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Abstract

Deniability is an important feature of modern cryptography. This property allows a par-

ticipant to plausibly deny an action they have performed. Deniable encryption enables

participants to achieve deniability in addition to the two fundamental properties of encryp-

tion: security and correctness. In a state with a public and impartial electronic voting system

using encrypted ballots, the election should, in theory, be resilient to coercion. However, if

the transmission of encrypted ballots takes place over a non-secure channel and a powerful

but malicious party can coerce voters into revealing their votes, the election can no longer

be considered impartial. By employing sender-deniable encryption to encrypt the ballots,

the system could once again resist coercion.

The deniability notion in deniable encryption can be classified into three categories: sender-

deniability, receiver-deniability, and sender-and-receiver deniability. With sender-deniability,

the sender can plausibly deny what they have sent. With receiver-deniability, the receiver

can plausibly deny what they have received. With sender-and-receiver deniability, both the

sender and the receiver can plausibly deny what they have sent or received, respectively.

In this thesis, we examine four deniable encryption schemes, two of which are sender-

deniable schemes, one is a receiver-deniable scheme, and the other is a sender-and-receiver-

deniable scheme. We first examine how they work and how they achieve the desired

deniability property. In addition, we evaluate their performance with respect to the cost of

time and space. We also observe how a general transformation between a sender-deniable

and a receiver-deniable scheme is constructed. Furthermore, we compare the two sender-

deniable schemes proposed by Howlader and Basu [10] and Barakat [2]. Finally, we prove

that the scheme proposed by Howlader and Basu is not receiver-deniable, while the scheme

proposed by Ibrahim is not sender-deniable.
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Zusammenfassung

Abstreitbarkeit ist ein wichtiges Merkmal der modernen Kryptographie. Diese Eigenschaft

erlaubt es einem Teilnehmer, eine von ihm ausgeführte Handlung plausibel abzustreiten.

Abstreitbare Verschlüsselung ermöglicht es den Beteiligten, neben den zwei grundlegenden

Eigenschaften der Verschlüsselung – Sicherheit und Korrektheit – Abstreitbarkeit zu errei-

chen. In einem Staat mit einem öffentlichen und unparteiischen elektronischen Wahlsystem,

das verschlüsselte Stimmzettel verwendet, sollte die Wahl theoretisch resistent gegen Nö-

tigung sein. Findet die Übertragung der verschlüsselten Stimmzettel jedoch über einen

unsicheren Kanal statt und kann eine mächtige, böswillige Partei Wähler dazu zwingen,

ihre Stimmen offenzulegen, kann die Wahl nicht mehr als unparteiisch gelten. Durch den

Einsatz sender-abstreitbarer Verschlüsselung zur Verschlüsselung der Stimmzettel könnte

das System erneut gegenüber Nötigung widerstandsfähig sein.

Der Abstreitbarkeitsbegriff in abstreitbarer Verschlüsselung lässt sich in drei Kategorien

einteilen: Sender-Abstreitbarkeit, Empfänger-Abstreitbarkeit und Sender-und-Empfänger-

Abstreitbarkeit. Bei Sender-Abstreitbarkeit kann der Absender plausibel abstreiten, was er

gesendet hat. Bei Empfänger-Abstreitbarkeit kann der Empfänger plausibel abstreiten, was

er empfangen hat. Bei Sender-und-Empfänger-Abstreitbarkeit können sowohl Absender als

auch Empfänger plausibel abstreiten, was sie gesendet beziehungsweise empfangen haben.

In dieser Arbeit untersuchen wir vier abstreitbare Verschlüsselungsverfahren: Zwei davon

sind sender-abstreitbar, eines ist empfänger-abstreitbar und eines ist sender-und-empfänger-

abstreitbar. Zunächst analysieren wir, wie sie funktionieren und wie sie die gewünschte

Abstreitbarkeits-Eigenschaft erreichen. Darüber hinaus bewerten wir ihre Leistung hinsicht-

lich Zeit- und Speicheraufwand. Ferner betrachten wir, wie eine allgemeine Transformation

zwischen einem sender-abstreitbaren und einem empfänger-abstreitbaren Verfahren kon-

struiert wird. Außerdem vergleichen wir die beiden sender-abstreitbaren Verfahren von

Howlader und Basu [10] und Barakat [2]. Abschließend zeigen wir, dass das von Howla-

der und Basu vorgeschlagene Verfahren nicht empfänger-abstreitbar ist, während das von

Ibrahim vorgeschlagene Verfahren nicht sender-abstreitbar ist.
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1 Introduction

Consider a direct-election state with an e-voting system in which an authoritarian regime

seeks to stay in power indefinitely by abolishing elections through a mandated referendum.

Voters are forced to reveal their votes, and those who vote against the regime’s will face

strict punishment. As an e-voting system encrypts ballots using the voter’s public key and

transmits the encrypted ballots over a public, non-secure network, the regime—acting as

an eavesdropper or spy—may intercept and store the encrypted ballots. Later, the regime

could demand that voters reveal their public keys and corresponding votes. With access

to the public key and the intercepted ciphertexts, the regime would then be able to verify

whether the voters complied with its instructions. However, if deniable encryption were

used instead of traditional public-key encryption, a voter could generate a “fake” public key

and a corresponding “fake” vote that together produce a “fake” ciphertext indistinguishable

from the intercepted one. With such encryption, a voter may confidently vote according

to their own will, yet reveal a different result if placed under coercion after the election.

The coercer, however, is unable to prove or disprove whether the voter actually voted as

claimed.

In 1982, Yao proposed Yao’s Millionaires’ Problem [18]. He introduced a game in which Alice

and Bob each have assets valued at 𝑖 and 𝑗 million USD, respectively. They want to determine

who is wealthier without revealing their actual wealth to each other. Their communication

occurs over a non-secure channel, which may have zero, one, or multiple eavesdroppers or

saboteurs. Additionally, both Alice and Bob wish to learn only the comparative result—who

is wealthier—without disclosing their exact wealth or gaining any additional information

about the other’s assets. Yao aimed to develop an algorithm that would allow Alice and

Bob to determine who is wealthier without revealing their actual wealth. He then extended

this concept to multi-party scenarios, creating a more general secure computation protocol.

His work became the foundation of multi-party secure computation and inspired deniable

encryption: what if the participants in a multi-party computation are placed under the

coercion of a third party?

Canetti et al. introduced the concept of deniable encryption in their 1997 paper. Suppose an

encrypted message is intercepted by an adversary and the adversary later demands that the

sender reveal the private key and the corresponding randomness, which were presumably

used to produce the ciphertext. An encryption scheme is deniable if the sender can generate

a fake private key and a fake randomness under which the intercepted ciphertext decrypts to

a different plaintext, making it indistinguishable from an encryption of the original plaintext

under the real private key. Canetti et al. classified deniable encryption schemes according to

which parties may be coerced: sender-deniable, receiver-deniable, and sender-and-receiver-

deniable schemes. A sender-deniable encryption scheme allows the sender to plausibly

1



1 Introduction

deny what the sender has sent when a third party demands disclosure of the message or

plaintext. Similarly, a receiver-deniable encryption scheme allows the receiver to deny what

the receiver has received when a third party demands disclosure of the message or plaintext.

