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We explore statistical fluctuations over the ensemble of quantum trajectories in a model of two-dimensional
free fermions subject to projective monitoring of local charge across the measurement-induced phase transition.
Our observables are the particle-number covariance between spatially separated regions, G4z, and the two-point
density correlation function, C(r). Our results exhibit a remarkable analogy to Anderson localization, with G4z
corresponding to two-terminal conductance and C(r) to two-point conductance, albeit with different replica
limits and unconventional symmetry class, geometry, and boundary conditions. In the delocalized phase, G4z
exhibits “universal,” nearly Gaussian, fluctuations with variance of order unity. In the localized phase, we find
a broad distribution of G4 with —In G4 ~ L (where L is the system size) and the variance var(In Gp)~L*,
and similarly for C(r), with u ~ 0.5. At the transition point, the distribution function of G4 becomes scale
invariant and C(r) exhibits multifractal statistics, C4(r) ~ r~9@*+D=%_ We characterize the spectrum of multi-
fractal dimensions A,. Our findings lay the groundwork for mesoscopic theory of monitored systems, paving the

way for various extensions.

DOI: 10.1103/2k3q-h6lz

Introduction. Many-body quantum systems subjected to
quantum measurement exhibit remarkably rich physics. A
peculiar property of quantum measurements is the nonunitary
character of the associated dynamics of the quantum state,
involving its collapse (strong or weak, depending on the mea-
surement strength). The problem of the dynamics of a system
under multiple measurements taking place randomly in space
and time has been the subject of intense research in recent
years. It was found that the competition between unitary dy-
namics and quantum measurements may result in transitions
between phases with different scaling of the entanglement
entropy S (which is a measure of quantum information) with
the size £ of a subsystem [1-7] (see also reviews [8,9] and
Refs. [10-13] for experimental studies). Specifically, for fre-
quent measurements, S scales as the area of the subsystem
boundary ~¢¢~!. In such an area-law phase, the entanglement
is localized in the boundary region. When the measurement
rate is lowered, the system may undergo a transition into a
phase with a faster increase of S(€), implying a delocalization
of quantum information.

Many-body systems of free fermions, with local moni-
toring preserving Gaussianity of the quantum state [4,14—
25], exhibit distinct physics. Specifically, it was found that,
for d =1 complex fermions, the system is asymptotically
(L — o0) in the area-law phase for any nonzero monitoring
rate [20,25]. For higher spatial dimensionality, d > 1, the
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system exhibits a transition between the area-law (“local-
ized”) phase and a “diffusive” phase with £¢~!In ¢ scaling of
S(£) [21,22]. These results are obtained analytically by map-
ping to a replica nonlinear sigma model, with its subsequent
renormalization-group analysis, and supported by numeri-
cal simulations. This field theory demonstrates a remarkable
analogy between the measurement-induced phase transition
(MIPT) in d dimensions and Anderson localization transition
in d + 1 dimensions, albeit with important differences in the
replica limit and the symmetry class.

The dynamical evolution of a monitored system is charac-
terized by a “quantum trajectory” determined by the outcomes
of all measurements, which are stochastic due to the nature
of quantum measurements. Thus, the entanglement entropy
or any other property of the system will, in fact, depend
on a specific quantum trajectory. Most of the analytic and
numerical studies deal with averaged observables—which is,
in particular, sufficient to observe the phase transition. At
the same time, fluctuations of observables over the ensemble
of quantum trajectories are also of great interest. We will
term these fluctuations “mesoscopic,” in view of the above
link to Anderson localization, where mesoscopic fluctuations
are those over the ensemble of disorder realizations. While
fluctuations of some quantities appeared in several previous
works on monitored systems (see, e.g., Refs. [14,22,26-32]),
their numerical and analytical investigations are still largely in
their infancy.

