KIT | KIT-Bibliothek | Impressum | Datenschutz

Diffusive synchronization of phase waves in the FitzHugh–Nagumo system

Avery, Montie; Carter, Paul; Rijk, Börn de 1; Scheel, Arnd
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We analyze synchronization of relaxation oscillations in multiple-timescale reaction-diffusion systems. Interpreting synchronization as convergence to frequency-synchronized wave-train solutions, we resolve for the first time the case of phase waves. These waves are nearly phase-synchronized relaxation oscillations, featuring quasistationary plateaus of length $\varepsilon^{-1}$ separated by fast transition layers, where $\varepsilon\ll1$. is the timescale separation parameter. Tracking the decay of modulations via a Bloch-wave eigenfunction analysis, we find a remarkably weak interaction strength of order $\varepsilon^{8/3}$. This weak layer interaction and many of the technical difficulties arise from repeated scattering of eigenfunctions through fold points at the ends of the quasistationary plateaus. We capture this by combining a novel geometric desingularization approach with Lin’s method, exponential trichotomies, and the Riccati transform. While our spectral stability analysis yields diffusive synchronization of all phase waves in the FitzHugh–Nagumo system, it also identifies potential finite-wavelength instabilities, which we realize in a system variant.


Volltext §
DOI: 10.5445/IR/1000189519
Veröffentlicht am 12.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 12.01.2026
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000189519
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 103 S.
Serie CRC 1173 Preprint ; 2026/2
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter FitzHugh–Nagumo system, relaxation oscillations, phase waves, diffusive spectral stability,, geometric desingularization, Lin’s method, synchronization
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page