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Abstract

We consider acoustic scattering of a non-periodic incident field by locally perturbed periodic
structures. Our goal is to propose an efficient, high-order numerical method for solving such
direct scattering problems.

As a first step, we focus on purely periodic domains. Here, the non-periodicity of the incident
field prevents classical reduction to a bounded cell. However, due to the periodicity of the domain,
we can apply the Floquet–Bloch (FB) transform. This yields a decoupled family, indexed by
the Floquet parameter, of periodic problems posed in a single bounded cell. As our first main
result, we derive a representation of the transformed solution that highlights the structure of
its singularities with respect to the Floquet parameter. This allows us to develop a tailor-made
numerical scheme adapted to the singularities. For locally perturbed periodic structures, the
direct application of the FB transform is not possible due to the lack of periodicity in the domain.
To address this issue, we employ a coordinate transformation that eliminates the perturbation,
resulting in an equation with non-constant coefficients. This reformulation enables the use of the
FB transform, but introduces a coupling in the resulting family of problems. Proposing a tailored
numerical method here significantly increases computational complexity due to the coupling.
To improve efficiency, we approximate the solution using the perfectly matched layer (PML).
We prove exponential convergence of the PML approximation of the solution, with respect to
the PML parameter, on every compact set. We also show that the PML approximation of the
transformed solution is analytic with respect to the Floquet parameter. Therefore, this allows us
to compute solutions of original scattering problems by considering fewer members of this family.
Furthermore, we propose a fast and parallel solver using recursive Schur complements.

Finally, we apply our fast direct solver to inverse scattering problems in order to reconstruct
unknown perturbations. To employ iterative regularization schemes, we prove that the scattered
field is Fréchet differentiable with respect to the perturbation. Through numerical examples, we
demonstrate the efficacy of our methods.
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CHAPTER 1

Introduction

Scattering theory generally describes how waves are affected by irregularities or obstacles in their
path. In particular, an incident wave encounters an obstacle and interacts with its boundary or
the medium in its interior. This interaction generates a scattered field, whose behavior depends
on the incident field as well as the shape and physical properties of the obstacle. The objective
in direct scattering problems is to determine the scattered field from this known information.
Mathematically, the scattered field satisfies a partial differential equation in the exterior domain,
together with boundary conditions (e.g., sound-soft or sound-hard conditions) imposed on the
boundary of the obstacle. Additionally, a radiation condition must be imposed at infinity to
guarantee uniqueness.

In literature, obstacles are generally classified into two main categories: bounded and unbounded.
For bounded obstacles, the scattering problem is well-understood. The scattered field behaves
asymptotically like an outgoing spherical wave. This behaviour in the acoustic case is modeled by
the Sommerfeld radiation condition. To compute the scattered field numerically, the unbounded
exterior domain can be truncated in the radial direction by standard techniques like perfectly
matched layer (PML) or Dirichlet-to-Neumann (DtN) map. For an overview over these types
of problems, we refer to monographs by Colton and Kress [31], Monk [90] and Kirsch and
Hettlich [70].

In contrast to bounded obstacles, scattering by unbounded structures involves obstacles whose
geometry extends to infinity in one or more directions. Such structures include examples like
rough surfaces [100], open waveguides [67, 97], and periodic media [35]. Since these obstacles
lack compact boundaries, the analysis and numerical treatment present additional challenges.
Specifically, the classical Sommerfeld radiation condition is usually not applicable, and standard
approaches for proving existence and uniqueness of solutions — such as Fredholm theory and
Rellich’s lemma — may be unusable, depending on the geometry and boundary conditions. To
obtain a bounded computational domain for numerical simulation, the unbounded structure must
be truncated typically both horizontally and vertically.

Motivated by these challenges, in this work we focus on time-harmonic acoustic waves interacting
with unbounded surfaces. More precisely, let the unbounded scatterer Γ be represented as the
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Figure 1.1. Two possible structures of the unbounded domain Ω.

graph of a function ζ : Rd−1 → R for d = 2, 3, i.e.,

Γ :=
{

(x̃, ζ(x̃)) : x̃ ∈ Rd−1
}
.

Moreover, we define the unbounded domain Ω as the region lying above the surface Γ,

Ω :=
{

(x̃, xd) : x̃ ∈ Rd−1, xd > ζ(x̃)
}
.

The acoustic scattering phenomenon is governed by the Helmholtz equation with the wave number
k > 0, i.e.,

∆us + k2us = 0 in Ω , (1.1)

where us denotes the scattered field. In the case of sound-soft scattering, the scattered field
corresponding to the incident field ui satisfies the boundary condition

us = −ui on Γ . (1.2)

The formulation of the scattering problem is not complete without a radiation condition,
which ensures that the solution is unique and physically meaningful. We consider the upward
propagating radiation condition, which guarantees that the scattered field us is propagating
upwards from Γ. For a detailed analysis, we refer to Chandler-Wilde and Monk [25] and Arens
and Hohage [4]. This radiation condition is equivalent to a transparent boundary condition on
a flat surface above the scatterer Γ. It allows waves to pass through the flat surface without
any reflection. This boundary condition can be formulated using the DtN map and additionally
enables us to truncate the domain vertically (see [23, 25]).

In this work, we concentrate specifically on wave scattering by periodic surfaces (see Figure 1.1a),
which may include localized perturbations (see Figure 1.1b). The study of wave propagation in
periodic media has its roots in the work of Lord Rayleigh, who conducted one of the first analyses
of diffraction by gratings. Since then, it has become an important topic of modern mathematical
physics, with applications in thin solar cells, photonic crystals, and organic LED optimization
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(see [3, 12, 61, 62]). Various numerical approaches have been used to study scattering in such
media, including recursive doubling [37, 38, 102] and propagation techniques [44, 63]. These
methods are typically designed for specific periodic geometries, limiting their extension to more
general or locally perturbed structures. Furthermore, in the special case where the incident field
is (quasi-)periodic and the scatterer is sufficiently smooth and periodic, the scattering problem
can be directly reduced to a single bounded cell of periodicity (see, e.g., [66, 96]). This cell
problem can then be solved efficiently using well-established numerical techniques, such as integral
equations [89] or finite element methods [10]. However, in more general situations, where either
the incident field or the surface is not periodic, this direct reduction no longer works. As a result,
the development of novel numerical schemes is essential to efficiently solve these problems.

One way to tackle such problems is to use the Floquet–Bloch (FB) transform, which was
introduced in [15, 46], with further analysis by Kuchment [77] and Lechleiter [81]. This transform
decomposes the original problem in the unbounded periodic domain into a family of decoupled
periodic problems indexed by the Floquet parameter. Since these problems involve only periodic
fields, they can be formulated in a single bounded cell. Each of them depends only on the spatial
variable and can be solved by a classical numerical method. We call the solutions of these problem
the transformed fields.

In this procedure, the numerical error is a combination of two components: the error of the
spatial discretization and the error resulting from the approximation of the inverse FB transform.
In literature, this transform has most often been applied to two-dimensional scattering problems.
Detailed numerical results can be found in [29, 55, 83, 85], while theoretical analyses are provided
in [81, 82]. However, the application of FB transform in three dimensions can only be found
in [73, 84], where the convergence of the numerical method with respect to the Floquet parameter
remains relatively slow. In this work, we present a high-order, efficient method for inverting the
FB transform, significantly improving the convergence rate compared to existing approaches.
This requires proving regularity properties of the transformed field with respect to the Floquet
parameter: the inverse FB transform essentially consists of an integral of the transformed field
over a bounded domain, but the integrand has a particular structure of singularities. Based on
these regularity results, one of the main results presented in this work is a tailor-made quadrature
rule to numerically obtain the scattered field of the original non-periodic problem.

Pure periodicity is rarely found in real media; instead, disruptions appear in small, localized
regions (see [20, 101]). Various methods have been employed to analyze scattering in such media
including the Lippmann-Schwinger equation [29], a volume integral approach [55], a perturbation
technique [18, 19, 92] and a numerical scheme specially designed to obtain the exact boundary
conditions on the vertical segments of a waveguide in [44, 45, 63]. These approaches are applied
in the absorbing case (i.e., for complex wave number), which avoids the presence of singularities.

One question that arises is whether our proposed approach for the purely periodic case remains
effective when extended to the locally perturbed case. Although approaches based on the FB of
the DtN map combined with tailor-made inversion formulas are possible, they require substantial
computational effort, especially in three dimensions (see, for example, [6]). Let us now outline
some of the challenges.

In the locally perturbed case, applying the FB transform directly is not possible due to the lack
of periodicity in the structure. Since the periodic surface and the local perturbation are considered
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known, the perturbation can be removed via a coordinate transformation. This comes at the
cost of dealing with a perturbed Helmholtz equation with non-constant coefficients. However, as
the domain becomes periodic, we are able to apply the FB transform. This yields a family of
periodic problems in a bounded cell, which are coupled because of the variable coefficients. From
the regularity analysis of the non-perturbed case, we know that the structure of the DtN map
leads to singularities in the transformed field with respect to the Floquet parameter. Therefore,
a discretization of the inverse FB transform requires evaluating the transformed field for a large
number of Floquet parameters. Furthermore, the coupling prevents solving these problems in
parallel, which hence requires a high computational time. This can be understood from [83, 104]
for the two-dimensional case and from [6] for the three-dimensional case. Hence the necessity of
proposing a fast solver for such scattering problems becomes more pronounced.

To improve efficiency, inspired by [26, 71], we use the PML instead of the DtN map to
truncate the domain in the vertical direction. The PML was originally introduced by Berenger for
electromagnetic waves [13]. Since then, it has been widely applied in various wave propagation
problems. These include scattering by bounded obstacles [28, 30, 33], rough surface scattering [26],
electromagnetic optics [90], and seismology [43].

Applying the FB transform to the PML-truncated problem has the advantage that the
transformed field depends analytically on the Floquet parameter. This enables us to evaluate the
inverse FB transform accurately from relatively few values of the Floquet parameter. However,
setting up and solving the discretized system directly is still time-consuming due to the coupling.
Using the Schur complement recursively allows us to rewrite the complete system in such a
way that the matrix-vector multiplications are reduced to sums of terms that can be evaluated
independently. Therefore, we can benefit greatly from parallelizing these evaluations by solving
the linear system with an iterative method.

From the theoretical point of view, the convergence rate of the PML has been proven to be
globally linear with respect to the PML parameter for rough surfaces [26]. Additionally, it has
been shown that for flat scatterers the convergence is exponential in every compact set. In the
conclusion of [26], the question of whether the local exponential convergence can be extended to
rough surfaces was stated as an open problem. A partial answer has been provided in [28, 105] by
proving the local exponential convergence in the pure periodic case. We extend the exponential
convergence results of [26, 105] to the locally perturbed case in two dimensions.

So far, we have assumed a known, local perturbation (or defect) in a periodic structure and
focused on computing the scattered field. However, detecting and reconstructing such localized
defects is critical for optimizing the performance of devices based on periodic media (see [20,
50, 101]). These defects can be viewed as perturbations of the pure periodic structure. We
now consider the inverse scattering problem: An incident field is directed into the medium, and
the scattered field is measured at multiple observation points above the scatterer. Using these
measurements, the goal is to detect or reconstruct the unknown perturbation on the periodic
surface.

To detect the support of the perturbation, we refer to [86] for a linear sampling method and [17]
for a factorization method when the periodic background is known. Furthermore, approaches that
require less a priori knowledge of periodic structures have been developed in [21, 22]. However,
each of these methods requires sending and measuring waves from all directions.
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In this thesis, we make the assumption that the location of the perturbation is known. Our
focus is only on the reconstruction of the perturbation using the measured data from a single
incident field.

This inverse problem can be formulated as an optimization problem, described as follows:
Among the set of admissible perturbations X, find the optimal perturbation δ∗ ∈ X, for which

δ∗ = arg min
δ∈X

J(δ) ,

where J : X → R is the objective function depending on the measured data. Computing J often
involves solving a direct scattering problem, where δ ∈ X modifies the domain in which the
equation is posed. At this point, we profit from our fast direct solver as the key component of a
method to reconstruct the perturbation.

One question in inverse problems is how to ensure that the measured data uniquely determines
the perturbation. As mentioned in [11, 40, 57], when the wave number is real, establishing global
uniqueness using only a single incident plane wave remains an open problem. So far, uniqueness
results have been proven under certain assumptions on the regularity of the structure (see [1,
11, 57, 69] for sufficiently smooth periodic structures and [39, 40, 42] for polygonal periodic
structures). For local perturbations, uniqueness from measured data generated by point source
waves has been established in [59], using a finite number of incident fields when the defect’s size
and height are known; otherwise, infinitely many incident fields are required.

Furthermore, such inverse problems are ill-posed, meaning that small changes in the measured
data can lead to large errors in the estimated position and shape of perturbations. Consequently,
the resulting optimization problems are also unstable. One common approach to solving such ill-
posed problems involves iterative regularization methods. Some of these methods are formulated
using derivatives with respect to boundary variations (see [56, 86]). Therefore, an essential
preliminary step is to prove that the objective function is Fréchet differentiable with respect to
the boundary. This has been established in [66] for (quasi-)periodic scattering problems with
respect to periodic surfaces. In this work, we extend these results to non-periodic scattering
problems.

The Fréchet derivative can be computed by solving an additional boundary value problem for
each admissible perturbation. To apply a Newton–type algorithm, several admissible perturbations
must be considered in each iteration. Therefore, using a fast direct solver for the scattering
problem significantly improves the performance of the reconstruction algorithm. Thus, we can
use the fast iterative solver proposed in an earlier section of the thesis.

1.1. Outline of the Thesis

In Chapter 2, we introduce and discuss some fundamental tools that are essential for the entire
thesis. These include function spaces on unbounded structures, two vertical truncation methods

— the DtN map and the PML — as well as the FB transform. We also review the properties of
the FB transform and describe how it decomposes a non-periodic problem in a periodic domain
into a family of periodic problems in a single bounded cell.

Chapter 3 is devoted to solving non-periodic scattering problems in unbounded periodic



6 Chapter 1. Introduction

structures. We truncate the domain in the vertical direction using the DtN map. Then, we
apply the FB transform to obtain a decoupled family of problems in a bounded cell. From the
theoretical point of view, we analyze the regularity of the transformed field with respect to
the Floquet parameter. For this purpose, we provide a representation reflecting the expected
structure of singularities, which arise from the DtN map. We propose a tailor-made quadrature
rule adapted to the singularities of the transformed field, which allows us to evaluate the inverse
FB transform with higher accuracy. We additionally obtain an error estimate of the proposed
numerical approach. Numerical examples demonstrating the performance of the proposed scheme
are included.

In Chapter 4, we focus on solving non-periodic scattering problems in locally perturbed periodic
structures. We introduce two formulations of the truncated problem: one based on the exact
DtN map and the other based on its PML approximation. Afterwards, we restore periodicity of
the domain via a coordinate transformation, which allows us to apply the FB transform. This
yields a coupled family of periodic problems posed in a bounded cell. We prove the unique
solvability of the PML-truncated problem. Moreover, we show that, in two dimensions, the
PML approximation converges exponentially to the solution of the DtN-truncated problem,
with respect to the PML parameter, on every compact set. To numerically compute the PML
approximation of the scattered field, we propose a fast iterative solver. At each iteration, the
matrix-vector products corresponding to different Floquet parameters can be evaluated in parallel.
As a conclusion, by using this technique, we are able to significantly reduce the computational
time. Some numerical results illustrate the efficiency and the convergence rate of the proposed
method.

Chapter 5 is concerned with solving an inverse scattering problem for compactly supported
perturbations. The objective is to reconstruct the unknown perturbation from near-field obser-
vations corresponding to a non-periodic incident field. This requires inverting the scattering
functional, which maps the perturbation to the observed scattered field. This inverse problem
can be framed as an optimization problem. To solve it with a Newton–type method, we prove
the differentiability of the scattering operator and thus obtain its Fréchet derivative. To stabilize
the optimization problem, we introduce a penalty term and determine its Fréchet derivative.
We bring together all these requirements to establish an efficient Gauss–Newton algorithm to
reconstruct the unknown perturbation. Numerical results demonstrating the performance of the
proposed method are provided.

The final part of this thesis contains three appendices: Appendix A provides the technical
computations necessary for Chapters 3 and 4. Appendix B compares the computational cost of
the proposed iterative method in Chapter 4 with the direct solver in [98, Thm. 2.2]. Appendix C
summarizes useful properties of Green’s function.

1.2. Prior Publication

Some results of Chapter 3 have already been published in [6].



CHAPTER 2

Fundamental Tools

In this chapter, we collect some mathematical tools which are required for analyzing and solving
scattering problems in unbounded domains. We start with the definition of some useful function
spaces. Afterwards, we explain some approaches to reformulate the problem in a bounded domain.

2.1. Sobolev Spaces

To construct Sobolev spaces of non-integer order, we follow [88] and begin with the Schwartz
space of rapidly decreasing complex-valued C∞ functions (see [88, p. 72]).

Definition 2.1. The Schwartz space S(Rd) is defined by

S(Rd) :=
{
ϕ ∈ C∞(Rd) : sup

x∈Rd

∣∣∣xα∂βϕ(x)
∣∣∣ <∞ for all multi-indices α, β ∈ Nd

}
.

For all multi-indices α and β, we consider the semi-norms |ϕ|α,β := supx∈Rd |xα∂βϕ(x)|. A
sequence {ϕj}j∈N ⊆ S(Rd) is said to converge to ϕ ∈ S(Rd) if |ϕj − ϕ|α,β → 0 as j →∞ for all α
and β.

That means, this space consists of smooth functions whose derivatives, as well as the function
itself, decay at infinity faster than any polynomial. The topology of this space is induced by the
countable family of semi-norms |ϕ|α,β.

Now, we introduce the Fourier transform of functions in the space S(Rd) as in [88, p. 72].

Definition 2.2. The Fourier transform F : S(Rd)→ S(Rd) is given by

(Fϕ)(ξ) := (2π)−d/2
∫
Rd

e−iξ·xϕ(x) dx for all ξ ∈ Rd ,

with the inverse Fourier transform

(F−1φ)(x) := (2π)−d/2
∫
Rd

eiξ·xφ(ξ) dξ for all x ∈ Rd .
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Since (F(∂αϕ))(ξ) = (iξ)α(Fϕ)(ξ) and F((−ix)αϕ(x)) = ∂α(Fϕ), the action of the Fourier
transform on the functions in the Schwartz space is well defined and continuous.

Remark 2.3. A straightforward consequence of [88, Cor. 3.5 and Thm. 3.12] is that the Fourier
transform can be extended by density to an isometry F : L2(Rd)→ L2(Rd).

The dual of the Schwartz space, denoted by S∗(Rd), is known as the space of temperate
distributions, which contains all continuous linear functionals on S(Rd). The duality pairing
between these spaces is written as ⟨·, ·⟩S∗(Rd)×S(Rd). For readability, we henceforth use the
simplified notation ⟨·, ·⟩Rd .

The Fourier transform can be extended by duality to an operator F : S∗(Rd)→ S∗(Rd), i.e.,
for ϕ ∈ S∗(Rd)

⟨Fϕ, ψ⟩Rd := ⟨ϕ,Fψ⟩Rd for all ψ ∈ S(Rd) .

Using the recalled preliminaries, we define Sobolev spaces of non-integer order as in [88, p. 76].

Definition 2.4. The Sobolev space Hs(Rd) of order s ∈ R is defined by

Hs(Rd) :=
{
ϕ ∈ S∗(Rd) : (1 + |·|2)s/2Fϕ ∈ L2(Rd)

}
.

This space is a Hilbert space equipped with the inner product
〈
ϕ, ψ

〉
Hs(Rd)

:=
〈

(1 + |·|2)s/2Fϕ, (1 + |·|2)s/2Fψ
〉

L2(Rd)
,

which induces the norm
∥ϕ∥Hs(Rd) :=

∥∥∥∥(1 + |·|2)s/2Fϕ
∥∥∥∥

L2(Rd)
.

The corresponding weighted Sobolev space can be defined based on [81, Sec. 3].

Definition 2.5. The weighted Sobolev space Hs
r (Rd), for any s, r ∈ R, is given by

Hs
r (Rd) :=

{
ϕ ∈ S∗(Rd) : (1 + |·|2)r/2

ϕ ∈ Hs(Rd)
}

and it is equipped with the norm

∥ϕ∥Hs
r (Rd) :=

∥∥∥∥(1 + |·|2)r/2
ϕ

∥∥∥∥
Hs(Rd)

.

For r ∈ R, L2
r(Rd) := H0

r (Rd). The dual of Hs
r (Rd) is H−s

−r (Rd).

Remark 2.6. If s ∈ N, the following is an equivalent definition for the latter norm

∥ϕ∥2Hs
r (Rd) =

∑
m∈Nd,|m|≤s

∥∥∥∥∂m
(

(1 + |·|2)r/2
ϕ

)∥∥∥∥2

L2(Rd)
.

We now introduce a class of subspaces of Hs(Rd), namely Sobolev spaces containing α-
quasiperiodic functions for α ∈ Rd as in [81, Eq. (8)]. This includes periodic functions, corre-
sponding to α = 0.



2.1. Sobolev Spaces 9

Definition 2.7. For a given α ∈ Rd, a function ϕ : Rd → Rd is an α-quasiperiodic function with
fundamental period L > 0 if

ϕ(x+ Lj) = eiLα·jϕ(x) for x ∈ Rd, j ∈ Zd .

The corresponding Sobolev space Hs
α(Rd) for s ∈ R is given by

Hs
α(Rd) :=

{
ϕ ∈ Hs(Rd) : ϕ(x+ Lj) = eiLα·jϕ(x) for x ∈ Rd, j ∈ Zd

}
,

equipped with the norm
∥ϕ∥2Hs

α(Rd) :=
∑

j∈Zd

(1 + |j|2)s
∣∣∣ϕ̂α(j)

∣∣∣2 ,
where ϕ̂α(j) denotes the j-th Fourier coefficient of ϕ(x)e−iα·x, i.e.,

ϕ̂α(j) := L−d/2
∫

[−L/2,L/2]d
ϕ(x) e−iα·xe−i(2π/L)j·x dx .

For s < 0, the integral above can be understood as a dual pairing.

Remark 2.8. Note that an α-quasiperiodic function becomes periodic when multiplied by e−iα·x.
For α = 0, we write Hs

per(Rd) instead of Hs
0(Rd) to emphasize the periodicity.

Lemma 2.9. For α ∈ Rd, let Mα : ϕ 7→ ϕeiα·x. If ϕ ∈ Hs
per(Rd), then Mαϕ ∈ Hs

α(Rd) and

∥ϕ∥Hs
per(Rd) = ∥Mαϕ∥Hs

α(Rd) .

Proof. Using the definition of these norms yields

∥Mαϕ∥2Hs
α(Rd) = L−d

∑
j∈Zd

(1 + |j|2)s

∣∣∣∣∣
∫

[−L/2,L/2]d
M−αMαϕ e−i(2π/L)j·x dx

∣∣∣∣∣
2

= ∥ϕ∥2Hs
per(Rd) .

So far, we have defined Sobolev spaces on the full space Rd. For any non-empty open set
Ω ⊆ Rd, we define (see [88, p. 77])

Hs
r (Ω) :=

{
φ = ϕ|Ω : ϕ ∈ Hs

r (Rd)
}
,

equipped with the norm
∥φ∥Hs

r (Ω) := inf
ϕ∈Hs

r (Rd)
ϕ|Ω=φ

∥ϕ∥Hs
r (Rd) .

Let Cm−1,1 for m ∈ N be the set of functions whose (m− 1)-th derivative is Lipschitz (see [88,
p. 90]). Let the boundary of the domain Ω be denoted by ∂Ω = Ω \ Ω and assume that it is the
graph of a Cm−1,1-function ζ for m ∈ N. For ϕ : ∂Ω→ C, we define ϕζ : Rd−1 → C by

ϕζ(x) := ϕ(x, ζ(x)) for x ∈ Rd−1 .
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Now, Sobolev spaces on the boundary ∂Ω are given by (see [88, pp. 98-99])

L2
r(∂Ω) :=

{
ϕ ∈ L2

loc(∂Ω) : ϕζ ∈ L2
r(Rd−1)

}
, for r ∈ R ,

Hs
r (∂Ω) :=

{
ϕ ∈ L2

r(∂Ω) : ϕζ ∈ Hs
r (Rd−1)

}
, for 0 < s ≤ m and r ∈ R ,

equipped with the norm ∥ϕ∥Hs
r (∂Ω) = ∥ϕζ∥Hs

r (Rd−1). Moreover, by

∥ϕ∥H−s
r (∂Ω) :=

∥∥∥∥√1 + |∇ζ|2ϕζ

∥∥∥∥
H−s

r (Rd−1)
for 0 < s ≤ m,

the space H−s
r (∂Ω) can be defined as the completion of L2(∂Ω) with respect to this norm.

To define the restriction of a function to the boundary, we make use of the trace operator,
which is defined as

γD : C∞0 (Ω)→ C∞0 (∂Ω), γDϕ := ϕ|∂Ω .

According to [88, Thm. 3.37], γD has a unique bounded extension γD : Hs
r (Ω)→ H

s−1/2
r (∂Ω) for

r ∈ R when the boundary of Ω is a graph of Cm−1,1-functions and 1/2 < s ≤ m. Moreover, this
extension is surjective.

Since this operator is bounded, there exists a constant c > 0 such that

∥γDϕ∥Hs−1/2
r (∂Ω) ≤ c∥ϕ∥Hs

r (Ω) for all ϕ ∈ Hs
r (Ω) . (2.1)

The trace operator allows us to define the Sobolev spaces of functions which are zero on the
boundary. For s ≥ 1, we define

H̃s
r (Ω) := {ϕ ∈ Hs

r (Ω) : γDϕ = 0} .

We next introduce the conormal derivative which can be used to describe Neumann boundary
conditions based on [88, Lem. 4.3, 49, Thm 2.2]. Let

H1(∆,Ω) :=
{
ϕ ∈ H1(Ω) : ∆ϕ ∈ L2(Ω)

}
,

with ∥ϕ∥2H1(∆,Ω) := ∥ϕ∥2H1(Ω) + ∥∆ϕ∥2L2(Ω). Then, there exists a unique bounded linear operator
γN : H1(∆,Ω)→ H−1/2(∂Ω) such that Green’s first identity is satisfied, i.e.,〈

∇ϕ,∇ψ
〉

Ω
=
〈
∆ϕ, ψ

〉
Ω

+
〈
γNϕ, γDψ

〉
∂Ω

for all ψ ∈ H1(Ω). Note that for ϕ ∈ C1(Ω), γNϕ = n · ∇ϕ|∂Ω, where n denotes the outward unit
normal vector on the surface ∂Ω.

2.2. Upward Propagating Radiation Condition

A common radiation condition for the scattering problem (1.1)–(1.2) in the unbounded domain
Ω is to assume that the scattered field is propagating away from the scatterer Γ (represented by
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Γ

ΓH

Ω+
H

ΩH

Figure 2.1. A two-dimensional sketch of the unbounded domains ΩH and Ω+
H .

the graph of ζ) and does not reflect back into the computational domain Ω.
As explained in [9, 25], a classical approach to deriving this radiation condition is to first

introduce a flat surface ΓH := Rd−1 × {H} for some H > ∥ζ∥∞. This surface divides the domain
Ω into two unbounded regions: the interior domain ΩH and the exterior domain Ω+

H , as depicted
in Figure 2.1. The next step is to solve the exterior problem in Ω+

H together with a boundary
condition on ΓH . This means, for g ∈ H1/2

r (ΓH) with |r| < 1, we need to solve the exterior
problem in the weak sense

∆us + k2us = 0 in Ω+
H ,

us = g on ΓH ,

us is outgoing .

(2.2a)
(2.2b)
(2.2c)

Let x̃ denote the first d − 1 components of x ∈ Rd for d = 2, 3. The solution to (2.2) can
formally be obtained by applying the Fourier transform with respect to the first d− 1 variables:

(Fus)(ξ, xd) := (2π)−(d−1)/2
∫
Rd−1

e−ix̃·ξus(x̃, xd) dx̃ , ξ ∈ Rd−1, xd ≥ H .

Applying the Fourier transform to the Helmholtz equation (2.2a) yields the following ordinary
differential equation

∂2
xd

(Fus)(ξ, xd) + (k2 − |ξ|2)(Fus)(ξ, xd) = 0 , ξ ∈ Rd−1, xd ≥ H , (2.3)

together with the boundary value us(ξ,H) = g(ξ,H). The general solution to this ordinary
differential equation is given by

(Fus)(ξ, xd) = C1(ξ)ei
√

k2−|ξ|2xd + C2(ξ)e−i
√

k2−|ξ|2xd , ξ ∈ Rd−1, xd ≥ H (2.4)

for some complex-valued coefficients C1 and C2. Note that when |ξ| < k, the value of
√
k2 − |ξ|2

is a positive real number, hence both exp(i
√
k2 − |ξ|2xd) and exp(−i

√
k2 − |ξ|2xd) are oscillatory.

On the other hand, when |ξ| > k, the value of
√
k2 − |ξ|2 is purely imaginary, which implies

that exp(i
√
k2 − |ξ|2xd) is exponentially decaying and exp(−i

√
k2 − |ξ|2xd) is exponentially

growing as xd increases. Since the solution with respect to xd is assumed to be outgoing and
exp(−i

√
k2 − |ξ|2xd) is incoming, we conclude that C2 = 0. By imposing the boundary condition,
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we obtain the following representation

(Fus)(ξ, xd) = (Fg)(ξ,H)ei
√

k2−|ξ|2(xd−H) , ξ ∈ Rd−1, xd ≥ H ,

in which
√
k2 − |ξ|2 has a non-negative imaginary part. Thus, by applying the inverse Fourier

transform, we recover the solution for xd ≥ H by

us = Dg ,

where the operator D : H1/2
r (ΓH)→ H1

loc(Ω+
H) is defined by

(Dg)(x) := (2π)−(d−1)/2
∫
Rd−1

eix̃·ξ+i
√

k2−|ξ|2(xd−H)(Fg)(ξ,H) dξ x ∈ Ω+
H . (2.5)

This operator is well defined (see [23, Sec. 2]) for |r| < 1. Moreover, it indicates that the
radiating solution us is a superposition of the homogeneous and non-homogeneous upward
propagating plane waves exp(ix̃ · ξ + i

√
k2 − |ξ|2(xd −H)) for |ξ| ≤ k and evanescent waves

exp(ix̃ · ξ −
√
|ξ|2 − k2(xd −H)) for |ξ| > k.

What follows is a summary of some results from [23, Sec. 2] to clarify why the input of the
operator D is a function in the Sobolev space H1/2

r (ΓH) with the weight r restricted to |r| < 1.
We will first point out in Lemma 2.10 that the integral on the right-hand side of (2.5) exists only
for g ∈ H1/2

r (ΓH) with r > −1. However, we will show that the interior boundary value problem
in ΩH together with the upward propagating radiation condition is not solvable in general for
r ≥ 1.

Lemma 2.10. The integral on the right-hand side of (2.5) exists for all g ∈ H1/2
r (Rd−1) if and

only if r > −1.

Proof. We first focus on r ≥ 0. In this case, it is clear that H1/2
r (Rd−1) ⊆ H1/2(Rd−1) ⊆ L2(Rd−1).

Since the Fourier transform is an isometry on L2(Rd−1), we have Fg ∈ L2(Rd−1) for any
g ∈ H

1/2
r (Rd−1). Hence, the integral on the right-hand side of (2.5) is well defined in the

Lebesgue sense if fx ∈ L2(Rd−1), where fx is defined by

fx(ξ) := eix̃·ξ+i
√

k2−|ξ|2(xd−H) , ξ ∈ Rd−1 .

This holds because using polar coordinates leads to

∥fx∥2L2(Rd−1) =
∫
Rd−1

∣∣∣fxfx

∣∣∣ dξ =
∫
|ξ|≤k

dξ +
∫
|ξ|>k

∣∣∣∣e−2
√
|ξ|2−k2(xd−H)

∣∣∣∣ dξ
≤ C(k, d) +

∫ ∞
0

e−2ρ(xd−H)ρd−2 dρ <∞ .

Now, it remains to analyze the existence of the integral on the right-hand side of (2.5) for
g ∈ H1/2

r (ΓH) with r < 0. In this case, for fixed x ∈ Ω+
H , we interpret the mapping g 7→ (Dg)(x)

as a bounded linear functional on H
1/2
r (ΓH). Now, we have to establish for which r is possible.

As g ∈ H1/2
r (Rd−1), we have Fg ∈ Hr

1/2(Rd−1). From the definition of the operator D, we need
to prove that fx ∈ H−r

−1/2(Rd−1) which holds only for r > −1. To show it, it is sufficient to prove
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that Ffx ∈ H−1/2
−r (Rd−1) if and only if r > −1.

For this purpose, we first recall from [23, Sec. 2] that for g ∈ L2(ΓH), (2.5) is equivalent to

(Dg)(x) = 2
∫

ΓH

∂yd
Φ(x, y)g(y) ds(y) = 2

∫
Rd−1

∂yd
Φ(x, ỹ,H)g(ỹ, H) dỹ , (2.6)

where Φ is the fundamental solution of the Helmholtz equation given by

Φ(x, y) :=


i
4H

(1)
0 (k|x− y|) if d = 2 ,

1
4π

eik|x−y|

|x− y|
if d = 3

and H
(1)
0 is the Hankel function of the first kind of order zero.

By taking into account that the Fourier transform is unitary for functions in L2-space and
comparing the definition of D with (2.6), we have

(Ffx)(y) = 2(2π)(d−1)/2∂yd
Φ(x, y)|yd=H ,

and according to [27, Eq. (2.4)]

|(Ffx)(y)| ∼ c(xd −H)|y|−(1+d)/2 as |y| → ∞ , (2.7)

where the constant c depends on the wave number k and the dimension d. Since for r < 0 we
have L2

−r(Rd−1) ⊂ H−1/2
−r (Rd−1), it is sufficient to prove that

Ffx ∈ L2
−r(Rd−1) for r > −1 .

By using the definition of L2
−r(Rd−1) and polar coordinates, we obtain

∥Ffx∥2L2
−r(Rd−1) = C1 + C2

∫
Rd−1\B(0,1)

∣∣∣∣(1 + |y|2)−r/2|y|−(1+d)/2
∣∣∣∣2 dy

≤ C3

∫
Rd−1\B(0,1)

∣∣∣y−ry−(1+d)/2
∣∣∣2 dy

≤ C3

∫
Rd−1\B(0,1)

|y|−2r−1−d dy ≤ C3

∫ ∞
1

ρ−2r−1−dρd−2 dρ

for some constants C1, C2 and C3. This integral exists when −2r − 3 < −1, which is equivalent
to r > −1.

We still need to show that Ffx /∈ H−1/2
−r (Rd−1) for r ≤ −1. As

H
−1/2
−r (Rd−1) ⊆ H−1

−r (Rd−1) ⊆ H−1
1 (Rd−1) ,

it is enough to prove Ffx /∈ H−1
1 (Rd−1). The proof is done by contradiction. We assume that
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Ffx ∈ H−1
1 (Rd−1). Using the operator norm, we have

∥Ffx∥H−1
1 (Rd−1) = sup

0̸=v∈H1
−1(Rd−1)

|⟨Ffx, v⟩Rd−1 |
∥v∥H1

−1(Rd−1)
≥ sup

n∈N

|⟨Ffx, vn⟩Rd−1 |
∥vn∥H1

−1(Rd−1)
,

where the sequence (vn)n∈N is chosen such that

vn(y) = |y|(3−d)/2−1/n for |y| > 1 ,
∥vn∥H1

−1(Rd−1) < c for |y| ≤ 1 .

By a straightforward computation, we obtain

∥vn∥2H1
−1(Rd−1) ≤ c

∫
Rd−1\B(0,1)

|y|−2|y|3−d−2/n dy = c

∫ ∞
1

ρ−1−2/n dρ = c1n ,

for a positive constant c1 independent of n ∈ N. By using the asymptotic behaviour of Ffx given
in (2.7) and polar coordinate, we arrive at

|⟨Ffx, vn⟩Rd−1 | =
∣∣∣⟨Ffx, vn⟩Rd−1\B(0,1) + ⟨Ffx, vn⟩B(0,1)

∣∣∣
≥
∣∣∣⟨Ffx, vn⟩Rd−1\B(0,1)

∣∣∣− ∣∣∣⟨Ffx, vn⟩B(0,1)

∣∣∣
≥
∣∣∣∣∣c
∫
Rd−1\B(0,1)

|y|−(1+d)/2 vn(y) dy
∣∣∣∣∣− ∥Ffx∥H−1

1 (Rd−1)∥vn∥H1
−1(B(0,1))

≥ c̃+ c

∣∣∣∣∫ ∞
1

ρ−1−1/n dρ
∣∣∣∣ ≥ c2n ,

for positive constants c̃ and c2 independent of n. This yields

∥Ffx∥H−1
1 (Rd−1) ≥ sup

n∈N

c2n√
c1n

= +∞ .

This shows that Ffx /∈ H−1
1 (Rd−1). Consequently, Ffx /∈ H−1/2

−r (Rd−1) for r ≤ −1.

So far, we have shown that the operator Dg is well defined for g ∈ H1/2
r (Rd−1) for all r > −1.

Now we explain why we restrict the weight to r < 1. This is because the interior boundary
value problem in ΩH is not solvable in general for r ≥ 1. To show this, we focus on a simple
case by selecting Γ = Rd−1 × {c} and ΓH = Rd−1 × {2c}. We consider the incident field
ui(x, y) = Φ(x, y)− Φ(x, y′) generated by two point sources y = (0, y2)⊤ between Γ and ΓH , and
y′ = (0, y2 − 2c)⊤ below Γ. The corresponding scattered field satisfies

∆us + k2us = 0 in ΩH ,

us = −ui on Γ ,

together with the radiation condition us(x) = (Dus|ΓH
)(x) for all x above ΓH . The exact solution

of this problem is −G(x, ŷ), where G(x, ŷ) = Φ(x, ŷ)− Φ(x, y′) with ŷ = (0, 2c− y2)⊤. Now we
show that g := G(·, ŷ)|ΓH

/∈ H1/2
r (ΓH) when r ≥ 1. Since H1/2

r (ΓH) ⊆ H1/2
1 (ΓH) ⊆ L2

1(ΓH), it is
sufficient to prove g /∈ L2

1(ΓH).
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According to [23, Eq. (2.9)], the asymptotic behaviour of Green’s function is given by

|G(x, ŷ)| ∼ c(k, d)
(
xd|x|−(1+d)/2

)
as |x| → ∞ .

By using the definition of the L2
r-norm, we obtain

∥g∥2L2
1(ΓH) ≥ C

∫
Rd−1

(
1 + |x|2

)
|x|−(1+d) dx

≥ C
∫
Rd−1\B(0,1)

(
1 + |x|2

)
|x|−(1+d) dx

≥ Ĉ
∫
Rd−1\B(0,1)

|x|1−d dx

≥ Ĉ
∫ ∞

1
ρ−1 dρ = +∞ ,

for some constants C and Ĉ. This shows that g /∈ L2
1(ΓH) and consequently g /∈ H1

r (ΓH) for
r ≥ 1.

In this section, we have described how to obtain the upward propagating radiation condition.
However, this condition is imposed on the unbounded domain Ω+

H above ΓH . In the following
section, we use this condition to derive a transparent boundary condition on the flat surface ΓH for
the scattering problem (1.1). This boundary condition allows us to truncate the computational
domain in the vertical direction without reflecting the scattered field back into the domain
artificially.

