvable in general for » > 1. To show this, we focus on a simple
case by selecting I' = R?! x {c} and Ty = R¥! x {2¢}. We consider the incident field
u'(z,y) = ®(z,y) — ®(z,y’) generated by two point sources y = (0, yQ)T between I' and T'f7, and
y' = (0,y2 — 20)T below I'. The corresponding scattered field satisfies

Au® 4+ E*u® =0 in Qp,
w'=—-u" onT,
together with the radiation condition u’(z) = (Du’|,,)(z) for all  above I'yr. The exact solution
of this problem is —G(z,7), where G(z,7) = ®(x,y) — ®(z,y") with g = (0,2¢c — y2)T. Now we
show that g == G(,9)|p,, & H3/2(TH) when r > 1. Since H3/2(FH) C H11/2(FH) C L3(T'y), it is
sufficient to prove g ¢ L¥(T'y).
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According to [23, Eq. (2.9)], the asymptotic behaviour of Green’s function is given by
G )] ~ ek, d) (wale]”O+D72) s Ja] = oo

By using the definition of the L2-norm, we obtain

2 2 —(1+d
Il 2 € [ (1 a0 do
>C (1+ o)~ da
R4—1\B(0,1)

>C )~ dz
RI=1\B(0,1)

R 0
zc/ ptdp = +o0,
1

for some constants C' and C. This shows that g ¢ L2(I'y) and consequently g ¢ H!(I'y) for
r>1.

In this section, we have described how to obtain the upward propagating radiation condition.
However, this condition is imposed on the unbounded domain Q}fl above 'y, In the following
section, we use this condition to derive a transparent boundary condition on the flat surface I'g for
the scattering problem (1.1). This boundary condition allows us to truncate the computational
domain in the vertical direction without reflecting the scattered field back into the domain
artificially.

2.2.1. VERTICAL DOMAIN TRUNCATION VIA DTN MAP

We are going to show that the outgoing solution given by (2.5) can be expressed as the trace of
the solution on I'yy. That means, equation (2.5) can be equivalently formulated by a transparent
boundary condition on I'fy. Taking the normal derivative of u® with respect to x4 and evaluating
it on I'y leads to

(0p,u)(Z, H) = (T u®) (T, H), (2.8)

where the Dirichlet-to-Neumann (DtN) map T : H}/2(FH) — HT_I/2(FH) is given by

(THo)@ H) = i(2m) 2 [ ke —jeee(Fe) (e 1) de (2:9)

Lemma 2.11. For |r| < 1, the DtN operator T+ : H;/2(FH) — HT_I/Q(FH) is well defined and
continuous.

Proof. See [23, Lem. 3.3]. O
Remark 2.12. The DtN operator 7 can be written as

TH=F"'"M,F,
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where F is the Fourier operator and the operator M., is the multiplication by v(§) defined by

k2 — € if ¢l <k
yE) =14 2|€| 1 )<k (2.10)
=T = k2 it g > k.

The transparent boundary condition (2.8) can be used in place of the radiation condition. This
results in the following boundary value problem, now posed in the vertically bounded domain Qz

Au® + E*u® =0 in Qg, (2.11a)
u® = —u' onT, (2.11b)
Opu’ =T u® onlp. (2.11c)

Since the incident field u’ satisfies the Helmholtz equation, by using the total field u = u® 4 u*,
we can recast problem (2.11) into

Au+ K u=0 in Qp, (2.12a)
u=20 on I, (2.12b)
(8% - T+)u = (aacd - T+)Uz onl'y. (2.12¢)

In the rest of this work, the main focus is on the variational form of problem (2.12), which is
stated below. Before stating the problem, let H}(Qy) = {¢ € H (Qy) : ¢|p = 0} for |r| < 1.

Variational Problem: For v’ € H}(Qy) with |r| < 1, find u € H!(Qp) such that

ar(u,v) = (02, - T+)ui,6>r for all v € H,.(Qp), (2.13)

H

where a, : H'(Q) x H', (Qg) — C is defined by

ar(u,v) = <VU,W>Q — k2<u,6>QH — <7’+u,i>F . (2.14)

H H

The above sesquilinear form is well defined and continuous on H} (Qy7) x HY,(Q) for |r| < 1.
This is a direct consequence of Lemma 2.11.

Problem (2.13) is considered the general framework of the more specific cases studied in the
subsequent chapters. We present here the existence and uniqueness results established in [23,
Sec. 4] for the general case. We now elaborate on the details of the proof.

2.2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE TRUNCATED PROBLEM

The Variational Problem stated in (2.13) in the non-weighted Sobolev space H} (Qp) has a unique
solution. This result was established in [25, Cor. 4.3] using the generalized Lax—Milgram theorem
(see, e.g., [60, Thm. 2.15]).
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Lemma 2.13. Let the sesquilinear form ag be defined as in (2.14) for r = 0 which satisfies the
inf-sup condition, i.e.,

Cinfsup = inf sup a0 (v, v)|

n > 0. (2.15)
0ucHY () ove it () |1 @) 193 (200)

Then, for u' € HE (), the Variational Problem (2.13) has a unique solution u € HY(Qp), which

satisfies
1

Cinfsup

with G = ((Da, — TH )y, € (Hy*(Trr)
Proof. See [25, Cor. 4.3]. O

To extend this result to the weighted Sobolev spaces ﬁﬂ (Qp) for r # 0, the main idea is to
use a perturbation argument involving a commutator (see [23, Sec. 2]). This reduces the theorem
to a form involving only the non-weighted spaces, i.e., r = 0. Thus, the existence and uniqueness
result presented in Lemma 2.13 can be applied.

In the following lemma, the commutator estimate is given, which is an essential tool to make a
connection to the non-weighted case.

r/2

Lemma 2.14. Let C =T+ — (b + |z|*) " "T+(0% + |az:|2)774/2 with parameter b > 0. Then, for

kb>1 and |r| <1,
”CHHﬂﬂ(rH)eHlm(rH) < ¢(r) b
Proof. See [23, Thm. 6.1]. O

The sesquilinear form (2.14) defines a continuous linear operator A,.: H(Q) — (HX(Q H))*
for |r| < 1. The invertibility of Ay was established in Lemma 2.13. The following theorem states
that the operator A, is also invertible, as shown in [23, Thm. 4.1].

Theorem 2.15. For|r| < 1, the operator A, is invertible. Hence, the Variational Problem (2.13)
has a unique solution for all u® € H}(Qy).

Proof. For the parameter b > 0, we define the following norms

r/2
u

u = (% + |z|? ,
Iz = |02+ ]

lalZe o= [ (|62 + 12272 + |9 (02 + 12"
H,},b(QH) ._ QH

2
)dx.

Let a > 0 be sufficiently large. For u € ﬁ[;b(QH) and v € ﬁlr,b(QH)’ we consider

o= 02 + o) Pu e B (),
b= 0 + 220 e HY Q).
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Substituting u = (b* + ]x\Q)_Tmap and v = (b% + |x\2)r/2@/} into the sesquilinear form (2.14) yields

ar(u,v) = ao(p, ¥) + (e, ¥) , (2.17)

where ag: H'(Qg) x H'(Qy) — C has the same representation as a, given in (2.14). Moreover,

lb = lb,l + lb72 with

by (,) = <v (@4 1) 00 (@2 4 ") ¢>

{0+ oY (V0 1o ) 0. 90)

Qy

H

+ <Vso, 82 + 2% ? (V(b2 - Ia:|2>’"/2) w>

Qn

and

(i) = (6 + o) THG + o) e = THo5)  =—(CpB),, -

H

For the term l; 1, we can obtain the following estimate

<(<b2 V0 o)) g (@4 12TV 4 (o) w>

o1 (0, 90)] <
Qg
(@ #1290 + o)) 0.V
Qg
+ <w, (@ 4127002 + o)) w>
Qn
Since
r/2 —r/2 r/2—1 —r/2
sup V2 + Jof2)”"*| 0+ 1) 77 = | sup 0+ Jof2)"* |02 + )
r€Qy z€Qy

b2 -
=|r| sup | — + |z
z€Qy ‘x‘
|r|<. <b |x\>>‘1 7|
= s (= 4+ <
b oty Uzl T 0 =9’

the previous estimate can be written as

7]

2
a0 < (15) Bellallollay

T
+ ‘%' (HV@HLZ(QH)HWL?(QH) + HSOHH(QH)HVWB(QH))

r y
< M {1 I e 1 - (2.18)
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Moreover, using Lemma 2.14 yields

b2 (0,9)| = ‘—<C% ) \ < NCell -1z 10 172

k
< Elelln v
1
< el kSl 1910 .19

H

where the last inequality is obtained by using (2.1).

Considering the operator £,: H*(Qpy) — (H* (QH))* generated by [, and using (2.18) and (2.19),
we conclude that £ tends to zero when b tends to infinity.

Finally, the operator A, generated by (2.17) can be written as

—r/2 2
Ar = (024 1a) " (Ao + L) + o),

where the operator Ay corresponds to the sesquilinear form ag. According to Lemma 2.13, the
operator A is invertible. Furthermore, the operator Ay + £ is a small perturbation of the
operator 4y when b is sufficiently large. Therefore, by applying the perturbation theorem (see [75,
Thm. 10.1]), we conclude that the operator A, is invertible. O

2.3. PERFECTLY MATCHED LAYER

Another approach to truncate the domain vertically away from the scatterer is the perfectly
matched layer (PML). The main idea is to add an absorbing layer with finite thickness above
the computational domain. Absorption is obtained by stretching the vertical coordinate into
the complex plane. Since the outgoing waves are absorbed by the PML, the problem can be
truncated by imposing a boundary condition at the top of the layer. In this work, we choose
the homogeneous Dirichlet boundary condition. This section elaborates on how the PML can be
used as a truncation method, based on [26, Sec. 2].

2.3.1. VERTICAL DOMAIN TRUNCATION VIA PML

Recall the surface I', which is the graph of the function ¢ introduced in Chapter 1. To describe
the PML, we first define some notations.

We introduce two flat surfaces I'y := R4 x {H} and 'y, == R4 x {H + A} for some
H > |[¢]|,, and A > 0. The PML, denoted by Qpumy, == R4™! x (H, H + )), is the region between
these two surfaces with the physical width A\. Moreover, we define Qg4 = Qy UQpymr. A sketch
of these domains is presented in Figure 2.2.

To derive the PML problem, we select an integrable function s: (—oo, H + A] — C such that
s(t) = 1 for t < H and for ¢ > H, Re(s(t)) > 0 and Im(s(¢)) > 0. The complex stretched
coordinate Z is defined by

() = /0 st (2.20)
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FIGURE 2.2. A two-dimensional sketch of the PML.

Clearly = is the identity below H. Physically, this means that waves below the PML propagate
freely, as they would in an unbounded medium, with no modifications to absorb or attenuate them.
On the other hand, above H, the coordinate stretching introduces a complex transformation.
This makes the PML act as an absorbing layer, in which the outgoing solutions are gradually
damped without being reflected back into the computational domain Q. As described in [26,
Sec. 2|, a common function to use in the complex stretched coordinate is a power law, namely

1 ift< H,

t—H

s(t) = ) 2
) 1+pe”r/4()\> ift>H,

(2.21)

where p is a positive parameter.
Since the radiating solution (2.5) is an analytic function with respect to x4, we can analytically
continue it to a function defined for complex coordinates. We still denote this extension by wu®.
The analytic continuation of the solution satisfies the Helmholtz equation in the complex

coordinates, i.e.,
Au® + E*u® =0 in R~ < Z([H, H + )\]). (2.22)

Considering the complex coordinate Z(z4) modifies the behavior of the general solution inside
the PML such that it decays as |z4| increases. The absorption strength of the PML is determined
by the virtual width of the layer, given by

H+X\ peiw/4
o ::/ s(t)dt = A1+ . (2.23)
H 3

Remark 2.16. To illustrate the influence of o on the absorbing strength of the PML, we fix the
physical thickness A and assume that the function v* is sufficiently regular. Extending the vertical

direction to the complex coordinate in (2.5), we have for & € R?~!

F (VRFEN I F (e, 1))
Fo (e Fu(e, )

Fo (e T (e 1)

u®(z, H + \)
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0.1 0.1
0 0
-0.1 -0.1
-0.2 -0.2
(a) Oscillatory behaviour without PML in (b) Absorbing effect of the PML in
[—m, 7] % [1,10] [—7, 7] x Z([1,10])

FIGURE 2.3. Behaviour of Green’s function for y = (0,0.5).

We see that a large Im(ko) enhances absorption of the propagating waves (i.e., || < k) entering
the PML. On the other hand, by a large Re(ko), the PML effectively absorbs evanescent modes
(i.e., [&] > k).

In the following example, we illustrate the absorbing effect of the PML.

Example 2.17. We consider the Dirichlet Green’s function in the upper half plane as the
outgoing wave

i ~
Glr,y) = 3 (MG (kle —yl) = H (bl 1)), v €RE = {z € R 225 > 0},

with the point source y = (0,y2) and the reflected source y = (0, —y2), for yo > 0. Defining
~ !/

R := |z —y| and R := |z — y| and using the fact that (Hél)) = —Hfl), the Dirichlet Green’s

function can be written as

iR )
G(x,y):z . Hy/(r)dr, zeRi. (2.24)

According to [93, Eq. (10.2.5)], we have
2 . 7r
Hfl)(T) ~y =) as T o0,
T

By substituting the equation above in (2.24), we obtain

i 3 s [ (KR kR kR [ oit kR
G(z,y) ~ —y/—e "% / —d7 + —= — —— | dr
4V Kk VER kR \VT VER

i 2 o sy i [2 _sx [FR [T GkR
_1 . 2 j(kr-3zy 1 [2 _1—/ B
TR = R)\ e 4 2y —e o (\/F _kR) dr .
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Im(z2) Re(za) =y2

Re(x2)

5

F1GURE 2.4. Complex stretched coordinate in the vertical direction .

Since ¢ € [kR, kR] and

; \/j o kR [ ot GikR
—\/—e 4 / - dr
4V kR \VT VkR

iT eik:R

VT VER

o)

)

it is concluded that
[P 2 i(kR-3x
G(z,y) ~ Zk(R — R)\/——=e 1 as T — 00.

The oscillatory behaviour of this function is plotted in Figure 2.3(a).
Green’s function is analytic with respect to xo > yo. Hence, it can be analytically continued

into the complex half plane {z9 € C: Rexy >y}, while x; is a real number. The analytic

continuation of R is thus R = /22 + (x3 — y2)? with the branch cut on the real negative axis.

As Re (12 — y2) > 0, then Re R > 0 and G ~ O(/|R])e*f as |R| — co. This shows that Green’s
function is exponentially decaying as Im(zg) — oc.

We evaluate Green’s function along the complex coordinate in the vertical direction zo, that
means, for Rexy > 5 we have added a linearly growing imaginary part (depicted in Figure 2.4).
In Figure 2.3(b), we see that the Green’s function is decaying for Rex2 > 5, which is consistent
with the previous computation.

Since the solution decays in the PML, we can expect to obtain a good approximation by
truncating the domain and imposing a homogeneous Dirichlet boundary condition on the artificial
boundary I'g».

Solving the differential equation (2.22) along the complex stretched coordinate directly is
challenging. Instead, we transform the complex coordinate to the real standard coordinates by
using the change of variables =. This yields

ui(Z,zq) = u®(Z,E(zq)) . (2.25)
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Due to the definition of = in (2.20), we have

O () = 5(q)Duyu’ (7, E(24))

By substituting the above change of variables into (2.22), we obtain

d—1
s 1 s ) ) '
jgl 6xj (s(xd)aﬂfjuo') + aiﬂd (S(xd)axduo-> + k S(LUd)uo. =0 m QH+)\ .

For simplification, we define the PML operator Apy, as follows
d—1 1
Apwmr = jz::l Oz, (8(95(1)39@]») + 0z (S(xd)amd> =V (8(zq)V) (2.26)

with the matrix S(z4) == diag(s(zq), .. .,s(xq),1/s(xq)) € C*.

Remark 2.18. Below the PML, the operator Apyy, is equal to the Laplace operator, since s(z4) = 1
for x4 < H and S is the identity.

The truncated PML problem can now be formulated as follows: For u* € H'/2(T'), we seek the
weak solution u$ € H'(Qp ) such that

APMLUZ + kzs(xd)uf, =0 in QH—i—)\ , (2.27&)
ub =—u'  onT, (2.27b)
u, =0 on I'pyy. (2.27¢)

The solution of problem (2.27) in the PML is not related to the actual scattered field. In the
following section, we explain how to reformulate the PML problem with an artificial boundary
condition on I'y.

2.3.2. PML APPROXIMATION OF THE DTN MAP

We are now going to obtain an approximation of the DtN map by using the PML. To this end,
we need to solve the Helmholtz equation in Qpyyy, for g € HY/2 (T'gr) such that

A})]\/IL’U/(S7 + kzs(a;d)uf; =0 in Qpwmr, , (2.28&)
uy =g on Ty, (2.28b)
U(ST =0 on FH+)\ . (2.280)

By considering the definition of u$ in (2.25), we can express its Fourier transform using (2.4).
Therefore, there exist two constants C,Co depending on ¢ but not on x4 such that

(Fus) (€, x4) = C1(£)e?OEEI=H) 1 0y (£)e " OE@)-H) - e c R 5y € [H,H + )],
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where (&) is given by (2.10). By imposing the boundary conditions (2.28b) and (2.28c) and
solving the resulting linear system, the constant C; and C5 are obtained as

e_'Y(g)a' 6’7(6)0’

Cl(g) = o0 _ ()0 (Fg)(§7H) and 02(5) -

e ®7 — @ &)

where o is the virtual width of the PML as defined in (2.23). Hence, we have

O E@)—H—0) _ o=(&)(E(xa)~H~0)

107 — 100 (Fg)(&, H), €eRTL.

(Fug)(§, xq) =

Taking the derivative of Fuj with respect to x4, evaluating it on I'y and using =Z(H) = H and
Z'(H) = 1, we obtain

e_'Y(E)U + e’Y(ﬁ)O'

Oy (Fug) (&, H) = () ( ) (Fg)(&, H) = ~(&) coth (v(§)o) (Fg)(&, H) -

e 180 — g1(&o
Using the inverse Fourier transform, we can define 7.+ : HY/?(T'y) — H~'/?(T'y) as the Neumann

data of the solution on I'j:

d—1

(T3 05) (@ H) = Ouis (@ 1) = (2m) 7 [ 5(€) coth (1€)o)(Fo)(€ H)EPEde . (2.29)

Since the solution u;. satisfies the above boundary condition on I'fy, we can use it to obtain an
equivalent version of (2.27), namely

Aub 4 k*ui =0 in Qp ,
uy = —u' onT',
Op us =T ul onTlpg.

As the incident field u’ also satisfies the Helmholtz equation, the above problem can be further
reformulated by using the total field u, = u® + us.

PML Problem: For u' € H'(Qp), we seek the weak solution u, € H' () such that

Aug + Kuy =0 in Qg, (2.30a)
Uy =0 on T, (2.30Db)
Oy = Ty o = (Ozy = T, )u' o Ty (2.30¢)

The corresponding variational form is to find u, € H*(Q) such that

apmr, (Ug, v) = <(8xd - 7;+)ui,§>r for all v € H' (),

H

where apy, : ﬁl(QH) X ﬁl(QH) — C is defined by

apa(9.0) = (V6. V) —k{(o.0), (T 6.0)_ . (2:31)
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In Chapter 4, we study the PML Problem posed in a domain with a special structure. To provide
a foundation for this analysis, it is useful to prove the existence and uniqueness for the general
case, which has been shown in [26, Sec. 3]. In the following section, we elaborate on the details.

2.3.3. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE PML PROBLEM

The sesquilinear form apyyy, defined in (2.31) generates the operator A, : H LQy) — (ET LQ H))*
such that
(Asu,0)q,, = apmL(u, v) for all v € H'(Qp).

Before presenting the main result, we need some preliminary lemmas.

Lemma 2.19. Let the operator A and A, be induced by (2.14) and (2.31), respectively. Then,

+_
HA - "40HH*1(QH)<—H1 Qn < QHT T HH 12Dy )« HY/2(Ty)’

where T+ and T are given by (2.9) and (2.29), respectively.

Proof. For u,v € H L(Qp), a straightforward computation yields

(A = A)u,D)g, | = lalu,v) — apyie (u, v)|

/ o(TH =T, )uds
I

T =T sy oy Pl e 2y

<27 77|

osvaqeonye oo @ ¥ @

where the last inequality is obtained using [[v[|g1/2(p,,) < \/EH,UHHI(QH) from [25, Lem. 3.4]. O

Lemma 2.20. Let o denote the virtual width of the PML as in (2.23). Then,

+ _ 7+
|7 -7 vy S Gk
where
1 1 Imz 1 Rez
Cy(z) = —ma + ) + or Rez,Imz > 0.
(2) e { Rez  m(Rez)?’ Imz  7(Im2)? } d
Proof. See [26, Thm. 3.1]. O

Theorem 2.21. Let C, be as in the previous lemma and let Ciygsup be as in (2.15). Moreover,
assume that 2C, (ko) < Cingsup and u' € H'(Qg). Then, the PML problem (2.30) has a unique
solution u, € H'(Qy) and the following error estimation holds

= ol gy < T (g + ]
cllHY(Qp) = Cinfsup _ QCu(kﬁO') H(Qp) HY(Qy) )

where u is the solution to (2.12).
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Proof. Let A and A, be defined by the sesquilinear forms (2.14) and (2.31). According to
Theorem 2.15, the operator A is invertible and, by using [60, Thm. 2.15], it satisfies

1
< .
HY(Qg)«H-1(QxH) Cinfsup

a7 (2.32)
To show existence and uniqueness of the PML Problem, it suffices to show that A, is boundedly
invertible. Using the perturbation theorem [75, Thm. 10.1], the inverse of the operator A, exists
provided that
HA‘l(A—Ag)H <1.

HY(Qp)«H(Qn)

By straightforward computations and using (2.32) and Lemmas 2.19 and 2.20, we have

-1 1
H‘A‘ (A_-AO') Hl(QH)<—H1(QH) S H HHl(QHV—H 1(Q ||-/4 ./4 ||H QH (—Hl(QH)
+ +
= 1nfsup ‘T T HH V2(T )« HY2(Tg) (233)
< 2 Cy(ko) <1
infsup

To compute the error bound, we again use the perturbation theorem [75, Thm. 10.1] as well as
the above results given in (2.32) and (2.33). These give us

A~ 1 )1 ()
HU_UUHHl QH)Sl H‘A (.A— =

(H(A— As)ull g-1(0,)

a)HHl Q) —H (1)

+ _ g+,
1 4
< +\, %
= Cinoup — 2Cu (ko) <H(A Al =@ + H — T )u H*l/Z(FH))
H(T"’ -7 ||H*1/2(FH)<_H1/2(FH) <2HU|| i >
o Cinfsup - QCu(kG) HY HI(QH)
2Cu8e) — (ol .
N C'infsup - ZCu(kO') H'(Qm) HY(Qp) )’
where the last inequality is obtained by Lemma 2.20. ]

Remark 2.22. Without prior knowledge of the properties of the total field u, an a priori estimate
for (T —T,")u is difficult. Therefore, determining the optimal value for o is not a straightforward
task.

Remark 2.23. By assuming that 1/¢ < Re(ko)/Im(ko) < c for some constant ¢ > 1, Theorem 2.21
leads to
lu = voll g1(q,) = O(1/Re(ko)) as Re(ko) — oo

This indicates that the global error decreases at least linearly as Re(ko) — oo. Moreover, it
has been shown in [26, Thm. 4.2] that, for a flat scatterer, the global error decreases no faster
than |ko| ?log (|ko|)~" as |ko| — co. This means that the global exponential convergence is
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FIGURE 2.5. A two-dimensional sketch of an unbounded periodic domain and its

fundamental cell.

unachievable for the unbounded scatterer. This contrasts with the exponential rate of the PML
for the bounded scatterers, as proven in [28, 79, 80]. However, it has been shown in [105] that
the PML solution of the source problem converges exponentially on a compact subset of the
unbounded purely periodic domains. In Chapter 4, we will extend these results to the scattering
problems in locally perturbed domains.

2.4. FLOQUET-BLOCH TRANSFORM

Up to this point, we have described two methods for truncating the generic domain 2 in the
vertical direction. However, the resulting truncated domain 2y remains unbounded in the
horizontal directions. Under the assumption of periodicity of the domain in the horizontal
directions, a widely used tool is the Floquet-Bloch (FB) transform, which decomposes a non-
periodic function defined on an unbounded periodic domain into a family of periodic functions,
each defined in a bounded cell [2, 7, 77, 81].

We consider a 2r-periodic function ¢P¢": R%~! — R whose graph is the periodic surface TP,
For H > ||¢P*"||, we define the periodic domain QF;", depicted in Figure 2.5a, by

QPer = {(5, 2q) 1 T € RIY (PN(F) < 1y < H} .

Note that the domain Q?fr C R% is 2m-periodic with respect to the first d — 1 variables. Moreover,
the corresponding fundamental cell of periodicity is denoted by

QI = {(f, zq) EQYT T € (—7T,7'[')d}
whose boundary is the union of the vertical boundaries
2 .= {x errT:. 7 e [—W,ﬁ]d_l} and T2 = {x elyg: 7€ [—ﬂ,ﬂ]d_l}
and the lateral boundaries

Ir_ = {(f,a:d) €EONT :x)=-—TorTy=—mOr ... Or Tg_| = —71'},

F+::{(55,:Ud)E@Q%}r:xlzworm:ﬂor orxd_lzw}.

The bounded cell Q37 and its boundaries are plotted in two dimensions in Figure 2.5.
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To introduce the FB transform as presented in [81, Sec. 6], we first denote by C5°(25;") all the

smooth functions that are compactly supported on QV".

Definition 2.24. For a given function f € C§°(Y"), the FB transform, denoted by Jf, is
defined by

(TH(ex) = S f@E+2rj,2q)e @ F2M) e R 2 e QBT (2.34)
jezd—1
where « is called Floquet parameter.

The summation is well defined because the function f is compactly supported. Therefore, the
above series reduces to a finite sum. The FB transform is similar to the Fourier series. However,
the coefficients in the FB transform are not constant and still depend on the original variable x.

Remark 2.25. In general, the FB transform is defined on fully periodic domains and applied in
all spatial directions (see [81, Sec. 2]). However, in our setting, the computational domain is only
periodic with respect to the first d — 1 variables. Therefore, we apply the FB transform only to
these variables.

Below, we mention some important properties of the FB transform.

Proposition 2.26. Let f € C5°(Q") and A = [-1/2, 1/2]%Y. Then, Jf satisfies the following
conditions:

(a) For each fired x € Q27 , a > eia'z(jf)(oz; x) is 1-periodic with fundamental cell of periodic-
ity A.

(b) For each fized o € A, x — (T f)(e;x) is 2m-periodic in the first d — 1 variables with
fundamental cell of periodicity Q37 .

Proof. (a) For each fixed x, the function o — eia'E(J f)(a; ) is 1-periodic, since for ¢ € Z4~1

ootz (TH)(a+tz) = ollatt) Z F(@ + 27, xg)e” i(a4-0)-(z+2m7)

]EZd 1
- 1 o+t Z f x4+ 27y, xd) la'(g+2ﬂj)e*if-(;+27rj)
]EZd 1
= Z f(x + 27y, xd)e—ia'(5+27rj)e—ié-(27rj)
jeZd—l

=T ) ),
where for the last equality we used the fact that e 2™ =1 for all j,¢ € Z4~1.

