Check for

updates

R DIGITAL Associaiivn
acvyel® 155 Ry e @mopen}

£ Latest updates: https://dl.acm.org/doi/10.1145/3754598.3754673

RESEARCH-ARTICLE
Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline
Constraint

DOMINIK SCHWEISGUT, Humboldt University of Berlin, Berlin, Germany
A. BENOIT, Georgia Institute of Technology, Atlanta, GA, United States
YVES L ROBERT, Lyon Higher Normal School, Lyon, Auvergne-Rhone-Alpes, France

HENNING MEYERHENKE, Karlsruhe Institute of Technology, Karlsruhe, Baden-
Wurttemberg, Germany

Open Access Support provided by:
Karlsruhe Institute of Technology
Georgia Institute of Technology
Lyon Higher Normal School
Humboldt University of Berlin

: PDF Download
j;b 3754598.3754673.pdf
< 14 January 2026

Total Citations: 0
Total Downloads: 49

Published: 08 September 2025
Citation in BibTeX format

ICPP '25: 54th International Conference
on Parallel Processing

September 8 - 11, 2025
CA, San Diego, USA

ICPP '25: Proceedings of the 54th International Conference on Parallel Processing (September 2025)

https://doi.org/10.1145/3754598.3754673
ISBN: 9798400720741

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3754598.3754673
https://dl.acm.org/doi/10.1145/3754598.3754673
https://dl.acm.org/doi/10.1145/contrib-99661785372
https://dl.acm.org/doi/10.1145/institution-60000762
https://dl.acm.org/doi/10.1145/contrib-81100559626
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-81100332656
https://dl.acm.org/doi/10.1145/institution-60005667
https://dl.acm.org/doi/10.1145/contrib-81440618798
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/institution-60005667
https://dl.acm.org/doi/10.1145/institution-60000762
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3754598.3754673&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/icpp
https://dl.acm.org/conference/icpp
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3754598.3754673&domain=pdf&date_stamp=2025-12-20

Carbon-Aware Workflow Scheduling with Fixed Mapping and
Deadline Constraint

Dominik Schweisgut
Humboldt-Universitit zu Berlin
Berlin, Germany
Karlsruhe Institue of Technology (KIT)
Karlsruhe, Germany
dominik.schweisgut@hu-berlin.de

Yves Robert
ENS Lyon
Lyon, France
IUF
Paris, France
yves.robert@ens-lyon.fr

Abstract

Large data and computing centers consume a significant share of
the world’s energy consumption. A prominent subset of the work-
loads in such centers are workflows with interdependent tasks,
usually represented as directed acyclic graphs (DAGs). To reduce
the carbon emissions resulting from executing such workflows
in centers with a mixed (renewable and non-renewable) energy
supply, it is advisable to move task executions to time intervals
with sufficient green energy when possible. To this end, we for-
malize the above problem as a scheduling problem with a given
mapping and ordering of the tasks. We show that this problem can
be solved in polynomial time in the uniprocessor case. For at least
two processors, however, the problem becomes NP-hard. Hence,
we propose a heuristic framework called CaWoSched that com-
bines several greedy approaches with local search. To assess the
16 heuristics resulting from different combinations, we also devise
a simple baseline algorithm and an exact ILP-based solution. Our
experimental results show that our heuristics provide significant
savings in carbon emissions compared to the baseline.

CCS Concepts

« Theory of computation — Design and analysis of algo-
rithms.

Keywords

Workflow scheduling, carbon-aware computing, DAG scheduling,
heterogeneous platforms

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPP °25, San Diego, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754673

627

Anne Benoit
ENS Lyon
Lyon, France
IUF
Paris, France
IDEaS, Georgia Tech
Atlanta, USA
anne.benoit@ens-lyon.fr

Henning Meyerhenke
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
meyerhenke@kit.edu

ACM Reference Format:

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke.
2025. Carbon-Aware Workflow Scheduling with Fixed Mapping and Dead-
line Constraint. In 54th International Conference on Parallel Processing (ICPP
’25), September 08—11, 2025, San Diego, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3754598.3754673

1 Introduction

The number of large and geo-distributed data and computing cen-
ters grows rapidly and so is the amount of data processed by them.
Their services have become indispensable in industry and academia
alike. Yet, these services result in a globally significant energy con-
sumption as well as carbon emissions due to computations and
data transfer, see for example [3] for concrete numbers. Since the
combined carbon footprint of all data/computing centers on the
globe is even higher than that of air traffic [24], reducing this foot-
print is of immense importance, both from an ecological, political,
and economical perspective. On the technical side, data/computing
centers have started to use a mix of different power sources, giving
priority to lower carbon-emitting technologies (solar, wind, nuclear)
over higher ones (coal, natural gas). This raises new challenges and
opportunities for HPC (High Performance Computing) scientists;
for example, designing efficient scheduling algorithms was already
a complicated task when computer platforms had only a single
power source — and thus the same level of carbon emissions at each
point in time. This task becomes even more difficult when a mix
of power sources leads to different carbon emissions over time: in
addition to optimizing only standard performance-related objec-
tives, one important new objective is to optimize the total amount
of carbon emissions induced by the execution of all applications in
a particular data/computing center.

Many workloads in a data/computing center, not only but in par-
ticular in a scientific context, can be seen as workflows consisting of
individual tasks with input/output relations. The algorithmic task
we focus on in this paper is to schedule such workflows (abstracted
as directed acyclic task graphs) on a parallel platform within some

https://orcid.org/0009-0008-2627-505X
https://orcid.org/0000-0003-2910-3540
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0002-7769-726X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754673
https://doi.org/10.1145/3754598.3754673

ICPP °25, September 08-11, 2025, San Diego, CA, USA

deadline. To focus on carbon footprint minimization, we assume
that the mapping and ordering of all tasks and communications are
already given, for instance as the result of executing the de-facto
standard HEFT algorithm [35]. A somewhat similar approach of
assuming a fixed mapping can be found in the literature, e. g., for
energy- and reliability-aware task scheduling and frequency scaling
in embedded systems [28].

In our simplified setting with a given mapping, minimizing the
total execution time, or makespan, can easily be achieved in linear
time with the ASAP greedy algorithm: simply execute each task
as soon as all preceding tasks and corresponding communications
have completed. The computing platform that we target instead
has a time-varying amount of green energy available, for example
due to solar and/or wind power produced for its data/computing
center. Moreover, the carbon emissions can vary from processor to
processor due to the latter’s different power demands, making the
platform completely carbon-heterogeneous.

The problem becomes combinatorial: while we cannot change
the mapping nor the ordering of the tasks on each processor, we
can shift the tasks (and the corresponding communication opera-
tions) to benefit from lower-carbon intervals, while enforcing the
deadline. Previous studies have shown that exploiting lower-carbon
intervals can be very beneficial, see e. g., [39]. Yet, this previous line
of research has either not focused on scheduling individual work-
flows or focused on reducing energy consumption [7, 36] rather
than carbon emission. As we outline in more detail in Section 2,
carbon-aware scheduling algorithms are still in their infancy.

Contributions. The main contributions of this paper are both the-
oretical and practical. On the theory side, we lay the foundations for
the problem complexity, with (i) a sophisticated fully-polynomial
time dynamic programming algorithm for the single processor case,
(ii) a proof of strong NP-completeness for a simplified instance with
2 or more processors, independent tasks, and carbon-homogeneous
processors, and (iii) the formulation of the general problem as an in-
teger linear program (ILP). On the practical side, we design efficient
algorithms that greatly decrease the total carbon cost compared to
a standard carbon-unaware competitor; for small instances, our
experimental results indicate that our algorithms achieve a quality
that is close to the optimal one derived from the ILP.

