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Abstract  

Automation in agriculture enhances efficiency and productivity. Taking tillage as an example, 

driving tasks such as steering and speed control are already highly automated, shifting the 

focus toward automating the tillage process itself. Measuring crop residue coverage - a key 

factor for erosion resistance, soil structure, and moisture - with semantic segmentation of 

camera images requires large, accurately annotated datasets. Manual annotation is time-

consuming, error-prone, and challenging due to the fine structures of straw and the indistinct 

boundaries of soil aggregates. To overcome these issues, synthetic training data were 

generated using the modeling software Blender to model soil textures, residue distributions, 

and environmental conditions. Photorealism was subsequently enhanced through the 

machine learning method ControlNet. The approach was evaluated and tested using three 

datasets - real-world, Blender-generated, and ControlNet-generated - assessed with the 

mean Intersection over Union (mIoU) and Fréchet Inception Distance (FID) metrics. A 

semantic segmentation network, PIDNet, trained on real-world data, achieved an mIoU of 

75.0 %. The network trained on the Blender dataset obtained 52.9 % due to limited realism. 

In contrast, ControlNet-generated data achieved 69.3 % with improved FID scores compared 

to the Blender dataset, indicating higher realism and superior model performance. Finally, 

after fine-tuning the segmentation model based on the ControlNet dataset with real data, an 

mIoU of 75.4 % was reached. These findings indicate that high-quality synthetic data can 

reduce annotation effort, minimize labeling errors, and, in some instances, outperform real 

data in training machine learning models.  

 

1. Introduction 

Efficient process control in tillage requires accurate measurement of key soil and surface 

parameters, including crop residue coverage, surface roughness, or aggregate size 

distribution. While operational tasks such as steering and speed regulation have largely been 



automated, the automation of process control itself remains an open challenge in many 

respects. 

This contribution focuses on crop residue coverage, a parameter that influences erosion 

resistance, soil structure, and moisture. It refers to the proportion of soil surface covered by 

organic matter after tillage and can be measured using either offline or online methods. 

Offline approaches include the meterstick method [1], [2], comparison with images [3] or grid-

based techniques [4]. Online approaches encompass various methods, such as those 

proposed by [5], [6], [7], [8], [9]. While offline methods are not suitable for real-time 

applications, online methods are more relevant for automation. Among these, techniques 

based on thresholds [5], or edge detection [6] tend to be less robust compared to machine 

learning-based methods. However, a significant limitation of machine learning approaches is 

their reliance on annotated training data. 

The manual annotation process is time-consuming and challenging due to the difficulty of 

accurately annotating fine objects, such as straw stalks, and uncertainties caused by unclear 

fracture edges of soil aggregates. To overcome these challenges, this contribution utilizes 

synthetic data to facilitate data acquisition and enhance annotation. One advantage of this 

approach is the ability to generate specific scenarios and environmental conditions. A second 

advantage is the automated generation of annotated data, which ensures an error-free 

ground truth and accelerates the data generation. 

Cieslak et al. [10] developed a method for generating synthetic training data for the 

segmentation of soybean plants and weeds in agricultural fields. In this approach, 3D models 

of soybean plants, grass weeds, and broadleaf weeds - procedurally generated by 

specialized software - are randomly arranged within a 3D scene. Using the GAN-Model 

Contrastive Unpaired Translation (CUT), the authors investigated the domain adaptation. 

They pointed out that using real data and synthetic data results in segmentation models that 

demonstrate at least equivalent performance to those that are trained only on real-world 

data. Models trained on synthetic and real-world data exhibit higher generalizability. 

Another tool to reduce the domain gap between real and synthetic data is the machine 

learning method ControlNet [11]. ControlNet operates by taking a pre-trained text-to-image 

diffusion model and freezing its original weights. A parallel, trainable branch is then added, 

connected through zero-initialized convolutions, to introduce new conditional inputs without 

altering the base model. This design enables the integration of spatial guidance, such as 

edges, depth maps, or poses, with text prompts, allowing precise control over the generated 

image’s structure. ControlNet has been applied in various domains, for example, to create 

and modify material microstructures with precise control over shapes [12] or to generate 



realistic weed images to improve weed detection performance by 1.4 % compared to using 

only real images [13]. 

Schulpius et al. [14] used ControlNet to enhance tramline detection using synthetic images. 