(b) For each fixed a, the function 2 — (J f)(;z) is 27-periodic, since for ¢ € Z4~1

(T T +2mlag) = . f(@+2m(j+ L), mq)e e (242 (j+0))
jGZd 1

— 3 f@E+2mmyxg)e T — (T ) ().

mi=j+LeZi-1 ]
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To analyze the mapping properties of the FB transform, we first introduce the space L?(A; Hgor(Q%}r)),
which contains square-integrable functions from A to H;er(Q%}r) equipped with the following inner
product (see [99, Sec. 39.2])

(1,9 L2, 27)) = /A<f(a)’g(a)>Hser<ﬂ%) de

(Q37) for f € L2(A; HS,.(977)), while continuing to

per

To simplify notation, we write f(«a) € HS

per

use the notation f(a;x) instead of f(«a)(x).

Definition 2.27. The space H%(A; HS,,.(Q%)) for r > 0 and s € R consists of the functions

per

f € L?(A; HS,. (%)) such that a +— f(a;-)el® is 1-periodic with fundamental cell of periodicity

per
A and the following norm is finite

11 sz acnizcozpn = o= 1F@ N0 [ 1o )
For r < 0, H.,(A; Héer(Q%}T)) is the dual of H"(A; H;;(Q?}T)) and
1N 2y s 220y = sup (£, 9) axazr -

9EHG " (A Hper (37))
Theorem 2.28. Let A as in Proposition 2.26.

(a) The FB transform from C§°(Q%") can be extended to an isometry between L*(QY") and

LQ(A,L%er(Q%er)) and its inverse transform is obtained by

T (Z + 27j, ) = / f(a;:c)eio"(;JrQ”j) do, x€ Q% and j e 741 (2.35)
A

(b) For s,r € R, the FB transform from C§°(%") can be extended to an isomorphism between
HE(QY") and HE(A; HS..(Q37)) and its inverse transform is obtained by (2.35).

per

(c) For any f,g € L*(QY"), the Plancherel formula holds, i.e.,
[ t@g@ds = [ [ (7)) Tg)aiw)da da. (2:36)
QP A Jazm

Proof. See [81, Thm. 8] for parts (a) and (b) and [12, p. 220] for (c). O

Note that the Plancherel formula also holds for f € HE(Q}") and g € HZ (") due to the
density of L2(Q%") in L2, (%) for r > 0 and of L2, (Q%") in HZ:(Q%") for s > 0 (see the proof
of [81, Thm. 4]).

Remark 2.29. The mapping properties of the FB transform when operating on functions defined
on a flat surface I'y or a periodic surface I'P*" are analogous (see [81, Sec. 5]).

Theorem 2.30. Let q: QY — C be a 2m-periodic function in the first d — 1 variables. Then

(T (@) z) = q(2)(T f)(a; z).
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Proof. By using the definition of the FB transform given in (2.34), a direct calculation yields

(T@fz)= 3 (af)@+ 2mj,2q)e @2 = g(2)(T f) (s ).

jezd—1 O
Theorem 2.31. For any f € H'(QY%"), it holds

(0z, +i) (T f)(e;x)  fore{l,...,d—1},

T, [ x) =
( Hies ) {(8xzjf)(a;m) fort=4d.

Proof. For £ € {1,...,d — 1}, the definition of the FB transform given in (2.34) and a straight-
forward computation yield

(Jaxéf)(a; l‘) - Z (a’wf) (f + 277, $d)e—ia~(5+27rj)

jeZA—1
= > 0, (@ + 2mj za)e 0 )

jezd-1
tiag Yo @+ 2mj ag)e )

jeZd-1
= (O, + i) (T f)(e; ).

The statement for £ = d follows from the fact that the FB transform acts only on the first d — 1
variables. O

After having defined the FB transform and its properties, we focus on its effect on differential
operators. We consider the equation Lu = f in Q" together with the boundary condition u = g
on '’ YTy, where the differential operator is £ := V - (pV) 4 ¢ with periodic functions p and gq.

By applying the FB transform to Lu and using Theorems 2.30 and 2.31, we obtain the following
family of boundary value problems indexed by the Floquet parameter oo € A

La(Tu)(os2) = (T ) 0 2) for 2 € Q2"
(Ju)(a;2) = (Tg)(e; x) for x e I UTy,
(Ju)(a;x) = (Ju)(o; T + 27j,24) for j € 7% x e v,

where L, is acting like a shifted operator, defined by
Lo = (Vz+ia) - (p(2)(V5 +ia)) + Oz, (p(2)0r,) + q(2)

and V3 is the gradient with respect to the first d — 1 variables.
Due to the periodicity of Ju with respect to Z, the above problem can be reduced to the
bounded cell Q37 (depicted in Figure 2.5b) as follows

Lo(Tu)(a;2) = (T f)(azz)  for z € OFf ,
(Ju)(e;z) = (Tg)(e;z)  for x € T*"UT4T,
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together with the periodic boundary conditions on the lateral boundaries

(Ju)(a; x)‘m = (Ju)(a;2)[p_,
Ox(Tu)(e5 )y, = Ox(Tu) (a5 0)|_






CHAPTER 3

SCATTERING IN UNBOUNDED PERIODIC STRUCTURES

In this chapter, we study acoustic wave scattering from unbounded periodic surfaces. The general
setting is described in Chapter 1; however, we place particular emphasis here on the periodicity of
the geometry, using the notations I'P®*, (P** and QP°". For simplicity, we assume the fundamental
period of ¢P°* is 2. Consequently, the unbounded domain QP C RY for d = 2,3 is 27-periodic
with respect to the first d — 1 variables. This setting is depicted in Figure 3.1(a).

We first employ the DtN map and the FB transform to derive a family of periodic problems
posed in a single bounded cell. In order to propose a high-order numerical method, we analyze
the regularity of the transformed field with respect to the Floquet parameter. It should be
pointed out that the regularity of the transformed field in two dimensions is less complicated
than in three dimensions. In [104, Thm. 11}, it has been proven that the transformed field in
two dimensions is analytic except for at most two singular points. However, in three dimensions,
singularities of the transformed field no longer consist of a finite number of points. Rather, they
form a set that is the union of a finite number of circular arcs. Therefore, a direct extension of
the high-order numerical methods used for the two-dimensional case (in [7, Sec. 5, 104, Sec. 4]) is
not possible for the three-dimensional case.

Our first main result, in Theorem 3.6, is a local representation of the transformed field mirroring
the expected structure of singularities. This significantly extends similar representations found
in [73, Satz 3.11, 74, Thm. 22]. Moreover, we obtain a globally valid representation in Theorem 3.9.
Based on the regularity results, we construct a tailor-made quadrature rule, adapted to the
singularity structure of the transformed field, to compute the inversion of the FB transform. We
present some numerical examples illustrating the performance of this scheme.

3.1. FORMULATION IN A BOUNDED CELL

To truncate the unbounded domain QP in the vertical direction, we impose a transparent
boundary condition on a flat surface I'f; at height H. As explained in Section 2.2, this condition
is expressed by using the DtN map. The resulting truncated domain is the unbounded periodic
domain QF" between I'P* and 'y (depicted in Figure 3.1(b)).
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(a) Unbounded domain QP (b) Unbounded domain Q"

Ficure 3.1. Sketch of the unbounded periodic domains.

For a given incident field u? € H}(QY") with |r| < 1, we seek the unknown total field u € H}(Qb™),
which satisfies

Au+ E*u =0 in QP (3.1a)
u=0 on '’ (3.1b)
Oy =T u= (s, =T )u'  onTp, (3.1c)

where the DtN map 7 is defined as in (2.9). Note that (3.1a) is understood in the variational
sense and (3.1b) and (3.1c¢) in the trace sense.

The variational formulation of this boundary value problem is similar to (2.13) but posed in
the periodic domain Q. To simplify the notation, we will omit writing the subscript r for the

sesquilinear form a, given in (2.14). More precisely, we aim to find u € H}(QP™) such that

al(u,v) = (O, — T+)ui,w>r for all v € HL (QP), (3.2)

H

where the sesquilinear form a: H(QY") x HL, (Q%") — C is defined by

(6 9) = (V6. 90) e =K (6,0) o = (TH0,0), -

This problem is uniquely solvable as shown in Theorem 2.15.

From a numerical point of view, the variational problem (3.2) is not yet adequate as it is
still posed in the unbounded domain Q?fr. Since this domain is periodic with respect to its
first d — 1 variables (denoted by Z), we can apply the FB transform only with respect to z, as
in Definition 2.24. This leads to a decomposed formulation of (3.2) consisting of a family of
periodic problems (indexed by the Floquet parameter «) posed in a single bounded unit cell of
the periodicity. We recall from Section 2.4 the notation Q%7 for the unit bounded cell whose
bottom and top surfaces are denoted by I'*" and T%}r, respectively. We depict a sketch of the
bounded cell in Figure 3.2 for the three-dimensional case.

Let the FB transform of the total field u be denoted by w := Ju. According to Proposition 2.26,
w(a; x) is 2m-periodic in Z and eia';w(a; x) is l-periodic in a.. Therefore, the fundamental cell of
the periodic function w is assumed to be A x Q2 where A= [—1/2,1/2]%71.
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0
FIGURE 3.2. A three-dimensional bounded unit cell Q2.

By applying the FB transform, using the Plancherel formula (2.36) and Theorem 2.31, we
obtain the following variational problem for w € H(A; H1,.(Q3F))

per
|/ aa(w(@).2(@)) da: = [ (05, - T) 7w (@). (@), da (33)

for all z € H"(A; ﬁ;er(Q%}r)), where
4l 9) = (V6,V0) .~ V56.0) = (8 = 1al)(0.0), —(T00), . (34)

with V5 = (0y,,...,0, )T. Note that the periodic version of the DtN map, denoted by

» Vxg_1

To: HAE(TZ) = Hpo!2(T27), is defined by
(T @)@ H) =1 Y K —la—jI> §(j) %7 for @@ H)= Y @(j) ™, (35)
jGZd_l jeZd—l
where ¢(j) denotes the j-th Fourier coefficient of ¢ (see [84, Eq. (11)]).

Remark 3.1. The right-hand side of (3.3) is understood as the dual pairing in H], (A; H};&ﬂ@%}r)) X
He" (A HylZ (D).

Remark 3.2. The strong form of (3.3) is

Azw(e) +2ia- Vw(a) + (K — |a]*)w(a) =0 in Q27 (3.6a)
w(a) = on I'*™, (3.6b)
(Ozy — T w(a) = (95, = ToF)Tu'(a)  on TG (3.6¢)

Equation (3.6a) is understood in the variational sense and (3.6b) and (3.6¢) in the trace sense.

Theorem 3.3. Let |r| < 1 and v’ € HNQ%"). A function u € H}(®5") satisfies (3.2) if and
only if w € HL(A; HL. . (237)) is a solution to the variational problem (3.3). Moreover, if Ju® is

per
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continuous with respect to «, then w is also continuous with respect to «, and for every a € A,
aq(w(a),z) = <(8wd — Tojr)Jui(oz),E>F27r for all z € H;er(Q%}r) , (3.7)
H

where the sesquilinear form aq is defined in (3.4).

Proof. See [84, Thm. 2]. O
Unique solvability of the variational problem (3.7) in ﬁéer(Q%}T) has been proven in [16, Sec. 3.5]
and [41, Cor. 3.4] for any arbitrary but fixed a € A = [-1/2,1/2]""!. We can thus compute

numerical approximations to the transformed field w(«) for every a € A by using some standard
numerical method. Afterwards, these transformed fields are combined by means of the inverse
FB transform (2.35), which yields an approximation to the solution of (3.3). This essentially
amounts to the evaluation of an integral of w over the domain A. The accuracy of the numerical
solution of (3.3) depends not only on the selected numerical method for solving (3.7), but also
on the accuracy of the numerical integration method employed for this integral. In order to
construct a high-order numerical scheme, requiring few quadrature points for high accuracy, it is
necessary to precisely know the regularity of the transformed field with respect to the Floquet
parameter a.

3.2. REGULARITY OF THE TRANSFORMED SOLUTION

Let us heuristically motivate the results that we shall make rigorous in Theorem 3.6. From
the definition of a, in (3.4), we see that all terms in the variational formulation (3.7) depend
analytically on « except for the square root functions in 7, as defined in (3.5). Hence, we
may expect the transformed field w to depend analytically on «, except for points where (the
derivatives of) these functions have singularities, i.e., except for points located in the set X
defined by

= {oeA=[-1/2,1/21"" : |a—j| =k for some j € Z1"}. (3:8)

In the two-dimensional case (d = 2), when k is a half-integer, the set ¥ includes at most two
singular points, whereas for non-half-integer k, the set ¥ has exactly two singular points [104,
Sec. 3.2]. By increasing k, the number of the singular points in ¥ does not change. However, we
show in the following that the structure of singularity in the three-dimensional case (d = 3) is
much more complicated.

For d = 3, the set X is a union of circular arcs formed by the intersection of A and circles
with center j and radius k. We will refer to this set as the curves of singular points. Figure 3.3
illustrates possible structures of ¥ on A for different wave numbers k. Any high-order method for
approximately inverting the FB transform needs to take the structure of 3 into account, as it
becomes more and more complex as k increases.

For any o € 3, we also define

J)={jeZ?: |a—j =k}, (3.9)
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FIGURE 3.3. Structure of ¥ for different values of k£ on A.

which is a finite set with cardinality #J(«).

Remark 3.4. When k < 1/2, #J(a) = 1 for all @« € ¥. When k > 1/2, there exists a finite
number of o € ¥ with #J(«) > 1.

For the later analysis of the numerical inversion of the FB transform, we require a particular
regularity of both the transformed incident and the transformed total field. To formulate these
requirements, we introduce the following definitions:

Definition 3.5. For some open set U C R? and a Hilbert space V, we denote by C*(U; V') the
space of functions from U to V that depend analytically on € U. For a Hilbert space V, let

X(V)={f: A—V: fsatisfies (Cl) and (C2)}, (3.10)
where

(C1) for every open subdomain U C A\ X, f € C¥(U;V),

(C2) for any ag € X, there exists a neighborhood Uj of ag such that

flay=Y" (H k2—ra—j12) fr(a) (3.11)
ICJ(ao)

JET
for some fr € C¥(Uy; V) for each T C J(ay).

Theorem 3.6. Let u' € H}(QY") for some |r| < 1 and additionally Ju' € X(Héé?(f’%}r)) Then,
the transformed total field w that solves (3.3) satisfies w € X (H}.(QF)).

Proof. Let oy € A. The sesquilinear form (3.4) can be written as
Ga() =bal() = D K = la = (),
JEZ?

where

ba(6,0) = (V0. V0) o, — 2 V;0,0)
¢j(6,0) =i(6(j) ™, P ()

oo — (B = 1o {0.0) .

2r °
FH
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We may define the operators A(a): Hl, (Q37) = (HL.(937))" and C(j): Hpbe (TF) — Hper*(T3F)
by
(COIO D)y, = cs(6,0)
and
(A6 0) g =ba0.0) = 3 VR —la—j(C(1)6,D)
JEZ2\JI(ap) H
a(0) + D VR = Ja— j[*(C() >F%ﬂ~

]EJ ao

Clearly, in a neighborhood of ag, A(a) depends analytically on «. Using these operators and
also the antilinear form G(«) induced by the right-hand side of (3.7), this equation can be

- > R —la—j?c(

]EJ ao

reformulated as

=G(a). (3.12)

If ap € ¥, then J(ap) = 0 and as Ju' satisfies (C1) with V = Hrl)érQ(F%}r), so w also satisfies (C1)
with V = H1

per

B(ayp, p) denote an open ball centred at o with radius p. Then, for any j € J(p), there holds

H\/kQ— \a—j|2C(j)H —0 as|a—ag —0.

In [66, Thm. 3], it has been shown that the operator on the left-hand side of (3.12) for all & € A
is boundedly invertible. We know that J(ayp) is a finite set and for small enough p, the operator
A(a) for all o € B(ayg, p) is a small perturbation of the operator on the left-hand side of (3.12).
Therefore, we can use the perturbation theorem given in [75, Thm. 10.1] and conclude that the

(27). We now assume ap € 3, i.e., |ag — j| = k for some j € J(ay). Moreover, let

operator A(«) is also boundedly invertible for all a € B(ao, p).
Setting C(j) = (A(a)) ™' C(j), we can write the solution w as the Neumann series

(Z V= la—jI* C(j ) A()"'G(a).

]GJ OlQ

Let m = #J(ap). Applying the multinomial theorem [93, Sec. 26.4] leads to

wle) =Y ) KviQ - H (q/kQ - a—jM]25(ju))KM (A(@)'G.

n=0 \ Ki+Ko+-+Ky=n,
K1, Kim >0
Note that all even powers of the square root functions are analytic. Inserting the representa-

tion (3.11) for G into the above equation and combining all analytic terms appropriately into

functions wz for Z C J(ay), gives that w satisfies (C2) with V = Héer(Q%}T). O

Remark 3.7. For the two dimensional case, the representation of the transformed solution w(«)
contains only one square root function as shown in [7, Sec. 3.2].
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B(ap py) B(ay, pr)

FIGURE 3.4. Parameters r and § in the global representation of w

Following up on the previous result, the next theorem guarantees that we can make use of (3.11)
for w with the same center of expansion in small balls contained in a neighborhood of .

Theorem 3.8. There exist open balls By = B(ay, pg) with center points ay € ¥ and radii py,
{=1,...,L, such that X C Ungl By and the representation (3.11) holds for w on By with ag = .
Moreover, there exist v, 6 > 0 such that

L
Yi={d e :dist(a/,%) <r} C U By
(=1

and that for every o € S there exists { with B(a,0) C By.

Proof. For every o € X, we choose p(ag) > 0 such that the representation (3.11) holds for w on
B(ag, p(ap)). Then, ¥ C U,yex B(ao, p(ap)). Since ¥ is a compact set, we can select a finite
number of points oy and radii py = p(ay), £ =1,..., L, such that ¥ C Ule B(ay, pg). This yields
the first part of the theorem.

Choose g € (0,1) such that still ¥ C UF_; B(ay, gpe). Choose r such that 3 C X, B(ay, qp)
and set 0 := (1 —q) e:I{liang (see Figure 3.4). Now, let o € & and £ such that o — agl < qpp

20ty

Then, for any o’ € B(a,d), we have

/ . .
« —aZ{<qu+5fqpt¢+(1—q)énlnaneSp?.

=150

This completes the proof. O

The structure of ¥ for different values of the wave number k is depicted in Figure 3.5. For any
point « in i we may use the local representation (3.11) for the transformed field also on a small
neighborhood of that point. In our later analysis, we also require a globally valid representation
of w, which is provided by the next theorem.
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FIGURE 3.5. Structure of ¥ for different values of k& on A.

Theorem 3.9. Let ay, { =1,..., L, denote the points in Theorem 3.8 and set J == Uk, J(av).
Then, there exist vz € C®(A; HY, .(Q%F)) such that

w(e)=> (H \V k2 — |a —j\Q) vz(a), acA. (3.13)
ICJ \JeI

Moreover, for any p € Ny, there exists a constant C,, such that

Proof. We first recall the covering of ¥ by the open balls B(ay,dy), for £ = 1,..., L, from
the proof of Theorem 3.8. Furthermore, let By denote an open subset of A \ ¥ such that

A C By U UL, B(ay,d;). Let go,...,pr € C°(A) denote a partition of unity subject to this
open covering. By Theorem 3.8, in each ball we have

Moz () Cy

TstaE:  rcd. v=12 A. 3.14
O, Hngr(Qg}T)_dist(a,Z)”’ cJd, v 2, Q¢ (3.14)

wla)= > (J]VE—la—i’] wez(a), aeBlag,d), (=1,...,L
ICI(ap) \JEL

with w7 analytic in B(ayg, d¢). Let J = Ungl J(ow) and define wyz =0 for Z C J, but Z  J(ay),
£=1,...,L. Since the function w on By is itself analytic according to the first part of Theorem 3.6,
we set wp g = w and wpz = 0 for all other Z C J. Finally, on A we define

L

v = ZQO[ Wy, T, IclJ, (315)
=0

where we extend each product on the right-hand side by 0 outside its domain of definition. Then

w(e)=> (H \/kz—]a—j\Q) vz(a), acA.

IcJ \jeI

By definition, vz € C®(A; HL, (Q%)). A standard estimate for analytic functions (see [58,

per
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Thm. 2.2.7]) gives that for some constant C

Cu!
max S 575 s
He (Q3]) ¢

12, peNy, (=1, L. 3.16
a€B(agd;) Y pr= o (3.16)

M we 1) ‘
ook

Moreover, we bound each derivative of w on By. For o € By, we know that w is analytic in the
ball B(a, dist(a, X)). Hence, again using [58, Thm. 2.2.7] for o € By we end up with

C’M!

o Lad
HW‘ é-ipﬂ v=1,2, peNy, t=1,...,L.
Hi @2 dist(a, )

ook

By considering the definition of vz given in (3.15), triangle inequality and Leibniz rule, we have
forv=1,2and p € Ny

o MY b o
Oow, m, zr) ~ i dor, HL, (37)
H]$ (oo rms]
Sl \n) 0o 0al™ I ey

Again using the triangle inequality and applying the bounds on the derivative of the functions ¢y
and wy 7 given in (3.16), we can write

w =R L p 1) u—mn
aau le)er(Q%T ¢=0n=0 a 8alj pcr(ﬂzw)
~ L
A p! (1 —n)!
<Cy| == — .
- (dlst(a Pl * 27;) 5"
Finally, we obtain the assertion as d; > dist(«, X)) for each £ =1,..., L. O

3.3. A NUMERICAL INVERSION OF THE FB TRANSFORM

We hereby propose a high-order numerical scheme to obtain the scattered field. This scheme
combines a numerical method, namely the finite element method, to compute the transformed
field w(«) for fixed v with a tailor-made quadrature rule to approximate the inverse FB transform
to high order.

The regularity properties of the transformed field reported in the previous section are an
essential prerequisite for the derivation of such a rule. According to (2.35), the total field is

calculated by means of the inverse FB transform as
w(T + 2mj, x3) = / w(o; x) e @H2m) g g e QI jezit, (3.17)
A

For an analysis of the approximation of this integral, it obviously suffices to consider the case
j = 0 as the analytic phase factor exp(ia - 27j) does not affect the regularity of the integrand.
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FIGURE 3.6. Generated adapted mesh Gg for different k& by Algorithm 1.

A naive way to approximate the integral in (3.17) is to generate an equidistant uniform square
mesh in A and then use the set of vertices in this mesh to define a composite trapezoidal rule [73,
74, 84]. However, convergence of such an approach is typically slow: due to the square root
singularities present in the representation of w(«) in (3.11), we cannot even attain second order
convergence in the mesh width.

We instead propose a specific quadrature rule based on a mesh matching the a priori known
structure of singularities in w to achieve a high order of convergence. A recursively refined
square mesh, dependent only on the wave number, is generated, with elements getting smaller
with decreasing distance to the curves of singularities. To approximate the integral in (3.17),
a tensor-product trapezoidal rule is applied on the finest squares, whereas a tensor-product
Gauss—Legendre rule is used on the remaining squares.

3.3.1. ADAPTIVE MESH GENERATION IN -SPACE

First, we note that although A = [—1/2,1/2)% it suffices to generate a mesh on [0,1/2]* due to
the symmetry of the curves of singular points ¥ (see Figure 3.3 for an illustration). We start by
subdividing [0,1/2)? into squares of lateral length ho = 1/(2ng) for some ng € N>p. Then N*
refinement steps are performed, further subdividing those squares close to the curves of singular
points, which are circular arcs of radius k centred at j € J = Uaclo /2]2J («). The complete
procedure is presented in Algorithm 1, whose output is illustrated in Figure 3.6 for N* = 6 and
different values of the wave numbers k.

In Proposition 3.10, we list properties of the adapted mesh Gy« generated by Algorithm 1. To
concisely formulate these results, we introduce the sets of squares of lateral length h,, := hy/2" in
the mesh by

M, ={Q: Q € Gy~ and Q has lateral length h,}, n=0,...,N* (3.18)
as well as the union of all squares of lateral length h,,

R.= |J @, n=0,...,N*. (3.19)
QEM,
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Algorithm 1: generate adapted mesh and tailor-made quadrature rule
Input: k, N*, ng, J
1 ho — 1/(277,0) ;
2 Go < {[l1ho, (€1 + 1) ho] X [l2ho, (2 + 1) ho] : €1, =0,...,n9 — 1} ;
3 a+ 0, 0« 0
4 forn=1,...,N"do
5 | Gn 0
6 hn < hn_1/2;
7 for Q € G,,_1 do
8 Let Cg denote the center of Q;
9 dist(Cq, %) + minj€3|kz —|Cq — jll;
10 if dist(Cg, %) < 1/2" then
11 Refine @ into @1, ..., Q4 of lateral length h,;
12 gn%gnU{Qlanll}a
13 else
14 Compute (ag, 0g) corresponding to the Gauss quadrature rule on Q;
15 a — alUag;
16 0 < oU 0Q;
17 | Gn G U{Q}
18 Compute (a*, 0*) corresponding to the trapezoidal rule on all squares Qn+ \ Qn=*—1;
19 a + aUa®;
20 0 < oU 0%
21 return Adapted square mesh G+, quadrature points o and weights o
Proposition 3.10. Let Q, € M,, (forn =0,...,N*) be squares with centers Cq,, then
. 1 X
dlst(CQn,Z)>72n+1, n=0,...,N* -1,
: 1 V2
dist(Cq,,, %) < on (1 + 2h0) , n=1,...,N*.
Furthermore,
. . 1
zlelgn dist(z, X)) > St (1 - \@ho) = dminn n=0,...,N* =1, (3.20)
1
sup dist(z,¥) < — ( + \/§h0) = dmaxn n=1,....,N" (3.21)
TERnR 2n

Proof. We consider the square @, € M,, for n = 1,..., N*, with center Cg,. According to
Algorithm 1, @, is generated by refining a larger square @,—1 € M,,_1. The center Cg,, , of

Q)1 satisfies the condition

dist(Cq, . %) = |k —|Cq,_, —j|| < 2% at least for one j € J.

(3.22)
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Based on this refinement, we first conclude that dist(Co,,Cq, ,) = (v/2/4) hy—1 and hence
from (3.22) and h,,_1 = ho/2" ! that forn =1,..., N*

diSt(CQn, ¥) < diSt(CQn, CQn—1) + diSt(CQn_l,Z) < 2% (1 + \f h0> . (3.23)

A bound for z € @), is obtained by adding half of the diameter of @,
V2 1 V2 1
1S < — _— _ = — .
dist(#,5) < - ha + g | 145 ho | = o5 (1 + \/§h0)

As the right-hand side is independent of @, it actually holds for all z € R,,.
On the other hand, any Q,, € M,,, n=0,..., N* — 1, that was not subject to the refinement
in the (n + 1)-th refinement step, it implies

dist(Cyg,,, %) > n=0,...,N"—1. (3.24)

on+1 ’

Hence, for any = € @, we have

. . 1 V2 1
dist(z,5) > dist(Cq,, Z) - diam(Qn)/2 > 5y = - hn = 31 (1= v2ho) -

As the right-hand side is independent of (),,, this estimate holds for any x € R,,. O

Remark 3.11. Proposition 3.10 shows that every set R,, is covered by annuli for which we have
explicit bounds for inner and outer radii. As each R, is the union of the equally sized squares in
M,,, we may estimate the number of squares in M,,. For n = N*, we have

4 k‘
‘RN*| < 7T(k"i_dmax,N*)2 _W(k_ dmax,N*)2 = 47demax,N* = T (1 + \/>h0) 5

and hence

#MN*z‘hQN'_ i (f+ )2N.
N*

Similarly, forn =1,...,N* — 1, we get

21k

|Rn‘ <A4rk (dmax,n - dmin,n) = 2

(1 +3v2 ho)

and

Ra| _ 2mk
#Mn:|h2| ”<3f+ )

3.3.2. TAILOR-MADE QUADRATURE RULE AND ITS CONVERGENCE ANALYSIS

We will now proceed with defining appropriate quadrature rules on each square in Gy- and
then analyze the corresponding error in computing the integral (3.17). We will strongly rely
on the correspondence of the squares in the mesh to representations of the integrand w. In
accordance with Theorem 3.8, we may use (3.11) for w on the smallest squares if both Ry C 5
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and hy+ < v/26. In the first step, we will use this observation to estimate the error of applying a
composite trapezoidal rule on Ry+. Afterwards, we investigate the error of a P-point Gaussian
quadrature rule applied on all remaining squares, making use of the representation as derived
in Theorem 3.9. Finally, we prove that combining both rules for approximating the inverse FB
transform is super-algebraically convergent.