If a scheme allows both the sender and receiver to plausibly deny what they have sent or

received when a third party demands disclosure of the message or plaintext, it is called

a sender-and-receiver-deniable encryption scheme, or bi-deniable encryption scheme for

short.

In this thesis, we introduce the deniability notions with respect to deniable encryption. A

formal definition is provided to define the three key properties: correctness, security, and

deniability. We then present two protocols for sender-deniable encryption, one protocol

for receiver-deniable encryption, and one protocol for sender-and-receiver-deniable en-

cryption. Furthermore, we examine the differences between these protocols, discussing

their advantages and disadvantages. Finally, we explore the transformation between sender-

deniable and receiver-deniable encryption schemes. Still, there are a few more notions

and applications that are not introduced in this thesis, such as off-the-record deniability,

receipt-freeness, steganography, etc.

2



2 RelatedWork

As this thesis mainly focuses on deniable encryption, which represents only a small area

within the broader topic of deniability, it is worth noting that many other studies explore

deniability in combination with different fields.

In a functional encryption system, a decryption key allows a user to learn a function of

the encrypted data [4]. De Caro, Iovino, and O’Neill proposed the essential properties of

deniable functional encryption and additionally summarized two models: full deniability

from trapdoor circuits andmulti-distributional deniability from delayed trapdoor circuits [8].

Canetti, Park, and Poburinnaya introduced fully deniable interactive encryption. The goal

was to deal with situations where both parties are placed under the coercion of a single third

party. In this case, the third party may check whether the plaintexts revealed by both parties

correspond to each other. Therefore, a new deniability notion was proposed: off-the-record

deniability, which guarantees protection for each party independently of the other party’s

actions without prior coordination [5].

In electronic voting, several schemes have been proposed to solve the coercion scenario

described in the introduction by achieving deniability. Alwen et al. defined a security

notion for incoercible multiparty computation and proposed a protocol that achieves such

deniability [1]. The new deniability notions: receipt-freeness and coercion resistance are

introduced alongside.

Steganography is another field where deniability is applied. Steganography enables a sender

to conceal a secret message inside a piece of media that appears completely normal. For

example, a message can be embedded in an image, allowing the sender to transmit the image

instead of the message or ciphertext itself. Xu et al. introduced deniable steganography and

presented a receiver-deniable image steganography protocol [16].

Apart from deniable encryption, another major research focus is deniable message authen-

tication. Deniable message authentication protects the authentication process from spies

or malicious verifiers. It occurs between a sender (prover) and a receiver (verifier) and

allows the prover, in the strongest sense, to dispute that such a verification process has

taken place. Fischlin and Mazaheri further classified its deniability properties into five types:

content deniability, context deniability, time deniability, source deniability, and destination

3



2 Related Work

deniability [9].

Additionally, Yao and Zhao [17] proposed deniable Internet Key Exchange, which integrates

deniability into key exchange protocols and makes it compatible with widely deployed key

exchange standards. In the same work, Yao and Zhao introduced two additional deniability

notions: concurrent deniability and forward deniability.
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3 Preliminaries

We introduce in this section some important definitions and security assumptions. In

addition, a few algorithms that are used in Section 4 are also included.

Definition 3.0.1 (Negligible Function
1
). A function 𝑛𝑒𝑔𝑙 is negligible if for every polynomial

𝑝 (·) there exists an 𝑁 such that for all integers 𝑛 > 𝑁 it holds that 𝑛𝑒𝑔𝑙 (𝑛) < 1

𝑝 (𝑛) .

Definition 3.0.2 (Computational Indistinguishability
2
). Two probability ensembles 𝑋 =

{𝑋𝑛}𝑛∈N and 𝑌 = {𝑌𝑛}𝑛∈N are computationally indistinguishable, denoted 𝑋
𝑐≡ 𝑌 , if for every

probabilistic polynomial-time distinguisher 𝐷 there exists a negligible function negl such that:

|Pr[𝐷 (𝑋𝑛) = 1] − Pr[𝐷 (𝑌𝑛) = 1] | ≤ negl(𝑛)

The distinguisher 𝐷 is given the unary input 1
𝑛 so that it can run in time that is polynomial in

𝑛 in its attempt to distinguish.

Definition 3.0.3 (Transmission (𝑡𝑥𝑚)
3
). We denote a transmission of a message𝑚 between

a sender S and a receiver R as 𝑡𝑥𝑚(𝑚, 𝑟𝑆 , 𝑟𝑅) with 𝑟𝑆 , 𝑟𝑅 being two randomly chosen inputs
from the sender S and the receiver R respectively.

Definition 3.0.4 (Quadratic Residue (QR)
4
). Let 𝑛 be an odd, positive integer, and let 𝑥 be

an integer that is relatively prime to 𝑛. The integer 𝑥 is a quadratic residue modulo 𝑛 if the
equation

𝑥 ≡ 𝑦2 mod 𝑛

has an integer solution 𝑦. We denote in this case 𝑥 ∈ Q𝑛 . In other words, the integer 𝑥 is a
square modulo 𝑛. The integer 𝑥 is a quadratic non-residue (QNR) otherwise, and we denote in
this case 𝑥 ∈ ¯Q𝑛

1
[13, Def. 3.5]

2
[13, Def. 6.31]

3
Adapted from [6]

4
[12]
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3 Preliminaries

Definition 3.0.5 (Invertible Sampling
5
). Let𝐴 : 𝑋×{0, 1}∗ → 𝑌 be a probabilistic polynomial-

time algorithm. We say𝐴 has invertible sampling and that𝐴 is a probabilistic polynomial-time
algorithm with invertible sampling, if there exists a probabilistic polynomial-time random-bits-
faking-algorithm 𝐴−1

: 𝑌 × 𝑋 → {0, 1}∗ such that for all inputs 𝑥 ∈ 𝑋 . uniformly random
bits 𝑟 ← R𝐴, output value 𝑦 ← 𝐴(𝑥, 𝑟 ), and fake random bits 𝑟 ′ ← 𝐴−1(𝑦, 𝑥) the random
variables (𝑥,𝑦, 𝑟 ′) and (𝑥,𝑦, 𝑟 ) are computationally indistinguishable (see 3.0.2).

3.1 Security Assumptions

In this section, several important security assumptions are introduced. These assumptions

provide the theoretical foundation for the schemes discussed in the later sections.

