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Abstract: Establishing a congruent approach to delivering a pnictide atom (Pn3− = P, As, and Sb) to transition metal ions
is a challenge, especially for the heavier congeners As and Sb, and when varying the transition metal. We showcase here
a convenient route to molecular forms of one coordinate stibide ligands bound to ZrIV and TiIV ions, represented by the
discrete salts [K(L)][(PN)2M≡Sb] (M = Zr (2), Ti (10); PN− = (N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2; L = 2,2,2-
Kryptofix or 18-C-6 crown-ether/2THF), which were prepared via H2 extrusion from [K(18-C-6)(THF)SbH2] added to the
ZrIV cyclometallated-hydride, [(PN)(PN’)Zr(H)] (1), and the TiII precursor [K(18-C-6)][(PN)2TiCl] (8) respectively. This
strategy was extended to the lighter congeners Pn = As, P using [K(18-C-6)(THF)AsH2] (M = Zr (3)), and NaPH2 (M = Ti
(6)). Structural and computational studies were applied to understand the bonding trends in the pnictide series, and the
role of the metal ion.

Introduction

Pnictogen-atom transfer to a transition metal center is
generally governed by the pnictogen (Pn = N, P, As,
Sb, and Bi) and the transition metal complex accepting
the atom. For instance, one-coordinate N bound to a
metal center can be installed using multiple reagents such
as N2,[1] N3

−, and analogues,[2–12] NH2
− and protected
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nitrides such as N{SiMe3}2
−,[8,13–16] as well as electrophilic

metal nitrides among many other examples.[17–19] In con-
trast, P-atom transfer to a transition metal is limited to
fewer reagents like P4,[20–24] PCO−,[25–29] PH2

− and pro-
tected phosphides,[30–34] and anthracene extrusion using
a chloro-dibenzo-7-λ3-phosphanorbornadiene.[35–37] The list
becomes narrower for As-atom transfer reagents such as
metastable As4,[38–41] AsCO−,[10,26,42] AsH2

− and protected
arsenides.[34,43–49] This inventory of reagents significantly
dwindles for the heavier congeners Sb, and Bi, with the latter
having no reported known one coordinate bismuthido (Bi3−)
complexes. In the case of Sb, only Li[Sb(H)CH(SiMe3)2],[50]

and more recently, SbH2
− or analogs,[51–55] have been shown

to deliver an Sb-atom to a metal center. In conjunction to one
coordinate Sb,[56] complexes containing a multiple bond to
Sb was restricted, until recently, to Scheer’s[50] (TrenS)W≡Sb
(TrenS = N{CH2CH2NSiMe3}3 (Figure 1). However, the
introduction of Sb- and Bi-atom transfer reagents such
as K(18-C-6)(THF)SbH2 and KBiMe2,[55] has enabled the
isolation of an f-block stibide,[53] [{(TrenTIPS)Th≡SbK2}4]
(TrenTIPS = N{CH2CH2NSi(iPr)3}3, Figure 1, Liddle and
coworkers) as well as metallodipnictenes, {(PNP)M–Pn═Pn–
M(PNP)} (PNP = N(CHCHPtBu2)2; M = PdII, PtII; Pn = P,
As, Sb, Bi) complexes via transient metallopnictinidene
diradical intermediates,[55] {(PNP)M–Pn} (Pn = P, As, Sb,
Schneider and coworkers).

Given the advent of a Sb3− transfer reagent, we sought
to find a congruent route to a series of isoelectronic terminal
pnictides spanning N to Sb using synthetically accessible salts
having the PnH2

− group. In addition, we wanted to extend
this methodology to other early-transition metals therefore

Angew. Chem. Int. Ed. 2025, e23745 (1 of 7) © 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH

https://orcid.org/0000-0001-8205-7868
mailto:mindiola@sas.upenn.edu
mailto:haenisch@chemie.uni-marburg.de
mailto:florian.weigend@kit.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fanie.202523745&domain=pdf&date_stamp=2026-01-01


Communication

Figure 1. Top: Previous work showing examples of one coordinate Sb
compounds (left); transition metal stibido (center) and actinide stibide
salt (right). Bottom: This work showing terminal stibide of 3d and 4d
transition metals and other pnictides along with their unique features.

allowing us to compare the M≡Pn bonding by switching
systematically the Pn, but also M. Herein, we describe the use
of PnH2

− reagents (where Pn = P, As, and Sb) as reliable Pn3−

atom sources via H2 extrusion, when treated with ZrIV and TiII

precursors to yield the pnictide series [K(L)][(PN)2M≡Pn]
(M = Zr and Ti; L = cryptand or crown-ether; Pn = P, As,
and Sb). In addition to their structural elucidation, these one
coordinate pnictides series were probed computationally to
help elucidate their bonding topology.