Recall that it suffices to consider the case j = 0 when approximating (3.17). Led by the
properties of the transformed total field established in Section 2.4, let us first sum up all required
assumptions for the integrand. Also recall the definition of the space X in (3.10).

Assumption 3.12. We assume that w € X(ﬁger(ﬂ%}r)) and that r, 0 are as in Theorem 3.8.
Note that w then will also admit the representation (3.13).

We first consider a square ) € My« with center Cg = (Cg,1,Cq,2). The vertices of Q) are

given by oy, s = Co+ (p— 1) hy-e) + (g — 3) hy-e® for p, ¢ = 0,1, where e\9) denotes the j-th
coordinate vector. The integral w over () is approximated by the trapezoidal rule

/Q w(a) da

where ng denotes the error. To estimate ng, we require the bilinear interpolation operator

I —
= Z w(oy,q) + ng,
,q=0

P at the points a . Well-known estimates for interpolation of any f € C*(Q) give

2

max| f(a) ~ Pof(a)| < C'h%. max
ac v=1,

5|2z (3.25)

where [|-||, denotes the supremum norm. This estimate generalizes to C?-smooth functions on Q
with values in a Sobolev space.

Theorem 3.13. Let w satisfy Assumption 3.12 and let the parameters hg, N* in Algorithm 1
be chosen such that dmax, N+ <7 and hy- < V28. Then,

—N*/2
max|w(a) — Pow(a)ll, ) < €272,

where the constant C' depends on k and the functions wz appearing in (3.11) for all the centers
of the expansion from Theorem 3.8.

Proof. According to Theorems 3.6 and 3.8, there exists g € ¥ such that the representation

wla)= > (H k?—\a—jﬂ) vz
ICJI(ap) \JET

with analytic functions vz, holds for all a € (). To establish the assertion, it is necessary to
distinguish between curves of singular points close to ) and those at a larger distance. Hence,
we define

Ji={j€JI(ap) : |k —|o— j|| < dmax,n+ for some o € Q}
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and Jy := J(ap) \ J1. To abbreviate the notation, we set v;(a) = /k? — |a — j|* and introduce

we)+ Y vn(a) [Ty, Zi=0,

0#I>CJI2 J€L2

Z UI1UI2(05) H'Yj(a)a InghIl?é@.

I>CJo J€I2

wr, (@) =

With this notation, the representation of w becomes

wa)= Y wr(@) I] wla). (3.26)

TSI Jj€h

The goal is thus to establish the asserted estimate for each term in (3.26). This can be done by
induction on the cardinality of Z;. Throughout the arguments, we shall make use of a generic C
denoting constants, that depend on k, the maximum norms of derivatives of all vz up to second
order and on maximum norms of all wz (but not their derivatives).

We start with Z; = (). In this case, the product on the right-hand side of (3.26) is equal to 1.
Hence, we only need to prove the assertion for each summand in the definition of wy. We proceed
again by induction on the cardinality of Zs. For vy, the estimate follows directly from (3.25). For
Iy # 0, let j € I and assume that the estimate has been proven for the bounded continuous

function
cmun(a) [ wlo).
JF#kELy
That means,
max |Pg(2)(a) — 2(a)| < 027V, (3.27)

ac®

Hence, it remains to estimate

max [Po(v; 2)(@) — vj(@) 2(a)] < c27".

Using the triangle inequality and the induction assumption for z given in (3.27), we obtain
Pa(32)(0) = 15(@) 2(0)] < [Pa(;2)(@) = 1(a) Poz(@)] + s(a) Poz(a) = 1(a)z(a)
< [Po(v; 2)() = () Poz(a)| + Cljll 02 ™ 72
To estimate the first term, we again use the triangle inequality as follows

[P 2) (@) — () Poz(a)| < [Pyl 2)(a) — Po(v; Pz)(a)l

(3.28)
+ [Po(v; Poz)(a) — vj(a) Poz(a)l.

By considering the induction assumption (3.27) and using the properties of the bilinear interpo-
lation Pg, we get

max| Po(7; 2)(@) — Po(7; Poz)(@)] < Cmaxly;(@) 2(a) = 7j(@) Poz(@)] < Cllyllo g2 /.
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Before estimating the second term of (3.28), from Lemma A.2 and the definition of J2, we know
that

9*v(a)
oo’

(k+la—4)'* _ C
<C 3/2 < e

max,N*

<OV aeQ, v=1,2, (3.29)

|k = la—jl|

where dpax, N+ is defined as in (3.21). Using (3.25) and the bilinearity of Pgz, the second term
of (3.28) can be estimated by

2

0
[P (s Poz)(a) = vj(a) Poz(a)] < Chiy. max || == (v; Poz)

00;Q
i affyj OZ_EPQZ
= 0, dai

< Ch¥%. max
v=1,2

00;Q

82’)/]'
2
14

Oa <2 ’

00;Q

2
< Chiy- ||2llo max

where the second last inequality is due to0 [|0a,VjOa, P2l o0ip < CH@géyfyjPQzHoo.Q. By summing
up all terms, we obtain the asserted estimate for wy.
Next, we establish the estimate for Z; # (). For j € Z;, we consider the bounded continuous

function

Z = wzl H Yk
j#keI

for which the asserted estimate is valid. Similarly as before, we estimate

[Po(v;2)(@) = 7j(@) 2(a)] < [Po(v; 2)(a) = vj(e) Poz(@)| + C |yl g 22
< [Po(; 2)(@)| + Iyj(a) Poz(e)| + Clyjll g 2V

—N*/2
<C (1427Y2) 1l eimy. -
From the definition of Jq, it follows that
Milloairy. < Clk—=la =] < C (dmasv+ + diam(Q)) < € (27" + V2 hy-) < C27V".
By induction, the asserted estimate now follows for all terms in (3.26). O

It is now straightforward to obtain a bound for approximating the integral on the union of all
Q € Mpy+. The corresponding quadrature operator will be denoted by

Ihow = Z /PQw(a) da .
QEMy+ 7@

Theorem 3.14. Let w satisfy Assumption 3.12 and let the parameter N* in Algorithm 1 be
chosen such that dyax N+ < 1 and hy= < V/26. Then, the error of the trapezoidal rule over Ry is
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bounded by

< C273N"/2,
Ho (Q37)

/ w(a) da — IL.w
Rs

Proof. Using the triangle inequality and Theorem 3.13, we have

0> /”(w_PQ“’)(“)”Hserm%f)d“

HY (9%F) QEM =

/ w(a) da — Thow
R

< C(k) (#My=) h3. 27N/2
By using Remark 3.11, which establishes # My« ~ 2V", and since by construction hy« ~ 27",
the assertion follows. O

On all squares Q@ € M, forn=1,..., N*—1, we will use a P-point Gauss-Legendre quadrature
rule in each coordinate direction to approximate the inverse FB transform. We denote this rule
applied to a function f by Ing and set IgR f= > Ing.

b b n QeRn b

In equation (A.2), we recall the classic error estimate of the Gaussian quadrature formula in
the two-dimensional case according to [76, Thm. 9.20]. In what follows, we present the general
well-known error estimate for applying such a rule in Theorem 3.15.

Theorem 3.15. Let f € C2P(R,,; HL..(02F)). Then, there is a constant C such that

per
Hécr(ﬂﬁf)>

Proof. From equation (A.2) with P =n + 1 and our setting of functions mapping to a Sobolev

0% f ()

ho 2P 9—(2P+1)n 2
|| 0aZP

do — IS < C() G
H - f(a) da P,RanHéer(Q?) = 9 (2P +1)! ot

space, we can estimate the error of the integration over each square @Q € M,, (forn =0,...,N*—1)
as follows
4 hn 2P+2 2 82Pf(06)
f(a) daw — I fH < (> max — .
H/Q “ m3p P2 s VZ:1 Oai? H1,.(227)
Using the estimates given in Remark 3.11, we obtain the asserted error bound. O

Based on Theorem 3.15, the error of the Gauss-Legendre rule for computing the integral
of w over R, depends on the 2P-th partial derivatives of w with respect to either «y or
ay. Recalling the representation (3.13), it suffices to estimate the 2P-th partial derivatives of

[Liez VA2 — |l — i vz(a) with respect to each coordinate. We do so in the next lemma using
some standard estimates for square root functions and their derivatives presented in the appendix.

Lemma 3.16. For any fized £ € N, there is a constant C' such that

0'\/k? — |a — jI?
dal,

! 1/2
< C 0! (dmax,n)

, n=1,....N* =1, v=1,2, 3.30
N (dmin,n)e ( )

max
a€ERy
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where dmin,n and dmaxn are defined by (3.20) and (3.21), respectively.

Proof. According to Lemma A.2, for all « € R,,,(n =1,..., N* — 1), there is a constant C such
that
O\/k2 — o — jI? 1/2

¢
[Je%

C Ok +|a—jl|
1—1/2

|k — la—jl|

Hence, using (3.20) and (3.21), i.e., dminn < |k — | = j|| < dmax,n, leads to

0"\ k2 — |a — jI?

C 0 (dax.n)*?
3 7 < : .
all

N (dmin,n)Z

max
a€ERy

This completes the proof. O

Theorem 3.17. Let Z C J and denote by yz(a) = [1jez \/k* — |a — jl?vz(a) one of the terms
n (3.13). Let m := #ZI. Then, for every { € Ny, there exists Cy > 0 such that

m/2
< Gt Umaxn) 77 (dma"’”)z . v=1,2 (3.31)
H1 (Q%}r) (dmin,n)

per

Proof. From the generalized Leibniz formula, we obtain

'vz(a) l! oKovz(a) & OFw 2
Tl 2 Kol Km!  9ako I 5 VR = o=l

Ko+ +Km=¢ p=1 8a1/
Using (3.14) and Lemma 3.16, we have for o € R,
| 9"1(a) cc ¥ e! Cito__ 77 Kt ()"
7 = K K.
00 iy o) e e KO K] (i 15 (i)
Combining all constants gives the assertion. O

Theorem 3.18. Let w satisfy Assumption 3.12. Then, for every P € N, there exists a constant

Cp such that
N*—1 -1
Z / ) da — Z I, w

< Cph3l.
Hber (O3)

Proof. Combining Theorems 3.15 and 3.17, we obtain the estimate

with some constant Cp independent of hg and n. From (3.20), we have dpin,n > C27". Hence,

ho\ 2P 9—(2P+1)n
<Cp (;) P>
HL., (927) (dmin,n)

h2P

" Hia@) 2
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Summing over n = 1,..., N* — 1 completes the proof. O

Now, we are going to provide the analysis of the total error in numerical inversion of the FB
transform. It is straightforward to combine the quadrature rules of the previous two subsections
to obtain a super-algebraically convergent approximation to the inverse FB transform of the
transformed field.

Corollary 3.19. Let w satisfy Assumption 3.12 and fir P € N. Then, there is Cp > 0 such that
for every ho and N* with dmax n+ < T, hy+ < /26, there holds

N*—1
/ w(a)da — 1w — Z Ianw <Cp (2_3N*/2 + h%P) ,
A n=1 7

H}o, (Q57)

where I%. and Ian are defined on Pages 47 and /8.

Example 3.20. As examples for the performance achievable with our quadrature rule, we
consider functions w that are products of the square root functions occurring in the represen-
tation (3.11). In this special case, all wz are either constant 0 or 1 and thus analytic on A.
From (3.16) and the estimates in the proof of Theorem 3.17, we expect the constant Cp to be
independent of P in this case.

We apply the quadrature rule to the approximation of two integrals,

11:/ VE2 = o —j* da k=04, j=(0,0),
A

12:/ \/kQ_‘Oé_j|2\/k2_|a_l|2 da k=14, j:(_150)> l:(_171)
A

For the first integral, the set X is a single circle entirely contained in the set A (as depicted in the
left image of Figure 3.3). Hence, the exact value of the integral I; can be obtained analytically.
We have used Maple 2022 to carry out this task and then computed approximations using our
quadrature rule for various values of N* and P.

In the second integral, the integrand is singular along two circular arcs contained in the set
A. The exact value of this integral is not available. Instead, we have computed a reference
value for N* = 23 and P = 5 and compared our results against it. The results are presented in
Figure 3.7. The theoretically predicted convergence rate from Corollary 3.19 is very well reflected,
with exponential convergence with respect to N*, until the error of the Gauss quadrature rule
dominates. The results also nicely illustrate our expectation that Cp is independent of P for
these examples.

3.4. FULL DISCRETIZATION OF SCATTERING PROBLEMS

To solve (3.3) numerically in A x Q%7 we use a tetrahedral mesh in Q%7 with maximum diameter 7
and a special structure on the top surface F%}r. We consider a tensor product of Lj + 1 equidistant
nodes in x1 direction and Ly + 1 in zo direction, that is

2

27 T
by, — —ly, H .32
S ) (332

€Ty = (—7r +
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1072 : : : : 1072
10744 ! 10741
1076 [ ] 10761
- -
e 2
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10781 ] 10781
10-10 | aP—2 ] 107101
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10712 ‘ ‘ ‘ ‘ 10712 ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25
N~ N~
(a) It (b) I

FiGURE 3.7. Numerical error of the proposed quadrature rule for various N* and P

applied to I, j =1,2.

for £ = (¢1,¢02) € {0,..., L1} x{0,...,La}. Moreover, we denote by N the total number of
nodes in the tetrahedral mesh. In the domain A = [-1/2,1/ 2]2, we generate an adapted square
mesh using Algorithm 1.

For each quadrature node « in the adapted mesh generated by Algorithm 1, we approximate the
solution w(c) of (3.7) by P1-conforming piecewise linear finite elements basis functions {¢}22, .
Substituting the approximation of the solution into the variational problem (3.7) yields

Na
Z wWn(aj)aa, (Pn, Pm) = <(8$d — ﬂt)jui(aj),gﬁim>r2” forallm e {1,...,Na},

n=1

where the sesquilinear form a,; is defined as in (3.4). This leads to the following linear system
for each o

(D - 2iA; — (K — |o;")M — DEN; ) W, = F;, (3.33)

where D and M are the standard diffusion and mass matrices, (W;), = w(a;; zm,) and

(Aj)m,n = <aj . V;¢n,¢7m>
(DtNj),,, , = <7;§-¢na¢7m>1,%r :

(F3),,, = (0 = T5) T (05): Gm)

27
QH

27
FH

for myn € {1,...,Na} and j € {1,..., N,}.
To discretize the DtN map, we proceed similarly to the approach in [65, Sec. 3]. By considering
the special structure of the generated mesh on I'#F given in (3.32), we approximate (’T;;(bn)(w)
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again by the piecewise linear functions as follows

Na
s=1
In this case, we have
Na o
(Tl 0n:0m) par = D (Tl 6n) (5) (65, ) . -
s=1 H

To compute the matrix corresponding to (7-;]_(25”)(565), we approximate the finite element basis
functions ¢, by the trigonometric functions 1), as follows (see [8, Sec. 3.8])

1
LiLo

Ly
3 Z i(01,62) (=) for 0 — (z,H) eI (3.34)
£1=0/¢2=0

Un(x) =

where Z,, are the nodes on the top surface defined in (3.32). Note that we focus only on the nodes
on the top surface, since the elements corresponding to the other nodes are zero. From (3.34),
we conclude that for £ = (¢1, £5), the ¢-th Fourier coefficient of v, is e #». This yields

(’Ta_‘;’tﬁn) 5 = LlL Z Z \/kﬁ2 |a st

b= 062 0
Ly
Z Z /kz |Oé 1[ :vs xn
L1L2 £,=0 =0

Note that the expression on the last line gives us a matrix, which can be decomposed as the
product of a diagonal matrix, the two-dimensional discrete Fourier transform and its inverse.
Numerically, it is important how to implement this boundary condition because it affects the
computational time. We solve the system (3.33) using an iterative method; hence the dense
matrix DtN; does not need to be assembled, instead it is required to perform the matrix-vector
multiplication DtN; W for a generic vector W. In Algorithm 2, we describe how to perform
this matrix-vector multiplication in an efficient way by using the fast Fourier transform.

3.4.1. ERROR ANALYSIS FOR FULLY-DISCRETE SCHEME

To conclude our analysis, we combine the result of Corollary 3.19 with error bounds for the
Galerkin approximation for the solution of the variational problem (3.7).

Theorem 3.21. Let (Ju')(a) € Hééf(l“%}r) and w(a) denote the exact solution of the variational
formulation of (3.7) and w,(«) its numerical approximation by the finite element method with
mesh size 7. For sufficiently small T,

fors=0,1,

1/2
HYLZ(T2m)

(Tu')(@)|

2—s
HU](O[) - wT(a)”HScr(Q%}r) S Cr

where the constant C is independent of the Floquet parameter «.
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Algorithm 2: full discretization of the scattering problem, given in (3.33)

Input: wave number k and the quadrature rule {(c;, Qj)}jy:al from Algorithm 1
1 Generate a tetrahedral mesh in the cell Q7;

2 Construct the sparse stiffness matrices M and D;

3 for j=1,..., N, do in parallel

4 Construct the sparse stiffness matrix A j;

5 Compute the right-hand side F; from the given incident field (Ju’)(a;);

6 Compute the diagonal matrix B = /k? — |oj — s%;

7 Define the function LHS
Input: the vector F;

/sCompute DtN; by the fast Fourier transform fft and its inverse ifft

8 DtN; < ifft (ﬁ fft(Wj));
/Perform the matrix-vector product in the standard way for M,D,A;
9 return DW; — 2iA; W, — (k* — ]aj]2)M W, — DtN;

10 Solve (3.33) by GMRES with inputs LHS, initial guess zero and tolerance 107?;
11 Wj — Wj eia]wm;

12 Use the numerical inversion of FB transform to compute the total field u;
13 return Numerical total field u

Proof. The proof is completely analogous to [85, Thm. 14]. O

Combining both error bounds given in Corollary 3.19 and Theorem 3.21, yields the complete
estimate for the proposed numerical method. To concisely formulate this result, we introduce
operators B

To(a, x) = P(a, x) el (z+2ml) LeZ,
N*—1

jg}v*7hozp(§+ 2, x3) = (I}VL + Z Ian> Yop(x),

n=1

where I%. and IICDJ,RR are defined on Pages 47 and 48.

Theorem 3.22. Let v’ € HYQY") for some |r| < 1 and additionally (Ju')(a) € Héérz(F%}r)
Let u denote the total field, i.e., the solution to (3.2), and for any o € A by w,(«a) the finite

element approzimation to the solution of (3.7) for sufficiently small mesh size 7. Let hg and N*
satisfy dmax N* < 1T, hy« < V26 and fix P € N. Then, there holds

Hu - .71;711\7*7,10107 Ho(@2m) <C (7'275 +273NT/2 ho2p> , s=0,1,
H

where the constant C depends on the order of Gauss-Legendre rule P and the incident field u'.

Proof. For any a € A, denote by w(«) the exact solution to (3.7). By using the inverse FB
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transform and then the triangle inequality, we have

-1 71, -1
Huij,N*vhowf Hs(Q2F) Hj W= Tp N o r Hs(Q27)

= H <‘771 B jf;vfl\’*th) wHHs(QfHﬂ) (3.35)

+ Hjéflv*ﬁho(w —wr) He(Q2r)’

Note that application of Y, is just a multiplication with an analytic function, hence Y,w
satisfies Assumption 3.12. For the first term of (3.35), Corollary 3.19 gives

77 = T )l gy = O (27 4 187).

Denote by (aj,0;), for j = 1,..., N, all the quadrature points and corresponding weights
appearing in the rules I%* and Ian- It should be noted that all the weights are positive.
Accordingly, we may write using Theorem 3.21,

No

j=1

<o, (T z)] e
2

|75y (w0 = 07)

(7ol

As Jul € X (H;éf (T'?7)), we may use the same approach as in the proof of Theorem 3.9 to derive
an expression analogous to (3.13) for Ju’ and conclude that supaeA||(Jui)(a)||H1/z(F2,r) < 00.
per U g

Na
Then, using the fact that > 0; = |A| = 1, the proof is completed. O
j=1

3.5. NUMERICAL RESULTS

In this section, we present numerical examples to illustrate the performance of the proposed
method for solving the three-dimensional scattering problems. To have access to an exact
solution, we consider the case of a radiation problem: we assume that I'P®" C Ri, where
R3 = {x € R} : z3 > 0} is the upper half-space and that u’ is the Dirichlet Green’s function for
this upper half-space for some source point y located between I'’*" and x5 = 0,

. 1 ik|z — ik|z — o
u%x)z(}(x,y):(e}{p(l |.’L‘ y|) _exp(l |I’ : y|)>’ JZERS, x;&y
A ] |z =yl

)T satisfies 0 < y3 < (P (y1,y2),

and ¥ = (y1, y2, —yg)T denotes the reflected point source. The reason for using Green’s function

As indicated above, we assume that the point source y = (y1, y2, y3

instead of the standard fundamental solution is its faster decay rate in vertically bounded strips
(see Lemma C.2). Moreover, u’ € H}(Qy) with » < 1 for the point source below I'P**(see [84,
Sec. 7]). As we are considering a radiation problem, the “scattered field” u* satisfies u® = —u’ in
QP Hence, we are able to compute explicitly the numerical approximation error in the scattered
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field obtained by (3.3) for the vanishing total field in the bounded cell Q7.
We assume that the surface I'P** is given by the bi-periodic function

CP(F) = 0.6 + 0.3 sin(z1) cos(2xs) + 0.2 sin(2z1) sin(3z9), for T = (z1, ) € R2.
Moreover, we fix H = 2 and consider the source point y = (0,0, 0.1)T.

To solve (3.3) in A x Q3™, we first generate an adapted square mesh in A by using Algorithm 1
and tetrahedral meshes in Q37 with (M + 1) x (M/2 + 1) nodes for M € {16, 32, 64,128} so that
the maximum diameter 7 for these four generated meshes is 0.78, 0.41, 0.21 and 0.1, respectively.
Note that these values for 7 are smaller than the essential limit of one-tenth of the wavelength
for each value of k considered below. For each o € A, we approximate the solution w(a) of (3.7)
by P1—conforming piecewise linear finite elements (as explained in Section 3.4).

According to Lemma C.3, the FB transform of Green’s function for each o € A is computed as

. 2 12 . i)
. . | eVEe ]x3smc<\/k2—|a—]?/3 ys Y3 <as,
Tui = 70T Y 7i-ED)
: ivk2—|a—j|%ys o k2 .2 herwi
jez? e sinc —|la—j|"x3 | x3 otherwise .

The formula for Ju® given above in particular shows that the assumptions of Theorem 3.22 are

(3.36)

satisfied. The right-hand side can be evaluated by truncating the infinite series to |j1], |j2| < 40.
Eventually, we solve the sparse linear system (3.33) using the iterative solver described in
Algorithm 2.

Below, we will demonstrate the dependence of the numerical error on the discretization
parameters: the mesh size 7 in the spatial space, the number of refinement N* in a-space and
the order P of the Gauss-Legendre rule. Let the relative errors and the computational orders be

e =Rl ez
=

log(E, /Er,)
log(71/72)

Wl
H

where u® is the exact scattered field and u? denotes its finite element approximation with the
mesh size 7. In Table 3.1, we list the relative errors and the computational orders for different
values of 7 and wave number k. This table indicates that the numerical results are consistent
with the analytic results of Theorem 3.22 for each k, since errors converge as the mesh size 7
decreases even with a low number of N* and P.

Note that for large values of the wave number k, the structure of the singular curves becomes
more complicated. For example for & = 3 there are 20 curves of singular points in the domain A.
Despite the complicated structure of the singular curves in a-space, the accurate results can still
be obtained by using small values of N* and P, only refining the spatial mesh 7, as reported in
Table 3.1.

In Tables 3.2 and 3.3, we report the relative errors with respect to N* and P for different
values of 7. Since the error of the finite element method is dominated in the computational order,
we cannot see the exponential convergence of the proposed numerical integration method with
respect to N* and P.
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TABLE 3.1. Relative error and computational order with respect to 7 by N* = 3,

P=2.
k=04 k=14 k=3
T Error Corder Error Corder Error Corder
0.78 3.3438 x 1072 —— 3.7156 x 1072 —— 1.9390 x 10-1 ——
0.41 1.0870 x 1072 1.75 1.0788 x 1072 1.92 5.9628 x 1072 1.83
0.21 3.0854 x 1072 1.88 2.8671 x 1072 1.98 1.5824 x 1072 1.98
0.10 81722 x 107%  1.79 7.3826 x 1074 1.83 4.0295 x 1073 1.84
TABLE 3.2. Relative error with respect to P and N* for wave number k£ = 0.4.
7 =0.78 =021
P N*=2 N*=3 N* =2 N*=3
2 3.3658 x 1072 3.3438 x 1072 3.4548 x 1072  3.0854 x 1073
3 3.3658 x 1072 3.3438 x 102 3.4548 x 1072 3.0854 x 1073
4 3.3658 x 1072 3.3438 x 1072 3.4548 x 1072 3.0854 x 1073
TABLE 3.3. Relative error with respect to N* and 7 for k=1, P = 2.
N* 7=0.78 7 =0.41 7 =0.21
2 3.4106 x 102 1.1145 x 1072 3.5580 x 103
3 3.4054 x 102 1.1137 x 1072 3.2018 x 1073
4 3.3979 x 102 1.1078 x 1072 3.1413 x 103
5 3.3976 x 102 1.1078 x 1072 3.1428 x 1073
x1074
9 0.04 5 15
0.03
:%‘* 1. éo 1. 1
0.02
. 0.5
0 ~ Ho.o1 0L )
2 - o o
»\\\ B /4/// 2 2 > B o - 2
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FIGURE 3.8. Numerical scattered field and its absolute error for kK = 1 with the point

source y = (0,0,0.1

)T

located below I'PeT,
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In Figure 3.8, we show the numerical scattered field u2 and its numerical error in the L?-norm
for k = 1 with parameters 7 = 0.21, N* = 3 and P = 2. As shown in Figure 3.8(b), the maximum
value of the numerical error is approximately 10~%, which indicates the accuracy of the proposed
method.

Having established the efficiency of the proposed method for a point source below the surface,
we now consider the case with the source above the surface. In this case, the exact solution is not
available. Therefore, we present only the real, imaginary, and absolute values of the scattered
field, to see how the scattered field propagates in Q3. In Figure 3.9, we illustrate the behaviour
of the scattered field generated by the point source y = (—1,0,1)" located inside Q3.