Outline. The rest of the paper is organized as follows. Section 2
surveys related work. In Section 3, we detail the framework. Sec-
tion 4 is devoted to complexity results. We introduce new carbon-
aware algorithms in Section 5 and assess their performance through
an extensive set of simulations in Section 6. Finally, we give con-
cluding remarks and hints for future work in Section 7. Note that
material omitted due to space constraints can be found in [32].

2 Related Work

Carbon-aware computing has received increasing attention in the
past few years, acknowledging the clearly non-negligible share
data/computing centers have on mankind’s carbon footprint - as
well as the need for action to reduce the emissions given the rapid
increase in data to be processed [10]. Most works in this more
general line of research retain a high-level workload perspective
and thus do not consider the concrete task of workflow sched-
uling. For example, a carbon-aware load balancing algorithm to

628

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke

reduce the carbon footprint of geo-distributed data centers con-
siders abstract workloads, not interdependent tasks [26]. It uses
the alternating direction method of multipliers to move workloads
to locations with lower carbon intensity. On a similar granularity,
global cloud providers use scheduler-agnostic workload shifting
to less carbon-intensive data centers, depending on the projected
availability of green energy in suitable locations and time inter-
vals [29]. A high-level workload perspective and a similar objective
is used by Hall et al. [18]. They devise a two-phase approach of
(i) day-ahead planning based on historical data and (ii) real-time
job placement and scheduling. As they consider abstract work-
loads and not workflows with interdependencies, their approach
is not directly comparable, either. Finally, while Breukelmann et
al. [9] model interconnected data centers as a weighted graph, they
still consider unrelated batch compute jobs as the workload. They
formalize the optimal allocation problem in this setting as a single-
leader multiple-follower Stackelberg game and suggest an ad-hoc
algorithm (which is not applicable in our setting) to solve it.

Regarding workflow scheduling in general, we refer the inter-
ested reader to surveys [2, 25] and a monograph [34] for a broader
overview. One possible way to categorize workflow scheduling
algorithms is to distinguish online algorithms (which do not know
the complete workflow when taking decisions for tasks) and plan-
based algorithms. Since this paper proposes a plan-based algorithm,
we focus on the latter. Even rather simplistic versions of plan-based
scheduling are NP-hard [15], which motivates the use of heuristics
for real-world applications. Two common approaches are list- and
partitioning-based heuristics. HEFT (heterogeneous earliest finish
time) [35] is a very influential and still popular list-scheduling al-
gorithm that has seen numerous extensions and variations over
the years [5, 8, 30, 31, 33]. It has two main phases that (i) assign
priorities to tasks and (ii) then assign tasks to processors based on
the priorities from the previous phase.

Partitioning-based scheduling heuristics, in turn, group tasks
into blocks and assign these blocks to processors, see e. g. [23, 27, 37].
This aggregation step helps in reducing the complexity of dealing
with individual task assignments in large-scale workflows.

Two prominent algorithms for energy-efficient workflow sched-
uling are GreenHEFT [13] and MOHEFT [14]. Both heuristics op-
timize where tasks are scheduled in order to save energy. Similar
to one type of our heuristics, TaskFlow [36] exploits slack in work-
flows, i. e., it takes advantage of tolerable delays by executing the
corresponding tasks on more energy-efficient hardware. Yet, they
all do not optimize for carbon emissions and thus do not consider
when tasks should run in order to exploit green energy availability.

The importance of reducing carbon emissions has led to a num-
ber of papers working on this goal. Wen et al. [38], for example,
propose a genetic algorithm for adaptive workflow mapping whose
main rationale is to move tasks between geographically distributed
data centers — depending on their energy mix. The approach only
provides a mapping of tasks to data centers, but no task starting
times. Moreover, the largest workflows in their experiments have up
to 1,000 tasks, an indication that the genetic algorithm is quite time-
consuming. A similar rationale of moving tasks to locations with
sufficient green energy is used by Hanafy et al. [19], who scale the
resources assigned to elastic cloud applications in a carbon-aware
manner. Considering a single data center location, in turn, Wiesner

Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint

et al. [39] investigate how beneficial shifting of execution times
to intervals with lower carbon emissions can be. By evaluating
the impact of time constraints, scheduling strategies, and forecast
accuracy, they find significant potential (under certain conditions)
and provide guidance regarding corresponding data center policies.

Altogether, this work is in line with the general trend of mini-
mizing energy consumption and/or carbon emissions. However, to
the best of our knowledge, it is the first to focus on optimizing the
scheduling of a given workflow mapping and ordering to benefit
from time-varying green energy.

3 Framework

We use a suitable time unit (e.g. seconds, minutes, ...) and express
all parameters as integer multiples of this unit.

Platform and application. The target platform C is a cluster of
P heterogeneous processors {p1, ..., pp}. The target application
consists of a workflow modeled as a Directed Acyclic Graph (DAG)
G = (V,E, w,c), where the vertex set V represents the set of n
tasks v1,...,0,. An edge (v;,0j) € E represents a precedence con-
straint between tasks v; and v;, meaning that task v; cannot start
before task v; is completed and its output was communicated to
the processor handling task v;.

We assume that the mapping is given, as well as the ordering
of the tasks and the communication operations (i.e., data transfer)
on each processor. Therefore, if two tasks are mapped on the same
processor with task v; planned before task v, we add a precedence
constraint (v;, vj) to E, to ensure that the order is respected.

Given the mapping, the set of communications is represented
by E’ C E, which contains all edges (v;,v;) € E such that the two
tasks are mapped on different processors, in which case data must
be communicated between both processors before v; can start its
execution. However, when the two tasks are on the same processor
((vi,vj) € E\ E’), task vj can start as soon as task v; is finished.

Each task v; € V has a running time «(v;), and each edge
(vi,vj) € E’ has a communication time ¢(v;,v;), which accounts for
the amount of data that has to be communicated from the processor
of task v; to the processor of task v;. Computation and commu-
nication times can be arbitrary and are given, which allows us to
account for any heterogeneity in computing speeds and/or link
bandwidths across the processors.

Communication-enhanced DAG G,.. For simplicity, we assume
that the cluster employs a fully connected, full-duplex communi-
cation topology, where each processor can directly communicate
with every other processor simultaneously in both directions. We
introduce P(P — 1) fictional processors {pp41,...,pp2}, one per
communication link, whose role is to execute all (potential) com-
munications on that link. This will clarify how to compute the
cost of a schedule. With these additional processors, each com-
munication (v;,0;) € E’ becomes a (fictional) task v; j of length
(vj j) = c(vj,v;). Furthermore, we add dependencies (v;,0; j) and
(vi,j,v;5), each with zero communication cost. Since the order of
communications is also assumed to be given with the mapping,
we add precedence constraints to express this order if two tasks
v, j and vy , are on the same communication link (represented by a
fictional processor). This is similar to the precedence constraints
added to express the order of computing tasks and we refer to this
set of constraints as E”/.

629

ICPP °25, September 08-11, 2025, San Diego, CA, USA

We obtain a communication-enhanced DAG G, = (V,, E, w),
where V. contains both V and all |[E’| communication tasks v; j:
Ve =V U{oij | (vi,0j) € E'},
and E. contains both the precedence relations expressing the order
on each processor (E \ E’) and the new dependencies related to
communication tasks:

Ec = (E\ E") U {(0,03). (vi,j,9)) | (vi,05) € E'YUE".