By fine-tuning the model with real-world data, they increased the segmentation accuracy to 

an mIoU of 83.28 %, representing a 1.61 % improvement over the baseline. 

 

2. Method and Data 

For the real-world dataset, images were collected during the tillage process using two 

different cultivators equipped with varying roller and tine configurations. The camera system 

was mounted behind the roller to capture the outcome – the quality – of the tillage process. 

The dataset includes two distinct categories of tillage practices: primary tillage in spring 

(organic matter: intermediate crops), and stubble cultivation after harvest (organic matter: 

wheat and corn). To ensure robustness and variability, additional images were captured 

using camera systems with different resolutions, including smartphone cameras. The dataset 

covers a wide range of conditions, with crop residue coverage in the photos varying from low 

(less than 10 %) to high (over 50 %). Overall, the real-world dataset included 115 training, 20 

validation, and 15 test images with manually generated annotations, as shown in Figure 1. 

 

Figure 1: Exemplary image (a) and manual annotation mask (b) from the real-world dataset 

Synthetic images were generated using the open-source 3D modeling software Blender [15]. 

For this purpose, the procedural pipeline BlenderProc [16] was used, enabling the creation of 

not only RGB images but also segmentation masks and other outputs. The synthetic images 

were derived from a 3D scene in Blender, consisting of a ground surface with randomly 

placed crops and crop residues. In total, five different surface types, five crop objects, and 

various lighting conditions were used. This effort resulted in a dataset consisting of 3100 

images. 

A domain gap is often observed between synthetic and real images. To address this, the 

machine learning method ControlNet was used to generate improved synthetic images using 

annotation masks created with Blender. The workflow for creating synthetic images with 



Blender is shown in Figure 2. For training, 115 real images (1024x1024 px) with 

corresponding annotation masks were used. Furthermore, each image was paired with a text 

prompt, “Close-up image of straw on soil,” which is necessary for training. After training 

ControlNet, the model was used to generate 3100 new images based on 3100 annotation 

masks created in Blender and the same text prompt describing the desired output. 

 

Figure 2: Workflow to generate images with ControlNet 

To evaluate the quality of the different datasets, two metrics were used: mean Intersection 

over Union (mIoU) for assessing semantic segmentation performance, and Fréchet Inception 

Distance (FID) for measuring the realism of the generated images. 

For the mIoU evaluation, the semantic segmentation network PIDNet [17] was used. The 

PIDNet architecture is specifically designed for real-time semantic segmentation. It effectively 

balances segmentation accuracy and computational efficiency, rendering it particularly 

suitable for deployment in resource-constrained environments. The network was trained 

under four distinct conditions. Initially, the network was trained separately on three datasets: 

the real-world dataset, the Blender dataset, and the ControlNet dataset. To further enhance 

performance, the model trained on the ControlNet dataset was subsequently fine-tuned using 

real-world images. Fine-tuning a semantic segmentation model in this context denotes 

adapting a pre-trained network to a target domain using domain-specific data, such as real-

world images. The segmentation task was defined as two classes: background and organic 

matter. The organic matter class encompassed all plant-derived materials without further 

distinction, including harvested crop residues such as straw, emerging crop plants, and 

weeds. All datasets were evaluated using a consistent validation set comprising 20 manually 



annotated real-world images, which were used during training to monitor model performance. 

Additionally, final performance was assessed on an independent test set consisting of 15 

real-world images. In total, eight mIoU scores were computed: two for each of the three 

primary training datasets (real-world, Blender, ControlNet) and two for the fine-tuned 

ControlNet-based model. 

An exemplary external real-world dataset of 70 images was used as a reference distribution 

for the FID computation. Each of the three training datasets - real-world, Blender-generated, 

and ControlNet-generated - was compared against this external real-world dataset to obtain 

corresponding FID scores. Lower FID scores indicate a higher visual similarity to the real-

world reference data, and thus better generative quality. 

 

3. Results 

Figure 3 presents example images from each dataset: (a) real-world, (b) Blender-generated, 

(c) ControlNet-generated image. These examples illustrate the varying degrees of realism 

and complexity across datasets. 