2 0.06 0'05
i . 2
0.04
0.04
g1 w1 ;
0.03
0.02
0\ 0.02 |
2 \1\:\\\‘\\) ’NN(NKW /NN 0.01 2 \;.\\\\l\\:\ ‘ AT///// 0.01
| | ; 2 /\\,\l /W B 2
0 . . 0 \ /0
9 , O _2 / —2 0
x2 1 I2 |
(a) Reus (b) Tmus
0.08
2,
0.06
g1
0. ’
) B 0.02
9 T 4
R L
2 - ‘2 |
To '
(c) |us]

FIGURE 3.9. Numerical scattered field for £ = 3 with the point source located at
y=(—1,0,1)" above I'Pr,

In conclusion, our method provides a way to very accurately approximate the inverse FB
transform for solutions to a non-periodic scattering problem. Even for very small values of P,
the error from this approximation is already dominated by the error from the finite element
method. Nevertheless, for larger wave numbers, the structure of the singular curves quickly
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becomes quite complicated, making it necessary to use a large number of quadrature points.
Thus, the accurate solution of non-periodic scattering problems in periodic domains remains a

computational challenge.



CHAPTER 4

SCATTERING IN UNBOUNDED LOCALLY PERTURBED
PERIODIC STRUCTURES

In this chapter, we focus on acoustic scattering from locally perturbed surfaces. We assume
that the periodicity of the scatterer I'P*" is disrupted by a compactly supported perturbation
J, located in the region [—, W]d_l for d = 2,3. Next, we define a locally perturbed function by
¢ == (P + §, which generates the locally perturbed scatterer I'%. The unbounded domain above
'Y is denoted by Q° (see Figure 4.1(a) for a visualization of these domains).

We begin by employing the DtN map as a truncation method, as introduced in the previous
chapter, but now in the context of a locally perturbed case. Next, we apply a diffeomorphism to
transform this locally perturbed domain into a periodic one. By subsequently applying the FB
transform to the resulting formulation of the scattering problem, we derive a coupled family of
periodic problems — indexed by the Floquet parameter — defined in a bounded cell. Furthermore,
we approximate the solution of these problems using the PML method and analyze the regularity
of the transformed field with respect to the Floquet parameter. The regularity result shows that
due to the analyticity of the PML approximation of the DtN map, the resulting operator and
the scattered field depend analytically on the Floquet parameter. This allows us to evaluate the
inverse FB transform by much fewer values of the Floquet parameter, compared to the method
presented in the previous chapter. Furthermore, we prove that the PML approximation of the
scattered field converges exponentially to the exact scattered field with respect to the PML
parameter in every compact set in two dimensions.

Finally, we propose a fast iterative method to compute the scattered field numerically, which
allows us to exploit parallelization despite the problem’s coupling. The efficiency of the proposed
method is demonstrated through several numerical examples.

4.1. FORMULATION IN A BOUNDED CELL

We begin by truncating the unbounded domain above the scatterer I'? in the vertical direction.
To this end, we first introduce some notations. For H > max{||¢P"|| _,[|¢°[lsc}, We define the
flat surface Tz := R9~! x {H}. We denote the unbounded domain between the locally perturbed
surface I and the flat surface I'y by Q9 (see Figure 4.1(b)).
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(a) Locally perturbed domain Q° (b) Truncated domain QY

F1GURE 4.1. Sketch of the unbounded locally perturbed domains.

As explained in Section 2.2, we impose a transparent boundary condition on the artificial
boundary I'f; based on the DtN map. This results in the following boundary value problem posed
in Q9 For the incident field u* € H}(Q9;) with |r| < 1, find the scattered field u*°c H(QJ,)
that satisfies

Aut? + K =0 in QY (4.1a)
ut? = —uf on I, (4.1b)
D u® = THu*® on Ty, (4.1c)

where the DtN map 7 is defined as in (2.9). Note that (4.1a) is understood in the distributional
sense and (4.1b) and (4.1c) in the trace sense.
Considering the total field u’= u*® + u*, we have

Au® + k2 =0 in QY , (4.2a)
uw =0 on I“S, (4.2b)
By — T’ = (9, — THu! onTpg. (4.2¢)

The variational form of (4.2) is to find u® € H}(Q9;) for |r| < 1 such that

<Vu5,W>QJ - k2<u‘5,6>

)
H QH

+,0 +,,i 7l o(Of (43)
_ 3 — o i o=
<T u ,U>FH <(8xd T u ,U>FH for allv e HZ .(Q).

For all incident fields u’ € H}(Q9,) for |r| < 1, Problem (4.3) is uniquely solvable as proven
in Theorem 2.15.

From the numerical point of view, the discretization of the variational problem (4.3) is not
possible, since it is posed in a horizontally unbounded domain. To reduce the domain to a bounded
cell, one possible choice is the F'B transform (described in Section 2.4). However, since the domain
Q‘}I is not periodic, the FB transform cannot be applied directly. A coordinate mapping must be
defined to transform the perturbed domain into a periodic one. This is achievable because the
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periodic and perturbed surfaces are explicitly given. However, this transformation results in a
partial differential equation with non-constant coefficients.

Given that h € (||¢CP**||, H], we can define the diffeomorphism ¥° from the periodic domain
QY to the locally perturbed domain Q‘sH as follows

Vo (x) = (T,2q + BY(2)0(F)), x=(F,xq) € ", (4.4)

where the non-constant coefficient is defined by

3
(xd — h) 3Xh(xd) N (4.5)

O(p) = — ¢
) = o @ — )

with xp(xgq) =0 for 24 > h and xp(z4) = 1 for x4 < h.

Remark 4.1. Based on the parameter A and the definition of 527 clearly 52 = 0 above the surface
I'}, and 62 = 1 on the periodic surface I'P¢*.

Remark 4.2. It is important to mention that the support of W9 — T is located in the bounded
cell Q37 = ((—m,m)4 1 x R) N QP since we assumed in the beginning of this chapter that the
perturbation ¢ is compactly supported in [—, w]dil.

The transformed total field ud, = u® o W0 € H}(QP") with |r| < 1 now satisfies the following
variational problem posed in the periodic domain Q"

<A5Vufra, W>Qper —k? <c6u‘tsra, @>
H

per
QH

' _ (4.6)
_ <T+ufra,@>rH = <(8xd — T+)ul,6>rH for all v € HL (QY"),
where ) .
A9(z) = | det VO ()] (V0 ()" (V0 ()T € Lo0(8" ROXA -
A (x) = | det VU ()| € L®(Q%").
Adding and subtracting k2<u€m,@>m§r and <Vufra,w>ﬂper to (4.6) leads to
8l 0) 4 () = (0, ~ TWT) forallve AL QR (48)
where the sesquilinear forms a, b?: H}(QP) x HL (QP) — C are defined by
9 =(V Jvi - k2 77 - + 77 9
(&) = (V6. V) e = K(6.5) e = (T76.5), "

b (6,0) = (A" = V6, V) ... — k(" = 1), ¥)

per per °
QH QH

Note that the sesquilinear form a is exactly the same as in (3.2) for the periodic case. However,
the term b’ depends on the perturbation ¢ through the diffeomorphism /.

As the variational formulation (4.8) is now posed in the periodic domain Q", we can apply
the FB transform with respect to the first d — 1 variables (see Definition 2.24). This leads to a
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family of periodic problems, indexed by the Floquet parameter o € A = [-1/2,1/ Q]dfl, posed in
the bounded cell Q%}r

Since V¥ = I outside the bounded cell Q27 we conclude that A° — I and ¢® — 1 are both
compactly supported in this cell. Therefore, by using the definition of the FB transform, denoted
by J, and some straightforward computations, we have

T = D)Vu) = (A = 1)(Vug)e ™,
TS = D) = (€ = D™
Considering this fact and using the Plancherel formula (2.36) and Theorem 2.31, we obtain that

for all incident fields u’ € H}(Q9;) with r € [0, 1), the FB transform of the total field, denoted by
wd = Jul, € L*(A; HL, (Q27)), satisfies

per

/(a0 2(0)) + B 2(a)) da = [ (0, = THTu' (@), 2@),, da (410)

27
1—‘H

for all z € L2(A; H.,.(Q2F)), where the FB transform of the DtN map 7' is given by (3.5) and the

per

sesquilinear forms a,: ﬁger(Q%}r) X ﬁéer(Q%}T) — C and b%: L?(A; ﬁéer(Q%}r)) X ﬁger(Q%}r) —-C
are defined by
aa(®0) = (Ve Vo), —2i(a-V6,6)
) ) " _ (4.11)
- (2 =) (0,0) , — (ToFe.0) .
and
b6, 0) = ((A° = VoI 716, Va(ele®)) | — k(" = 1)T 'p,peind) . (4.12)

The following theorem states that problems (4.8) and (4.10) are equivalent. Afterwards, the
unique solvability of (4.10) can be shown.

Theorem 4.3. Let the incident field u' € H}(Q%;) for r € [0,1). Then, ud,, € ﬁrl(Q%Cr) is the
solution of (4.8) if and only if w® = Jul, € L*(A; H}, (Q27)) satisfies (4.10).

per

Proof. See [83, Thm. 4.1]. O

Theorem 4.4. Let I be the graph of the Lipschitz continuous function (°. Then, the variational
problem (4.10) has a unique solution in L*(A; H} (7)) for all incident fields u' € H} (Q3) for
re[0,1).

Proof. See [83, Thm. 4.2]. O

The next theorem provides an auxiliary result regarding the regularity of the solution.

Theorem 4.5. Assume that T° is the graph of a C?-function. If the incident field u' € Hﬁ(Q‘SH)
forr €[0,1), then w’(a) € H2,(QF) for almost all a € A and u,, = J~*w® € HX(Q").

per

Proof. See [83, Thm. 4.3]. O
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We can also give an alternative formulation of (4.10) for almost every a € A.

Theorem 4.6. Let I as in Theorem 4.4 and u' € H}(QY;) for r € [0,1). Then, the variational
formulation (4.10) is equivalent to find w® € L?(A; H}, (Q27)), which satisfies

per

aa(w’ (@), 2) + 0w, 2) = (B, — TH) T (@), %) (4.13)

¥
for almost all o € A and all z € ﬁféer(Q%}T). Additionally, in the two-dimensional case, if
r € (1/2,1), Problem (4.10) is equivalent to find w® € C(A; H] (QF)) such that (4.13) holds for
all o € A.

Proof. See [83, Thm. 4.4]. O

Note that when A° = I and ¢® = 1 in (4.12), we have bS(w’, z) = 0. Problem (4.13) hence
reduces to the periodic problem described in (3.7). In this case, the advantage of applying the
FB transform is that one obtains a decoupled family of periodic problems indexed by the Floquet
parameter «. Therefore, their solutions can be computed in parallel.

On the other hand, in the general (perturbed) case, where the term bg (w‘s, z) is non-zero, we
obtain a family of periodic problems that are fully coupled through this additional term. From the
definition of the inverse FB transform, it turns out that solving problem (4.13) for each « requires
the contribution of the transformed fields, evaluated in all a. Therefore, a naive discretization
will lead to a very large linear system, demanding a prohibitive computational cost.

From Chapter 3, we know that the transformed solution is not analytic with respect to a due
to the singularity of the DtN operator 7. Approaches similar to those in Chapter 3, which are
directly based on the regularity of the DtN operator 7" and use tailor-made inversion formulas
are possible, but require substantial computational effort, particularly in the three-dimensional
case. A simpler way to obtain a numerical approximation of 7. is provided by the PML, which
will be the focus of the following section.

4.2. THE PML APPROXIMATION OF THE SOLUTION

Here we use the PML method to approximate the scattered field u®° satisfying (4.1). We first
denote by ufj:‘S the PML approximation of the scattered field and recall from Section 2.3 that the
parameter o € C controls the absorbing effect of the PML.

As described in Section 2.3, the PML approximation of the scattered field satisfies (4.1), however
with a modified boundary condition on T'z;. More precisely, for any incident field u* € H}(Q9;)
with 7 € [0,1), the PML approximation u$% € H'(QJ;) satisfies

Au® 4 k2usd =0 in QY (4.14a)
ud® = —uf onI?, (4.14Db)
Dy us’ = TFus® on Ty, (4.14c)

where 7_" is the PML approximation of the DtN map defined in (2.29).
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According to Theorem 2.21, problem (4.14) is uniquely solvable, when the PML parameter o
is sufficiently large.
Proceeding in the same way as before, using the diffeomorphism ¥?, we see that the total field

u‘gm,g = (ug"; + u’) oWl ¢ fll(Q?fr)
satisfies

G0 (a0 0) + 6 (U g 0) = (O = T, ) forallve HYQE),  (4.15)

H

where the sesquilinear form a,: H'(Q%") x HY(QP") — C is given by

— vy _ 1.2 o _ + 4 o
10(6:9) = (V6. 99) e = K(0,0) s = (T576,0)
and b° is defined as in (4.9).
Applying the FB transform to the total field, we obtain that for the incident field u® € H}(Q3;)

with r € [0, 1), the transformed solution w? := jugra’g e L2(A; H  (Q%)) satisfies

per

/A (o () (@), 2(0)) + B (1], 2(0)) ) dax = /A (00, ~ Tt Tu(@).2(@)) , da (416)

H

for all z € L?(A; ]?Iéer(Q%}r)), where the sesquilinear form b2, is given in (4.12), and a, , is defined

as (4.11) with 7. replaced by the PML approximation 7,f,. This approximation is given by

(T EH) =i Y k2~ |a— jPcoth (—im/k2 —a— j|2>$(j)eij'5, (4.17)

jezd—l
where $(j) denotes the j-th Fourier coefficient of ¢ (see [105, Eq. (16)]).

Remark 4.7. For u* € H}(Q9;) with r € [0,1), similar to Theorem 4.6, the variational formula-
tion (4.16) is equivalent to find wS € L2(A; H] . (QF)) such that

Qoo (W3 (@), 2) + b3 (wh, 2) = ((Dag = Tolo) T (), ) (4.18)

¥
for almost all @« € A and all z € ﬁger(Q%}r). Additionally, in the two-dimensional case, if
r € (1/2,1), Problem (4.16) is equivalent to find w$ € C(A; HY . (QF)) such that (4.18) holds
for all v € A.

The following theorem states that (4.16) is uniquely solvable for sufficiently large o.

Theorem 4.8. Assume that T'° is the graph of the Lipschitz continuous function ¢° with a
sufficiently small perturbation 6. The variational problem (4.16) for sufficiently large o has a
unique solution in L*(A; H..(Q2F)) for the incident fields u' € H}(Q9,) with r € [0,1).

per
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Proof. Let Ay q: per(Q%) —

duced by the sesquilinear forms a,, and b2 such that

(Hee(Q37))" and BS: L2(A; HL (Q37) — (HL(Q37))" be in-

(Aa0.¥)

2r °
QH

= tao(0.¥) and  (Blo.¥) , = 1h(d,0). (4.19)

Moreover, let the antilinear form G, , be defined by

<ga e8] ¢>F2"r = <(aa?d - Efa)jul(a)7a>rﬁr . (420>
Now, the operator form of (4.18) can be written as
A oW ( )+ 15’6 6 =G, foralmost all « € A. (4.21)

As mentioned in Remark 2.23, we know that [ Ay, — Asl| = 0 as |o] — oo, where A, is
induced by the sesquilinear form (4.11) with the DtN operator 7. . Since the operator A, is
boundedly invertible based on Theorem 4.4 for almost all a € A, we conclude that the operator
Aq,o is also boundedly invertible for sufficiently large . Therefore, we can define the operator
D,: L2(A; HY (Q37)) — L2(A; HL (Q%)) by

per per

(Douwb)(@) = Azl (Gao — Bhuh) - (4.22)

By this definition, we can reformulate equation (4.21) as the fized-point problem

Dyw’ = w? . (4.23)

To apply the Banach fixed point theorem (see [9, Thm. 4.1.3]), it is sufficient to show that the
operator Dy is a contraction, i.c., for some ¢ < 1 and all w?, @8 € L%(A; H! (937)), there holds

per

HDgw — Dyw ‘ ‘5

< q|lw§ -
L2(A;H ., (%)) 7

per

L2(AH, (227)

From the definition of the operator D,, we have

oot -

~0
e |

L2(A Hl Q27T

per( L2(A;HL

per(Q%—}r)) .
Due to the definition of the operator BY, in (4.19), we know that HBgH —0as [|§]; .o = 0. Asa

consequence, q ‘= HA;’},B‘&H < 1 for sufficiently small perturbations . O

A question that naturally arises here is whether we still need to choose a tailor-made quadrature
rule to compute the inverse FB transform. To be able to provide an answer, it is necessary to
analyze the regularity of the PML approximation of the transformed field with respect to «.
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4.3. REGULARITY OF THE PML APPROXIMATION OF THE
TRANSFORMED SOLUTION

In this section, we aim to obtain a representation for wf, and thus analyze its regularity with
respect to a.

From Section 3.2, we recall the fact that the transformed field inherits the regularity of the
DtN operator with respect to . Therefore, the transformed field w?, satisfying (4.10), is not
analytic due to the (square root) singularities of the DtN operator 7. From (4.16), it follows
that the regularity of the PML approximation wf, depends on the PML approximation of the
DtN operator, i.e., T;rg The following theorem states that wg is analytic with respect to a € A.
This analyticity is a key advantage of the PML approach.

Theorem 4.9. Let u' € HI(QEH) and Ju' be analytic with respect to o.. Then, for sufficiently
large o, the PML approximation wg that solves (4.16) is analytic with respect to the Floquet
parameter .

Proof. Let the operators A, g, Bg and the antilinear operator G, , be given as in the proof of
Theorem 4.8. From Theorem 3.6, we recall that the transformed field w® satisfying (4.10) has
singularities in each o € ¥, defined in (3.8). In two dimensions, this set has at most two singular
points, while in three dimensions, it consists of the union of all arcs centered at points in J(«a)
(defined in (3.9)). We focus here on the three-dimensional case. However, the result also holds in
two dimensions, where J(a) contains at most two elements.

Now, we show that w? is analytic everywhere, including on the set ¥. For ag € A, let B(ay, p)
denote an open ball centred at ag, with radius p. Using the definition of 7;*0 given in (4.17), we
can write

7-a+,a = 7;:?70 + Z Ka,a(j)c(j) ) (4.24)
j€J(ao)

where 7,5, C(j): H;é?(l“%}r) — Hl;lr/z(F%}r) are defined by

T = Y Kao()C() and C(j)¢ = (j)e’™,
i#3(a0)

Kao(j) =i\/k? — |a — j|* coth (—im/k2 — o — j|2> .

Now, we can decompose the operator A, , given in (4.19) as

with

-Acx,cf = Ag - Z Ka,a(j)c(j)7 (4'25)

jEJ(ao)

where A%: H1 (Q37) — (HL(Q3F))" is defined by
0, 7 — < YR SO

(20 0) gy = (V20 Vath) . — 20 V56,9)

— (& = la]*){¢. %)

27
QH

agp ~ \or 0¥
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Substituting (4.25) into Problem (4.21), we see that w’ satisfies

( Z Koo )) wl(a) = —Bwd + Gop for almost all a € A. (4.26)
]EJ(ao)

According to Theorem 4.8, the operator on the left-hand side of (4.26) is boundedly invertible for
sufficiently large o. To obtain a representation for wg () allowing us to analyze the regularity
with respect to a, we show that the operator A is boundedly invertible. Using the perturbation
theorem given in [75, Thm. 10.1], it is sufficient to show that A is a small perturbation of the
left-hand side of (4.26). To this end, we first recall the Laurent expansion of coth, i.e.,

1 z z3 0 22nB2 -
Coth(Z)=;+——7+...:Z (%)!nzgn 1

n=0

for 0 < |2| <,

where By, denotes the Bernoulli numbers. Similar to [105, Lem. 10], from the definition of K, »
and a straightforward computation, we conclude

o0 2277,32 2n—1
— ik~ Ja— "(-ia kQ—\a—j\2>
nz:% (2n)!

1 & 22" By, (—io)™" / a\"
- = k2 — o — . 4.27
X o (¥ ~Ja =) (4.27)

For each j € J(ap) (i.e., k = |ap — j|) and every o € B(ay, p), we obtain

1 & 220 By |—io 2" o[m
N« <7 bop|—1o] _ o
|}<a,cr(])’ = ’U| T;:O: (2’)7,) “O‘O j| |Oé .]‘ ‘

Z 2%32”\0;2” '

< Z Cn’a - aO‘n7
n=0

(Joo — @ - |og + ¢ + 25])"

where the constants C), depend on o. For sufficiently large o, it is clear that | K, ,(j)| — 0 as
|a — ap| — 0. This Shows that A9 is boundedly invertible for all & € B(ao, p).
Setting C(j) = (AO) C(j), we can write the solution w® of (4.26) by the Neumann expansion

wg<a>:§;( > Ka,(f(j)c?(j)) (A" (=Biwh + Gao ) - (4.28)
n=0

jGJ(ao)

We now want to analyze the regularity of the transformed field wg (o) with respect to a using
the same technique as Theorem 3.6. Note that the operators C (5), AY and the function BSw?
depend analytically on «. Therefore, it remains to analyze the regularity of K, ,(j) and G q.
Based on the definition of G, » given in (4.20) and using (4.24), we see that the regularity of G, »
is only dependent on K, (j) for j € J(a).
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Next, we distinguish two cases. If ag ¢ %, then J(ag) = 0 and w® € L*(A; H),,(Q%F)) depends

per
analytically on . On the other hand, let oy € X. From (4.27), we see that K, ,(j) is analytic in
é

o is also analytic in a

a neighborhood of «. Hence by using (4.28), we find that the function w
neighborhood of «g. Since this fact holds for every ag € A, wg is globally analytic with respect

to a. O

4.4. CONVERGENCE OF THE PML APPROXIMATION IN TwWO
DIMENSIONS

Recently, there has been a number of results published on the convergence of the PML approxima-
tion of the solution with respect to the damping parameter o (see, e.g., [26, 105, 106]). Instead of
a scattering problem, in these works source problems are considered. Here, we aim to extend these
results to scattering problems in two dimensions and show the exponential convergence of the
PML approximation on every compact subset of the unbounded periodic and locally perturbed
domains.

Let the transformed total field w® and its PML approximation w? satisfy (4.10) and (4.16),
respectively. Since (4.10) depends on the exact DtN map, we know from Section 3.2 that w? is
not analytic with respect to a € A. Before proceeding to the convergence analysis, we introduce
some preliminaries to modify the integration path in the definition of the inverse FB transform
(see (2.35)). Along this path, the function w’ remains analytic (see [105, Sec. 3]).

Afterwards, we focus on source problems in the periodic structure Q%" and outline the
convergence results given in [105] for the periodic domain. Finally, we extend these results to
scattering problems and show in Sections 4.4.2 and 4.4.3 that the PML approximation of the
scattered field is exponentially convergent in every compact subset of the periodic and locally
perturbed domains.

4.4.1. ANALYTIC EXTENSION OF THE TRANSFORMED SOLUTION

Recall the regularity results of the transformed solution w?(«) and its PML approximation w’ (c)
from Sections 3.2 and 4.3 and introduce v;(a) == \/k2 — o — j|* for a € A = [~1/2,1/2].
Definition 4.10. Any point o € A satisfying |a — j| = k for some j € Z is called a cutoff value.

When the wave number k is a half-integer, then for a cutoff value o € A, there exist two
integers ji1, j2 € Z such that | — ji| = |a — j2| = k. This situation is more involved and will not
be addressed in the analysis. Therefore, we impose the following assumption.

Assumption 4.11. The wave number k satisfies k # % for all m € N.

Under Assumption 4.11, there exists a non-negative integer j and a number & € (—1/2,1/2)\{0}
such that k = j + «. It follows that ’yi?(/i) = ’y+?(—/£) = 0. The numbers £k are the only roots

of 7.~ in A and are cutoff values.
Fj
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1 /_-h leC’l ; Rea
-0.5 CbC’QT \F_@/ 0.5

FIGURE 4.2. Sketch of the branch cuts (in red) and the integration path £ (in blue)
for k > 0.

2

Assumption 4.12. A function f: A — H] (Q3FF) satisfies this assumption if on A\ {£x}, f

depends analytically on o, and there exist open neighborhoods Uy of £x and analytic functions
fi, fro: Us — HL(QFF), such that

fla) = fraa) + (@) frola), aeUs.

According to Theorem 3.6, we see that if Ju’ € L?(A; H'/?(T'%)) satisfies Assumption 4.12,
then also the solution w® of (4.10) satisfies Assumption 4.12. This allows us to analytically extend
w® into (parts of) the complex plane. For this purpose, we shift the branch cut of the function
r(z) = 212, 2 € C\ {0}, from the negative real axis to the curve Che = {t> — 2ikt : t > 0}.
Then, the function 75 can be analytically extended to (A +iR) \ Cpe,1 and 7y to (A+iR)\ Che 2
with the branch cuts

Cbc,l =Kk + iR+ and Cbc’g = —k —iRyg,

respectively. A sketch of the branch cuts Cy 1 and C 2 has been plotted (in red) in Figure 4.2
for kK > 0. As a consequence, the DtN operator 7,5 can also be analytically extended to

(A +iR) \ (Cpe1 U Che2). If Assumption 4.12 is satisfied by J u', the same analytic extension is
§

[

for every o € A. Hence, it can also be analytically extended to (A 4 iR) \ (Cpe1 U Che,2).
In order to avoid the cutoff values k € (—1/2,1/2)\ {0}, we are going to modify the integration

valid for w®. Moreover, from Theorem 4.9 we know that the PML approximation w? is analytic

path in the definition of the inverse FB transform. For sufficiently small € > 0, the integration
path & is defined by

E=A\[(k—¢e,k+e)U(—k—¢g,—K+e)|UELUE_, (4.29)
where £+ denote the semi-circles around the cutoff values £x as
&y = {:l:/f$6e“9 9 e (0,7r)}.

The integration path £ has been illustrated (in blue) in Figure 4.2. Therefore, instead of
using (2.35), we may compute the inverse FB transform of the transformed field w’® and its PML
approximation wd by

wld, = J 1wl (x) = /gw‘s(a;:z:) e da, x = (21,12) € Q" (4.30)
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and
ud J 1wl (x) = / w)(a;z) e da, x € QY. (4.31)
&

tra,oc —

Theorem 4.13. Let k be chosen as in Assumption 4.11, k € (—=1/2,1/2) \ {0} such that w®

satisfy Assumption 4.12 for o € A and & be the integration path defined in (4.29). Moreover,

assume that the total field ul., and its PML approzimation uﬁra,a are the solutions of (4.8)
per

and (4.15), respectively. Then, for any compact subset K C QY and sufficiently large o, there
holds

) 1)
Hutra — Utra,o

E;HL ’

)= Clfw’ - nga 1,(9%7)

HY(K

where the constant C' depends on max,ep|x].

Proof. From the definition of u,, and u‘grap given in (4.30) and (4.31), we obtain

o

Utra — Utra,o da

H(K)

e < L@ =)o
= C/gH(wa B wg)(a)HHl(K)

< Oma [~ wie)] .

i da
HY(K)

iy

Hl(K)) ’

where C' denotes a generic constant depending on the length of £. Based on the integration path

)

&, we know that Im () € [—¢,¢]. Furthermore, w®(a) and w’(a) are periodic and the set K is
bounded. Therefore, this yields

5 9 el H 5§ .0 H
<
Hutra utra,gHHl(K)_Cglgge max||(w’ — w;)(a) H(K)
5 .6
= CIS??HW B wg)(a)HHl(Q%}T) ’

where C' denotes a generic constant depending on the length of £, measure of K, the radius ¢ in
the integration path £ and max,cx|z1|. This completes the proof. ]

)

o are analytic for each o € £,

Since the transformed total field w’ and its PML approximation w
we can study the convergence of the PML approximation with respect to the PML parameter o
in the periodic setting and afterwards we generalize it to the locally periodic case.

4.4.2. THE PERIODIC CASE

Let g € L?(2%") be a compactly supported source in the periodic domain Q%". The aim is to
find v € H(QF") such that
2 .
Av+k*v=g in Q"
v=0 on '’ (4.32)

O,V = TTv onTpy.