Recently, our group found a route to terminal phos-
phides of ZrIV, [K(L)][(PN)2Zr≡P] (4), by treatment
of NaPH2 with an encapsulator L (L = 18-crown-
6 ether, 18-C-6/2THF; crypt = 2,2,2-Kryptofix) and the
cyclometallated-hydride [(PN)(PN’)Zr(H)] (1) (PN’2− = (N-
(2-PiPr2-4-methylphenyl)-2-CH2-4,6-Me2C6H2).[32] By anal-
ogy, one would anticipate that the heavier analogues AsH2

−

and SbH2
−, reported by Hänisch and coworkers,[43,52] should

render access to the respective arsenide and stibide analogues.
Accordingly, treatment of 1 with K(18-C-6)(THF)PnH2

(Pn = Sb, As) in benzene-d6 led to an immediate color
change from orange to greyish-brown (Sb) and magenta
pink (As) (Scheme 1). Inspection of 1H NMR spectral
data showed a new diamagnetic and C2v symmetric com-
pound along with H2, whereas the 31P{1H} NMR spectra
evinced a single resonance for the symmetrically related
PN ligands at 46.5 ppm (Sb) and 31.2 ppm (As). Single
crystals obtained from each worked-up reaction revealed
a 5-coordinate ZrIV center containing an unprecedented
terminal stibide, [K(18-C-6)(THF)2][(PN)2Zr≡Sb] (2) and
arsenide, [K(18-C-6)(THF)2][(PN)2Zr≡As] (3), via a single
crystal X-ray diffraction study (scXRD). Their solid-state
structures show no Pn•••K interactions (7.48638(17) Å, 2;
7.44804(5) Å, 3) (Figure 2) while the [Zr≡Sb]− and [Zr≡As]−

were short at 2.6303(7) and 2.3951(8) Å, respectively. The
Pauling equation[57] corrected by the Schomaker–Stevenson

Scheme 1. Top reaction shows the synthesis of one coordinate pnictides
of ZrIV using precursor 1. In the case of NaNH2, the parent ZrIV imide,
11 is obtained. The bottom reaction shows the TiIV pnictides stemming
from the TiII complexes 5 and 8 (bottom left).

Figure 2.Molecular structures of Zr-stibide (2), and arsenide (3), along
with Ti-stibide complexes 9 and 10 with thermal ellipsoids at 50%
probability level and hydrogen atoms, cocrystallized solvents and iPr
groups on P atom of PN-ligands are omitted for clarity.
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Table 1: Salient metrical parametersa and 31P NMR chemical shifts of Zr- and Ti-pnictides.

M≡Pn N3− P3− As3− Sb3−

[Zr]≡Pn/ [Ti]≡Pn
bond distances
(Å); [Zr] = (PN)2Zr,
[Ti] = (PN)2Ti

X-raya) 1.822(2)11/
1.719(3)61

2.298(17)32/
2.195(2)33

2.3951(8)/
2.2661(5)42

2.6303(7)/
2.5118(9)

Pauli calc.b) 1.613/1.500 2.098/1.981 2.236/2.114 2.466/2.340
PBEc) 1.829/1.670 2.347/2.191 2.441/2.294 2.670/2.524

31P{1H} (δ)
[(PN)2M≡Pn]d) ,e);
M = Zr/Ti

Expt. 12.2/6.4 24.1/28.4 31.2/30.6 46.5/58.5
1c-PBE 8.1/9.2 14.7/21.6 16.2/23.4 17.5/25.4
2c-PBE 9.4/5.2 19.3/20.8 26.5/30.9 40.9/56.9

a) Metrical parameters denote bond metrics obtained from scXRD studies of discrete salts unless otherwise noted. b) Calculations performed using
the Pauling equation corrected by the Schomaker–Stevenson coefficient. c) Calculations performed using PBE/dhf-TZVP/D3-BJ/COSMO. d) All
NMR spectra for Zr compounds were collected in benzene-d6. e) All NMR spectra for Ti compounds were collected in THF-d8.