This DAG does not have any communication costs, since they have
all been replaced by tasks. The number of tasks is N = |V;| = n+|E’|,
the mapping of tasks on processors is given as well as the order of
tasks on processors (both original tasks from V and communication
tasks from E’). The construction of the extended platform with P?
processors and the corresponding DAG G, is straightforward.

Power profile. In every time unit, processor p;, 1 < i < P?,
consumes idle power of Piidle units, to which a working power of
P\l;vork units is added whenever P; is active, for a total power P (t)
at time ¢. A processor executing a task or a communication is active
from that operation’s start to its end. Note that communication
processors are likely to consume much less than regular (computing)
processors. In particular, we could set the static power of a link that
is never used to 0.

The horizon is an interval [0, T[, where T is the deadline. We as-
sume that the horizon is divided into J intervals {Iy, ..., Iy}, where

interval I; has length ¢; and Zle tj =T. WeletI; = [bj,ej[so
that £; = ej — bj for every 1 < j < J. The set of starting and ending
times of the J intervals is

E={b1=0,eq =b2,eg=b3,...,e]_1 =b],e]=T}.

Within each interval I}, there is a (constant) green power budget G;
for each time unit ¢ € I;. If the power consumed by all processors
at time t exceeds this budget, the platform must resort to brown
carbonated power, which will incur some carbon cost at time ¢. This
is the key hypothesis of this work: the carbon cost of a schedule
will depend in the end on which intervals are heavily used, or not,
by the processors. The scheduler must maximize the benefit from
greener intervals while enforcing all dependencies and meeting the
global deadline T.

Carbon cost. Given a schedule, i.e., a start time for each task
of V¢ (i. e., including communication tasks), it is easy to compute
its total carbon cost by looping over the T time units: for each
time unit ¢, sum up the power consumed by each processor, either
computing or communicating, £y = ijl Pi(t) (which may in-
clude P\i}ork or not). The carbon cost for ¢ € I; is assumed to be
proportional to the non-green power, and hence we simply write
CC; = max(P; — G},0). The total carbon cost of the schedule
is then CC = ZtT:_ol CC;. However, this approach has exponen-
tial (in fact, pseudo-polynomial) complexity, since the problem
instance has size Q(P2 + N + J +log(T) + max; <;<pe log(?’iidle) +
max; ¢;<p2 log(P\fvork) +max; <j<jlog(G;)). To compute the cost
of a schedule in polynomial time, we need to proceed interval by
interval and create sub-intervals each time a task starts or ends, so
that the number of active tasks is constant within each subinterval.
The carbon cost per subinterval then depends on the power cost
of the subinterval (CC; is constant within a subinterval) and the
interval length. Details can be found in [32, Appendix A.1].

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Optimization problem. The objective is to find an optimal sched-
ule, defined as a schedule whose total carbon cost CC is minimum.
To achieve this goal, the scheduler can shift around tasks (includ-
ing communication tasks) to benefit from greener intervals, while
enforcing all dependencies and meeting the deadline T.

4 Complexity Results

In this section, we present an involved dynamic programming (DP)
algorithm, establishing that the problem with a single processor
has polynomial time complexity. On the contrary, and as expected,
the problem with several processors is strongly NP-complete, even
with homogeneous processors and no communications, but we can
formulate the general problem as an integer linear program (ILP).

4.1 Polynomial DP algorithm for one processor

THEOREM 4.1. The problem instance with a single processor has
polynomial time complexity.

Proor. Consider the problem instance with a single processor
executing tasks v1, ..., v, in this order (with n = |V|, no commu-
nication tasks in this case). We start with a pseudo-polynomial
algorithm: for 1 < i < nand1 <t < T, we let Opt(i, t) be the
cost of an optimal schedule for the first i tasks and where task v;
completes its execution exactly at time ¢, storing the value oo if no
such schedule exists. We have the induction formula

Opt(i,t) = sq@gn(v') {opt(i — 1,5) + cc(vi, 1)}, (1)

where cc(v;, t) is the cost to execute task v; during the interval
[t —w(v;), t[. Since there is a single processor, this can be computed
in linear time by computing the length of its intersection with the
intervals I;. In Eq. (1), we loop over possible termination dates for
the previous task v;_1. For the initialization, we simply compute
the value of Opt(1,t) for all t > w(v1), and let Opt(1,t) = oo for
t < w(vy).

This dynamic programming algorithm is pseudo-polynomial
because it tries all possible values t € [1,T] for the end times of
the tasks. To derive a polynomial-time algorithm, we show that we
can derive an optimal algorithm while restricting to a polynomial
number of end dates.

Given any single processor schedule S, we define a block as a
set of consecutive tasks in the schedule, i. e., there is no idle time
between tasks within a block. Note that if a task has idle time before
and after it, it forms a block by itself. Furthermore, schedules where
each block either starts or ends at a time in & are called E&-schedules
(recall that & = {b; = 0,e; = bz,e2 = b3,...,ej_1 = bj,ef =T} is
the set of starting/ending times of intervals). We can then prove
the following Lemma (see proof in [32, Appendix A.2]) O

LEMMA 4.2. With a single processor, there always exists an optimal
&E-schedule.

According to this lemma, we can therefore restrict the pseudo-
polynomial dynamic programming algorithm to only using task
end times that belong to a refined set of end times &’, which is
of size O(n3]) (see [32, Appendix A.2]) thereby leading to a fully
polynomial running time.

630

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke

4.2 NP-completeness of the multiprocessor case

THEOREM 4.3. The problem instance with several processors is
strongly NP-complete, even with uniform processors and independent
tasks (hence no communications).

Proor. We consider the class UCAS of decision problem instances

with P processors with uniform power consumption, i.e., Piidle =0,
pL =1for1 < i< P andaninput DAG G = (V,E,w,c = 0).

Given a bound C, we ask whether there exists a valid schedule
whose total carbon cost does not exceed C. We prove in [32, Ap-
pendix A.3] that UCAS is strongly NP-complete by reducing the
well-known 3-Partition problem to it. O

4.3 Integer linear program

We formulate the problem as an integer linear program. Due to
space constraints, we only sketch the derivation and refer to [32,
Appendix A.4] for details. The ILP is written in terms of time units,
hence it has a pseudo-polynomial number of variables. As stated in
Section 3, the objective function is then to minimize

T-1 p?
CC = Z max Z (Pildle +4(t, i)Pévork) -Gi0|, ()
=0 i=1

where §(t,i) is a boolean variable that specifies whether proces-
sor p; is active at time ¢. Note that we still use the communication-
enhanced graph, and the ILP enforces all dependence constraints
and guarantees that all tasks are completed by the deadline T.

5 Algorithms

In this section, we present CaWoSched, a carbon-aware workflow
scheduler for the scheduling problem of minimizing the carbon
cost, given a mapping and a deadline. Recall that we work on the
communication-enhanced DAG G, = (V,, E¢, w). In Section 5.1, we
first present the baseline algorithm, ASAP (As Soon As Possible),
which schedules each task at its earliest possible start time, with-
out taking the intervals into account. Section 5.2 presents several
variants of a greedy procedure that allocates start times to tasks,
building on a score that is computed for each task. Finally, we ex-
plain in Section 5.3 how to further improve the schedule obtained
by the greedy algorithm, by using local search.

5.1 Baseline algorithm

The ASAP baseline algorithm starts each task at their earliest possi-
ble start time (EST). To compute these times, we proceed similarly
to the computation of a topological ordering.