2.2.1. Vertical Domain Truncation via DtN Map

We are going to show that the outgoing solution given by (2.5) can be expressed as the trace of
the solution on ΓH . That means, equation (2.5) can be equivalently formulated by a transparent
boundary condition on ΓH . Taking the normal derivative of us with respect to xd and evaluating
it on ΓH leads to

(∂xd
us)(x̃, H) := (T +us)(x̃, H) , (2.8)

where the Dirichlet-to-Neumann (DtN) map T + : H1/2
r (ΓH)→ H

−1/2
r (ΓH) is given by

(T +φ)(x̃, H) = i(2π)−(d−1)/2
∫
Rd−1

√
k2 − |ξ|2eix̃·ξ(Fφ)(ξ,H) dξ . (2.9)

Lemma 2.11. For |r| < 1, the DtN operator T + : H1/2
r (ΓH)→ H

−1/2
r (ΓH) is well defined and

continuous.

Proof. See [23, Lem. 3.3].

Remark 2.12. The DtN operator T + can be written as

T + = F−1MγF ,
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where F is the Fourier operator and the operator Mγ is the multiplication by γ(ξ) defined by

γ(ξ) :=

 i
√
k2 − |ξ|2 if |ξ| ≤ k,

−
√
|ξ|2 − k2 if |ξ| > k .

(2.10)

The transparent boundary condition (2.8) can be used in place of the radiation condition. This
results in the following boundary value problem, now posed in the vertically bounded domain ΩH

∆us + k2us = 0 in ΩH ,

us = −ui on Γ,
∂xd

us = T +us on ΓH .

(2.11a)
(2.11b)
(2.11c)

Since the incident field ui satisfies the Helmholtz equation, by using the total field u = ui + us,
we can recast problem (2.11) into

∆u+ k2u = 0 in ΩH ,

u = 0 on Γ,
(∂xd

− T +)u = (∂xd
− T +)ui on ΓH .

(2.12a)
(2.12b)
(2.12c)

In the rest of this work, the main focus is on the variational form of problem (2.12), which is
stated below. Before stating the problem, let H̃1

r (ΩH) :=
{
ϕ ∈ H1

r (ΩH) : ϕ|Γ = 0
}

for |r| < 1.

Variational Problem: For ui ∈ H1
r (ΩH) with |r| < 1, find u ∈ H̃1

r (ΩH) such that

ar(u, v) =
〈
(∂xd

− T +)ui, v
〉

ΓH

for all v ∈ H̃1
−r(ΩH) , (2.13)

where ar : H̃1
r (ΩH)× H̃1

−r(ΩH)→ C is defined by

ar(u, v) :=
〈
∇u,∇v

〉
ΩH

− k2⟨u, v⟩ΩH
−
〈
T +u, v

〉
ΓH

. (2.14)

The above sesquilinear form is well defined and continuous on H̃1
r (ΩH)× H̃1

−r(ΩH) for |r| < 1.
This is a direct consequence of Lemma 2.11.

Problem (2.13) is considered the general framework of the more specific cases studied in the
subsequent chapters. We present here the existence and uniqueness results established in [23,
Sec. 4] for the general case. We now elaborate on the details of the proof.

2.2.2. Existence and Uniqueness of Solutions to the Truncated Problem

The Variational Problem stated in (2.13) in the non-weighted Sobolev space H̃1
0 (ΩH) has a unique

solution. This result was established in [25, Cor. 4.3] using the generalized Lax–Milgram theorem
(see, e.g., [60, Thm. 2.15]).



2.2. Upward Propagating Radiation Condition 17

Lemma 2.13. Let the sesquilinear form a0 be defined as in (2.14) for r = 0 which satisfies the
inf-sup condition, i.e.,

Cinfsup := inf
0̸=u∈H̃1

0 (ΩH)
sup

0̸=v∈H̃1
0 (ΩH)

|a0(u, v)|
∥u∥H1

0 (ΩH)∥v∥H1
0 (ΩH)

> 0 . (2.15)

Then, for ui ∈ H1
0 (ΩH), the Variational Problem (2.13) has a unique solution u ∈ H̃1

0 (ΩH), which
satisfies

∥u∥H1
0 (ΩH) ≤

1
Cinfsup

∥G∥(H1/2
0 (ΓH))

∗ , (2.16)

with G :=
〈
(∂xd

− T +)ui, ·
〉

ΓH
∈ (H1/2

0 (ΓH))
∗
.

Proof. See [25, Cor. 4.3].

To extend this result to the weighted Sobolev spaces H̃1
r (ΩH) for r ̸= 0, the main idea is to

use a perturbation argument involving a commutator (see [23, Sec. 2]). This reduces the theorem
to a form involving only the non-weighted spaces, i.e., r = 0. Thus, the existence and uniqueness
result presented in Lemma 2.13 can be applied.

In the following lemma, the commutator estimate is given, which is an essential tool to make a
connection to the non-weighted case.

Lemma 2.14. Let C := T + − (b2 + |x|2)r/2T +(b2 + |x|2)−r/2 with parameter b > 0. Then, for
kb ≥ 1 and |r| < 1,

∥C∥H−1/2(ΓH)←H1/2(ΓH) ≤ c(r)
√
k

b
.

Proof. See [23, Thm. 6.1].

The sesquilinear form (2.14) defines a continuous linear operator Ar : H̃1
r (ΩH)→ (H̃1

r (ΩH))∗

for |r| < 1. The invertibility of A0 was established in Lemma 2.13. The following theorem states
that the operator Ar is also invertible, as shown in [23, Thm. 4.1].

Theorem 2.15. For |r| < 1, the operator Ar is invertible. Hence, the Variational Problem (2.13)
has a unique solution for all ui ∈ H1

r (ΩH).

Proof. For the parameter b > 0, we define the following norms

∥u∥L2
r,b

(ΩH) :=
∥∥∥∥(b2 + |x|2)r/2

u

∥∥∥∥
L2(ΩH)

,

∥u∥2H1
r,b

(ΩH) :=
∫

ΩH

(∣∣∣∣(b2 + |x|2)r/2
u

∣∣∣∣2 +
∣∣∣∣∇((b2 + |x|2)r/2

u

)∣∣∣∣2
)

dx .

Let a > 0 be sufficiently large. For u ∈ H̃1
r,b(ΩH) and v ∈ H̃1

−r,b(ΩH), we consider

φ := (b2 + |x|2)r/2
u ∈ H̃1(ΩH) ,

ψ := (b2 + |x|2)−r/2
v ∈ H̃1(ΩH) .
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Substituting u = (b2 + |x|2)−r/2
φ and v = (b2 + |x|2)r/2

ψ into the sesquilinear form (2.14) yields

ar(u, v) = a0(φ,ψ) + lb(φ,ψ) , (2.17)

where a0 : H̃1(ΩH)× H̃1(ΩH)→ C has the same representation as ar given in (2.14). Moreover,
lb := lb,1 + lb,2 with

lb,1(φ,ψ) :=
〈
∇
(

(b2 + |x|2)−r/2
)
φ,∇

(
(b2 + |x|2)r/2

)
ψ

〉
ΩH

+
〈

(b2 + |x|2)r/2
(
∇(b2 + |x|2)−r/2

)
φ,∇ψ

〉
ΩH

+
〈
∇φ, (b2 + |x|2)−r/2

(
∇(b2 + |x|2)r/2

)
ψ

〉
ΩH

and
lb,2(φ,ψ) :=

〈
(b2 + |x|2)r/2 T +(b2 + |x|2)−r/2

φ− T +φ,ψ

〉
ΓH

= −
〈
Cφ,ψ

〉
ΓH

.

For the term lb,1, we can obtain the following estimate

|lb,1(φ,ψ)| ≤

∣∣∣∣∣∣
〈(

(b2 + |x|2)r/2∇(b2 + |x|2)−r/2
)
φ,

(
(b2 + |x|2)−r/2∇(b2 + |x|2)r/2

)
ψ

〉
ΩH

∣∣∣∣∣∣
+
∣∣∣∣∣
〈(

(b2 + |x|2)r/2∇(b2 + |x|2)−r/2
)
φ,∇ψ

〉
ΩH

∣∣∣∣∣
+

∣∣∣∣∣∣
〈
∇φ,

(
(b2 + |x|2)−r/2∇(b2 + |x|2)r/2

)
ψ

〉
ΩH

∣∣∣∣∣∣ .
Since

sup
x∈ΩH

∣∣∣∣∇(b2 + |x|2)r/2
∣∣∣∣(b2 + |x|2)−r/2 = |r| sup

x∈ΩH

(b2 + |x|2)r/2−1|x|(b2 + |x|2)−r/2

= |r| sup
x∈ΩH

(
b2

|x|
+ |x|

)−1

= |r|
b

(
inf

x∈ΩH

(
b

|x|
+ |x|

b

))−1
≤ |r|2b ,

the previous estimate can be written as

|lb,1(φ,ψ)| ≤
( |r|

2b

)2
∥φ∥L2(ΩH)∥ψ∥L2(ΩH)

+ |r|2b
(
∥∇φ∥L2(ΩH)∥ψ∥L2(ΩH) + ∥φ∥L2(ΩH)∥∇ψ∥L2(ΩH)

)
≤ |r|2b max

{
1, |r|2b

}
∥φ∥H1(ΩH)∥ψ∥H1(ΩH) . (2.18)
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Moreover, using Lemma 2.14 yields

|lb,2(φ,ψ)| =
∣∣∣∣−〈Cφ,ψ〉ΓH

∣∣∣∣ ≤ ∥Cφ∥H−1/2(ΓH)∥ψ∥H1/2(ΓH)

≤ c(r)
√
k

b
∥φ∥H1/2(ΓH)∥ψ∥H1/2(ΓH)

≤ c(r, k)
√

1
b
∥φ∥H1(ΩH)∥ψ∥H1(ΩH) , (2.19)

where the last inequality is obtained by using (2.1).
Considering the operator Lb : H̃1(ΩH)→ (H̃1(ΩH))∗ generated by lb and using (2.18) and (2.19),

we conclude that Lb tends to zero when b tends to infinity.
Finally, the operator Ar generated by (2.17) can be written as

Ar = (b2 + |x|2)−r/2(A0 + Lb)(b2 + |x|2)r/2
,

where the operator A0 corresponds to the sesquilinear form a0. According to Lemma 2.13, the
operator A0 is invertible. Furthermore, the operator A0 + Lb is a small perturbation of the
operator A0 when b is sufficiently large. Therefore, by applying the perturbation theorem (see [75,
Thm. 10.1]), we conclude that the operator Ar is invertible.

2.3. Perfectly Matched Layer

Another approach to truncate the domain vertically away from the scatterer is the perfectly
matched layer (PML). The main idea is to add an absorbing layer with finite thickness above
the computational domain. Absorption is obtained by stretching the vertical coordinate into
the complex plane. Since the outgoing waves are absorbed by the PML, the problem can be
truncated by imposing a boundary condition at the top of the layer. In this work, we choose
the homogeneous Dirichlet boundary condition. This section elaborates on how the PML can be
used as a truncation method, based on [26, Sec. 2].

2.3.1. Vertical Domain Truncation via PML

Recall the surface Γ, which is the graph of the function ζ introduced in Chapter 1. To describe
the PML, we first define some notations.

We introduce two flat surfaces ΓH := Rd−1 × {H} and ΓH+λ := Rd−1 × {H + λ} for some
H > ∥ζ∥∞ and λ > 0. The PML, denoted by ΩPML := Rd−1 × (H,H + λ), is the region between
these two surfaces with the physical width λ. Moreover, we define ΩH+λ := ΩH ∪ΩPML. A sketch
of these domains is presented in Figure 2.2.

To derive the PML problem, we select an integrable function s : (−∞, H + λ]→ C such that
s(t) = 1 for t ≤ H and for t > H, Re(s(t)) > 0 and Im(s(t)) > 0. The complex stretched
coordinate Ξ is defined by

Ξ(xd) :=
∫ xd

0
s(t) dt . (2.20)
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Γ

ΓH

ΓH+λ

ΩPML

ΩH

Figure 2.2. A two-dimensional sketch of the PML.

Clearly Ξ is the identity below H. Physically, this means that waves below the PML propagate
freely, as they would in an unbounded medium, with no modifications to absorb or attenuate them.
On the other hand, above H, the coordinate stretching introduces a complex transformation.
This makes the PML act as an absorbing layer, in which the outgoing solutions are gradually
damped without being reflected back into the computational domain ΩH . As described in [26,
Sec. 2], a common function to use in the complex stretched coordinate is a power law, namely

s(t) =


1 if t < H ,

1 + ρ eiπ/4
(
t−H
λ

)2
if t ≥ H ,

(2.21)

where ρ is a positive parameter.
Since the radiating solution (2.5) is an analytic function with respect to xd, we can analytically

continue it to a function defined for complex coordinates. We still denote this extension by us.
The analytic continuation of the solution satisfies the Helmholtz equation in the complex

coordinates, i.e.,
∆us + k2us = 0 in Rd−1 × Ξ([H,H + λ]) . (2.22)

Considering the complex coordinate Ξ(xd) modifies the behavior of the general solution inside
the PML such that it decays as |xd| increases. The absorption strength of the PML is determined
by the virtual width of the layer, given by

σ :=
∫ H+λ

H
s(t) dt = λ

(
1 + ρ eiπ/4

3

)
. (2.23)

Remark 2.16. To illustrate the influence of σ on the absorbing strength of the PML, we fix the
physical thickness λ and assume that the function us is sufficiently regular. Extending the vertical
direction to the complex coordinate in (2.5), we have for x̃ ∈ Rd−1

us(x̃, H + λ) = F−1
(

ei
√

k2−|ξ|2(Ξ(H+λ)−H)Fus(ξ,H)
)

= F−1
(

eiσ
√

k2−|ξ|2Fus(ξ,H)
)

= F−1
(

eikσ
√

1−|ξ/k|2Fus(ξ,H)
)
.
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(a) Oscillatory behaviour without PML in
[−π, π]× [1, 10]

(b) Absorbing effect of the PML in
[−π, π]× Ξ([1, 10])

Figure 2.3. Behaviour of Green’s function for y = (0, 0.5).

We see that a large Im(kσ) enhances absorption of the propagating waves (i.e., |ξ| < k) entering
the PML. On the other hand, by a large Re(kσ), the PML effectively absorbs evanescent modes
(i.e., |ξ| > k).

In the following example, we illustrate the absorbing effect of the PML.

Example 2.17. We consider the Dirichlet Green’s function in the upper half plane as the
outgoing wave

G(x, y) = i
4
(
H

(1)
0 (k|x− y|)−H(1)

0 (k|x− ŷ|)
)
, x ∈ R2

+ := {x ∈ R2 : x2 > 0} ,

with the point source y = (0, y2) and the reflected source ŷ = (0,−y2), for y2 > 0. Defining
R := |x− y| and R̂ := |x− ŷ| and using the fact that (H(1)

0 )
′

= −H(1)
1 , the Dirichlet Green’s

function can be written as

G(x, y) = i
4

∫ kR̂

kR
H

(1)
1 (τ) dτ , x ∈ R2

+. (2.24)

According to [93, Eq. (10.2.5)], we have

H
(1)
1 (τ) ∼

√
2
πτ

ei(τ− 3π
4 ) as τ →∞ .

By substituting the equation above in (2.24), we obtain

G(x, y) ∼ i
4

√
2
π

e−i 3π
4

(∫ kR̂

kR

eikR

√
kR

dτ +
∫ kR̂

kR

(
eiτ
√
τ
− eikR

√
kR

)
dτ
)

= i
4k(R̂−R)

√
2

πkR
ei(kR− 3π

4 ) + i
4

√
2
π

e−i 3π
4

∫ kR̂

kR

(
eiτ
√
τ
− eikR

√
kR

)
dτ .



22 Chapter 2. Fundamental Tools

Re(x2)

Im(x2) Re(x2) = y2

5

Figure 2.4. Complex stretched coordinate in the vertical direction x2.

Since t ∈ [kR, kR̂] and∣∣∣∣∣ i4
√

2
π

e−i 3π
4

∫ kR̂

kR

(
eiτ
√
τ
− eikR

√
kR

)
dτ
∣∣∣∣∣ = O

(∫ kR̂

kR

∣∣∣∣∣ eiτ
√
τ
− eikR

√
kR

∣∣∣∣∣ dτ
)

= O
(∫ kR̂

kR

(∣∣∣∣ 1√
τ

∣∣∣∣+ ∣∣∣∣ 1√
kR

∣∣∣∣) dτ
)

= O
(∫ kR̂

kR

1√
R

dτ
)

= O
(
R̂−R√

R

)
,

it is concluded that

G(x, y) ∼ i
4k(R̂−R)

√
2

πkR
ei(kR− 3π

4 ) as x→∞ .

The oscillatory behaviour of this function is plotted in Figure 2.3(a).
Green’s function is analytic with respect to x2 > y2. Hence, it can be analytically continued

into the complex half plane {x2 ∈ C : Rex2 > y2}, while x1 is a real number. The analytic
continuation of R is thus R =

√
x2

1 + (x2 − y2)2 with the branch cut on the real negative axis.
As Re (x2 − y2) > 0, then ReR > 0 and G ∼ O(

√
|R|)eikR as |R| → ∞. This shows that Green’s

function is exponentially decaying as Im(x2)→∞.
We evaluate Green’s function along the complex coordinate in the vertical direction x2, that

means, for Rex2 > 5 we have added a linearly growing imaginary part (depicted in Figure 2.4).
In Figure 2.3(b), we see that the Green’s function is decaying for Rex2 > 5, which is consistent
with the previous computation.

Since the solution decays in the PML, we can expect to obtain a good approximation by
truncating the domain and imposing a homogeneous Dirichlet boundary condition on the artificial
boundary ΓH+λ.

Solving the differential equation (2.22) along the complex stretched coordinate directly is
challenging. Instead, we transform the complex coordinate to the real standard coordinates by
using the change of variables Ξ. This yields

us
σ(x̃, xd) := us(x̃,Ξ(xd)) . (2.25)
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Due to the definition of Ξ in (2.20), we have

∂xd
us

σ(x) = s(xd)∂xd
us(x̃,Ξ(xd)) .

By substituting the above change of variables into (2.22), we obtain

d−1∑
j=1

∂xj

(
s(xd)∂xju

s
σ

)
+ ∂xd

( 1
s(xd)∂xd

us
σ

)
+ k2s(xd)us

σ = 0 in ΩH+λ .

For simplification, we define the PML operator ∆PML as follows

∆PML :=
d−1∑
j=1

∂xj

(
s(xd)∂xj

)
+ ∂xd

( 1
s(xd)∂xd

)
= ∇ · (S(xd)∇) (2.26)

with the matrix S(xd) := diag(s(xd), . . . , s(xd), 1/s(xd)) ∈ Cd×d.

Remark 2.18. Below the PML, the operator ∆PML is equal to the Laplace operator, since s(xd) = 1
for xd ≤ H and S is the identity.

The truncated PML problem can now be formulated as follows: For ui ∈ H1/2(Γ), we seek the
weak solution us

σ ∈ H1(ΩH+λ) such that

∆PMLu
s
σ + k2s(xd)us

σ = 0 in ΩH+λ ,

us
σ = −ui on Γ ,
us

σ = 0 on ΓH+λ .

(2.27a)
(2.27b)
(2.27c)

The solution of problem (2.27) in the PML is not related to the actual scattered field. In the
following section, we explain how to reformulate the PML problem with an artificial boundary
condition on ΓH .

2.3.2. PML Approximation of the DtN Map

We are now going to obtain an approximation of the DtN map by using the PML. To this end,
we need to solve the Helmholtz equation in ΩPML for g ∈ H1/2(ΓH) such that

∆PMLu
s
σ + k2s(xd)us

σ = 0 in ΩPML ,

us
σ = g on ΓH ,

us
σ = 0 on ΓH+λ .

(2.28a)
(2.28b)
(2.28c)

By considering the definition of us
σ in (2.25), we can express its Fourier transform using (2.4).

Therefore, there exist two constants C1, C2 depending on ξ but not on xd such that

(Fus
σ)(ξ, xd) = C1(ξ)eγ(ξ)(Ξ(xd)−H) + C2(ξ)e−γ(ξ)(Ξ(xd)−H) , ξ ∈ Rd−1, xd ∈ [H,H + λ] ,
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where γ(ξ) is given by (2.10). By imposing the boundary conditions (2.28b) and (2.28c) and
solving the resulting linear system, the constant C1 and C2 are obtained as

C1(ξ) = e−γ(ξ)σ

e−γ(ξ)σ − eγ(ξ)σ (Fg)(ξ,H) and C2(ξ) = − eγ(ξ)σ

e−γ(ξ)σ − eγ(ξ)σ (Fg)(ξ,H) ,

where σ is the virtual width of the PML as defined in (2.23). Hence, we have

(Fus
σ)(ξ, xd) = eγ(ξ)(Ξ(xd)−H−σ) − e−γ(ξ)(Ξ(xd)−H−σ)

e−γ(ξ)σ − eγ(ξ)σ (Fg)(ξ,H) , ξ ∈ Rd−1 .

Taking the derivative of Fus
σ with respect to xd, evaluating it on ΓH and using Ξ(H) = H and

Ξ′(H) = 1, we obtain

∂xd
(Fus

σ)(ξ,H) = γ(ξ)
(

e−γ(ξ)σ + eγ(ξ)σ

e−γ(ξ)σ − eγ(ξ)σ

)
(Fg)(ξ,H) = γ(ξ) coth (γ(ξ)σ)(Fg)(ξ,H) .

Using the inverse Fourier transform, we can define T +
σ : H1/2(ΓH)→ H−1/2(ΓH) as the Neumann

data of the solution on ΓH :

(T +
σ us

σ)(x̃, H) := ∂xd
us

σ(x̃, H) = (2π)−
d−1

2

∫
Rd−1

γ(ξ) coth (γ(ξ)σ)(Fg)(ξ,H)eix̃·ξ dξ . (2.29)

Since the solution us
σ satisfies the above boundary condition on ΓH , we can use it to obtain an

equivalent version of (2.27), namely

∆us
σ + k2us

σ = 0 in ΩH ,

us
σ = −ui on Γ ,

∂xd
us

σ = T +
σ us

σ on ΓH .

As the incident field ui also satisfies the Helmholtz equation, the above problem can be further
reformulated by using the total field uσ = ui + us

σ.

PML Problem: For ui ∈ H1(ΩH), we seek the weak solution uσ ∈ H̃1(ΩH) such that

∆uσ + k2uσ = 0 in ΩH ,

uσ = 0 on Γ,
(∂xd

− T +
σ )uσ = (∂xd

− T +
σ )ui on ΓH .

(2.30a)
(2.30b)
(2.30c)

The corresponding variational form is to find uσ ∈ H̃1(ΩH) such that

aPML(uσ, v) =
〈
(∂xd

− T +
σ )ui, v

〉
ΓH

for all v ∈ H̃1(ΩH) ,

where aPML : H̃1(ΩH)× H̃1(ΩH)→ C is defined by

aPML(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
ΩH

− k2
〈
ϕ, ψ

〉
ΩH

−
〈
T +

σ ϕ, ψ
〉

ΓH

. (2.31)
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In Chapter 4, we study the PML Problem posed in a domain with a special structure. To provide
a foundation for this analysis, it is useful to prove the existence and uniqueness for the general
case, which has been shown in [26, Sec. 3]. In the following section, we elaborate on the details.

2.3.3. Existence and Uniqueness of Solutions to the PML Problem

The sesquilinear form aPML defined in (2.31) generates the operator Aσ : H̃1(ΩH)→ (H̃1(ΩH))∗

such that
⟨Aσu, v⟩ΩH

:= aPML(u, v) for all v ∈ H̃1(ΩH) .

Before presenting the main result, we need some preliminary lemmas.

Lemma 2.19. Let the operator A and Aσ be induced by (2.14) and (2.31), respectively. Then,

∥A −Aσ∥H−1(ΩH)←H1(ΩH) ≤ 2
∥∥∥T + − T +

σ

∥∥∥
H−1/2(ΓH)←H1/2(ΓH)

,

where T + and T +
σ are given by (2.9) and (2.29), respectively.

Proof. For u, v ∈ H̃1(ΩH), a straightforward computation yields∣∣∣⟨(A−Aσ)u, v⟩ΩH

∣∣∣ = |a(u, v)− aPML(u, v)|

=
∣∣∣∣∫

ΓH

v(T + − T +
σ )u ds

∣∣∣∣
≤
∥∥∥T + − T +

σ

∥∥∥
H−1/2(ΓH)←H1/2(ΓH)

∥u∥H1/2(ΓH)∥v∥H1/2(ΓH)

≤ 2
∥∥∥T + − T +

σ

∥∥∥
H−1/2(ΓH)←H1/2(ΓH)

∥u∥H1(ΩH)∥v∥H1(ΩH) ,

where the last inequality is obtained using ∥v∥H1/2(ΓH) ≤
√

2∥v∥H1(ΩH) from [25, Lem. 3.4].

Lemma 2.20. Let σ denote the virtual width of the PML as in (2.23). Then,∥∥∥T + − T +
σ

∥∥∥
H−1/2(ΓH)←H1/2(ΓH)

≤ Cu(kσ) ,

where

Cu(z) := 1
e max

{
1

Re z + Im z

π(Re z)2 ,
1

Im z
+ Re z
π(Im z)2

}
for Re z, Im z > 0 .

Proof. See [26, Thm. 3.1].

Theorem 2.21. Let Cu be as in the previous lemma and let Cinfsup be as in (2.15). Moreover,
assume that 2Cu(kσ) < Cinfsup and ui ∈ H1(ΩH). Then, the PML problem (2.30) has a unique
solution uσ ∈ H̃1(ΩH) and the following error estimation holds

∥u− uσ∥H1(ΩH) ≤
2Cu(kσ)

Cinfsup − 2Cu(kσ)

(
∥u∥H1(ΩH) +

∥∥∥ui
∥∥∥

H1(ΩH)

)
,

where u is the solution to (2.12).
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Proof. Let A and Aσ be defined by the sesquilinear forms (2.14) and (2.31). According to
Theorem 2.15, the operator A is invertible and, by using [60, Thm. 2.15], it satisfies

∥∥∥A−1
∥∥∥

H1(ΩH)←H−1(ΩH)
≤ 1
Cinfsup

. (2.32)

To show existence and uniqueness of the PML Problem, it suffices to show that Aσ is boundedly
invertible. Using the perturbation theorem [75, Thm. 10.1], the inverse of the operator Aσ exists
provided that ∥∥∥A−1(A−Aσ)

∥∥∥
H1(ΩH)←H1(ΩH)

< 1 .

By straightforward computations and using (2.32) and Lemmas 2.19 and 2.20, we have∥∥∥A−1(A−Aσ)
∥∥∥

H1(ΩH)←H1(ΩH)
≤
∥∥∥A−1

∥∥∥
H1(ΩH)←H−1(ΩH)

∥A −Aσ∥H−1(ΩH)←H1(ΩH)

≤ 2
Cinfsup

∥∥∥T + − T +
σ

∥∥∥
H−1/2(ΓH)←H1/2(ΓH)

≤ 2
Cinfsup

Cu(kσ) < 1 .

(2.33)

To compute the error bound, we again use the perturbation theorem [75, Thm. 10.1] as well as
the above results given in (2.32) and (2.33). These give us

∥u− uσ∥H1(ΩH) ≤
∥∥A−1∥∥

H1(ΩH)←H−1(ΩH)
1− ∥A−1(A−Aσ)∥H1(ΩH)←H1(ΩH)

(
∥(A−Aσ)u∥H−1(ΩH)

+
∥∥∥(T + − T +

σ )ui
∥∥∥

H−1/2(ΓH)

)
≤ 1
Cinfsup − 2Cu(kσ)

(
∥(A−Aσ)u∥H−1(ΩH) +

∥∥∥(T + − T +
σ )ui

∥∥∥
H−1/2(ΓH)

)
≤
∥∥(T + − T +

σ )
∥∥

H−1/2(ΓH)←H1/2(ΓH)
Cinfsup − 2Cu(kσ)

(
2∥u∥H1(ΩH) +

√
2
∥∥∥ui
∥∥∥

H1(ΩH)

)
≤ 2Cu(kσ)
Cinfsup − 2Cu(kσ)

(
∥u∥H1(ΩH) +

∥∥∥ui
∥∥∥

H1(ΩH)

)
,

where the last inequality is obtained by Lemma 2.20.

Remark 2.22. Without prior knowledge of the properties of the total field u, an a priori estimate
for (T +−T +

σ )u is difficult. Therefore, determining the optimal value for σ is not a straightforward
task.

Remark 2.23. By assuming that 1/c ≤ Re(kσ)/ Im(kσ) ≤ c for some constant c > 1, Theorem 2.21
leads to

∥u− uσ∥H1(ΩH) = O(1/Re(kσ)) as Re(kσ)→∞ .

This indicates that the global error decreases at least linearly as Re(kσ) → ∞. Moreover, it
has been shown in [26, Thm. 4.2] that, for a flat scatterer, the global error decreases no faster
than |kσ|−2 log (|kσ|)−1 as |kσ| → ∞. This means that the global exponential convergence is
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Γ+

(b) Bounded cell

Figure 2.5. A two-dimensional sketch of an unbounded periodic domain and its
fundamental cell.

unachievable for the unbounded scatterer. This contrasts with the exponential rate of the PML
for the bounded scatterers, as proven in [28, 79, 80]. However, it has been shown in [105] that
the PML solution of the source problem converges exponentially on a compact subset of the
unbounded purely periodic domains. In Chapter 4, we will extend these results to the scattering
problems in locally perturbed domains.

2.4. Floquet–Bloch Transform

Up to this point, we have described two methods for truncating the generic domain Ω in the
vertical direction. However, the resulting truncated domain ΩH remains unbounded in the
horizontal directions. Under the assumption of periodicity of the domain in the horizontal
directions, a widely used tool is the Floquet–Bloch (FB) transform, which decomposes a non-
periodic function defined on an unbounded periodic domain into a family of periodic functions,
each defined in a bounded cell [2, 7, 77, 81].

We consider a 2π-periodic function ζper : Rd−1 → R whose graph is the periodic surface Γper.
For H ≥ ∥ζper∥∞, we define the periodic domain Ωper

H , depicted in Figure 2.5a, by

Ωper
H :=

{
(x̃, xd) : x̃ ∈ Rd−1, ζper(x̃) < xd < H

}
.

Note that the domain Ωper
H ⊆ Rd is 2π-periodic with respect to the first d− 1 variables. Moreover,

the corresponding fundamental cell of periodicity is denoted by

Ω2π
H :=

{
(x̃, xd) ∈ Ωper

H : x̃ ∈ (−π, π)d
}

whose boundary is the union of the vertical boundaries

Γ2π :=
{
x ∈ Γper : x̃ ∈ [−π, π]d−1

}
and Γ2π

H :=
{
x ∈ ΓH : x̃ ∈ [−π, π]d−1

}
and the lateral boundaries

Γ− :=
{

(x̃, xd) ∈ ∂Ω2π
H : x1 = −π or x2 = −π or . . . or xd−1 = −π

}
,

Γ+ :=
{

(x̃, xd) ∈ ∂Ω2π
H : x1 = π or x2 = π or . . . or xd−1 = π

}
.

The bounded cell Ω2π
H and its boundaries are plotted in two dimensions in Figure 2.5.
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To introduce the FB transform as presented in [81, Sec. 6], we first denote by C∞0 (Ωper
H ) all the

smooth functions that are compactly supported on Ωper
H .

Definition 2.24. For a given function f ∈ C∞0 (Ωper
H ), the FB transform, denoted by J f , is

defined by

(J f)(α;x) :=
∑

j∈Zd−1

f(x̃+ 2πj, xd) e−iα·(x̃+2πj) , α ∈ Rd−1, x ∈ Ωper
H , (2.34)

where α is called Floquet parameter.

The summation is well defined because the function f is compactly supported. Therefore, the
above series reduces to a finite sum. The FB transform is similar to the Fourier series. However,
the coefficients in the FB transform are not constant and still depend on the original variable x.

Remark 2.25. In general, the FB transform is defined on fully periodic domains and applied in
all spatial directions (see [81, Sec. 2]). However, in our setting, the computational domain is only
periodic with respect to the first d− 1 variables. Therefore, we apply the FB transform only to
these variables.

Below, we mention some important properties of the FB transform.

Proposition 2.26. Let f ∈ C∞0 (Ωper
H ) and Λ := [−1/2, 1/2]d−1. Then, J f satisfies the following

conditions:

(a) For each fixed x ∈ Ω2π
H , α 7→ eiα·x̃(J f)(α;x) is 1-periodic with fundamental cell of periodic-

ity Λ.

(b) For each fixed α ∈ Λ, x 7→ (J f)(α;x) is 2π-periodic in the first d − 1 variables with
fundamental cell of periodicity Ω2π

H .

Proof. (a) For each fixed x, the function α 7→ eiα·x̃(J f)(α;x) is 1-periodic, since for ℓ ∈ Zd−1

ei(α+ℓ)·x̃(J f)(α+ ℓ;x) = ei(α+ℓ)·x̃ ∑
j∈Zd−1

f(x̃+ 2πj, xd)e−i(α+ℓ)·(x̃+2πj)

= ei(α+ℓ)·x̃ ∑
j∈Zd−1

f(x̃+ 2πj, xd)e−iα·(x̃+2πj)e−iℓ·(x̃+2πj)

= eiα·x̃ ∑
j∈Zd−1

f(x̃+ 2πj, xd)e−iα·(x̃+2πj)e−iℓ·(2πj)

= eiα·x̃(J f)(α;x) ,

where for the last equality we used the fact that e−iℓ·(2πj) = 1 for all j, ℓ ∈ Zd−1.

(b) For each fixed α, the function x 7→ (J f)(α;x) is 2π-periodic, since for ℓ ∈ Zd−1

(J f)(α; x̃+ 2πℓ, xd) =
∑

j∈Zd−1

f(x̃+ 2π(j + ℓ), xd)e−iα·(x̃+2π(j+ℓ))

=
∑

m:=j+ℓ∈Zd−1

f(x̃+ 2πm, xd)e−iα·(x̃+2πm) = (J f)(α;x) .
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To analyze the mapping properties of the FB transform, we first introduce the space L2(Λ;Hs
per(Ω2π

H )),
which contains square-integrable functions from Λ to Hs

per(Ω2π
H ) equipped with the following inner

product (see [99, Sec. 39.2])

⟨f, g⟩L2(Λ;Hs
per(Ω2π

H )) =
∫

Λ

〈
f(α), g(α)

〉
Hs

per(Ω2π
H )

dα .

To simplify notation, we write f(α) ∈ Hs
per(Ω2π

H ) for f ∈ L2(Λ;Hs
per(Ω2π

H )), while continuing to
use the notation f(α;x) instead of f(α)(x).

Definition 2.27. The space Hr
α(Λ;Hs

per(Ω2π
H )) for r ≥ 0 and s ∈ R consists of the functions

f ∈ L2(Λ;Hs
per(Ω2π

H )) such that α 7→ f(α; ·)eiα· is 1-periodic with fundamental cell of periodicity
Λ and the following norm is finite

∥f∥Hr
α(Λ;Hs

per(Ω2π
H )) :=

∥∥∥α 7→ ∥f(α)∥Hs
per(Ω2π

H )

∥∥∥
Hr

α(Λ)
.

For r < 0, Hr
α(Λ;Hs

per(Ω2π
H )) is the dual of H−r

α (Λ;H−s
per(Ω2π

H )) and

∥f∥Hr
α(Λ;Hs

per(Ω2π
H )) := sup

g∈H−r
α (Λ;H−s

per(Ω2π
H ))
⟨f, g⟩Λ×Ω2π

H
.

Theorem 2.28. Let Λ as in Proposition 2.26.

(a) The FB transform from C∞0 (Ωper
H ) can be extended to an isometry between L2(Ωper

H ) and
L2(Λ, L2

per(Ω
per
H )) and its inverse transform is obtained by

J −1f(x̃+ 2πj, xd) =
∫

Λ
f(α;x)eiα·(x̃+2πj) dα , x ∈ Ω2π

H and j ∈ Zd−1. (2.35)

(b) For s, r ∈ R, the FB transform from C∞0 (Ωper
H ) can be extended to an isomorphism between

Hs
r (Ωper

H ) and Hr
α(Λ;Hs

per(Ω2π
H )) and its inverse transform is obtained by (2.35).

(c) For any f, g ∈ L2(Ωper
H ), the Plancherel formula holds, i.e.,∫

Ωper
H

f(x)g(x) dx =
∫

Λ

∫
Ω2π

H

(J f)(α;x)(J g)(α;x) dx dα . (2.36)

Proof. See [81, Thm. 8] for parts (a) and (b) and [12, p. 220] for (c).

Note that the Plancherel formula also holds for f ∈ Hs
r (Ωper

H ) and g ∈ H−s
−r (Ωper

H ) due to the
density of L2(Ωper

H ) in L2
−r(Ωper

H ) for r ≥ 0 and of L2
−r(Ωper

H ) in H−s
−r (Ωper

H ) for s ≥ 0 (see the proof
of [81, Thm. 4]).

Remark 2.29. The mapping properties of the FB transform when operating on functions defined
on a flat surface ΓH or a periodic surface Γper are analogous (see [81, Sec. 5]).

Theorem 2.30. Let q : Ωper
H → C be a 2π-periodic function in the first d− 1 variables. Then

(J (qf))(α;x) = q(x)(J f)(α;x) .
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Proof. By using the definition of the FB transform given in (2.34), a direct calculation yields

(J (qf))(α;x) =
∑

j∈Zd−1

(qf)(x̃+ 2πj, xd)e−iα·(x̃+2πj) = q(x)(J f)(α;x) .

Theorem 2.31. For any f ∈ H1(Ωper
H ), it holds

(J ∂xℓ
f)(α;x) =

 (∂xℓ
+ iαℓ)(J f)(α;x) for ℓ ∈ {1, . . . , d− 1} ,

(∂xℓ
J f)(α;x) for ℓ = d .

Proof. For ℓ ∈ {1, . . . , d− 1}, the definition of the FB transform given in (2.34) and a straight-
forward computation yield

(J ∂xℓ
f)(α;x) =

∑
j∈Zd−1

(∂xℓ
f)(x̃+ 2πj, xd)e−iα·(x̃+2πj)

=
∑

j∈Zd−1

∂xℓ

(
f(x̃+ 2πj, xd)e−iα·(x̃+2πj)

)
+ iαℓ

∑
j∈Zd−1

f(x̃+ 2πj, xd)e−iα·(x̃+2πj)

= (∂xℓ
+ iαℓ)(J f)(α;x) .

The statement for ℓ = d follows from the fact that the FB transform acts only on the first d− 1
variables.

After having defined the FB transform and its properties, we focus on its effect on differential
operators. We consider the equation Lu = f in Ωper

H together with the boundary condition u = g

on Γper ∪ ΓH , where the differential operator is L := ∇ · (p∇) + q with periodic functions p and q.
By applying the FB transform to Lu and using Theorems 2.30 and 2.31, we obtain the following

family of boundary value problems indexed by the Floquet parameter α ∈ Λ

Lα(J u)(α;x) = (J f)(α;x) for x ∈ Ωper
H ,

(J u)(α;x) = (J g)(α;x) for x ∈ Γper ∪ ΓH ,

(J u)(α;x) = (J u)(α; x̃+ 2πj, xd) for j ∈ Zd, x ∈ Ωper
H ,

where Lα is acting like a shifted operator, defined by

Lα := (∇x̃ + iα) ·
(
p(x)(∇x̃ + iα)

)
+ ∂xd

(p(x)∂xd
) + q(x)

and ∇x̃ is the gradient with respect to the first d− 1 variables.
Due to the periodicity of J u with respect to x̃, the above problem can be reduced to the

bounded cell Ω2π
H (depicted in Figure 2.5b) as follows

Lα(J u)(α;x) = (J f)(α;x) for x ∈ Ω2π
H ,

(J u)(α;x) = (J g)(α;x) for x ∈ Γ2π ∪ Γ2π
H ,
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together with the periodic boundary conditions on the lateral boundaries

(J u)(α;x)|Γ+
= (J u)(α;x)|Γ−

,

∂x̃(J u)(α;x)
∣∣
Γ+

= ∂x̃(J u)(α;x)
∣∣
Γ−
.