coefficient[61] (Table 1) arguably suggests 2 to possess more
double bond character (Zr≡Sb− ↔ Zr = Sb−), whereas 3 is
intermediate between double and triple bond character.[57–61]

The [Zr≡Sb]− bond length in 2 lies between other crystallo-
graphically characterized stibidos reported by Scheer (stibido,
[W≡Sb]; 2.5255(17) Å) and Liddle (stibide [Th≡Sb2−],
2.823(16)–3.269(19) Å) which correlates well with their ionic
radii {W6+(0.60 Å), Zr4+(0.72 Å), and Th4+(1.05 Å)}.[50,53,62]

The [Zr≡As]− motif in 3 also joins a scant class of structurally
characterized arsenidos.[10,26,30,42,46,49] In addition, the slightly
elongated bond length of 2.3951(8) Å is consistent with other
4d metal arsenides (Nb, 2.3078(5) Å; Mo, 2.252(3), 2.2248(5)
Å)) due to decreasing metal size across the row.[40,41]

Unlike ZrIV where the use of two intramolecular bases
facilitates sequential deprotonation of the PnH2

− in gen-
erating the Pn3− ligand; our use of various low-valent
TiII fragments has been demonstrated to promote deazo-
tation (N3

−) and decarbonylation (AsCO−) to obtain one
coordinate N3− or As3− ligand, respectively.[42,63,64] In the
case of P3−, a different approach was required using the
TiII complex, [K(crypt)][(PN)2TiCl] (5) with NaP(SiMe3)2,
followed by oxidative deprotection with XeF2 to form the
phosphide salt [K(crypt)][(PN)2Ti≡P] (6).[33] It was surmised
that a more convenient and scalable route could be achieved
directly with PH2

− and taking advantage of the weaker
bond dissociation enthalpies (BDE, kcal/mol) for P−H (74.2)
versus P−Si (86.8).[65,66] Gratifyingly, treatment of 1 equiv.
NaPH2 with equimolar 542 in THF at 60 °C for 30 min
resulted in quantitative formation of 6.[67] Complex 6 could
be spectroscopically confirmed via the highly downfield and
distinguishable broadened resonance for the [Ti≡P]− in the
31P{1H} NMR spectrum at 1446 ppm (Figure S24). Given the
decreasing BDE of Pn-H (Pn-H; Pn = P > As > Sb)[65,68]

our efforts were directed toward extending this protocol to
the heavier analogs, including an unknown 3d stibide moiety,
[Ti≡Sb]−. Moreover, addition of K(18-C-6)(THF)AsH2 to 5
in benzene-d6 over 10 min at 25 °C also led to rapid color
change from brown-red to pink-red, and work-up of the
reaction mixture resulted in isolation of the corresponding
arsenide [K(crypt)][(PN)2Ti≡As] (7) in 92% yield, which was
confirmed spectroscopically by comparison to independently
prepared complex (Figures S25,S26).[68] Performing the same
reaction of 5 with 1 equiv. K(18-C-6)(THF)SbH2 in benzene-
d6 resulted in a rapid color change from brown-red to
dark green solution over 5 min at 25 °C. Unfortunately,

monitoring the reaction mixture by 1H and 31P NMR spectra
revealed incomplete consumption of 5 along with a new
diamagnetic complex and H2 (4.47 ppm). The 31P{1H} NMR
spectrum showed two new resonances, a major product at
58 ppm along with a minor species at 48 ppm (Figure S27).
Despite optimization attempts, separation of the new species
formed in the mixture was always marred with unreacted
5.[69] To overcome this, we explored a more soluble “TiII”
synthon by replacing the cryptand in 5 with crown ether
18-C-6. Accordingly, treating [(PN)2TiCl][63] with KC8 and
18-C-6 in toluene at 25 °C over 12 h resulted in the
isolation of green and paramagnetic [K(18-C-6)][(PN)2TiCl]
(8) in 67% yield (µeff = 2.61(1) µB, 25 °C, benzene-d6).
A scXRD study revealed similar bonding metrics to that
of 5 but with a longer Ti–Cl distance of 2.4687(10) Å [5;
2.435(1) Å] and a closer Cl…K(18-C-6) contact of 6.018(6)
Å [5; 6.976(1) Å].[68] With precursor 8 in hand, addition
of equimolar K(18-C-6)(THF)SbH2 resulted in quantitative
formation of the stibide-ate complex [(PN)2Ti≡Sb{K(18-C-
6)}] (9), (Figure 2).[68] NMR spectral features (1H, 13C, and
31P) along with scXRD confirmed its identity, with the most
diagnostic feature being the short Ti≡Sb of 2.5181(4) Å
as well as close contact pairing interaction of the terminal
stibide and counter cation (Sb…K; 3.7289(5) Å) (Figure S59).
To generate the discrete salt, the addition of cryptand to a
toluene/THF solution of 9 quantitatively afforded the one
coordinate stibide [K(crypt)][(PN)2Ti≡Sb] (10) as a green
solid, which was also confirmed crystallographically (Figure 2)
and spectroscopically.[68]