For all tasks u € V; with in-degree 0 (guaranteed to exist since
G¢ is acyclic), we set EST (u) = 0 and decrease by one the in-degree
of successor tasks (tasks v such that (u,v) € E;). A task v obtains
an in-degree of 0 once all of its predecessors have been handled,
and we can then compute its earliest start time as:

EST(v) = max {EST(u)+w(u)},
(u,0)€E,
which corresponds to the time when all predecessors have com-

pleted their execution, when they are started as soon as possible.
The computation of EST is done with a queue to handle tasks. The

Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint

proof for correctness and existence is similar to the proof of cor-
rectness for Kahn’s algorithm for topological sorting [21] and is
hence omitted here.

5.2 Greedy schedule

We now describe how to compute a greedy schedule for the work-
flow, while accounting for the carbon cost of each interval (ASAP
does not consider intervals at all). The idea is to assign a score to
each task, and sort the tasks accordingly. Afterwards, we process
the tasks in this order and try to find a good starting time for them.

Scores for the tasks. The goal of the scores is to express how
beneficial it is to schedule a task before other tasks.

The first score is the slack s(v) of task v, which represents the
difference between the latest possible starting time of a task o,
LST(v), and its earliest start time EST (v).

LST can be computed similarly to EST, using a queue to handle
tasks. We set LST (v) = T — w(v) if v € V. and decrease by one the
out-degree of predecessor tasks (tasks u such that (u,0) € E¢). A
task u obtains an out-degree of 0 once all of its successors have
been handled, and we can then compute its latest start time as:

LST(u) = min {LST(v) — w(u)}.
(u,v)€E.

Hence, the slack s(v) = LST(v) — EST (v) describes the number
of time units by which a task v can be shifted, since its start time
has to be between EST (v) and LST (v). If the slack of a task is large,
then it usually means that we have some flexibility to schedule it.
We therefore try first to schedule tasks with a small slack, since
there will still be room to shift tasks with a higher slack later. Note,
however, that the slack does not account for the running time of
the task.

The second score is the pressure(o)f a task o, defined as:

w(v
plo) = s(0) +w(v)

While slack does not take the running time into account, pressure
accounts for it since it might play an important role for the power
usage of the cluster. For pressure values, we have 0 < p(v) < 1,
with a pressure of 1 when there is no flexibility (i.e., s(v) = 0).

Hence, on the one hand, there is a high pressure to schedule a
task v if its running time is large compared to the range in which
it can run. On the other hand, if a task has low pressure, it means
that there is a lot of flexibility for starting the task. In this case, it is
beneficial to schedule tasks with high pressure first; hence, we sort
the tasks by non-increasing order of pressure.

However, both scores do not account for the heterogeneity of
the processors in terms of power consumption. Hence, we also
introduce two weighted scores, where the functions for a task v
mapped on processor p; are multiplied by the factor:

w f (i) = Pildle + P‘fvorlf
max (Pi]dle + P\{V()rk)
for pressure and its reciprocal for slack. For slack, we use the recip-
rocal since tasks are sorted in non-decreasing order.

Subdivision of the intervals. Recall that Iy, . . ., Iy are the initial
intervals coming from the power profile. As discussed in Section 4.1,
there is a more fine-grained subdivision of these intervals, such
that every task starts at the beginning of such an interval when we

631

ICPP °25, September 08-11, 2025, San Diego, CA, USA

look at the special case of one processor. Motivated by this result
and the question of how to find a good starting time for a task
without looking at every time unit, we do a similar subdivision for
the multiprocessor case. On each processor, we create all possible
blocks of at most k = 3 consecutive tasks (the parameter k is used
to limit the number of intervals, and hence the time complexity of
the heuristics). Each block is tentatively scheduled to start or end
at one of the original intervals, and we memorize the possible

start times for each task and each block. When this is done on
all processors, we sort the possible start times and compute the
induced subdivision of the intervals.

Further refinement could be used by considering larger block
sizes k > 3, but we observed in our experiments that k = 3 already
creates a lot of subintervals.

Algorithm variants without local search. With four scores (slack,
pressure, weighted-slack, weighted-pressure) and two interval sub-
divisions (normal or refined), we obtain eight algorithm variants:
slack (unweighted, normal), slackW (weighted, normal), slackR
(unweighted, refined), slackWR (weighted, refined) for slack and
analogously with prefix press for pressure.

We now detail how these algorithms select a starting time for
each task, which is always a time at the beginning of an interval.

Given a score and an interval subdivision, we pick the next task,
say v, according to the best score value. The interval set is denoted
as {I1,..., Iy}, where J" = J if intervals are not refined, and J’ > J
otherwise. We have I; = [bj, e;[. First, the algorithm computes
the subset of the intervals such that EST(v) < bj < LST(v), ie,,
intervals at the beginning of which the task can be started.

If this set is empty (which is rarely the case in practice), we
simply start the task at time EST (v). Otherwise, we sort the inter-
vals according to their budget G; and schedule the task to start at
the beginning of the interval with the highest budget. If there are
multiple intervals that are possible, we use the interval with the
earliest starting point.

Afterwards, we look at all intervals during which task v runs.
For the first and last intervals, if v does not cover the whole interval,
we split the interval in two sub-intervals (one where the task is
running, the other where it is not). Then, on each interval where the
task runs, we decrease the power budget by Piidle + SD";V ok Where
pi is the processor on which task v is mapped, to account for the
fact that there is now a task running in this interval and consuming
some power — hence the green budget is lower.

Also, once the task has been scheduled, this influences the EST
and LST of other tasks as well. Hence, we update this for all tasks
that have not been scheduled yet. In particular, these updates have
to be made possibly for the whole graph, and we use a precomputed
topological order for this. These updates take O(n + |E;|) time.

5.3 Local search

Once a greedy schedule has been obtained, we propose to refine
this schedule by doing a local search, exploiting the flexibility that
tasks still provide within the greedy schedule. The corresponding
algorithm variants receive a suffix of -LS, for example pressWR-LS.

For the local search, we introduce a parameter 0 < g < T — 1.
First, we sort the processors by non-increasing power consump-

tion P! | i.e. the more costly processor is considered first. For
work

ICPP °25, September 08-11, 2025, San Diego, CA, USA

each processor in this order, we then iterate over the tasks of the
processors from left to right and look 7 time units to the left and
right, and check whether moving the task would give us a gain and
is valid. This means that we make sure for every possible move
that the corresponding start time of a task v stays in the interval
[EST (v), LST(v)]. To this end, we iterate over the time units from
the earliest to the latest. If we find a legal move with a positive gain,
we apply it and update the cost. (One could also check all legal
moves and apply the best one. However, preliminary experiments
showed that this would not significantly improve the outcome, so
we opted for the faster variant.) Once this has been done for all
tasks on the current processor, we process the tasks of the next
processor in the ranking. At each round, we record whether we
had a positive gain or not. If there was one round through the tasks
without gain, we stop the local search.

6 Experimental Evaluation

In this section, we evaluate the proposed carbon-aware scheduling
framework CaWoSched with its numerous algorithm variants. We
mainly focus on solution quality and running time in comparison to
the baseline ASAP. For small instances, we also compare the quality
against optimal solutions derived from the ILP formulation. The
code and data used in the simulations are publicly available for re-
producibility purposes at https://github.com/KIT-EAE/CaWoSched.

6.1 Simulation setup

Target computing platform. We consider two target computing
platforms with a heterogeneous setup; their properties are inspired
by real-world machines used for the experimental evaluation in [6].
There are six processor types, and we consider 12 (resp. 24) nodes
of each type for the small (resp. large) cluster, hence a total of 72
(resp. 144) compute nodes.