Definition 3.1.1 (Strong RSA Assumption
6
). Let 1 < 𝜏 ∈ Z be a security parameter. Let

𝑛 = 𝑝𝑞 be a product of two random 𝜏−bit primes and let 𝑥 be an element of group Z∗
𝑁
. The

strong RSA-Problem is defined as follows:

given (n,x) as an input, find a pair 𝑎, 𝑏 ∈ Z
such that 𝑎𝑏 = 𝑥 mod 𝑛 and 𝑏 ≠ ±1

The strong RSA assumption states that for a sufficiently large 𝜏 the strong RSA problem cannot
be solved in probabilistic polynomial-time.

Definition 3.1.2 (Quadratic Residuosity Assumption
7
). The Quadratic Residuosity Problem

(QRP) is to determine whether an integer 𝑥 with Jacobi Symbol 1 modulo a composite number
𝑛 (𝑛 = 𝑝𝑞 and 𝑝, 𝑞 are prime) is a QR (see 3.0.4), where the Jacobi symbol of 𝑥 modulo 𝑛 is
defined as the product of the Legendre symbols of 𝑥 modulo each prime factor of 𝑛. In other
words, QRP is to determine whether an integer 𝑥 exists so that ( 𝑥

𝑛
) = 1.

The Quadratic Residuosity Assumption (QR-Assumption) states that the QRP cannot be effi-
ciently solved if only given 𝑥 and 𝑛, but could be solved efficiently if 𝑝, 𝑞, the factorization of 𝑛,
are given.

Definition 3.1.3 (Computational Diffie–Hellman Assumption
8
). Fix a cyclic group G and

generator 𝑔 ∈ G. Let 𝑎, 𝑏 be two randomly chosen group elements. The Computational
Diffie–Hellman (CDH) problem is to compute 𝑔𝑎𝑏 given 𝑔𝑎, 𝑔𝑏 . The CDH assumption states
that there is no known feasible algorithms capable of solving the CDH problem in probabilistic
polynomial-time.

5
[7][Def.1]

6
[3]

7
[12]

8
[13, pp.264-265]

6



3.2 Symmetric and Asymmetric Encryption

3.2 Symmetric and Asymmetric Encryption

Definition 3.2.1 (Symmetric Encryption
9
). A symmetric encryption scheme is a tuple of

probabilistic polynomial-time algorithms (𝐺𝐸𝑁, 𝐸𝑁𝐶, 𝐷𝐸𝐶) such that:

1. The key-generation algorithm 𝐺𝐸𝑁 takes as input the security parameter 1
𝑛 (i.e. length

of the key) and outputs a key 𝑘 . We write this as 𝑘 ← 𝐺𝐸𝑁 (1𝑛) . We will assume without
loss of generality that any key 𝑘 output by 𝐺𝐸𝑁 (1𝑛) satisfies |𝑘 | ≥ 𝑛.

2. The encryption algorithm 𝐸𝑁𝐶 takes as input a key 𝑘 and a plaintext message 𝑚 ∈
{0, 1}∗, and outputs a ciphertext 𝑐 . Since 𝐸𝑁𝐶 may be randomized, we write this as
𝑐 ← 𝐸𝑁𝐶𝑘 (𝑚).

3. The decryption algorithm 𝐷𝐸𝐶 takes as input a key 𝑘 and a ciphertext 𝑐 , and outputs a
result𝑚′. We assume without loss of generality that 𝐷𝐸𝐶 is deterministic, and so write
this as𝑚′ := 𝐷𝐸𝐶𝑘 (𝑐).

It is required for correctness that for every 𝑛, every key 𝑘 output by 𝐺𝐸𝑁 (1𝑛), and every
𝑚 ∈ {0, 1}∗, it holds that 𝐷𝐸𝐶𝑘 (𝐸𝑁𝐶𝑘 (𝑚)) =𝑚′ and𝑚 =𝑚′. Symmetric encryption is also
known as shared-key encryption or private key encryption.

Definition 3.2.2 (Asymmetric Key Encryption
10
). An asymmetric encryption scheme is a

tuple of probabilistic, polynomial-time algorithms (𝐺𝐸𝑁, 𝐸𝑁𝐶, 𝐷𝐸𝐶) that satisfies the follow-
ing:

1. Algorithm𝐺𝐸𝑁 takes as input a security parameter 1
𝑛 (i.e. length of the key) and outputs

a pair of keys (𝑝𝑘, 𝑠𝑘). We refer to the first of these as the public key and the second as
the private key or secret key. We assume for convenience that 𝑝𝑘 and 𝑠𝑘 each have length
at least 𝑛, and that 𝑛 can be determined from 𝑝𝑘, 𝑠𝑘 .

2. Algorithm 𝐸𝑁𝐶 takes as input a public key 𝑝𝑘 and a message𝑚 from some underlying
plaintext space (that may depend on 𝑝𝑘). It outputs a ciphertext 𝑐 , and we write this as
𝑐 ← 𝐸𝑁𝐶𝑝𝑘 (𝑚).

3. Algorithm 𝐷𝐸𝐶 takes as input a private key 𝑠𝑘 and a ciphertext 𝑐 , and outputs a message
𝑚 or a special symbol ⊥ denoting failure. We assume without loss of generality that 𝐷𝐸𝐶
is deterministic and write this as𝑚′ := 𝐷𝐸𝐶𝑠𝑘 (𝑐).

We require that for every 𝑛, every (𝑝𝑘, 𝑠𝑘) pair output by 𝐺𝐸𝑁 (1𝑛), and every message𝑚 in
the appropriate underlying plaintext space, it holds that 𝐷𝐸𝐶𝑠𝑘 (𝐸𝑁𝐶𝑝𝑘 (𝑚)) =𝑚′ and𝑚 =𝑚′.
Asymmetric encryption is also known as public-key encryption.

9
[13, Def.3.8]

10
[13, Def.10.1]

7



3 Preliminaries

Definition 3.2.3 (RSA encryption). In RSA encryption, we need to select two prime num-
bers (sufficiently big11) 𝑝 and 𝑞 and consequently compute 𝑛 = 𝑝𝑞. Then we compute
𝑟 = (𝑝 − 1) (𝑞 − 1). Next we select an 𝑒 , with 1 ≤ 𝑒 ≤ 𝑟 − 1 such that 𝑔𝑐𝑑 (𝑟, 𝑒) = 1.
We take (𝑛, 𝑒) as the public key and (𝑛,𝑑) as the private key. In the following parts of this
thesis, we take the public key as 𝑒 instead of (𝑛, 𝑒) and the private key as 𝑑 instead of (𝑛,𝑑)
since 𝑛 is available to everyone (see figure 3.1). To encrypt a message𝑚, the sender needs to
use the receiver’s public key to calculate the ciphertext with 𝑐 =𝑚𝑒

mod 𝑛. The receiver may
decrypt the ciphertext by computing𝑚 = 𝑐𝑑 mod 𝑛 (see figure 3.2).