4.4. CONVERGENCE OF THE PML APPROXIMATION IN TwO DIMENSIONS 71

By applying the FB transform to (4.32), we obtain an equivalent formulation for the function
wy = Jv € L*(A; H},(Q37)) satisfying

per

/Aaa(wg(oz),@(a)) da = /A<Jg(oz),m> da (4.33)

per
QH

for all ¢ € L2(A; ﬁger(ﬂ%}r)), where the sesquilinear form a,, is defined as in (4.11). We can
simply formulate the problem corresponding to the PML approximation of v by replacing the
boundary condition on I'y; by a condition with the PML approximation of the DtN operator ’TJU

That means, the PML approximation of v, denoted by v, € H'(Q55"), satisfies

Avy + kv, = g in Q;}){er’
vy =0 on '’ (4.34)

OpyVo = TN vy on Ty .

The corresponding variational formulation for wy, == Jv, € L*(A; ﬁéer(Q%}r)) is

/Aaaﬁ(wgﬁ(a),go(a)) da :/A<jg(a),<p(a)>9%}r da , (4.35)

for all ¢ € L2(A; H} (Q37)), where the sesquilinear form a, , is obtained from a, in (4.11) by

er
replacing 7" with %:;fa given by (4.17).

It has been shown in [26] (outlined in Remark 2.23) that the PML approximation v, to the
exact solution v of such a source problem cannot be expected to converge exponentially on the
unbounded domain QF". However, in [105] it was established that, on compact subsets of the
periodic domain Q%" the exponential convergence of the PML is achievable for g € L2(Q%").

Let us first recall some important results from [105] for the source problem (4.32), presented in

the following two lemmas.

Lemma 4.14. Let the bounded linear operators Ay, Aao: I;Tger(Q%}r) — (ﬁéer(Q%}T))* be induced
by the sesquilinear forms aq and aq ., respectively. Then, for any sufficiently large o, there exist
constants ¢, C > 0 independent of a and o such that

Ao — Aaoll < Ce™cl foralla e &,

where & is defined in (4.29).

Proof. See [105, Thm. 9]. O

From this lemma, it is concluded that for any sufficiently large o there exist well-defined bounded
solution operators R and R, : (ﬁéer(Q%}r))* — C(€, ﬁéer(Q%}“)) corresponding to (4.33) and (4.35)
such that

wy=Rg, Wge=TRog and |[R—Ry|| <Ce el (4.36)
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Lemma 4.15. Let v and v, be the solution of (4.32) and (4.34), respectively. Then, for every
compact subset K C QY and sufficiently large o, there holds

—clo|
;

[0 = voll g1 (xy < Ce
where ¢, C are constants independent of o.
Proof. See [105, Thm. 11]. O

In the next theorem, we extend these results to cover the approximation of the solution of (4.1)
by the solution of (4.14) in the periodic domain Q5" (i.e., § = 0 in these problems). For simplicity,
we omit § in the periodic setting, rather than indicating it with a superscript zero.

Theorem 4.16. Consider a point source y € Q%" , with y' its reflection with respect to R x {0}.
Let u® € HY(QYT) denote a weak solution to (4.1) for the incident field

W(e) = B(e,y) - Dla,y), e, w#y.

Moreover, let us denote the weak solution of the PML problem (4.14) in the periodic domain

QY. Then, for every compact subset K C QY and sufficiently large o, there exist constants

c,C > 0 such that

[u” = ug |l g ey < Cecel,

Proof. We begin the proof by considering scattering problems, where waves are scattered by the
flat surface I'g := R x {0}. Let Q¥ be the unbounded domain between 'y and I'yy. According
to [23, Eq. (2.8)], there is a compactly supported function g € L*(Q}"), such that the weak
solution v¢ € H} () to
Avt + k20t =g in Q!
v' =0 on Iy, (4.37)
v’ =T 0" on Ty,

is equal to u’ in Q%" \ supp (g). Therefore, in Problem (4.1) corresponding to the periodic case,
we may replace u’ by v’ in the boundary condition on TP,

On the other hand, we denote by v! the PML approximation of v?, i.e., the solution to (4.37)
with 7 replaced by 7,". Let vS denote the solution to (4.14) corresponding to the periodic case
with u® replaced by v.. Now, we can estimate

S
o

u' ot —vt ol — vl + vl —vl —u

e = w3l g ey = |
| | R (4.38)
§‘u5—|—vl—(v§+vf,) vl — v’

+|

ot lvg = gl g (-

HY(K) H(

We start by estimating the first term of expression (4.38). The function u® + v* is the solution of
the source problem (4.32), while v3 + v? is its PML approximation, i.e., the solution to (4.34).
Hence, due to Lemma 4.15, there exist two constants ¢, C' such that

u® + vt — (08 +0)) < Cecll,

‘HI(K)
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for every compact subset K c Qb
per

The function g := v} — v’ in the second term of (4.38) satisfies the Helmholtz equation in QY
with the homogeneous boundary condition on I'’*" and

wzq 7'+q + (7—+ - 7:,+)Ui onI'g.

By using the FB transform, we obtain that ¢ satisfies (4.35), but with the different right-hand
side. Therefore, similar to the first part, we can write

) S Ceic|0'| ,

lall (e

where the last inequality follows from (4.36). Now, it remains only to obtain an error bound for
the last term of (4.38), i.e., v5 — u3. Setting z := v5 — us, we see that this function is the weak
solution to

Az+k*2=0 in QP
z=u'—v, onlIP",
Oppz =T 2 onIl'y.

To analyze ||z | 1 k)» We apply the FB transform to the problem above. Using Theorem 4.13 and
the continuity of the solution with respect to the boundary data leads to

om0y < CllTloeiny. oy < Col[ T =00 iepan,

for some constants C7 and C5. From Lemma C.3, it is known that

1

o el (T1—y1)+iv;j (a)y2 sinc(y;(a) ) 22, 0< 29 <ys,
Ju'(esw) =4 4 e .
o 2 T2 sine(y; () yo) y2, w2 > 2.
JEZ

Likewise, applying the FB transform to [26, Eq. (28)] yields

Zelj T1—Y1) Sin(f)/j(a (U + H — yQ))
2

ine(7; 0 <
sin(y;(a) (o + H)) sinc(y; (@) x2) v2 <9 <o,

)
JEZL (
1§ i) S5 () (0 + H — a3))
o 2 sin(v;(a) (o + H))

Jvb(a;z) =

sinc(yj(a) y2) y2, @2 > Y.
jez

We consider the case 0 < x5 < yo. Clearly, we can write

j(u _ 1) Zeu T1—Y1) 17]( a)y2 Sil’l (’Yj( )(U+H - y2))

sin (v;(a) (o + H)) sinc(vy;(a)zr2)zs .

]EZ
Using Euler’s formula, it is straightforward to derive the general identity

oA sin(B — A)

sin(B) isin(A) (1 —coth(-iB)) , A€C,BeC\nZ.
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Applying the identity with A = v;(a) y2, B = v;(a) (0 + H), we obtain

T~ of)es2) = 5 3 (r5(a) [1 ~ coth(~is(a)(o + H))]
JEZ

x e sine(v; (o) w2) sine(v; () y2) w2 ya) -

As this expression is symmetric with respect to xo and g9, it also holds in the case of z9 > ys.
Note that the sinc functions depend analytically on «. As the Floquet parameter o takes
values in a bounded domain, the term (11 sinc(y;(a) x2) sinc(v; () y2) x2 y2 is uniformly
bounded with respect to a. We hence need to analyze the term containing the singularities with
respect to «, that is,
vi(a) [1 = coth(—iy;j(a)(o + H))] .

As established in [105, Lem. 8, 71, Lem. 18], we know that there exist constants ¢, C' such that

1 coth(—iny(e)(or + H)| = (_2173(04)0) —jj < Cew (aa|\/|Re (@) +j+ k|> .

Therefore, setting ¢ := év/k, we conclude for sufficiently large o

i —c|o|
Hj(u va)(oz)’ B/ (e, <Ce foralla € £. (4.39)
Summing up the estimates for all three terms gives the asserted result. O

4.4.3. THE PERTURBED CASE

Now, we turn to the general locally perturbed periodic case. Again, we first consider the
corresponding source problem: For a given compactly supported source g € LQ(Q‘SH), find the
weak solution v’ € H'(Q9;) of

A + k20 =g in QY ,
v =0 onI?, (4.40)

05,0’ =T+ 0? onTy.

The PML approximation vg is obtained by solving the same problem, but replacing the DtN map
T+ with its PML approximation 7. in the boundary condition on I'g, i.e.,

A+ k2 =g in Q9
vy =0 on T?, (4.41)
DS = TS on Ty .

As these problems are a special case of the rough scattering problem, we know from [23, Thm. 4.1,
26, Sec. 3] that both problems are uniquely solvable and that [[v® — UgHHl(qu) — 0 as o] — oo.
Furthermore, it has been established that the convergence cannot be expected to be faster than
linear with respect to o in the unbounded domain Q9.
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As described in Section 4.1, we use the diffeomorphism ¥° to reformulate these problems in the
periodic domain QF;". This allows us to apply the FB transform and obtain that v° is a solution

of (4.40) if and only if wg = J W’ 0 W) € L2(A; H, . (Q37)) satisfies

per

da
o

] (aa (i), ota)) + Wuhota)) da = [ (T(g09%) (). 5la))

for all ¢ € L2(A; HL..(Q%F)). Similarly, the PML approximation v% is a solution of (4.41) if and

per

only if wéy = J (02 o U0 € L2(A; H;BT(Q%?)) satisfies
] (a0 (0o @) 000) + (w0 () da = [ (g0 W) (@) @),

for all ¢ € L2(A; HL,,.(Q37)).

per
As explained in Section 4.4.1, we know that wg and w‘;a analytically depend on o except for

possible branch cuts. We may hence change the integration over A to the integration over &.

Note that the bounded linear operator B%: L?(A; ngr(Q%}r)) — (QQ”))* induced by the

sesquilinear form %, also depends analytically on a. Therefore, it is also well defined for o € £.

( per

Now using the solution operators for the periodic domain, we may write

wd + RBw) =Rg, and  w), +RoBow), =Rog, (4.42)

aWq.o

where R and R, are given in (4.36). As both problems are equivalent to the corresponding
source problems, we know that the operators on the left-hand side are boundedly invertible.

Theorem 4.17. Let v° andfvf, be the solutions of (4.40) and (4.41) for g € L?(QY). Then, for
every compact subset K C Q‘SH and sufficiently large o, there exist some constants ¢, C such that

Hvé - vS,H < Ce~cll,
HY(K)

Proof. We recall the diffeomorphism U0, which maps Q" to Q%. Therefore, every compact
subset K C QJ, can be transformed into the compact subset Ky, = (\I/‘S)*l(K ) C QY. By
using Theorem 4.13, for some generic constant C' we conclude

Hv‘;—ng <C’Hv5o\115—vgo\I/5H

HYU(K) — CHw N w
(K)

H'(Kira) — 7lloE L, (93)

Using the perturbation theorem (see [75, Thm. 10.1]) for the problems in (4.42), we see that for
any sufficiently large o

s s H
—w
g 9,0 C’(E Hl (an)

per

I+ 0 (IR~ R o8y + 1R~ Rl

per

0
< CIR -~ Ro| (ng]\c(aﬁéﬂ(m +lolzap )
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From (4.42), we get wg =+ RBg)_l"Rg. Hence, we obtain

5 5
g~ Wy

-

H < - us .
C(E,H) o (Q37)) — ClIrR RUHHQHLQ(Q%{)

Using (4.36), we finally conclude that for any sufficiently large o

9N HY o (237)) — ’

per

)
wh —w

where C' depends on the L?norm of g and ||BS||. This completes the proof. O

In the next theorem, we extend these results to the non-periodic scattering problems.

Theorem 4.18. Consider a point source y € QY. with y' its reflection with respect to R x {0}.
Let u®® € H}(Q3,) denote a weak solution to (4.1) for

u’(az) = ®(z,y) — P(x,y), =€ Q‘sH, T£y.

Moreover, let uifS denote the weak solution of the PML approzimation (4.14). Then, for every
compact subset K C Q% and sufficiently large o, there exist C', ¢ > 0 such that

Proof. Let g € L*(9;) be compactly supported, v* be the solution of (4.37) with the right-hand
side g and v’ its PML approximation. Further, we denote by v§’5 the solution of the scattering

s,0 8,0
u®® —uy

< Ce ¢l
H(K)

problem (4.14) with u’ replaced by v’. Adding and subtracting these functions yields

Note that u® 4 v* satisfies the source problem (4.40) and vgﬁ +v! is its PML approximation,

s,0 $,0
u®’ —uy

$,0 s,0
s T Uy

5,0 i ()50 i i 0
‘Hl(K)S‘u + 0" — (v’ +vy) v — g v

+|

+|

‘Hl(K) HY(K) ‘Hl(K) ’

i.e., the solution of (4.41). Therefore, from Theorem 4.17, it follows that there exist constants
¢, C such that

By the same arguments as in Theorem 4.16, the corresponding estimate holds for v* — v. Now,

< el

8,0 i ()80 i
u®® + v — (v +vl) HE) =

it only remains to estimate |[v3? — us?|| m1(k)- As in the proof of Theorem 4.16, we consider
$,0

z = v20 —ud, which is a weak solution to
Az +Ek*2=0 in QY
z=u'—2v. on e,
Oz =T 2 on I'py.

Recalling the diffeomorphism W0 from (4.4) and the compact subset Kip, C Q" (defined as in



4.5. FuLL DISCRETIZATION OF THE PML PROBLEM 77

the proof of Theorem 4.17) and using Theorem 4.13, we can write

12l g gy < CHZ © ‘I/(SH ) < CHJ(z © \Ilé)HC(g;

Hl(Ktra Héer(Q%}r))

< TN R
<C|7tto v —vsou )ch;Héé?(r%)) '
Note that W° = I in QY \ Q2F, thus for every f € Hééf(Fper UT?) we have

I(fo W) (o) = Tfasw) + e ((fo U')(@) — f(2)), a €&, weT™.
Considering f := u’ — v! in the relation above and using the estimate (4.39), we obtain

Hj(uZ oWd — Uff o \115)HC(5;H;(4Y2(F27’)) < Ceclel
7

+“(ui—vg)o\ll‘5‘ u' —

+|

7
v H .
1/2 1/2
HYLZ(T2m) TN H 2 (T2m)

The remaining two terms are estimated as in the proof of Theorem 4.16, which gives the asserted
result. O

4.5. FuLL DISCRETIZATION OF THE PML PROBLEM

To represent the connection between the total field ufra’o and the transformed total field w?, we
need to discretize the inverse FB transform (2.35). Since the transformed field w? is analytic with
respect to the Floquet parameter o when Ju' is analytic with respect to a (see Theorem 4.9),
we can use a Gauss quadrature formula: For IV, quadrature points a; € A and weights p;,
je{l,..., Ny}, we have the approximation

tra,o

o~ Na . ~
wl (x4 2ml) = / w (o; )l @2 qoy ~ Z,ung(aj; )l (@ +2ml) (4.43)
A :
7=1

for any ¢ € Z%1 and z € Q27.

To approximate the total field u?ra,a, it is required to solve (4.18) only for the quadrature
points «;. Substituting the above representation for £ = 0 into (4.18), we end up with a system
involving the quantities wg(ozj; x), which we need to discretize with respect to the spatial variable
x. We therefore use the finite element method (FEM) and for ease of presentation, we restrict
ourselves to the finite element functions of piecewise linear polynomials. We generate a triangular
mesh on the domain Q%}r supporting a family {qﬁn}ﬁfﬁl of Na € N such basis functions and then
approximate the transformed total field

Na
wfr(aj) ~ Z Wj,n (bn s

n=1
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for each quadrature point «; as well as the total field

Na
6
Utra,o = Z Un(bn .
n=1

The relation between U,, and W;,, is obtained by (4.43), which yields
No o
Un :Zujew‘j'x"ij for all n € {1,...,Na}. (4.44)

J=1

Now, we can formulate the Galerkin approximation of (4.18) for each quadrature point «j,
for j € {1,..., Ny}, as

Na Na
Z Wjﬁaoéj (n, dm) + Z Un bgj (s D)
n=1 n=1

(4.45)
= (s, —nfg)jui(aj)%%? for all m € {1,...,Na}.
Defining the vectors of unknowns
T T
W, = [le Wj,NA} and U= [U1 UNA} ,
we can rewrite system (4.44)-(4.45) in a block vector-matrix form as
A; 0 - 0 Bi|[wWi]| [F]
0 . . ) :
: . R : : =] : | € CWatNa (4.46)
0 -~ 0 Ay, By, ||Wy, Fu,
C; - - Cy, I ]| U | 0

where the block matrices A;,B;,C; € CNaxNa and the vector F; CNa are defined by

(Aj)m,n = a'Oéj ((bn, ¢m)7
(Bj)m,n = _bij ((bm ¢m)7
(C)) .

Loz
= 1€ O

m
(Fj)m = <(8ﬂcd - 7:50)‘-7”2(0‘]‘; mm)7 ¢m>f‘%}7
for all m,n € {1,...,Na} and j € {1,..., N,}.

The coefficient matrix in (4.46) is known as a permuted square arrowhead matrix, which
frequently arises in applications. These include modeling of wireless communication systems [78]
and radiationless transitions in isolated moleculs [14, 47]. One of the main challenges in these
applications is to solve large linear systems in parallel [34, 36, 48, 51, 52, 103]. As a result, the
computation of the inverse of these matrices has attracted considerable attention.
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In [53], an adaptive approximate inverse method based on an LU-type factorization procedure
is proposed for the explicit computation of the inverse of an arrowhead matrix. Additionally,
in [91], a modified Sherman—Morrison inverse matrix method is introduced, while [98] applies
the Sherman—Morrison—-Woodbury formula to facilitate the inversion of block arrowhead matrix.
Nevertheless, assembling and inverting the coefficient matrix of (4.46) is still expensive. In
contrast, in our arguments below, we are going to propose an alternative method for solving the
linear system (4.46) without inverting the coefficient matrix. In Appendix B, we compare the
computational cost of the proposed iterative solver in Algorithm 3 with a direct solver introduced
in [98, Sec. 2]. These results show that we have significantly reduced the computational time.

In the following theorem, we utilize the recursive Schur complement to obtain an equivalent
form of the system (4.46), which can be parallelized more easily.

Theorem 4.19. Let A;,B;,C;, and F; for all j € {1,..., Ny} be defined as above. The linear
system (4.46) is equivalent to

Nq Nqo
(I -3 ch;IBj) U=-> CjA]'F;. (4.47)
This means that if [W1, Wa, . .. ,WNQ,U]T solves (4.46), then U solves (4.47). If U solves (4.47),
then [AT'(F1 —B1U),..., Ay (Fn, — By, U), U] solves (4.46).

Proof. The proof presents an algorithm to reduce (4.46) to (4.47), by recursively applying a
procedure that removes one unknown vector Wy (for £ € {1,..., N,}). The assertions follow by
induction on the number of removed unknowns.

For the initial step (¢ = 1), we rewrite the (N, + 1) Na square system (4.46) as follows

A, B[ w, F
rem) | — rem) | > 4.48
[Cgrem) Dgrem) Wg ) Fg ) ( )

where the blocks Bgrem) € CNax(NaNa), Cgrem) € CWaNa)xNa and Wgrem), Fgrem) € CNaNa are
defined by

B — [0 ) Bl}, Firem) [FQ ... Fy

a

ci™™:=o - 0 Cl]T, W= Wy Wy

and the block Dgrem) is given by

A, 0 - 0 B,
0 . .
Dgrem) — O e CNQNAXNQNA .
0 0 Ay, By,
_C2 Cn, I |
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(rem)

From the first equation in (4.48), we obtain W; = A! (Fl — Bgrem)W1 ) To remove the
first unknown, substituting W7 into the second equation of (4.48) leads to

Dgrem)wgrem) _ Fgrem) . (jgrem)vv1 _ Fgrem) . Cgrem)Al_l (Fl . Bgrem)wgrem)) .

By straightforward computations, we obtain

T
Cgrem)Al—l — |:0 ..o 0 ClAl_l c (CNQNAXNA ,

0 0
C(rem)Ale(rem) — (Na—l)NAX(Na—l)NA (Na—l)ivAXNA c CNQNAXNQNA .
! e ONAX(Na—1)Na C1A['B,

Then, the remaining system can be written as
(Dgrem) . Cgrem)Al_lBgrem)) Wgrem) _ Fgrem) . Cgrem)Al_lFl ’ (449)

where the coefficient matrix is given by

Ay O 0 B,
0 . . : :
D(rem) . C(rem)A_lB(rem) . . ) . . c (CNQNAXNQNA
1 1 1B =0 :
0 0 Ay, Bn,
Cy Cy, I-C1AT'By]

and the right-hand side is determined by
rem rem — — T
P — CIAT'F = [F, -+ Fy, —CiA7'Fy| .

So far, the first unknown W1 has been removed in the initial step. Now, we assume that the
theorem holds true for £ — 1. To prove that it also holds for ¢, we need to solve the following

linear system

A, 0 .- 0 By W, Fy
o . . . .
: N : N : ’
0 - 0 Ay, By, Wy, Fu,
[Ce oo One T-XCGABy ] | U | [~ X CiA F

which can be written as

rem)
T~ CARE R

rem rem (rem) rem
S

where the block matrices Bérem) € CNaxNa(Nat1-£) Cgem) € CNaWNat1-0xNa and the vectors
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Fgem), Wérem) € CNaWat1=0) are defined by

BI [0 o 0 B, B [Fry - Fa, -¥CIGATE]

clrem = [0 .0 cgr, wirem) = [W@H . Wy U]T

«

and the block Dérem) is given by

[Appr 0 -0 B ]
0 : :
Dgrem) _ 0 c C(Na—i-l—f)NAX(Na—‘rl—f)NA )
0 --- 0 Ay, By,
| G -+ - Cy, I-Y'Z1C,A'B;]

By solving system (4.50), we obtain
W, = A, (B, - B W)
(rem) ) _ ) (rem)
Dzrem W@rem — Ferem o Cgrem WZ .
Substituting W/, into the second equation gives us

(Dgrem) . Cgrem) Aleérem)) Wérem) _ Férem) . Cérem)AleE’

where the coefficient matrix can be written as

Ay O -0 Bt
0 . .
Dérern) . Cgrem)Alegrem) _ o 0 :
0 - 0 Ay, By,
Cey1 -+ -+ Cn, I-X5_C;A'B;]

and the right-hand side is

rem rem — N !
Fée )—Cge )Ae 'F, = [Feﬂ - Fn, _Zﬁzl CjAlej] ’

-
since we have CErem)Ag_l = (0, -0, C€A£_1> and

Cgrem)Ae_lBérem) _ [O(NS—K)NAX(NQ—Z)NA O(JEX)iVlA];NA] .
NAX(NQ—E)NA ¢ A l

At step £ = N, + 1, the No-th unknown has been removed and this completes the proof. O

Equation (4.47) can now be solved by an iterative method as described in Algorithm 3. Note
that the summands on the right-hand side, i.e., CjAjlej and the matrix vector multiplications
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Algorithm 3: iterative method for solving (4.47)
Input: number of quadrature nodes NN,, initial guess Uy
Compute the Gauss quadrature nodes and weights («;, p15) for j € {1,..., No};
for j=1,..., N, do in parallel
Construct the matrices A;, B;, C; and the vector F; using FEM;
Compute the LU decomposition of A;;
Solve the system A;RHS; = F; using the above LU decomposition;
RHSj — CjRHSj;
RHS « >3, RHS;
%To solve the systems on the left-hand side of (4.47), the following

function computes the matrix-vector multiplication for each input.

8 Define the function LHS
Input: the vector U

9 for j=1,..., N, do in parallel
10 L Solve the system A;X; = B;U using the precomputed LU decomposition of A ;

[ B U VU

~

11 Xj < C]’Xj;
12 return U — Zéyzal X;;

13 Solve the linear system (4.47) by GMRES with tolerance 10~ and inputs Ug and LHS;
14 return Numerical solution of (4.47)

by the summands on the left-hand side, i.e., CjAjlejU are all independent of each other. Hence
they can be carried out in parallel.

4.6. NUMERICAL RESULTS

In this section, we aim to illustrate the efficiency and accuracy of the iterative method described in
Algorithm 3 for solving non-periodic scattering problems. Our focus lies on the two-dimensional
case. The extension of the proposed method to the three-dimensional case is straightforward.
However, it is numerically much more costly.
We again select the non-periodic incident field as the upper half-space Dirichlet Green’s function
i

u'(e) = 5 (H§" (bl = y)) = H (ke = y')))

where y = (yl,yg)T is a fixed point source and y' = (y, —yg)T is its reflection with respect
to {z € R?: 25 = 0}.
We apply our proposed method to compute the scattered field produced by the locally perturbed

scatterers described in the following two examples.

Example 1. We consider the periodic function

cos (z)
4 )

Pix) =1+ reR,
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L _ per

13 1

(a) Surface I'Y graph of ¢¢ :== (P + &

1%/\/\/\/}/\/\/\—-5“
D / .
1 7_(5

(b) Surface T'y graph of ¢§ = (5" + 5,

FIGURE 4.3. Illustration of the locally perturbed curves.

with the perturbation

a1(0) = g xp (g ) (cos (P52 1) xa),

where X[q4(z) = 1 for x € [a,b] and x(4)(7) = 0 for € R\[a, b]. The resulting locally perturbed
surface T = {(z, (P (x) + d1(z)) : € R} is plotted in Figure 4.3(a).

Example 2. We consider the locally perturbed curve I'y = {(z,5 (2) + d2(z)) : = € R},
plotted in Figure 4.3(b), with the periodic function

sin(z)  cos(2z)

per =15
2 (x) + 4 )

zeR

and the perturbation

Sala) = exp 5 ) sinla(e + D) 1(2).

To calculate the error explicitly, we consider the point source y between the flat surface R x {0}
and the locally perturbed scatterers, since in this case the total field vanishes inside Q. That
means the exact solution is equal to minus the incident field.

In the first example, the point source is located at y = (—2, O.2)T below the surface F‘{, while
in the second, it is positioned at y = (0, 0.5)T below the surface Fg. In both examples, we choose
H = 2.5, set the PML thickness to A = 1.5 and consider the PML function (2.21) depending only
on a positive parameter p. It is important to mention that we illustrate the numerical scattered
field only in the region below the PML, as the solution inside the PML is not related to the
actual scattered field.

To approximate the scattered field in the main bounded cell Q2 = {x € Q3 : 21 € (—7,7)}
numerically, we use the iterative solver introduced in Algorithm 3 by setting N, = 20 and Uy = 0.
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Once we have the numerical solution for the main cell Q27, we can extend it to the neighboring
cells Q?H = {z € QY : 21 € (—m,7) + 2ml}, for £ = +1. This extension is obtained by using
the discrete inverse FB transform defined in (4.43), for ¢ = +1.

2 | r 'A‘ ~ "
1 - !

0t 1 1 1 )‘( source 1 1 1 1 —0.1

‘>]

1 |1
0l ‘ ‘ ‘ x source ‘ ‘ ‘ ‘ —0.1
1 ' 0.05
0 x source

—8 —6 —4 —2 O 2 4 6

FIGURE 4.4. Numerical scattered field for Example 1 with k = 3 and a point source
at y = (-2, O.2)T (top: real part, middle: imaginary part, bottom: absolute value).
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1 0.1
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-8 —6 —4 -2 O 2 4 6

FIGURE 4.5. Numerical scattered field for Example 2 with & = 1.5 and a point source
at y = (0, 0.5)T (top: real part, middle: imaginary part, bottom: absolute value).