CHAPTER 3

Scattering in Unbounded Periodic Structures

In this chapter, we study acoustic wave scattering from unbounded periodic surfaces. The general
setting is described in Chapter 1; however, we place particular emphasis here on the periodicity of
the geometry, using the notations Γper, ζper and Ωper. For simplicity, we assume the fundamental
period of ζper is 2π. Consequently, the unbounded domain Ωper ⊆ Rd for d = 2, 3 is 2π-periodic
with respect to the first d− 1 variables. This setting is depicted in Figure 3.1(a).

We first employ the DtN map and the FB transform to derive a family of periodic problems
posed in a single bounded cell. In order to propose a high-order numerical method, we analyze
the regularity of the transformed field with respect to the Floquet parameter. It should be
pointed out that the regularity of the transformed field in two dimensions is less complicated
than in three dimensions. In [104, Thm. 11], it has been proven that the transformed field in
two dimensions is analytic except for at most two singular points. However, in three dimensions,
singularities of the transformed field no longer consist of a finite number of points. Rather, they
form a set that is the union of a finite number of circular arcs. Therefore, a direct extension of
the high-order numerical methods used for the two-dimensional case (in [7, Sec. 5, 104, Sec. 4]) is
not possible for the three-dimensional case.

Our first main result, in Theorem 3.6, is a local representation of the transformed field mirroring
the expected structure of singularities. This significantly extends similar representations found
in [73, Satz 3.11, 74, Thm. 22]. Moreover, we obtain a globally valid representation in Theorem 3.9.
Based on the regularity results, we construct a tailor-made quadrature rule, adapted to the
singularity structure of the transformed field, to compute the inversion of the FB transform. We
present some numerical examples illustrating the performance of this scheme.

3.1. Formulation in a Bounded Cell

To truncate the unbounded domain Ωper in the vertical direction, we impose a transparent
boundary condition on a flat surface ΓH at height H. As explained in Section 2.2, this condition
is expressed by using the DtN map. The resulting truncated domain is the unbounded periodic
domain Ωper

H between Γper and ΓH (depicted in Figure 3.1(b)).
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(a) Unbounded domain Ωper
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(b) Unbounded domain Ωper
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Figure 3.1. Sketch of the unbounded periodic domains.

For a given incident field ui ∈ H1
r (Ωper

H ) with |r| < 1, we seek the unknown total field u ∈ H̃1
r (Ωper

H ),
which satisfies

∆u+ k2u = 0 in Ωper
H ,

u = 0 on Γper,

(∂xd
− T +)u = (∂xd

− T +)ui on ΓH ,

(3.1a)
(3.1b)
(3.1c)

where the DtN map T + is defined as in (2.9). Note that (3.1a) is understood in the variational
sense and (3.1b) and (3.1c) in the trace sense.

The variational formulation of this boundary value problem is similar to (2.13) but posed in
the periodic domain Ωper

H . To simplify the notation, we will omit writing the subscript r for the
sesquilinear form ar given in (2.14). More precisely, we aim to find u ∈ H̃1

r (Ωper
H ) such that

a(u, v) =
〈
(∂xd

− T +)ui, v
〉

ΓH

for all v ∈ H̃1
−r(Ωper

H ) , (3.2)

where the sesquilinear form a : H̃1
r (Ωper

H )× H̃1
−r(Ωper

H )→ C is defined by

a(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
Ωper

H

− k2
〈
ϕ, ψ

〉
Ωper

H

−
〈
T +ϕ, ψ

〉
ΓH

.

This problem is uniquely solvable as shown in Theorem 2.15.
From a numerical point of view, the variational problem (3.2) is not yet adequate as it is

still posed in the unbounded domain Ωper
H . Since this domain is periodic with respect to its

first d− 1 variables (denoted by x̃), we can apply the FB transform only with respect to x̃, as
in Definition 2.24. This leads to a decomposed formulation of (3.2) consisting of a family of
periodic problems (indexed by the Floquet parameter α) posed in a single bounded unit cell of
the periodicity. We recall from Section 2.4 the notation Ω2π

H for the unit bounded cell whose
bottom and top surfaces are denoted by Γ2π and Γ2π

H , respectively. We depict a sketch of the
bounded cell in Figure 3.2 for the three-dimensional case.

Let the FB transform of the total field u be denoted by w := J u. According to Proposition 2.26,
w(α;x) is 2π-periodic in x̃ and eiα·x̃w(α;x) is 1-periodic in α. Therefore, the fundamental cell of
the periodic function w is assumed to be Λ× Ω2π

H , where Λ:= [−1/2, 1/2]d−1.
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Γ2π

Ω2π
H

Γ2π
H

Figure 3.2. A three-dimensional bounded unit cell Ω2π
H .

By applying the FB transform, using the Plancherel formula (2.36) and Theorem 2.31, we
obtain the following variational problem for w ∈ Hr

α(Λ; H̃1
per(Ω2π

H ))∫
Λ
aα(w(α), z(α)) dα =

∫
Λ

〈
(∂xd

− T +
α )J ui(α), z(α)

〉
Γ2π

H

dα (3.3)

for all z ∈ H−r
α (Λ; H̃1

per(Ω2π
H )), where

aα(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
Ω2π

H

− 2i
〈
α · ∇x̃ ϕ, ψ

〉
Ω2π

H

− (k2 − |α|2)
〈
ϕ, ψ

〉
Ω2π

H

−
〈
T +

α ϕ, ψ
〉

Γ2π
H

, (3.4)

with ∇x̃ := (∂x1 , . . . , ∂xd−1)⊤. Note that the periodic version of the DtN map, denoted by
T +

α : H1/2
per (Γ2π

H )→ H
−1/2
per (Γ2π

H ), is defined by

(T +
α φ)(x̃, H) := i

∑
j∈Zd−1

√
k2 − |α− j|2 φ̂(j) ei x̃·j for φ(x̃, H) =

∑
j∈Zd−1

φ̂(j) ei x̃·j , (3.5)

where ϕ̂(j) denotes the j-th Fourier coefficient of ϕ (see [84, Eq. (11)]).

Remark 3.1. The right-hand side of (3.3) is understood as the dual pairing inHr
α(Λ;H−1/2

per (Γ2π
H ))×

H−r
α (Λ;H1/2

per (Γ2π
H )).

Remark 3.2. The strong form of (3.3) is

∆xw(α) + 2iα · ∇x̃w(α) + (k2 − |α|2)w(α) = 0 in Ω2π
H ,

w(α) = 0 on Γ2π,

(∂xd
− T +

α )w(α) = (∂xd
− T +

α )J ui(α) on Γ2π
H .

(3.6a)
(3.6b)
(3.6c)

Equation (3.6a) is understood in the variational sense and (3.6b) and (3.6c) in the trace sense.

Theorem 3.3. Let |r| < 1 and ui ∈ H1
r (Ωper

H ). A function u ∈ H̃1
r (Ωper

H ) satisfies (3.2) if and
only if w ∈ Hr

α(Λ; H̃1
per(Ω2π

H )) is a solution to the variational problem (3.3). Moreover, if J ui is
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continuous with respect to α, then w is also continuous with respect to α, and for every α ∈ Λ,

aα(w(α), z) =
〈
(∂xd

− T +
α )J ui(α), z

〉
Γ2π

H

for all z ∈ H̃1
per(Ω2π

H ) , (3.7)

where the sesquilinear form aα is defined in (3.4).

Proof. See [84, Thm. 2].

Unique solvability of the variational problem (3.7) in H̃1
per(Ω2π

H ) has been proven in [16, Sec. 3.5]
and [41, Cor. 3.4] for any arbitrary but fixed α ∈ Λ = [−1/2, 1/2]d−1. We can thus compute
numerical approximations to the transformed field w(α) for every α ∈ Λ by using some standard
numerical method. Afterwards, these transformed fields are combined by means of the inverse
FB transform (2.35), which yields an approximation to the solution of (3.3). This essentially
amounts to the evaluation of an integral of w over the domain Λ. The accuracy of the numerical
solution of (3.3) depends not only on the selected numerical method for solving (3.7), but also
on the accuracy of the numerical integration method employed for this integral. In order to
construct a high-order numerical scheme, requiring few quadrature points for high accuracy, it is
necessary to precisely know the regularity of the transformed field with respect to the Floquet
parameter α.

3.2. Regularity of the Transformed Solution

Let us heuristically motivate the results that we shall make rigorous in Theorem 3.6. From
the definition of aα in (3.4), we see that all terms in the variational formulation (3.7) depend
analytically on α except for the square root functions in T +

α as defined in (3.5). Hence, we
may expect the transformed field w to depend analytically on α, except for points where (the
derivatives of) these functions have singularities, i.e., except for points located in the set Σ
defined by

Σ :=
{
α ∈ Λ = [−1/2, 1/2]d−1 : |α− j| = k for some j ∈ Zd−1

}
. (3.8)

In the two-dimensional case (d = 2), when k is a half-integer, the set Σ includes at most two
singular points, whereas for non-half-integer k, the set Σ has exactly two singular points [104,
Sec. 3.2]. By increasing k, the number of the singular points in Σ does not change. However, we
show in the following that the structure of singularity in the three-dimensional case (d = 3) is
much more complicated.

For d = 3, the set Σ is a union of circular arcs formed by the intersection of Λ and circles
with center j and radius k. We will refer to this set as the curves of singular points. Figure 3.3
illustrates possible structures of Σ on Λ for different wave numbers k. Any high-order method for
approximately inverting the FB transform needs to take the structure of Σ into account, as it
becomes more and more complex as k increases.

For any α ∈ Σ, we also define

J(α) := {j ∈ Z2 : |α− j| = k} , (3.9)
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Figure 3.3. Structure of Σ for different values of k on Λ.

which is a finite set with cardinality #J(α).

Remark 3.4. When k < 1/2, #J(α) = 1 for all α ∈ Σ. When k ≥ 1/2, there exists a finite
number of α ∈ Σ with #J(α) > 1.

For the later analysis of the numerical inversion of the FB transform, we require a particular
regularity of both the transformed incident and the transformed total field. To formulate these
requirements, we introduce the following definitions:

Definition 3.5. For some open set U ⊆ R2 and a Hilbert space V , we denote by Cω(U ;V ) the
space of functions from U to V that depend analytically on α ∈ U . For a Hilbert space V , let

X (V ) := {f : Λ→ V : f satisfies (C1) and (C2)} , (3.10)

where

(C1) for every open subdomain U ⊆ Λ \ Σ, f ∈ Cω(U ;V ),

(C2) for any α0 ∈ Σ, there exists a neighborhood U0 of α0 such that

f(α) =
∑

I⊆J(α0)

∏
j∈I

√
k2 − |α− j|2

 fI(α) (3.11)

for some fI ∈ Cω(U0;V ) for each I ⊆ J(α0).

Theorem 3.6. Let ui ∈ H1
r (Ωper

H ) for some |r| < 1 and additionally J ui ∈ X (H1/2
per (Γ2π

H )). Then,
the transformed total field w that solves (3.3) satisfies w ∈ X (H̃1

per(Ω2π
H )).

Proof. Let α0 ∈ Λ. The sesquilinear form (3.4) can be written as

aα(·, ·) = bα(·, ·)−
∑

j∈Z2

√
k2 − |α− j|2cj(·, ·) ,

where
bα(ϕ, ψ) :=

〈
∇ϕ,∇ψ

〉
Ω2π

H

− 2i
〈
α · ∇x̃ ϕ, ψ

〉
Ω2π

H

− (k2 − |α|2)
〈
ϕ, ψ

〉
Ω2π

H

,

cj(ϕ, ψ) := i
〈
ϕ̂(j) eix̃·j , ψ(x)

〉
Γ2π

H

.
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We may define the operatorsA(α) : H̃1
per(Ω2π

H )→ (H̃1
per(Ω2π

H ))∗ and C(j) : H1/2
per (Γ2π

H )→ H
−1/2
per (Γ2π

H )
by 〈

C(j)ϕ, ψ
〉

Γ2π
H

:= cj(ϕ, ψ)

and 〈
A(α)ϕ, ψ

〉
Ω2π

H

:= bα(ϕ, ψ) −
∑

j∈Z2\J(α0)

√
k2 − |α− j|2

〈
C(j)ϕ, ψ

〉
Γ2π

H

= aα(ϕ, ψ) +
∑

j∈J(α0)

√
k2 − |α− j|2

〈
C(j)ϕ, ψ

〉
Γ2π

H

.

Clearly, in a neighborhood of α0, A(α) depends analytically on α. Using these operators and
also the antilinear form G(α) induced by the right-hand side of (3.7), this equation can be
reformulated as A(α)−

∑
j∈J(α0)

√
k2 − |α− j|2 C(j)

w(α) = G(α) . (3.12)

If α0 ̸∈ Σ, then J(α0) = ∅ and as J ui satisfies (C1) with V = H
1/2
per (Γ2π

H ), so w also satisfies (C1)
with V = H̃1

per(Ω2π
H ). We now assume α0 ∈ Σ, i.e., |α0 − j| = k for some j ∈ J(α0). Moreover, let

B(α0, ρ) denote an open ball centred at α0 with radius ρ. Then, for any j ∈ J(α0), there holds∥∥∥∥√k2 − |α− j|2 C(j)
∥∥∥∥ → 0 as |α− α0| → 0 .

In [66, Thm. 3], it has been shown that the operator on the left-hand side of (3.12) for all α ∈ Λ
is boundedly invertible. We know that J(α0) is a finite set and for small enough ρ, the operator
A(α) for all α ∈ B(α0, ρ) is a small perturbation of the operator on the left-hand side of (3.12).
Therefore, we can use the perturbation theorem given in [75, Thm. 10.1] and conclude that the
operator A(α) is also boundedly invertible for all α ∈ B(α0, ρ).

Setting C̃(j) = (A(α))−1 C(j), we can write the solution w as the Neumann series

w(α) =
∞∑

n=0

 ∑
j∈J(α0)

√
k2 − |α− j|2 C̃(j)

n

(A(α))−1G(α) .

Let m := #J(α0). Applying the multinomial theorem [93, Sec. 26.4] leads to

w(α) =
∞∑

n=0

 ∑
K1+K2+···+Km=n,

K1,...,Km≥0

n

K1!K2! . . .Km!

m∏
µ=1

(√
k2 − |α− jµ|2 C̃(jµ)

)Kµ

 (A(α))−1G .

Note that all even powers of the square root functions are analytic. Inserting the representa-
tion (3.11) for G into the above equation and combining all analytic terms appropriately into
functions wI for I ⊆ J(α0), gives that w satisfies (C2) with V = H̃1

per(Ω2π
H ).

Remark 3.7. For the two dimensional case, the representation of the transformed solution w(α)
contains only one square root function as shown in [7, Sec. 3.2].
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α
δ

B(α, δ)
2r

Figure 3.4. Parameters r and δ in the global representation of w

Following up on the previous result, the next theorem guarantees that we can make use of (3.11)
for w with the same center of expansion in small balls contained in a neighborhood of Σ.

Theorem 3.8. There exist open balls Bℓ = B(αℓ, ρℓ) with center points αℓ ∈ Σ and radii ρℓ,
ℓ = 1, . . . , L, such that Σ ⊆ ⋃L

ℓ=1Bℓ and the representation (3.11) holds for w on Bℓ with α0 = αℓ.
Moreover, there exist r, δ > 0 such that

Σ̃ := {α′ ∈ Λ : dist(α′,Σ) < r} ⊆
L⋃

ℓ=1
Bℓ

and that for every α ∈ Σ̃ there exists ℓ with B(α, δ) ⊆ Bℓ.

Proof. For every α0 ∈ Σ, we choose ρ(α0) > 0 such that the representation (3.11) holds for w on
B(α0, ρ(α0)). Then, Σ ⊆ ⋃α0∈ΣB(α0, ρ(α0)). Since Σ is a compact set, we can select a finite
number of points αℓ and radii ρℓ = ρ(αℓ), ℓ = 1, . . . , L, such that Σ ⊆ ⋃L

ℓ=1B(αℓ, ρℓ). This yields
the first part of the theorem.

Choose q ∈ (0, 1) such that still Σ ⊆ ⋃L
ℓ=1B(αℓ, qρℓ). Choose r such that Σ̃ ⊆ ⋃L

ℓ=1B(αℓ, qρℓ)
and set δ := (1− q) min

ℓ=1,...,L
ρℓ (see Figure 3.4). Now, let α ∈ Σ̃ and ℓ̂ such that |α− α

ℓ̂
| < q ρ

ℓ̂
.

Then, for any α′ ∈ B(α, δ), we have∣∣∣α′ − α
ℓ̂

∣∣∣ < q ρ
ℓ̂

+ δ = q ρ
ℓ̂

+ (1− q) min
ℓ=1,...,L

ρℓ ≤ ρℓ̂
.

This completes the proof.

The structure of Σ̃ for different values of the wave number k is depicted in Figure 3.5. For any
point α in Σ̃, we may use the local representation (3.11) for the transformed field also on a small
neighborhood of that point. In our later analysis, we also require a globally valid representation
of w, which is provided by the next theorem.
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Figure 3.5. Structure of Σ̃ for different values of k on Λ.

Theorem 3.9. Let αℓ, ℓ = 1, . . . , L, denote the points in Theorem 3.8 and set J := ⋃L
ℓ=1 J(αℓ).

Then, there exist vI ∈ C∞(Λ; H̃1
per(Ω2π

H )) such that

w(α) =
∑
I⊂J

∏
j∈I

√
k2 − |α− j|2

 vI(α) , α ∈ Λ . (3.13)

Moreover, for any µ ∈ N0, there exists a constant Cµ such that∥∥∥∥∂µvI(α)
∂αµ

αν

∥∥∥∥
H1

per(Ω2π
H )
≤ Cµ

dist (α,Σ)µ , I ⊂ J , ν = 1, 2 , α ∈ Λ . (3.14)

Proof. We first recall the covering of Σ by the open balls B(αℓ, δℓ), for ℓ = 1, . . . , L, from
the proof of Theorem 3.8. Furthermore, let B0 denote an open subset of Λ \ Σ such that
Λ ⊆ B0 ∪

⋃L
ℓ=1B(αℓ, δℓ). Let φ0, . . . , φL ∈ C∞(Λ) denote a partition of unity subject to this

open covering. By Theorem 3.8, in each ball we have

w(α) =
∑

I⊆J(αℓ)

∏
j∈I

√
k2 − |α− j|2

 wℓ,I(α) , α ∈ B(αℓ, δℓ), ℓ = 1, . . . , L

with wℓ,I analytic in B(αℓ, δℓ). Let J = ⋃L
ℓ=1 J(αℓ) and define wℓ,I = 0 for I ⊆ J, but I ̸⊆ J(αℓ),

ℓ = 1, . . . , L. Since the function w on B0 is itself analytic according to the first part of Theorem 3.6,
we set w0,∅ = w and w0,I = 0 for all other I ⊂ J. Finally, on Λ we define

vI :=
L∑

ℓ=0
φℓwℓ,I , I ⊂ J , (3.15)

where we extend each product on the right-hand side by 0 outside its domain of definition. Then

w(α) =
∑
I⊂J

∏
j∈I

√
k2 − |α− j|2

 vI(α) , α ∈ Λ .

By definition, vI ∈ C∞(Λ; H̃1
per(Ω2π

H )). A standard estimate for analytic functions (see [58,
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Thm. 2.2.7]) gives that for some constant C

max
α∈B(αℓ,δℓ)

∥∥∥∥∂µwℓ,I(α)
∂αµ

ν

∥∥∥∥
H1

per(Ω2π
H )
≤ C µ!

δµ
ℓ

, ν = 1, 2 , µ ∈ N0 , ℓ = 1, . . . , L . (3.16)

Moreover, we bound each derivative of w on B0. For α ∈ B0, we know that w is analytic in the
ball B(α, dist(α,Σ)). Hence, again using [58, Thm. 2.2.7] for α ∈ B0 we end up with

∥∥∥∥∂µwℓ,I(α)
∂αµ

ν

∥∥∥∥
H1

per(Ω2π
H )
≤ Ĉ µ!

dist (α,Σ)µ , ν = 1, 2 , µ ∈ N0 , ℓ = 1, . . . , L .

By considering the definition of vI given in (3.15), triangle inequality and Leibniz rule, we have
for ν = 1, 2 and µ ∈ N0∥∥∥∥∂µvI(α)

∂αµ
αν

∥∥∥∥
H1

per(Ω2π
H )
≤

L∑
ℓ=0

∥∥∥∥∂µ(ϕℓwℓ,I)(α)
∂αµ

αν

∥∥∥∥
H1

per(Ω2π
H )

≤
L∑

ℓ=0

∥∥∥∥∥
µ∑

n=0

(
µ

n

)
∂nϕℓ(α)
∂αn

ν

∂µ−nwℓ,I(α)
∂αµ−n

ν

∥∥∥∥∥
H1

per(Ω2π
H )

.

Again using the triangle inequality and applying the bounds on the derivative of the functions φℓ

and wℓ,I given in (3.16), we can write

∥∥∥∥∂µvI(α)
∂αµ

αν

∥∥∥∥
H1

per(Ω2π
H )
≤ Ĉµ

L∑
ℓ=0

µ∑
n=0

∥∥∥∥∥∂nϕℓ(α)
∂αn

ν

∂µ−nwℓ,I(α)
∂αµ−n

ν

∥∥∥∥∥
H1

per(Ω2π
H )

≤ Ĉµ

(
Ĉ µ!

dist(α,Σ)µ +
L∑

ℓ=1

µ∑
n=0

(µ− n)!
δµ−n

ℓ

)
.

Finally, we obtain the assertion as δℓ ≥ dist(α,Σ) for each ℓ = 1, . . . , L.

3.3. A Numerical Inversion of the FB Transform

We hereby propose a high-order numerical scheme to obtain the scattered field. This scheme
combines a numerical method, namely the finite element method, to compute the transformed
field w(α) for fixed α with a tailor-made quadrature rule to approximate the inverse FB transform
to high order.

The regularity properties of the transformed field reported in the previous section are an
essential prerequisite for the derivation of such a rule. According to (2.35), the total field is
calculated by means of the inverse FB transform as

u(x̃+ 2πj, x3) =
∫

Λ
w(α;x) eiα·(x̃+2πj) dα , x ∈ Ω2π

H , j ∈ Zd−1 . (3.17)

For an analysis of the approximation of this integral, it obviously suffices to consider the case
j = 0 as the analytic phase factor exp(iα · 2πj) does not affect the regularity of the integrand.
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Figure 3.6. Generated adapted mesh G6 for different k by Algorithm 1.

A naive way to approximate the integral in (3.17) is to generate an equidistant uniform square
mesh in Λ and then use the set of vertices in this mesh to define a composite trapezoidal rule [73,
74, 84]. However, convergence of such an approach is typically slow: due to the square root
singularities present in the representation of w(α) in (3.11), we cannot even attain second order
convergence in the mesh width.

We instead propose a specific quadrature rule based on a mesh matching the a priori known
structure of singularities in w to achieve a high order of convergence. A recursively refined
square mesh, dependent only on the wave number, is generated, with elements getting smaller
with decreasing distance to the curves of singularities. To approximate the integral in (3.17),
a tensor-product trapezoidal rule is applied on the finest squares, whereas a tensor-product
Gauss–Legendre rule is used on the remaining squares.

3.3.1. Adaptive Mesh Generation in α-Space

First, we note that although Λ = [−1/2, 1/2]2 it suffices to generate a mesh on [0, 1/2]2 due to
the symmetry of the curves of singular points Σ (see Figure 3.3 for an illustration). We start by
subdividing [0, 1/2]2 into squares of lateral length h0 := 1/(2n0) for some n0 ∈ N≥2. Then N∗

refinement steps are performed, further subdividing those squares close to the curves of singular
points, which are circular arcs of radius k centred at j ∈ J̃ := ∪α∈[0,1/2]2J(α). The complete
procedure is presented in Algorithm 1, whose output is illustrated in Figure 3.6 for N∗ = 6 and
different values of the wave numbers k.

In Proposition 3.10, we list properties of the adapted mesh GN∗ generated by Algorithm 1. To
concisely formulate these results, we introduce the sets of squares of lateral length hn := h0/2n in
the mesh by

Mn := {Q : Q ∈ GN∗ and Q has lateral length hn} , n = 0, . . . , N∗ (3.18)

as well as the union of all squares of lateral length hn,

Rn :=
⋃

Q∈Mn

Q , n = 0, . . . , N∗ . (3.19)



3.3. A Numerical Inversion of the FB Transform 43

Algorithm 1: generate adapted mesh and tailor-made quadrature rule
Input: k, N∗, n0, J̃

1 h0 ← 1/(2n0) ;
2 G0 ← {[ℓ1h0, (ℓ1 + 1)h0]× [ℓ2h0, (ℓ2 + 1)h0] : ℓ1, ℓ2 = 0, . . . , n0 − 1} ;
3 α← ∅, ϱ← ∅;
4 for n = 1, . . . , N∗ do
5 Gn ← ∅;
6 hn ← hn−1/2;
7 for Q ∈ Gn−1 do
8 Let CQ denote the center of Q;
9 dist(CQ,Σ)← min

j∈J̃|k − |CQ − j||;
10 if dist(CQ,Σ) ≤ 1/2n then
11 Refine Q into Q1, . . . , Q4 of lateral length hn;
12 Gn ← Gn ∪ {Q1, . . . , Q4};
13 else
14 Compute (αQ, ϱQ) corresponding to the Gauss quadrature rule on Q;
15 α← α ∪ αQ;
16 ϱ← ϱ ∪ ϱQ;
17 Gn ← Gn ∪ {Q};

18 Compute (α∗, ϱ∗) corresponding to the trapezoidal rule on all squares QN∗ \QN∗−1;
19 α← α ∪ α∗;
20 ϱ← ϱ ∪ ϱ∗;
21 return Adapted square mesh GN∗, quadrature points α and weights ϱ

Proposition 3.10. Let Qn ∈Mn (for n = 0, . . . , N∗) be squares with centers CQn, then

dist(CQn ,Σ) > 1
2n+1 , n = 0, . . . , N∗ − 1 ,

dist(CQn ,Σ) ≤ 1
2n

(
1 +
√

2
2 h0

)
, n = 1, . . . , N∗ .

Furthermore,

inf
x∈Rn

dist(x,Σ) ≥ 1
2n+1

(
1−
√

2h0
)

=: dmin,n n = 0, . . . , N∗ − 1,

sup
x∈Rn

dist(x,Σ) ≤ 1
2n

(
1 +
√

2h0
)

=: dmax,n n = 1, . . . , N∗.

(3.20)

(3.21)

Proof. We consider the square Qn ∈ Mn, for n = 1, . . . , N∗, with center CQn . According to
Algorithm 1, Qn is generated by refining a larger square Qn−1 ∈ Mn−1. The center CQn−1 of
Qn−1 satisfies the condition

dist(CQn−1 ,Σ) =
∣∣k − ∣∣CQn−1 − j

∣∣∣∣ ≤ 1
2n

at least for one j ∈ J̃ . (3.22)
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Based on this refinement, we first conclude that dist(CQn , CQn−1) = (
√

2/4)hn−1 and hence
from (3.22) and hn−1 = h0/2n−1 that for n = 1, . . . , N∗

dist(CQn ,Σ) ≤ dist(CQn , CQn−1) + dist(CQn−1 ,Σ) ≤ 1
2n

(
1 +
√

2
2 h0

)
. (3.23)

A bound for x ∈ Qn is obtained by adding half of the diameter of Qn,

dist(x,Σ) ≤
√

2
2 hn + 1

2n

(
1 +
√

2
2 h0

)
= 1

2n

(
1 +
√

2h0
)
.

As the right-hand side is independent of Qn, it actually holds for all x ∈ Rn.
On the other hand, any Qn ∈Mn, n = 0, . . . , N∗ − 1, that was not subject to the refinement

in the (n+ 1)-th refinement step, it implies

dist(CQn ,Σ) > 1
2n+1 , n = 0, . . . , N∗ − 1 . (3.24)

Hence, for any x ∈ Qn, we have

dist(x,Σ) ≥ dist(CQn ,Σ)− diam(Qn)/2 > 1
2n+1 −

√
2

2 hn = 1
2n+1

(
1−
√

2h0
)
.

As the right-hand side is independent of Qn, this estimate holds for any x ∈ Rn.

Remark 3.11. Proposition 3.10 shows that every set Rn is covered by annuli for which we have
explicit bounds for inner and outer radii. As each Rn is the union of the equally sized squares in
Mn, we may estimate the number of squares in Mn. For n = N∗, we have

|RN∗ | ≤ π (k + dmax,N∗)2 − π (k − dmax,N∗)2 = 4πk dmax,N∗ = 4πk
2N∗

(
1 +
√

2h0
)
,

and hence
#MN∗ = |RN∗ |

h2
N∗
≤ 4πk

h0

(√
2 + 1

h0

)
2N∗

.

Similarly, for n = 1, . . . , N∗ − 1, we get

|Rn| ≤ 4πk (dmax,n − dmin,n) = 2πk
2n

(
1 + 3

√
2h0

)
and

#Mn = |Rn|
h2

n

≤ 2πk
h0

(
3
√

2 + 1
h0

)
2n .

3.3.2. Tailor-Made Quadrature Rule and its Convergence Analysis

We will now proceed with defining appropriate quadrature rules on each square in GN∗ and
then analyze the corresponding error in computing the integral (3.17). We will strongly rely
on the correspondence of the squares in the mesh to representations of the integrand w. In
accordance with Theorem 3.8, we may use (3.11) for w on the smallest squares if both RN∗ ⊆ Σ̃
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and hN∗ <
√

2 δ. In the first step, we will use this observation to estimate the error of applying a
composite trapezoidal rule on RN∗ . Afterwards, we investigate the error of a P -point Gaussian
quadrature rule applied on all remaining squares, making use of the representation as derived
in Theorem 3.9. Finally, we prove that combining both rules for approximating the inverse FB
transform is super-algebraically convergent.

Recall that it suffices to consider the case j = 0 when approximating (3.17). Led by the
properties of the transformed total field established in Section 2.4, let us first sum up all required
assumptions for the integrand. Also recall the definition of the space X in (3.10).

Assumption 3.12. We assume that w ∈ X (H̃1
per(Ω2π

H )) and that r, δ are as in Theorem 3.8.
Note that w then will also admit the representation (3.13).

We first consider a square Q ∈ MN∗ with center CQ = (CQ,1, CQ,2). The vertices of Q are
given by αp,q = CQ + (p− 1

2)hN∗e(1) + (q− 1
2)hN∗e(2), for p, q = 0, 1, where e(j) denotes the j-th

coordinate vector. The integral w over Q is approximated by the trapezoidal rule

∫
Q
w(α) dα = h2

N∗

4

1∑
p,q=0

w(αp,q) + ET
Qw ,

where ET
Qw denotes the error. To estimate ET

Qw, we require the bilinear interpolation operator
PQ at the points αp,q. Well-known estimates for interpolation of any f ∈ C2(Q) give

max
α∈Q
|f(α)− PQf(α)| ≤ C h2

N∗ max
ν=1,2

∥∥∥∥∥∂2f

∂α2
ν

∥∥∥∥∥
∞
, (3.25)

where ∥·∥∞ denotes the supremum norm. This estimate generalizes to C2-smooth functions on Q
with values in a Sobolev space.

Theorem 3.13. Let w satisfy Assumption 3.12 and let the parameters h0, N∗ in Algorithm 1
be chosen such that dmax,N∗ < r and hN∗ ≤

√
2δ. Then,

max
α∈Q
∥w(α)− PQw(α)∥H1

per(Ω2π
H ) ≤ C 2−N∗/2 ,

where the constant C depends on k and the functions wI appearing in (3.11) for all the centers
of the expansion from Theorem 3.8.

Proof. According to Theorems 3.6 and 3.8, there exists α0 ∈ Σ such that the representation

w(α) =
∑

I⊆J(α0)

∏
j∈I

√
k2 − |α− j|2

 vI(α) ,

with analytic functions vI , holds for all α ∈ Q. To establish the assertion, it is necessary to
distinguish between curves of singular points close to Q and those at a larger distance. Hence,
we define

J1 := {j ∈ J(α0) : |k − |α− j|| ≤ dmax,N∗ for some α ∈ Q}
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and J2 := J(α0) \ J1. To abbreviate the notation, we set γj(α) :=
√
k2 − |α− j|2 and introduce

wI1(α) :=


v∅(α) +

∑
∅̸=I2⊆J2

vI2(α)
∏

j∈I2

γj(α) , I1 = ∅ ,

∑
I2⊆J2

vI1∪I2(α)
∏

j∈I2

γj(α) , I1 ⊆ J1 , I1 ̸= ∅ .

With this notation, the representation of w becomes

w(α) =
∑
I1⊆J1

wI1(α)
∏

j∈I1

γj(α) . (3.26)

The goal is thus to establish the asserted estimate for each term in (3.26). This can be done by
induction on the cardinality of I1. Throughout the arguments, we shall make use of a generic C
denoting constants, that depend on k, the maximum norms of derivatives of all vI up to second
order and on maximum norms of all wI (but not their derivatives).

We start with I1 = ∅. In this case, the product on the right-hand side of (3.26) is equal to 1.
Hence, we only need to prove the assertion for each summand in the definition of w∅. We proceed
again by induction on the cardinality of I2. For v∅, the estimate follows directly from (3.25). For
I2 ̸= ∅, let j ∈ I2 and assume that the estimate has been proven for the bounded continuous
function

z := vI2(α)
∏

j ̸=k∈I2

γk(α) .

That means,
max
α∈Q
|PQ(z)(α)− z(α)| ≤ C2−N∗

. (3.27)

Hence, it remains to estimate

max
α∈Q
|PQ(γj z)(α)− γj(α) z(α)| ≤ C2−N∗

.

Using the triangle inequality and the induction assumption for z given in (3.27), we obtain

|PQ(γj z)(α)− γj(α) z(α)| ≤ |PQ(γj z)(α)− γj(α)PQz(α)|+ |γj(α)PQz(α)− γj(α)z(α)|
≤ |PQ(γj z)(α)− γj(α)PQz(α)|+ C∥γj∥∞;Q2−N∗/2 .

To estimate the first term, we again use the triangle inequality as follows

|PQ(γj z)(α)− γj(α)PQz(α)| ≤ |PQ(γj z)(α)− PQ(γj PQz)(α)|
+ |PQ(γj PQz)(α)− γj(α)PQz(α)| .

(3.28)

By considering the induction assumption (3.27) and using the properties of the bilinear interpo-
lation PQ, we get

max
α∈Q
|PQ(γj z)(α)− PQ(γj PQz)(α)| ≤ C max

α∈Q
|γj(α) z(α)− γj(α)PQz(α)| ≤ C∥γj∥∞;Q2−N∗/2 .
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Before estimating the second term of (3.28), from Lemma A.2 and the definition of J2, we know
that ∣∣∣∣∣∂2γj(α)

∂α2
ν

∣∣∣∣∣ ≤ C (k + |α− j|)1/2

|k − |α− j||3/2 ≤
C

d
3/2
max,N∗

≤ C 23N∗/2 , α ∈ Q , ν = 1, 2 , (3.29)

where dmax,N∗ is defined as in (3.21). Using (3.25) and the bilinearity of PQz, the second term
of (3.28) can be estimated by

|PQ(γj PQz)(α)− γj(α)PQz(α)| ≤ Ch2
N∗ max

ν=1,2

∥∥∥∥∥ ∂2

∂α2
ν

(γj PQz)
∥∥∥∥∥
∞;Q

≤ Ch2
N∗ max

ν=1,2

∥∥∥∥∥
2∑

ℓ=1

∂ℓγj

∂αℓ
ν

∂2−ℓPQz

∂α2−ℓ
ν

∥∥∥∥∥
∞;Q

≤ Ch2
N∗ ∥z∥∞ max

ν=1,2

∥∥∥∥∥∂2γj

∂α2
ν

∥∥∥∥∥
∞;Q

≤ C 2−N∗/2 ,

where the second last inequality is due to ∥∂ανγj∂ανPQz∥∞;Q ≤ C
∥∥∂2

αν
γjPQz

∥∥
∞;Q. By summing

up all terms, we obtain the asserted estimate for w∅.
Next, we establish the estimate for I1 ̸= ∅. For j ∈ I1, we consider the bounded continuous

function
z := wI1

∏
j ̸=k∈I1

γk

for which the asserted estimate is valid. Similarly as before, we estimate

|PQ(γj z)(α)− γj(α) z(α)| ≤ |PQ(γj z)(α)− γj(α)PQz(α)|+ C ∥γj∥∞;Q 2−N∗/2

≤ |PQ(γj z)(α)|+ |γj(α)PQz(α)|+ C ∥γj∥∞;Q 2−N∗/2

≤ C
(
1 + 2−N∗/2

)
∥γj∥∞;RN∗ .

From the definition of J1, it follows that

∥γj∥∞;RN∗ ≤ C |k − |α− j|| ≤ C (dmax,N∗ + diam(Q)) ≤ C
(
2−N∗ +

√
2hN∗

)
≤ C 2−N∗

.

By induction, the asserted estimate now follows for all terms in (3.26).

It is now straightforward to obtain a bound for approximating the integral on the union of all
Q ∈MN∗ . The corresponding quadrature operator will be denoted by

IT
N∗w :=

∑
Q∈MN∗

∫
Q
PQw(α) dα .

Theorem 3.14. Let w satisfy Assumption 3.12 and let the parameter N∗ in Algorithm 1 be
chosen such that dmax,N∗ < r and hN∗ ≤

√
2δ. Then, the error of the trapezoidal rule over RN is
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bounded by ∥∥∥∥∥
∫
RN∗

w(α) dα − IT
N∗w

∥∥∥∥∥
H1

per(Ω2π
H )
≤ C 2−3N∗/2.

Proof. Using the triangle inequality and Theorem 3.13, we have∥∥∥∥∥
∫
RN∗

w(α) dα − IT
N∗w

∥∥∥∥∥
H1

per(Ω2π
H )
≤

∑
Q∈MN∗

∫
Q
∥(w − PQw)(α)∥H1

per(Ω2π
H ) dα

≤ C(k) (#MN∗)h2
N∗ 2−N∗/2 .

By using Remark 3.11, which establishes #MN∗ ∼ 2N∗ , and since by construction hN∗ ∼ 2−N∗ ,
the assertion follows.

On all squares Q ∈Mn for n = 1, . . . , N∗−1, we will use a P -point Gauss-Legendre quadrature
rule in each coordinate direction to approximate the inverse FB transform. We denote this rule
applied to a function f by IG

P,Qf and set IG
P,Rn

f := ∑
Q∈Rn

IG
P,Qf .

In equation (A.2), we recall the classic error estimate of the Gaussian quadrature formula in
the two-dimensional case according to [76, Thm. 9.20]. In what follows, we present the general
well-known error estimate for applying such a rule in Theorem 3.15.