In addition to the normalized speed values (see Table 1), we as-
sign each processor a value for its idle power consumption %,
and its active power consumption #_ . . The values for the power
consumption are inspired by values coming from Intel [20] for
modern processors. Note that we did not choose £__, too large
since the CPU utilization in data centers is often far from 100% [1].
While the correlation between power consumption and processor
speeds may not be obvious, the general trend is that faster pro-
cessors consume more power, hence a ranking of the processor
types: nodes of type PT1 are the slowest/least consuming nodes,
up to PT6, which are the fastest/most consuming ones. According
to [1], the power consumption of the network is much smaller than
that of computation, hence we draw the values for Pi dle and Pwork
randomly between 1 and 2 for communication links, in order to
introduce a small amount of heterogeneity.

Workflows and mappings. We evaluate the presented algorithmic
framework on 34 workflows. The corresponding DAGs can be di-
vided into real-world workflows obtained from [6] (atacseq, bacass,
eager and methylseq) and workflows obtained by simulating real-
world instances using the WFGen generator [11]. We transformed
the corresponding definition for the workflow management system
Nextflow [12] to a .dot format with a Nextflow tool. Since the re-
sulting DAGs contain many pseudo-tasks that are only internally
relevant for Nextflow, we deleted them, following what was done

632

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke

in [22]. For the simulated workflows, we use one of the respective
real-world instances as a model graph and scale it up in size. As
number of vertices, we use 200, 1000, 2000, 4000, 8000, 10000, 15000,
18000, 20000, 25000 and 30000. Every graph has vertex and edge
weights following a normal distribution, where we make sure that
the vertex weights are in general larger than the edge weights. Note
that these are normalized values, and the actual running time of the
task is determined by its vertex weight and its assigned processor.
We normalize the network communication bandwidth to 1 since its
influence is not considered here.

Furthermore, we generate for every graph two mappings, one
for cluster small and one for cluster 1arge. The mappings are gen-
erated with our own basic HEFT implementation without special
techniques for tie-breaking, because that would not change the
fact that HEFT is not carbon-aware. Since there are more fast and
power-intensive processors on the large cluster, HEFT schedules
more tasks to these processors and hence there are fewer tasks per
processor on the other processors, compared to the small cluster.

Power profiles. For each workflow, we generate four differently
shaped (renewable) energy profiles for different scenarios. We make
sure that green power is always at least the sum of the idle power
of the processors and at most the sum of idle power and 80% of
the sum of the work power. The rationale is as follows: if we do
not have enough green power or more green power than required
overall, the decisions of the scheduler become irrelevant. Hence,
we try to create scenarios where scheduling decisions have to be
done in a smart way. The scenarios are the following:

S1: A —x? shape, where the interval budgets follow this function
with random perturbations. This models a situation where
there is little green power in the beginning, then the supply
with green energy is rising and falls at some point again
(solar power from morning to evening, for example).

S2: An x?% shape that models the same situation as in S1, but
starting from midday, again with random perturbations.

S3: A sin(x) shape, where we model 24 hours of this scenario,
i.e., we have little green power in the beginning and then we
follow a sinus shape as given on [0, 277]. We also add random
perturbations.

S4: A constant green power budget with perturbations (which
can model situations where one has storage for renewable
energy or nuclear power — see setting of France in [39]).

For each scenario, we have four different deadlines. Let D be the
time required by the ASAP schedule, which is the tightest deadline.
We consider deadlines D, 1.5D, 2D, and 3D, providing more or less
flexibility to shift tasks around in the schedule.

Table 1: Processor specifications in the clusters.

Processor Name Speed #,,. £ . small large

PT1 4 40 10 x12 X24
PT2 6 60 30 xX12 X24
PT3 8 80 40 X12 X24
PT4 12 120 50 x12 xX24
PT5 16 150 70 xX12 X24
PT6 32 200 100 X12 X24

https://github.com/KIT-EAE/CaWoSched

Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint

Ranking distribution of algorithms

Algerithm variant
80 mm slackR-LS
= slack-LS
&709 m= slackWR-LS
] 60 B slackW-LS
o
= mm pressR-LS
4 50 mmm press-LS
f pressWR-LS
3 40 4 m pressW-LS
g mmm ASAP
= 301
[}
o
@ 20
[+
101
o -
1 2 3 4 5. 6. 7 8 9.

Figure 1: The distribution shows for which percentage of the
instances each algorithm variant was ranked first, second,
third, etc. Note that multiple algorithm variants can have the
same rank.

Hence, we have in total 16 power profiles. For the workflow types
atacseq and methylseq, we have 12 graphs per type, for bacass we
only use the real-world version due to problems with scaling, and
for eager we have 9 graphs with up to 18000 vertices. This results
in 2 X 34 X 16 = 1088 simulations (2 platforms, 34 workflows,
16 power profiles) per algorithm. All algorithms are implemented
in C++ and compiled with g++ (v.13.2.0) with compiler flag -O3.
The experiments are managed by simexpal [4] and executed on
workstations with 192 GB RAM and 2x 12-Core Intel Xeon 6126
@3.2 GHz and CentOS 8 as OS. The ILP is implemented using
Gurobi’s Python API [16] and for license reasons executed on a
machine with a 13th Gen Intel(R) Core(TM) i7-1355U processor with
16GB RAM running Ubuntu 24.04.1 LTS. Further, for the simulation
results below, we set the tuning parameter for the subdivision to
k = 3 and the tuning paramater for the local search to u = 10.

6.2 Simulation results

We compare the quality of the schedules returned by the CaWoSched
variants. Recall that there are two base scores, slack and pressure,
that can be weighted by a factor accounting for the heterogeneity
in power consumption of the processors, and we can use either
the original or refined intervals (see Section 5). The heuristics then
apply a local search to further improve the solution. We first com-
pare the solution quality when the local search is applied, but we
also analyze the influence of the local search on different algorithm
variants. Next, we study the impact of various parameters. We also
compare the heuristics’ solution to the optimal solution returned
by the ILP on small instances.

With local search. As a first measure of performance, we rank the
different algorithm variants for each instance. This means that we
record the frequency with which each algorithm variant ranks first,
second, third, etc., in terms of carbon cost. Note that this means that
if two variants have the same cost, they will end up with the same
rank and the next rank is then skipped. The results can be seen in
Figure 1; the main observations are the following. First, we can see
that all our algorithm variants are ranked first significantly more
often than this is the case for the baseline ASAP. Note that even if

633

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Performance profile (carbon cost) for all instances

1.04
g j
g 0.8
8 Algorithm variant
E ASAP
5 0.6 1 —— press-LS
S —— pressR-LS
o —— pressW-LS
g_ 044 pressWR-LS
g slack-LS
—— slackR-LS
021 —— slackw-Ls
—— slackWR-LS
10 08 06 04 02 00

Cost ratio T

Figure 2: The ratio is the best cost found divided by the algo-
rithm variants’ own cost. Then the percentage of instances
for which this is larger than or equal to 7 is plotted. A higher
curve is better.

the baseline has rank 1, it does not necessarily mean that a variant
of the algorithm performed worse, since they all could have found
the optimal solution. In particular, we can see that the baseline
performed worst in 84.01% of the cases. Another observation is that
none of the algorithm variants does significantly outperform the
others in terms of ranking. The pressWR-LS variant is ranked first
most frequently (34.47%), but with a small margin.