The behaviour of the numerical scattered field is illustrated in Figures 4.4 and 4.5 for Example 1
with £ = 3 and Example 2 with k£ = 1.5, respectively. These results were obtained using the
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mesh size of 7 = 0.01 and the PML parameter p = 20. Additionally, the absolute values of the
numerical errors are plotted for examples 1 and 2 in Figures 4.6 and 4.7. They demonstrate
that the maximum value of the error is less than 2 x 10, which indicates the accuracy of the
proposed method for these examples. Moreover, it is evident that the absolute value of the
error increases while approaching the PML. This behavior is expected, as the PML introduces a
numerical error due to the approximation of the DtN map.

x107°

1.5
1
0.5
1 1 1 1 1 0
2 0 2 4 6 8

FIGURE 4.6. Absolute value of the error for Example 1 with & = 3.
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FIGURE 4.7. Absolute value of the error for Example 2 with k& = 1.5.

In Table 4.1, we report the required number of iterations and the computational time used in
Algorithm 3. This shows that the proposed iterative method is relatively fast and the number of
iterations does not depend on the spatial discretization.

k=3 k=5
=002 7=0.01 7=0.02 7=0.01
Example 1 # iterations 7 7 8 8
CPU time (s) 42 220 46 224
Example 2 # iterations 10 10 11 11
CPU time (s) 40 269 43 280

TABLE 4.1. Number of iterations and CPU time used by Algorithm 3.

In what follows, we analyze the dependence of the relative L?-error on the PML parameter p
for various discretization parameters.

In Tables 4.2 and 4.3, we report the relative L2-error of the proposed method with respect to
the PML parameter p and mesh size 7 for a fixed wave number k. These results are depicted in
Figure 4.8 for both examples. The error decreases exponentially with increasing p up to a certain
threshold, p = 10 for Example 1 and p = 6 for Example 2. Beyond these values, the error is
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dominated by the discretization of the FEM. This behavior is evident from the results shown in
Tables 4.2 and 4.3. For p values exceeding the threshold, where exponential convergence ceases,

the method exhibits quadratic convergence with respect to the mesh size.

p T=0.04 T =10.02 7=0.01

2 1.2264 x 107! 1.2257 x 1071 1.2237 x 1071
4 1.5009 x 1072 1.4833 x 1072 1.4780 x 102
6 1.6885 x 1073 1.6770 x 1073 1.6879 x 1073
8 3.0241 x 10~* 1.8580 x 1074 1.9533 x 1074
10 3.2462 x 10~* 8.5791 x 107° 3.8574 x 107
12 3.5687 x 1074 9.4007 x 107° 3.8132 x 107°
14 3.9627 x 10~* 1.0929 x 10~4 3.7405 x 107°
16 4.2576 x 104 1.2144 x 1074 3.3633 x 107°
18 4.5329 x 1074 1.4066 x 10~ 4.0047 x 107°
20 4.8254 x 1074 1.6213 x 1074 5.2374 x 107°

TABLE 4.2. Relative L2-error with respect to the PML parameter p and mesh size 7

for Example 1 with wave number k£ = 1.5.

p T =0.04 T =10.02 7=0.01

2 1.4153 x 1072 1.3983 x 1072 1.3914 x 1072
4 1.3769 x 1073 4.2694 x 10~* 2.3453 x 1074
6 1.2833 x 1073 3.3116 x 104 8.5045 x 107
8 1.2716 x 1073 3.3061 x 1074 8.5209 x 107°
10 1.2548 x 1073 3.2831 x 1074 8.4986 x 107°
12 1.2430 x 1073 3.2554 x 1074 8.5183 x 107°
14 1.2359 x 1073 3.2263 x 1074 8.4497 x 107°
16 1.2306 x 1073 3.2100 x 1074 8.3787 x 107°
18 1.2267 x 1073 3.2149 x 1074 8.4301 x 107°
20 1.2249 x 1073 3.2328 x 1074 8.5755 x 107°

TABLE 4.3. Relative L2-error with respect to the PML parameter p and mesh size 7

for Example 2 with wave number k£ = 3.
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FIGURE 4.8. Relative L2-error with respect to the PML parameter p for different
mesh sizes 7 (left: Example 1, right: Example 2).

In Tables 4.4 and 4.5, we report the relative L2-error with respect to the PML parameter p
and wave number k for the mesh size 7 = 0.01. These results are depicted in Figure 4.9 for
both examples. We again observe an exponential rate of convergence for the wave numbers
k =+/2,/5 and v/10. Furthermore, the graphs indicate that the damping effect of the PML is
more pronounced when the value of kp is larger. That is, the convergence is faster and is reached
at a lower value of p when the wave number k is larger. For each fixed p, the error is smaller for
larger k unless the error of the spatial discretization dominates.

P k=2 k=5 k=10

2 13110 x 107! 4.4683 x 1072 1.2256 x 1072
4 1.8509 x 1072 1.9087 x 1073 1.8733 x 1074
6 2.3898 x 1073 9.3975 x 107° 9.8692 x 107°
8 3.0169 x 10~* 4.2240 x 107° 9.8247 x 107°
10 4.6151 x 107° 4.2936 x 107° 9.7619 x 10~°
12 2.8695 x 107° 4.3412 x 107° 9.7097 x 107°
14 3.2423 x 107° 4.4872 x 107° 9.6927 x 107°
16 3.4231 x 107° 4.5801 x 107° 9.6704 x 107°
18 3.7340 x 107° 4.6738 x 107° 9.6429 x 10~°
20 4.3658 x 107° 4.8820 x 107° 9.6445 x 107°

TABLE 4.4. Relative L2-error with respect to the PML parameter p and wave number

k for Example 1.
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p k=2 k=5 k=10
2 1.1309 x 107! 4.2618 x 1072 1.0850 x 1072
4 1.5468 x 1072 1.7487 x 1073 1.6890 x 1074
6
8

1.9835 x 1073 6.5705 x 107° 9.8360 x 107°

2.3638 x 1074 4.2657 x 107° 9.8753 x 107°
10 4.9921 x 107° 4.2107 x 107° 9.8922 x 107°
12 4.5381 x 107° 4.1870 x 107° 9.8961 x 10~
14 4.7108 x 107 4.2330 x 107° 9.9012 x 107°
16 4.9491 x 107° 4.2909 x 107° 9.9185 x 107°
18 5.2962 x 107° 4.3539 x 107° 9.9429 x 10~
20 5.8908 x 107° 4.4983 x 107° 9.9875 x 107°

TABLE 4.5. Relative L2-error with respect to the PML parameter p and wave number

k for Example 2.

T=0.01 7=20.01

10°

101

Error

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
p p

FIGURE 4.9. Relative L?-error with respect to the PML parameter p and wave
number k (left: Example 1, right: Example 2).

So far, we have presented numerical results for point sources located below the locally perturbed
scatterer. Now, we want to illustrate how the numerical scattered field, generated by the incident
field u® with the point source located above the scatterer, propagates inside the strip between the
bottom surface and the PML. In this situation, the exact solution is not available. Hence, we
only show the numerical solutions which are obtained by k = 5, 7 = 0.01 and the PML parameter
p = 20.
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FIGURE 4.10. Numerical scattered field for Example 1 with a point source at
= (-2, 2.6)T (top: real part, middle: imaginary part, bottom: absolute value).
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FIGURE 4.11. Numerical scattered field for Example 1 with a point source at
= (-4, 2)T (top: real part, middle: imaginary part, bottom: absolute value).

Figures 4.10 and 4.11 show that the numerical scattered field corresponding to Example 1
for two different locations of the point source. In the former, the point source is located at
= (-2, 2.6)T above the perturbation, whereas in the latter it is located at y = (—4, 2)T away
from the perturbation. In these figures, the overall propagating pattern is similar to Green’s
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function; however, near the point source, some interference of waves scattered from different
points is visible.

3 ' Source ‘ - 01
| (LT, ...-Q'- O\ O Qo
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source 0.1

‘ : : 0

10 s 6 -4 2 o0 5 1 6 8 10

F1GURE 4.12. Numerical scattered field for Example 2 with a point source at
= (-1, 2.6)T (top: real part, middle: imaginary part, bottom: absolute value).
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FIGURE 4.13. Numerical scattered field for Example 2 with a point source at
= (0, 4)T (top: real part, middle: imaginary part, bottom: absolute value).
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FIGURE 4.14. Numerical scattered field for Example 2 with a point source at
y = (5, 2.6)T (top: real part, middle: imaginary part, bottom: absolute value).

For Example 2, we set the point source in three different locations: y = (0,4)T above the
scatterer, y = (—1, 2.6)T relatively close to the scatterer and y = (5, 2.6)T outside the perturbed
region. The corresponding numerical scattered fields are plotted in Figures 4.12 to 4.14. Due to
the complex structure of the bottom surface, the interference of the scattered waves leads to a
more complicated pattern. Furthermore, in Figure 4.12, the decay of the scattered field can be
seen in the horizontal direction. Finally, in Figure 4.14, it is visible that far away from the point
source, the scattered field behaves like Green’s function.






CHAPTER 5

RECONSTRUCTION OF LOCAL PERTURBATIONS

In this chapter, we study inverse scattering problems, where we aim to reconstruct unknown
perturbations of an unbounded periodic scatterer, using measured data. This data is obtained by
recording the resulting scattered field at various points in a compact set when a non-periodic
incident field hits the locally perturbed structure.

We assume an a priori knowledge of the 2m-periodic function (P* which generates the periodic
surface I'P**. Additionally, the non-periodic incident field u’ and the corresponding measured
near-field data D are also provided. The objective is to determine the shape of the defect, which
generates this near field. The main difficulty here lies in the ill-posedness of such problems.

We restrict ourselves to the two-dimensional case. Without loss of generality, we consider the
support of the perturbation to be a subset of [—m, 7] and define the set of admissible perturbations

X = {(5 € C%(R) : supp(d) C [—7r,7r]}.

In Chapter 4, to each perturbation § we associate the bottom surface I'’, generated by
¢% = (P 4§, and denote by Q‘;{ the perturbed domain between the surfaces I’ and T'j.

In the direct scattering problem posed in the domain Q9;, for a given non-periodic incident field
u' € H%(QY;), we seek the nonlinear scattering operator S

S: X — LX),

5= ul

27 7
1—‘H

which maps a given perturbation 0 to the solution of Problem (4.2) restricted on the compact set
% = [—m, 7] x {H}.

In inverse scattering problems, with complete knowledge of the scattering operator S, we aim
to determine the unknown perturbation § € X satisfying

S(6)=D (5.1)

for given near-field data D := u6|F%}r. In practice, the near field D would be obtained through
measurements that include some level of noise. As a result, instead of D, a noisy right-hand side D,
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is typically considered, where p > 0 represents a priori knowledge of the noise level, satisfying
| D — Dp||L2(F%}r)/||DHL2(F%}T) < p. Due to the noise in the measured data, we cannot expect to
find a perturbation ¢ which satisfies (5.1) exactly. We hence reformulate it as a least squares
problem, i.e., we consider the following nonlinear optimization problem: for given measured data
D, find 6* € X such that
5* = aragminHS(a) - DHQLQ(F?) . (5.2)
€x

In Section 5.1, we prove that the nonlinear mapping S is completely continuous. This shows that
the inverse problem (5.1) and hence (5.2) are ill-posed in the sense of Hadamard [54]. To find a
stable approximation of the solution to such ill-posed problems, we aim to employ a regularization
method, namely an iterative regularized Newton—type method. To apply this method, we require
the Fréchet derivative of the scattering operator S at §. In Section 5.2, we prove that this
derivative exists and can be represented by the solution of a boundary value problem, which can
be solved numerically by the iterative solver proposed in the previous chapter. Moreover, we
introduce and discretize the regularized version of inverse problem (5.2) in Section 5.3. Finally,
in Section 5.4, we will provide some numerical reconstructions that illustrate the performance of
the proposed method.

Before starting, we provide an overview of the scattering problems posed in periodic and locally
perturbed domains discussed in Chapters 3 and 4.

We consider as a “reference problem” the variational formulation of the direct scattering
problem in the periodic domain Q};", given in (3.3).

Reference Problem: For the incident field u' € H}(QF") with r € [0,1), find the total field
w=J twe HY(QY") such that w € L*(A; H, (Q37)) satisfies

per

J, ao(w@). @) da = [ ((0r, - T) 0! (@). () . da

for all z € L2(A; H,.(Q3F)), where

per

— vl _ 93 A (12 2 - . + .

@0(99) = (V6. 90) . = 20{00 6,0) 0, — (8 = 10')(6,5) = (T 0.0)
and the FB transform of the DtN map, denoted by 7., is defined as in (3.5).

We next recall the variational formulation of the direct scattering problem in the locally

perturbed domains Q%, which is transformed by the diffeomorphism ¥ defined in (4.4) to an

equivalent problem in a periodic domain QF;". This transformed formulation is referred to as the

“perturbed problem”.

Perturbed Problem: For a given compactly supported perturbation § € X and incident field
u' € H}(QY,) with » € [0,1), find the total field u® = (J'w%) o (1115)_1 € H'(99,) such that
wd € L2(A; H, (Q%F)) satisfies

per

] abw? @) da = [ (00, - T @) 3@))
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for all z € L2(A; H . (Q%F)), where ad (¢, ¥) = aa(p(), 1) + % (6, 1) with a, as in the Reference

per
Problem and

ba(0,0) = (47 = DVT 6, T(@e) o = k(e = 1T, )

27 *
H QH

The coefficients A° and ¢® are given in (4.7).
Note that for v’ € H2(Q9;) with r € [0,1), from Theorem 4.5, we know that w’ belongs to
L2(A; H? (Q%")). Using the inverse FB transform and the inverse of the diffeomorphism W°, we

per

have u® = (7 1w®) o (¥0) " € H2(QS,).

5.1. CONTINUITY AND COMPACTNESS OF THE SCATTERING OPERATOR

To show the continuity of the scattering operator S, it suffices to analyze the dependence of
the solution u’ on the boundary curve ¢°. In [66, Thm. 9], it has been proven that solutions
of quasi-periodic scattering problems depend continuously and differentiably on the periodic
boundary. A straightforward extension of these results to non-periodic scattering problems is not
possible, since the reduction of the problem to a bounded cell requires a periodic domain. In this
case, we will follow the approach outlined in Section 4.1. To analyze the stability of the direct
scattering problem, we use techniques given in [66] and prove that a small perturbation of (P
leads to small changes in the solution. To this end, we need some preliminary lemmas.

Lemma 5.1. Ford € X, let a,, and ag be defined as in the Reference Problem and Perturbed
Problem, respectively. For every ¢, € L?(A; H! (Q37)), there exists a constant C' such that

per

a2 6(@)) = aa(6(a). v(a))|

< ol 00

L2(A) — H¢HL2(A2ﬁéer(Q?)) |WHL2(A;]§$M(Q?» )

where [|-||; ., denotes the norm in CH([—m, 7).

Proof. Recall that
a8 (1)) = aa(@(a), ()| = |BA(6,(a))

with 0% defined as in the Perturbed Problem. From Lemma A.3, we know that
¢ =1+0(l0]l15) and A =T+0(6];5) as (]l = 0.

Applying the mapping property of the FB transform given in Theorem 2.28(b), we obtain

68, (6, ()] < ‘<(A5 - I)VzJ’1¢,W>Q

(¢ = )70 Bla)en)

iaxl)

)

< 10l ([ 2720 o g [Tt

L2(Q%) L2(Q27)

+779]

iaxy
Lo 1P(@)e L%Q%}U)
(e lo( @)1, 02y

< CUSl a9l 2 iy, ey 1@ ity o)

< Ol oo |79
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where the generic constant C' depends on the wave number k. Hence, we can write

| (@, 6(0) = aa(@ta) w(@)] 1, < 2181 ol 2a iy ey [ 0@y iy dr

The assertion follows by the definition of the L2(A; ﬁéer(ﬂﬁr))—norm. O

In the following lemma, we reformulate [75, Thm. 10.1] in terms of sesquilinear forms.

Lemma 5.2. Let a, and al, be defined as before and w,w® € L*(A; H (Q3)) \ {0} satisfy

per
the Reference Problem and the Perturbed Problem, respectively. For every sufficiently small

perturbation §, we can estimate the perturbation of the solution by

al (w, z(a)) — ag(w(a), z(a
[0 =wl| by mr ey SC s oo () ot ())‘”‘A), (5:3)
Pstyer @)~ eppasmn,oz) ey, oy Ve, oz
2#0

where the constant C' depends on k, (P and the non-periodic incident field u’.
Proof. We begin by defining the operators Ay, A2 : L?(A; ﬁéer(Q?)) — (ﬁ;er(Q%}r))* such that
for all ¢ € H.,.(Q37)

Aat ), =aa(d(@),yp) and  (Adp,0) | =al(p,1)).
(Aat, ) (

27 27
QH QH

Moreover, we define A, A%: L2(A; H.(937)) — (L2(A; HL..(23)))" by
(Ap)(a) == Aap and (A'¢)(a) = A%0. (5.4)
To use the perturbation theorem given in [75, Thm. 10.1], it is required that

HA’l(A‘; - A)H <1.

We now show that this holds for a sufficiently small perturbation §. From the definition of the
operator norm and the dual pairing in L?(A; Hl, (Q37)), we obtain

per
‘<(A5—A)w,z> N
b=
w,zeL%A;Ii;er(ﬂ%;)) ”w”L%A;ﬁ;erm%;f))||2”L2(A;ﬁger(ﬂif>>
w,z#0
’ (5.5)
(A = aw@) @), da
= sup A i

w,z€L2(A;HL, (Q25)) ”w”mm;ﬁ;erm?))HZ”L?(A;ﬁser(Q%;))
w,z7#0
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Using the definition of the operators .A° and A in (5.4), it follows that

27
QH

(A = Ayw)(@), 2(@)),, da|=| [ (4 = Aw,2(@)) , da
J =1f

27
QH

= /Aai(w,z(a)) —aa(w(a),z(a))da' (5.6)
jab(w, 2(@)) = aa(w(a), 2(a))|

IN

L2(A)
Combining estimates (5.5), (5.6) and Lemma 5.1, we obtain
|47 = A < 116l o -
Since the operator A is boundedly invertible, we can see that for sufficiently small §
st ] = o - ] < i <.

where the constant C; depends on the wave number k and || A™Y|.

Now, we can use the perturbation theorem given in [75, Thm. 10.1] and obtain the following

estimate
AL
" =] L2 (NHper (7)) ~ (1= HAH Al H H(L?(A H}r(237)) 57)
1 .
<A@ A”f( AL' i = Al aa g, oy

From the Reference Problem, we have

= |47F]

L2(AHL, (Q2F)) = HAAHHFHLQ(A;ﬁfl/Q(r;;))7

Hw”LZ(A QQTK‘
per

per

with F == (0., — 7.7 )Ju’. Since the conormal derivative d,, and the operator T are continuous,

2 < (5. By substituting this estimate
(rs)

there exists a constant Cy such that ||FHL2(A;1';I,1/2
into (5.7) and using (5.5) and (5.6), we obtain

Hag(w, z(a)) — aq(w(a), z(a))‘

PO =, et ez 100, @y 172, 03m))
w,z#0
where Ct i= Col|A|*(1 — A1 (A° = A)|) . 0

Theorem 5.3. Let (P € C?(R) be a 2m-periodic function and ¢° = (P + & be a locally
perturbed function for a sufficiently small perturbation 6 € C%(R). Suppose that u € fIl(Q%er) is
the solution of the Reference Problem, whereas u’ € ﬁl(Q‘SH) satisfies the Perturbed Problem.
Moreover, let K be a compact set such that for every (x1,x2) € K, it holds

max {[|¢P

| Y <msn.
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Then, there exists a constant C depending on k,(P*" and K such that

| —u

<C :

|1y < CU8l e

Proof. Let ul, = u® o U° with the diffeomorphism W% given in (4.4). This diffeomorphism
depends on the parameter h, which we select to be h := min{zy : x € K}. Note that with this
choice, we have W/|g = I, which together with the definition of u, leads to u®|x = ul,|r.
Hence, we obtain

0

[ = sy = e =
H(K) HY(K

<, — :
)~ Hutra UHHl(QI;I“)

From the definition of the inverse FB transform in (2.35) and afterwards using the mapping
property of the FB transform given in Theorem 2.28(b), there exists a constant C' such that for
JEZL

|u —u

HHl(K) < ’/A (w‘s(a;m) - w(a;x)) elolm1+2m3) 4 HHI(Q%H)

<cfu o]

L2(AH (227)

Combining Lemmas 5.1 and 5.2, we can see that

Hag(w, z()) — aq(w(a), z(a))‘

[0 =] e ey € s L0 < G160
PO ™ epaniiy oz 102z 12l e, zp) ’
2#0
where the constant C depends on k and Ju'. ]

In the next theorem, we prove that the scattering operator S corresponding to unbounded
scatterers is locally compact.

Theorem 5.4. The mapping S: X — L*(T'37) is locally compact.

Proof. Let the compact set K = [—m, 7] x [h, H] for some h > max{||(P*]|,,|¢’|ls} and
F%}r C 0K. To show the compactness of the nonlinear operator S, we need to prove that it maps
every sufficiently small neighborhood U of § € X into a relatively compact subset of L?(I'3F).
In Theorem 5.3, we show the continuity of the operator Sx: X — H'(K) with respect to the
perturbation 6 € X. This means, the operator maps a bounded set U C X into a bounded subset
of H'(K). Since the trace operator yp: H'(K) — HY?(I'37) is continuous, then yp o Sk is also
continuous. From the compact embedding theorem in fractional Sobolev spaces from [32, Cor. 7.2],
we know that the embedding . : HY/2(I'2F) < L?(T'?) is compact. That means, every bounded
set in H'/2(I'%7) is relatively compact with respect to the L?(I'2F)-norm. Thus, S = .# oyp o Sk
maps every bounded subset of X into a relatively compact subset of L?(I'47) and is therefore
compact. [

According to [31, Thm. 4.2], the inverse problem (5.1) is ill-posed since the scattering operator
S is continuous and compact. Consequently, the optimization problem (5.2) is also unstable.
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Before introducing the regularized version of (5.2), we focus on the Fréchet derivative of the
scattering operator with respect to the perturbation. This is a key requirement for applying a
Newton—type method.

5.2. FRECHET DIFFERENTIABILITY OF THE SCATTERING OPERATOR

So far, we have shown that the scattering operator §: X — LQ(F%}) is continuous and locally
compact. In this section, we are going to derive its Fréchet derivative, which is denoted by
S'(8): X — L*(T'?r) and satisfies

b

|S©@+mn) = S©) = S'O)nll 2r2ry =0 as [l — 0. (5.8)
HnHl,oo H

Fréchet differentiability of scattering operators with respect to the boundary is studied for
bounded obstacles in [68], whereas in [66] the Fréchet differentiability of the quasi-periodic field
with respect to the unbounded periodic curve has been shown.

In this section, we aim to establish the Fréchet differentiability of the scattering operator S for
non-periodic incident fields with respect to the perturbation  imposed on the periodic curve.
Since the problem lacks periodicity, we cannot directly exploit the usual reduction to a bounded
reference cell and use the result of [66]. The main idea is to use a diffeomorphism to transform
the perturbed structure to the periodic one and afterwards use the FB transform (the same
technique as in the previous chapter). In this case, for each Floquet parameter «, we can use a
similar approach as in [66, Thm. 9] to prove the Fréchet differentiability of the scattering operator
S with respect to 4.

In Theorem 5.5, we prove the Fréchet differentiability of the scattering operator S at § =0
(corresponding to the periodic curve) and compute its Fréchet derivative. Afterwards, in Theo-
rem 5.6, we extend these results to a sufficiently small § (corresponding to a perturbed curve) by
proving that the operator S is differentiable at 9.

Theorem 5.5. Let K be as in Theorem 5.3 and n € X. Then, the Fréchet derivative S'(0) of S
at § = 0 in the direction 1 exists and is given by u'|x € HY(QY"), where ' satisfies

Au + kR =0 in QY (5.9a)
Ot/ = T/ on Ty, (5.9b)
u' = —#&lu = —n0gu  on TP, (5.9¢)

14 (¢per)®
with T+ defined as in (2.29) and the total field u € fNI2(QI§r) satisfying

Au+K*u=0 in QY
u=20 on I'P®"

(Opy — T u = (Ouy — ’T+)ui onTy,

for a non-periodic incident field u' € H*(Q").
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¢+

/\N\/\gw(a = 0)

FI1GURE 5.1. Periodic function ¢(P" and locally perturbed function (P + 7.

Proof. Let u' satisfy problem (5.9) and the perturbation 7 be such that ||(P*" 47|l < H (depicted
in Figure 5.1). In this case, we can define the domain

Q) ={r cR*: (P" +n<azy < H}.

Moreover, we consider that u” := 7 w" o (¥7) ! is a solution of the Perturbed Problem for the
perturbation 7 and the diffeomorphism ¥”, mapping Q" to Q7,, is defined as in (4.4).

The diffeomorphism U depends on the auxiliary function ) given in (4.5) with the parameter
h := min{zy : « € K}. With this choice of h, we have |k = 0 and ¥"7|x = I.

According to the definition of the Fréchet derivative in (5.8), it suffices to show that

== || ys ey = Ol ) as [l o0 = 0 (5.10)
Considering u{, = u" o ¥" and using ¥"|x = I, we see that
la = = ey = Ntea =10 = @ g1 iy
By defining v"(z) = n(z1) 8} ()dz,u(x), it is sufficient to prove
[ — 1= (' + 0| gpery = Ol o) 28 [17]l1,06 = 0,

since v = 0 on the compact set K. To this end, by using the definition of the inverse
FB transform (2.35) and afterwards applying the mapping property of the FB transform in
Theorem 2.28(b), we obtain that there is a constant C' such that

no_ (] n o — n_ . / n ia(z1+2m7)
udg —u— (v + v )||H1(Q%) H/A(w w—JW +0")e daHHl(Qgr)

< CHwn —w — j(u’ + vn)HLZ(A;ﬁéer(Q?)) .

Let a, and a] be defined as in the Reference Problem and the Perturbed Problem. Using the
inf-sup condition (2.15) for each o € A, we get

< swp o (W —w — J(u 4+ 0"), 2)

2€H2(Q37) CinfsupHZHHl(Qﬁ})
z#0

Hw"—w—j(u'—i—v"

)

)”L%A;ﬁ;erm?))

where Cipsup denotes the inf-sup constant. Now it is enough to compute for almost all o € A
and all z € H2_ (Q3])

ao(w’(@) — w(a) = T (W' +v7)(@), 2) = aa(w"(a) — w(@), 2) = aa(J (v +v")(a), 2).
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Since the right-hand sides of the Reference Problem and Perturbed Problem are equal, we conclude
that for each o € A, we have a,(w(a), z) = all(w", z). This leads to

aa(w"(a) —w(a) = J (' +v")(a), 2)

= — (ag(w’?’ Z) — aa(wn(a% Z)) _ aa(J(u/ + Un)(a)7 Z) ‘ (5.11)

We begin by computing the first term in (5.11). Using the definition of the sesquilinear forms a,
and a]! given in the Reference Problem and Perturbed Problem, we have

(0", 2) — aa(w(a), 2) = (47~ V(T w"), Vo(zeom))
H (5.12)
— k,2<(c77 _ 1)j—1w77’ Zeiomzl>927r .