The strong RSA assumption 3.1.1 states that given any 𝑛 = 𝑝𝑞, where 𝑝, 𝑞 are prime and
unknown, for any given ciphertext 𝑐, there is no probabilistic polynomial-time algorithm to
find any pair (𝑚, 𝑒) such that 𝑐 ≡𝑚𝑒 mod 𝑛. Therefore, RSA encryption is considered secure.

In the variant mediated RSA (mRSA), a neutral third-party, also called the SEcurity Mediator
(SEM), is introduced, and the secret key is split into two parts: the user-owned private key𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

and the SEM-owned private key 𝑑𝑆𝐸𝑀 . The encryption proceeds exactly as RSA encryption.
What distinguishes it from a naive implementation is the decryption. The detailed encryption
and decryption procedures of mRSA will be presented with the protocol in 4.2.2 [11].

Figure 3.1:Key Generation of RSA Encryption

11
as of 2025, typically 2048-4096 bits long

8



3.3 Oblivious Transfer

Figure 3.2: RSA Encryption and Decryption

Definition 3.2.4 (Simulatable Public Key Encryption
12
). Let𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 be the algorithms

for key generation, encryption, and decryption as defined in 3.2.2, respectively. Let𝑀 be the
message space.
Let 𝑂𝐺𝑒𝑛(1𝑛, 𝑟𝑂𝐺𝑒𝑛) denote an oblivious key generation algorithm which produces a public
key 𝑂𝑝𝑘 and has invertible sampling via algorithm 𝐼𝑂𝐺𝑒𝑛 .
Let 𝑂𝐸𝑛𝑐 (𝑝𝑘) denote an oblivious encryption scheme which produces a ciphertext 𝑂𝑐 and has
invertible sampling via 𝐼𝑂𝐸𝑛𝑐 .
For a simulatable public key encryption scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐,𝑂𝐺𝑒𝑛,𝑂𝐸𝑛𝑐), the distribution
of 𝑝𝑘 should be computationally indistinguishable from𝑂𝑝𝑘 . Further, the outputs of the follow-
ing games, the generator game (left) and the simulatable game (right) shall be computationally
indistinguishable:

𝑝𝑘 ← Gen(1𝑛, 𝑟𝑅)
𝑚 ←M
𝑐 ← Enc(𝑝𝑘,𝑚)
Return (𝑝𝑘, 𝑟𝑅, 𝑐)

��������
𝑝𝑘 ← Gen(1𝑛, 𝑟𝑅)
𝑂𝑐 ← OEnc(𝑝𝑘)
Return (𝑝𝑘, 𝑟𝑅,𝑂𝑐)

3.3 Oblivious Transfer

Oblivious transfer (OT) was first proposed by Rabin [15]. It was designed to transmit

secrets between a sender and a receiver: the sender sends multiple secrets at once without

knowing which one the receiver receives, and the receiver obtains exactly one secret with

no acknowledgment of the other secrets.

Let 𝐺𝑞 be a subgroup of order 𝑞 of 𝑍 ∗𝑝 where 𝑝 is prime and 𝑝 − 1 is divided by 𝑞 with

no remainder (i.e. 𝑞 |𝑝 − 1). Let 𝑔 be a generator of the group, and assume that the CDH

assumption holds. Let 𝐻 be a hash function. We call an oblivious transfer consisting of

𝑛 messages 𝑂𝑇 1

𝑛 : The sender owns 𝑛 strings, 𝑟0, ..., 𝑟𝑛−1 and picks 𝑛 − 1 random values

𝑈1, ...,𝑈𝑛−1 and publishes them. The sender also picks a random 𝑅 and sends 𝑔𝑅 to the

receiver. The receiver selects a random 𝑘 and sets 𝑝𝑘𝜎 = 𝑔𝑘 with 𝜎 ∈ {0, ..., 𝑛 − 1} at
the receiver’s own choice. The receiver sends 𝑝𝑘0 to the sender. The sender computes

12
[7]
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3 Preliminaries

𝑝𝑘𝑅
0
and 𝑝𝑘𝑅𝑖 = 𝑈 𝑅

𝑖 /𝑝𝑘𝑅0 , ∀𝑖 ∈ {0, ..., 𝑛 − 1}. The sender sends the encryption of every

𝑟𝑖, 𝐻 (𝑝𝑘𝑅𝑖 ,𝑤, 𝑖) ⊕ 𝑟𝑖 , where𝑤 is a random string known to both parties. Finally, the receiver

is able to decrypt the receiver’s choice using 𝑝𝑘𝜎 (see figure 3.3)[11].

Figure 3.3:Oblivious Transfer in Game Display
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4 Fundamental Deniability Notions

In this section, we first define the concept of deniable encryption. Then, we introduce the

three primary notions of deniability. Subsequently, several classic encryption schemes are

discussed with respect to these notions. Finally, we analyze the schemes and provide the

amortized cost of time and space.

4.1 Deniable Encryptions

In this section, we introduce the fundamentals of deniable encryption and define three

notions of deniability: sender deniability, receiver deniability, and sender-and-receiver

deniability. We consider in this thesis only asymmetric deniable encryption.

Definition 4.1.1 (Deniable Encryption
1
). Canetti et al. [6] formalized deniable encryption

as follows. Let (𝑝𝑘, 𝑠𝑘) be a key pair, where 𝑝𝑘 ≠ 𝑠𝑘 . We denote a transmission (3.0.3) between
sender and receiver as 𝑡𝑥𝑚(𝑚, 𝑟𝑆 , 𝑟𝑅) with 𝑟𝑆 , 𝑟𝑅 being two randomly chosen inputs from the
sender and the receiver respectively.
A deniable encryption scheme must satisfy the regular encryption notions, which are:

1. Correctness: For every message𝑚, if

𝑐 ← 𝐸𝑁𝐶pk(𝑚), 𝑚′ ← 𝐷𝐸𝐶sk(𝑐) ,

then the probability that the outcome of decryption𝑚′ differs from the original plaintext
𝑚 is negligible, i.e. Pr[𝑚′ ≠𝑚] is smaller than a negligible function (3.0.1).

2. Security2: For any two messages 𝑚1,𝑚2 of equal length and any public key 𝑝𝑘 , the
distributions

𝑡𝑥𝑚(𝑚1, 𝑟𝑆 , 𝑟𝑅) and 𝑡𝑥𝑚(𝑚2, 𝑟𝑆 , 𝑟𝑅)
are computationally indistinguishable.

Additionally, it must satisfy a third notion.

3. Deniability: There exists an efficient faking algorithm 𝑓 that allows a party to plau-
sibly produce alternative randomness consistent with some other plaintext. The formal
definition will be addressed in 4.1.1.