Theorem 3.15. Let f ∈ C2P (Rn; H̃1
per(Ω2π

H )). Then, there is a constant C such that

∥∥∥∥∫
Rn

f(α) dα − IG
P,Rn

f

∥∥∥∥
H1

per(Ω2π
H )
≤ C

(
h0
2

)2P 2−(2P +1)n

(2P + 1)! max
α∈Rn

 2∑
ν=1

∥∥∥∥∥∂2P f(α)
∂α2P

ν

∥∥∥∥∥
H1

per(Ω2π
H )

 .

Proof. From equation (A.2) with P = n+ 1 and our setting of functions mapping to a Sobolev
space, we can estimate the error of the integration over each square Q ∈Mn (for n = 0, . . . , N∗−1)
as follows

∥∥∥∥∫
Q
f(α) dα − IG

P,Qf

∥∥∥∥
H1

per(Ω2π
H )
≤ 4

(2P + 1)!

(
hn

2

)2P +2
max
α∈Q

 2∑
ν=1

∥∥∥∥∥∂2P f(α)
∂α2P

ν

∥∥∥∥∥
H1

per(Ω2π
H )

 .

Using the estimates given in Remark 3.11, we obtain the asserted error bound.

Based on Theorem 3.15, the error of the Gauss-Legendre rule for computing the integral
of w over Rn depends on the 2P -th partial derivatives of w with respect to either α1 or
α2. Recalling the representation (3.13), it suffices to estimate the 2P -th partial derivatives of∏

j∈I

√
k2 − |α− j|2 vI(α) with respect to each coordinate. We do so in the next lemma using

some standard estimates for square root functions and their derivatives presented in the appendix.

Lemma 3.16. For any fixed ℓ ∈ N, there is a constant C such that

max
α∈Rn

∣∣∣∣∣∣∂
ℓ
√
k2 − |α− j|2

∂αℓ
ν

∣∣∣∣∣∣ ≤ C ℓ! (dmax,n)1/2

(dmin,n)ℓ
, n = 1, . . . , N∗ − 1, ν = 1, 2 , (3.30)
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where dmin,n and dmax,n are defined by (3.20) and (3.21), respectively.

Proof. According to Lemma A.2, for all α ∈ Rn, (n = 1, . . . , N∗ − 1), there is a constant C̃ such
that ∣∣∣∣∣∣∂

ℓ
√
k2 − |α− j|2

∂αℓ
ν

∣∣∣∣∣∣ ≤ C̃ ℓ! |k + |α− j||1/2

|k − |α− j||ℓ−1/2 .

Hence, using (3.20) and (3.21), i.e., dmin,n ≤ |k − |α− j|| ≤ dmax,n, leads to

max
α∈Rn

∣∣∣∣∣∣∂
ℓ
√
k2 − |α− j|2

∂αℓ
ν

∣∣∣∣∣∣ ≤ C ℓ! (dmax,n)1/2

(dmin,n)ℓ
.

This completes the proof.

Theorem 3.17. Let I ⊂ J and denote by γI(α) := ∏
j∈I

√
k2 − |α− j|2 vI(α) one of the terms

in (3.13). Let m := #I. Then, for every ℓ ∈ N0, there exists Cℓ > 0 such that

max
α∈Rn

∥∥∥∥∥∂ℓγI
∂αℓ

ν

∥∥∥∥∥
H1

per(Ω2π
H )
≤ Cℓ (dmax,n)m/2

(dmin,n)ℓ
, ν = 1, 2. (3.31)

Proof. From the generalized Leibniz formula, we obtain

∂ℓγI(α)
∂αℓ

ν

=
∑

K0+···+Km=ℓ

ℓ!
K0! · · ·Km!

∂K0 vI(α)
∂αK0

ν

m∏
µ=1

∂Kµ

∂α
Kµ
ν

√
k2 − |α− jµ|2 .

Using (3.14) and Lemma 3.16, we have for α ∈ Rn∥∥∥∥∥∂ℓγI(α)
∂αℓ

ν

∥∥∥∥∥
H1

per(Ω2π
H )
≤ C

∑
K0+···+Km=ℓ

ℓ!
K0! · · ·Km!

CK0

(dmin,n)K0

m∏
µ=1

Kµ! (dmax,n)1/2

(dmin,n)Kµ
.

Combining all constants gives the assertion.

Theorem 3.18. Let w satisfy Assumption 3.12. Then, for every P ∈ N, there exists a constant
CP such that ∥∥∥∥∥

N∗−1∑
n=1

∫
Rn

w(α) dα −
N∗−1∑
n=1

IG
P,Rn

w

∥∥∥∥∥
H1

per(Ω2π
H )
≤ CP h

2P
0 .

Proof. Combining Theorems 3.15 and 3.17, we obtain the estimate∥∥∥∥∫
Rn

w(α) dα − IG
P,Rn

w

∥∥∥∥
H1

per(Ω2π
H )
≤ CP

(
h0
2

)2P 2−(2P +1)n

(dmin,n)2P
,

with some constant CP independent of h0 and n. From (3.20), we have dmin,n ≥ C 2−n. Hence,∥∥∥∥∫
Rn

w(α) dα − IG
P,Rn

w

∥∥∥∥
H1

per(Ω2π
H )
≤ CP

h2P
0
2n

.
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Summing over n = 1, . . . , N∗ − 1 completes the proof.

Now, we are going to provide the analysis of the total error in numerical inversion of the FB
transform. It is straightforward to combine the quadrature rules of the previous two subsections
to obtain a super-algebraically convergent approximation to the inverse FB transform of the
transformed field.
Corollary 3.19. Let w satisfy Assumption 3.12 and fix P ∈ N. Then, there is CP > 0 such that
for every h0 and N∗ with dmax,N∗ < r, hN∗ ≤

√
2δ, there holds∥∥∥∥∥

∫
Λ
w(α) dα − IT

N∗w −
N∗−1∑
n=1

IG
P,Rn

w

∥∥∥∥∥
H1

per(Ω2π
H )
≤ CP

(
2−3N∗/2 + h2P

0

)
,

where IT
N∗ and IG

P,Rn
are defined on Pages 47 and 48.

Example 3.20. As examples for the performance achievable with our quadrature rule, we
consider functions w that are products of the square root functions occurring in the represen-
tation (3.11). In this special case, all wI are either constant 0 or 1 and thus analytic on Λ.
From (3.16) and the estimates in the proof of Theorem 3.17, we expect the constant CP to be
independent of P in this case.

We apply the quadrature rule to the approximation of two integrals,

I1 =
∫

Λ

√
k2 − |α− j|2 dα k = 0.4 , j = (0, 0) ,

I2 =
∫

Λ

√
k2 − |α− j|2

√
k2 − |α− l|2 dα k = 1.4 , j = (−1, 0) , l = (−1, 1) .

For the first integral, the set Σ is a single circle entirely contained in the set Λ (as depicted in the
left image of Figure 3.3). Hence, the exact value of the integral I1 can be obtained analytically.
We have used Maple 2022 to carry out this task and then computed approximations using our
quadrature rule for various values of N∗ and P .

In the second integral, the integrand is singular along two circular arcs contained in the set
Λ. The exact value of this integral is not available. Instead, we have computed a reference
value for N∗ = 23 and P = 5 and compared our results against it. The results are presented in
Figure 3.7. The theoretically predicted convergence rate from Corollary 3.19 is very well reflected,
with exponential convergence with respect to N∗, until the error of the Gauss quadrature rule
dominates. The results also nicely illustrate our expectation that CP is independent of P for
these examples.

3.4. Full Discretization of Scattering Problems

To solve (3.3) numerically in Λ×Ω2π
H , we use a tetrahedral mesh in Ω2π

H with maximum diameter τ
and a special structure on the top surface Γ2π

H . We consider a tensor product of L1 + 1 equidistant
nodes in x1 direction and L2 + 1 in x2 direction, that is

xℓ :=
(
−π + 2π

L1
ℓ1,−π + 2π

L2
ℓ2, H

)⊤
(3.32)
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(a) I1 (b) I2

Figure 3.7. Numerical error of the proposed quadrature rule for various N∗ and P
applied to Ij , j = 1, 2.

for ℓ = (ℓ1, ℓ2) ∈ {0, . . . , L1} × {0, . . . , L2}. Moreover, we denote by N∆ the total number of
nodes in the tetrahedral mesh. In the domain Λ = [−1/2, 1/2]2, we generate an adapted square
mesh using Algorithm 1.

For each quadrature node α in the adapted mesh generated by Algorithm 1, we approximate the
solution w(α) of (3.7) by P1-conforming piecewise linear finite elements basis functions {ϕ}N∆

n=1.
Substituting the approximation of the solution into the variational problem (3.7) yields

N∆∑
n=1

wn(αj)aαj (ϕn, ϕm) =
〈
(∂xd

− T +
αj

)J ui(αj), ϕm

〉
Γ2π

H

for all m ∈ {1, . . . , N∆} ,

where the sesquilinear form aαj is defined as in (3.4). This leads to the following linear system
for each αj (

D− 2iAj − (k2 − |αj |2)M−DtNj

)
Wj = Fj , (3.33)

where D and M are the standard diffusion and mass matrices, (Wj)m
:= w(αj ;xm) and

(Aj)m,n
:=
〈
αj · ∇x̃ ϕn, ϕm

〉
Ω2π

H

,

(DtNj)m,n
:=
〈
T +

αj
ϕn, ϕm

〉
Γ2π

H

,

(Fj)m
:=
〈
(∂xd

− T +
αj

)J ui(αj), ϕm

〉
Γ2π

H

,

for m,n ∈ {1, . . . , N∆} and j ∈ {1, . . . , Nα}.
To discretize the DtN map, we proceed similarly to the approach in [65, Sec. 3]. By considering

the special structure of the generated mesh on Γ2π
H given in (3.32), we approximate (T +

αj
ϕn)(x)
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again by the piecewise linear functions as follows

(T +
αj
ϕn)(x) =

N∆∑
s=1

(T +
αj
ϕn)(xs)ϕs(x).

In this case, we have

〈
T +

αj
ϕn, ϕm

〉
Γ2π

H

=
N∆∑
s=1

(T +
αj
ϕn)(xs)

〈
ϕs, ϕm

〉
Γ2π

H

.

To compute the matrix corresponding to (T +
αj
ϕn)(xs), we approximate the finite element basis

functions ϕn by the trigonometric functions ψn as follows (see [8, Sec. 3.8])

ψn(x) := 1
L1L2

L1∑
ℓ1=0

L2∑
ℓ2=0

ei(ℓ1,ℓ2)·(x̃−x̃n) for x = (x̃, H) ∈ Γ2π
H , (3.34)

where x̃n are the nodes on the top surface defined in (3.32). Note that we focus only on the nodes
on the top surface, since the elements corresponding to the other nodes are zero. From (3.34),
we conclude that for ℓ = (ℓ1, ℓ2), the ℓ-th Fourier coefficient of ψn is e−iℓ·x̃n . This yields

(T +
αj
ψn)(xs) = 1

L1L2

L1∑
ℓ1=0

L2∑
ℓ2=0

√
k2 − |αj − ℓ|2eiℓ·x̃sψ̂n(ℓ)

= 1
L1L2

L1∑
ℓ1=0

L2∑
ℓ2=0

√
k2 − |αj − ℓ|2eiℓ·(x̃s−x̃n) .

Note that the expression on the last line gives us a matrix, which can be decomposed as the
product of a diagonal matrix, the two-dimensional discrete Fourier transform and its inverse.
Numerically, it is important how to implement this boundary condition because it affects the
computational time. We solve the system (3.33) using an iterative method; hence the dense
matrix DtNj does not need to be assembled, instead it is required to perform the matrix-vector
multiplication DtNjWj for a generic vector Wj . In Algorithm 2, we describe how to perform
this matrix-vector multiplication in an efficient way by using the fast Fourier transform.

3.4.1. Error Analysis for Fully-Discrete Scheme

To conclude our analysis, we combine the result of Corollary 3.19 with error bounds for the
Galerkin approximation for the solution of the variational problem (3.7).

Theorem 3.21. Let (J ui)(α) ∈ H1/2
per (Γ2π

H ) and w(α) denote the exact solution of the variational
formulation of (3.7) and wτ (α) its numerical approximation by the finite element method with
mesh size τ . For sufficiently small τ ,

∥w(α)− wτ (α)∥Hs
per(Ω2π

H ) ≤ C τ
2−s

∥∥∥(J ui)(α)
∥∥∥

H
1/2
per (Γ2π

H )
for s = 0, 1 ,

where the constant C is independent of the Floquet parameter α.
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Algorithm 2: full discretization of the scattering problem, given in (3.33)
Input: wave number k and the quadrature rule {(αj , ϱj)}Nα

j=1 from Algorithm 1
1 Generate a tetrahedral mesh in the cell Ω2π

H ;
2 Construct the sparse stiffness matrices M and D;
3 for j = 1, . . . , Nα do in parallel
4 Construct the sparse stiffness matrix Aj ;
5 Compute the right-hand side Fj from the given incident field (J ui)(αj);
6 Compute the diagonal matrix βs,s :=

√
k2 − |αj − s|2;

7 Define the function LHS
Input: the vector Fj

%Compute DtNj by the fast Fourier transform fft and its inverse ifft
8 DtNj ← ifft (β fft(Wj));

%Perform the matrix-vector product in the standard way for M,D,Aj

9 return D Wj − 2iAjWj − (k2 − |αj |2)M Wj −DtNj

10 Solve (3.33) by GMRES with inputs LHS, initial guess zero and tolerance 10−5;
11 Wj ←Wj eiαj ·x̃;
12 Use the numerical inversion of FB transform to compute the total field u;
13 return Numerical total field u

Proof. The proof is completely analogous to [85, Thm. 14].

Combining both error bounds given in Corollary 3.19 and Theorem 3.21, yields the complete
estimate for the proposed numerical method. To concisely formulate this result, we introduce
operators

Υℓψ(α, x) := ψ(α, x) eiα·(x̃+2πℓ) ℓ ∈ Z ,

J −1
P,N∗,h0

ψ(x̃+ 2πℓ, x3) :=
(
IT

N∗ +
N∗−1∑
n=1

IG
P,Rn

)
Υℓψ(x) ,

where IT
N∗ and IG

P,Rn
are defined on Pages 47 and 48.

Theorem 3.22. Let ui ∈ H1
r (Ωper

H ) for some |r| < 1 and additionally (J ui)(α) ∈ H1/2
per (Γ2π

H ).
Let u denote the total field, i.e., the solution to (3.2), and for any α ∈ Λ by wτ (α) the finite
element approximation to the solution of (3.7) for sufficiently small mesh size τ . Let h0 and N∗

satisfy dmax,N∗ < r, hN∗ ≤
√

2δ and fix P ∈ N. Then, there holds∥∥∥u− J −1
P,N∗,h0

wτ

∥∥∥
Hs(Ω2π

H )
≤ C

(
τ2−s + 2−3N∗/2 + h0

2P
)
, s = 0, 1 ,

where the constant C depends on the order of Gauss-Legendre rule P and the incident field ui.

Proof. For any α ∈ Λ, denote by w(α) the exact solution to (3.7). By using the inverse FB
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transform and then the triangle inequality, we have∥∥∥u− J −1
P,N∗,h0

wτ

∥∥∥
Hs(Ω2π

H )
=
∥∥∥J −1w − J −1

P,N∗,h0
wτ

∥∥∥
Hs(Ω2π

H )

≤
∥∥∥(J −1 − J −1

P,N∗,h0

)
w
∥∥∥

Hs(Ω2π
H )

+
∥∥∥J −1

P,N∗,h0
(w − wτ )

∥∥∥
Hs(Ω2π

H )
.

(3.35)

Note that application of Υℓ is just a multiplication with an analytic function, hence Υℓw

satisfies Assumption 3.12. For the first term of (3.35), Corollary 3.19 gives∥∥∥(J −1 − J −1
P,N∗,h0

)
w
∥∥∥

Hs(Ω2π
H )
≤ CP

(
2−3N∗/2 + h2P

0

)
.

Denote by (αj , ϱj), for j = 1, . . . , Nα, all the quadrature points and corresponding weights
appearing in the rules IT

N∗ and IG
P,Rn

. It should be noted that all the weights are positive.
Accordingly, we may write using Theorem 3.21,

∥∥∥J −1
P,N∗,h0

(w − wτ )
∥∥∥

Hs(Ω2π
H )
≤

Nα∑
j=1

ϱj∥w(αj)− wτ (αj)∥Hs
per(Ω2π

H )

≤ Cτ2−s
Nα∑
j=1

ϱj

∥∥∥(J ui)(αj)
∥∥∥

H
1/2
per (Γ2π

H )
.

As J ui ∈ X (H1/2
per (Γ2π

H )), we may use the same approach as in the proof of Theorem 3.9 to derive
an expression analogous to (3.13) for J ui and conclude that supα∈Λ

∥∥(J ui)(α)
∥∥

H
1/2
per (Γ2π

H ) < ∞.

Then, using the fact that
Nα∑
j=1

ϱj = |Λ| = 1, the proof is completed.

3.5. Numerical Results

In this section, we present numerical examples to illustrate the performance of the proposed
method for solving the three-dimensional scattering problems. To have access to an exact
solution, we consider the case of a radiation problem: we assume that Γper ⊆ R3

+, where
R3

+ := {x ∈ R3
+ : x3 > 0} is the upper half-space and that ui is the Dirichlet Green’s function for

this upper half-space for some source point y located between Γper and x3 = 0,

ui(x) = G(x, y) = 1
4π

(exp (ik|x− y|)
|x− y|

− exp (ik|x− y′|)
|x− y′|

)
, x ∈ R3

+, x ̸= y .

As indicated above, we assume that the point source y = (y1, y2, y3)⊤ satisfies 0 < y3 < ζper(y1, y2),
and y′ = (y1, y2,−y3)⊤ denotes the reflected point source. The reason for using Green’s function
instead of the standard fundamental solution is its faster decay rate in vertically bounded strips
(see Lemma C.2). Moreover, ui ∈ H1

r (ΩH) with r < 1 for the point source below Γper(see [84,
Sec. 7]). As we are considering a radiation problem, the “scattered field” us satisfies us = −ui in
Ωper. Hence, we are able to compute explicitly the numerical approximation error in the scattered
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field obtained by (3.3) for the vanishing total field in the bounded cell Ω2π
H .

We assume that the surface Γper is given by the bi-periodic function

ζper(x̃) = 0.6 + 0.3 sin(x1) cos(2x2) + 0.2 sin(2x1) sin(3x2), for x̃ = (x1, x2) ∈ R2.

Moreover, we fix H = 2 and consider the source point y = (0, 0, 0.1)⊤.
To solve (3.3) in Λ×Ω2π

2 , we first generate an adapted square mesh in Λ by using Algorithm 1
and tetrahedral meshes in Ω2π

2 with (M + 1)2 × (M/2 + 1) nodes for M ∈ {16, 32, 64, 128} so that
the maximum diameter τ for these four generated meshes is 0.78, 0.41, 0.21 and 0.1, respectively.
Note that these values for τ are smaller than the essential limit of one-tenth of the wavelength
for each value of k considered below. For each α ∈ Λ, we approximate the solution w(α) of (3.7)
by P1−conforming piecewise linear finite elements (as explained in Section 3.4).

According to Lemma C.3, the FB transform of Green’s function for each α ∈ Λ is computed as

J ui = e−iα·ỹ ∑
j∈Z2

e−ij·(x̃−ỹ)


ei
√

k2−|α−j|2x3 sinc
(√

k2 − |α− j|2y3

)
y3 y3 < x3 ,

ei
√

k2−|α−j|2y3 sinc
(√

k2 − |α− j|2x3

)
x3 otherwise .

(3.36)

The formula for J ui given above in particular shows that the assumptions of Theorem 3.22 are
satisfied. The right-hand side can be evaluated by truncating the infinite series to |j1|, |j2| ≤ 40.
Eventually, we solve the sparse linear system (3.33) using the iterative solver described in
Algorithm 2.

Below, we will demonstrate the dependence of the numerical error on the discretization
parameters: the mesh size τ in the spatial space, the number of refinement N∗ in α-space and
the order P of the Gauss-Legendre rule. Let the relative errors and the computational orders be

Eτ =
∥us − us

τ∥L2(Ω2π
H )

∥us∥L2(Ω2π
H )

, Corder = log(Eτ1/Eτ2)
log(τ1/τ2) ,

where us is the exact scattered field and us
τ denotes its finite element approximation with the

mesh size τ . In Table 3.1, we list the relative errors and the computational orders for different
values of τ and wave number k. This table indicates that the numerical results are consistent
with the analytic results of Theorem 3.22 for each k, since errors converge as the mesh size τ
decreases even with a low number of N∗ and P .

Note that for large values of the wave number k, the structure of the singular curves becomes
more complicated. For example for k = 3 there are 20 curves of singular points in the domain Λ.
Despite the complicated structure of the singular curves in α-space, the accurate results can still
be obtained by using small values of N∗ and P , only refining the spatial mesh τ , as reported in
Table 3.1.

In Tables 3.2 and 3.3, we report the relative errors with respect to N∗ and P for different
values of τ . Since the error of the finite element method is dominated in the computational order,
we cannot see the exponential convergence of the proposed numerical integration method with
respect to N∗ and P .
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Table 3.1. Relative error and computational order with respect to τ by N∗ = 3,
P = 2.

k = 0.4 k = 1.4 k = 3
τ Error Corder Error Corder Error Corder

0.78 3.3438× 10−2 −− 3.7156× 10−2 −− 1.9390× 10−1 −−
0.41 1.0870× 10−2 1.75 1.0788× 10−2 1.92 5.9628× 10−2 1.83
0.21 3.0854× 10−3 1.88 2.8671× 10−3 1.98 1.5824× 10−2 1.98
0.10 8.1722× 10−4 1.79 7.3826× 10−4 1.83 4.0295× 10−3 1.84

Table 3.2. Relative error with respect to P and N∗ for wave number k = 0.4.

τ = 0.78 τ = 0.21
P N∗ = 2 N∗ = 3 N∗ = 2 N∗ = 3
2 3.3658× 10−2 3.3438× 10−2 3.4548× 10−3 3.0854× 10−3

3 3.3658× 10−2 3.3438× 10−2 3.4548× 10−3 3.0854× 10−3

4 3.3658× 10−2 3.3438× 10−2 3.4548× 10−3 3.0854× 10−3

Table 3.3. Relative error with respect to N∗ and τ for k = 1, P = 2.

N∗ τ = 0.78 τ = 0.41 τ = 0.21
2 3.4106× 10−2 1.1145× 10−2 3.5580× 10−3

3 3.4054× 10−2 1.1137× 10−2 3.2018× 10−3

4 3.3979× 10−2 1.1078× 10−2 3.1413× 10−3

5 3.3976× 10−2 1.1078× 10−2 3.1428× 10−3

(a) |us
τ | (b) |us − us

τ |

Figure 3.8. Numerical scattered field and its absolute error for k = 1 with the point
source y = (0, 0, 0.1)⊤ located below Γper.
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In Figure 3.8, we show the numerical scattered field us
τ and its numerical error in the L2-norm

for k = 1 with parameters τ = 0.21, N∗ = 3 and P = 2. As shown in Figure 3.8(b), the maximum
value of the numerical error is approximately 10−4, which indicates the accuracy of the proposed
method.

Having established the efficiency of the proposed method for a point source below the surface,
we now consider the case with the source above the surface. In this case, the exact solution is not
available. Therefore, we present only the real, imaginary, and absolute values of the scattered
field, to see how the scattered field propagates in Ω2π

2 . In Figure 3.9, we illustrate the behaviour
of the scattered field generated by the point source y = (−1, 0, 1)⊤ located inside Ω2π

2 .

(a) Reus
τ (b) Im us

τ

(c) |us
τ |

Figure 3.9. Numerical scattered field for k = 3 with the point source located at
y = (−1, 0, 1)⊤ above Γper.

In conclusion, our method provides a way to very accurately approximate the inverse FB
transform for solutions to a non-periodic scattering problem. Even for very small values of P ,
the error from this approximation is already dominated by the error from the finite element
method. Nevertheless, for larger wave numbers, the structure of the singular curves quickly
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becomes quite complicated, making it necessary to use a large number of quadrature points.
Thus, the accurate solution of non-periodic scattering problems in periodic domains remains a
computational challenge.



CHAPTER 4

Scattering in Unbounded Locally Perturbed
Periodic Structures

In this chapter, we focus on acoustic scattering from locally perturbed surfaces. We assume
that the periodicity of the scatterer Γper is disrupted by a compactly supported perturbation
δ, located in the region [−π, π]d−1 for d = 2, 3. Next, we define a locally perturbed function by
ζδ := ζper + δ, which generates the locally perturbed scatterer Γδ. The unbounded domain above
Γδ is denoted by Ωδ (see Figure 4.1(a) for a visualization of these domains).

We begin by employing the DtN map as a truncation method, as introduced in the previous
chapter, but now in the context of a locally perturbed case. Next, we apply a diffeomorphism to
transform this locally perturbed domain into a periodic one. By subsequently applying the FB
transform to the resulting formulation of the scattering problem, we derive a coupled family of
periodic problems — indexed by the Floquet parameter — defined in a bounded cell. Furthermore,
we approximate the solution of these problems using the PML method and analyze the regularity
of the transformed field with respect to the Floquet parameter. The regularity result shows that
due to the analyticity of the PML approximation of the DtN map, the resulting operator and
the scattered field depend analytically on the Floquet parameter. This allows us to evaluate the
inverse FB transform by much fewer values of the Floquet parameter, compared to the method
presented in the previous chapter. Furthermore, we prove that the PML approximation of the
scattered field converges exponentially to the exact scattered field with respect to the PML
parameter in every compact set in two dimensions.

Finally, we propose a fast iterative method to compute the scattered field numerically, which
allows us to exploit parallelization despite the problem’s coupling. The efficiency of the proposed
method is demonstrated through several numerical examples.

4.1. Formulation in a Bounded Cell

We begin by truncating the unbounded domain above the scatterer Γδ in the vertical direction.
To this end, we first introduce some notations. For H > max{∥ζper∥∞, ∥ζδ∥∞}, we define the
flat surface ΓH := Rd−1 × {H}. We denote the unbounded domain between the locally perturbed
surface Γδ and the flat surface ΓH by Ωδ

H (see Figure 4.1(b)).
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Γδ

ui us,δ

Ωδ

(a) Locally perturbed domain Ωδ

Γδ

ΓH

Ωδ
H

(b) Truncated domain Ωδ
H

Figure 4.1. Sketch of the unbounded locally perturbed domains.

As explained in Section 2.2, we impose a transparent boundary condition on the artificial
boundary ΓH based on the DtN map. This results in the following boundary value problem posed
in Ωδ

H : For the incident field ui ∈ H1
r (Ωδ

H) with |r| < 1, find the scattered field us,δ∈ H1
r (Ωδ

H)
that satisfies

∆us,δ + k2us,δ = 0 in Ωδ
H ,

us,δ = −ui on Γδ ,

∂xd
us,δ = T +us,δ on ΓH ,

(4.1a)
(4.1b)
(4.1c)

where the DtN map T + is defined as in (2.9). Note that (4.1a) is understood in the distributional
sense and (4.1b) and (4.1c) in the trace sense.

Considering the total field uδ= us,δ + ui, we have

∆uδ + k2uδ = 0 in Ωδ
H ,

uδ = 0 on Γδ ,

(∂xd
− T +)uδ = (∂xd

− T +)ui on ΓH .

(4.2a)
(4.2b)
(4.2c)

The variational form of (4.2) is to find uδ ∈ H̃1
r (Ωδ

H) for |r| < 1 such that〈
∇uδ,∇v

〉
Ωδ

H

− k2
〈
uδ, v

〉
Ωδ

H

−
〈
T +uδ, v

〉
ΓH

=
〈
(∂xd

− T +)ui, v
〉

ΓH

for all v ∈ H̃1
−r(Ωδ

H) .
(4.3)

For all incident fields ui ∈ H1
r (Ωδ

H) for |r| < 1, Problem (4.3) is uniquely solvable as proven
in Theorem 2.15.

From the numerical point of view, the discretization of the variational problem (4.3) is not
possible, since it is posed in a horizontally unbounded domain. To reduce the domain to a bounded
cell, one possible choice is the FB transform (described in Section 2.4). However, since the domain
Ωδ

H is not periodic, the FB transform cannot be applied directly. A coordinate mapping must be
defined to transform the perturbed domain into a periodic one. This is achievable because the
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periodic and perturbed surfaces are explicitly given. However, this transformation results in a
partial differential equation with non-constant coefficients.

Given that h ∈ (∥ζper∥∞, H], we can define the diffeomorphism Ψδ from the periodic domain
Ωper

H to the locally perturbed domain Ωδ
H as follows

Ψδ(x) = (x̃, xd + βδ
h(x)δ(x̃)) , x = (x̃, xd) ∈ Ωper

H , (4.4)

where the non-constant coefficient is defined by

βδ
h(x) := (xd − h)3

(ζper(x̃)− h)3χh(xd) , (4.5)

with χh(xd) = 0 for xd ≥ h and χh(xd) = 1 for xd < h.

Remark 4.1. Based on the parameter h and the definition of βδ
h, clearly βδ

h = 0 above the surface
Γh and βδ

h = 1 on the periodic surface Γper.

Remark 4.2. It is important to mention that the support of Ψδ − I is located in the bounded
cell Ω2π

H := ((−π, π)d−1 × R) ∩ Ωper
H , since we assumed in the beginning of this chapter that the

perturbation δ is compactly supported in [−π, π]d−1.

The transformed total field uδ
tra := uδ ◦Ψδ ∈ H̃1

r (Ωper
H ) with |r| < 1 now satisfies the following

variational problem posed in the periodic domain Ωper
H〈

Aδ∇uδ
tra,∇v

〉
Ωper

H

− k2
〈
cδuδ

tra, v
〉

Ωper
H

−
〈
T +uδ

tra, v
〉

ΓH

=
〈
(∂xd

− T +)ui, v
〉

ΓH

for all v ∈ H̃1
−r(Ωper

H ) ,
(4.6)

where
Aδ(x) := |det∇Ψδ(x)| (∇Ψδ(x))−1(∇Ψδ(x))−⊤ ∈ L∞(Ωper

H ,Rd×d) ,
cδ(x) := |det∇Ψδ(x)| ∈ L∞(Ωper

H ) .
(4.7)

Adding and subtracting k2
〈
uδ

tra, v
〉

Ωper
H

and
〈
∇uδ

tra,∇v
〉

Ωper
H

to (4.6) leads to

a(uδ
tra, v) + bδ(uδ

tra, v) =
〈
(∂xd

− T +)ui, v
〉

ΓH

for all v ∈ H̃1
−r(Ωper

H ) , (4.8)

where the sesquilinear forms a, bδ : H̃1
r (Ωper

H )× H̃1
−r(Ωper

H )→ C are defined by

a(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
Ωper

H

− k2
〈
ϕ, ψ

〉
Ωper

H

−
〈
T +ϕ, ψ

〉
ΓH

,

bδ(ϕ, ψ) :=
〈
(Aδ − I)∇ϕ,∇ψ

〉
Ωper

H

− k2
〈
(cδ − 1)ϕ, ψ

〉
Ωper

H

.
(4.9)

Note that the sesquilinear form a is exactly the same as in (3.2) for the periodic case. However,
the term bδ depends on the perturbation δ through the diffeomorphism Ψδ.

As the variational formulation (4.8) is now posed in the periodic domain Ωper
H , we can apply

the FB transform with respect to the first d− 1 variables (see Definition 2.24). This leads to a
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family of periodic problems, indexed by the Floquet parameter α ∈ Λ = [−1/2, 1/2]d−1, posed in
the bounded cell Ω2π

H .
Since ∇Ψδ = I outside the bounded cell Ω2π

H , we conclude that Aδ − I and cδ − 1 are both
compactly supported in this cell. Therefore, by using the definition of the FB transform, denoted
by J , and some straightforward computations, we have

J ((Aδ − I)∇uδ
tra) = (Aδ − I)(∇uδ

tra)e−iα·x̃ ,

J ((cδ − 1)uδ
tra) = (cδ − 1)uδ

trae−iα·x̃ .

Considering this fact and using the Plancherel formula (2.36) and Theorem 2.31, we obtain that
for all incident fields ui ∈ H1

r (Ωδ
H) with r ∈ [0, 1), the FB transform of the total field, denoted by

wδ := J uδ
tra ∈ L2(Λ; H̃1

per(Ω2π
H )), satisfies∫

Λ

(
aα(wδ(α), z(α)) + bδ

α(wδ, z(α))
)

dα =
∫

Λ

〈
(∂xd

− T +
α )J ui(α), z(α)

〉
Γ2π

H

dα (4.10)

for all z ∈ L2(Λ; H̃1
per(Ω2π

H )), where the FB transform of the DtN map T +
α is given by (3.5) and the

sesquilinear forms aα : H̃1
per(Ω2π

H )× H̃1
per(Ω2π

H )→ C and bδ
α : L2(Λ; H̃1

per(Ω2π
H ))× H̃1

per(Ω2π
H )→ C

are defined by
aα(ϕ, ψ) :=

〈
∇xϕ,∇xψ

〉
Ω2π

H

− 2i
〈
α · ∇x̃ ϕ, ψ

〉
Ω2π

H

− (k2 − |α|2)
〈
ϕ, ψ

〉
Ω2π

H

−
〈
T +

α ϕ, ψ
〉

Γ2π
H

(4.11)

and

bδ
α(ϕ, ψ) :=

〈
(Aδ − I)∇xJ −1ϕ,∇x(ψeiα·x̃)

〉
Ω2π

H

− k2
〈
(cδ − 1)J −1ϕ, ψeiα·x̃

〉
Ω2π

H

. (4.12)

The following theorem states that problems (4.8) and (4.10) are equivalent. Afterwards, the
unique solvability of (4.10) can be shown.

Theorem 4.3. Let the incident field ui ∈ H1
r (Ωδ

H) for r ∈ [0, 1). Then, uδ
tra ∈ H̃1

r (Ωper
H ) is the

solution of (4.8) if and only if wδ = J uδ
tra ∈ L2(Λ; H̃1

per(Ω2π
H )) satisfies (4.10).

Proof. See [83, Thm. 4.1].

Theorem 4.4. Let Γδ be the graph of the Lipschitz continuous function ζδ. Then, the variational
problem (4.10) has a unique solution in L2(Λ; H̃1

per(Ω2π
H )) for all incident fields ui ∈ H1

r (Ωδ
H) for

r ∈ [0, 1).

Proof. See [83, Thm. 4.2].

The next theorem provides an auxiliary result regarding the regularity of the solution.

Theorem 4.5. Assume that Γδ is the graph of a C2-function. If the incident field ui ∈ H2
r (Ωδ

H)
for r ∈ [0, 1), then wδ(α) ∈ H̃2

per(Ω2π
H ) for almost all α ∈ Λ and uδ

tra = J −1wδ ∈ H̃2(Ωper
H ).

Proof. See [83, Thm. 4.3].
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We can also give an alternative formulation of (4.10) for almost every α ∈ Λ.

Theorem 4.6. Let Γδ as in Theorem 4.4 and ui ∈ H1
r (Ωδ

H) for r ∈ [0, 1). Then, the variational
formulation (4.10) is equivalent to find wδ ∈ L2(Λ; H̃1

per(Ω2π
H )), which satisfies

aα(wδ(α), z) + bδ
α(wδ, z) =

〈
(∂xd

− T +
α )J ui(α), z

〉
Γ2π

H

(4.13)

for almost all α ∈ Λ and all z ∈ H̃1
per(Ω2π

H ). Additionally, in the two-dimensional case, if
r ∈ (1/2, 1), Problem (4.10) is equivalent to find wδ ∈ C(Λ; H̃1

per(Ω2π
H )) such that (4.13) holds for

all α ∈ Λ.

Proof. See [83, Thm. 4.4].

Note that when Aδ = I and cδ = 1 in (4.12), we have bδ
α(wδ, z) = 0. Problem (4.13) hence

reduces to the periodic problem described in (3.7). In this case, the advantage of applying the
FB transform is that one obtains a decoupled family of periodic problems indexed by the Floquet
parameter α. Therefore, their solutions can be computed in parallel.

On the other hand, in the general (perturbed) case, where the term bδ
α(wδ, z) is non-zero, we

obtain a family of periodic problems that are fully coupled through this additional term. From the
definition of the inverse FB transform, it turns out that solving problem (4.13) for each α requires
the contribution of the transformed fields, evaluated in all α. Therefore, a naive discretization
will lead to a very large linear system, demanding a prohibitive computational cost.

From Chapter 3, we know that the transformed solution is not analytic with respect to α due
to the singularity of the DtN operator T +

α . Approaches similar to those in Chapter 3, which are
directly based on the regularity of the DtN operator T +

α and use tailor-made inversion formulas
are possible, but require substantial computational effort, particularly in the three-dimensional
case. A simpler way to obtain a numerical approximation of T +

α is provided by the PML, which
will be the focus of the following section.

4.2. The PML Approximation of the Solution

Here we use the PML method to approximate the scattered field us,δ satisfying (4.1). We first
denote by us,δ

σ the PML approximation of the scattered field and recall from Section 2.3 that the
parameter σ ∈ C controls the absorbing effect of the PML.

As described in Section 2.3, the PML approximation of the scattered field satisfies (4.1), however
with a modified boundary condition on ΓH . More precisely, for any incident field ui ∈ H1

r (Ωδ
H)

with r ∈ [0, 1), the PML approximation us,δ
σ ∈ H1(Ωδ

H) satisfies

∆us,δ
σ + k2us,δ

σ = 0 in Ωδ
H ,

us,δ
σ = −ui on Γδ ,

∂xd
us,δ

σ = T +
σ us,δ

σ on ΓH ,

(4.14a)
(4.14b)
(4.14c)

where T +
σ is the PML approximation of the DtN map defined in (2.29).
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According to Theorem 2.21, problem (4.14) is uniquely solvable, when the PML parameter σ
is sufficiently large.

Proceeding in the same way as before, using the diffeomorphism Ψδ, we see that the total field

uδ
tra,σ := (us,δ

σ + ui) ◦Ψδ ∈ H̃1(Ωper
H )

satisfies

aσ(uδ
tra,σ, v) + bδ(uδ

tra,σ, v) =
〈
(∂xd

− T +
σ )ui, v

〉
ΓH

for all v ∈ H̃1(Ωper
H ) , (4.15)

where the sesquilinear form aσ : H̃1(Ωper
H )× H̃1(Ωper

H )→ C is given by

aσ(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
Ωper

H

− k2
〈
ϕ, ψ

〉
Ωper

H

−
〈
T +

σ ϕ, ψ
〉

ΓH

,

and bδ is defined as in (4.9).
Applying the FB transform to the total field, we obtain that for the incident field ui ∈ H1

r (Ωδ
H)

with r ∈ [0, 1), the transformed solution wδ
σ := J uδ

tra,σ ∈ L2(Λ; H̃1
per(Ω2π

H )) satisfies∫
Λ

(
aα,σ(wδ

σ(α), z(α)) + bδ
α(wδ

σ, z(α))
)

dα =
∫

Λ

〈
(∂xd

− T +
α,σ)J ui(α), z(α)

〉
Γ2π

H

dα (4.16)

for all z ∈ L2(Λ; H̃1
per(Ω2π

H )), where the sesquilinear form bδ
α is given in (4.12), and aα,σ is defined

as (4.11) with T +
α replaced by the PML approximation T +

α,σ. This approximation is given by

(T +
α,σϕ)(x̃, H) := i

∑
j∈Zd−1

√
k2 − |α− j|2 coth

(
−iσ

√
k2 − |α− j|2

)
ϕ̂(j)eij·x̃ , (4.17)

where ϕ̂(j) denotes the j-th Fourier coefficient of ϕ (see [105, Eq. (16)]).