If we look at performance profiles, we obtain more detailed
insights about the quality of each variant, see Figure 2. We report
the proportion of instances with a cost ratio at most 1, where the
cost ratio is the best carbon cost divided by the algorithm’s carbon
cost. Note that if the algorithm’s carbon cost is 0, then the best cost
is also 0 and the ratio is set to 1. Otherwise, a ratio of 1/2 means
that the heuristic’s cost is twice higher than the best cost, and a
ratio of 0 corresponds to a non-null carbon cost, while the best
is 0. Even though we can see here again that for 7 = 1.0, i.e., the
proportion of instances for which the algorithm variant achieves
the best cost, is the highest for pressWR-LS, we also observe that
for lower t values, i.e. more suboptimality tolerance, the curves
for the algorithm variants using slack as base score surpass the
pressure variant, which hints at a better overall performance on
average. Interestingly, this observation seems to be influenced by
the tolerance in the deadline. This is why we next illustrate how
the deadline impacts the performance profile, as shown in Figure 3.
While we can observe for a tight deadline that pressR and pressWR
have a higher curve, these variants are clearly surpassed by slack
variants when there is more tolerance in the deadline.

Another important aspect for the evaluation is the cost improve-
ment over the baseline algorithm ASAP. For this, we first look at
the median of the cost ratio between the baseline ASAP and the
different algorithm variants over all instances. This is shown in
Figure 4. (Note that a geometric mean is not applicable here be-
cause the ratio can be 0 if our heuristic has carbon cost zero but the
baseline has not. Further, since there are cases when the baseline
performs better than our heuristics, we cannot use the arithmetic
mean, either.) We can see that all algorithms are closely together
with a cost ratio median of ~ 0.6, meaning that the algorithm needs
only 60% of the carbon cost compared to the baseline (or, vice versa,

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Performance profile (carbon cost) for deadline = makespan

Performance profile (carbon cost) for deadline = 1.5 - makespan

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke

Performance Profile (Carbon Cost) for deadline = 3.0 - makespan

Algorithm variant
— press-LS
—— pressRLS
— pressw-LS
pressWR-LS
—— slack-LS
— slackRLS
— slackW.LS
—— slackWR-LS

Proportion of instances
Proportion of instances

Algorithm variant

Algorithm variant
—— ASAP

= — press-LS
—— pressR-LS
—— pressW-Ls

— pressLS
—— pressR-LS
—— pressW-LS

o
By

pressWR-LS
— slack-LS
— slackR-LS
— slackW-LS
— slackWR-LS

pressWR-LS
— slack-Ls
— slackR-LS
— slackW.LS
— slackWR-LS

Proportion of instances
°
2

o

10 0.8 0.6 0.4 02 0.0 10 0.8
Cost ratio T

. o.
Cost ratio T

02 0.0 10 0.8 0.6 0.4 0.2 0.0
Cost ratio T

Figure 3: The evolution of the performance profiles when adding more tolerance to the deadline from left to right (data for

deadline factor 2.0 can be found in [32, Appendix A.5]).

o Median of cost ratios (lower is better)

0.8

Median

Algorithm variant

Figure 4: The median of the cost ratios obtained by dividing
heuristics carbon cost by the carbon cost of the deadline.

they are ~ 1.67X better). We also see that regarding this cost ratio,
the algorithm versions using pressure as base score perform better
than the slack variants — pressWR-LS has the best cost ratio me-
dian with 0.58. Again, we observe the impact of exploiting more
flexibility in terms of deadline in Figure 5, where it becomes clear
that the cost ratio improves with more flexibility. There, we can see
that while the gains for a tight deadline are moderate, the algorithm
slackW has a cost ratio of only 0.15 compared to the baseline (or,
vice versa, ~ 6.67X better). This is a behavior that we expected from
the algorithms, since we have more opportunities for scheduling
the tasks with an increased deadline.

To further investigate the improvement over the baseline, we
look at boxplots for the improvement. The results for all instances
are shown in Figure 6. What we can see here is that the solutions
for most instances lie in between =~ 0.25 and ~ 0.9, with most
medians around 0.6 (compared to the baseline). We also see that,
for some instances, the baseline performs better than the proposed
algorithms. One reason for this is that some power profiles provide
a lot of green power in the beginning of the horizon [0, T[. Hence,
for these profiles, scheduling the tasks as soon as possible might
be the best strategy. However, overall one can observe that this is
rarely the case and that the new algorithms significantly improve
over ASAP in terms of carbon cost.

Influence of local search. While we have studied so far the heuris-
tics’ behavior when the local search was applied, we also run four

634

Table 2: Minimum, maximum and average cost ratio for com-
paring the algorithm with and without local search.

Algorithm Variant Min Max Avg

slackR 0 1.0 0.25
slackWR 0 1.0 0.25
pressR 0 1.0 0.25
pressWR 0 1.0 0.23

of the heuristics without the local search to assess how much gain,
in terms of carbon cost, can be achieved thanks to the local search.
Note that we use a subset of the full test set for this approach,
namely all variants of the atacseq workflow type and the bacass
workflow. However, note that this still results in more than 400
experiments per algorithm variant. We report the minimum, maxi-
mum and average improvement in Table 2. Note that here we use
the arithmetic mean since the geometric mean is not applicable
because we can have a cost ratio of 0. (The results are still mean-
ingful since we only have values between 0 and 1.) We can see
that for every variant the cost ratio ranges from 0 to 1.0. A cost
ratio of 0 comes from instances where the algorithm achieves zero
carbon cost using local search, but the algorithm variant without
local search has positive carbon cost. Note that a cost ratio larger
than 1.0 is not possible since the local search approach is designed
as a hill climber. In general, we can see that our local search ap-
proach significantly improves the solution of the initial schedule. In
particular, we can observe in our experiments that there is a signif-
icant number of instances where the local search approach reaches
an optimal solution of 0, but the initial schedule has still positive
carbon cost. Further, we can see that the local search improves all
algorithm variants by a similar margin.

Impact of parameters. A complete study highlighting the impact
of all parameters through detailed results is available in [32, Appen-
dix A.5]. First, as expected, the ASAP baseline performs better when
there is a lot of green power at the beginning of the time horizon or
when there is no huge change as in Scenarios S4 or S2. We provide
detailed results for each power profile, while we have presented
so far aggregated results. Further, we can see that our algorithm
achieves a significantly better cost ratio when there is not much
green power in the beginning such as in Scenarios S1 and S3.

Also, we look separately at the cost ratios depending on the
cluster size. We can see here that the cluster size has no signifi-
cant influence on the performance of our heuristics. However, it

Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint

o Median of cost ratios (lower is better) for deadline = 1.0 - makespan

o Median of cost ratios (lower is better) for deadline = 1.5 - makespan

ICPP °25, September 08-11, 2025, San Diego, CA, USA

o Median of cost ratios (lower is better) for deadline = 3.0 - makespan

0.8 0.8
0.6 0.6
< <
5 s
2 2
= =
0.4 0.4
0.2 0.2
0.0 0.0
° o ° ° °
e O
& & & A S & & & & & & &
& ¢ &4 E S A

Algorithm variant

E

Algorithm variant

02

&,\? 2 4\,\? 2
&S &
& 5 ¢ §

o > o o

N & N &\5‘ & A
& & @ & &

& & P 5

s,

Algorithm variant

Figure 5: The evolution of the median of the cost ratios when adding more tolerance to the deadline from left to right (data for

deadline factor 2.0 can be found in [32, Appendix A.5]).

Cost ratio compared to ASAP (lower is better) Outliers
°

Cost ratio
Cost ratio

Algorithm variant Algorithm variant

Figure 6: Boxplot of the cost ratios obtained by dividing the
heuristics carbon cost by the carbon cost of the baseline.
Outliers are shown in the separate plot on the right.

influences the performance profile. While for the large cluster, the
curves are closer together, we see a similar situation as in Figure 2
for the smaller cluster.