1
Adapted from [6]

2
Equivalent to the IND-CPA security
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4 Fundamental Deniability Notions

4.1.1 Three Fundamental Types of Deniability

We detail the three types of deniability:

Definition 4.1.2 (Sender Deniability
3
). A sender-deniable encryption shall satisfy the above

mentioned correctness and security. Besides, it shall satisfy the deniability property defined as
follows:

There is an efficient algorithm 𝑓𝑆 such that, for any two messages𝑚1 ≠𝑚2 and any sender ran-
domness 𝑟𝑆 , (𝑚2, 𝑟

′
𝑆
, 𝑐) is computationally indistinguishable (3.0.2) from (𝑚2, 𝑟𝑆 , 𝑡𝑥𝑚(𝑚2, 𝑟𝑆 , 𝑟𝑅)),

where
𝑐 ← 𝑡𝑥𝑚(𝑚1, 𝑟𝑆 , 𝑟𝑅), 𝑟 ′𝑆 ← 𝑓𝑆 (𝑚1, 𝑟𝑆 , 𝑐,𝑚2),

Intuitively, the sender can “fake” having encrypted𝑚2 instead of𝑚1. We use a simple game
to illustrate the process (see 4.1). The sender wins the game if the chance that the adversary
makes the right guess is less than 1/2 + 𝑛𝑒𝑔𝑙 (𝑛). The game is rather simple, we would only
visualize the game here. The game for receiver-deniability or sender-and-receiver deniability
can be constructed analogously.

Figure 4.1: Sender Deniability in Game Display

Definition 4.1.3 (Receiver Deniability
4
). A receiver deniable encryption shall satisfy the

above mentioned correctness and security. Besides, it shall satisfy the deniability property
defined as follows:

3
[6, Def.2]

4
[6, Def.9]
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4.2 Example Deniable Encryption Schemes

There is an efficient algorithm 𝑓𝑅 such that, for any𝑚1 ≠𝑚2 and any receiver randomness 𝑟𝑅 ,
(𝑚2, 𝑟

′
𝑅
, 𝑐), is computationally indistinguishable (3.0.2) from (𝑚2, 𝑟𝑅, 𝑡𝑥𝑚(𝑚2, 𝑟𝑆 , 𝑟𝑅)), where

𝑐 ← 𝑡𝑥𝑚(𝑚1, 𝑟𝑆 , 𝑟𝑅), 𝑟 ′𝑅 ← 𝑓𝑅 (𝑚1, 𝑟𝑅, 𝑐,𝑚2),

Intuitively, the receiver can “fake” a claim to have decrypted 𝑐 as𝑚2.

Definition 4.1.4 (Sender-and-Receiver Deniability
5
). A sender-and-receiver deniable en-

cryption shall satisfy the above mentioned correctness and security. Besides, it shall satisfy the
deniability property defined as follows:

There is an efficient algorithm 𝑓𝑆𝑅 such that, for any 𝑚1 ≠ 𝑚2, sender randomness 𝑟𝑆 and
receiver randomness 𝑟𝑅 , if

𝑐 ← 𝑡𝑥𝑚(𝑚1, 𝑟𝑆 , 𝑟𝑅), 𝑟 ′𝑆 ← 𝑓𝑆𝑅 (𝑚1, 𝑟𝑆 , 𝑐,𝑚2), 𝑟 ′𝑅 ← 𝑓𝑆𝑅 (𝑚1, 𝑟𝑅, 𝑐,𝑚2),

then both

(𝑚2, 𝑟
′
𝑆 , 𝑐) ≈ (𝑚2, 𝑟𝑆 , 𝑡𝑥𝑚(𝑚2, 𝑟𝑆 , 𝑟𝑅)) and (𝑚2, 𝑟

′
𝑅, 𝑐) ≈ (𝑚2, 𝑟𝑅, 𝑡𝑥𝑚(𝑚2, 𝑟𝑆 , 𝑟𝑅))

are computationally indistinguishable (3.0.2). In other words, both sender and receiver can
independently claim the plaintext was𝑚2. Sender-and-receiver deniable encryption is also
known as bi-deniable encryption.

However, if both parties do not coordinate with each other on how to generate fake randomness
before the coercion, the bi-deniability does not provide the desired deniability when both parties
are placed under coercion by the same coercer.

4.2 Example Deniable Encryption Schemes

We introduce two sender-deniable public-key encryption schemes, one receiver-deniable

public-key encryption scheme, and one sender-and-receiver deniable encryption scheme.

We assume that all key-exchange procedures are secure.

4.2.1 Sender Deniable Public Key Scheme

In this subsection, we first introduce a sender deniable public key encryption scheme

proposed by Howlader and Basu, which achieves sender-deniability.

5
[6, Def.10]
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4 Fundamental Deniability Notions

Let 𝑛 ≥ 3 be an odd composite number.𝐽+𝑛 is the set of all pseudosquares, and 𝐽+𝑛 , 𝐽
−
𝑛 are

defined as follows.

𝐽+𝑛 = { 𝑎 ∈ Z∗𝑛 |
(
𝑎
𝑛

)
= 1}, 𝐽−𝑛 = { 𝑎 ∈ Z∗𝑛 |

(
𝑎
𝑛

)
= −1}.

Let 𝑛 be a product of two distinct primes. Then half of the elements in 𝐽+𝑛 are quadratic

residues and the other half are quadratic nonresidues. That is, if 𝑎 ∈ 𝐽+𝑛 , then

Pr[𝑎 ∈ 𝑄𝑛] = 1

2
.

We then define how to communicate a binary stream 𝑦 of 𝑘 bits.

For each bit 𝑏
𝑦

𝑖
, 0 ≤ 𝑖 ≤ 𝑘 − 1 : If the 𝑖𝑡ℎ bit is 1, then the sender selects 𝑡 elements 𝑥 𝑗 ∈ Z∗𝑛 ,

for 0 ≤ 𝑗 ≤ 𝑡 − 1 and computes 𝑎 𝑗 = 𝑥2

𝑗 𝑚𝑜𝑑 𝑛. Otherwise, the sender selects 𝑡 numbers of

elements such that 𝑎 𝑗 ∈ 𝐽+𝑛 for 0 ≤ 𝑗 ≤ 𝑡 − 1.

The binary streams 𝑦 can be represented as:

𝐴(𝑖, 𝑗) =

�����������
𝑎(0,0) 𝑎(0,1) · · · 𝑎(0,𝑡−1)

𝑎(1,0) 𝑎(1,1) · · · 𝑎(1,𝑡−1)
...

...
. . .

...

𝑎(𝑘−1,0) 𝑎(𝑘−1,1) · · · 𝑎(𝑘−1,𝑡−1)

�����������
Let 𝑦 be a binary stream of 𝑘 bits. For every single bit in the binary stream, the sender does

one of the following, depending on the bit 𝑏
𝑦

𝑖
.

1. If 𝑏
𝑦

𝑖
= 1, select 𝑡 elements

𝑥 𝑗 ∈ Z∗𝑛, 0 ≤ 𝑗 ≤ 𝑡 − 1,

and compute

𝑎 𝑗 ≡ 𝑥2

𝑗 (mod 𝑛), 0 ≤ 𝑗 ≤ 𝑡 − 1.