Remark 4.7. For ui ∈ H1
r (Ωδ

H) with r ∈ [0, 1), similar to Theorem 4.6, the variational formula-
tion (4.16) is equivalent to find wδ

σ ∈ L2(Λ; H̃1
per(Ω2π

H )) such that

aα,σ(wδ
σ(α), z) + bδ

α(wδ
σ, z) =

〈
(∂xd

− T +
α,σ)J ui(α), z

〉
Γ2π

H

(4.18)

for almost all α ∈ Λ and all z ∈ H̃1
per(Ω2π

H ). Additionally, in the two-dimensional case, if
r ∈ (1/2, 1), Problem (4.16) is equivalent to find wδ

σ ∈ C(Λ; H̃1
per(Ω2π

H )) such that (4.18) holds
for all α ∈ Λ.

The following theorem states that (4.16) is uniquely solvable for sufficiently large σ.

Theorem 4.8. Assume that Γδ is the graph of the Lipschitz continuous function ζδ with a
sufficiently small perturbation δ. The variational problem (4.16) for sufficiently large σ has a
unique solution in L2(Λ; H̃1

per(Ω2π
H )) for the incident fields ui ∈ H1

r (Ωδ
H) with r ∈ [0, 1).



4.2. The PML Approximation of the Solution 65

Proof. Let Aα,σ : H̃1
per(Ω2π

H ) → (H̃1
per(Ω2π

H ))∗ and Bδ
α : L2(Λ; H̃1

per(Ω2π
H )) → (H̃1

per(Ω2π
H ))∗ be in-

duced by the sesquilinear forms aα,σ and bδ
α such that

〈
Aα,σϕ, ψ

〉
Ω2π

H

:= aα,σ(ϕ, ψ) and
〈
Bδ

αϕ, ψ
〉

Ω2π
H

:= bδ
α(ϕ, ψ) . (4.19)

Moreover, let the antilinear form Gα,σ be defined by

〈
Gα,σ, ψ

〉
Γ2π

H

:=
〈
(∂xd

− T +
α,σ)J ui(α), ψ

〉
Γ2π

H

. (4.20)

Now, the operator form of (4.18) can be written as

Aα,σw
δ
σ(α) + Bδ

αw
δ
σ = Gα,σ for almost all α ∈ Λ . (4.21)

As mentioned in Remark 2.23, we know that ∥Aα,σ −Aα∥ → 0 as |σ| → ∞, where Aα is
induced by the sesquilinear form (4.11) with the DtN operator T +

α . Since the operator Aα is
boundedly invertible based on Theorem 4.4 for almost all α ∈ Λ, we conclude that the operator
Aα,σ is also boundedly invertible for sufficiently large σ. Therefore, we can define the operator
Dσ : L2(Λ; H̃1

per(Ω2π
H ))→ L2(Λ; H̃1

per(Ω2π
H )) by

(Dσw
δ
σ)(α) := A−1

α,σ

(
Gα,σ − Bδ

αw
δ
σ

)
. (4.22)

By this definition, we can reformulate equation (4.21) as the fixed-point problem

Dσw
δ
σ = wδ

σ . (4.23)

To apply the Banach fixed point theorem (see [9, Thm. 4.1.3]), it is sufficient to show that the
operator Dσ is a contraction, i.e., for some q < 1 and all wδ

σ, w̃
δ
σ ∈ L2(Λ; H̃1

per(Ω2π
H )), there holds∥∥∥Dσw

δ
σ −Dσw̃

δ
σ

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))
≤ q

∥∥∥wδ
σ − w̃δ

σ

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))

.

From the definition of the operator Dσ, we have∥∥∥Dσw
δ
σ −Dσw̃

δ
σ

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))
≤
∥∥∥A−1

α,σBδ
α

∥∥∥∥∥∥wδ
σ − w̃δ

σ

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))

.

Due to the definition of the operator Bδ
α in (4.19), we know that

∥∥∥Bδ
α

∥∥∥ → 0 as ∥δ∥1,∞ → 0. As a

consequence, q :=
∥∥∥A−1

α,σBδ
α

∥∥∥ < 1 for sufficiently small perturbations δ.

A question that naturally arises here is whether we still need to choose a tailor-made quadrature
rule to compute the inverse FB transform. To be able to provide an answer, it is necessary to
analyze the regularity of the PML approximation of the transformed field with respect to α.
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4.3. Regularity of the PML Approximation of the
Transformed Solution

In this section, we aim to obtain a representation for wδ
σ and thus analyze its regularity with

respect to α.
From Section 3.2, we recall the fact that the transformed field inherits the regularity of the

DtN operator with respect to α. Therefore, the transformed field wδ, satisfying (4.10), is not
analytic due to the (square root) singularities of the DtN operator T +

α . From (4.16), it follows
that the regularity of the PML approximation wδ

σ depends on the PML approximation of the
DtN operator, i.e., T +

α,σ. The following theorem states that wδ
σ is analytic with respect to α ∈ Λ.

This analyticity is a key advantage of the PML approach.

Theorem 4.9. Let ui ∈ H1(Ωδ
H) and J ui be analytic with respect to α. Then, for sufficiently

large σ, the PML approximation wδ
σ that solves (4.16) is analytic with respect to the Floquet

parameter α.

Proof. Let the operators Aα,σ, Bδ
α and the antilinear operator Gα,σ be given as in the proof of

Theorem 4.8. From Theorem 3.6, we recall that the transformed field wδ satisfying (4.10) has
singularities in each α ∈ Σ, defined in (3.8). In two dimensions, this set has at most two singular
points, while in three dimensions, it consists of the union of all arcs centered at points in J(α)
(defined in (3.9)). We focus here on the three-dimensional case. However, the result also holds in
two dimensions, where J(α) contains at most two elements.

Now, we show that wδ
σ is analytic everywhere, including on the set Σ. For α0 ∈ Λ, let B(α0, ρ)

denote an open ball centred at α0, with radius ρ. Using the definition of T +
α,σ given in (4.17), we

can write
T +

α,σ = T +,0
α,σ +

∑
j∈J(α0)

Kα,σ(j)C(j) , (4.24)

where T +,0
α,σ , C(j) : H1/2

per (Γ2π
H )→ H

−1/2
per (Γ2π

H ) are defined by

T +,0
α,σ :=

∑
j /∈J(α0)

Kα,σ(j)C(j) and C(j)ϕ := ϕ̂(j) eij·x̃ ,

with
Kα,σ(j) := i

√
k2 − |α− j|2 coth

(
−iσ

√
k2 − |α− j|2

)
.

Now, we can decompose the operator Aα,σ given in (4.19) as

Aα,σ = A0
α −

∑
j∈J(α0)

Kα,σ(j) C(j) , (4.25)

where A0
α : H̃1

per(Ω2π
H )→ (H̃1

per(Ω2π
H ))∗ is defined by〈

A0
αϕ, ψ

〉
Ω2π

H

:=
〈
∇xϕ,∇xψ

〉
Ω2π

H

− 2i
〈
α · ∇x̃ ϕ, ψ

〉
Ω2π

H

− (k2 − |α|2)
〈
ϕ, ψ

〉
Ω2π

H

−
〈
T +,0

α,σ ϕ, ψ
〉

Γ2π
H

.
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Substituting (4.25) into Problem (4.21), we see that wδ
σ satisfiesA0

α −
∑

j∈J(α0)
Kα,σ(j) C(j)

wδ
σ(α) = −Bδ

αw
δ
σ + Gα,σ for almost all α ∈ Λ . (4.26)

According to Theorem 4.8, the operator on the left-hand side of (4.26) is boundedly invertible for
sufficiently large σ. To obtain a representation for wδ

σ(α) allowing us to analyze the regularity
with respect to α, we show that the operator A0

α is boundedly invertible. Using the perturbation
theorem given in [75, Thm. 10.1], it is sufficient to show that A0

α is a small perturbation of the
left-hand side of (4.26). To this end, we first recall the Laurent expansion of coth, i.e.,

coth(z) = 1
z

+ z

3 −
z3

45 + · · · =
∞∑

n=0

22nB2n

(2n)! z
2n−1 for 0 < |z| < π ,

where B2n denotes the Bernoulli numbers. Similar to [105, Lem. 10], from the definition of Kα,σ

and a straightforward computation, we conclude

Kα,σ(j) = i
√
k2 − |α− j|2

∞∑
n=0

22nB2n

(2n)!

(
−iσ

√
k2 − |α− j|2

)2n−1

= − 1
σ

∞∑
n=0

22nB2n(−iσ)2n

(2n)!
(
k2 − |α− j|2

)n
. (4.27)

For each j ∈ J(α0) (i.e., k = |α0 − j|) and every α ∈ B(α0, ρ), we obtain

|Kα,σ(j)| ≤ 1
|σ|

∞∑
n=0

22nB2n|−iσ|2n

(2n)!
∣∣∣|α0 − j|2 − |α− j|2

∣∣∣n
≤
∞∑

n=0

22nB2n|σ|2n−1

(2n)! (|α0 − α| · |α0 + α+ 2j|)n

≤
∞∑

n=0
Cn|α− α0|n ,

where the constants Cn depend on σ. For sufficiently large σ, it is clear that |Kα,σ(j)| → 0 as
|α− α0| → 0. This shows that A0

α is boundedly invertible for all α ∈ B(α0, ρ).
Setting C̃(j) = (A0

α)−1C(j), we can write the solution wδ
σ of (4.26) by the Neumann expansion

wδ
σ(α) =

∞∑
n=0

 ∑
j∈J(α0)

Kα,σ(j)C̃(j)

n

(A0
α)−1 (−Bδ

αw
δ
σ + Gα,σ

)
. (4.28)

We now want to analyze the regularity of the transformed field wδ
σ(α) with respect to α using

the same technique as Theorem 3.6. Note that the operators C̃(j), A0
α and the function Bδ

αw
δ
σ

depend analytically on α. Therefore, it remains to analyze the regularity of Kα,σ(j) and Gα,σ.
Based on the definition of Gα,σ given in (4.20) and using (4.24), we see that the regularity of Gα,σ

is only dependent on Kα,σ(j) for j ∈ J(α0).
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Next, we distinguish two cases. If α0 ̸∈ Σ, then J(α0) = ∅ and wδ ∈ L2(Λ; H̃1
per(Ω2π

H )) depends
analytically on α. On the other hand, let α0 ∈ Σ. From (4.27), we see that Kα,σ(j) is analytic in
a neighborhood of α0. Hence by using (4.28), we find that the function wδ

σ is also analytic in a
neighborhood of α0. Since this fact holds for every α0 ∈ Λ, wδ

σ is globally analytic with respect
to α.

4.4. Convergence of the PML Approximation in Two
Dimensions

Recently, there has been a number of results published on the convergence of the PML approxima-
tion of the solution with respect to the damping parameter σ (see, e.g., [26, 105, 106]). Instead of
a scattering problem, in these works source problems are considered. Here, we aim to extend these
results to scattering problems in two dimensions and show the exponential convergence of the
PML approximation on every compact subset of the unbounded periodic and locally perturbed
domains.

Let the transformed total field wδ and its PML approximation wδ
σ satisfy (4.10) and (4.16),

respectively. Since (4.10) depends on the exact DtN map, we know from Section 3.2 that wδ is
not analytic with respect to α ∈ Λ. Before proceeding to the convergence analysis, we introduce
some preliminaries to modify the integration path in the definition of the inverse FB transform
(see (2.35)). Along this path, the function wδ remains analytic (see [105, Sec. 3]).

Afterwards, we focus on source problems in the periodic structure Ωper
H and outline the

convergence results given in [105] for the periodic domain. Finally, we extend these results to
scattering problems and show in Sections 4.4.2 and 4.4.3 that the PML approximation of the
scattered field is exponentially convergent in every compact subset of the periodic and locally
perturbed domains.

4.4.1. Analytic Extension of the Transformed Solution

Recall the regularity results of the transformed solution wδ(α) and its PML approximation wδ
σ(α)

from Sections 3.2 and 4.3 and introduce γj(α) :=
√
k2 − |α− j|2 for α ∈ Λ = [−1/2, 1/2].

Definition 4.10. Any point α ∈ Λ satisfying |α− j| = k for some j ∈ Z is called a cutoff value.

When the wave number k is a half-integer, then for a cutoff value α ∈ Λ, there exist two
integers j1, j2 ∈ Z such that |α− j1| = |α− j2| = k. This situation is more involved and will not
be addressed in the analysis. Therefore, we impose the following assumption.

Assumption 4.11. The wave number k satisfies k ̸= m

2 for all m ∈ N.

Under Assumption 4.11, there exists a non-negative integer ĵ and a number κ ∈ (−1/2, 1/2)\{0}
such that k = ĵ + κ. It follows that γ−ĵ

(κ) = γ+ĵ
(−κ) = 0. The numbers ±κ are the only roots

of γ∓ĵ
in Λ and are cutoff values.
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-0.5 0.5

−κ
Cbc,2 κ

Cbc,1
Reα

Imα

Figure 4.2. Sketch of the branch cuts (in red) and the integration path E (in blue)
for κ > 0.

Assumption 4.12. A function f : Λ→ H1
per(Ω2π

H ) satisfies this assumption if on Λ \ {±κ}, f
depends analytically on α, and there exist open neighborhoods U± of ±κ and analytic functions
f±,1, f±,2 : U± → H1

per(Ω2π
H ), such that

f(α) = f±,1(α) + γ∓ĵ
(α) f±,2(α) , α ∈ U± .

According to Theorem 3.6, we see that if J ui ∈ L2(Λ;H1/2(Γ2π
H )) satisfies Assumption 4.12,

then also the solution wδ of (4.10) satisfies Assumption 4.12. This allows us to analytically extend
wδ into (parts of) the complex plane. For this purpose, we shift the branch cut of the function
r(z) = z1/2, z ∈ C \ {0}, from the negative real axis to the curve Cbc,0 = {t2 − 2ikt : t > 0}.
Then, the function γ−ĵ

can be analytically extended to (Λ + iR)\Cbc,1 and γ+ĵ
to (Λ + iR)\Cbc,2

with the branch cuts

Cbc,1 = κ+ iR>0 and Cbc,2 = −κ− iR>0 ,

respectively. A sketch of the branch cuts Cbc,1 and Cbc,2 has been plotted (in red) in Figure 4.2
for κ > 0. As a consequence, the DtN operator T +

α can also be analytically extended to
(Λ + iR) \ (Cbc,1 ∪ Cbc,2). If Assumption 4.12 is satisfied by J ui, the same analytic extension is
valid for wδ. Moreover, from Theorem 4.9 we know that the PML approximation wδ

σ is analytic
for every α ∈ Λ. Hence, it can also be analytically extended to (Λ + iR) \ (Cbc,1 ∪ Cbc,2).

In order to avoid the cutoff values κ ∈ (−1/2, 1/2) \ {0}, we are going to modify the integration
path in the definition of the inverse FB transform. For sufficiently small ε > 0, the integration
path E is defined by

E := Λ \ [(κ− ε, κ+ ε) ∪ (−κ− ε,−κ+ ε)] ∪ E+ ∪ E− , (4.29)

where E± denote the semi-circles around the cutoff values ±κ as

E± :=
{
±κ∓ ε eiϑ : ϑ ∈ (0, π)

}
.

The integration path E has been illustrated (in blue) in Figure 4.2. Therefore, instead of
using (2.35), we may compute the inverse FB transform of the transformed field wδ and its PML
approximation wδ

σ by

uδ
tra = J −1wδ(x) =

∫
E
wδ(α;x) eiαx1 dα , x = (x1, x2) ∈ Ωper

H (4.30)
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and
uδ

tra,σ = J −1wδ
σ(x) =

∫
E
wδ

σ(α;x) eiαx1 dα , x ∈ Ωper
H . (4.31)

Theorem 4.13. Let k be chosen as in Assumption 4.11, κ ∈ (−1/2, 1/2) \ {0} such that wδ

satisfy Assumption 4.12 for α ∈ Λ and E be the integration path defined in (4.29). Moreover,
assume that the total field uδ

tra and its PML approximation uδ
tra,σ are the solutions of (4.8)

and (4.15), respectively. Then, for any compact subset K ⊆ Ωper
H and sufficiently large σ, there

holds ∥∥∥uδ
tra − uδ

tra,σ

∥∥∥
H1(K)

≤ C
∥∥∥wδ − wδ

σ

∥∥∥
C(E;H1

per(Ω2π
H ))

,

where the constant C depends on maxx∈K |x1|.

Proof. From the definition of uδ
tra and uδ

tra,σ given in (4.30) and (4.31), we obtain

∥∥∥uδ
tra − uδ

tra,σ

∥∥∥
H1(K)

≤
∫
E

∥∥∥(wδ − wδ
σ)(α)eiαx1

∥∥∥
H1(K)

dα

≤ C
∫
E

∥∥∥(wδ − wδ
σ)(α)

∥∥∥
H1(K)

∥∥∥eiαx1
∥∥∥

H1(K)
dα

≤ C max
α∈E

(∥∥∥(wδ − wδ
σ)(α)

∥∥∥
H1(K)

∥∥∥eiαx1
∥∥∥

H1(K)

)
,

where C denotes a generic constant depending on the length of E . Based on the integration path
E , we know that Im (α) ∈ [−ε, ε]. Furthermore, wδ(α) and wδ

σ(α) are periodic and the set K is
bounded. Therefore, this yields∥∥∥uδ

tra − uδ
tra,σ

∥∥∥
H1(K)

≤ C max
x∈K

eε|x1|max
α∈E

∥∥∥(wδ − wδ
σ)(α)

∥∥∥
H1(K)

≤ C max
α∈E

∥∥∥(wδ − wδ
σ)(α)

∥∥∥
H1(Ω2π

H )
,

where C denotes a generic constant depending on the length of E , measure of K, the radius ε in
the integration path E and maxx∈K |x1|. This completes the proof.

Since the transformed total field wδ and its PML approximation wδ
σ are analytic for each α ∈ E ,

we can study the convergence of the PML approximation with respect to the PML parameter σ
in the periodic setting and afterwards we generalize it to the locally periodic case.

4.4.2. The Periodic Case

Let g ∈ L2(Ωper
H ) be a compactly supported source in the periodic domain Ωper

H . The aim is to
find v ∈ H̃1(Ωper

H ) such that
∆v + k2v = g in Ωper

H ,

v = 0 on Γper ,

∂x2v = T +v on ΓH .

(4.32)
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By applying the FB transform to (4.32), we obtain an equivalent formulation for the function
wg := J v ∈ L2(Λ; H̃1

per(Ω2π
H )) satisfying∫

Λ
aα
(
wg(α), φ(α)

)
dα =

∫
Λ

〈
J g(α), φ(α)

〉
Ωper

H

dα , (4.33)

for all φ ∈ L2(Λ; H̃1
per(Ω2π

H )), where the sesquilinear form aα is defined as in (4.11). We can
simply formulate the problem corresponding to the PML approximation of v by replacing the
boundary condition on ΓH by a condition with the PML approximation of the DtN operator T +

α,σ.
That means, the PML approximation of v, denoted by vσ ∈ H̃1(Ωper

H ), satisfies

∆vσ + k2vσ = g in Ωper
H ,

vσ = 0 on Γper ,

∂x2vσ = T +
σ vσ on ΓH .

(4.34)

The corresponding variational formulation for wg,σ := J vσ ∈ L2(Λ; H̃1
per(Ω2π

H )) is∫
Λ
aα,σ

(
wg,σ(α), φ(α)

)
dα =

∫
Λ

〈
J g(α), φ(α)

〉
Ω2π

H

dα , (4.35)

for all φ ∈ L2(Λ; H̃1
per(Ω2π

H )), where the sesquilinear form aα,σ is obtained from aα in (4.11) by
replacing T +

α with T +
α,σ given by (4.17).

It has been shown in [26] (outlined in Remark 2.23) that the PML approximation vσ to the
exact solution v of such a source problem cannot be expected to converge exponentially on the
unbounded domain Ωper

H . However, in [105] it was established that, on compact subsets of the
periodic domain Ωper

H , the exponential convergence of the PML is achievable for g ∈ L2(Ωper
H ).

Let us first recall some important results from [105] for the source problem (4.32), presented in
the following two lemmas.

Lemma 4.14. Let the bounded linear operators Aα, Aα,σ : H̃1
per(Ω2π

H )→ (H̃1
per(Ω2π

H ))∗ be induced
by the sesquilinear forms aα and aα,σ, respectively. Then, for any sufficiently large σ, there exist
constants c, C > 0 independent of α and σ such that

∥Aα −Aα,σ∥ ≤ Ce−c|σ| for all α ∈ E ,

where E is defined in (4.29).

Proof. See [105, Thm. 9].

From this lemma, it is concluded that for any sufficiently large σ there exist well-defined bounded
solution operatorsR andRσ : (H̃1

per(Ω2π
H ))∗ → C(E , H̃1

per(Ω2π
H )) corresponding to (4.33) and (4.35)

such that
wg = Rg , wg,σ = Rσg and ∥R −Rσ∥ ≤ C e−c|σ| . (4.36)
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Lemma 4.15. Let v and vσ be the solution of (4.32) and (4.34), respectively. Then, for every
compact subset K ⊆ Ωper

H and sufficiently large σ, there holds

∥v − vσ∥H1(K) ≤ Ce−c|σ| ,

where c, C are constants independent of σ.

Proof. See [105, Thm. 11].

In the next theorem, we extend these results to cover the approximation of the solution of (4.1)
by the solution of (4.14) in the periodic domain Ωper

H (i.e., δ = 0 in these problems). For simplicity,
we omit δ in the periodic setting, rather than indicating it with a superscript zero.

Theorem 4.16. Consider a point source y ∈ Ωper
H , with y′ its reflection with respect to R× {0}.

Let us ∈ H1
r (Ωper

H ) denote a weak solution to (4.1) for the incident field

ui(x) = Φ(x, y)− Φ(x, y′) , x ∈ Ωper
H , x ̸= y .

Moreover, let us
σ denote the weak solution of the PML problem (4.14) in the periodic domain

Ωper
H . Then, for every compact subset K ⊆ Ωper

H and sufficiently large σ, there exist constants
c, C > 0 such that

∥us − us
σ∥H1(K) ≤ C e−c|σ| .

Proof. We begin the proof by considering scattering problems, where waves are scattered by the
flat surface Γ0 := R× {0}. Let ΩH

0 be the unbounded domain between Γ0 and ΓH . According
to [23, Eq. (2.8)], there is a compactly supported function g ∈ L2(Ωper

H ), such that the weak
solution vi ∈ H1

r (ΩH
0 ) to

∆vi + k2vi = g in ΩH
0 ,

vi = 0 on Γ0 ,

∂x2v
i = T +vi on ΓH ,

(4.37)

is equal to ui in Ωper
H \ supp (g). Therefore, in Problem (4.1) corresponding to the periodic case,

we may replace ui by vi in the boundary condition on Γper.
On the other hand, we denote by vi

σ the PML approximation of vi, i.e., the solution to (4.37)
with T + replaced by T +

σ . Let vs
σ denote the solution to (4.14) corresponding to the periodic case

with ui replaced by vi
σ. Now, we can estimate

∥us − us
σ∥H1(K) =

∥∥∥us + vi − vi + vi
σ − vi

σ + vs
σ − vs

σ − us
σ

∥∥∥
H1(K)

≤
∥∥∥us + vi − (vs

σ + vi
σ)
∥∥∥

H1(K)
+
∥∥∥vi

σ − vi
∥∥∥

H1(K)
+ ∥vs

σ − us
σ∥H1(K) .

(4.38)

We start by estimating the first term of expression (4.38). The function us + vi is the solution of
the source problem (4.32), while vs

σ + vi
σ is its PML approximation, i.e., the solution to (4.34).

Hence, due to Lemma 4.15, there exist two constants c, C such that∥∥∥us + vi − (vs
σ + vi

σ)
∥∥∥

H1(K)
≤ C e−c|σ| ,
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for every compact subset K ⊆ Ωper
H .

The function q := vi
σ − vi in the second term of (4.38) satisfies the Helmholtz equation in Ωper

H

with the homogeneous boundary condition on Γper and

∂x2q = T +
σ q + (T + − T +

σ )vi on ΓH .

By using the FB transform, we obtain that q satisfies (4.35), but with the different right-hand
side. Therefore, similar to the first part, we can write

∥q∥H1(K) ≤ C∥R −Rσ∥
∥∥∥vi
∥∥∥

H1(K)
≤ Ce−c|σ| ,

where the last inequality follows from (4.36). Now, it remains only to obtain an error bound for
the last term of (4.38), i.e., vs

σ − us
σ. Setting z := vs

σ − us
σ, we see that this function is the weak

solution to
∆z + k2z = 0 in Ωper

H ,

z = ui − vi
σ on Γper ,

∂x2z = T +
σ z on ΓH .

To analyze ∥z∥H1(K), we apply the FB transform to the problem above. Using Theorem 4.13 and
the continuity of the solution with respect to the boundary data leads to

∥z∥H1(K) ≤ C1∥J z∥C(E;H1
per(Ω2π

H )) ≤ C2
∥∥∥J (ui − vi

σ)
∥∥∥

C(E;H1/2
per (Γ2π))

,

for some constants C1 and C2. From Lemma C.3, it is known that

J ui(α;x) =


1

2π
∑
j∈Z

eij(x1−y1)+iγj(α)y2 sinc(γj(α)x2)x2 , 0 < x2 ≤ y2 ,

1
2π
∑
j∈Z

eij(x1−y1)+iγj(α)x2 sinc(γj(α) y2) y2 , x2 > y2 .

Likewise, applying the FB transform to [26, Eq. (28)] yields

J vi
σ(α;x) =



1
2π
∑
j∈Z

eij(x1−y1) sin(γj(α) (σ +H − y2))
sin(γj(α) (σ +H)) sinc(γj(α)x2)x2 , 0 < x2 ≤ y2 ,

1
2π
∑
j∈Z

eij(x1−y1) sin(γj(α) (σ +H − x2))
sin(γj(α) (σ +H)) sinc(γj(α) y2) y2 , x2 > y2 .

We consider the case 0 < x2 ≤ y2. Clearly, we can write

J (ui − vi
σ)(α;x) = 1

2π
∑
j∈Z

eij(x1−y1)
[
eiγj(α)y2 − sin (γj(α)(σ +H − y2))

sin (γj(α)(σ +H))

]
sinc(γj(α)x2)x2 .

Using Euler’s formula, it is straightforward to derive the general identity

eiA − sin(B −A)
sin(B) = i sin(A) (1− coth(−iB)) , A ∈ C, B ∈ C \ πZ .
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Applying the identity with A = γj(α) y2, B = γj(α) (σ +H), we obtain

J (ui − vi
σ)(α;x) = i

2π
∑
j∈Z

(
γj(α)

[
1− coth(−iγj(α)(σ +H))

]
× eij(x1−y1) sinc(γj(α)x2) sinc(γj(α) y2)x2 y2

)
.

As this expression is symmetric with respect to x2 and y2, it also holds in the case of x2 > y2.
Note that the sinc functions depend analytically on α. As the Floquet parameter α takes

values in a bounded domain, the term eij(x1−y1) sinc(γj(α)x2) sinc(γj(α) y2)x2 y2 is uniformly
bounded with respect to α. We hence need to analyze the term containing the singularities with
respect to α, that is,

γj(α) [1− coth(−iγj(α)(σ +H))] .

As established in [105, Lem. 8, 71, Lem. 18], we know that there exist constants c̃, C such that

|1− coth(−iγj(α)(σ +H))| = 2
|exp (−2iγj(α)σ)− 1| ≤ C exp

(
−c̃|σ|

√
|Re (α) + j + k|

)
.

Therefore, setting c := c̃
√
k, we conclude for sufficiently large σ∥∥∥J (ui − vi

σ)(α)
∥∥∥

H
1/2
per (Γ2π)

≤ C e−c |σ| for all α ∈ E . (4.39)

Summing up the estimates for all three terms gives the asserted result.

4.4.3. The Perturbed Case

Now, we turn to the general locally perturbed periodic case. Again, we first consider the
corresponding source problem: For a given compactly supported source g ∈ L2(Ωδ

H), find the
weak solution vδ ∈ H̃1(Ωδ

H) of

∆vδ + k2vδ = g in Ωδ
H ,

vδ = 0 on Γδ ,

∂x2v
δ = T +vδ on ΓH .

(4.40)

The PML approximation vδ
σ is obtained by solving the same problem, but replacing the DtN map

T + with its PML approximation T +
σ in the boundary condition on ΓH , i.e.,

∆vδ
σ + k2vδ

σ = g in Ωδ
H ,

vδ
σ = 0 on Γδ ,

∂x2v
δ
σ = T +

σ vδ
σ on ΓH .

(4.41)

As these problems are a special case of the rough scattering problem, we know from [23, Thm. 4.1,
26, Sec. 3] that both problems are uniquely solvable and that ∥vδ − vδ

σ∥H1(Ωδ
H) → 0 as |σ| → ∞.

Furthermore, it has been established that the convergence cannot be expected to be faster than
linear with respect to σ in the unbounded domain Ωδ

H .
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As described in Section 4.1, we use the diffeomorphism Ψδ to reformulate these problems in the
periodic domain Ωper

H . This allows us to apply the FB transform and obtain that vδ is a solution
of (4.40) if and only if wδ

g := J (vδ ◦Ψδ) ∈ L2(Λ; H̃1
per(Ω2π

H )) satisfies∫
Λ

(
aα
(
wδ

g(α), φ(α)
)

+ bδ
α(wδ

g, φ(α))
)

dα =
∫

Λ

〈
J (g ◦Ψδ)(α), φ(α)

〉
Ω2π

H

dα ,

for all φ ∈ L2(Λ; H̃1
per(Ω2π

H )). Similarly, the PML approximation vδ
σ is a solution of (4.41) if and

only if wδ
g,σ := J (vδ

σ ◦Ψδ) ∈ L2(Λ; H̃1
per(Ω2π

H )) satisfies∫
Λ

(
aα,σ

(
wδ

g,σ(α), φ(α)
)

+ bδ
α(wδ

g,σ, φ(α))
)

dα =
∫

Λ

〈
J (g ◦Ψδ)(α), φ(α)

〉
Ω2π

H

dα ,

for all φ ∈ L2(Λ; H̃1
per(Ω2π

H )).
As explained in Section 4.4.1, we know that wδ

g and wδ
g,σ analytically depend on α except for

possible branch cuts. We may hence change the integration over Λ to the integration over E .
Note that the bounded linear operator Bδ

α : L2(Λ; H̃1
per(Ω2π

H )) → (H̃1
per(Ω2π

H ))∗ induced by the
sesquilinear form bδ

α also depends analytically on α. Therefore, it is also well defined for α ∈ E .
Now using the solution operators for the periodic domain, we may write

wδ
g +RBδ

αw
δ
g = Rg , and wδ

g,σ +Rσ Bδ
αw

δ
g,σ = Rσg , (4.42)

where R and Rσ are given in (4.36). As both problems are equivalent to the corresponding
source problems, we know that the operators on the left-hand side are boundedly invertible.

Theorem 4.17. Let vδ and vδ
σ be the solutions of (4.40) and (4.41) for g ∈ L2(Ωδ

H). Then, for
every compact subset K ⊆ Ωδ

H and sufficiently large σ, there exist some constants c, C such that∥∥∥vδ − vδ
σ

∥∥∥
H1(K)

≤ Ce−c|σ| .

Proof. We recall the diffeomorphism Ψδ, which maps Ωper
H to Ωδ

H . Therefore, every compact
subset K ⊆ Ωδ

H can be transformed into the compact subset Ktra := (Ψδ)−1(K) ⊆ Ωper
H . By

using Theorem 4.13, for some generic constant C we conclude∥∥∥vδ − vδ
σ

∥∥∥
H1(K)

≤ C
∥∥∥vδ ◦Ψδ − vδ

σ ◦Ψδ
∥∥∥

H1(Ktra)
≤ C

∥∥∥wδ
g − wδ

g,σ

∥∥∥
C(E,H̃1

per(Ω2π
H ))

.

Using the perturbation theorem (see [75, Thm. 10.1]) for the problems in (4.42), we see that for
any sufficiently large σ∥∥∥wδ

g − wδ
g,σ

∥∥∥
C(E,H̃1

per(Ω2π
H ))
≤ C

(∥∥∥RBδ
α −RσBδ

α

∥∥∥∥∥∥wδ
g

∥∥∥
C(E,H̃1

per(Ω2π
H ))

+ ∥R −Rσ∥∥g∥L2(Ω2π
H )

)
≤ C∥R −Rσ∥

(∥∥∥wδ
g

∥∥∥
C(E,H̃1

per(Ω2π
H ))

+ ∥g∥L2(Ω2π
H )

)
.



76 Chapter 4. Scattering in unbounded perturbed structures

From (4.42), we get wδ
g = (I +RBδ

α)−1Rg. Hence, we obtain∥∥∥wδ
g − wδ

g,σ

∥∥∥
C(E,H̃1

per(Ω2π
H ))
≤ C∥R −Rσ∥∥g∥L2(Ω2π

H ) .

Using (4.36), we finally conclude that for any sufficiently large σ∥∥∥wδ
g − wδ

g,σ

∥∥∥
C(E,H̃1

per(Ω2π
H ))
≤ Ce−c|σ| ,

where C depends on the L2-norm of g and ∥Bδ
α∥. This completes the proof.

In the next theorem, we extend these results to the non-periodic scattering problems.

Theorem 4.18. Consider a point source y ∈ Ωper
H , with y′ its reflection with respect to R× {0}.

Let us,δ ∈ H1
r (Ωδ

H) denote a weak solution to (4.1) for

ui(x) = Φ(x, y)− Φ(x, y′) , x ∈ Ωδ
H , x ̸= y .

Moreover, let us,δ
σ denote the weak solution of the PML approximation (4.14). Then, for every

compact subset K ⊆ Ωδ
H and sufficiently large σ, there exist C, c > 0 such that∥∥∥us,δ − us,δ

σ

∥∥∥
H1(K)

≤ C e−c|σ| .

Proof. Let g ∈ L2(Ωδ
H) be compactly supported, vi be the solution of (4.37) with the right-hand

side g and vi
σ its PML approximation. Further, we denote by vs,δ

σ the solution of the scattering
problem (4.14) with ui replaced by vi

σ. Adding and subtracting these functions yields∥∥∥us,δ − us,δ
σ

∥∥∥
H1(K)

≤
∥∥∥us,δ + vi − (vs,δ

σ + vi
σ)
∥∥∥

H1(K)
+
∥∥∥vi − vi

σ

∥∥∥
H1(K)

+
∥∥∥vs,δ

σ − us,δ
σ

∥∥∥
H1(K)

.

Note that us,δ + vi satisfies the source problem (4.40) and vs,δ
σ + vi

σ is its PML approximation,
i.e., the solution of (4.41). Therefore, from Theorem 4.17, it follows that there exist constants
c, C such that ∥∥∥us,δ + vi − (vs,δ

σ + vi
σ)
∥∥∥

H1(K)
≤ Ce−c|σ| .

By the same arguments as in Theorem 4.16, the corresponding estimate holds for vi − vi
σ. Now,

it only remains to estimate ∥vs,δ
σ − us,δ

σ ∥H1(K). As in the proof of Theorem 4.16, we consider
z := vs,δ

σ − us,δ
σ , which is a weak solution to

∆z + k2z = 0 in Ωδ
H ,

z = ui − vi
σ on Γδ ,

∂x2z = T +
σ z on ΓH .

Recalling the diffeomorphism Ψδ from (4.4) and the compact subset Ktra ⊆ Ωper
H (defined as in
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the proof of Theorem 4.17) and using Theorem 4.13, we can write

∥z∥H1(K) ≤ C
∥∥∥z ◦Ψδ

∥∥∥
H1(Ktra)

≤ C
∥∥∥J (z ◦Ψδ)

∥∥∥
C(E;H̃1

per(Ω2π
H ))

≤ C
∥∥∥J (ui ◦Ψδ − vi

σ ◦Ψδ)
∥∥∥

C(E;H1/2
per (Γ2π))

.

Note that Ψδ = I in Ωper
H \ Ω2π

H , thus for every f ∈ H1/2
per (Γper ∪ Γδ) we have

J (f ◦Ψδ)(α;x) = J f(α;x) + e−iαx1((f ◦Ψδ)(x)− f(x)) , α ∈ E , x ∈ Γ2π .

Considering f := ui − vi
σ in the relation above and using the estimate (4.39), we obtain∥∥∥J (ui ◦Ψδ − vi

σ ◦Ψδ)
∥∥∥

C(E;H1/2
per (Γ2π))

≤ Ce−c|σ|

+
∥∥∥(ui − vi

σ) ◦Ψδ
∥∥∥

H
1/2
per (Γ2π)

+
∥∥∥ui − vi

σ

∥∥∥
H

1/2
per (Γ2π)

.

The remaining two terms are estimated as in the proof of Theorem 4.16, which gives the asserted
result.

4.5. Full Discretization of the PML Problem

To represent the connection between the total field uδ
tra,σ and the transformed total field wδ

σ, we
need to discretize the inverse FB transform (2.35). Since the transformed field wδ

σ is analytic with
respect to the Floquet parameter α when J ui is analytic with respect to α (see Theorem 4.9),
we can use a Gauss quadrature formula: For Nα quadrature points αj ∈ Λ and weights µj ,
j ∈ {1, . . . , Nα}, we have the approximation

uδ
tra,σ(x+ 2πℓ) =

∫
Λ
wδ

σ(α;x)eiα·(x̃+2πℓ) dα ≈
Nα∑
j=1

µjw
δ
σ(αj ;x)eiαj ·(x̃+2πℓ) , (4.43)

for any ℓ ∈ Zd−1 and x ∈ Ω2π
H .

To approximate the total field uδ
tra,σ, it is required to solve (4.18) only for the quadrature

points αj . Substituting the above representation for ℓ = 0 into (4.18), we end up with a system
involving the quantities wδ

σ(αj ;x), which we need to discretize with respect to the spatial variable
x. We therefore use the finite element method (FEM) and for ease of presentation, we restrict
ourselves to the finite element functions of piecewise linear polynomials. We generate a triangular
mesh on the domain Ω2π

H supporting a family {ϕn}N∆
n=1 of N∆ ∈ N such basis functions and then

approximate the transformed total field

wδ
σ(αj) ≈

N∆∑
n=1

Wj,n ϕn ,
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for each quadrature point αj as well as the total field

uδ
tra,σ ≈

N∆∑
n=1

Unϕn .

The relation between Un and Wj,n is obtained by (4.43), which yields

Un =
Nα∑
j=1

µj eiαj ·x̃nWj,n for all n ∈ {1, . . . , N∆} . (4.44)

Now, we can formulate the Galerkin approximation of (4.18) for each quadrature point αj ,
for j ∈ {1, . . . , Nα}, as

N∆∑
n=1

Wj,naαj (ϕn, ϕm) +
N∆∑
n=1

Un b
δ
αj

(ϕn, ϕm)

=
〈
(∂xd

− T +
α,σ)J ui(αj), ϕm

〉
Γ2π

H

for all m ∈ {1, . . . , N∆} .
(4.45)

Defining the vectors of unknowns

Wj :=
[
Wj,1 · · · Wj,N∆

]⊤
and U :=

[
U1 · · · UN∆

]⊤
,

we can rewrite system (4.44)-(4.45) in a block vector-matrix form as

A1 0 · · · 0 B1

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

C1 · · · · · · CNα I





W1
...
...

