Using Synthetic Data and Artificial Intelligence for
Optimizing Tillage Process Quality Measurement

M. Sc. S. Schulpius, AGCO GmbH, Wolfenbuttel, Germany;

M. Sc. M. Graf, AGCO GmbH, Marktoberdorf, Germany;

M. Sc. T. Stirnkorb, AGCO GmbH, Marktoberdorf, Germany;

Prof. Dr. L. Frerichs, Technische Universitat Braunschweig,
Braunschweig;

Prof. Dr.-Ing. M. Geimer, Karlsruhe Institute of Technology, Karlsruhe

Abstract

Automation in agriculture enhances efficiency and productivity. Taking tillage as an example,
driving tasks such as steering and speed control are already highly automated, shifting the
focus toward automating the tillage process itself. Measuring crop residue coverage - a key
factor for erosion resistance, soil structure, and moisture - with semantic segmentation of
camera images requires large, accurately annotated datasets. Manual annotation is time-
consuming, error-prone, and challenging due to the fine structures of straw and the indistinct
boundaries of soil aggregates. To overcome these issues, synthetic training data were
generated using the modeling software Blender to model soil textures, residue distributions,
and environmental conditions. Photorealism was subsequently enhanced through the
machine learning method ControlNet. The approach was evaluated and tested using three
datasets - real-world, Blender-generated, and ControlNet-generated - assessed with the
mean Intersection over Union (mloU) and Fréchet Inception Distance (FID) metrics. A
semantic segmentation network, PIDNet, trained on real-world data, achieved an mloU of
75.0 %. The network trained on the Blender dataset obtained 52.9 % due to limited realism.
In contrast, ControlNet-generated data achieved 69.3 % with improved FID scores compared
to the Blender dataset, indicating higher realism and superior model performance. Finally,
after fine-tuning the segmentation model based on the ControlNet dataset with real data, an
mloU of 75.4 % was reached. These findings indicate that high-quality synthetic data can
reduce annotation effort, minimize labeling errors, and, in some instances, outperform real

data in training machine learning models.

1. Introduction
Efficient process control in tillage requires accurate measurement of key soil and surface
parameters, including crop residue coverage, surface roughness, or aggregate size

distribution. While operational tasks such as steering and speed regulation have largely been



automated, the automation of process control itself remains an open challenge in many
respects.

This contribution focuses on crop residue coverage, a parameter that influences erosion
resistance, soil structure, and moisture. It refers to the proportion of soil surface covered by
organic matter after tillage and can be measured using either offline or online methods.
Offline approaches include the meterstick method [1], [2], comparison with images [3] or grid-
based techniques [4]. Online approaches encompass various methods, such as those
proposed by [5], [6], [7], [8], [9]. While offline methods are not suitable for real-time
applications, online methods are more relevant for automation. Among these, techniques
based on thresholds [5], or edge detection [6] tend to be less robust compared to machine
learning-based methods. However, a significant limitation of machine learning approaches is
their reliance on annotated training data.

The manual annotation process is time-consuming and challenging due to the difficulty of
accurately annotating fine objects, such as straw stalks, and uncertainties caused by unclear
fracture edges of soil aggregates. To overcome these challenges, this contribution utilizes
synthetic data to facilitate data acquisition and enhance annotation. One advantage of this
approach is the ability to generate specific scenarios and environmental conditions. A second
advantage is the automated generation of annotated data, which ensures an error-free
ground truth and accelerates the data generation.

Cieslak et al. [10] developed a method for generating synthetic training data for the
segmentation of soybean plants and weeds in agricultural fields. In this approach, 3D models
of soybean plants, grass weeds, and broadleaf weeds - procedurally generated by
specialized software - are randomly arranged within a 3D scene. Using the GAN-Model
Contrastive Unpaired Translation (CUT), the authors investigated the domain adaptation.
They pointed out that using real data and synthetic data results in segmentation models that
demonstrate at least equivalent performance to those that are trained only on real-world
data. Models trained on synthetic and real-world data exhibit higher generalizability.