2. If 𝑏
𝑦

𝑖
= 0, select 𝑡 elements

𝑎 𝑗 ∈ 𝐽+𝑛 , 0 ≤ 𝑗 ≤ 𝑡 − 1.

The sender then encrypts the message𝑚 to 𝑐 as

𝑐 =


𝑏𝑐
𝑘−1

...

𝑏𝑐
1

𝑏𝑐
0


=


𝑏𝑚
𝑘−1

...

𝑏𝑚
1

𝑏𝑚
0


⊕


𝑏
𝑦

𝑘−1

...

𝑏
𝑦

1

𝑏
𝑦

0


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4.2 Example Deniable Encryption Schemes

the ciphertext c, together with 𝑦 = 𝐴(𝑖, 𝑗) will be sent. Receiver decrypts the message 𝑐 to𝑚

as

𝑚 =


𝑏𝑚
𝑘−1

...

𝑏𝑚
1

𝑏𝑚
0


=


𝑏𝑐
𝑘−1

...

𝑏𝑐
1

𝑏𝑐
0


⊕


𝑏
𝑦

𝑘−1

...

𝑏
𝑦

1

𝑏
𝑦

0


with 𝑏𝑦 the binary stream reconstructed from matrix 𝐴(𝑖, 𝑗) . The reconstruction is executed

as follows:

𝑏
𝑦

𝑖
=

{
0, if ∃}𝑎(𝑖, 𝑗) ∈ 𝑄𝑛, 0 ≤ 𝑗 ≤ 𝑡 − 1,

1, if ∀𝑎(𝑖, 𝑗) ∈ 𝑄𝑛, 0 ≤ 𝑗 ≤ 𝑡 − 1.

In case the sender is under coercion, the sender may modify 𝐴(𝑖, 𝑗) and flip some bit in 𝑦

from 1 to 0. The fake binary stream 𝑦 can be constructed without being noticed by the

coercer. The sender may then construct a fake message𝑚 𝑓 based on the fake binary stream

𝑦 and ciphertext 𝑐 with𝑚 𝑓 = 𝑦
⊕

𝑐 .

However, this scheme suffers from the Quadratic Residue Problem (QRP) (3.1.2). The scheme

is considered secure as there are no feasible algorithms known to date, that resolve QRP

efficiently. However, as of now, it is still not known if QRP can be reduced to the problem

of integer factorization.

Performance Observation:
We recall that 𝑡 is the number of randomly chosen elements. To encrypt a message of 𝑘 bits,

𝑡O(𝑘) modular exponentiation computations and 𝑂 (𝑘) XOR operations are required.

To decrypt a message of 𝑘 bits, 𝑡O(𝑘) modular exponentiation computations are required.

The ciphertext of a 𝑘-bit plaintext takes up 𝑡O(𝑘 log𝑛) bits of space.

Lemma 1. The scheme is not receiver deniable.

Proof. The trick of the sender-deniable scheme is that the sender can manipulate the matrix

𝐴(𝑖, 𝑗) efficiently without being detected by the coercer. However, the receiver has no

information about the secret key and therefore cannot interpret 𝐴(𝑖, 𝑗) dishonestly. Thus,
the scheme is not receiver-deniable.

□

We use a simple example to disprove the receiver deniability.

For a better understanding, we present an example deniable encryption as follows:

Let 𝑝 = 11, 𝑞 = 13; hence 𝑛 = 𝑝𝑞 = 143 (in practice, 𝑝 and 𝑞 are much bigger and might be

512 bits long in binary format. We use simple numbers for a simplified explanation).
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4 Fundamental Deniability Notions

Let the message to be encrypted be𝑚 = 10112. Let 𝑦 be a binary string: 𝑦 = 11002.

We can produce

𝐴(𝑖, 𝑗) =


25 64

100 49

9 4

81 16

 .
The sender sends 𝐴(𝑖, 𝑗) and ciphertext 𝑐 together to the receiver. In the honest case, the

receiver can decrypt the ciphertext and obtain𝑚 = 10112.

If the receiver is under coercion and tries to convince the coercer that𝑚 is 00002 instead

of 10112, the receiver would need to find a 𝑦′ such that 𝑦′ = 01112. But 143 factors only as

11 × 13. So we cannot find alternative 𝑝′, 𝑞′ such that 𝑝′ ≠ 11, 𝑞′ ≠ 13, and 𝑝′𝑞′ = 143.

Therefore, 𝑦 is fixed at 11002, and the scheme is not receiver-deniable.

Sender Deniable Public Key Scheme by Barakat[2] In this paragraph, we focus on an im-

proved version of sender-deniable encryption scheme built on the scheme by Howlader and

Basu. The scheme by Howlader and Basu is not secure against the QRP (3.1.2) and executes

slowly as multiple square root computations are required.

Same as the previous scheme, 𝑦 is communicated separately and displayed as matrix 𝐴,

where 𝑎 𝑗 represents the 𝑗 − 𝑡ℎ column of matrix 𝐴. If the sender would encrypt the true

message (honest encryption), the sender may proceed as follows:

• Selects two primes 𝑝, 𝑞 with 𝑝 ≠ 𝑞.

• Let PK be 𝑛 = 𝑝𝑞 with 𝑝 and 𝑞 secret.

• Selects a pseudosquare 𝑦 ∈ Z𝑛 (i.e., 𝑦 is QNR).

• Let message𝑚 be a binary string𝑚 =𝑚1,𝑚2, . . . ,𝑚𝑙 .

• For 𝑖 = 1, . . . , 𝑙 do:

– Select 𝑥 ∈ Z∗𝑛 at random.

– If𝑚𝑖 = 0, sender computes 𝑎 𝑗 = 𝑋 2

𝑗 mod 𝑛, where 𝑋 𝑗 ∈ Z∗𝑛 , for 0 ≤ 𝑗 ≤𝑚 − 1.

– Otherwise, sender computes 𝑎 𝑗 = 𝑦 · 𝑋 2

𝑗 mod 𝑛.

• The sender scans the binary representation of 𝑦 for an index 𝑖 𝑗 such that 𝑏
(𝑦)
𝑖 𝑗

= 𝑏
(𝑀𝑡 )
𝑗

.

• To ensure that the receiver is able to distinguish whether 𝑋 ∈ 𝑄𝑁 or 𝑋 ∈ 𝑄𝑁 as well

as to allow the receiver to stop at the correct QNR which is 𝑦 in our scheme, we use a

strong hash functionH with an output bit-length 𝐿 as follows:

– Let 𝜀 = 2
𝑚 − 1. Defines strings 𝑅0, . . . , 𝑅𝜀 , selects a random 𝑖 ≤ 𝜀, and sets

𝑅𝑖 =H(𝑦). Then, sets each other 𝑅 𝑗 ≠ 𝑖 ∈ {0, 1}ℓ .
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4.2 Example Deniable Encryption Schemes

• Randomly selects 0 < 𝑟 < 𝑛, and then the sender computes 𝐶 = 𝑔𝑦+𝑛𝑟 mod 𝑛, where

𝑔 is some element of Z∗𝑛 .