WNα

U


=



F1
...
...

FNα

0


∈ C(Nα+1)N∆ , (4.46)

where the block matrices Aj ,Bj ,Cj ∈ CN∆×N∆ and the vector Fj ∈ CN∆ are defined by

(Aj)m,n
:= aαj (ϕn, ϕm),

(Bj)m,n
:= −bδ

αj
(ϕn, ϕm),

(Cj)m,n
:= µjeiαj ·x̃mδm,n,

(Fj)m
:=
〈
(∂xd

− T +
α,σ)J ui(αj ;xm), ϕm

〉
Γ2π

H

for all m,n ∈ {1, . . . , N∆} and j ∈ {1, . . . , Nα}.
The coefficient matrix in (4.46) is known as a permuted square arrowhead matrix, which

frequently arises in applications. These include modeling of wireless communication systems [78]
and radiationless transitions in isolated moleculs [14, 47]. One of the main challenges in these
applications is to solve large linear systems in parallel [34, 36, 48, 51, 52, 103]. As a result, the
computation of the inverse of these matrices has attracted considerable attention.
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In [53], an adaptive approximate inverse method based on an LU-type factorization procedure
is proposed for the explicit computation of the inverse of an arrowhead matrix. Additionally,
in [91], a modified Sherman–Morrison inverse matrix method is introduced, while [98] applies
the Sherman–Morrison–Woodbury formula to facilitate the inversion of block arrowhead matrix.
Nevertheless, assembling and inverting the coefficient matrix of (4.46) is still expensive. In
contrast, in our arguments below, we are going to propose an alternative method for solving the
linear system (4.46) without inverting the coefficient matrix. In Appendix B, we compare the
computational cost of the proposed iterative solver in Algorithm 3 with a direct solver introduced
in [98, Sec. 2]. These results show that we have significantly reduced the computational time.

In the following theorem, we utilize the recursive Schur complement to obtain an equivalent
form of the system (4.46), which can be parallelized more easily.

Theorem 4.19. Let Aj ,Bj ,Cj, and Fj for all j ∈ {1, . . . , Nα} be defined as above. The linear
system (4.46) is equivalent toI−

Nα∑
j=1

CjA−1
j Bj

U = −
Nα∑
j=1

CjA−1
j Fj . (4.47)

This means that if [W1,W2, . . . ,WNα ,U]⊤ solves (4.46), then U solves (4.47). If U solves (4.47),
then [A−1

1 (F1 −B1U), . . . ,A−1
Nα

(FNα −BNαU),U]⊤ solves (4.46).

Proof. The proof presents an algorithm to reduce (4.46) to (4.47), by recursively applying a
procedure that removes one unknown vector Wℓ (for ℓ ∈ {1, . . . , Nα}). The assertions follow by
induction on the number of removed unknowns.

For the initial step (ℓ = 1), we rewrite the (Nα + 1)N∆ square system (4.46) as follows[
A1 B(rem)

1
C(rem)

1 D(rem)
1

] [
W1

W(rem)
1

]
=
[

F1

F(rem)
1

]
, (4.48)

where the blocks B(rem)
1 ∈ CN∆×(NαN∆), C(rem)

1 ∈ C(NαN∆)×N∆ and W(rem)
1 ,F(rem)

1 ∈ CNαN∆ are
defined by

B(rem)
1 :=

[
0 · · · 0 B1

]
, F(rem)

1 :=
[
F2 · · · FNα 0

]⊤
,

C(rem)
1 :=

[
0 · · · 0 C1

]⊤
, W(rem)

1 :=
[
W2 · · · WNα U

]⊤
and the block D(rem)

1 is given by

D(rem)
1 :=



A2 0 · · · 0 B2

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

C2 · · · · · · CNα I


∈ CNαN∆×NαN∆ .
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From the first equation in (4.48), we obtain W1 = A−1
1

(
F1 −B(rem)

1 W(rem)
1

)
. To remove the

first unknown, substituting W1 into the second equation of (4.48) leads to

D(rem)
1 W(rem)

1 = F(rem)
1 −C(rem)

1 W1 = F(rem)
1 −C(rem)

1 A−1
1

(
F1 −B(rem)

1 W(rem)
1

)
.

By straightforward computations, we obtain

C(rem)
1 A−1

1 =
[
0 · · · 0 C1A−1

1

]⊤
∈ CNαN∆×N∆ ,

C(rem)
1 A−1

1 B(rem)
1 =

[
0(Nα−1)N∆×(Nα−1)N∆ 0(Nα−1)N∆×N∆

0N∆×(Nα−1)N∆ C1A−1
1 B1

]
∈ CNαN∆×NαN∆ .

Then, the remaining system can be written as
(
D(rem)

1 −C(rem)
1 A−1

1 B(rem)
1

)
W(rem)

1 = F(rem)
1 −C(rem)

1 A−1
1 F1 , (4.49)

where the coefficient matrix is given by

D(rem)
1 −C(rem)

1 A−1
1 B(rem)

1 =



A2 0 · · · 0 B2

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

C2 · · · · · · CNα I−C1A−1
1 B1


∈ CNαN∆×NαN∆

and the right-hand side is determined by

F(rem)
1 −C(rem)

1 A−1
1 F1 =

[
F2 · · · FNα −C1A−1

1 F1
]⊤

.

So far, the first unknown W1 has been removed in the initial step. Now, we assume that the
theorem holds true for ℓ − 1. To prove that it also holds for ℓ, we need to solve the following
linear system

Aℓ 0 · · · 0 Bℓ

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

Cℓ · · · · · · CNα I−
∑ℓ−1

j=1 CjA−1
j Bj





Wℓ
...
...

WNα

U


=



Fℓ
...
...

FNα

−
∑ℓ−1

j=1 CjA−1
j Fj


,

which can be written as[
Aℓ B(rem)

ℓ

C(rem)
ℓ D(rem)

ℓ

] [
Wℓ

W(rem)
ℓ

]
=
[

Fℓ

F(rem)
ℓ

]
∈ C(Nα+1−(ℓ−1))N∆ , (4.50)

where the block matrices B(rem)
ℓ ∈ CN∆×N∆(Nα+1−ℓ), C(rem)

ℓ ∈ CN∆(Nα+1−ℓ)×N∆ and the vectors
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F(rem)
ℓ ,W(rem)

ℓ ∈ CN∆(Nα+1−ℓ) are defined by

B(rem)
ℓ :=

[
0 · · · 0 Bℓ

]
, F(rem)

ℓ :=
[
Fℓ+1 · · · FNα −

∑ℓ−1
j=1 CjA−1

j Fj

]⊤
,

C(rem)
ℓ :=

[
0 · · · 0 Cℓ

]⊤
, W(rem)

ℓ :=
[
Wℓ+1 · · · WNα U

]⊤
and the block D(rem)

ℓ is given by

D(rem)
ℓ =



Aℓ+1 0 · · · 0 Bℓ+1

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

Cℓ · · · · · · CNα I−
∑ℓ−1

j=1 CjA−1
j Bj


∈ C(Nα+1−ℓ)N∆×(Nα+1−ℓ)N∆ .

By solving system (4.50), we obtain

Wℓ = A−1
ℓ

(
Fℓ −B(rem)

ℓ W(rem)
ℓ

)
,

D(rem)
ℓ W(rem)

ℓ = F(rem)
ℓ −C(rem)

ℓ Wℓ .

Substituting Wℓ into the second equation gives us(
D(rem)

ℓ −C(rem)
ℓ A−1

ℓ B(rem)
ℓ

)
W(rem)

ℓ = F(rem)
ℓ −C(rem)

ℓ A−1
ℓ Fℓ ,

where the coefficient matrix can be written as

D(rem)
ℓ −C(rem)

ℓ A−1
ℓ B(rem)

ℓ =



Aℓ+1 0 · · · 0 Bℓ+1

0 . . . . . . ...
...

... . . . . . . 0
...

0 · · · 0 ANα BNα

Cℓ+1 · · · · · · CNα I−
∑ℓ

j=1 CjA−1
j Bj


,

and the right-hand side is

F(rem)
ℓ −C(rem)

ℓ A−1
ℓ Fℓ =

[
Fℓ+1 · · · FNα −

∑ℓ
j=1 CjA−1

j Fj

]⊤
,

since we have C(rem)
ℓ A−1

ℓ =
(
0, . . . ,0,CℓA−1

ℓ

)⊤
and

C(rem)
ℓ A−1

ℓ B(rem)
ℓ =

[
0(Nα−ℓ)N∆×(Nα−ℓ)N∆ 0(Nα−ℓ)N∆×N∆

0N∆×(Nα−ℓ)N∆ CℓA−1
ℓ Bℓ

]
.

At step ℓ = Nα + 1, the Nα-th unknown has been removed and this completes the proof.

Equation (4.47) can now be solved by an iterative method as described in Algorithm 3. Note
that the summands on the right-hand side, i.e., CjA−1

j Fj and the matrix vector multiplications
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Algorithm 3: iterative method for solving (4.47)
Input: number of quadrature nodes Nα, initial guess U0

1 Compute the Gauss quadrature nodes and weights (αj , µj) for j ∈ {1, . . . , Nα};
2 for j = 1, . . . , Nα do in parallel
3 Construct the matrices Aj ,Bj ,Cj and the vector Fj using FEM;
4 Compute the LU decomposition of Aj ;
5 Solve the system AjRHSj = Fj using the above LU decomposition;
6 RHSj ← CjRHSj ;
7 RHS←

∑Nα
j=1 RHSj ;

%To solve the systems on the left-hand side of (4.47), the following
function computes the matrix-vector multiplication for each input.

8 Define the function LHS
Input: the vector U

9 for j = 1, . . . , Nα do in parallel
10 Solve the system AjXj = BjU using the precomputed LU decomposition of Aj ;
11 Xj ← CjXj ;
12 return U−

∑Nα
j=1 Xj ;

13 Solve the linear system (4.47) by GMRES with tolerance 10−5 and inputs U0 and LHS ;
14 return Numerical solution of (4.47)

by the summands on the left-hand side, i.e., CjA−1
j BjU are all independent of each other. Hence

they can be carried out in parallel.

4.6. Numerical Results

In this section, we aim to illustrate the efficiency and accuracy of the iterative method described in
Algorithm 3 for solving non-periodic scattering problems. Our focus lies on the two-dimensional
case. The extension of the proposed method to the three-dimensional case is straightforward.
However, it is numerically much more costly.

We again select the non-periodic incident field as the upper half-space Dirichlet Green’s function

ui(x) = i
4
(
H

(1)
0 (k|x− y|)−H(1)

0 (k
∣∣x− y′∣∣)) ,

where y = (y1, y2)⊤ is a fixed point source and y′ = (y1,−y2)⊤ is its reflection with respect
to
{
x ∈ R2 : x2 = 0

}
.

We apply our proposed method to compute the scattered field produced by the locally perturbed
scatterers described in the following two examples.

Example 1. We consider the periodic function

ζper
1 (x) = 1 + cos (x)

4 , x ∈ R ,
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(a) Surface Γδ
1 graph of ζδ

1 := ζper
1 + δ1

(b) Surface Γδ
2 graph of ζδ

2 := ζper
2 + δ2

Figure 4.3. Illustration of the locally perturbed curves.

with the perturbation

δ1(x) = 1
2 exp

( 1
x(x+ 2)

)(
cos

(
π(x+ 2)

2

)
+ 1

)
χ[−2,0](x) ,

where χ[a,b](x) = 1 for x ∈ [a, b] and χ[a,b](x) = 0 for x ∈ R\[a, b]. The resulting locally perturbed
surface Γδ

1 = {(x, ζper
1 (x) + δ1(x)) : x ∈ R} is plotted in Figure 4.3(a).

Example 2. We consider the locally perturbed curve Γδ
2 = {(x, ζper

2 (x) + δ2(x)) : x ∈ R},
plotted in Figure 4.3(b), with the periodic function

ζper
2 (x) = 1.5 + sin(x)

3 − cos(2x)
4 , x ∈ R

and the perturbation

δ2(x) = exp
( 1
x2 − 1

)
sin(π(x+ 1))χ[−1,1](x) .

To calculate the error explicitly, we consider the point source y between the flat surface R×{0}
and the locally perturbed scatterers, since in this case the total field vanishes inside Ωper

H . That
means the exact solution is equal to minus the incident field.

In the first example, the point source is located at y = (−2, 0.2)⊤ below the surface Γδ
1, while

in the second, it is positioned at y = (0, 0.5)⊤ below the surface Γδ
2. In both examples, we choose

H = 2.5, set the PML thickness to λ = 1.5 and consider the PML function (2.21) depending only
on a positive parameter ρ. It is important to mention that we illustrate the numerical scattered
field only in the region below the PML, as the solution inside the PML is not related to the
actual scattered field.

To approximate the scattered field in the main bounded cell Ω2π
H = {x ∈ Ωδ

H : x1 ∈ (−π, π)}
numerically, we use the iterative solver introduced in Algorithm 3 by setting Nα = 20 and U0 = 0.
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Once we have the numerical solution for the main cell Ω2π
H , we can extend it to the neighboring

cells Ω2π+ℓ
H := {x ∈ Ωδ

H : x1 ∈ (−π, π) + 2πℓ}, for ℓ = ±1. This extension is obtained by using
the discrete inverse FB transform defined in (4.43), for ℓ = ±1.
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Figure 4.4. Numerical scattered field for Example 1 with k = 3 and a point source
at y = (−2, 0.2)⊤ (top: real part, middle: imaginary part, bottom: absolute value).
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Figure 4.5. Numerical scattered field for Example 2 with k = 1.5 and a point source
at y = (0, 0.5)⊤ (top: real part, middle: imaginary part, bottom: absolute value).

The behaviour of the numerical scattered field is illustrated in Figures 4.4 and 4.5 for Example 1
with k = 3 and Example 2 with k = 1.5, respectively. These results were obtained using the
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mesh size of τ = 0.01 and the PML parameter ρ = 20. Additionally, the absolute values of the
numerical errors are plotted for examples 1 and 2 in Figures 4.6 and 4.7. They demonstrate
that the maximum value of the error is less than 2× 10−5, which indicates the accuracy of the
proposed method for these examples. Moreover, it is evident that the absolute value of the
error increases while approaching the PML. This behavior is expected, as the PML introduces a
numerical error due to the approximation of the DtN map.

−8 −6 −4 −2 0 2 4 6 8

1
2

0
0.5
1
1.5

×10−5

Figure 4.6. Absolute value of the error for Example 1 with k = 3.
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1
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2
×10−5

Figure 4.7. Absolute value of the error for Example 2 with k = 1.5.

In Table 4.1, we report the required number of iterations and the computational time used in
Algorithm 3. This shows that the proposed iterative method is relatively fast and the number of
iterations does not depend on the spatial discretization.

k = 3 k = 5
τ = 0.02 τ = 0.01 τ = 0.02 τ = 0.01

Example 1 # iterations 7 7 8 8
CPU time (s) 42 220 46 224

Example 2 # iterations 10 10 11 11
CPU time (s) 40 269 43 280

Table 4.1. Number of iterations and CPU time used by Algorithm 3.

In what follows, we analyze the dependence of the relative L2-error on the PML parameter ρ
for various discretization parameters.

In Tables 4.2 and 4.3, we report the relative L2-error of the proposed method with respect to
the PML parameter ρ and mesh size τ for a fixed wave number k. These results are depicted in
Figure 4.8 for both examples. The error decreases exponentially with increasing ρ up to a certain
threshold, ρ = 10 for Example 1 and ρ = 6 for Example 2. Beyond these values, the error is
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dominated by the discretization of the FEM. This behavior is evident from the results shown in
Tables 4.2 and 4.3. For ρ values exceeding the threshold, where exponential convergence ceases,
the method exhibits quadratic convergence with respect to the mesh size.

ρ τ = 0.04 τ = 0.02 τ = 0.01
2 1.2264× 10−1 1.2257× 10−1 1.2237× 10−1

4 1.5009× 10−2 1.4833× 10−2 1.4780× 10−2

6 1.6885× 10−3 1.6770× 10−3 1.6879× 10−3

8 3.0241× 10−4 1.8580× 10−4 1.9533× 10−4

10 3.2462× 10−4 8.5791× 10−5 3.8574× 10−5

12 3.5687× 10−4 9.4007× 10−5 3.8132× 10−5

14 3.9627× 10−4 1.0929× 10−4 3.7405× 10−5

16 4.2576× 10−4 1.2144× 10−4 3.3633× 10−5

18 4.5329× 10−4 1.4066× 10−4 4.0047× 10−5

20 4.8254× 10−4 1.6213× 10−4 5.2374× 10−5

Table 4.2. Relative L2-error with respect to the PML parameter ρ and mesh size τ
for Example 1 with wave number k = 1.5.

ρ τ = 0.04 τ = 0.02 τ = 0.01
2 1.4153× 10−2 1.3983× 10−2 1.3914× 10−2

4 1.3769× 10−3 4.2694× 10−4 2.3453× 10−4

6 1.2833× 10−3 3.3116× 10−4 8.5045× 10−5

8 1.2716× 10−3 3.3061× 10−4 8.5209× 10−5

10 1.2548× 10−3 3.2831× 10−4 8.4986× 10−5

12 1.2430× 10−3 3.2554× 10−4 8.5183× 10−5

14 1.2359× 10−3 3.2263× 10−4 8.4497× 10−5

16 1.2306× 10−3 3.2100× 10−4 8.3787× 10−5

18 1.2267× 10−3 3.2149× 10−4 8.4301× 10−5

20 1.2249× 10−3 3.2328× 10−4 8.5755× 10−5

Table 4.3. Relative L2-error with respect to the PML parameter ρ and mesh size τ
for Example 2 with wave number k = 3.
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Figure 4.8. Relative L2-error with respect to the PML parameter ρ for different
mesh sizes τ (left: Example 1, right: Example 2).

In Tables 4.4 and 4.5, we report the relative L2-error with respect to the PML parameter ρ
and wave number k for the mesh size τ = 0.01. These results are depicted in Figure 4.9 for
both examples. We again observe an exponential rate of convergence for the wave numbers
k =
√

2,
√

5 and
√

10. Furthermore, the graphs indicate that the damping effect of the PML is
more pronounced when the value of kρ is larger. That is, the convergence is faster and is reached
at a lower value of ρ when the wave number k is larger. For each fixed ρ, the error is smaller for
larger k unless the error of the spatial discretization dominates.

ρ k =
√

2 k =
√

5 k =
√

10
2 1.3110× 10−1 4.4683× 10−2 1.2256× 10−2

4 1.8509× 10−2 1.9087× 10−3 1.8733× 10−4

6 2.3898× 10−3 9.3975× 10−5 9.8692× 10−5

8 3.0169× 10−4 4.2240× 10−5 9.8247× 10−5

10 4.6151× 10−5 4.2936× 10−5 9.7619× 10−5

12 2.8695× 10−5 4.3412× 10−5 9.7097× 10−5

14 3.2423× 10−5 4.4872× 10−5 9.6927× 10−5

16 3.4231× 10−5 4.5801× 10−5 9.6704× 10−5

18 3.7340× 10−5 4.6738× 10−5 9.6429× 10−5

20 4.3658× 10−5 4.8820× 10−5 9.6445× 10−5

Table 4.4. Relative L2-error with respect to the PML parameter ρ and wave number
k for Example 1.
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ρ k =
√

2 k =
√

5 k =
√

10
2 1.1309× 10−1 4.2618× 10−2 1.0850× 10−2

4 1.5468× 10−2 1.7487× 10−3 1.6890× 10−4

6 1.9835× 10−3 6.5705× 10−5 9.8360× 10−5

8 2.3638× 10−4 4.2657× 10−5 9.8753× 10−5

10 4.9921× 10−5 4.2107× 10−5 9.8922× 10−5

12 4.5381× 10−5 4.1870× 10−5 9.8961× 10−5

14 4.7108× 10−5 4.2330× 10−5 9.9012× 10−5

16 4.9491× 10−5 4.2909× 10−5 9.9185× 10−5

18 5.2962× 10−5 4.3539× 10−5 9.9429× 10−5

20 5.8908× 10−5 4.4983× 10−5 9.9875× 10−5

Table 4.5. Relative L2-error with respect to the PML parameter ρ and wave number
k for Example 2.

Figure 4.9. Relative L2-error with respect to the PML parameter ρ and wave
number k (left: Example 1, right: Example 2).

So far, we have presented numerical results for point sources located below the locally perturbed
scatterer. Now, we want to illustrate how the numerical scattered field, generated by the incident
field ui with the point source located above the scatterer, propagates inside the strip between the
bottom surface and the PML. In this situation, the exact solution is not available. Hence, we
only show the numerical solutions which are obtained by k = 5, τ = 0.01 and the PML parameter
ρ = 20.
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Figure 4.10. Numerical scattered field for Example 1 with a point source at
y = (−2, 2.6)⊤ (top: real part, middle: imaginary part, bottom: absolute value).
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Figure 4.11. Numerical scattered field for Example 1 with a point source at
y = (−4, 2)⊤ (top: real part, middle: imaginary part, bottom: absolute value).

Figures 4.10 and 4.11 show that the numerical scattered field corresponding to Example 1
for two different locations of the point source. In the former, the point source is located at
y = (−2, 2.6)⊤ above the perturbation, whereas in the latter it is located at y = (−4, 2)⊤ away
from the perturbation. In these figures, the overall propagating pattern is similar to Green’s
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function; however, near the point source, some interference of waves scattered from different
points is visible.
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Figure 4.12. Numerical scattered field for Example 2 with a point source at
y = (−1, 2.6)⊤ (top: real part, middle: imaginary part, bottom: absolute value).
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Figure 4.13. Numerical scattered field for Example 2 with a point source at
y = (0, 4)⊤ (top: real part, middle: imaginary part, bottom: absolute value).



4.6. Numerical Results 91

−10 −8 −6 −4 −2 0 2 4 6 8 10
1
2
3 source

−0.1

0

0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10
1
2
3 source

−0.1

0

0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10
1
2
3 source

0

0.05

0.1

Figure 4.14. Numerical scattered field for Example 2 with a point source at
y = (5, 2.6)⊤ (top: real part, middle: imaginary part, bottom: absolute value).

For Example 2, we set the point source in three different locations: y = (0, 4)⊤ above the
scatterer, y = (−1, 2.6)⊤ relatively close to the scatterer and y = (5, 2.6)⊤ outside the perturbed
region. The corresponding numerical scattered fields are plotted in Figures 4.12 to 4.14. Due to
the complex structure of the bottom surface, the interference of the scattered waves leads to a
more complicated pattern. Furthermore, in Figure 4.12, the decay of the scattered field can be
seen in the horizontal direction. Finally, in Figure 4.14, it is visible that far away from the point
source, the scattered field behaves like Green’s function.





CHAPTER 5

Reconstruction of Local Perturbations

In this chapter, we study inverse scattering problems, where we aim to reconstruct unknown
perturbations of an unbounded periodic scatterer, using measured data. This data is obtained by
recording the resulting scattered field at various points in a compact set when a non-periodic
incident field hits the locally perturbed structure.

We assume an a priori knowledge of the 2π-periodic function ζper which generates the periodic
surface Γper. Additionally, the non-periodic incident field ui and the corresponding measured
near-field data D are also provided. The objective is to determine the shape of the defect, which
generates this near field. The main difficulty here lies in the ill-posedness of such problems.

We restrict ourselves to the two-dimensional case. Without loss of generality, we consider the
support of the perturbation to be a subset of [−π, π] and define the set of admissible perturbations

X :=
{
δ ∈ C2(R) : supp(δ) ⊂ [−π, π]

}
.

In Chapter 4, to each perturbation δ we associate the bottom surface Γδ, generated by
ζδ := ζper + δ, and denote by Ωδ

H the perturbed domain between the surfaces Γδ and ΓH .
In the direct scattering problem posed in the domain Ωδ

H , for a given non-periodic incident field
ui ∈ H2(Ωδ

H), we seek the nonlinear scattering operator S

S : X → L2(Γ2π
H ),

δ 7→ uδ
∣∣∣
Γ2π

H

,

which maps a given perturbation δ to the solution of Problem (4.2) restricted on the compact set
Γ2π

H := [−π, π]× {H}.
In inverse scattering problems, with complete knowledge of the scattering operator S, we aim

to determine the unknown perturbation δ ∈ X satisfying

S(δ) = D (5.1)

for given near-field data D := uδ|Γ2π
H

. In practice, the near field D would be obtained through
measurements that include some level of noise. As a result, instead of D, a noisy right-hand side Dp
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is typically considered, where p > 0 represents a priori knowledge of the noise level, satisfying
∥D −Dp∥L2(Γ2π

H )/∥D∥L2(Γ2π
H ) ≤ p. Due to the noise in the measured data, we cannot expect to

find a perturbation δ which satisfies (5.1) exactly. We hence reformulate it as a least squares
problem, i.e., we consider the following nonlinear optimization problem: for given measured data
D, find δ∗ ∈ X such that

δ∗ = arg min
δ∈X

∥S(δ)−D∥2L2(Γ2π
H ) . (5.2)

In Section 5.1, we prove that the nonlinear mapping S is completely continuous. This shows that
the inverse problem (5.1) and hence (5.2) are ill-posed in the sense of Hadamard [54]. To find a
stable approximation of the solution to such ill-posed problems, we aim to employ a regularization
method, namely an iterative regularized Newton–type method. To apply this method, we require
the Fréchet derivative of the scattering operator S at δ. In Section 5.2, we prove that this
derivative exists and can be represented by the solution of a boundary value problem, which can
be solved numerically by the iterative solver proposed in the previous chapter. Moreover, we
introduce and discretize the regularized version of inverse problem (5.2) in Section 5.3. Finally,
in Section 5.4, we will provide some numerical reconstructions that illustrate the performance of
the proposed method.

Before starting, we provide an overview of the scattering problems posed in periodic and locally
perturbed domains discussed in Chapters 3 and 4.

We consider as a “reference problem” the variational formulation of the direct scattering
problem in the periodic domain Ωper

H , given in (3.3).

Reference Problem: For the incident field ui ∈ H1
r (Ωper

H ) with r ∈ [0, 1), find the total field
u = J −1w ∈ H̃1(Ωper

H ) such that w ∈ L2(Λ; H̃1
per(Ω2π

H )) satisfies∫
Λ
aα(w(α), z(α)) dα =

∫
Λ

〈
(∂x2 − T +

α )J ui(α), z(α)
〉

Γ2π
H

dα

for all z ∈ L2(Λ; H̃1
per(Ω2π

H )), where

aα(ϕ, ψ) :=
〈
∇ϕ,∇ψ

〉
Ω2π

H

− 2iα
〈
∂x1 ϕ, ψ

〉
Ω2π

H

− (k2 − |α|2)
〈
ϕ, ψ

〉
Ω2π

H

−
〈
T +

α ϕ, ψ
〉

Γ2π
H

and the FB transform of the DtN map, denoted by T +
α , is defined as in (3.5).

We next recall the variational formulation of the direct scattering problem in the locally
perturbed domains Ωδ

H , which is transformed by the diffeomorphism Ψδ defined in (4.4) to an
equivalent problem in a periodic domain Ωper

H . This transformed formulation is referred to as the
“perturbed problem”.

Perturbed Problem: For a given compactly supported perturbation δ ∈ X and incident field
ui ∈ H1

r (Ωδ
H) with r ∈ [0, 1), find the total field uδ = (J −1wδ) ◦ (Ψδ)−1 ∈ H̃1(Ωδ

H) such that
wδ ∈ L2(Λ; H̃1

per(Ω2π
H )) satisfies∫

Λ
aδ

α(wδ, z(α)) dα =
∫

Λ

〈
(∂x2 − T +

α )J ui(α), z(α)
〉

Γ2π
H

dα
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for all z ∈ L2(Λ; H̃1
per(Ω2π

H )), where aδ
α(ϕ, ψ) := aα(ϕ(α), ψ) + bδ

α(ϕ, ψ) with aα as in the Reference
Problem and

bδ
α(ϕ, ψ) :=

〈
(Aδ − I)∇J −1ϕ,∇(ψeiαx1)

〉
Ω2π

H

− k2
〈
(cδ − 1)J −1ϕ, ψeiαx1

〉
Ω2π

H

.

The coefficients Aδ and cδ are given in (4.7).
Note that for ui ∈ H2

r (Ωδ
H) with r ∈ [0, 1), from Theorem 4.5, we know that wδ belongs to

L2(Λ; H̃2
per(Ω

per
H )). Using the inverse FB transform and the inverse of the diffeomorphism Ψδ, we

have uδ = (J −1wδ) ◦ (Ψδ)−1 ∈ H̃2(Ωδ
H).

5.1. Continuity and Compactness of the Scattering Operator

To show the continuity of the scattering operator S, it suffices to analyze the dependence of
the solution uδ on the boundary curve ζδ. In [66, Thm. 9], it has been proven that solutions
of quasi-periodic scattering problems depend continuously and differentiably on the periodic
boundary. A straightforward extension of these results to non-periodic scattering problems is not
possible, since the reduction of the problem to a bounded cell requires a periodic domain. In this
case, we will follow the approach outlined in Section 4.1. To analyze the stability of the direct
scattering problem, we use techniques given in [66] and prove that a small perturbation of ζper

leads to small changes in the solution. To this end, we need some preliminary lemmas.

Lemma 5.1. For δ ∈ X, let aα and aδ
α be defined as in the Reference Problem and Perturbed

Problem, respectively. For every ϕ, ψ ∈ L2(Λ; H̃1
per(Ω2π

H )), there exists a constant C such that∥∥∥aδ
α(ϕ, ψ(α))− aα(ϕ(α), ψ(α))

∥∥∥
L2(Λ)

≤ C∥δ∥1,∞∥ϕ∥L2(Λ;H̃1
per(Ω2π

H ))∥ψ∥L2(Λ;H̃1
per(Ω2π

H )) ,

where ∥·∥1,∞ denotes the norm in C1([−π, π]).

Proof. Recall that ∣∣∣aδ
α(ϕ, ψ(α))− aα(ϕ(α), ψ(α))

∣∣∣ =
∣∣∣bδ

α(ϕ, ψ(α))
∣∣∣

with bδ
α defined as in the Perturbed Problem. From Lemma A.3, we know that

cδ = 1 +O(∥δ∥1,∞) and Aδ = I +O(∥δ∥1,∞) as ∥δ∥1,∞ → 0 .

Applying the mapping property of the FB transform given in Theorem 2.28(b), we obtain
∣∣∣bδ

α(ϕ, ψ(α))
∣∣∣ ≤ ∣∣∣∣〈(Aδ − I)∇xJ −1ϕ,∇x(ψ(α)eiαx1)

〉
Ω2π

H

∣∣∣∣+ ∣∣∣∣k2
〈
(cδ − 1)J −1ϕ, ψ(α)eiαx1

〉
Ω2π

H

∣∣∣∣
≤ C∥δ∥1,∞

(∥∥∥∇xJ −1ϕ
∥∥∥

L2(Ω2π
H )

∥∥∥∇x(ψ(α)eiαx1)
∥∥∥

L2(Ω2π
H )

+
∥∥∥J −1ϕ

∥∥∥
L2(Ω2π

H )

∥∥∥ψ(α)eiαx1
∥∥∥

L2(Ω2π
H )

)
≤ C∥δ∥1,∞

∥∥∥J −1ϕ
∥∥∥

H1(Ωper
H )
∥ψ(α)∥H1

per(Ω2π
H )

≤ C∥δ∥1,∞∥ϕ∥L2(Λ;H̃1
per(Ω2π

H ))∥ψ(α)∥H1
per(Ω2π

H ) ,
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where the generic constant C depends on the wave number k. Hence, we can write∥∥∥aδ
α(ϕ, ψ(α))− aα(ϕ(α), ψ(α))

∥∥∥2

L2(Λ)
≤ C2∥δ∥21,∞∥ϕ∥

2
L2(Λ;H̃1

per(Ω2π
H ))

∫
Λ
∥ψ(α)∥2H1

per(Ω2π
H ) dα .

The assertion follows by the definition of the L2(Λ; H̃1
per(Ω2π

H ))-norm.

In the following lemma, we reformulate [75, Thm. 10.1] in terms of sesquilinear forms.

Lemma 5.2. Let aα and aδ
α be defined as before and w,wδ ∈ L2(Λ; H̃1

per(Ω2π
H )) \ {0} satisfy

the Reference Problem and the Perturbed Problem, respectively. For every sufficiently small
perturbation δ, we can estimate the perturbation of the solution by

∥∥∥wδ − w
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
≤ C sup

z∈L2(Λ;H̃1
per(Ω2π

H ))
z ̸=0

∥∥∥aδ
α(w, z(α))− aα(w(α), z(α))

∥∥∥
L2(Λ)

∥w∥
L2(Λ;H̃1

per(Ω2π
H ))∥z∥L2(Λ;H̃1

per(Ω2π
H ))

, (5.3)

where the constant C depends on k, ζper and the non-periodic incident field ui.

Proof. We begin by defining the operators Aα,Aδ
α : L2(Λ; H̃1

per(Ω2π
H ))→ (H̃1

per(Ω2π
H ))∗ such that

for all ψ ∈ H̃1
per(Ω2π

H )〈
Aαϕ, ψ

〉
Ω2π

H

:= aα(ϕ(α), ψ) and
〈
Aδ

αϕ, ψ
〉

Ω2π
H

:= aδ
α(ϕ, ψ) .

Moreover, we define A,Aδ : L2(Λ; H̃1
per(Ω2π

H ))→ (L2(Λ; H̃1
per(Ω2π

H )))∗ by

(Aϕ)(α) := Aαϕ and (Aδϕ)(α) := Aδ
αϕ . (5.4)

To use the perturbation theorem given in [75, Thm. 10.1], it is required that∥∥∥A−1(Aδ −A)
∥∥∥ < 1 .

We now show that this holds for a sufficiently small perturbation δ. From the definition of the
operator norm and the dual pairing in L2(Λ; H̃1

per(Ω2π
H )), we obtain

∥∥∥Aδ −A
∥∥∥ = sup

w,z∈L2(Λ;H̃1
per(Ω2π

H ))
w,z ̸=0

∣∣∣∣〈(Aδ −A)w, z
〉

Λ×Ω2π
H

∣∣∣∣
∥w∥

L2(Λ;H̃1
per(Ω2π

H ))∥z∥L2(Λ;H̃1
per(Ω2π

H ))

= sup
w,z∈L2(Λ;H̃1

per(Ω2π
H ))

w,z ̸=0

∣∣∣∣∫
Λ

〈
((Aδ −A)w)(α), z(α)

〉
Ω2π

H

dα
∣∣∣∣

∥w∥
L2(Λ;H̃1

per(Ω2π
H ))∥z∥L2(Λ;H̃1

per(Ω2π
H ))

.

(5.5)
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Using the definition of the operators Aδ and A in (5.4), it follows that∣∣∣∣∫
Λ

〈
((Aδ −A)w)(α), z(α)

〉
Ω2π

H

dα
∣∣∣∣ =

∣∣∣∣∫
Λ

〈
(Aδ

α −Aα)w, z(α)
〉

Ω2π
H

dα
∣∣∣∣

=
∣∣∣∣∫

Λ
aδ

α(w, z(α))− aα(w(α), z(α)) dα
∣∣∣∣

≤
∥∥∥aδ

α(w, z(α))− aα(w(α), z(α))
∥∥∥

L2(Λ)
.

(5.6)

Combining estimates (5.5), (5.6) and Lemma 5.1, we obtain∥∥∥Aδ −A
∥∥∥ ≤ C∥δ∥1,∞ .

Since the operator A is boundedly invertible, we can see that for sufficiently small δ∥∥∥A−1(Aδ −A)
∥∥∥ ≤ ∥∥∥A−1

∥∥∥∥∥∥Aδ −A
∥∥∥ ≤ C1∥δ∥1,∞ < 1 ,

where the constant C1 depends on the wave number k and ∥A−1∥.
Now, we can use the perturbation theorem given in [75, Thm. 10.1] and obtain the following

estimate
∥∥∥wδ − w

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))
≤

∥∥A−1∥∥
(1− ∥A−1(Aδ −A)∥)

∥∥∥(Aδ −A)w
∥∥∥

(L2(Λ;H̃1
per(Ω2π

H )))
∗

≤
∥∥A−1∥∥

(1− ∥A−1(Aδ −A)∥)
∥∥∥Aδ −A

∥∥∥∥w∥
L2(Λ;H̃1

per(Ω2π
H )) .

(5.7)

From the Reference Problem, we have

∥w∥
L2(Λ;H̃1

per(Ω2π
H )) =

∥∥∥A−1F
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
≤
∥∥∥A−1

∥∥∥∥F∥
L2(Λ;H̃−1/2(Γ2π

H )) ,

with F := (∂x2 −T +
α )J ui. Since the conormal derivative ∂x2 and the operator T +

α are continuous,
there exists a constant C2 such that ∥F∥

L2(Λ;H̃−1/2(Γ2π
H )) ≤ C2. By substituting this estimate

into (5.7) and using (5.5) and (5.6), we obtain

∥∥∥wδ − w
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
≤ C3 sup

w,z∈L2(Λ;H̃1
per(Ω2π

H ))
w,z ̸=0

∥∥∥aδ
α(w, z(α))− aα(w(α), z(α))

∥∥∥
L2(Λ)

∥w∥
L2(Λ;H̃1

per(Ω2π
H ))∥z∥L2(Λ;H̃1

per(Ω2π
H ))

where C3 := C2
∥∥A−1∥∥2(1− ∥A−1(Aδ −A)∥)−1.

Theorem 5.3. Let ζper ∈ C2(R) be a 2π-periodic function and ζδ := ζper + δ be a locally
perturbed function for a sufficiently small perturbation δ ∈ C2(R). Suppose that u ∈ H̃1(Ωper

H ) is
the solution of the Reference Problem, whereas uδ ∈ H̃1(Ωδ

H) satisfies the Perturbed Problem.
Moreover, let K be a compact set such that for every (x1, x2) ∈ K, it holds

max
{
∥ζper∥∞,

∥∥∥ζδ
∥∥∥
∞

}
< x2 ≤ H .
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Then, there exists a constant Ĉ depending on k, ζper and K such that∥∥∥uδ − u
∥∥∥

H1(K)
≤ Ĉ∥δ∥1,∞ .

Proof. Let uδ
tra := uδ ◦ Ψδ with the diffeomorphism Ψδ given in (4.4). This diffeomorphism

depends on the parameter h, which we select to be h := min{x2 : x ∈ K}. Note that with this
choice, we have Ψδ|K = I, which together with the definition of uδ

tra leads to uδ|K = uδ
tra|K .

Hence, we obtain ∥∥∥uδ − u
∥∥∥

H1(K)
=
∥∥∥uδ

tra − u
∥∥∥

H1(K)
≤
∥∥∥uδ

tra − u
∥∥∥

H1(Ωper
H )

.

From the definition of the inverse FB transform in (2.35) and afterwards using the mapping
property of the FB transform given in Theorem 2.28(b), there exists a constant C such that for
j ∈ Z ∥∥∥uδ − u

∥∥∥
H1(K)

≤
∥∥∥∥∫

Λ

(
wδ(α;x)− w(α;x)

)
eiα(x1+2πj) dα

∥∥∥∥
H1(Ωper

H )

≤ C
∥∥∥wδ − w

∥∥∥
L2(Λ;H̃1

per(Ω2π
H ))

.