The asymptotic representations of A7 and ¢” in (A.4) and (A.5) give us ¢’ — 1 = nd,, 3} and

(A7 = DV, ")) - T, (ze)
= — div {VIV, (26°7) + nIV, (T~ ")y, (2607) = nfles(Va(T ") - Yy (zeon) |
+ 0T A (z61070) + 0B A (T "), (269) + O3 o) a8 [0l 0 — 0

Substituting the above representations into (5.12) and using the divergence theorem, we obtain

al (w", z) — ag(w(a),z) = —<nv", VJC(,zeiO”“)>F27r + <nv”, Vm(zeio‘xl)>

H

_ <776}1ZVm(g7_1w77), nam (Zeiaz1) _ nQVx(zeiaxl )>

2=

27
1—‘H

+ (BT "), 180 (260T) — oV, (o))
+ (01, Bae ) ) (15T ), Dy (265

— K (1(00,8) T ", zeie)

27
QH

2
+ O} 00) as [I1ll1 06 = 0

27
QH

where n = (n;,n) " denotes the outward unit normal vector. From the definition of B in (4.5),
we know that ,BZ = 0 on the top surface F%}T and BZ = 1 on the bottom surface I'>". This yields

al (w", z) — ag(w"(a), z) = —<nv", V:,;(zeiagcl)>F§L}r + <m}", Vx(,'<:eio‘9”1)>rz7r

+ <77V$(j*1w’7), Ny, (z€l¥1) — ngvgc(zeia””1)>r27r
n iax n -1,.m iax
+ (v, By (ze 1)>%ﬂ+<n6hAx(j W), Oy (€ )>QH

— K (n(0e )T 0" 20) |+ Ol ) as il o = 0
H
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Applying Green’s first identity to <v77, Am(zeiaf’fl)>027r gives

H

al (W', z) — ag (W), z) = —<nv’7, Vz(zeiaml)>r2ﬁ + <nv’7, Vz(zeiam1)>

27
o r

+ (T "), nd, (zeiaf’fl)—ngvx(zemxl)>

(v
< 20 Vo ( zelazl)>9?+<nv",w>
—(
-k

2w

F27‘r

nv'l, Va( zela$1)> <nﬁZA (T ), W>

Q27r

H(10n BT, 260+ Ol ) s 0.

Some of the boundary terms cancel each other out and we can further simplify the terms above,
by using nA,(J tw") = —nk?(J 1w") + (9(”7]”?00) as [|nll; oo — O (see Remark A.4). This
leads to

al (w", z) — ag(w"(a), z) = <17Vm(j_1w77),n6m(zeiml) - 7”L2Vgc(z(—:'io‘f’“)>F27r

— 1 X (gelart) _ 12 n7=1,,M g (seiaz1)
<V;1:U 7v$(ze 1)>Q%,{,r k <775h~7 w 78@32(’26 1)>Q%}T (513)

— (00 )T tu? 2y + O(lf ) -
H

Now, the first term in the equation above vanishes, since

(15
= <n1773z1 (T w") + nandy, (T~ w"), W>F%

= (mandey (710", 00, (o)) = (2n0ra(T ), Dy (26551

= (10, (T 0"), 110, (20977) — 112y, (z07001) )

= (10, (T ), Voo ) L =0,

2

r2n

in which the last equality is obtained by the fact that zel®®1 |FQ,r is constantly zero and hence its
tangential derivative is zero. Substituting the result above into (5.13), yields

al(w, z) — ag (W), z) = —<va’7, Vx(zeio‘xl)>g2ﬁ
H

—k? nﬁgj_lw", 0y, zeloT1
< ’ >ﬂ%}f (5.14)
2 -1 iox
—k <77(8x2ﬁ2)j w', ze 1>Q§f
+O0(Inlf o) as [Inlly.e — 0.

Now, we are going to compute the second term of (5.11). By using the definition of the sesquilinear
form a,, given in the Reference Problem, this term is written as follows

ao (T (W + 0N (), 2) = an(TU (a), 2) + aa (T (), 2) . (5.15)
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Applying the FB transform to (5.9) and writing its variational form, we see that Ju' satisfies
ao(Ju'(a),z) =0 forall z € ngr(Q%}r) and almost all o« € A

Thus, since this term vanishes in equation (5.15), it only remains to compute aq(Jv" (), 2).
From the definition of v"(x) = n(z1)p}(2)dz,u, we know that v" is compactly supported in
Q%}r, since the local perturbation 7 is supported in this cell. This leads to Jv" = v"e™1%*1 and
Vo (Jv") = (Vau' —iaev)e %1 for eq == (1,0)'. Moreover, from the definition of B} in (4.5),
we obtain that 7,7 (Jv") = 0 as 8 = 0 on I'/7. Taking the above properties into account and

substituting them into equation (5.15), we obtain

(I (' +0")(a),2) = (ValT"), Vaz) o, — 20000 (T0"), gy
— (k= a){Tv", Z)gar — (THTV),Z)

H

= ((Var"),e0m1V,2) | —ia(v", domid, z) (5.16)

27 27T
QH QH

- 2ia<8$11)77, zeia“?1> - 2a2<v”, zei‘wl>
9271- QQ‘n
H H

— (K- 0(2)<U777 zeiazl>92w )
Substituting (5.14) and (5.16) into (5.11), shows that
ao(w'(a) —w(a) = J (' +v")(a), 2)
= —(ag(w", 2) = aa(w"(2), 2)) = aa (Tt + Tv")(0), 2)
= (Ve Valedom)) o+ 42 (BT 0, B (o))

T

R0 )T 0 2, — (Vo) EV2)

Qr
+ 21a<8x1v’7, zeim1>

27
QH

+ ia<v’7, ei‘wlaxlz> + a2<v’7, zei“’“>
Q27r Q27r 9277
H H H

T 2
+ k2<v", zelo‘a’1>Q%}r + O(Hn”l,oo) as ”77”1700 — 0.

Since
. —i a 2 —i — . a7 ori
1a<v”e 1aac1’axlz> + « <,U’Vie 10<Lr172>92Tr — 10&<U77, axl (Zelazl)>

27 27
QH H QH

= —1a<8$1v”, zelwl> ,

oy
all terms which do not depend on k cancel each other out. We are left with
ao(w(a) —w(a) = J(u' +v")(a), 2)
=2 [ 0BT w")ze ) d + O} )
H

=k [ div a7z a4 Ol ).
H
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FIGURE 5.2. Locally perturbed functions ¢? and ¢° + 1.

Using the divergence theorem, we end up with
o (w"(0) — w(a) — T (U +v")(a), ) = k2 /F - nanB)(7 M)z ds
H
—k? /F% nan B (T~ tw")zelow1 ds
+O(nl2 ) as [lnl o0 — 0.

Using the fact that z = 0 on I'*" and ,BZ =0 on I'?F, we conclude
aa(w(@) —w(a) = T (W +v")(a),2) = O(|nll; o) as [In]ly o = O

(227) is dense in ﬁéer(Q%}r), we obtain

for all z € H2

per

(Q37) and almost all a« € A. As H?

per
2
lutra = v = (@' + 0| g1 gpery = Ol o) s [Inlly 00 = 0-
This completes the proof because on the compact set K, we have v = 0 and uf, | = v . O

Theorem 5.6. Let the compact set K be defined as in Theorem 5.8 and n € X. Then, the
Fréchet derivative S'(0)n of S at § in the direction n exists and is given by u'|, € H' (%), where

u' satisfies

Au' 4+ Ky =0 in QY (5.17a)

Ot/ = T/ on Iy, (5.17b)

u = —$8nu6 = —ndp,u’  onT° (5.17¢)
L+ (%)

with Tt defined as in (2.29) and the total field u® € fIQ(Q‘;I) satisfying

Au® + k2l =0 in QY (5.18a)
u’ =0 onT?, (5.18b)
(Opy — TN = (8, — THu'  onTp (5.18¢)

for a mon-periodic incident field u* € H?(Q3;).

Proof. Let v/ be the solution of Problem (5.17) and the perturbation n be such that ||¢°+7||co < H
(depicted in Figure 5.2). In this case, we can define the domain

Q?”::{x€R22C5+n<x2<H}.
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The solution of the scattering problem (5.18) corresponding to the perturbation 1 + ¢ is denoted
by u’t" € H%Q?n).
From the definition of the Fréchet derivative in (5.8), it is sufficient to show that

Hu5+n o —

2
iy = Ol ) as Il oo = 0. (5.19)
For this purpose, we first define the diffeomorphism ¥7: Q‘;{ — Q(S;” as in (4.4) for the perturba-
tion . This diffeomorphism depends on §}'(z), which is defined by replacing (P with ¢ in (4.5).
Moreover, choosing the parameter h as in the proof of the previous theorem yields ¥"|,. = I. In
this case, defining @07 == w9t o U7 € H 2(Q9;) and considering the fact that «’*"|; = edre
we have

~0+n §

/! /
"u6+”—u5—u Uppy, — U —w

H(K) - H H(K)

Since afﬁ;’? satisfies Problem (5.18), its variational form can be written as

a5+77(1731:7, 2) = <(8x2 —THu' o \Iﬂ’,?>rH for all z € H*(Q),

where

9 0) = (Vo. VD)o, —K (Vo D), —(TT0.9),
+ (A= Dv0,V9) , — K (= 1)6.9)

with the coefficients ¢ and A" defined as in (4.7) from the diffeomorphism W7.
Defining v"(z) = n(x1) ) ()04, u’(x), it suffices to prove

~0+ ) 2
[ = = @+ )|y g = O ) 2 il e =0,

since v"7 = 0 on K. To be able to apply the FB transform, we further transform these functions

to the periodic domain Q" using the diffeomorphism W° from (4.4). Considering

o+n . ~d+n i) 72/ yper
Ugra — Utra oW EH (QH )v

we see that its FB transform, denoted by w®*7 := juf:;" € L2(A; H? (Q2r)), satisfies

per

ag+77(w5+77, Ztra) = <(8x2 - 7’O¢+)\7U€ra(a)7@> (5.20)

27 7
l_‘H

for all zya € H?

per(Q%}r) and almost all & € A, where

ai+n (,w5+77’ Ztra) = ai (w5+T]7 Ztra)

+ <c5(v\1:5)‘1

n_ el -1, 640\ T (5. eiaz1)
(AT =1)(VP°)  Vo(T 'w™), Va(zirae )>Q? (5.21)

Y

- k2<66(6" — 1T, Ztraeiax1>92ﬁ
H

with a® as defined in the Perturbed Problem and ¢® = |det V¥°|.



106 CHAPTER 5. RECONSTRUCTION OF LOCAL PERTURBATIONS

Similarly as in the proof of the previous theorem, using the mapping property of the FB
transform, there exists a constant C' such that

o+n 1 l n
Hutra = Ugra — (utra + vtra)

< CHwé—H? - w§ - j(uéra + Ugra)

HY(Q") L2(NH o, (937))
where ul, = u® o WO wl = oW vl =070’ and w’ = Jul,. Using (2.15) for each
a € A, we obtain

O (a0t g / n
szSJrn —wd = J(ué + U‘? ) sup aa(w T—w’ - j(utra + vtra)’ Z)
ra ra 7 — )
L2(A:HL 927\' ~ A 7'r
( ’ pcr( H)) ZGngr(Q%?) ClnfsupHZ”Hl(Q%)
z7#£0

where Cipfsup is the inf-sup constant. Then, it is enough to show that for all z, € ﬁger(Q%}r)
and almost all « € A, we have

6 (0 é 2
g (W' — w® — T (U + V1a); 2tra) = O(1ll1,00) a8 [10ll,00 — 0.

Since the right-hand side of equation (5.20) and the Perturbed Problem are equal, we obtain
6

0 (WP, ztra) = a5 (WM, z41a). Therefore, we can compute for zip, € H2 . (QF)

a

ag (w5+77 - w5 - j(u;ra + Ugra)v Ztra)

(5.22)
= — (ag+77(w5+77, Ztra) - a‘;(w5+n7 Ztra)) - ag(j(u;ra + U?ra)v Ztra) .

We start with computing the first term in equation (5.22). Using the definition of the sesquilinear

5+n _

—1,.,0+ :
tra. w®™", we obtain

form a2 in (5.21) and recalling u

tra

- -T -

A, 20) = 0 (05, 2100) = (HTED) (AT = D) VU, Tome )
H
- l<:2<c5(c77 — Dt Ztraeiaxl>9§}r .

Changing the variables back to the perturbed cell Qﬁfw = \Il‘s(Q%}r) and recalling the functions

_ -1 -1
T = 2 o (U9) 7 and 2 = 24 0 (U9) 7, we can see that

ab (W, Zga) — ad (W, 2ra) = (AT = DV, V(ze)) o,
H (5.23)

2 n ~04N " Gaxt
—k <(C - 1)utra ’Zelam>95,2n .
H

Using the estimates (A.4) and (A.5) leads to ¢7 — 1 = nd,, ) and

(A7 = VL") - V(zeom)

= — div {v"V, (26°%) + 0B Vi D, (26971) — nffles(Vigs” - Vo (ze7)) §
+ VA (2971) + B Alig Dy (z6071) + O[] o) as [[nlly = 0.

Substituting the terms above into (5.23), applying the divergence theorem and using the fact
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that 8 = 0 on I'?F and B = 1 on I'*?" we obtain
ag+n(w5+na Ztra) - ag (w6+n7 Ztra)

= —<nv”, Vx(zelax1)>ri}r - <n52 Uppr !, MOy, (z€1071) — ngvgg(zelaxl)>F%r

+ <nv”, Vgg(zeio‘”l)%(S . <7762Vﬂf;; , N0y, (z€10%1) — ngvgg(zei‘”l)>
n iax ioaxr
+ <U , Ag(ze 1)>Q§§2w <77BhAutra , O, (2€ 1)>Qi}2ﬂ
—Sarr 2
— K (n(Oe B 20 o+ Ol )
H

(", Tl g (0", Vo)

1d.2m

19,27
+ <77V 21" 0o (zelar1) — oV (zeiaw1)>
xltra 5 WUz 2Vax é.2n
+ <'Una Aw(zeiaml)>95,2w + <7762Aafr—:77 Oy (Zeia$1)>ga,27r
H H

L .
— 12 (000, B, 26 ) o+ Ol ) 8 [l o0 = 0
H

where n = (nq, ng)T denotes the unit outward normal vector. Applying Green’s first identity to
the term <v’7 Az el‘”l)> 52, leads to
Qy"

ai+"(w6+”,ztra)—a5( 0+ ) Ztra) = <m) Vil zela“1)>r2r—|—<nv",Vx(zeiaw1)>

5,27
H I

+(nVyz utra , N0y, (2€10%1) — oV, (zei‘ml)>

[
< 20", Va( e‘a$1)>ﬂi}2ﬁ + <nv",W>F%},
-

nv'l, Va( zel‘“l)> 52 <775h Utra aW> 5,21
1,27 Qﬁ

540 "ot 2
K2 (00 BT, 26T ) Ly + O )
H

Some boundary terms cancel out and we are able to further simplify the equation above using
the fact that nAT " = —nk2at" + (’)(HnHioo), as ||nl, — 0 (see Remark A.4). This yields

ag+77(w6+77, Ztra) - ai(w6+777 Ztra)

— <va”, Vg,;(zeiaf’v’l)>Q§727r

19,27
" (5.24)

2/ an~0+n 7 [ Loiawr) g
- k <7]/8hutra ’ 8332 (Zelax1)>Q6,27r < ( X2 Bh)utra zelarl >Q5,27r
H H

2
+O([Inll1 00) as [11ll1 0o = 0-

Due to the fact that

N0y, (2€%71) — NaV, (261%71) = €1(n10,,26' " — 10y, 2€*71) |
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the first term in (5.24) can be simplified as follows

<7’]V$ij;;"7’ né?mz (Zeiam1 ) _ nsz (zeiazl )>

7,27

5 - -
= <n8x1ut£n,n18x2zelaxl - n28x12e10x1>

= 778961 Utra ,vx(zeiaﬂvl) .nd
< )

19,27

=0,

19,27

where the last equality holds, since zeial‘llr&% is constantly zero and hence its tangential
derivative is zero. Substituting the above result into (5.24), we obtain

ai+77(w5+na Ztra) - ag (w5+77’ Ztra)
B I B PURTYTIRY 32/ 71, 8 Gamd s
(Vo Vale) ) o = K2 (0BT 100, 00100, 2) o (5.25)

—1,.6 i 2
— (000, )T 0 @07 2) o+ Ol ) s Il 0 = 0.
H

Now, we are going to compute the second term of (5.22). For all 2y, € per(QQ”) we have
aéa(j(uéra + U‘Z]ra)ﬂ Ztra) =a (jutraﬂ Ztra) ta (jvtrav Ztra) (526)

where a?, is defined as in the Perturbed Problem. Recall that uj,, = u' o W% € H2(QY"), with v’
satisfying problem (5.17). Then, by applying the FB transform to uj,,, we can see that Juj,,
satisfies

a® (T s 2a) = 0 for all 2y, € H?

per

(Q%7) and almost all a € A,

where @’ is defined in the Perturbed Problem. Considering this fact, equation (5.26) can be

simplified as

ai(j(u::ra + U?ra)? Ztra) =a (jvtra’ Ztra) .

Therefore, it only remains to compute ad(Jvil,, Ztra). From the definition of vil, = 7B/ 0s,ul,, it
follows that v, is compactly supported in Q% 11 » since 7 is a local perturbation supported in this
cell. This yields Jv, = v\, exp(—iaz;). Moreover, vgm|Fle;r =0, as 3](z) = 0 on I'}]. Hence,

using Vi, (Jvi,) = (Vavg, — icervg,)e %1 and TF Tk, = 0, we obtain

)
a(j(uéra + vgra)? Ztra)

= (Vo TV0)s Varina)

a

- 2ia<8ﬂ¢1 (jvgra)7%>ﬂ2" - (k2 - a2)<jvgra7%>ﬂi}f

Q27r
4 n 2 T oz R
+ <(A = I)Via, V(2tra'@ > —k < ¢ - 1)Utra»ztraela’“>92,, - <7Zv jvtraaztra%zﬂ
H H
— il o? 2/ M Hamia
= —1a<vtra, 8x1ztra> ) 1a<8x1vtra, 1 2ty a> e <vtra,e1ax1ztra> ,
02 02 02

) n i 2/ .0,1M i
+ <A Vias V(ztme‘o‘ﬂcl)>Q27r —k <c Vghas e“"”ﬁlztm>927r :
H H
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Using

. N GarAa o 2/,M ozl ., _ T 9 (. alaxy)
H H H

)

— 3 n i
- _1a<al‘1vtra7 Ztraelaxl >QQ7T
H

and changing the variables back to the perturbed cell Qf{[%, we get
5(j( Lol ) = { Vo',V (zelaer) — k2{yn yelaxy (5.27)
Qg Utrp T Vgra)s #tra v, ze d:2m v’, ze b2 .
H H
By substituting equations (5.25) and (5.27) into (5.22), we obtain

ai (w5+77 - w6 - j(uéra + v?ra) Ztra)
- - Y S —
= <vl‘vn7 vz(zelax1)> 5 27 + k2<77/8hutra 78wzzelaxl> 8,27 + k2<77(8$2/8h)ut£n7 zelar >Qé,27r
H H
- <vxw,vr<zem>>ga,% + 12 (0" ze0m) L+ Ol o) as Il = 0
H H
Clearly the terms which do not depend on k cancel each other out and we are left with
~5
ag(w(H‘W - 6 j(utra + vtra) Ztra - k / CEQ (nﬁgut;n elaxl) d.%' =+ O(‘|77H1 oo)
2 : ~04N_ Gaz, 2
=k /Q o 1V (canFfT265) dr + O]} )

H

= k? /2 nanBlu "zl ds
ri
2 0+ i 2
k2 [ namBl T ds + Ol )

Using the fact that z = 0 on I'*?" and B} =0 on F%}T, we conclude for all z,, € ngr

(Q4F)

ag(wa—i_n - w5 - j(u{nra + ’U:cqra)v Ztra) = O( ) as HnHLoo — 0.

As H? (Q37) is dense in H, (Q37), we have

per per

6+n 4 / 7
Hutra = Utpa — (utra + Utra)

2
ooy = Ol o) sl = 0.

Finally, using the mapping property of the FB transform and transforming all functions back to
Q‘SH, we complete the proof because v{\, = 0 on the compact set K. O

In the following theorems, we aim to show some properties of the operator S’(4).
Theorem 5.7. The operator S'(§): X — L*(T'%F) is locally compact for sufficiently small § € X.

Proof. Let 6 € X be sufficiently small. We need to show that for any bounded set U C X,
S'(8)U is relatively compact in L?(T'3F). We first prove that &'(5): X — H'Y2(I'?7) is continuous.
Afterwards, we use the compact Sobolev embedding theorem to complete the proof.
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To show the continuity of §'(d), we consider a sufficiently small ball B around zero such that
S(0 4+ n) exists for every n € B. Using Theorem 5.6, there exists a constant C; such that

IS8 +n) = S(8) = 8" (O)nll a/arary < Callnllf -
Moreover, from the continuity of the scattering operator S (shown in Theorem 5.3), we have
18(6 +m) = SO g1/2rzry < Callnlly oo -

Using the triangle inequality, we can write

15"l gy = IS' BV + S5 + ) = S(8) — S +1) + 8@ ooy
< |86 = S + 1) + SOl yrsaqrag, + 156 +m) = SO 2z
< Collnll3 oo + Coallitlly oo < Cslln

‘1,007

where the last inequality holds since 7 is in the bounded set B. Using the compact embed-
ding theorem in the fractional Sobolev spaces (see [32, Cor. 7.2]), we obtain that the em-
bedding .#: HY?(T'37) < L*(I'%7) is compact. Then, the set S'(§)U is embedded compactly
into L(T%r). O]

Theorem 5.8. The operator §'(0) is injective for sufficiently small § € X.

Proof. The proof follows the approach used in the periodic case [56, Cor. 3.2] and the case of
bounded scatterers [68, Lem. 2.2].

Let u satisfy problem (5.17). Due to the linearity of the operator S’(9), it is sufficient to
prove that the kernel is trivial. Therefore, we consider n € X such that the derivative of
the scattering operator S'(6)n = u'|[p, = 0. Using (5.17b) and the linearity of 7, gives us
Opt'|p,, = Opt'|p, = 0. According to Holmgren’s theorem (see [31, Thm. 2.3]), since u’ and its
normal derivative are zero on an open subset of the boundary, we conclude that ' = 0 in Q‘;{.

Substituting v/ = 0 in the boundary condition (5.17c), we obtain 79,,u® = 0 on T°. Since the
total field u° is not the trivial solution in Q‘SH and satisfies u® # 0 on Q%, again using Holmgren’s
theorem we conclude that d,,u° is different from the zero function in every relatively open subset
of T, which yields n = 0. O

Theorem 5.9. The inverse of the operator S'(8): X — L*(T'3) exists and is unbounded.

Proof. Let U be the range of §'(4). Since S'(9) is injective (see Theorem 5.8), the operator
S§'(0): X — U is bijective. Hence its inverse is well defined. According to the proof of [31,
Thm. 4.2], as the linear operator §’(d) is compact and X is infinite dimensional, the inverse is

not bounded. ]

5.3. REGULARIZATION, DISCRETIZATION AND RECONSTRUCTION

As shown in Theorem 5.4, the inverse problem (5.2) is ill-posed. To obtain a stable approximation
of the solution, we are going to regularize the problem (5.2) and then apply the Gauss—Newton
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method as described for instance in [94, Sec. 10.2]. However, other iterative schemes, for example,
the nonlinear Landweber iteration [64, Sec. 2] and the inexact Newton method [87, 95] can also
be applied to solve the mentioned problem.

To regularize (5.2), we add a penalty term to the objective function as follows

* . 2 2
5" = arg minl| S(8) = Dllargp) + (oreslV Ol 2(1-rm) (5.28)

where oyeg is a constant called regularization parameter and () denotes the penalty term. A
common choice for the penalty term is the curvature of the bottom surface I''. However, in our
case, since the bottom surface is the graph of the function ¢?, it suffices to penalize the second
order derivative of the perturbation. Therefore, we define the penalty term ¢: X — R as

P(0) =46". (5.29)

To find a minimizer 0* for the functional (5.28) with the Gauss-Newton method, we need to
compute the Fréchet derivative of the scattering operator S and the penalty function ¢(4) for
any sufficiently small perturbation § € X. The former has been obtained in Theorem 5.5, and
the latter will be computed in the next lemma.

Lemma 5.10. Letn € X and ¢ be defined as above. The Fréchet derivative of 1, denoted by )/,
s given by

W(6)(m) =n".

Proof. Using the definition of the Fréchet derivative and substituting the expression 1)’ defined
as above leads to

18 1) = (8) = (O g2y = 106 +1)" = 6" =" 2y ) = O-
Since the second derivative is a linear operator, then 1)’ is the Fréchet derivative of . O

Now, we have all necessary tools to numerically reconstruct the perturbation §, which satisfies
the minimization problem (5.28) depending on the given near-field data D.

Discretization and Reconstruction: We discretize the space of the admissible perturbations
X by the following space of splines

Xy =span{¢1,...,on} C X,

where ¢; are cubic B-splines for a uniform subdivision of [—m, 7] and N denotes the number of
splines. In the discrete setting, we therefore seek § € X, that is

N
n=1

where 0 = ((51,...,5N)T e RN,
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In real applications, the near field is not available as an L?-function; instead, M detectors
are placed on F%}T. Therefore, we assume that M observations of the near field are available on
equidistant points on the top surface. We still use the notation D € CM for these measurements.

To write the discrete form of the regularized inverse problem (5.28), we start by introducing
the operator generating the curve from the coefficients

C:RY = Xy

5N'—>(5.

Moreover, we consider the projection operator P: L*(I'3) — CM | which models measurements of
the total field on M observation points. Using these operators, the nonlinear scattering operator
is discretized as Sy = P o S o C, mapping RY to CM.

We can now derive the discrete version of the regularized optimization problem (5.28).

Discrete Inverse Problem: Find 8% € RY such that

8y = argmin ([Sx(8x) — DII2 + [owest (€O 22 sy - (5.30)
JNGRN

The term R1(dn) := Sn(dn) — D is a complex vector of length M and the penalty function (5.29)

can be written as

N
D(CON)) (@) = D dndip(2),
n=1

where ¢!' are piecewise linear functions. We can hence compute the regularization term in (5.30)
by using a composite trapezoidal rule for the L?-norm of 1

2

N+4 N
Haregw(c(‘sN))H%’z([ﬂm]) = Z (aregw Z 5n¢%($2)> ’

n=1

where the nodes and weights are given by 2y = -7 +27({ —1)/(N +3) for £ =1,...,N +4 and

s

for =1,N +4

9 Ny3 & S
R L for{=2....N+3
N13 or{=2,..., N+ 3.

Considering

N N+4
RZ((SN) = (aregwﬁ Z 6n¢',r;(x€)> )

n=1 /=1

the objective function of (5.30) can be written as the scalar product
<731(5N)7731(5N)> + (R2(dn), R2(dn)) -

To simplify the numerical implementation, we split up the real and imaginary parts of Rq(dy)
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and consider the vector
Re Rl (5]\[)
R(On) = |ImRy(dy)| € RN+
Ra2(dn)

This allows us to rewrite the objective function as

<R1(5N),R1(5N)> + <R2(5N),R2(5N)> = <ReR1(5N),ReR1((5N)>
+ (Ile((SN),Ile((sN» + <R2(5N)7R2<5N)>
= (R(0n), R(8n))

hence we can rewrite the optimization problem (5.30) as arg ming, cgw~ HR((SN)HS To solve this
optimization problem, we apply the Gauss—Newton method, which is based on the linearization
of the operator R. To this end, we first introduce the discrete version of the Fréchet derivative
of Sy as S (dn) = P o S'(C(dy)) o C, which is a linear mapping from RY to R™. The Fréchet
derivative of the operator R represents the Jacobian matrix Jg, () with dimension M x N
whose columns are obtained by

(JRI((SN))(W) =PoS(C(6N))pn forne{l,...,N}.
We can now write the linearization of the operator R as follows

R(ON +1n) = R(ON) +Ir(dn)n+ O(n?),

where 7 € RY and Jz denotes the Jacobian matrix of R with dimension (2M + N + 4) x N
whose n-th column is given by

Re (Jr, (0N)) (. )
(IRON)) () = [Im (IR, (ON)) () | - (5.31)
(IR (ON)) (..

with Jz,(dn5)n = Ra(n) as in Lemma 5.10. To apply the iterative Gauss—Newton method, we
need to compute the update n with respect to the current reconstruction by

n=—Ir0n))ROGN),

where (Jr(dn))! = —(J7T3(5N)JR(5N))71J7T3(5N) is the pseudo-inverse of Jz(dn).