• Sends (𝑖𝑚−1, . . . , 𝑖0,𝐶, 𝑅0, . . . , 𝑅𝜀) to the receiver.

If the sender would encrypt the false message (dishonest encryption), the sender may

proceed as follows.

• Selects two primes 𝑝, 𝑞 and 𝑛 where 𝑛 = 𝑝𝑞.

• Selects a bit stream 𝑦 of 𝑘 bits, where 𝑦 is a QNR.

• Picks two small integers 0 < (𝑟1, 𝑟2) < 𝑛 and lets 𝑔 be some element of Z∗𝑛 .

• Computes 𝑦1 = 𝑔𝑦+𝑛𝑟1
mod 𝑛.

• Scans the binary representation of both 𝑦 and 𝑦1 such that

𝑏
(𝑦)
𝑖𝑚−1

= 𝑏
(𝑀𝑡 )
𝑚−1

. . . 𝑏
(𝑀𝑡 )
𝑖0

and 𝑏
(𝑦1)
𝑖𝑚−1

= 𝑏
(𝑀𝑓 )
𝑚−1

. . . 𝑏
(𝑀𝑓 )
𝑖0

.

• Let 𝜀 = 2
𝑚 − 1 be the number of strings 𝑦 𝑗 (i.e., each 𝑦 𝑗 corresponds to one fake𝑀𝑓 ).

• Defines strings 𝑅0, . . . , 𝑅𝜀 , selects a random 𝑖 ≤ 𝜀, and sets 𝑅𝑖 =H(𝑦), and sets each

other 𝑅 𝑗 ≠ 𝑖 ∈ {0, 1}ℓ as a value ofH(𝑦1).

• Computes 𝐶 = 𝑔𝑦1+𝑛𝑟2
mod 𝑛.

• Sends (𝑖𝑚−1, . . . , 𝑖0,𝐶, 𝑅0, . . . , 𝑅𝜀) to the receiver.

The decryption process works as follows:

The receiver decrypts the received message (𝑖𝑚−1, . . . , 𝑖0,𝐶, 𝑅0, . . . , 𝑅𝜀) starting with𝐶 . Then,
the receiver keeps on computing 𝑦 mod 𝑛 until the receiver reaches

𝑦 =
𝐿(𝐶𝛼

mod 𝑛2)
𝐿(𝑔𝛼 mod 𝑛2) mod 𝑛

as a QNR in J+𝑛 satisfying that 𝑅𝑖 =H(𝑦) for any 𝑖 = 0, . . . , 𝜀. Hence, the receiver decrypts

𝑏
(𝑦)
𝑖𝑚−1

, . . . , 𝑏
(𝑦)
𝑖0

as the cleartext bits, where 𝐿(𝑥) = 𝑥−1

𝑛
.

Performance Observation:
To encrypt a message of 𝑘-bits, O(𝑘) modular exponentiation computations, 1 hash function

computation are required.

To decrypt a message of 𝑘-bits, in best practice O(|𝑛 |2+𝛼 ) if 𝑔 is chosen, so that |𝛼 | = |𝑛 |𝜖 ,
where 𝜖 = 2

𝑚 − 1.

Space Cost: O(2𝑘)
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4 Fundamental Deniability Notions

4.2.2 Receiver Deniable Public Key Scheme

In this subsection, we introduce a receiver-deniable public-key encryption scheme proposed

by Ibrahim [11].

This scheme is realized based on Mediated RSA (mRSA) (3.2.3) and Oblivious Transfer

(3.3).

Key Generation A public key and private key pair is generated as described in 3.2.3. Let

(𝑒, 𝑁 ) represent the receiver’s public key.

Denote by 𝑑𝑅 the piece of receiver’s private key held by the receiver and 𝑑𝑆𝐸𝑀 the piece of

SEM’s private key held by the SEM.

Encryption Let𝑚 be the message to be encrypted by the sender for the receiver, and let𝑚𝑡

be the 𝑡-th bit in the message. The sender encrypts each message bit𝑚𝑡 in𝑚 as follows

• Picks a log𝑁 -bit string 𝑅 ∈ Z𝑁 . Let 𝑟0, 𝑟1, . . . , 𝑟𝑛−1 be the binary representation of 𝑅.

• Scans the binary representation of 𝑅 for an index 𝑖 such that 𝑟𝑖 =𝑚𝑡 .

• Computes and sends 𝐶𝑖 and 𝐶𝑅 , where

𝐶𝑖 = 𝑖𝑒 mod 𝑁, 𝐶𝑅 = 𝑅𝑒 mod 𝑁

to the receiver.

Decryption The decryption is executed jointly by the SEM and the receiver, and proceeds

as follows:

Step 1: Receiver partial decryption (𝑃𝐷) (𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ) The receiver computes

𝑃𝐷
(Receiver)
𝑅

=𝐶
𝑑𝑅
𝑅

mod 𝑁,

𝑃𝐷
(Receiver)
𝑖

=𝐶
𝑑𝑅
𝑖

mod 𝑁 .

The receiver then sends 𝑃𝐷
(Receiver)
𝑅

and 𝐶𝑖 to the SEM.

Step 2: SEM partial decryption (𝑃𝐷) (𝑆𝐸𝑀) The SEM computes

𝑃𝐷
(SEM)
𝑖

=𝐶
𝑑𝑆𝐸𝑀
𝑖

mod 𝑁 .

𝑅 = 𝑃𝐷
(Receiver)
𝑅

𝐶
𝑑𝑆𝐸𝑀
𝑅

mod 𝑁 .

The SEM then sends 𝑃𝐷
(SEM)
𝑖

back to the receiver.

Step 3: Reconstruction. The receiver computes

𝑖 = 𝑃𝐷
(SEM)
𝑖

· 𝑃𝐷 (Receiver)
𝑖

mod 𝑁,
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Step 4: Oblivious Transfer. Using the reconstructed values, the receiver and the SEM per-

form an Oblivious Transfer protocol. As a result, the receiver obtains the bit𝑚𝑡 . The scheme

is receiver-deniable under the assumption that the communication between the receiver

and the SEM is beyond the eavesdropping capabilities of the coercer.

Performance Observation:
The encryption and decryption of a single-bit message have no significant difference com-

pared with mRSA encryption schemes together with Oblivious Transfer. Only negligible

overhead is required. However, the encryption and decryption of a 𝑘-bit message would

cost 𝑘 times mRSA encryptions and 𝑘 times Oblivious Transfers.

The ciphertext of a 𝑘-bit plaintext takes up 𝑁O(𝑘) bits.

Lemma 2. The scheme is not secure against sender coercion.