 

Figure 3: Example images of the datasets: a) real-world dataset; b) Blender dataset; c) ControlNet dataset 

To quantitatively assess the segmentation performance and visual realism of the datasets, 

both the mIoU and FID metrics were evaluated. When trained on the real-world dataset, 

PIDNet achieved an mIoU of 73.6 % on the validation set and 75.0 % on the test set. In 

comparison, training on the Blender-generated dataset resulted in substantially lower mIoU 

scores of 50.5 % (validation) and 52.9 % (test). The ControlNet-generated dataset yielded 

improved results, with mIoU scores of 71.2 % (validation) and 69.3 % (test). Fine-tuning the 

ControlNet-based model with real-world data further increased performance, reaching 

74.1 % on the validation set and 75.4 % on the test set. 

To complement the segmentation evaluation, FID scores were computed against an external 

real-world reference dataset. The real-world dataset achieved the lowest FID score of 88.29. 

The Blender-generated dataset exhibited an FID of 257.3, while the ControlNet-generated 

data achieved an FID of 225.4. 



4. Discussion 

The presented results highlight distinct differences in segmentation performance across the 

evaluated datasets. The model trained on the real-world dataset achieved a test mIoU of 

75.0 %, serving as the baseline for comparison. The Blender-generated dataset resulted in a 

test mIoU of 52.9 %, indicating a pronounced domain gap. This gap is attributable to the 

reduced photorealism of the synthetic images, as illustrated in Figure 3, and is further 

supported by the high Fréchet Inception Distance (FID) score of 257.3, which reflects 

substantial visual dissimilarity from real-world images. 

The ControlNet-generated dataset yielded a test mIoU of 69.3 %, representing a 

considerable improvement over the Blender dataset and approaching the performance of the 

real-world baseline. Its lower FID score of 225.4 suggests enhanced visual realism, which 

contributes to improved feature learning for organic matter segmentation. Fine-tuning the 

ControlNet-based model with real-world data further increased the test mIoU to 75.4 %, 

surpassing the baseline and demonstrating the benefit of combining synthetic and real data. 

Despite these improvements, the FID score of the ControlNet dataset remains higher than 

that of the real-world dataset (88.3), indicating that a domain gap still exists. This may be 

attributed to the synthetic nature of the ControlNet images, which, despite improved realism, 

do not fully capture the complexity and variability present in real-world scenes. In particular, 

the spatial distribution and appearance of organic matter in the synthetic data are 

constrained by the underlying Blender annotations and generation process. 

These findings emphasize the importance of both visual realism and dataset diversity in 

training semantic segmentation models. While high-quality synthetic data can enhance 

model performance, especially when combined with real-world samples, it cannot yet fully 

replace the variability and richness of real-world data. 

 

5. Conclusion 

This study demonstrates that the realism, quantity, and diversity of training data have a 

substantial impact on semantic segmentation performance when evaluated on real-world 

imagery. The PIDNet model trained on the real-world dataset achieved a test mIoU of 

75.0 %. In comparison, the Blender-generated dataset resulted in a test mIoU of 52.9 %, 

highlighting the limitations of synthetic data with reduced visual realism. The ControlNet-

generated dataset improved performance to 69.3 %, indicating better alignment with real-

world features. Further fine-tuning of the ControlNet-based model using real-world data 

increased the test mIoU to 75.4 %, slightly surpassing the baseline. These results suggest 

that ControlNet offers a promising approach for generating realistic training data, particularly 



for structures that are difficult to annotate manually, such as fine organic material like straw. 

For other types of organic matter, additional real-world data may be required, as the current 

approach may be tailored to straw-specific scenarios. Future work should focus on 

enhancing the semantic and structural realism of synthetic images, increasing dataset 

diversity, and evaluating generalization across broader agricultural contexts. 

 

6. References 

[1] J. E. Adams and G. F. Arkin, “A Light Interception Method for Measuring Row Crop 
Ground Cover,” Soil Science Soc of Amer J, vol. 41, no. 4, pp. 789–792, Jul. 1977, doi: 
10.2136/sssaj1977.03615995004100040037x. 