In this Letter, we explore mesoscopic fluctuations of key
observables across the MIPT in a free-fermion system. For
the numerical study, we use the d = 2 model, in which the
transition was established in Ref. [21]. It was found there that
the particle-number covariance G4p plays a role of the scaling
variable akin to the dimensionless conductance. Here, we
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show that G4p exhibits “universal conductance fluctuations”
in the delocalized phase and another type of universality in
the localized phase, where a broad distribution with the av-
erage — In Gy ~ L and the variance var(In Gap) ~ L*, with
u ~ 0.5, sets in. The transition point is characterized by a
scale-invariant distribution of G4p. Furthermore, we study
fluctuations of the density correlation function C(r) (a coun-
terpart of two-point conductance). In particular, we show that
the critical point is characterized by multifractal statistics,
Ci(r) ~ r~9@+D=4¢ and determine the spectrum of multi-
fractal exponents A,. Our numerical results are in agreement
with analytical findings obtained using the sigma-model field
theory.

Model. We use the model of Ref. [21]. The unitary part
of the evolution is described by the nearest-neighbor tight-
binding Hamiltonian H = —J 3" ..., [V + H.c.], defined
on a d-dimensional cubic lattice with L? sites and periodic
boundary conditions. The nonunitary part consists of pro-
jective measurements of site occupancy numbers 71, = 1/7,} Vs
performed at each site at randomly and independently selected
times with a rate y, i.e., the probability for each site to be
measured in a time interval dr is ydt. Each measurement
induces a wave-function collapse to a state with 7, =0 or
1, with the Born-rule probabilities. Since we explore physics
at sufficiently large length scales, our results are generic, i.e.,
independent of microscopic details of the model; in particular,
they also apply to models with weak monitoring. We focus on
the d = 2 case. At the same time, to address the transition
analytically, we utilize the € expansion ford = 1 + €.

The system is prepared in an arbitrary pure Gaussian
(Slater-determinant) state at half filling and is evolved for a
sufficiently long time 7" — 400 in order to reach a steady-
state measure, which is independent of the initial state [20,21].
The final state is completely determined by a quantum tra-
jectory, which includes positions, times, and outcomes of
all measurements. Throughout the evolution, the Gaussian
property of the state is preserved, allowing its complete and
efficient description via the correlation matrix Gy = (/] ¥),
where angular brackets denote the quantum-mechanical aver-
age.

The key indicator of the MIPT in a charge-conserving free-
fermion model is the particle-number covariance [21], defined
for two separated regions A and B as

Gas = (Na)(Np) — (NaNg) = > Cor, (1)

xeA x'eB

where C,, is the density correlation function,
Cxx’ = <ﬁx><ﬁx’) - (ﬁxﬁx’> = |gxx’|2 - gxxgxx’- (2)

We note that the mutual information Z(A : B), which is
another observable commonly used to characterize MIPTs, is
related to Gap via Z(A : B) & (22 /3) Gap. Here, the sign ~
indicates that an exact formula [33] valid for any Gaussian
state contains additional terms proportional to higher-order
charge correlators. However, these terms are parametrically
suppressed for y < J and, moreover, are numerically small
[20] for any relation between y and J, so that this relation
holds with very good accuracy.

We consider a setup in which the linear sizes of regions
A and B and the separation between them are of the order of
the system size, £4, £p, £ap ~ L. The averaged Gyp is then a
useful quantity to determine the position of the transition, in
view of its distinct thermodynamic-limit behavior in the two
phases and at criticality [21],

gL, diffusive,
Gup ~ { G, = const, critical, 3)
exp (—€agp/lioc), localized,

with the effective diffuson constant g = J/(2+/2y ). Here, the
overbar denotes the averaging over quantum trajectories, and
£1oc 1s the localization length. This behavior is directly related
[see Eq. (1)] to the scaling of the average density correlation
function:

glx —x/|7@+h, diffusive,
Cox ~ { Gelx — x| 72, critical, @)
exp (—|x — x| /lie), localized.

In Ref. [21], we focused on averaged observables, demon-
strated the MIPT, and determined the critical measurement
rate y,./J =~ 2.93 for this model by using Eq. (3). Now, we turn
to the analysis of mesoscopic fluctuations over the ensemble
of quantum trajectories. Below, we set J = 1, so that the
control parameter y /J becomes simply y .