Combining Lemmas 5.1 and 5.2, we can see that

∥∥∥wδ − w
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
≤ C sup

z∈L2(Λ;H̃1
per(Ω2π

H ))
z ̸=0

∥∥∥aδ
α(w, z(α))− aα(w(α), z(α))

∥∥∥
L2(Λ)

∥w∥
L2(Λ;H̃1

per(Ω2π
H ))∥z∥L2(Λ;H̃1

per(Ω2π
H ))

≤ C̃∥δ∥1,∞ ,

where the constant C̃ depends on k and J ui.

In the next theorem, we prove that the scattering operator S corresponding to unbounded
scatterers is locally compact.

Theorem 5.4. The mapping S : X → L2(Γ2π
H ) is locally compact.

Proof. Let the compact set K := [−π, π] × [h,H] for some h > max{∥ζper∥∞, ∥ζδ∥∞} and
Γ2π

H ⊆ ∂K. To show the compactness of the nonlinear operator S, we need to prove that it maps
every sufficiently small neighborhood U of δ ∈ X into a relatively compact subset of L2(Γ2π

H ).
In Theorem 5.3, we show the continuity of the operator SK : X → H1(K) with respect to the

perturbation δ ∈ X. This means, the operator maps a bounded set U ⊂ X into a bounded subset
of H1(K). Since the trace operator γD : H1(K)→ H1/2(Γ2π

H ) is continuous, then γD ◦ SK is also
continuous. From the compact embedding theorem in fractional Sobolev spaces from [32, Cor. 7.2],
we know that the embedding I : H1/2(Γ2π

H ) ↪→ L2(Γ2π
H ) is compact. That means, every bounded

set in H1/2(Γ2π
H ) is relatively compact with respect to the L2(Γ2π

H )-norm. Thus, S = I ◦ γD ◦ SK

maps every bounded subset of X into a relatively compact subset of L2(Γ2π
H ) and is therefore

compact.

According to [31, Thm. 4.2], the inverse problem (5.1) is ill-posed since the scattering operator
S is continuous and compact. Consequently, the optimization problem (5.2) is also unstable.
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Before introducing the regularized version of (5.2), we focus on the Fréchet derivative of the
scattering operator with respect to the perturbation. This is a key requirement for applying a
Newton–type method.

5.2. Fréchet Differentiability of the Scattering Operator

So far, we have shown that the scattering operator S : X → L2(Γ2π
H ) is continuous and locally

compact. In this section, we are going to derive its Fréchet derivative, which is denoted by
S ′(δ) : X → L2(Γ2π

H ) and satisfies

1
∥η∥1,∞

∥∥S(δ + η)− S(δ)− S ′(δ)η
∥∥

L2(Γ2π
H ) → 0 as ∥η∥1,∞ → 0 . (5.8)

Fréchet differentiability of scattering operators with respect to the boundary is studied for
bounded obstacles in [68], whereas in [66] the Fréchet differentiability of the quasi-periodic field
with respect to the unbounded periodic curve has been shown.

In this section, we aim to establish the Fréchet differentiability of the scattering operator S for
non-periodic incident fields with respect to the perturbation δ imposed on the periodic curve.
Since the problem lacks periodicity, we cannot directly exploit the usual reduction to a bounded
reference cell and use the result of [66]. The main idea is to use a diffeomorphism to transform
the perturbed structure to the periodic one and afterwards use the FB transform (the same
technique as in the previous chapter). In this case, for each Floquet parameter α, we can use a
similar approach as in [66, Thm. 9] to prove the Fréchet differentiability of the scattering operator
S with respect to δ.

In Theorem 5.5, we prove the Fréchet differentiability of the scattering operator S at δ = 0
(corresponding to the periodic curve) and compute its Fréchet derivative. Afterwards, in Theo-
rem 5.6, we extend these results to a sufficiently small δ (corresponding to a perturbed curve) by
proving that the operator S is differentiable at δ.

Theorem 5.5. Let K be as in Theorem 5.3 and η ∈ X. Then, the Fréchet derivative S ′(0) of S
at δ = 0 in the direction η exists and is given by u′|K ∈ H1(Ωper

H ), where u′ satisfies

∆u′ + k2u′ = 0 in Ωper
H ,

∂x2u
′ = T +u′ on ΓH ,

u′ = − η√
1 + (ζper)′2

∂nu = −η∂x2u on Γper ,

(5.9a)
(5.9b)

(5.9c)

with T + defined as in (2.29) and the total field u ∈ H̃2(Ωper
H ) satisfying

∆u+ k2u = 0 in Ωper
H ,

u = 0 on Γper ,

(∂x2 − T +)u = (∂x2 − T +)ui on ΓH ,

for a non-periodic incident field ui ∈ H2(Ωper
H ).
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ζper + η

ζper(δ = 0)

Figure 5.1. Periodic function ζper and locally perturbed function ζper + η.

Proof. Let u′ satisfy problem (5.9) and the perturbation η be such that ∥ζper+η∥∞ < H (depicted
in Figure 5.1). In this case, we can define the domain

Ωη
H := {x ∈ R2 : ζper + η < x2 < H} .

Moreover, we consider that uη := J −1wη ◦ (Ψη)−1 is a solution of the Perturbed Problem for the
perturbation η and the diffeomorphism Ψη, mapping Ωper

H to Ωη
H , is defined as in (4.4).

The diffeomorphism Ψη depends on the auxiliary function βη
h given in (4.5) with the parameter

h := min{x2 : x ∈ K}. With this choice of h, we have βη
h|K = 0 and Ψη|K = I.

According to the definition of the Fréchet derivative in (5.8), it suffices to show that

∥∥uη − u− u′
∥∥

H1(K) = O(∥η∥21,∞) as ∥η∥1,∞ → 0 . (5.10)

Considering uη
tra := uη ◦Ψη and using Ψη|K = I, we see that∥∥uη − u− u′

∥∥
H1(K) =

∥∥uη
tra − u− u′

∥∥
H1(K) .

By defining vη(x) := η(x1)βη
h(x)∂x2u(x), it is sufficient to prove∥∥uη

tra − u− (u′ + vη)
∥∥

H1(Ωper
H ) = O(∥η∥21,∞) as ∥η∥1,∞ → 0 ,

since vη = 0 on the compact set K. To this end, by using the definition of the inverse
FB transform (2.35) and afterwards applying the mapping property of the FB transform in
Theorem 2.28(b), we obtain that there is a constant C such that

∥∥uη
tra − u− (u′ + vη)

∥∥
H1(Ωper

H ) =
∥∥∥∥∫

Λ

(
wη − w − J (u′ + vη)

)
eiα(x1+2πj) dα

∥∥∥∥
H1(Ωper

H )

≤ C
∥∥wη − w − J (u′ + vη)

∥∥
L2(Λ;H̃1

per(Ω2π
H )) .

Let aα and aη
α be defined as in the Reference Problem and the Perturbed Problem. Using the

inf-sup condition (2.15) for each α ∈ Λ, we get

∥∥wη − w − J (u′ + vη)
∥∥

L2(Λ;H̃1
per(Ω2π

H )) ≤ sup
z∈H̃2(Ω2π

H )
z ̸=0

aα(wη − w − J (u′ + vη), z)
Cinfsup∥z∥H1(Ω2π

H )
,

where Cinfsup denotes the inf-sup constant. Now it is enough to compute for almost all α ∈ Λ
and all z ∈ H̃2

per(Ω2π
H )

aα(wη(α)− w(α)− J (u′ + vη)(α), z) = aα(wη(α)− w(α), z)− aα(J (u′ + vη)(α), z) .
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Since the right-hand sides of the Reference Problem and Perturbed Problem are equal, we conclude
that for each α ∈ Λ, we have aα(w(α), z) = aη

α(wη, z). This leads to

aα(wη(α)− w(α)− J (u′ + vη)(α), z)
= − (aη

α(wη, z)− aα(wη(α), z))− aα(J (u′ + vη)(α), z) .
(5.11)

We begin by computing the first term in (5.11). Using the definition of the sesquilinear forms aα

and aη
α given in the Reference Problem and Perturbed Problem, we have

aη
α(wη, z)− aα(wη(α), z) =

〈
(Aη − I)∇x(J −1wη),∇x(zeiαx1)

〉
Ω2π

H

− k2
〈
(cη − 1)J −1wη, zeiαx1

〉
Ω2π

H

.
(5.12)

The asymptotic representations of Aη and cη in (A.4) and (A.5) give us cη − 1 = η∂x2β
η
h and(

(Aη − I)∇x(J −1wη)
)
· ∇x(zeiαx1)

= −div
{
vη∇x(zeiαx1) + ηβη

h∇x(J −1wη)∂x2(zeiαx1)− ηβη
he2(∇x(J −1wη) · ∇x(zeiαx1))

}
+ vη∆x(zeiαx1) + ηβη

h∆x(J −1wη)∂x2(zeiαx1) +O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Substituting the above representations into (5.12) and using the divergence theorem, we obtain

aη
α(wη, z)− aα(wη(α), z) = −

〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γ2π

−
〈
ηβη

h∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)
〉

Γ2π
H

+
〈
ηβη

h∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)
〉

Γ2π

+
〈
vη,∆x(zeiαx1)

〉
Ω2π

H

+
〈
ηβη

h∆x(J −1wη), ∂x2(zeiαx1)
〉

Ω2π
H

− k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 ,

where n = (n1, n2)⊤ denotes the outward unit normal vector. From the definition of βη
h in (4.5),

we know that βη
h = 0 on the top surface Γ2π

H and βη
h = 1 on the bottom surface Γ2π. This yields

aη
α(wη, z)− aα(wη(α), z) = −

〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γ2π

+
〈
η∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γ2π

+
〈
vη,∆x(zeiαx1)

〉
Ω2π

H

+
〈
ηβη

h∆x(J −1wη), ∂x2(zeiαx1)
〉

Ω2π
H

− k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .
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Applying Green’s first identity to
〈
vη,∆x(zeiαx1)

〉
Ω2π

H

gives

aη
α(wη, z)− aα(wη(α), z) = −

〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γ2π

+
〈
η∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γ2π

−
〈
∇xv

η,∇x(zeiαx1)
〉

Ω2π
H

+
〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

−
〈
nvη,∇x(zeiαx1)

〉
Γ2π

+
〈
ηβη

h∆x(J −1wη), ∂x2(zeiαx1)
〉

Ω2π
H

− k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Some of the boundary terms cancel each other out and we can further simplify the terms above,
by using η∆x(J −1wη) = −ηk2(J −1wη) + O(∥η∥21,∞) as ∥η∥1,∞ → 0 (see Remark A.4). This
leads to

aη
α(wη, z)− aα(wη(α), z) =

〈
η∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γ2π

−
〈
∇xv

η,∇x(zeiαx1)
〉

Ω2π
H

− k2
〈
ηβη

hJ
−1wη, ∂x2(zeiαx1)

〉
Ω2π

H

− k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) .

(5.13)

Now, the first term in the equation above vanishes, since〈
η∇x(J −1wη), n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γ2π

=
〈
n1η∂x1(J −1wη) + n2η∂x2(J −1wη), ∂x2(zeiαx1)

〉
Γ2π

−
〈
n2η∂x1(J −1wη), ∂x1(zeiαx1)

〉
Γ2π
−
〈
n2η∂x2(J −1wη), ∂x2(zeiαx1)

〉
Γ2π

=
〈
η∂x1(J −1wη), n1∂x2(zeiαx1)− n2∂x1(zeiαx1)

〉
Γ2π

=
〈
η∂x1(J −1wη),∇x(zeiαx1) · n⊥

〉
Γ2π

= 0 ,

in which the last equality is obtained by the fact that zeiαx1
∣∣
Γ2π is constantly zero and hence its

tangential derivative is zero. Substituting the result above into (5.13), yields

aη
α(wη, z)− aα(wη(α), z) = −

〈
∇xv

η,∇x(zeiαx1)
〉

Ω2π
H

− k2
〈
ηβη

hJ
−1wη, ∂x2zeiαx1

〉
Ω2π

H

− k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

(5.14)

Now, we are going to compute the second term of (5.11). By using the definition of the sesquilinear
form aα given in the Reference Problem, this term is written as follows

aα(J (u′ + vη)(α), z) = aα(J u′(α), z) + aα(J vη(α), z) . (5.15)
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Applying the FB transform to (5.9) and writing its variational form, we see that J u′ satisfies

aα(J u′(α), z) = 0 for all z ∈ H̃2
per(Ω2π

H ) and almost all α ∈ Λ .

Thus, since this term vanishes in equation (5.15), it only remains to compute aα(J vη(α), z).
From the definition of vη(x) = η(x1)βη

h(x)∂x2u, we know that vη is compactly supported in
Ω2π

H , since the local perturbation η is supported in this cell. This leads to J vη = vηe−iαx1 and
∇x(J vη) = (∇xv

η − iαe1v
η)e−iαx1 for e1 := (1, 0)⊤. Moreover, from the definition of βη

h in (4.5),
we obtain that T +

α (J vη) = 0 as βη
h = 0 on Γ2π

H . Taking the above properties into account and
substituting them into equation (5.15), we obtain

aα(J (u′ + vη)(α), z) =
〈
∇x(J vη),∇xz

〉
Ω2π

H

− 2iα⟨∂x1(J vη), z⟩Ω2π
H

− (k2 − α2)⟨J vη, z⟩Ω2π
H
−
〈
T +

α (J vη), z
〉

Γ2π
H

=
〈
(∇xv

η), eiαx1∇xz
〉

Ω2π
H

− iα
〈
vη, eiαx1∂x1z

〉
Ω2π

H

− 2iα
〈
∂x1v

η, zeiαx1
〉

Ω2π
H

− 2α2
〈
vη, zeiαx1

〉
Ω2π

H

− (k2 − α2)
〈
vη, zeiαx1

〉
Ω2π

H

.

(5.16)

Substituting (5.14) and (5.16) into (5.11), shows that

aα(wη(α)− w(α)− J (u′ + vη)(α), z)
= −(aδ

α(wη, z)− aα(wη(α), z))− aα((J u′ + J vη)(α), z)

=
〈
∇xv

η,∇x(zeiαx1)
〉

Ω2π
H

+ k2
〈
ηβη

hJ
−1wη, ∂x2(zeiαx1)

〉
Ω2π

H

+ k2
〈
η(∂x2β

η
h)J −1wη, zeiαx1

〉
Ω2π

H

−
〈
(∇xv

η), eiαx1∇xz
〉

Ω2π
H

+ iα
〈
vη, eiαx1∂x1z

〉
Ω2π

H

+ 2iα
〈
∂x1v

η, zeiαx1
〉

Ω2π
H

+ α2
〈
vη, zeiαx1

〉
Ω2π

H

+ k2
〈
vη, zeiαx1

〉
Ω2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Since
iα
〈
vηe−iαx1 , ∂x1z

〉
Ω2π

H

+ α2
〈
vηe−iαx1 , z

〉
Ω2π

H

= iα
〈
vη, ∂x1(zeiαx1)

〉
Ω2π

H

= −iα
〈
∂x1v

η, zeiαx1
〉

Ω2π
H

,

all terms which do not depend on k cancel each other out. We are left with

aα(wη(α)− w(α)− J (u′ + vη)(α), z)

= k2
∫

Ω2π
H

∂x2(ηβη
h(J −1wη)zeiαx1) dx +O(∥η∥21,∞)

= k2
∫

Ω2π
H

div (e2ηβ
η
h(J −1wη)zeiαx1) dx +O(∥η∥21,∞) .
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ζδ+η := ζδ + η

ζδ

Figure 5.2. Locally perturbed functions ζδ and ζδ + η.

Using the divergence theorem, we end up with

aα(wη(α)− w(α)− J (u′ + vη)(α), z) = k2
∫

Γ2π
H

n2ηβ
η
h(J −1wη)zeiαx1 ds

− k2
∫

Γ2π
n2ηβ

η
h(J −1wη)zeiαx1 ds

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Using the fact that z = 0 on Γ2π and βη
h = 0 on Γ2π

H , we conclude

aα(wη(α)− w(α)− J (u′ + vη)(α), z) = O(∥η∥21,∞) as ∥η∥1,∞ → 0

for all z ∈ H̃2
per(Ω2π

H ) and almost all α ∈ Λ. As H̃2
per(Ω2π

H ) is dense in H̃1
per(Ω2π

H ), we obtain
∥∥uη

tra − u− (u′ + vη)
∥∥

H1(Ωper
H ) = O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

This completes the proof because on the compact set K, we have vη = 0 and uη
tra|K = uη|K .

Theorem 5.6. Let the compact set K be defined as in Theorem 5.3 and η ∈ X. Then, the
Fréchet derivative S ′(δ)η of S at δ in the direction η exists and is given by u′|K ∈ H1(Ωδ

H), where
u′ satisfies

∆u′ + k2u′ = 0 in Ωδ
H ,

∂x2u
′ = T +u′ on ΓH ,

u′ = − η√
1 + (ζδ)′2

∂nu
δ = −η∂x2u

δ on Γδ

(5.17a)
(5.17b)

(5.17c)

with T + defined as in (2.29) and the total field uδ ∈ H̃2(Ωδ
H) satisfying

∆uδ + k2uδ = 0 in Ωδ
H ,

uδ = 0 on Γδ ,

(∂x2 − T +)uδ = (∂x2 − T +)ui on ΓH

(5.18a)
(5.18b)
(5.18c)

for a non-periodic incident field ui ∈ H2(Ωδ
H).

Proof. Let u′ be the solution of Problem (5.17) and the perturbation η be such that ∥ζδ+η∥∞ < H

(depicted in Figure 5.2). In this case, we can define the domain

Ωδ+η
H := {x ∈ R2 : ζδ + η < x2 < H} .
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The solution of the scattering problem (5.18) corresponding to the perturbation η + δ is denoted
by uδ+η ∈ H̃2(Ωδ+η

H ).
From the definition of the Fréchet derivative in (5.8), it is sufficient to show that

∥∥∥uδ+η − uδ − u′
∥∥∥

H1(K)
= O(∥η∥21,∞) as ∥η∥1,∞ → 0 . (5.19)

For this purpose, we first define the diffeomorphism Ψη : Ωδ
H → Ωδ+η

H as in (4.4) for the perturba-
tion η. This diffeomorphism depends on βη

h(x), which is defined by replacing ζper with ζδ in (4.5).
Moreover, choosing the parameter h as in the proof of the previous theorem yields Ψη|K = I. In
this case, defining ũδ+η

tra := uδ+η ◦Ψη ∈ H̃2(Ωδ
H) and considering the fact that uδ+η|K = ũδ+η

tra |K ,
we have ∥∥∥uδ+η − uδ − u′

∥∥∥
H1(K)

=
∥∥∥ũδ+η

tra − uδ − u′
∥∥∥

H1(K)
.

Since ũδ+η
tra satisfies Problem (5.18), its variational form can be written as

aδ+η(ũδ+η
tra , z) :=

〈
(∂x2 − T +)ui ◦Ψη, z

〉
ΓH

for all z ∈ H̃2(Ωδ
H) ,

where
aδ+η(ϕ, ψ) =

〈
∇ϕ,∇ψ

〉
Ωδ

H

− k2
〈
∇ϕ, ψ

〉
Ωδ

H

−
〈
T +ϕ, ψ

〉
ΓH

+
〈
(Aη − I)∇ϕ,∇ψ

〉
Ωδ

H

− k2
〈
(cη − 1)ϕ, ψ

〉
Ωδ

H

with the coefficients cη and Aη defined as in (4.7) from the diffeomorphism Ψη.
Defining vη(x) = η(x1)βη

h(x)∂x2u
δ(x), it suffices to prove∥∥∥ũδ+η

tra − uδ − (u′ + vη)
∥∥∥

H1(Ωδ
H)

= O(∥η∥21,∞) as ∥η∥1,∞ → 0 ,

since vη = 0 on K. To be able to apply the FB transform, we further transform these functions
to the periodic domain Ωper

H using the diffeomorphism Ψδ from (4.4). Considering

uδ+η
tra := ũδ+η

tra ◦Ψδ ∈ H̃2(Ωper
H ) ,

we see that its FB transform, denoted by wδ+η := J uδ+η
tra ∈ L2(Λ; H̃2

per(Ω2π
H )), satisfies

aδ+η
α (wδ+η, ztra) =

〈
(∂x2 − T +

α )J ui
tra(α), ztra

〉
Γ2π

H

, (5.20)

for all ztra ∈ H̃2
per(Ω2π

H ) and almost all α ∈ Λ, where

aδ+η
α (wδ+η, ztra) = aδ

α(wδ+η, ztra)

+
〈
cδ(∇Ψδ)−1(Aη − I)(∇Ψδ)−⊤∇x(J −1wδ+η),∇x(ztraeiαx1)

〉
Ω2π

H

− k2
〈
cδ(cη − 1)J −1wδ+η, ztraeiαx1

〉
Ω2π

H

,

(5.21)

with aδ
α as defined in the Perturbed Problem and cδ = |det∇Ψδ|.
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Similarly as in the proof of the previous theorem, using the mapping property of the FB
transform, there exists a constant C such that∥∥∥uδ+η

tra − uδ
tra − (u′tra + vη

tra)
∥∥∥

H1(Ωper
H )
≤ C

∥∥∥wδ+η − wδ − J (u′tra + vη
tra)
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
,

where uδ
tra := uδ ◦ Ψδ, u′tra := u′ ◦ Ψδ, vη

tra := vη ◦ Ψδ and wδ := J uδ
tra. Using (2.15) for each

α ∈ Λ, we obtain

∥∥∥wδ+η − wδ − J (u′tra + vη
tra)
∥∥∥

L2(Λ;H̃1
per(Ω2π

H ))
≤ sup

z∈H̃2
per(Ω2π

H )
z ̸=0

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), z)
Cinfsup∥z∥H1(Ω2π

H )
,

where Cinfsup is the inf-sup constant. Then, it is enough to show that for all ztra ∈ H̃2
per(Ω2π

H )
and almost all α ∈ Λ, we have

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), ztra) = O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Since the right-hand side of equation (5.20) and the Perturbed Problem are equal, we obtain
aδ

α(wδ, ztra) = aδ+η
α (wδ+η, ztra). Therefore, we can compute for ztra ∈ H̃2

per(Ω2π
H )

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), ztra)

= −
(
aδ+η

α (wδ+η, ztra)− aδ
α(wδ+η, ztra)

)
− aδ

α(J (u′tra + vη
tra), ztra) .

(5.22)

We start with computing the first term in equation (5.22). Using the definition of the sesquilinear
form aδ+η

α in (5.21) and recalling uδ+η
tra = J −1wδ+η, we obtain

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra) =
〈
cδ(∇Ψδ)−1(Aη − I)(∇Ψδ)−⊤∇uδ+η

tra ,∇(ztraeiαx1)
〉

Ω2π
H

− k2
〈
cδ(cη − 1)uδ+η

tra , ztraeiαx1
〉

Ω2π
H

.

Changing the variables back to the perturbed cell Ωδ,2π
H := Ψδ(Ω2π

H ) and recalling the functions
ũδ+η

tra = uδ+η
tra ◦ (Ψδ)−1 and z = ztra ◦ (Ψδ)−1, we can see that

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra) =
〈
(Aη − I)∇ũδ+η

tra ,∇(zeiαx1)
〉

Ωδ,2π
H

− k2
〈
(cη − 1)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

.
(5.23)

Using the estimates (A.4) and (A.5) leads to cη − 1 = η∂x2β
η
h and(

(Aη − I)∇ũδ+η
tra

)
· ∇(zeiαx1)

= −div
{
vη∇x(zeiαx1) + ηβη

h∇ũ
δ+η
tra ∂x2(zeiαx1)− ηβη

he2(∇ũδ+η
tra · ∇x(zeiαx1))

}
+ vη∆x(zeiαx1) + ηβη

h∆ũδ+η
tra ∂x2(zeiαx1) +O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Substituting the terms above into (5.23), applying the divergence theorem and using the fact
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that βη
h = 0 on Γ2π

H and βη
h = 1 on Γδ,2π, we obtain

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra)

= −
〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

−
〈
ηβη

h∇ũ
δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γδ,2π

+
〈
ηβη

h∇ũ
δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γδ,2π

+
〈
vη,∆x(zeiαx1)

〉
Ωδ,2π

H

+
〈
ηβη

h∆ũδ+η
tra , ∂x2(zeiαx1)

〉
Ωδ,2π

H

− k2
〈
η(∂x2β

η
h)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

+O(∥η∥21,∞)

= −
〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γδ,2π

+
〈
η∇xũ

δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γδ,2π

+
〈
vη,∆x(zeiαx1)

〉
Ωδ,2π

H

+
〈
ηβη

h∆ũδ+η
tra , ∂x2(zeiαx1)

〉
Ωδ,2π

H

− k2
〈
η(∂x2β

η
h)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 ,

where n = (n1, n2)⊤ denotes the unit outward normal vector. Applying Green’s first identity to
the term

〈
vη,∆(zeiαx1)

〉
Ωδ,2π

H

leads to

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra) = −
〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

+
〈
nvη,∇x(zeiαx1)

〉
Γδ,2π

+
〈
η∇xũ

δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γδ,2π

−
〈
∇xv

η,∇x(zeiαx1)
〉

Ωδ,2π
H

+
〈
nvη,∇x(zeiαx1)

〉
Γ2π

H

−
〈
nvη,∇x(zeiαx1)

〉
Γδ,2π

+
〈
ηβη

h∆xũ
δ+η
tra , ∂x2(zeiαx1)

〉
Ωδ,2π

H

− k2
〈
η(∂x2β

η
h)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

+O(∥η∥21,∞) .

Some boundary terms cancel out and we are able to further simplify the equation above using
the fact that η∆ũδ+η

tra = −ηk2ũδ+η
tra +O(∥η∥21,∞), as ∥η∥∞ → 0 (see Remark A.4). This yields

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra)

=
〈
η∇xũ

δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γδ,2π

−
〈
∇xv

η,∇x(zeiαx1)
〉

Ωδ,2π
H

− k2
〈
ηβη

hũ
δ+η
tra , ∂x2(zeiαx1)

〉
Ωδ,2π

H

− k2
〈
η(∂x2β

η
h)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

(5.24)

Due to the fact that

n∂x2(zeiαx1)− n2∇x(zeiαx1) = e1(n1∂x2zeiαx1 − n2∂x1zeiαx1) ,
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the first term in (5.24) can be simplified as follows〈
η∇xũ

δ+η
tra , n∂x2(zeiαx1)− n2∇x(zeiαx1)

〉
Γδ,2π

=
〈
η∂x1 ũ

δ+η
tra , n1∂x2zeiαx1 − n2∂x1zeiαx1

〉
Γδ,2π

=
〈
η∂x1 ũ

δ+η
tra ,∇x(zeiαx1) · n⊥

〉
Γδ,2π

= 0 ,

where the last equality holds, since zeiαx1
∣∣
Γδ,2π is constantly zero and hence its tangential

derivative is zero. Substituting the above result into (5.24), we obtain

aδ+η
α (wδ+η, ztra)− aδ

α(wδ+η, ztra)

= −
〈
∇xv

η,∇x(zeiαx1)
〉

Ωδ,2π
H

− k2
〈
ηβη

hJ
−1wδ, eiαx1∂x2z

〉
Ωδ,2π

H

− k2
〈
η(∂x2β

η
h)J −1wδ, eiαx1z

〉
Ωδ,2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

(5.25)

Now, we are going to compute the second term of (5.22). For all ztra ∈ H̃2
per(Ω2π

H ), we have

aδ
α(J (u′tra + vη

tra), ztra) = aδ
α(J u′tra, ztra) + aδ

α(J vη
tra, ztra) , (5.26)

where aδ
α is defined as in the Perturbed Problem. Recall that u′tra = u′ ◦Ψδ ∈ H2(Ωper

H ), with u′

satisfying problem (5.17). Then, by applying the FB transform to u′tra, we can see that J u′tra
satisfies

aδ
α(J u′tra, ztra) = 0 for all ztra ∈ H̃2

per(Ω2π
H ) and almost all α ∈ Λ ,

where aδ
α is defined in the Perturbed Problem. Considering this fact, equation (5.26) can be

simplified as
aδ

α(J (u′tra + vη
tra), ztra) = aδ

α(J vη
tra, ztra) .

Therefore, it only remains to compute aδ
α(J vη

tra, ztra). From the definition of vη
tra = ηβη

h∂x2u
δ
tra, it

follows that vη
tra is compactly supported in Ω2π

H , since η is a local perturbation supported in this
cell. This yields J vη

tra = vη
tra exp(−iαx1). Moreover, vη

tra|Γ2π
H

= 0, as βη
h(x) = 0 on Γ2π

H . Hence,
using ∇x(J vη

tra) = (∇xv
η
tra − iαe1v

η
tra)e−iαx1 and T +

α J v
η
tra = 0, we obtain

aδ
α(J (u′tra + vη

tra), ztra)

=
〈
∇x(J vη

tra),∇xztra
〉

Ω2π
H

− 2iα⟨∂x1(J vη
tra), ztra⟩Ω2π

H
− (k2 − α2)⟨J vη

tra, ztra⟩Ω2π
H

+
〈
(Aδ − I)∇vη

tra,∇(ztraeiαx1)
〉

Ω2π
H

− k2
〈
(cδ − 1)vη

tra, ztraeiαx1
〉

Ω2π
H

−
〈
T +

α J v
η
tra, ztra

〉
Γ2π

H

= −iα
〈
vη

tra, eiαx1∂x1ztra
〉

Ω2π
H

− iα
〈
∂x1v

η
tra, eiαx1ztra

〉
Ω2π

H

− α2
〈
vη

tra, eiαx1ztra
〉

Ω2π
H

+
〈
Aδ∇vη

tra,∇(ztraeiαx1)
〉

Ω2π
H

− k2
〈
cδvη

tra, eiαx1ztra
〉

Ω2π
H

.
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Using

iα
〈
vη

tra, eiαx1∂x1ztra
〉

Ω2π
H

+ α2
〈
vη

tra, eiαx1ztra
〉

Ω2π
H

= iα
〈
vη

tra, ∂x1(ztraeiαx1)
〉

Ω2π
H

= −iα
〈
∂x1v

η
tra, ztraeiαx1

〉
Ω2π

H

,

and changing the variables back to the perturbed cell Ωδ,2π
H , we get

aδ
α(J (u′tra + vη

tra), ztra) =
〈
∇vη,∇(zeiαx1)

〉
Ωδ,2π

H

− k2
〈
vη, zeiαx1

〉
Ωδ,2π

H

. (5.27)

By substituting equations (5.25) and (5.27) into (5.22), we obtain

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), ztra)

=
〈
∇xv

η,∇x(zeiαx1)
〉

Ωδ,2π
H

+ k2
〈
ηβη

hũ
δ+η
tra , ∂x2zeiαx1

〉
Ωδ,2π

H

+ k2
〈
η(∂x2β

η
h)ũδ+η

tra , zeiαx1
〉

Ωδ,2π
H

−
〈
∇xv

η,∇x(zeiαx1)
〉

Ωδ,2π
H

+ k2
〈
vη, zeiαx1

〉
Ωδ,2π

H

+O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Clearly the terms which do not depend on k cancel each other out and we are left with

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), ztra) = k2
∫

Ωδ,2π
H

∂x2(ηβη
hũ

δ+η
tra zeiαx1) dx +O(∥η∥21,∞)

= k2
∫

Ωδ,2π
H

div (e2ηβ
η
hũ

δ+η
tra zeiαx1) dx +O(∥η∥21,∞)

= k2
∫

Γ2π
H

n2ηβ
η
hũ

δ+η
tra zeiαx1 ds

− k2
∫

Γδ,2π
n2ηβ

η
hũ

δ+η
tra zeiαx1 ds +O(∥η∥21,∞) .

Using the fact that z = 0 on Γδ,2π and βη
h = 0 on Γ2π

H , we conclude for all ztra ∈ H̃2
per(Ω2π

H )

aδ
α(wδ+η − wδ − J (u′tra + vη

tra), ztra) = O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

As H̃2
per(Ω2π

H ) is dense in H̃1
per(Ω2π

H ), we have∥∥∥uδ+η
tra − uδ

tra − (u′tra + vη
tra)
∥∥∥

H1(Ωper
H )

= O(∥η∥21,∞) as ∥η∥1,∞ → 0 .

Finally, using the mapping property of the FB transform and transforming all functions back to
Ωδ

H , we complete the proof because vη
tra = 0 on the compact set K.

In the following theorems, we aim to show some properties of the operator S ′(δ).

Theorem 5.7. The operator S ′(δ) : X → L2(Γ2π
H ) is locally compact for sufficiently small δ ∈ X.

Proof. Let δ ∈ X be sufficiently small. We need to show that for any bounded set U ⊂ X,
S ′(δ)U is relatively compact in L2(Γ2π

H ). We first prove that S ′(δ) : X → H1/2(Γ2π
H ) is continuous.

Afterwards, we use the compact Sobolev embedding theorem to complete the proof.
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To show the continuity of S ′(δ), we consider a sufficiently small ball B around zero such that
S(δ + η) exists for every η ∈ B. Using Theorem 5.6, there exists a constant C1 such that∥∥S(δ + η)− S(δ)− S ′(δ)η

∥∥
H1/2(Γ2π

H ) ≤ C1∥η∥21,∞ .

Moreover, from the continuity of the scattering operator S (shown in Theorem 5.3), we have

∥S(δ + η)− S(δ)∥H1/2(Γ2π
H ) ≤ C2∥η∥1,∞ .

Using the triangle inequality, we can write∥∥S ′(δ)η∥∥H1/2(Γ2π
H ) =

∥∥S ′(δ)η + S(δ + η)− S(δ)− S(δ + η) + S(δ)
∥∥

H1/2(Γ2π
H )

≤
∥∥S ′(δ)η − S(δ + η) + S(δ)

∥∥
H1/2(Γ2π

H ) + ∥S(δ + η)− S(δ)∥H1/2(Γ2π
H )

≤ C1∥η∥21,∞ + C2∥η∥1,∞ ≤ C3∥η∥1,∞ ,

where the last inequality holds since η is in the bounded set B. Using the compact embed-
ding theorem in the fractional Sobolev spaces (see [32, Cor. 7.2]), we obtain that the em-
bedding I : H1/2(Γ2π

H ) ↪→ L2(Γ2π
H ) is compact. Then, the set S ′(δ)U is embedded compactly

into L2(Γ2π
H ).

Theorem 5.8. The operator S ′(δ) is injective for sufficiently small δ ∈ X.

Proof. The proof follows the approach used in the periodic case [56, Cor. 3.2] and the case of
bounded scatterers [68, Lem. 2.2].

Let u′ satisfy problem (5.17). Due to the linearity of the operator S ′(δ), it is sufficient to
prove that the kernel is trivial. Therefore, we consider η ∈ X such that the derivative of
the scattering operator S ′(δ)η = u′|ΓH

= 0. Using (5.17b) and the linearity of T +, gives us
∂nu

′|ΓH
= ∂x2u

′|ΓH
= 0. According to Holmgren’s theorem (see [31, Thm. 2.3]), since u′ and its

normal derivative are zero on an open subset of the boundary, we conclude that u′ = 0 in Ωδ
H .

Substituting u′ = 0 in the boundary condition (5.17c), we obtain η∂x2u
δ = 0 on Γδ. Since the

total field uδ is not the trivial solution in Ωδ
H and satisfies uδ ̸= 0 on Ωδ

H , again using Holmgren’s
theorem we conclude that ∂x2u

δ is different from the zero function in every relatively open subset
of Γδ, which yields η = 0.

Theorem 5.9. The inverse of the operator S ′(δ) : X → L2(Γ2π
H ) exists and is unbounded.

Proof. Let U be the range of S ′(δ). Since S ′(δ) is injective (see Theorem 5.8), the operator
S ′(δ) : X → U is bijective. Hence its inverse is well defined. According to the proof of [31,
Thm. 4.2], as the linear operator S ′(δ) is compact and X is infinite dimensional, the inverse is
not bounded.

5.3. Regularization, Discretization and Reconstruction

As shown in Theorem 5.4, the inverse problem (5.2) is ill-posed. To obtain a stable approximation
of the solution, we are going to regularize the problem (5.2) and then apply the Gauss–Newton
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method as described for instance in [94, Sec. 10.2]. However, other iterative schemes, for example,
the nonlinear Landweber iteration [64, Sec. 2] and the inexact Newton method [87, 95] can also
be applied to solve the mentioned problem.

To regularize (5.2), we add a penalty term to the objective function as follows

δ∗ := arg min
δ∈X

∥S(δ)−D∥2L2(Γ2π
H ) +

(
αreg∥ψ(δ)∥L2([−π,π])

)2
, (5.28)

where αreg is a constant called regularization parameter and ψ(δ) denotes the penalty term. A
common choice for the penalty term is the curvature of the bottom surface Γδ. However, in our
case, since the bottom surface is the graph of the function ζδ, it suffices to penalize the second
order derivative of the perturbation. Therefore, we define the penalty term ψ : X → R as

ψ(δ) = δ′′ . (5.29)

To find a minimizer δ∗ for the functional (5.28) with the Gauss–Newton method, we need to
compute the Fréchet derivative of the scattering operator S and the penalty function ψ(δ) for
any sufficiently small perturbation δ ∈ X. The former has been obtained in Theorem 5.5, and
the latter will be computed in the next lemma.

Lemma 5.10. Let η ∈ X and ψ be defined as above. The Fréchet derivative of ψ, denoted by ψ′,
is given by

ψ′(δ)(η) = η′′ .

Proof. Using the definition of the Fréchet derivative and substituting the expression ψ′ defined
as above leads to∥∥ψ(δ + η)− ψ(δ)− ψ′(δ)(η)

∥∥
L2([−π,π]) =

∥∥(δ + η)′′ − δ′′ − η′′
∥∥

L2([−π,π]) = 0 .

Since the second derivative is a linear operator, then ψ′ is the Fréchet derivative of ψ.

Now, we have all necessary tools to numerically reconstruct the perturbation δ, which satisfies
the minimization problem (5.28) depending on the given near-field data D.

Discretization and Reconstruction: We discretize the space of the admissible perturbations
X by the following space of splines

XN := span{ϕ1, . . . , ϕN} ⊂ X ,

where ϕj are cubic B-splines for a uniform subdivision of [−π, π] and N denotes the number of
splines. In the discrete setting, we therefore seek δ ∈ XN , that is

δ(x) =
N∑

n=1
δnϕn(x) ,

where δN := (δ1, . . . , δN )⊤ ∈ RN .



112 Chapter 5. Reconstruction of Local Perturbations

In real applications, the near field is not available as an L2-function; instead, M detectors
are placed on Γ2π

H . Therefore, we assume that M observations of the near field are available on
equidistant points on the top surface. We still use the notation D ∈ CM for these measurements.

To write the discrete form of the regularized inverse problem (5.28), we start by introducing
the operator generating the curve from the coefficients

C : RN → XN

δN 7→ δ .

Moreover, we consider the projection operator P : L2(Γ2π
H )→ CM , which models measurements of

the total field on M observation points. Using these operators, the nonlinear scattering operator
is discretized as SN = P ◦ S ◦ C, mapping RN to CM .

We can now derive the discrete version of the regularized optimization problem (5.28).

