KIT | KIT-Bibliothek | Impressum | Datenschutz

Acoustic Traffic Attribute Classification for ITS: A Comparative Study of Machine Learning and CNN Approaches

Meng, Jiawen 1; Demetgül, Mustafa ORCID iD icon 1; Lazarova-Molnar, Sanja ORCID iD icon 1; Gauterin, Frank ORCID iD icon 2; Vinel, Alexey 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Reliable information about traffic attributes, including vehicle type, speed range, and direction, is essential for traffic management and intelligent transportation systems (ITS). Although radar- and camera-based solutions can provide accurate data, they are often expensive, vulnerable to environmental conditions, and may raise privacy concerns.In this study, we investigate passive acoustic sensing as a cost-effective and privacy-preserving alternative. Using stereo vehicle pass-by noise encoded as Mel-Frequency Cepstral Coefficients (MFCCs), we simultaneously classify vehicle type, speed range (inferred from road-specific speed limits), and movement direction. Three modeling strategies are evaluated: (1) traditional machine learning on time-averaged MFCCs, (2) a hybrid model combining ResNet50-based feature extraction with LightGBM classification, and (3) end-to-end convolutional neural networks (CNNs), including a lightweight multi-task variant enhanced with attention mechanisms.Experiments are conducted on the public IDMT-Traffic dataset, comprising 17,506 stereo audio clips. Our multi-task CNN achieves the best overall performance with only 646K parameters, reaching approximately 99% accuracy across all three tasks. ... mehr


Originalveröffentlichung
DOI: 10.1109/VTC2025-Fall65116.2025.11310562
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 06.01.2026
Sprache Englisch
Identifikator ISBN: 979-8-3315-0320-8
ISSN: 2577-2465
KITopen-ID: 1000189560
Erschienen in 2025 IEEE 102nd Vehicular Technology Conference (VTC2025-Fall)
Veranstaltung 102nd IEEE Vehicular Technology Conference (IEEE VTC-Fall 2025), Chengdu, China, 19.10.2025 – 22.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–7
Serie IEEE Conference on Vehicular Technology (VTC) ; 102
Schlagwörter Intelligent Transportation Systems (ITS), Vehicle Type Classification, Speed Range Classification, Road Noise, Convolutional Neural Networks (CNNs), Machine Learning (ML)
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page