Numerical results. We performed simulations of the
stochastic monitored evolution of a d = 2 free-fermion sys-
tem of size L x L with periodic boundary conditions. The
numerical analysis was carried out via direct exact evaluation
of the full correlation matrix Gy, . To explore the scale depen-
dence of observables, the system size L was varied between
L =12 and L = 44 in steps of 4. To gather sufficient statis-
tics, we have sampled 1000 individual trajectory realizations
for each system size. In addition, we have utilized spatial
averaging over different positions in the system to further
increase the statistical ensemble. For each individual quantum
trajectory, we have extracted the distribution function of the
particle-number covariance (1) for regions A and B of size
L/4 x L separated by distance L/4, and of the density correla-
tion function (2) at maximally separated points C; = Cy, with
x —x' = (L/2,L/2). Simulations were performed at the crit-
ical point, y = 2.93, and in both diffusive (y = 0.5 and 1.5)
and localized (y = 4.5) phases. Further details of simulations
can be found in the Supplemental Material (SM) [34].

We begin with our analysis of the diffusive phase. Fig-
ure 1(a) shows the L dependence of the distribution function
of the particle-number covariance. The distribution P(Gagp)
is a nearly perfect Gaussian, down to the smallest system
size. Furthermore, the width of this distribution, shown on
Fig. 1(b), is size independent, var(G4p) ~ 8.64 x 1073, These
results are in agreement with the analytical predictions of
“universal conductance fluctuations” (see SM [34]). (Similar
behavior is also observed in the diffusive regime for d = 1.)
At the same time, our numerical results for var(G,p) exhibit
noticeable dependence on y [34], at variance with the analyti-
cal prediction. Note that, while var(G,4p) is independent of L,
it does depend on the chosen geometry of regions A and B.
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FIG. 1. Statistical properties of the diffusive phase. (a) Distri-
bution of Gup for y = 1.5. Different colors correspond to different
L (see legend). The distribution is nearly a perfect Gaussian, as
demonstrated by Gaussian fits (dashed lines). (b) System size
(in)dependence of variance of G4p, demonstrating universal conduc-
tance fluctuations with fitted value (dashed line) var(G,z) = 8.64 x
1073, Inset: size dependence of average G,z; dashed line: linear fit
G = (2.61L + 4.94) x 1072, consistent with the large-L scaling (3).
(c) Distribution P(z = C;/C,) of the density correlation function C,
normalized to its average for y = 1.5 and 0.5; dashed line: Porter-
Thomas (PT) distribution predicted analytically for y < 1. Inset:
L dependence of the second moment z2; dashed line: the analytical
prediction 22 = 3 for y < 1.

In Fig. 1(c), we show the distribution function P(z =
Cr /E) of the density correlation function C; normalized to
its average value C; for two values of y in the diffusive phase,
y = 1.5 and 0.5. The distribution P(z) and its moments z9
are L independent (for L larger than the correlation length
Leorr), as illustrated in the inset for ¢ = 2. Furthermore, when
y is reduced, the distribution approaches the limiting form
P(z) = e %/? /+/2mz (known as Porter-Thomas distribution in
a different context), with z9 = (2g — 1)!!, in agreement with
our analytical result (see SM [34]). In the opposite case, when
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FIG. 2. Statistics of Gup in the localized phase, y =4.5.
(a) Distribution function of the logarithm of G4p. Different colors
correspond to different system sizes L (see legend). (b) L dependence
of typical covariance G'; dashed line: exponential fit G ~
exp (—L/4€f;ycp)) with ngycp) ~ 0.98. (c) L dependence of the vari-

ance of In Gp; dashed line: power-law fit var(ln G4p) ~ L* with
u~0.58.

y approaches the transition point, the moments z7 diverge

~EZ;? “ due to multifractality at scales shorter than £ (see
below the results for the multifractal spectrum A, character-
izing the critical point). The strong enhancement of z? for
y = 1.5 in comparison with its value z> = 3 at y <« | seen
in inset of Fig. 1(c) is a manifestation of this behavior.