Finally, we also study the impact of the number of tasks on
the solution. The general trend is that the cost ratio gets slightly
worse when the number of tasks increases. However, the effect is
not significant, and we can conclude that the improvement of our
heuristic over the baseline is in all cases significant.

Comparison with optimal solutions. We explore the quality of
the novel heuristics when compared to an exact solution. For this,
we use the ILP formulation presented in Section 4.3, and use the
ILP solver Gurobi [16]. Further, our implementation in Python uses
the NetworkX library [17]. We restrict to instances with up to 200
tasks, since the solver takes too long on larger instances (already
up to one hour for 200 tasks vs only milliseconds for each heuristic).
Note that the scope of this work is not to explore an efficient ILP
formulation for this algorithm, we solely want to explore the quality
of the novel algorithms. This is why we keep a simple but correct
ILP with time units instead of moving to an interval formulation.

We show an analysis of the results in Figure 7. What we can
see here is that the median cost ratio is still reasonable when we
compare our heuristics to exact solutions. Further, this seems to be
an achievement of our heuristics since we can see that the baseline
has a much worse cost ratio than our heuristics. Further, it is inter-
esting to see that there are a significant number of instances where
the cost ratio is 1.0, meaning that our heuristic is able to achieve
the optimal solution.

635

Cost ratio comparing heuristics against exact solutions (higher is better)

150

1.25

1.00

Cost ratio

0.75

0.50

0.25

0.00

Algorithm variant

Figure 7: Cost ratio obtained by dividing the ILP result
through the heuristic result. Red dots show the actual cost
ratios.

Running time in seconds

1200

oo
o
0o o o

1000

Running time[s]
3 8
3 3
amp@o o
o
oa 0o
o

8
3

200

hoom ‘

slackR-LS slack-LS slackWR-LS slackW-LS pressR-LS press-LS pressWR-LS pressW-LS ASAP
Algorithm variant

Figure 8: Time (in seconds) for each algorithm variant.

6.3 Running Time Evaluation

In this section, we present the time needed by the various algorithm
variants for computing a carbon-aware schedule. Even though it
is not the main goal of the scheduler to be as fast as possible, it is
important that it is not overly time-consuming to be applicable in
real-world scenarios.

Aggregated running time values based on all workflows are
shown in Figure 8. We can observe that all algorithm variants
yield a reasonable slowdown compared to the baseline. For most of
the instances, the scheduler is able to compute a schedule within

ICPP °25, September 08-11, 2025, San Diego, CA, USA

seconds, while larger workflows with up to 30000 tasks can take
several minutes.

In [32, Appendix A.5] we can see that the largest running times
result from large workflows with 20000 to 30000 tasks. Overall,
most of the instances are still solvable in less than a few minutes.

Another interesting aspect is that the running time seems to
be mainly influenced by graph size, but not by the length of the
time horizon T. The running time increases only slightly with an
increased deadline, which indicates that the algorithms successfully
make decisions based on structural graph information — without
having a too broad search tree for each task if the deadline increases.
The data leading to this insight can be found in [32, Appendix A.5].

7 Conclusions

This work aimed at minimizing carbon emissions when executing
a scientific workflow on a parallel platform with a time-varying
mixed (renewable and non-renewable) energy supply. We focused
on improving a given mapping and ordering of the tasks (for in-
stance generated by HEFT) by shifting task executions to greener
time intervals whenever possible, while still enforcing all depen-
dencies. We showed that this algorithmic problem can be solved in
polynomial time in the uniprocessor case. For two processors, the
problem becomes NP-hard, even for a simple instance with inde-
pendent tasks and carbon-homogeneous processors. We proposed
a heuristic framework combining several greedy approaches with
local search. The experimental results showed that our heuristics
provide significant savings in carbon emissions compared to the
baseline. Furthermore, for smaller problem instances, we showed
that several heuristics achieve a performance close to the optimal
ILP solution. Altogether, all these results represent a major advance
in the understanding of the problem.

Future work will be devoted to the next step, namely targeting
the design of a carbon-aware extension of HEFT. Mapping and
scheduling the workflow at the same time while minimizing carbon
emissions may well lead to even better solutions. Given the diffi-
culty of the problem, we envision a two-pass approach: a first pass
devoted to mapping and ordering, but without a finalized schedule,
and a second pass devoted to optimizing the schedule through the
approach followed in this paper.

Acknowledgements. This work is partially supported by Collabo-
rative Research Center (CRC) 1404 FONDA - Foundations of Work-
flows for Large-Scale Scientific Data Analysis, which is funded by
German Research Foundation (DFG).

References

[1] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu.
2010. Energy proportional datacenter networks. In Proc. of the 37th Annual Int.
Symp. on Computer Architecture. 338-347. doi:10.1145/1815961.1816004
Mainak Adhikari, Tarachand Amgoth, and Satish Narayana Srirama. 2019. A Sur-
vey on Scheduling Strategies for Workflows in Cloud Environment and Emerging
Trends. ACM Comput. Surv. 52, 4 (2019). doi:10.1145/3325097

[3] Kazi Main Uddin Ahmed, Math H. J. Bollen, and Manuel Alvarez. 2021. A Review
of Data Centers Energy Consumption and Reliability Modeling. IEEE Access 9
(2021), 152536-152563.

[4] Eugenio Angriman, Alexander van der Grinten, Moritz von Looz, Henning Meyer-
henke, Martin N6llenburg, Maria Predari, and Charilaos Tzovas. 2019. Guidelines
for Experimental Algorithmics: A Case Study in Network Analysis. Algorithms
12,7 (2019), 127. doi:10.3390/A12070127

[5] Hamid Arabnejad and Jorge G Barbosa. 2013. List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE Trans. on Par. and Distr.
Systems 25, 3 (2013), 682-694.

[2

636

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke

[6] Jonathan Bader, Fabian Lehmann, Lauritz Thamsen, Ulf Leser, and Odej Kao. 2024.
Lotaru: Locally predicting workflow task runtimes for resource management on
heterogeneous infrastructures. Future Generation Computer Systems 150 (2024).
Jonathan Bader, Kathleen West, Soeren Becker, Svetlana Kulagina, Fabian
Lehmann, Lauritz Thamsen, Henning Meyerhenke, and Odej Kao. 2025. Predicting
the Performance of Scientific Workflow Tasks for Cluster Resource Management:
An Overview of the State of the Art. arXiv:2504.20867 [cs.DC]

[8] Jorge G Barbosa and Belmiro Moreira. 2011. Dynamic scheduling of a batch of
parallel task jobs on heterogeneous clusters. Parallel computing 37, 8 (2011).

[9] Enno Breukelman, Sophie Hall, Giuseppe Belgioioso, and Florian Dérfler. 2024.
Carbon-Aware Computing in a Network of Data Centers: A Hierarchical Game-
Theoretic Approach. In 2024 Europ. Control Conf. (ECC). IEEE, 798-803.