Another tool to reduce the domain gap between real and synthetic data is the machine
learning method ControlNet [11]. ControlNet operates by taking a pre-trained text-to-image
diffusion model and freezing its original weights. A parallel, trainable branch is then added,
connected through zero-initialized convolutions, to introduce new conditional inputs without
altering the base model. This design enables the integration of spatial guidance, such as
edges, depth maps, or poses, with text prompts, allowing precise control over the generated
image’s structure. ControlNet has been applied in various domains, for example, to create

and modify material microstructures with precise control over shapes [12] or to generate



realistic weed images to improve weed detection performance by 1.4 % compared to using
only real images [13].

Schulpius et al. [14] used ControlNet to enhance tramline detection using synthetic images.
By fine-tuning the model with real-world data, they increased the segmentation accuracy to

an mloU of 83.28 %, representing a 1.61 % improvement over the baseline.

2. Method and Data

For the real-world dataset, images were collected during the tillage process using two
different cultivators equipped with varying roller and tine configurations. The camera system
was mounted behind the roller to capture the outcome — the quality — of the tillage process.
The dataset includes two distinct categories of tillage practices: primary tillage in spring
(organic matter: intermediate crops), and stubble cultivation after harvest (organic matter:
wheat and corn). To ensure robustness and variability, additional images were captured
using camera systems with different resolutions, including smartphone cameras. The dataset
covers a wide range of conditions, with crop residue coverage in the photos varying from low
(less than 10 %) to high (over 50 %). Overall, the real-world dataset included 115 training, 20

validation, and 15 test images with manually generated annotations, as shown in Figure 1.

Figure 1: Exemplary image (a) and manual annotation mask (b) from the real-world dataset

Synthetic images were generated using the open-source 3D modeling software Blender [15].
For this purpose, the procedural pipeline BlenderProc [16] was used, enabling the creation of
not only RGB images but also segmentation masks and other outputs. The synthetic images
were derived from a 3D scene in Blender, consisting of a ground surface with randomly
placed crops and crop residues. In total, five different surface types, five crop objects, and
various lighting conditions were used. This effort resulted in a dataset consisting of 3100
images.

A domain gap is often observed between synthetic and real images. To address this, the
machine learning method ControlNet was used to generate improved synthetic images using

annotation masks created with Blender. The workflow for creating synthetic images with



Blender is shown in Figure 2. For training, 115 real images (1024x1024 px) with
corresponding annotation masks were used. Furthermore, each image was paired with a text
prompt, “Close-up image of straw on soil,” which is necessary for training. After training
ControlNet, the model was used to generate 3100 new images based on 3100 annotation

masks created in Blender and the same text prompt describing the desired output.
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Figure 2: Workflow to generate images with ControlNet

To evaluate the quality of the different datasets, two metrics were used: mean Intersection
over Union (mloU) for assessing semantic segmentation performance, and Fréchet Inception
Distance (FID) for measuring the realism of the generated images.

For the mloU evaluation, the semantic segmentation network PIDNet [17] was used. The
PIDNet architecture is specifically designed for real-time semantic segmentation. It effectively
balances segmentation accuracy and computational efficiency, rendering it particularly
suitable for deployment in resource-constrained environments. The network was trained
under four distinct conditions. Initially, the network was trained separately on three datasets:
the real-world dataset, the Blender dataset, and the ControlNet dataset. To further enhance
performance, the model trained on the ControlNet dataset was subsequently fine-tuned using
real-world images. Fine-tuning a semantic segmentation model in this context denotes
adapting a pre-trained network to a target domain using domain-specific data, such as real-
world images. The segmentation task was defined as two classes: background and organic
matter. The organic matter class encompassed all plant-derived materials without further
distinction, including harvested crop residues such as straw, emerging crop plants, and

weeds. All datasets were evaluated using a consistent validation set comprising 20 manually



annotated real-world images, which were used during training to monitor model performance.
Additionally, final performance was assessed on an independent test set consisting of 15
real-world images. In total, eight mloU scores were computed: two for each of the three
primary training datasets (real-world, Blender, ControlNet) and two for the fine-tuned
ControlNet-based model.