We now turn our attention to the other side of the tran-
sition and discuss the behavior in the localized phase. In
Fig. 2(a), we show the distribution of the logarithm of the
covariance Gyp. It is seen from Fig. 2(b) that the center of
the distribution moves linearly with L in the negative di-
rection, which corresponds to the typical value scaling as
G%p) = exp (InGap) ~ exp (—L/4£l(;ycp)), i.e., to exponential
localization. Further, we observe that the distribution broadens
with increasing L, which is quantified in Fig. 2(c), where the
variance of the distribution is shown as a function of L. The
data clearly indicate a power-law scaling var(In Gap) o< L*
with an exponent o ~ 0.58. We find a similar behavior for the
distribution of In C,» (see SM [34]), with a somewhat different
numerical value of the exponent characterizing the scaling
of the variance, u ~ 0.43. Asymptotically (at L — 00), the
exponent p should be the same for both observables, so that
the apparent difference can be attributed to subleading (finite-
size) corrections. This yields an estimate for the accuracy of
the exponent, u =~ 0.5 £ 0.1. The behavior that we find for the
localized phase of the measurement problem is similar to that
for the D =d + 1 = 3 Anderson-localization problem that
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FIG. 3. Properties of the critical point, y =2.93. (a) Scale-
invariant distribution function of In G4p. Different colors correspond
to different system sizes L (see legend). (b) Anomalous dimensions
A, of moments of the density correlation function Cy,. The Dashed
line is the best parabolic fit according to A, = g + cq(1 — g), with
¢~ 2.04. (c) Spectrum of multifractal dimensions f(c«). Dashed
line: parabolic fit according to f(a) = —[a — (4 + ¢)]*/4c, with
c~2.03.

was shown to be related to the directed-polymer and Kardar-
Parisi-Zhang (KPZ) problems in 2 + 1 dimensions (see SM
[34] for a summary of key results with references). It remains
to be seen whether there is exact correspondence between the
corresponding exponents. It is plausible (although remains to
be proven) that our exponent u is equal to u = 25 ~ 0.48
where § is the KPZ growth exponent in 2 + 1 dimensions.
Finally, we analyze properties of systems at criticality,
y ~ 2.93. In Fig. 3(a), we present the distribution function
P(In G4p). It is seen to be L independent, in agreement with
the expected scale invariance of the critical point. In Figs. 3(b)
and 3(c), we demonstrate another manifestation of critical-
ity: the multifractal statistics of the correlation function Cy,,

which obeys the scaling Cj ~ L~9@+D=% Here, the first
term —g(d + 1) in the exponent corresponds to the diffusive
scaling, while A, is the anomalous dimension. The resulting
exponents A, are shown in Fig. 3(b) (see SM [34] for details
of the fitting procedure and comparison with previous discus-
sions of multifractality at MIPTs). The nonlinear dependence
of A, on g is a manifestation of multifractality.

We note that the average correlation function Cyy (cor-
responding to g = 1) is a correlation function of conserved
currents and thus should follow at criticality the scaling
[21] Cye ~ |x —x'|72¢, implying A; =d — 1 =1, in good
agreement with the numerical data. We further observe that
the multifractality spectrum A, is well approximated by the
parabolic formula A, = g + ¢g(1 — g) shown by the dashed

line in Fig. 3(b). This formula corresponds to a one-loop
approximation [34], which is parametrically justified for a
transition ind = 1 + € dimensions with € < 1 (when the crit-
ical conductance is large) [35]. Note that, while the parabolic
approximation is found to hold with good accuracy also for
d =2, it is only an approximation in view of higher-loop
contributions to A,.

An alternative (but equivalent) way to present the results on
multifractality is as follows. For each value of the correlation
function, we introduce the exponent & = —InCyy// In [x — X'|.
This quantity itself is random, and its distribution function
acquires the form P(a) ~ L/ where f(«) is termed the sin-
gularity spectrum. It is then easy to show that f(«) is related
to anomalous dimensions via the Legendre transformation:

f(a):qA;—Aq, oe:A;+(d+1). 4)
The obtained function f(«) is shown in Fig. 3(c). The position
of its maximum, o & 6, determines the decay of the typical
correlation function, C)(c;y,p) ~ |x —x’|~*, which is consider-
ably faster than the decay of the average, Cxy ~ |x — x'|~%.