[10] Zhiwei Cao, Xin Zhou, Han Hu, Zhi Wang, and Yonggang Wen. 2022. Toward
a systematic survey for carbon neutral data centers. IEEE Comm. Surveys &
Tutorials 24, 2 (2022), 895-936.
Taina Coleman, Henri Casanova, Loic Pottier, Manav Kaushik, Ewa Deelman, and
Rafael Ferreira da Silva. 2022. WfCommons: A framework for enabling scientific
workflow research and development. Future Generation Computer Systems 128
(2022), 16-27. doi:10.1016/j.future.2021.09.043
Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316-319.
Juan J. Durillo, Vlad Nae, and Radu Prodan. 2014. Multi-Objective Energy-Efficient
Workflow Scheduling Using List-Based Heuristics. Future Generation Computer
Systems 36 (July 2014), 221-236. doi:10.1016/j.future.2013.07.005
Juan J. Durillo, Radu Prodan, and Jorge G. Barbosa. 2015. Pareto Tradeoff Sched-
uling of Workflows on Federated Commercial Clouds. Simulation Modelling
Practice and Theory 58 (Nov. 2015), 95-111. doi:10.1016/j.simpat.2015.07.001
[15] M.R. Garey and D. S. Johnson. 1979. Computers and Intractability, a Guide to the
Theory of NP-Completeness. W.H. Freeman and Company.
Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual.
Aric. A. Hagberg, Daniel. A. Schult, and Pieter. J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proc. of the 7th Python in
Science Conf., Gaél Varoquaux, Travis Vaught, and Jarrod Millman (Eds.). 11 - 15.
Sophie Hall, Francesco Micheli, Giuseppe Belgioioso, Ana Radovanovi¢, and Flo-
rian Dérfler. 2024. Carbon-Aware Computing for Data Centers with Probabilistic
Performance Guarantees. arXiv preprint arXiv:2410.21510 (2024).
[19] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant
Shenoy. 2023. CarbonScaler: Leveraging Cloud Workload Elasticity for Op-
timizing Carbon-Efficiency. Proc. ACM Meas. Anal. Comput. Syst. 7, 3 (2023).
Intel Corporation. 2011. Measuring Processor Power - TDP vs. ACP. White Pa-
per. Intel Corporation. https://www.intel.com/content/dam/doc/white-paper/
resources-xeon-measuring-processor-power-paper.pdf
[21] A.B.Kahn. 1962. Topological sorting of large networks. Commun. ACM 5, 11
(Nov. 1962), 558-562. doi:10.1145/368996.369025
Svetlana Kulagina, Anne Benoit, and Henning Meyerhenke. 2025. Memory-aware
Adaptive Scheduling of Scientific Workflows on Heterogeneous Architectures.
arXiv:2503.22365 [cs.DC]
Svetlana Kulagina, Henning Meyerhenke, and Anne Benoit. 2024. Mapping Large
Memory-constrained Workflows onto Heterogeneous Platforms. In 53rd Int. Conf.
on Par. Processing (ICPP).
Hessam Lavi. 2023. Measuring greenhouse gas emissions in data centres: the en-
vironmental impact of cloud computing. https://www.climatiq.io/blog/measure-
greenhouse-gas-emissions-carbon-data-centres-cloud-computing.
[25] Ji Liu, Esther Pacitti, and Patrick Valduriez. 2018. A survey of scheduling frame-
works in big data systems. Int. J. of Cloud Computing 7, 2 (2018), 103-128.
[26] A.Hasan Mahmud and S. S. Iyengar. 2016. A Distributed Framework for Carbon
and Cost Aware Geographical Job Scheduling in a Hybrid Data Center Infras-
tructure. In IEEE Int. Conf. on Autonomic Comp. (ICAC). 75-84.
M. Yusuf Ozkaya, Anne Benoit, Bora Ugar, Julien Herrmann, and Umit V.
Catalyiirek. 2019. A scalable clustering-based task scheduler for homogeneous
processors using DAG partitioning. In 33rd IEEE Int. Par. and Distr. Proc. Symp.
Paul Pop, Kare Harbo Poulsen, Viacheslav Izosimov, and Petru Eles. 2007. Sched-
uling and voltage scaling for energy/reliability trade-offs in fault-tolerant time-
triggered embedded systems. In Proc. of the 5th IEEE/ACM Int. Conf. on Hard-
ware/Software Codesign and System Synthesis (Salzburg, Austria). 233-238.
[29] Ana Radovanovi¢, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre
Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, et al. 2022. Carbon-
aware computing for datacenters. IEEE Trans. on Power Sys. 38, 2 (2022).
Yassir Samadi, Mostapha Zbakh, and Claude Tadonki. 2018. E-HEFT: Enhance-
ment Heterogeneous Earliest Finish Time algorithm for Task Scheduling based
on Load Balancing in Cloud Computing. In 2018 Int. Conf. on High Performance
Computing & Simulation (HPCS). 601-609. doi:10.1109/HPCS.2018.00100
Suhelah Sandokji and Fathy Eassa. 2019. Dynamic Variant Rank HEFT Task
Scheduling Algorithm Toward Exascale Computing. Procedia Computer Science
163 (2019).

7

[11

[12

[13

=
&

e
o

[18

™
=

[22

[23

[24

[27

[28

@
=

[31

https://doi.org/10.1145/1815961.1816004
https://doi.org/10.1145/3325097
https://doi.org/10.3390/A12070127
https://arxiv.org/abs/2504.20867
https://doi.org/10.1016/j.future.2021.09.043
https://doi.org/10.1016/j.future.2013.07.005
https://doi.org/10.1016/j.simpat.2015.07.001
https://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
https://doi.org/10.1145/368996.369025
https://arxiv.org/abs/2503.22365
https://doi.org/10.1109/HPCS.2018.00100

Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint

(32

[33]
[34]

[35

[36]

Dominik Schweisgut, Anne Benoit, Yves Robert, and Henning Meyerhenke. 2025.
Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Con-
straint. (2025). arXiv:2507.08725 [cs.DC] https://arxiv.org/abs/2507.08725.
Zhiao Shi and Jack J. Dongarra. 2006. Scheduling workflow applications on
processors with different capabilities. Future Gen. Comp. Sys. 22, 6 (2006).
Oliver Sinnen. 2007. Task scheduling for parallel systems. Vol. 60. John Wiley &
Sons.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 2002. Performance-effective
and low-complexity task scheduling for heterogeneous computing. IEEE Trans.
on Par. and Distr. Systems 13, 3 (2002), 260-274.

Laurens Versluis and Alexandru Iosup. 2022. Taskflow: An energy-and makespan-
aware task placement policy for workflow scheduling through delay management.

637

[37

[38

[39

]

ICPP °25, September 08-11, 2025, San Diego, CA, USA

In Proc. of the 2022 ACM/SPEC Int. Conf. on Perf. Eng. 81-88.

Jaagup Viil and Satish Narayana Srirama. 2018. Framework for automated parti-
tioning and execution of scientific workflows in the cloud. The . of Supercom-
puting 74 (2018), 2656—-2683.

Zhenyu Wen, Saurabh Garg, Gagangeet Singh Aujla, Khaled Alwasel, Deepak
Puthal, Schahram Dustdar, Albert Y. Zomaya, and Rajiv Ranjan. 2021. Running
Industrial Workflow Applications in a Software-Defined Multicloud Environment
Using Green Energy Aware Scheduling Algorithm. IEEE Trans. on Ind. Inf. 17, 8
(2021).

Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. 2021. Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce
Carbon Emissions in the Cloud. In Proc. of the 22nd Int. Middleware Conference.

https://arxiv.org/abs/2507.08725
https://arxiv.org/abs/2507.08725

	Abstract
	1 Introduction
	2 Related Work
	3 Framework
	4 Complexity Results
	4.1 Polynomial DP algorithm for one processor
	4.2 NP-completeness of the multiprocessor case
	4.3 Integer linear program

	5 Algorithms
	5.1 Baseline algorithm
	5.2 Greedy schedule
	5.3 Local search

	6 Experimental Evaluation
	6.1 Simulation setup
	6.2 Simulation results
	6.3 Running Time Evaluation

	7 Conclusions
	References