The scXRD of 10 (Figure 2) revealed a τ 5 = 0.69 and
terminal stibide ligand (Ti≡Sb; 2.5118(9) Å, Table 1), with no
close contact pairing (Sb…K: 7.7309(14) Å). Akin to stibide
2, the experimentally determined Ti≡Sb bond length of
2.5118(9) Å aligns closer to the calculated value for a double
bond (2.502 Å) than that of a triple bond (2.340 Å, Table 1).
This interpretation is further implied by comparison with
the only crystallographically characterized 3d-metal bridging
stibinidene [{Cp*(CO)2Cr}2Sb][GaCl4] reported by Imhof
and coworkers (Cr; 2.378(2), 2.396(2) Å).[70]

Considering previous findings in our group of using
protected N atom sources, N(SiMe3)2

−, to access imido
scaffolds,[16] we sought to explore the viability of the ubiq-
uitous amide anion, NH2

−, as an N-atom transfer reagent.
Accordingly, heating an equimolar mixture of NaNH2, 18-
C-6, and 1 in benzene-d6 for 8 h afforded the parent imido

Angew. Chem. Int. Ed. 2025, e23745 (3 of 7) © 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
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Figure 3. a) UV–vis spectra of Pnictide complexes (Solid-Grey, 2;
Solid-Pink, 3; Solid-Green, 4; Dashed-Red, 6; Dashed-Pink, 7;
Dashed-Green, 10) in THF, respectively. b) Localized molecular orbitals
(LMOs) for the Zr─As bond. Contours are drawn at 0.05 a.u.

complex, [(PN)2Zr = NH] (11) in 35% yield along with the
elimination of H2 (Scheme 1).[68] Following H2 extrusion, the
formation of 11 most likely proceeds via an imide-hydride
[(PN)2Zr═NH(H)]−, followed by loss of H− presumably in
the form of insoluble “NaH”. The formation of 11 also
tantalizingly suggests a likely mechanism to the pnictide salts
whereby the alkali hydride acts as a base to form the pnictide
anion. However, the parent imide in 11 is such a weak acid
(43 > pKa > 36),[11] that the deprotonation step does not
take place. Formation of 11 avoids the more treacherous and
lower yield synthetic protocol involving reduction of trans-
(PN)2Zr(N3)2.[11] Since complex 11 is in fact a convenient
precursor to the nitride complex {(PN)2Zr≡N[µ2-Li(THF)]}2,
this strategy provides a more straightforward alternative to
traditional methods for the synthesis of parent imides as well
as nitride salts.

To probe the electronic features in the pnictide series
we collected UV–vis spectra of the ZrIV complexes 2, 3,
and 4. The electronic absorption spectra clearly reveal a red
shift when moving down the pnictide series (388 (4), 539
(3), and 620 nm (2), Figure 3a). The observed differences
in the UV–vis spectrum could be attributed to relativistic
effects (vide infra). Notably, while the [Zr≡P]− complex lacks
visible region absorption bands, the [Zr≡As]−, and [Zr≡Sb]−

analogs exhibit weak but detectable transitions in the visible
range. Likewise, TiIV pnictides also exhibits red shift when
moving down the pnictide series (542 (6), 599 (7), and 727 nm
(10)). The trend is consistent with a smaller HOMO-LUMO
gap due to lesser extend of orbital overlap, but also the
increasing contribution of spin-orbit coupling.[55]

Quantum-chemical calculations[71] were conducted to a)
investigate subtle details of the Pn─M bond for the different