Summary and discussion. In this Letter, we have performed
the analysis of mesoscopic fluctuations and multifractality
across the MIPT in a monitored free-fermion system. Our
numerical results for a d = 2 model are in full consistency
with analytical predictions. Our findings for the statistics
of the particle-number covariance Gsp and of the corre-
lation function C(r) exhibit remarkable analogies with the
mesoscopic physics of Anderson localization in disordered
systems, with G4 and C(r) being the counterparts of the two-
terminal and two-point conductances, respectively. Within this
analogy, G4p and C(r) are governed by diffusive trajectories
in (d + 1)-dimensional space-time, which describe building
and propagation of entanglement and particle-number corre-
lations. The trajectories are formed by measurement events
(serving essentially as “impurities” in space-time), with bal-
listic propagation between them.

On the delocalized side (measurement rate y < y.), we
demonstrate the “universal conductance fluctuations” of G4p
[Figs. 1(a) and 1(b)]. The moments of C(r) show a “diffusive”
scaling, Ca(r) o« r~9@+D with the distribution of C(r)/C(r)
approaching the Porter-Thomas form for small y and man-
ifesting multifractality at scales shorter than the correlation
length when y increases towards the critical value y.. The
Porter-Thomas form corresponds to Gaussian fluctuations of
the correlation function Gy, resulting, at small y, from a
sum of many individual-trajectory contributions. The univer-
sal conductance fluctuations of G4p are governed by events
of crossing for pairs of trajectories (as shown more formally
in SM [34]). The probability of crossing of three or more
trajectories is small for small y, explaining the Gaussian form
of the distribution of Gup.

With increasing y, the crossings of diffusive trajectories
proliferate, leading to the development of localization and
to dramatic enhancement of mesoscopic fluctuations. In the
localized phase (y > y,.), we find a very broad distribution
of Gap, with —In Gxp ~ L and the variance var(In G,g) ~ L*
(Fig. 2), and similarly for C(r), with u = 0.5. It is plausible
that, for both quantities, u is given asymptotically by the
KPZ theory in 2 + 1 dimensions, which implies p &~ 0.48. At
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criticality (y = y.), Gap develops a scale-invariant dis-
tribution and C(r) exhibits multifractality (Fig. 3). The
corresponding spectrum of multifractal anomalous dimen-
sions is well approximated by the parabolic (one-loop) form
Ay =q+cq(l —g)withe =~ 2.

Concerning the link to the Anderson-localization problem
in d + 1 dimensions, it is worth emphasizing the following.
First, the formulation of the measurement problem is very
different from that of Anderson localization, and the connec-
tion made evident via the nonlinear sigma model field theory,
with the emergent isotropy of space-time, is rather nontrivial
and remarkable. Second, there are important distinctions: the
sigma model of the measurement problem is characterized
by chiral symmetry, unconventional R — 1 replica limit, ab-
sorbing condition at the boundary of the d + 1-dimensional
system corresponding to the time at which the observables
are studied and unconventional geometry of the “terminals”
(in terminology of the transport problems) A and B that both
belong to this boundary. These differences essentially affect
many of key properties, including, in particular, the power

laws in Eq. (4), the multifractal spectrum A, of the correlation
function and its distribution in the diffusive phase, the shape
of the distribution of G5 at criticality, as well as the numerical
value of the variance of its “universal” fluctuations in the
diffusive phase.

Our work, which largely lays the foundations of meso-
scopic physics of monitored systems, paves a way for various
extensions. This includes investigation of systems of various
dimensionalities, as well as symmetry and topology classes.
In connection with the above comments, it will be very inter-
esting to make a quantitative comparison with corresponding
observables in the Anderson-localization problem. Another
interesting question is the effect of interaction on mesoscopic
fluctuations and multifractality.
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