Discrete Inverse Problem: Find δ∗N ∈ RN such that

δ∗N = arg min
δN∈RN

(
∥SN (δN )−D∥22 + ∥αregψ(C(δN ))∥2L2([−π,π])

)
. (5.30)

The term R1(δN ) := SN (δN )−D is a complex vector of length M and the penalty function (5.29)
can be written as

ψ(C(δN ))(x) =
N∑

n=1
δnϕ

′′
n(x) ,

where ϕ′′n are piecewise linear functions. We can hence compute the regularization term in (5.30)
by using a composite trapezoidal rule for the L2-norm of ψ

∥αregψ(C(δN ))∥2L2([−π,π]) =
N+4∑
ℓ=1

(
αregωℓ

N∑
n=1

δnϕ
′′
n(xℓ)

)2

,

where the nodes and weights are given by xℓ = −π + 2π(ℓ− 1)/(N + 3) for ℓ = 1, . . . , N + 4 and

ω2
ℓ =


π

N + 3 for ℓ = 1, N + 4 ,
2π

N + 3 for ℓ = 2, . . . , N + 3 .

Considering

R2(δN ) :=
(
αregωℓ

N∑
n=1

δnϕ
′′
n(xℓ)

)N+4

ℓ=1
,

the objective function of (5.30) can be written as the scalar product〈
R1(δN ),R1(δN )

〉
+ ⟨R2(δN ),R2(δN )⟩ .

To simplify the numerical implementation, we split up the real and imaginary parts of R1(δN )
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and consider the vector

R(δN ) :=

ReR1(δN )
ImR1(δN )
R2(δN )

 ∈ R2M+N+4 .

This allows us to rewrite the objective function as〈
R1(δN ),R1(δN )

〉
+ ⟨R2(δN ),R2(δN )⟩ = ⟨ReR1(δN ),ReR1(δN )⟩

+ ⟨ImR1(δN ), ImR1(δN )⟩ + ⟨R2(δN ),R2(δN )⟩
= ⟨R(δN ),R(δN )⟩ ,

hence we can rewrite the optimization problem (5.30) as arg minδN∈RN ∥R(δN )∥22. To solve this
optimization problem, we apply the Gauss–Newton method, which is based on the linearization
of the operator R. To this end, we first introduce the discrete version of the Fréchet derivative
of SN as S ′N (δN ) = P ◦ S ′(C(δN )) ◦ C, which is a linear mapping from RN to RM . The Fréchet
derivative of the operator R1 represents the Jacobian matrix JR1(δN ) with dimension M ×N
whose columns are obtained by

(JR1(δN ))(:,n) = P ◦ S ′(C(δN ))ϕn for n ∈ {1, . . . , N} .

We can now write the linearization of the operator R as follows

R(δN + η) = R(δN ) + JR(δN )η +O(η2) ,

where η ∈ RN and JR denotes the Jacobian matrix of R with dimension (2M + N + 4) × N
whose n-th column is given by

(JR(δN ))(:,n) :=


Re (JR1(δN ))(:,n)
Im (JR1(δN ))(:,n)

(JR2(δN ))(:,n)

 , (5.31)

with JR2(δN )η = R2(η) as in Lemma 5.10. To apply the iterative Gauss–Newton method, we
need to compute the update η with respect to the current reconstruction by

η = −(JR(δN ))†R(δN ) ,

where (JR(δN ))† = −(J⊤R(δN )JR(δN ))−1J⊤R(δN ) is the pseudo-inverse of JR(δN ).
We describe how to reconstruct the unknown perturbation δN , using the Gauss–Newton

method, in Algorithm 4 (inspired by [72]).
In numerical experiments, it turns out that the regularization parameter has a significant

effect on the accuracy of the reconstruction. More specifically, on one hand, if the value of this
parameter is chosen to be too high, this leads to an inaccurate reconstruction due to the high
impact of the penalty term in determining the update η; on the other hand a regularization
parameter that is too small is not sufficient for regularizing the optimization problem and due
to its ill-posedness the iterative method may not converge. To mitigate the risk of an a priori
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Algorithm 4: reconstruction of a local perturbation
Input: measured data D, stopping tolerance, regularization parameter αreg

1 Choose an initial guess δN ;
2 for ℓ = 1, . . . , ℓmax do
3 Compute S(δN ) by solving the direct problem as proposed in Chapter 4;
4 Compute the residual R(δN ) from the solution S(δN ) and measured data D;

%Assemble the Jacobian matrix JR column-by-column.
for n = 1, . . . , N do

5 Use the direct solver to compute the Fréchet derivative S ′(δN )ϕn for the n-th
B-spline ϕn;

6 Construct the n-th column of JR as in equation (5.31);
%Determine the Gauss–Newton search direction.

7 η ← −
(
J⊤R(δN )JR(δN )

)−1
J⊤R(δN )R(δN );

%Calculate the movement of the reconstruction.
8 Movement← ∥η∥2/∥δN∥2;
9 if Movement > tolerance then

10 Update δN ← δN + η;
11 else if ∥R2∥2 > ∥R1∥2 then

%The residual ∥R∥2 is dominated by the penalty term.
12 Reduce αreg ← αreg/2;
13 else

%The residual ∥R∥2 is dominated by ∥R1∥2.
14 Stop the iterations;
15 return δN

selection of this parameter, we propose an a posteriori selection procedure. That is, we start with
an a priori upper bound. In each iteration, we compute the contribution of the penalty term to
the residual R. If this exceeds half the norm of the residual, we reduce the regularization term by
halving its value. The regularization parameter determined by the described selection procedure
turns out to provide a good reconstruction of the perturbation.

For the stopping criterion, we define the movement as the ratio of the norms of the update η

and the current reconstruction δN (see Algorithm 4, line 8). The iterative method stops when
the movement is less than a given tolerance and the regularization parameter is not updated.

5.4. Numerical Results

To illustrate the efficiency of the proposed reconstruction method, we focus here on the downward
propagating Green’s function as an incident field with the point source above the locally perturbed
surface.
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We consider the same examples as given in Section 4.6. The periodic functions

ζper
1 (x) = 1 + cos (x)

4 , x ∈ R ,

ζper
2 (x) = 1.5 + sin(x)

3 − cos(x)
4 , x ∈ R ,

are given whereas the perturbations

δ1(x) = 1
2 exp

( 1
x(x+ 2)

)(
cos

(
π(x+ 2)

2

)
+ 1

)
χ[−2,0](x), x ∈ R

δ2(x) = 3
2 exp

( 1
x2 − 1

)
sin(π(x+ 1))χ[−1,1](x) x ∈ R .

are used to compute the measured data on the flat surface Γ2π
H using the direct solver from the

previous chapter. The knowledge of the exact perturbation δ1 and δ2 allows us to report the
error of the numerical reconstruction.

We set H = 2.5 and k = 1.4, and use the regularized Gauss–Newton method presented in
Algorithm 4 with the following inputs.

• The dimension of XN is N = 30.

• We consider M = 60 detectors on Γ2π
H for measuring the near-field data.

• The initial value of the regularization parameter is αreg = 0.6.

• The stopping tolerance is 10−3.

• The direct solver proposed in Chapter 4 is used with the PML thickness λ = 1.5, the PML
parameter ρ = 20 and the number of Floquet parameters Nα = 20.

• As an initial guess, we choose δN = 0 corresponding to the periodic bottom surface.

To check the accuracy of the numerical reconstruction, we compute the following relative error

Erec = ∥δN − δexact∥∞
∥δexact∥∞

,

where δexact and δN denote the exact and numerical reconstructions.

Remark 5.11. In our case, exact solutions to the direct scattering problem or experimental
measured data are not available. Therefore, we must solve the inverse problem typically based on
synthetic near-field data, which is obtained by solving the direct problem. To avoid the inverse
crime–the trivial inversion of a discretized problem (see [31, p. 179])–the synthetic near-field data
must be generated with a direct solver that is independent of the inverse solver. Accordingly,
we compute the near-field data using the exact DtN formulation and the proposed numerical
scheme introduced in Chapter 3, employing twice as many discretization points as those used in
the PML-based inverse solver.
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We provide the numerical reconstructions from noise-free data for the perturbations δ1 and δ2 in
Figures 5.3 and 5.4, with the point source located at y = (−1, 2.5)⊤ and y = (0, 3)⊤, respectively.

As shown in Figure 5.3, at iteration 8, the numerical reconstruction (red dashed line) is clearly
approaching the exact perturbation δ1 (blue line). At iteration 22, a good reconstruction of the
perturbation δ1 is obtained, where the maximum error Erec is around 10−2 as seen in the left
image of Figure 5.5. At this point, the algorithm stops, since the reconstruction does not improve
beyond the required precision.

Figure 5.3. Numerical reconstruction of δ1 from noise-free data.

Figure 5.4. Numerical reconstruction of δ2 from noise-free data.
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Figure 5.5. Reconstruction error of δ1 (left) and δ2 (right) from noise-free data.

The reconstruction shown in Figure 5.4 demonstrates a clear convergence toward the exact
perturbation δ2 by iteration 10. At iteration 40, the reconstruction achieves high accuracy, with a
maximum reconstruction error Erec of roughly 10−2, as depicted in the right image of Figure 5.5.
Due to the structure of the perturbation δ2, it requires relatively more iterations to achieve an
accurate reconstruction.

To simulate more realistic measurements, we introduce uniformly distributed noise to the
near-field data. More specifically, we add 5% noise on the measured data for δ1 and 2% noise for
δ2. In Figures 5.6 and 5.7, we illustrate the corresponding numerical reconstructions.

Figure 5.6. Numerical reconstruction of δ1 from noisy data with 5% noise.
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Figure 5.7. Numerical reconstruction of δ2 from noisy data with 2% noise.

Figure 5.8. Reconstruction error of δ1 (left) and δ2 (right) from noisy data.

We see in Figure 5.6 and Figure 5.7 that by iteration 6, the numerical reconstruction of the
perturbation δ1 and δ2, respectively, are already closely approximating the exact perturbations.
Around iteration 12 the reconstruction remains satisfactory in both cases. The reconstruction
error for both cases can be seen in Figure 5.8.

In conclusion, these results show that the proposed method allows us to accurately reconstruct
unknown perturbations on the periodic scatterer.
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Some Technical Computations

Here we provide some estimates for derivatives of the square root function used in Chapter 3.
We also compute the coefficients cδ and Aδ in the sesquilinear form (4.6) and use these results in
Chapters 4 and 5. For simplification, we restrict ourselves to the two-dimensional case.

Estimates for Derivatives of the Square Root Function

Lemma A.1. Let s ∈ C, α ∈ R such that α ̸= s. Then, for any ℓ ∈ N,∣∣∣∣∣ dℓ

dαℓ

√
s± α

∣∣∣∣∣ ≤ ℓ! |s± α|1/2−ℓ .

Proof. For any ℓ ≥ 0, a direct calculation yields∣∣∣∣∣ dℓ

dαℓ

√
s± α

∣∣∣∣∣ = |(2ℓ− 3)!!|
2ℓ

|s± α|1/2−ℓ ≤ (2ℓ)!!
2ℓ
|s± α|1/2−ℓ = ℓ! |s± α|1/2−ℓ ,

where the double factorial ℓ!! := ∏⌈ℓ/2⌉−1
j=0 (ℓ− 2j); here empty products are equal to 1.

Lemma A.2. Let ν ∈ {1, 2}. For any fixed ℓ ∈ N and k ∈ R>0, there is a constant C such that∣∣∣∣∣∣∂
ℓ
√
k2 − |α|2

∂αℓ
ν

∣∣∣∣∣∣ ≤ C ℓ! |k + |α||1/2

|k − |α||ℓ−1/2

for all α ∈ R2 such that |α| ̸= k.

Proof. Without loss of generality, we treat the case ν = 1. Consider
√
k2 − |α|2 =

√
s2 − α2

1

where s :=
√
k2 − α2

2. From the Leibniz formula, we have

∣∣∣∣∣∣
∂ℓ
√
s2 − α2

1

∂αℓ
1

∣∣∣∣∣∣ ≤
ℓ∑

n=0

(
ℓ

n

)∣∣∣∣∣∂n√s+ α1
∂αn

1

∣∣∣∣∣
∣∣∣∣∣∂ℓ−n√s− α1

∂αℓ−n
1

∣∣∣∣∣ .
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Using Lemma A.1 leads to∣∣∣∣∣∣
∂ℓ
√
s2 − α2

1

∂αℓ
1

∣∣∣∣∣∣ ≤
ℓ∑

n=0

(
ℓ

n

)
n! (ℓ− n)! |s+ α1|1/2−n|s− α1|1/2−ℓ+n

≤
C ℓ!

√∣∣s2 − α2
1
∣∣

(min {|s+ α1|, |s− α1|})ℓ
. (A.1)

Now, it remains to estimate min
{
|s+ α1|, |s− α1|

}
, and we can distinguish two cases as follows:

(a) If |α2| ≥ k, then s = i
√
α2

2 − k2. Hence,

|s+ α1| = |s− α1| =
√
α2

2 − k2 + α2
1 =

√∣∣∣k2 − |α|2
∣∣∣ ≥ |k − |α|| .

(b) If |α2| < k, then s =
√
k2 − α2

2 > 0. In this case, we write

min
{
|s+ α1|, |s− α1|

}
= |s− |α1|| =

∣∣∣k2 − |α|2
∣∣∣√

k2 − α2
2 + |α1|

.

We conclude that

min{|s+ α1|, |s− α1|} ≥

∣∣∣k2 − |α|2
∣∣∣

k + |α| = |k − |α|| .

In both cases, we find by substituting s2 = k2 − α2
2 into (A.1) that∣∣∣∣∣∣∂

ℓ
√
k2 − |α|2

∂αℓ
1

∣∣∣∣∣∣ ≤ C ℓ! |k + |α||1/2

|k − |α||ℓ−1/2 .

Error Estimate for the Gauss Quadrature rule in Two Dimensions
In Section 3.3, we require an error estimate for the Gauss–Legendre quadrature rule in two
dimensions. As a starting point, we recall the standard one-dimensional estimate for the Gauss–
Legendre quadrature rule of order n, as stated in [76, Thm. 9.20].

Let f ∈ C2n+2([a, b]), then the error of the Gaussian quadrature formula of order n is given by∣∣∣∣∣
∫ b

a
f(x) dx −

n∑
k=0

akf(xk)
∣∣∣∣∣ = f (2n+2)(ψ)

(2n+ 2)!

∫ b

a
[qn+1(x)]2 dx for some ψ ∈ [a, b] ,

with the orthogonal polynomial qn+1 of degree n+ 1.
We assume that [a, b] = [−1, 1] and qn+1 are the Legendre polynomials. From [93, Sec. 18.2.5],

we have ∫ 1

−1
[qn+1(x)]2 dx = 2

2n+ 3 .
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Then, the error of the Gaussian quadrature formula in this case is estimated as∣∣∣∣∣
∫ 1

−1
f(x) dx −

n∑
k=0

wkf(xk)
∣∣∣∣∣ ≤ 2

(2n+ 3)!
∥∥∥f (2n+2)

∥∥∥
∞
.

Let us transfer the reference interval [−1, 1] to an interval [−h/2, h/2], then we obtain∣∣∣∣∣
∫ h/2

−h/2
f(t) dt −

n∑
k=0

h

2wkf

(
h

2xk

)∣∣∣∣∣ ≤ 2
(2n+ 3)!

(
h

2

)2n+3∥∥∥f (2n+2)
∥∥∥
∞
.

Now, for the two-dimensional case, we consider Q := [−h/2, h/2]2 and f ∈ C2n+2(Q). Then,∣∣∣∣∣∣
∫ h/2

−h/2

∫ h/2

−h/2
f(t) dt −

n∑
j,k=0

h2

4 wjwkf

(
h

2xj ,
h

2xk

)∣∣∣∣∣∣
≤
∣∣∣∣∣
∫ h/2

−h/2

(∫ h/2

−h/2
f(t1, t2) dt2 −

n∑
k=0

h

2wkf

(
t1,

h

2xk

))
dt1

∣∣∣∣∣
+

n∑
k=0

h

2wk

∣∣∣∣∣∣
∫ h/2

−h/2
f

(
t1,

h

2xk

)
dt1 −

n∑
j=0

h

2wjf

(
h

2xj ,
h

2xk

)∣∣∣∣∣∣
≤
∣∣∣∣∣
∫ h/2

−h/2

2
(2n+ 3)!

(
h

2

)2n+3∥∥∥∂2n+2
t2 f(t1, ·)

∥∥∥
∞

dt1
∣∣∣∣∣

+
n∑

k=0

h

2wk
2

(2n+ 3)!

(
h

2

)2n+3∥∥∥∥∂2n+2
t1 f

(
·, h2xk

)∥∥∥∥
∞

≤ 4
(2n+ 3)!

(
h

2

)2n+4
max

{∥∥∥∂2n+2
t1 f

∥∥∥
∞
,
∥∥∥∂2n+2

t2 f
∥∥∥
∞

}
.

(A.2)

Asymptotic Representation of the Coefficients in the Sesquilinear Form (4.6)
In the following lemma, we provide some necessary technical computations for the coefficients of
the sesquilinear form (4.6).

Lemma A.3. Let δ ∈ C2(R) be sufficiently small and the diffeomorphism Ψδ and the function βδ
h

be as in (4.4) and (4.5), respectively. Moreover, let cδ :=
∣∣∣det∇Ψδ

∣∣∣ and Aδ := cδ(∇Ψδ)−1(∇Ψδ)−⊤

as in (4.7). Then, cδ = 1 + δ∂x2β
δ
h and

Aδ =
[

1 + δ∂x2β
δ
h −δ∂x1β

δ
h − δ′βδ

h

−δ∂x1β
δ
h − δ′βδ

h 1− δ∂x2β
δ
h

]
+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 . (A.3)

Proof. Using the definition of Ψδ and a straightforward computation, we have

cδ =
∣∣∣det∇Ψδ

∣∣∣ =
∣∣∣∣∣det

[
1 0

δ∂x1β
δ
h + δ′βδ

h 1 + δ∂x2β
δ
h

]∣∣∣∣∣ = 1 + δ∂x2β
δ
h , (A.4)

where the absolute value in the last equality is removed since for sufficiently small δ, the
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determinant is positive. Moreover, we can write

Aδ = cδ(∇Ψδ)−1(∇Ψδ)−⊤

= 1
1 + δ∂x2β

δ
h

[
(1 + δ∂x2β

δ
h)2 −(1 + δ∂2β

δ
h)(δ∂x1β

δ
h + δ′βδ

h)
−(1 + δ∂2β

δ
h)(δ∂x1β

δ
h + δ′βδ

h) 1 + (δ′βδ
h + δ∂1β

δ
h)2

]

=

 1 + δ∂x2β
δ
h −δ∂x1β

δ
h − δ′βδ

h

−δ∂x1β
δ
h − δ′βδ

h

1
1 + δ∂x2β

δ
h

+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .

Using the fact that 1
1 + δ∂x2β

δ
h

= 1− δ∂x2β
δ
h +O(∥δ∥21,∞) completes the proof.

Remark A.4. From Lemma A.3, it follows that cδ = 1 + O(∥δ∥1,∞) and Aδ = I + O(∥δ∥1,∞)
as ∥δ∥1,∞ → 0. Therefore, for u ∈ H2(R2), we have ∇ · (Aδ∇u) = ∆u + O(∥δ∥1,∞) and
cδu = u+O(∥δ∥1,∞). This leads to

∇ · (Aδ∇u) + k2cδu = ∆u+ k2u+O(∥δ∥1,∞) as ∥δ∥1,∞ → 0 .

In the following lemma, we provide some necessary computations for Theorem 5.5. This can
be obtained by performing a lengthy application of the product rule.

Lemma A.5. Let δ, Aδ as in Lemma A.3, u, ϕ ∈ H2(R2) and vδ := δβδ
h(x)∂x2u. Then, we have

((Aδ − I)∇u) · ∇ϕ = −div
{
vδ∇ϕ+ δβδ

h∇u∂x2ϕ− δβδ
h(∇u · ∇ϕ)e2

}
+ vδ∆ϕ+ δ∂x2β

δ
h(∇u · ∇ϕ) +O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 ,

(A.5)

where βδ
h is defined as in (4.5) and e2 := (0, 1)⊤.

Proof. First using the asymptotic representation of Aδ given in (A.3) and then adding and
subtracting δ∂x2β

δ
h∂x2u∂x2ϕ and δβδ

h∇(∂x2u) · ∇ϕ, we obtain

((Aδ − I)∇u) · ∇ϕ = δ∂x2β
δ
h(∇u · ∇ϕ)− δ

(
∇βδ

h · ∇u
)
∂x2ϕ− δ′βδ

h(∂x1u)∂x2ϕ

− δ
(
∇βδ

h · (∂x2u∇ϕ)
)
− δ′βδ

h(∂x2u)∂x1ϕ

− δβδ
h∇(∂x2u) · ∇ϕ+ δβδ

h∇(∂x2u) · ∇ϕ+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .

Using the definition of vδ and the fact that

∇vδ · ∇ϕ = δ
(
∇βδ

h · (∂x2u∇ϕ)
)

+ δ′βδ
h∂x2u∂x1ϕ ,+δβδ

h∇(∂x2u) · ∇ϕ ,

we get

((Aδ − I)∇u) · ∇ϕ = δ∂x2β
δ
h∇u · ∇ϕ− δ

(
∇βδ

h · ∇u
)
∂x2ϕ− δ′βδ

h∂x1u∂x2ϕ

−∇vδ · ∇ϕ+ δβδ
h∇(∂x2u) · ∇ϕ+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .
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Adding and subtracting δβδ
h∇u · ∇(∂x2ϕ) to the above equation and considering

div
{
δβδ

h(∇u · ∇ϕ)e2
}

= δ∂x2β
δ
h∇u · ∇ϕ+ δβδ

h∇(∂x2u) · ∇ϕ+ δβδ
h∇u · ∇(∂x2ϕ) ,

we arrive at

((Aδ − I)∇u) · ∇ϕ = δ∂x2β
δ
h∇u · ∇ϕ− δ

(
∇βδ

h · ∇u
)
∂x2ϕ− δ′βδ

h(∂x1u)∂x2ϕ

−∇vδ · ∇ϕ+ δβδ
h∇(∂x2u) · ∇ϕ+ δβδ

h∇u · ∇(∂x2ϕ)
− δβδ

h∇u · ∇(∂x2ϕ) +O(∥δ∥21,∞)

= −δ
(
∇βδ

h · ∇u
)
∂x2ϕ− δ′βδ

h(∂x1u)∂x2ϕ−∇vδ · ∇ϕ

+ div
{
δβδ

h(∇u · ∇ϕ)e2
}
− δβδ

h∇u · ∇(∂x2ϕ) +O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .

Adding and subtracting δ∂x2β
δ
h(∇u · ∇ϕ) yields

((Aδ − I)∇u) · ∇ϕ = −δ
(
∇βδ

h · ∇u
)
∂x2ϕ− δ′βδ

h∂x1u∂x2ϕ−∇vδ · ∇ϕ

+ div
{
δβδ

h(∇u · ∇ϕ)e2
}
− δβδ

h∇u · ∇(∂x2ϕ)

+ δ∂x2β
δ
h∇u · ∇ϕ− δ∂x2β

δ
h∇u · ∇ϕ+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .

Since
div
{
hβδ

h∇u∂x2ϕ
}

= δβδ
h∇u · ∇(∂x2ϕ) + δ

(
∇βδ

h · ∇u
)
∂x2ϕ

+ δ′βδ
h∂x1u∂x2ϕ+ δ∂x2β

δ
h∇u · ∇ϕ ,

we obtain

((Aδ − I)∇u) · ∇ϕ = −∇vδ · ∇ϕ− div
{
hβδ

h∇u∂x2ϕ
}

+ div
{
hβδ

h(∇u · ∇ϕ)e2
}

+ δ∂x2β
δ
h∇u · ∇ϕ+O(∥δ∥21,∞) as ∥δ∥1,∞ → 0 .

Finally, by adding and subtracting vδ∆ϕ and taking into account that

div
{
vδ∇ϕ

}
= ∇vδ · ∇ϕ+ vδ∆ϕ ,

we complete the proof.





APPENDIX B

Computational Complexity of Direct and Iterative
Solvers

In Algorithm 3, we proposed a fast iterative solver for solving the linear system (4.46). In this
Appendix, we will compare the computational cost of the iterative solver with the direct solver
introduced in [98, Sec. 2] using the Sherman–Morrison–Woodbury formula. To this end, we first
estimate the complexity of each method separately and then compare them together.

We consider the following notations to represent the cost of operations on square matrices of
size N∆ ×N∆ or vectors of length N∆:

• Em,×: inverting a matrix or multiplying two matrices;

• Em,+: summing two matrices or multiplying a matrix by a diagonal matrix;

• Ev,×: multiplying a vector by a matrix;

• Ev,+: summing two vectors or multiplying a vector by a diagonal matrix.

Computational Cost of the Iterative Solver Proposed in Algorithm 3
As shown in Chapter 4, we reformulate the linear system given in (4.46) using the Schur
complement recursively. This yieldsI−

Nα∑
j=1

CjA−1
j Bj

U = −
Nα∑
j=1

CjA−1
j Fj ,

where Aj ,Bj are N∆ ×N∆ sparse matrices, Cj is a diagonal matrix and Fj is a vector of length
N∆. In what follows, we estimate the cost of the iterative solver proposed in Algorithm 3 to
obtain U .

As a preliminary step, we compute the inverse of the matrices Aj for j ∈ {1, . . . , Nα}, having
a cost of NαEm,×. We use these inverse matrices on both the left and right-hand sides of the
above equation. Now, we estimate separately the complexity of computing the right-hand side
and one iteration of the left-hand side.
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• On the right-hand side, computing A−1
j Fj requires a total cost of NαEv,×. Subsequently,

computing the products CjA−1
j Fj has a cost of NαEv,+. Finally, computing the sum needs

an additional cost of NαEv,+. These steps add up to Nα(Ev,× + 2Ev,+).

• On the left-hand side, performing the matrix vector multiplication BjU has a complexity
of NαEv,×. Afterwards, the multiplication A−1

j BjU adds a cost of NαEv,×. Multiplying
by Cj and summing the resulting terms requires 2NαEv,+. This leads to the total cost of
2Nα(Ev,× + Ev,+) for each iteration.

Now, the total complexity of the proposed iterative method, denoted by Eiter is estimated as

Eiter = Nα(Em,× + Ev,× + 2Ev,+) + 2NiterNα(Ev,× + Ev,+) .

where Niter denotes the number of required iterations in the iterative solver.

Computational Cost of the Direct Solver Proposed in [98, Thm. 2.2]
The main idea in [98, Thm. 2.2] is to use the Sherman–Morrison–Woodbury formula to compute
the inverse of the block arrowhead matrix in (4.46). Following the same approach as [98], the
inverse of the coefficient matrix (4.46), denoted by Â−1, is obtained by

Â−1 := D−1 +


A−1

1 B1
...

A−1
Nα

BNα

−I


[
ZC1A−1

1 . . . ZCNαA−1
Nα

−Z
]
,

where D := diag (A1, . . . ,ANα ,0) and Z :=
(
I−

∑Nα
j=1 CjA−1

j Bj

)−1
.

According to [98, Sec. 3], the computational complexity of Â−1 is estimated as follows:

(a) similar to the previous case, inverting the matrices Aj requires NαEm,× operations;

(b) computing A−1
j Bj adds NαEm,× operations;

(c) the term I −
∑Nα

j=1 CjA−1
j Bj can be obtained by multiplying by a diagonal matrix and

summing each block, which brings the cost of 2NαEm,+.

(d) computing the inverse of the previous term, which gives Z, has a cost of Em,×;

(e) performing CjA−1
j requires NαEm,+ operations;

(f) the products ZCjA−1
j have the cost of NαEm,×;

(g) the products A−1
j BjZCsA−1

s for j, s ∈ {1, . . . , Nα} use Items (b) and (f) and require
N2

αEm,× operations;

In conclusion, the total complexity of computing the inverse of (4.46) is estimated as

Edirect = Em,× +Nα(3Em,× + 3Em,+ +NαEm,×) .
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Comparison of the Computational Costs of the Direct and Iterative Solvers
To compare the cost of these two approaches, we assume Niter ≈ cNα for a small constant c and
N∆ ≫ Nα. This assumption is reasonable based on the results reported in Table 4.1. Due to the
fact that Ev,× > Ev,+, we obtain

Edirect
Eiter

= (1 + 3Nα +N2
α)Em,× + 3NαEm,+

NαEm,× +Nα(1 + 2Niter)Ev,× + 2Nα(1 +Niter)Ev,+

≥ (1 + 3Nα +N2
α)Em,×

NαEm,× +Nα(3 + 4cNα)Ev,×
.

For a N∆ ×N∆ matrix Aj , it holds Em,× = O(N3
∆) and Em,+ = O(N2

∆). Taking into account
that Nα(3 + 4cNα) < N∆, we obtain

Edirect
Eiter

>
(1 + 3Nα +N2

α)Em,×
NαEm,× +N∆Ev,×

≥ (Nα + 1)2N3
∆

(Nα + 1)N3
∆

= Nα + 1 .

As we have shown above, the proposed iterative solver is faster than computing the inverse of the
block arrowhead matrix in (4.46).





APPENDIX C

Green’s Function and its Properties

In Chapters 3 and 4, we select the Dirichlet Green’s function in the upper half space to show
the efficiency of the proposed methods. In this appendix, we aim to summerize some properties
of this function and clarify why we consider Green’s function as an incident field instead of the
fundamental solution. Moreover, we show how to compute the FB transform of the Green’s
function.

The Dirichlet Green’s function in the upper half space is defined by

G(x, y) := Φ(x, y)− Φ(x, y′) , x ̸= y ∈ Rd
+ :=

{
x ∈ Rd : xd > 0

}
,

with the reflected point source y′ := (y1, . . . , yd−1,−yd)⊤ and the fundamental solution of the
Helmholtz equation

Φ(x, y) =


i
4H

(1)
0 (k|x− y|) x, y ∈ R2, x ̸= y ,

1
4π

eik|x−y|

|x− y|
x, y ∈ R3, x ̸= y ,

(C.1)

where H(1)
0 is the Hankel function of the first kind of order zero.

Remark C.1. Note that for x ̸= y the three-dimensional fundamental solution can be written
based on the Hankel function of the first kind of order −1/2 as follows

eik|x−y|

|x− y|
=
√

kπ

2|x− y|H
(1)
−1/2(k|x− y|) .

To test the efficiency of the proposed numerical methods, instead of the fundamental solution,
we use Green’s function because of its faster decay.

Lemma C.2. Let x = (x̃, xd) ∈ Rd with x̃ = (x1, . . . , xd−1).

(a) The fundamental solution Φ decays as |x1|−1/2 in R2 and as |x̃|−1 in R3.

(b) The decay rate of Green’s function G is |x1|−3/2 in R2 and |x̃|−2 in R3.
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Proof. For the two-dimensional case, using the asymptotic behavior of the Hankel function [93,
Sec. 10.17], we obtain

H
(1)
0 (k|x− y|) ∼

√
2

πk|x− y|
ei(k|x−y|−π/4)

∞∑
ℓ=0

iℓaℓ

(k|x− y|)ℓ
,

where aℓ are coefficients only depending on ℓ.

(a) For real k, we have |exp (ik|x− y| − iπ/4)| = 1. Then,

H
(1)
0 (k|x− y|) ∼ c|x1|−1/2 +O(|x1|−3/2) as |x1| → ∞ .

For the three-dimensional case, the statement is clear from the definition.

(b) From the asymptotic behavior of the Hankel function, we have

|G(x, y)| =
∣∣∣H(1)

0 (k|x− y|)−H(1)
0 (k

∣∣x− y′∣∣)∣∣∣
∼
√

2
kπ

∣∣∣∣∣ei(k|x−y|−π/4)√
|x− y|

∞∑
ℓ=0

iℓaℓ

(k|x− y|)ℓ
− ei(k|x−y′|−π/4)√

|x− y′|

∞∑
ℓ=0

iℓaℓ

(k|x− y′|)ℓ

∣∣∣∣∣
= c(k)

∣∣∣∣∣ eik|x−y|√
|x− y|

− eik|x−y′|√
|x− y′|

∣∣∣∣∣+O(|x1|−3/2) as |x1| → ∞ .

Let z := x1 − y1, c− := x2 − y2 and c+ := x2 + y2. Then, we obtain
∣∣∣∣∣ eik|x−y|√
|x− y|

− eik|x−y′|√
|x− y′|

∣∣∣∣∣ =

∣∣∣∣∣∣e
ik
√

z2+c2
−

4
√
z2 + c2

−

− eik
√

z2+c2
+

4
√
z2 + c2

+

∣∣∣∣∣∣
= 1√

|z|

∣∣∣∣∣∣ eik
√

z2+c2
−

4
√

1 + ( c−
z )2
− eik

√
z2+c2

+

4
√

1 + ( c+
z )2

∣∣∣∣∣∣
= 1√

|z|

∣∣∣∣eik
√

z2+c2
− − eik

√
z2+c2

+

∣∣∣∣+O(|z|−5/2) as |z| → ∞ .

Using the identity

|exp(is)− exp(it)| = |exp(ist)||exp(i/t)− exp(i/s)| =
∣∣∣∣2 sin

( 1
2t −

1
2s

)∣∣∣∣ ,
for s, t ∈ R, we obtain as before

∣∣∣∣eik
√

z2+c2
− − eik

√
z2+c2

+

∣∣∣∣ = 2 sin

∣∣∣∣∣∣ 1
2k
√
z2 + c2

−

− 1
2k
√
z2 + c2

+

∣∣∣∣∣∣


= 2 sin
( 1

2k|z| +O(|z|−2)
)

= O(|z|−1) as |z| → ∞ .

Combining the estimates above and using the definition of z leads to |G(x, y)| = O(|x1|−3/2)
as |x1| → ∞. The proof for three dimensions is given in [24, Eq. (2.11)].
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To compute the right-hand sides of (3.33) and (4.46), it is required to compute the FB transform
of Green’s function, which has been obtained in the following lemma.

Lemma C.3. The FB transform of Green’s function is obtained by

(JG)(α;x) = Cd e−iα·x̃ ∑
j∈Zd

ei(α+j)·(x̃−ỹ)

 eiγjxd sinc (γjyd)yd yd < xd ,

eiγjyd sinc (γjxd)xd otherwise ,

where γj :=
√
k2 − |α+ j|2, Cd = 1/2π for d = 2 and Cd = 1 for d = 3.

Proof. We first consider the two-dimensional case d = 2. Using the definition of the FB transform,
we have

(JG)(α;x) = i
4
∑
j∈Z

G(x1 + 2πj, x2)e−iα(x1+2πj)

= i
4
∑
j∈Z

(
H

(1)
0 (k|x− y + 2πje1|)−H(1)

0 (k|x− y + 2πje1|)
)

e−iα(x1+2πj) ,

where e1 := (1, 0)⊤. Using [5, Eq. (2.7)] and the poisson summation formula, the Fourier series
expansion of the fundamental solution is obtained by

(JG)(α;x) = i
4π e−iαx1

∑
j∈Z

1
γj

[
ei(α+j)(x1−y1)+iγj |x2−y2| − ei(α+j)(x1−y1)+iγj |x2+y2|

]

= i
4π e−iαx1

∑
j∈Z

ei(α+j)(x1−y1)

γj

 eiγjx2(e−iγjy2 − eiγjy2) if x2 > y2 ,

eiγjy2(e−iγjx2 − eiγjx2) otherwise .

Now using the fact that sinc (γjy2) = (eiγjy2 − e−iγjy2)/2iγjy2, we obtain

(JG)(α;x) = 1
2π e−iαx1

∑
j∈Z

ei(α+j)(x1−y1)

 eiγjx2 sinc (γjy2)y2 if x2 > y2 ,

eiγjy2 sinc (γjx2)x2 otherwise .

For the three-dimensional case, we refer to [84, Eqs. (52)-(54)].
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Notations

basic notation

Rd d-dimensional real Euclidean space 11
x̃ point x̃ = (x1, . . . , xd−1)⊤ in Rd−1 11
x point x = (x̃, xd)⊤ in Rd 11
Ξ complex stretched coordinate 19
k wave number 2
κ cutoff value 68
Σ set of singular points 36
J all centers of circular arcs 36
λ physical width of the PML 19
σ virtual width of the PML 24
α Floquet parameter 34
Cinfsup inf-sup constant 16
Λ fundamental domain in α-space 28
αreg regularization parameter 111

function spaces

Ls(Rd) Lebesgue space of p-integrable functions on Rd 10
Hs(Rd) Sobolev space of order s on Rd 8
Hs

α(Rd) Sobolev space of α-quasiperiodic functions on Rd 9
Hs

per(Rd) Sobolev space of periodic functions on Rd 9
Hs

r (Rd) Sobolev space of order s and decay rate r on Rd 8
Hs

r (Ω) functions in Hs
r (Rd) restricted to the Lipschitz domain Ω 9

H̃s
r (Ω) functions in H̃s

r (Ω) which are zero on a subset of ∂Ω 10
H1(∆,Ω) functions in H1(Ω) whose Laplacian is in L2(Ω) 10
Cω(U ;V ) space of analytic functions from U to V 37
(X(Ω))∗ dual space of X(Ω) 7
⟨·, ·⟩Ω bilinear dual pairing between (X(Ω))∗ and X(Ω) 8
S∗(Rd) space of temperate distributions 8
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geometry

ζ generic function generating the bottom surface 2, 19
Γ generic unbounded surface defined by ζ 1, 10
Ω generic unbounded domain above the surface Γ 2, 10
ΓH flat surface parallel to the surface Γ at height H 11
ΩH unbounded domain between Γ and ΓH 11
Ω+

H exterior domain above the surface ΓH 11
ζper periodic function 27
Γper periodic surface generated by ζper 27
Ωper unbounded periodic domain above the surface Γper 33
Ωper

H unbounded periodic domain between Γper and ΓH 27
δ compactly supported perturbation 59
ζδ locally perturbed function, sum of ζper and δ 59
Γδ locally perturbed surface generated by the function ζδ 59
Ωδ unbounded locally perturbed domain above the surface Γδ 59
Ωδ

H unbounded perturbed domain between Γδ and ΓH 59
Ω2π

H bounded cell 27
Γ2π bottom surface of the bounded cell Ω2π

H 27
Γ2π

H top surface of the bounded cell Ω2π
H 27

Γ−,Γ+ lateral boundaries of the bounded cell Ω2π
H 27

ΓH+λ absorbing surface parallel to Γ at height H + λ 19
ΩH+λ extended domain containing the PML 19
ΩPML PML region with thickness λ 19

functions

ui incident field 34
us scattered field 54
u total field 34
uσ PML approximation of the total field u in Ωper

H 24
us,δ scattered field in the perturbed domain Ωδ

H 60
us,δ

σ PML approximation of the scattered field us,δ in Ωδ
H 63

uδ total field defined in the perturbed domain Ωδ
H 60

uδ
tra total field uδ transformed to the periodic domain Ωper

H 61
uδ

σ PML approximation of the total field uδ in Ωδ
H 142

uδ
tra,σ PML approximation of uδ

σ transformed to Ωper
H 64

wδ Floquet–Bloch transform of uδ
tra 62

wδ
σ Floquet–Bloch transform of uδ

tra,σ 64
Ψδ diffeomorphism mapping periodic to perturbed domain 61
Φ fundamental solution of the Helmholtz equation 13
H

(1)
0 Hankel function of the first kind of order zero 13
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operators

F Fourier transform 7
J Floquet-Bloch transform 28
γD trace operator 10, 98
γN conormal derivative 10
T + Dirichlet-to-Neumann operator 15
T +

α Floquet–Bloch transform of T + 35
∆PML PML operator 23
T +

σ PML approximation of T + 24
T +

α,σ Floquet–Bloch transform of T +
σ 64

S scattering operator 93
S ′ Fréchet derivative of the scattering operator 99
I compact embedding operator 98
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