[2] D. P. Shelton and P. J. Jasa, “Estimating Percent Residue Cover Using the Line-
Transect Method.” Accessed: Jun. 11, 2024. [Online]. Available: 
https://extensionpubs.unl.edu/publication/1085/html/view 

[3] J. Brunotte and B. Ortmeier, Fächer zur Bestimmung des Bodenbedeckungsgrades 
durch organische Rückstände. 2007. Accessed: Jun. 11, 2024. [Online]. Available: 
https://www.openagrar.de/receive/timport_mods_00004395 

[4] H.-H. Voßhenrich, J. Brunotte, and B. Ortmeier, “Gitterrastermethode mit Strohindex zur 
Bewertung der Stroheinarbeitung,” LANDTECHNIK, pp. 328-329 Seiten, Dec. 2005, doi: 
10.15150/LT.2005.1255. 

[5] F. Pforte, “Entwicklung Eines Online-Messverfahrens Zur Bestimmung Des 
Bodenbedeckungsgrades Bei Der Stoppelbearbeitung Zu Mulchsaatverfahren,” 
phdthesis, Universität Kassel, Kassel, 2010. 

[6] A. Ribeiro, J. Ranz, X. P. Burgos-Artizzu, G. Pajares, M. J. Sanchez del Arco, and L. 
Navarrete, “An Image Segmentation Based on a Genetic Algorithm for Determining Soil 
Coverage by Crop Residues,” Sensors, vol. 11, no. 6, pp. 6480–6492, Jun. 2011, doi: 
10.3390/s110606480. 

[7] P. Riegler-Nurscher, J. Prankl, and M. Vincze, “Tillage Machine Control Based on a 
Vision System for Soil Roughness and Soil Cover Estimation,” in Computer Vision 
Systems, D. Tzovaras, D. Giakoumis, M. Vincze, and A. Argyros, Eds., Cham: Springer 
International Publishing, 2019, pp. 201–210. doi: 10.1007/978-3-030-34995-0_19. 

[8] Y. Liu et al., “Straw Segmentation Algorithm Based on Modified UNet in Complex 
Farmland Environment,” CMC, vol. 66, no. 1, pp. 247–262, 2020, doi: 
10.32604/cmc.2020.012328. 

[9] M. Schmidt, “AI-Based Tillage Job Quality Assessment for Advanced Machine 
Automation in Agriculture,” in AgEng-LAND.TECHNIK 2022: International Conference 
on Agricultural Engineering, in VDI-Berichte, vol. 2406. Berlin, Nov. 2022, pp. 567–572. 

[10] M. Cieslak et al., “Generating Diverse Agricultural Data for Vision-Based Farming 
Applications,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW), Jun. 2024, pp. 5422–5431. doi: 
10.1109/CVPRW63382.2024.00551. 

[11] L. Zhang, A. Rao, and M. Agrawala, “Adding Conditional Control to Text-to-Image 
Diffusion Models,” Nov. 26, 2023, arXiv: arXiv:2302.05543. doi: 
10.48550/arXiv.2302.05543. 

[12] Y. Zhang, T. Long, and H. Zhang, “Stable diffusion for the inverse design of 
microstructures,” Sep. 27, 2024, arXiv: arXiv:2409.19133. doi: 
10.48550/arXiv.2409.19133. 

[13] B. Deng and Y. Lu, “Weed Image Augmentation by ControlNet-Added Stable Diffusion,” 
in Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, 



and Applications II, K. E. Manser, C. De Melo, R. M. Rao, and C. L. Howell, Eds., 
National Harbor, United States: SPIE, Jun. 2024, p. 25. doi: 10.1117/12.3014145. 

[14] S. Schulpius, J. Schattenberg, and L. Frerichs, “Training neural networks for tramline 
detection in an autonomous driving tractor using synthetic images,” in LAND.TECHNIK 
2024, in VDI-Berichte, vol. 2444. Düsseldorf: VDI Verlag, 2024. 

[15] B. O. Community, Blender - a 3D modeling and rendering package. Stichting Blender 
Foundation, Amsterdam: Blender Foundation, 2018. [Online]. Available: 
http://www.blender.org 

[16] M. Denninger et al., “BlenderProc,” Oct. 25, 2019. doi: 10.48550/arXiv.1911.01911. 
[17] J. Xu, Z. Xiong, and S. P. Bhattacharyya, “PIDNet: a real-time semantic segmentation 

network inspired by PID controllers,” in 2023 IEEE/CVF conference on computer vision 
and pattern recognition (CVPR), 2023, pp. 19529–19539. doi: 
10.1109/CVPR52729.2023.01871. 

 