We describe how to reconstruct the unknown perturbation dy, using the Gauss—Newton
method, in Algorithm 4 (inspired by [72]).

In numerical experiments, it turns out that the regularization parameter has a significant
effect on the accuracy of the reconstruction. More specifically, on one hand, if the value of this
parameter is chosen to be too high, this leads to an inaccurate reconstruction due to the high
impact of the penalty term in determining the update 7n; on the other hand a regularization
parameter that is too small is not sufficient for regularizing the optimization problem and due
to its ill-posedness the iterative method may not converge. To mitigate the risk of an a priori



114 CHAPTER 5. RECONSTRUCTION OF LOCAL PERTURBATIONS

Algorithm 4: reconstruction of a local perturbation

Input: measured data D, stopping tolerance, regularization parameter cyeg

1 Choose an initial guess dy;

2 for/=1,..., mh.x do

3 Compute S(dy) by solving the direct problem as proposed in Chapter 4;

4 Compute the residual R(dy) from the solution S(dx) and measured data D;
%hAssemble the Jacobian matrix Jr column-by-column.
forn=1,...,N do

5 Use the direct solver to compute the Fréchet derivative S'(d )y, for the n-th

B-spline ¢,;
6 Construct the n-th column of Jz as in equation (5.31);

%Determine the Gauss-Newton search direction.

7| e —(TEENIRGN)) TRENREGN):

%#Calculate the movement of the reconstruction.

ovement < [n]l/8x

if Movement > tolerance then

10 ‘ Update d < oy + 75

11 else if ||Rzll5 > ||R1]|, then

%The residual ||R||, is dominated by the penalty term.
Reduce oneg  Otreg/2;

12
13 else
%The residual [|R|, is dominated by ||R1],.

14 Stop the iterations;

15 return oy

selection of this parameter, we propose an a posteriori selection procedure. That is, we start with
an a priori upper bound. In each iteration, we compute the contribution of the penalty term to
the residual R. If this exceeds half the norm of the residual, we reduce the regularization term by
halving its value. The regularization parameter determined by the described selection procedure
turns out to provide a good reconstruction of the perturbation.

For the stopping criterion, we define the movement as the ratio of the norms of the update n
and the current reconstruction dy (see Algorithm 4, line 8). The iterative method stops when
the movement is less than a given tolerance and the regularization parameter is not updated.

5.4. NUMERICAL RESULTS

To illustrate the efficiency of the proposed reconstruction method, we focus here on the downward
propagating Green’s function as an incident field with the point source above the locally perturbed
surface.
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We consider the same examples as given in Section 4.6. The periodic functions

() =1+ C°S4(x), zeR,
PN (x) =15+ Sing(x) — Coz(x), reR,

are given whereas the perturbations

o(z) = %exp (M) (cos (77(9524—2)) + 1) X[-2,0/(z), T€R
3
= e

Xp <$21 > sin(m(x +1))x—1y(*) = €R.

-1

are used to compute the measured data on the flat surface I'47 using the direct solver from the
previous chapter. The knowledge of the exact perturbation d; and Jo allows us to report the
error of the numerical reconstruction.

We set H = 2.5 and k = 1.4, and use the regularized Gauss—Newton method presented in
Algorithm 4 with the following inputs.

e The dimension of Xy is N = 30.

o We consider M = 60 detectors on F%}r for measuring the near-field data.
o The initial value of the regularization parameter is ayeg = 0.6.

« The stopping tolerance is 1073,

e The direct solver proposed in Chapter 4 is used with the PML thickness A = 1.5, the PML
parameter p = 20 and the number of Floquet parameters N, = 20.

e As an initial guess, we choose d y = 0 corresponding to the periodic bottom surface.
To check the accuracy of the numerical reconstruction, we compute the following relative error

Erec _ H(SN - 6exactHoo

)
Héexact”oo

where dexact and 0 denote the exact and numerical reconstructions.

Remark 5.11. In our case, exact solutions to the direct scattering problem or experimental
measured data are not available. Therefore, we must solve the inverse problem typically based on
synthetic near-field data, which is obtained by solving the direct problem. To avoid the inverse
crime—the trivial inversion of a discretized problem (see [31, p. 179])-the synthetic near-field data
must be generated with a direct solver that is independent of the inverse solver. Accordingly,
we compute the near-field data using the exact DtN formulation and the proposed numerical
scheme introduced in Chapter 3, employing twice as many discretization points as those used in
the PML-based inverse solver.
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We provide the numerical reconstructions from noise-free data for the perturbations §; and dz in
Figures 5.3 and 5.4, with the point source located at y = (—1, 2.5)T and y = (0, 3)T, respectively.

As shown in Figure 5.3, at iteration 8, the numerical reconstruction (red dashed line) is clearly
approaching the exact perturbation 01 (blue line). At iteration 22, a good reconstruction of the
perturbation §; is obtained, where the maximum error F.. is around 1072 as seen in the left
image of Figure 5.5. At this point, the algorithm stops, since the reconstruction does not improve
beyond the required precision.

— -numerical reconstruction —exact perturbation X point source

initial guess iteration 8 iteration 22

2.5 23 2.5 b3 2.5 43

2 2 2
1.5 1.5 1.5}

- 2 -

1t L -~ 1 1+
0.5 0.5 0.5

-2 -1 0 -2 -1 0 -2 -1 0

F1GURE 5.3. Numerical reconstruction of ; from noise-free data.

— -numerical reconstruction —exact perturbation X point source

initial guess iteration 10 iteration 40
3 23 3 23 3 X

2.5 2.5 2.5t

21
. 15
I
1
0 1 -1 0 1

FIGURE 5.4. Numerical reconstruction of d; from noise-free data.
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FIGURE 5.5. Reconstruction error of §; (left) and d2 (right) from noise-free data.

The reconstruction shown in Figure 5.4 demonstrates a clear convergence toward the exact
perturbation dy by iteration 10. At iteration 40, the reconstruction achieves high accuracy, with a
maximum reconstruction error Ee. of roughly 1072, as depicted in the right image of Figure 5.5.
Due to the structure of the perturbation do, it requires relatively more iterations to achieve an
accurate reconstruction.

To simulate more realistic measurements, we introduce uniformly distributed noise to the
near-field data. More specifically, we add 5% noise on the measured data for §; and 2% noise for
02. In Figures 5.6 and 5.7, we illustrate the corresponding numerical reconstructions.

— -numerical reconstruction —exact perturbation X point source
initial guess iteration 6 iteration 12

2.5 x 2.5 * 2.5 X

2 2 2
1.5 1.5 115

- - - - ‘d

0.5 0.5 0.5

-2 -1 -2 -1 0 -2 -1 0

FIGURE 5.6. Numerical reconstruction of §; from noisy data with 5% noise.
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— -numerical reconstruction —exact perturbation X point source

initial guess iteration 6 iteration 12
3 X 3 23 3 3

reconstruction error
reconstruction error

1 4 6 8 10 12 1 4 6 8 10 12
iterations iterations

FIGURE 5.8. Reconstruction error of ¢; (left) and ds (right) from noisy data.

We see in Figure 5.6 and Figure 5.7 that by iteration 6, the numerical reconstruction of the
perturbation d; and ds, respectively, are already closely approximating the exact perturbations.
Around iteration 12 the reconstruction remains satisfactory in both cases. The reconstruction
error for both cases can be seen in Figure 5.8.

In conclusion, these results show that the proposed method allows us to accurately reconstruct
unknown perturbations on the periodic scatterer.



APPENDIX A

SOME TECHNICAL COMPUTATIONS

Here we provide some estimates for derivatives of the square root function used in Chapter 3.
We also compute the coefficients ¢? and A° in the sesquilinear form (4.6) and use these results in
Chapters 4 and 5. For simplification, we restrict ourselves to the two-dimensional case.

Estimates for Derivatives of the Square Root Function

Lemma A.1. Let s € C, a € R such that o # s. Then, for any £ € N,

</l|s+ a‘1/24'

— Vst

df
’ dat

Proof. For any ¢ > 0, a direct calculation yields

d 20 — 3\ 20)11
dazm‘ = |(2¢3)| s+ al'?7 < (22\3 + a2 = s +af /2,
where the double factorial ¢!! .= H][f:/?—l(g — 2j); here empty products are equal to 1. O

Lemma A.2. Let v € {1,2}. For any fized ¢ € N and k € Rsg, there is a constant C' such that

VK2 —|of*| _ etk +]all?
dav, T k= o2

for all a € R? such that |a| # k.

Proof. Without loss of generality, we treat the case v = 1. Consider \/ k% — \oz|2 = \/ s2—a?
where s := y/k%Z — a2. From the Leibniz formula, we have

o 52 —af < i: 0\ [0™/5+ a1 || 05 — aq
daf T\ dalt 804_” '
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Using Lemma A.1 leads to

0/s2 — a?

L
daj

¢ -n —L+n

n=0
Co/|s? —ad

~ (min{fs + a1l s —aa|})"

(A1)

Now, it remains to estimate min {|s + o], |s — a1]}, and we can distinguish two cases as follows:

(a) If |ag| > k, then s = iy/ad — k2. Hence,
ls+ai|=|s—ai1|=y/a3 —k2+a? = \/‘kz— \a\Q‘ > |k — o]

(b) If |ag| < k, then s = 1/k2 — a2 > 0. In this case, we write

min {|s + a1, [s — a1|} = [s — ||| =

We conclude that

2 ~lo’

min{|s + aal, |s — 1]} > = [k —la]l.

k+ |af

In both cases, we find by substituting s> = k? — a3 into (A.1) that

'k —|af? B C Ok + |al|?
daf |7 |k = a2 .

Error Estimate for the Gauss Quadrature rule in Two Dimensions
In Section 3.3, we require an error estimate for the Gauss—Legendre quadrature rule in two
dimensions. As a starting point, we recall the standard one-dimensional estimate for the Gauss—
Legendre quadrature rule of order n, as stated in [76, Thm. 9.20].

Let f € C*"2([a,b]), then the error of the Gaussian quadrature formula of order n is given by

(2n+2) b
L) [Maa@Par for some v € o],

[ #@rar =3 astan
a k=0

with the orthogonal polynomial g, of degree n + 1.

We assume that [a,b] = [—1, 1] and gn+1 are the Legendre polynomials. From [93, Sec. 18.2.5],
we have
1 9 d 2
[ faan@)Pde = 2=
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Then, the error of the Gaussian quadrature formula in this case is estimated as

1
‘/_1]0( dx—Zwkka

HOO

< gl

Let us transfer the reference interval [—1,1] to an interval [—h/2, h/2], then we obtain

‘/Wéﬂw&—ﬁégwa?Q s@ni$(ZYMWﬂ%nwm.

—h/2 k=0
Now, for the two-dimensional case, we consider Q = [—h/2, h/2]2 and f € C?"*2(Q). Then,
h/2 h/2 n. K2 h h
— wiw XTj, =T
/h/2 h/2 4;04 ]kf( ij)
h/2 h/2 LS h
‘/ ( [ty ta)dty = §wkf <t1, 2$k>> dty
h/2 \J—n/2 =0
h /2 h “ h
+Z§wk/ f(t1721’k> dty — > w]f< Tj> 5T k)
—h/2 =0 (A.2)
h/2 B 2nt3
a2n+2 (t dt
<| [ (3) Toes ] o

.
J

Asymptotic Representation of the Coefficients in the Sesquilinear Form (4.6)
In the following lemma, we provide some necessary technical computations for the coefficients of

+Z wk@ig)(h)w 2”+2f( mk)

2n+4
: (2n4+3)!<g> ma{ o571,

the sesquilinear form (4.6).

Lemma A.3. Let 6 € C%(R) be sufficiently small and the diffeomorphism U and the function 52
be as in (4.4) and (4.5), respectively. Moreover, let ¢ := ’det V‘IJ‘S‘ and A° = c‘s(V\II‘S)_l(V\I"S)_T
as in (4.7). Then, ¢ =1+ 60,,) and

A5 o [ 1 + 56362[32 _58331/8}61 - 6,52

+O(16]17 as ||o —0. A3
_561152 _ 5/52 1— 53;p2ﬁ2 ] (l ”1,00) | H1,oo (A.3)

Proof. Using the definition of ¥ and a straightforward computation, we have

= |det v\lﬁ] = =1+ 00,8, (A.4)

det 1 0
005, B) +8'8) 1+ 60,,5)

where the absolute value in the last equality is removed since for sufficiently small 6, the
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determinant is positive. Moreover, we can write

A = Sved) vty T
1 (1+80,,8))" ~(L+ 6028} (502, B, + 8'5)
1+ 602,85, | —(1 + 002/3))(60y, B, + 0'3]) L+ (58] + 601 3))”

1+ 604,58 —00y, 80 — &'

2
—30y, 85 — 0B} + O[] 00) @ (101,00 =0

1+ 60,,89

Using the fact that 1 — 00,80 + (9(H<5||%OO) completes the proof. O

1+ 00,,8

Remark A.4. From Lemma A.3, it follows that ¢® = 1 + O(l1]]; »,) and A =T+ 01614 o0)
as [|6[l; ., — 0. Therefore, for u € H%(R?), we have V - (A°Vu) = Au + O(ll6]l4 o) and
Au=u+ O(l16]]1 o0 )- This leads to

V- (AVu) + B fu = Au+ EPu+ O([|6]] o) as [[8]l o — 0.

In the following lemma, we provide some necessary computations for Theorem 5.5. This can
be obtained by performing a lengthy application of the product rule.

Lemma A.5. Let 6, A° as in Lemma A.3, u,¢ € H*(R?) and v° = 639 (x)0x,u. Then, we have

((A° = D)Vu) - Vo = — div{v’ Ve + 63] Vudy, & — 53] (Vu - Vo)es }

- o (A.5)
+ 0 AP + 004, 80(Vu - V) + O(I0]] oo) a5 [|6]ly oo — O,

where (39 is defined as in (4.5) and e = (0, )",

Proof. First using the asymptotic representation of A% given in (A.3) and then adding and
subtracting 60y, 39 0z, u0s, ¢ and 583V (0x,u) - Vb, we obtain

(A° = 1)Vu) - V6 = 602, 51(Vu - V6) = 5 (V] - Vu) Drys — &' B (00, 4) 02,0

=8 (VB - (02,uV ) — 8B} (0,0) 00,6
— 3BV (Duyu) - Vo + 5BV (0ayu) - Vo + O(I613 o) as 1|6y, — 0.

Using the definition of v° and the fact that
Vo' V6 =5 (VB - (0:,uV0)) + 88102, u00, 6, +35,V (Or,0) - V,
we get

(A° = 1)Vu) - V6 = 60,, B3V - V6 — 5 (V) - V) By — 8 B0, iy
= Vo -V + 3V (1) - VO + O8] o) as 6]l o = 0.
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Adding and subtracting 63} Vu - V(9,,6) to the above equation and considering
div{0B)(Vu - Vg)es} = 60,, 8,V - V6 + 0BV (ayu) - Vo + 683V - V(01,0)
we arrive at

((A° = 1)Vu) - Vo = 60,5 Vu -V — 8 (VA - Vu) s — '8 (00, 1) D0y
— V0 V¢ + 680V (0pyu) - Vo + 082V - V(Dry )
— 03, Vu-V(9:,9) + O8]} )
= =0 (VBh - Vu) uyd — 0B (02, u) 0y — V0 -V
+ div{3B)(Vu- V)es } — 83Vu - V(0,0) + O3]} o) as 116y . — 0.

Adding and subtracting d0,., B,‘i(Vu Vo) yields

(A° = 1)Vu) -V = =0 (VB - Vu) 01y6 — 0 B0, uday — V0* - Vo
+div{53(Vu - Vdles } — 05 Vu - V(0,,0)
+ 605, BV U - V§ — 50,8,V - Vo + O([6]17 ) s 18], o = 0.

Since
div{hBVudey6} = 683V u - V(0as0) + 6 (VB - Vi) Oryb
+4 6h8w1u6$2¢ + 66x2ﬁhVu Vo,
we obtain

(A° = 1)Vu) - V6 = Vo' - V5 — div{h3 Vude,é } + div{hB(Vu - Vo)es }
+ 800,80 Vu-Vo+ 0017 ) as [[6]l; o — 0.
Finally, by adding and subtracting v A¢ and taking into account that
div{v'Vo} = Vo' - Vo + o' Ag,

we complete the proof. O






APPENDIX B

COMPUTATIONAL COMPLEXITY OF DIRECT AND ITERATIVE
SOLVERS

In Algorithm 3, we proposed a fast iterative solver for solving the linear system (4.46). In this
Appendix, we will compare the computational cost of the iterative solver with the direct solver
introduced in [98, Sec. 2] using the Sherman—Morrison-Woodbury formula. To this end, we first
estimate the complexity of each method separately and then compare them together.

We consider the following notations to represent the cost of operations on square matrices of
size Na X Na or vectors of length Na:

o E,, x: inverting a matrix or multiplying two matrices;

e I, +: summing two matrices or multiplying a matrix by a diagonal matrix;

E, »: multiplying a vector by a matrix;

e I, +: summing two vectors or multiplying a vector by a diagonal matrix.

Computational Cost of the Iterative Solver Proposed in Algorithm 3
As shown in Chapter 4, we reformulate the linear system given in (4.46) using the Schur
complement recursively. This yields

Na No
(I - chngj) U=-> CjAj'F;,

where A, B; are Na x Na sparse matrices, C; is a diagonal matrix and Fj is a vector of length
Na. In what follows, we estimate the cost of the iterative solver proposed in Algorithm 3 to
obtain U.

As a preliminary step, we compute the inverse of the matrices A; for j € {1,..., N,}, having
a cost of NoFEp, «. We use these inverse matrices on both the left and right-hand sides of the
above equation. Now, we estimate separately the complexity of computing the right-hand side
and one iteration of the left-hand side.
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e On the right-hand side, computing A;le requires a total cost of NoF, x. Subsequently,
computing the products CjAjlej has a cost of NoFE, 4. Finally, computing the sum needs
an additional cost of NoFE, 4. These steps add up to No(Ey x + 2E, +).

e On the left-hand side, performing the matrix vector multiplication B;U has a complexity
of Ny, ». Afterwards, the multiplication Aj_lBjU adds a cost of NoE, ». Multiplying
by C; and summing the resulting terms requires 2N, F, . This leads to the total cost of
2Ny (Ey,x + E,y ) for each iteration.

Now, the total complexity of the proposed iterative method, denoted by Fite is estimated as
Eiter = Na(Em,X + EU,X + 2Ev,+) + 2NiterNo¢(Ev,>< + Ev,—‘r) .

where N, denotes the number of required iterations in the iterative solver.

Computational Cost of the Direct Solver Proposed in [98, Thm. 2.2]

The main idea in [98, Thm. 2.2] is to use the Sherman-Morrison-Woodbury formula to compute
the inverse of the block arrowhead matrix in (4.46). Following the same approach as [98], the
inverse of the coefficient matrix (4.46), denoted by A~! is obtained by

A['B,;

A'=D7'4| | [zCAT" ... ZCy AR -7,

-1
where D = diag (A1,...,Ax,,0) and Z == (I — ey chngj) .

According to [98, Sec. 3], the computational complexity of A~ is estimated as follows:
(a) similar to the previous case, inverting the matrices A; requires Ny Ey, x operations;
(b) computing Aj_lBj adds Ny Ey, «x operations;

c) the term I — N:a C,A7'B; can be obtained by multiplying by a diagonal matrix and
j=1 ~J+%j J
summing each block, which brings the cost of 2N, F,,, ..

(d) computing the inverse of the previous term, which gives Z, has a cost of E, x;
(e) performing CjAj_1 requires Ny FE,, + operations;
-1
j LA altém,x
(f) the products ZC;A " have the cost of NoEm, x;

(g) the products Aj_lBjZCSAS_1 for j,s € {1,..., Ny} use Items (b) and (f) and require
NC%EWX operations;

In conclusion, the total complexity of computing the inverse of (4.46) is estimated as

Edirect = Em,x + Na(3Em,x + 3Em,+ + NaEm,X) .
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Comparison of the Computational Costs of the Direct and Iterative Solvers

To compare the cost of these two approaches, we assume Niter & cN, for a small constant ¢ and
NaA > N,. This assumption is reasonable based on the results reported in Table 4.1. Due to the
fact that F, « > E, 4, we obtain

Edirect (14 3Ny + N2)Em « + 3NoEp +
Eiter  NaEmx + No(1+ 2Niter) By x + 2Na(1 + Niter) Ep +
(14 3N4 + N2)Ep, «
= NoEmx + Nuo(3+4cNy)Ey

For a Na x Na matrix Aj, it holds E,, x = O(N3) and E,, y = O(N3). Taking into account
that N (3 + 4¢Ny) < Na, we obtain

Edirect (1 + 3Na + Ng)Em,X > (NO& + 1)2N2

> > =Ny+1.
Eiter NaEm,X + NAEU,X (NOé + 1)Ng “

As we have shown above, the proposed iterative solver is faster than computing the inverse of the

block arrowhead matrix in (4.46).






APPENDIX C

GREEN’S FUNCTION AND ITS PROPERTIES

In Chapters 3 and 4, we select the Dirichlet Green’s function in the upper half space to show
the efficiency of the proposed methods. In this appendix, we aim to summerize some properties
of this function and clarify why we consider Green’s function as an incident field instead of the
fundamental solution. Moreover, we show how to compute the FB transform of the Green’s
function.

The Dirichlet Green’s function in the upper half space is defined by

G(z,y) = B(z,y) — ®(x,y), z#ycRL={zcR zy>0},

with the reflected point source v’ == (y1,..., Y41, —yd)T and the fundamental solution of the

Helmholtz equation

i
TH (k= y)) 2y e Ry,
P(z,y) =4 7 eiklz—yl (C.1)

T I‘,yGRS,CE#y,
A |z — y|

where Hél) is the Hankel function of the first kind of order zero.

Remark C.1. Note that for x # y the three-dimensional fundamental solution can be written
based on the Hankel function of the first kind of order —1/2 as follows

eik|:1:7y\ Lk

lz—y|  \ 2z -y

H (k| —y]).

To test the efficiency of the proposed numerical methods, instead of the fundamental solution,
we use Green’s function because of its faster decay.
Lemma C.2. Let z = (Z,24) € R? with ¥ = (x1,...,24_1).

(a) The fundamental solution ® decays as \x1|71/2 in R? and as |Z|”" in R3.

(b) The decay rate of Green’s function G is |z1|~>/% in R and |7|~2 in R3.
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Proof. For the two-dimensional case, using the asymptotic behavior of the Hankel function [93,
Sec. 10.17], we obtain

Y(klz — 2 ikle—yl-/4) 3
yl) ~ >
wklz —y ‘ £=0 k|$—y‘)

where ay are coeflicients only depending on £.
(a) For real k, we have |exp (ik|x — y| —im/4)| = 1. Then,
1 - _
)(k]w —y|) ~ c|z1] 1z 4 O(|x1| 3/2) as |r1] = o0.
For the three-dimensional case, the statement is clear from the definition.

(b) From the asymptotic behavior of the Hankel function, we have

G, 9)| = [HE" (kla — y]) = HE" (k|z — '])|

9 | pilkle—y|—m/4) 20 ieag ellklz—y'|—m/4) 20 igag
km ]:c—y] 1—0 (k‘|l'—y|)e |‘T_y/| /=0 (kj|$_y/|)Z
elklz—yl elklz—y'|
+O(z1|7*?)  as |z1| — oo
l’ p—
Let z .= 21 — y1,c— = 22 — y2 and c4 = x2 + y2. Then, we obtain
oiklz—yl eiklz—y/| eik\/22+c2, eik\/ZQJrCi_

v—yl  Vz—y]

{*/zQ—i-cQ, - {*/zQ—i-ci

ik 2 2 ik 2 2
e1 ze4c% el z —l—cJr

SRR Ao
eik‘/22+cg _ eik,/z +c

1
B

+0(2]7%%)  as|z| = .

Using the identity

lexp(is) — exp(it)] = exp(ist)llexp(i/t) — exp(i/s)| =

2sin (1 — 1) ,
2t 2s
for s,t € R, we obtain as before

1 1
= 2sin —
(2]&/2’24-62_ 2/@1/,22—1-03r )

_ 9sin <2k! -+ 0(121—2)) — 02" as |2 — 0o,

eik« [z24c% eiku /z2+ci

Combining the estimates above and using the definition of z leads to |G(x,y)| = O(|z1|~
as |z1| — co. The proof for three dimensions is given in [24, Eq. (2.11)]. O
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To compute the right-hand sides of (3.33) and (4.46), it is required to compute the FB transform
of Green’s function, which has been obtained in the following lemma.

Lemma C.3. The FB transform of Green’s function is obtained by

(TG (o) = CgeT® Y ellati @)

jeZd

where y; == \/k? — la+j|?, Cqa=1/2r ford=2 and Cq =1 for d = 3.

Proof. We first consider the two-dimensional case d = 2. Using the definition of the FB transform,

{ 9% sinc (7jyq)yd Ya < Tq,

%4 sine (yj24) T4 otherwise,

we have

(TG) (o w) = i " Gl + 2, wp)e 0@ +2m)
JEZ
i ] ; —ia(z ]
= 52 (H5" (ke — y + 2mjer]) = H (Kl — y + 2mjen]) ) o7 #2790,
JEL

where e := (1,0)". Using [5, Eq. (2.7)] and the poisson summation formula, the Fourier series
expansion of the fundamental solution is obtained by

(jG)(Oz; x) — ie—iam Z l [ei(a+j)(561—y1)+i’yg'\xz—yQI _ ei(a+j)(:1:1—y1)+i'yj\xg-i-ygq

A jez Vi
_ i R Z ellati)(@i—y1) | glvize (e—ivjm _ ei%'w) if 2o > 19,
A7 iz Vj ez (e71i%2 — e1i%2)  otherwise .

Now using the fact that sinc (vjy2) = (e7¥2 — e71i¥2) /2ir;y9, we obtain

(TJG)(e;z) = ie*ia:m Z ellati)(z1—y1) e sinc (’ij2)y2 if 22 >y,
27 iz ei¥2 sinc (vjx2)xe otherwise.

For the three-dimensional case, we refer to [84, Egs. (52)-(54)]. O
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BASIC NOTATION
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set of singular points
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FUNCTIONS

GEOMETRY
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generic function generating the bottom surface
generic unbounded surface defined by (

generic unbounded domain above the surface I'
flat surface parallel to the surface I' at height H
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periodic function
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compactly supported perturbation
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bottom surface of the bounded cell Q27

top surface of the bounded cell Q37

lateral boundaries of the bounded cell Q37
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scattered field
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OPERATORS
F Fourier transform 7
J Floquet-Bloch transform 28
YD trace operator 10, 98
YN conormal derivative 10
Tt Dirichlet-to-Neumann operator 15
T Floquet—Bloch transform of 7+ 35
ApML PML operator 23
Tr PML approximation of 7+ 24
Tty Floquet-Bloch transform of 7" 64
S scattering operator 93
S’ Fréchet derivative of the scattering operator 99

S compact embedding operator 98
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