Figure 4.Wiberg bond indices for the Pn─M bond, broken down into σ

and π contributions as one moves down the pnictogen group.

choices of Pn (Pn = N, P, As, Sb, and hypothetical Bi) and M
(Ti, Zr), b) rationalize the trends in the 31P NMR shifts and
c) clarify the nature of the lowest energy transitions in the
UV–vis spectrum. For a), the ten structures were optimized at
level PBE[72]/dhf-TZVP[73]/D3-BJ[74]/COSMO[75] assuming
C2 symmetry, in reasonable agreement with scXRD, see
Table 1. Next, a Pipek–Mezey localization procedure[76] was
applied and Wiberg bond indicies (WBIs)[77] were calculated.
This was done separately for the two irreducible represen-
tations, which by construction allows for fully separating σ

and π contributions in the Pn─M multiple bond. Exemplary
results are shown for As–Zr in Figure 3b. The localized
molecular orbitals (LMOs) of all compounds are quite similar:
A lone pair (LMO1), a σ -bond (LMO2) and two π -bonds
(LMO3 and LMO4). In all cases there is Pn–M triple bond
character, but the bond strength in terms of the WBIs
(Figure 4) suggests two types. For N, P and As, the total WBIs
amount to 2.5 to 3, thus in fact in the typical range for triple
bonds whereas for Sb and Bi they are significantly lower at 1.9
to 2.3, respectively. The sudden decrease from As to Sb holds
independent from the choice of M and for both the σ and
π contributions; also reflected by a decrease of the electron
density at the bond-critical points from As to Sb (Table S5).

Regarding b), 31P NMR shielding constants were calcu-
lated at one- and two-component all-electron relativistic level
within the (one-electron) exact two-component decoupling
method, 1c-X2C78 and 2c-X2C,[78] employing x2c-TZVPall-
2c basis sets and keeping the remaining settings.[79] Table 1
illustrates how the experimental chemical shifts, in particular
the increase from N to Sb, are accurately reproduced by
the two-component variant[79] which accounts for spin-orbit
coupling (SOC), but not by the one-component variant[80]

which neglects it. This clearly indicates the role of SOC at the
Pn atom on the chemical shift of the P atom (SO at heavy
atom influences shift at light atom, SO-HALA[81]), in this case
remarkably beyond the M atom.

For c) time-dependent DFT calculations with the PBE0[82]

functional were performed without considering SOC. The
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 15213773, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202523745 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [12/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Communication

experimental trend of increasing wavelength for the onset
of absorption when moving down the Pn series is well
reproduced by the calculations, albeit significantly red-shifted.
The lowest singlet excitation (mostly HOMO and LUMO)
is at 2.0/1.8/1.6 eV for Pn = P/As/Sb, M = Zr (experiment
3.2/2.3/2.0 eV), followed by excitations from HOMO-1 to
LUMO at 2.1/1.9/1.7 eV and from HOMO-2 to LUMO
at 2.5/2.3/2.0 eV. HOMO and HOMO-1 are the Pn-Zr π -
binding orbitals, HOMO-2 is the σ -binding orbital, and the
LUMO is the delta dxy orbital at Zr, i.e., perpendicular to
the Pn─Zr bond (Figures S60 and S61). This trend also holds
for the HOMO-LUMO gap (3.3/3.0/2.8 eV for Pn = P/As/Sb,
M = Zr), also when including SOC (3.3/3.0/2.7 eV at 2c-X2C
level), but then singlet-triplet excitations are allowed, starting
at 1.8/1.5/1.1 eV, and with much lower oscillator strengths, see
also Table S4.

We reported here a unified and generalizable strategy for
the synthesis of a series of one coordinate pnictide salt (Pn3−

= P, As, and Sb) complexes of Zr and Ti. Using practicable
alkali metal reagents such as PnH2

−, we establish H2 extrusion
as a congruent strategy for generating discrete, terminal pnic-
tide complexes containing M─Pn multiple bonds including
unprecedented 4d and 3d metal stibides. Crystallographic,[83]

spectroscopic, and computational analysis reveal systematic
trends in bond metrics and electronic structure, bridging
known gaps between lighter and heavier congeners. We also
demonstrate NaNH2 to serve as an NH group transfer source,
offering a simplified approach to a parent Zr imide and nitride
complexes but also providing clues along the H2 extrusion
pathway.
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