An exemplary external real-world dataset of 70 images was used as a reference distribution
for the FID computation. Each of the three training datasets - real-world, Blender-generated,
and ControlNet-generated - was compared against this external real-world dataset to obtain
corresponding FID scores. Lower FID scores indicate a higher visual similarity to the real-

world reference data, and thus better generative quality.

3. Results
Figure 3 presents example images from each dataset: (a) real-world, (b) Blender-generated,
(c) ControlNet-generated image. These examples illustrate the varying degrees of realism

and complexity across datasets.

Figure 3: Example images of the datasets: a) real-world dataset; b) Blender dataset; c) ControlNet dataset

To quantitatively assess the segmentation performance and visual realism of the datasets,
both the mloU and FID metrics were evaluated. When trained on the real-world dataset,
PIDNet achieved an mloU of 73.6 % on the validation set and 75.0 % on the test set. In
comparison, training on the Blender-generated dataset resulted in substantially lower mloU
scores of 50.5 % (validation) and 52.9 % (test). The ControlNet-generated dataset yielded
improved results, with mloU scores of 71.2 % (validation) and 69.3 % (test). Fine-tuning the
ControlNet-based model with real-world data further increased performance, reaching
74.1 % on the validation set and 75.4 % on the test set.

To complement the segmentation evaluation, FID scores were computed against an external
real-world reference dataset. The real-world dataset achieved the lowest FID score of 88.29.
The Blender-generated dataset exhibited an FID of 257.3, while the ControlNet-generated
data achieved an FID of 225.4.



4. Discussion

The presented results highlight distinct differences in segmentation performance across the
evaluated datasets. The model trained on the real-world dataset achieved a test mloU of
75.0 %, serving as the baseline for comparison. The Blender-generated dataset resulted in a
test mloU of 52.9 %, indicating a pronounced domain gap. This gap is attributable to the
reduced photorealism of the synthetic images, as illustrated in Figure 3, and is further
supported by the high Fréchet Inception Distance (FID) score of 257.3, which reflects
substantial visual dissimilarity from real-world images.

The ControlNet-generated dataset yielded a test mloU of 69.3 %, representing a
considerable improvement over the Blender dataset and approaching the performance of the
real-world baseline. Its lower FID score of 225.4 suggests enhanced visual realism, which
contributes to improved feature learning for organic matter segmentation. Fine-tuning the
ControlNet-based model with real-world data further increased the test mloU to 75.4 %,
surpassing the baseline and demonstrating the benefit of combining synthetic and real data.
Despite these improvements, the FID score of the ControlNet dataset remains higher than
that of the real-world dataset (88.3), indicating that a domain gap still exists. This may be
attributed to the synthetic nature of the ControlNet images, which, despite improved realism,
do not fully capture the complexity and variability present in real-world scenes. In particular,
the spatial distribution and appearance of organic matter in the synthetic data are
constrained by the underlying Blender annotations and generation process.

These findings emphasize the importance of both visual realism and dataset diversity in
training semantic segmentation models. While high-quality synthetic data can enhance
model performance, especially when combined with real-world samples, it cannot yet fully

replace the variability and richness of real-world data.

5. Conclusion

This study demonstrates that the realism, quantity, and diversity of training data have a
substantial impact on semantic segmentation performance when evaluated on real-world
imagery. The PIDNet model trained on the real-world dataset achieved a test mloU of
75.0 %. In comparison, the Blender-generated dataset resulted in a test mloU of 52.9 %,
highlighting the limitations of synthetic data with reduced visual realism. The ControlNet-
generated dataset improved performance to 69.3 %, indicating better alignment with real-
world features. Further fine-tuning of the ControlNet-based model using real-world data
increased the test mloU to 75.4 %, slightly surpassing the baseline. These results suggest

that ControlNet offers a promising approach for generating realistic training data, particularly



for structures that are difficult to annotate manually, such as fine organic material like straw.

For other types of organic matter, additional real-world data may be required, as the current

approach may be tailored to straw-specific scenarios. Future work should focus on

enhancing the semantic and structural realism of synthetic images, increasing dataset

diversity, and evaluating generalization across broader agricultural contexts.
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