Proof. The scheme is not secure against sender coercion as a coerced sender is forced to

reveal 𝑅 and the index 𝑖 , which are verifiable by the coercer using the receiver’s public

key. □

4.2.3 Sender-and-receiver Deniable (Bi-deniable) Encryption Scheme

Bi-deniable encryption proposed by O’Neill, Peikert, and Waters utilized simulatable public

key encryption as well as Oblivious Transfer (3.3). The scheme with message space {0, 1}
works as follows:

Honest Key Generation:

BI-DEN.Gen(1𝑛) :

R ← P𝑛 ( [5𝑛])
for 𝑖 = 1 to 5𝑛 do:

if 𝑖 ∈ R then

𝑝𝑘𝑖 ← Gen(1𝑛; 𝑟R,𝑖)
else

𝑝𝑘𝑖 ← OGen(1𝑛; 𝑟R,𝑖)
𝑝𝑘 ← 𝑝𝑘1 ∥ . . . ∥ 𝑝𝑘5𝑛

return 𝑝𝑘

Let R be a subset of size 𝑛 sampled uniformly at random from a natural number set of size

5𝑛. Any sub-public-key 𝑝𝑘𝑖 is generated by Gen(1𝑛; 𝑟R,𝑖) if 𝑖 ∈ R, otherwise generated by

OGen(1𝑛; 𝑟R,𝑖). The public key will be the concatenation of all sub-public-keys in order, i.e.,

𝑝𝑘 ← 𝑝𝑘1 | |...| |𝑝𝑘5𝑛 .
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Honest Encryption:

BI-DEN.Enc(𝑝𝑘,𝑚) :

S ← P𝑛 ( [5𝑛])
for 𝑖 = 1 to 5𝑛 do:

if 𝑖 ∈ S then

𝑐𝑖 ← Enc(𝑝𝑘𝑖, 𝑏; 𝑟S,𝑖)
else

𝑐𝑖 ← OEnc(𝑝𝑘𝑖 ; 𝑟S,𝑖)
𝑐 ← 𝑐1 ∥ . . . ∥ 𝑐5𝑛

return 𝑐

Let S be a subset of size 𝑛 sampled uniformly at random from a natural number set of size

5𝑛. Any sub-ciphertext 𝑐𝑖 is the outcome of Enc(𝑝𝑘𝑖,𝑚; 𝑟S,𝑖) if 𝑖 ∈ S, otherwise the outcome

of OEnc(𝑝𝑘𝑖 ; 𝑟S,𝑖). The ciphertext will be the concatenation of all sub-ciphertexts in order,

i.e. 𝑐 ← 𝑐1 | |...| |𝑐5𝑛 .

Decryption:

BI-DEN.Dec((R, 𝑟𝑅), 𝑐) :

for all 𝑖 ∈ R do:

𝑑𝑖 ← Dec(𝑟𝑅,𝑖, 𝑐𝑖)
if most of the 𝑑𝑖 ’s are 1 then

return 1

else return 0

𝑖 ∈ 𝑅,𝑑𝑖 ← Dec(𝑟𝑅,𝑖, 𝑐𝑖). If more 𝑑𝑖 are 1, then return 𝑡𝑟𝑢𝑒 , otherwise 𝑓 𝑎𝑙𝑠𝑒 .

Deniable Key Generation:

BI-DEN.DenGen(1𝑛) :

R ← P𝑛 ( [5𝑛])
for 𝑖 = 1 to 5𝑛 do:

𝑝𝑘𝑖 ← Gen(1𝑛; 𝑟R,𝑖)
𝑝𝑘 ← 𝑝𝑘1 ∥ . . . ∥ 𝑝𝑘5𝑛

𝑟 ← 𝑟R,1 ∥ . . . ∥ 𝑟R,5𝑛
return (𝑝𝑘,R, 𝑟 )

Let R be a subset of size 𝑛 sampled uniformly at random from a natural number set of

size 5𝑛. Any sub-public-key 𝑝𝑘𝑖 is generated by Gen(1𝑛; 𝑟R,𝑖). The public key will be the

concatenation of all sub-public-keys in order, i.e. 𝑝𝑘 ← 𝑝𝑘1 | |...| |𝑝𝑘5𝑛. The randomness 𝑟

will be the concatenation of all sub-randomness, i.e. 𝑟R,1 | |...| |𝑟R,5𝑛 . Instead of returning 𝑝𝑘 ,

(𝑝𝑘, (R, 𝑟 )) will be returned.
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Deniable Encryption:

BI-DEN.DenEnc(𝑝𝑘,𝑚′) :

S0 ← P𝑛 ( [5𝑛])
S1 ← P𝑛 ( [5𝑛] \ S0)
Y ← P𝑛 ( [5𝑛] \ (S0 ∪ S1))
for 𝑖 = 1 to 5𝑛 do:

if 𝑖 ∈ S0 then 𝑐𝑖 ← Enc(𝑝𝑘𝑖, 0; 𝑟S,𝑖)
if 𝑖 ∈ S1 then 𝑐𝑖 ← Enc(𝑝𝑘𝑖, 1; 𝑟S,𝑖)
if 𝑖 ∈ Y then 𝑐𝑖 ← Enc(𝑝𝑘𝑖,𝑚′; 𝑟S,𝑖)
else 𝑐𝑖 ← OEnc(𝑝𝑘𝑖 ; 𝑟S,𝑖)

𝑐 ← 𝑐1 ∥ . . . ∥ 𝑐5𝑛

return 𝑐

Let S0 be a subset of size 𝑛 sampled uniformly at random from a natural number set of size

5𝑛. Let S1 be a subset of size 𝑛 sampled uniformly at random from a natural number set

of size 5𝑛 excluding S0. Let Y be a subset of size 𝑛 sampled uniformly at random from a

natural number set of size 5𝑛 excluding S0 and S1. Any sub-ciphertext 𝑐𝑖 is the outcome

of Enc(𝑝𝑘𝑖, 0; 𝑟S,𝑖) if 𝑖 ∈ S0, the outcome of Enc(𝑝𝑘𝑖,𝑚′; 𝑟S,𝑖), otherwise the outcome of

OEnc(𝑝𝑘𝑖 ; 𝑟S,𝑖). The ciphertext will be the concatenation of all sub-ciphertexts in order, i.e.

𝑐 ← 𝑐1 | |...| |𝑐5𝑛 .

Generation of fake randomness:

BI-DEN.FakeCoins(𝑝𝑘, 𝑓𝑘 , 𝑟𝑆 ,𝑚′,𝑚) :

𝑐 ← BI-DEN.Enc(𝑝𝑘, .′; 𝑟𝑆 )
𝑧 ← HGD(5𝑛, 𝑛, 𝑛)
Z ← P𝑧 (𝑆𝑏)
Z′← P𝑛−𝑧 ( [5𝑛] \ (S0 ∪ S1 ∪ Y))
R∗ ←Z ∪Z′
S∗ ← 𝑆𝑏
for 𝑖 = 1 to 5𝑛 do:

if 𝑖 ∈ S∗ then 𝑟 ∗
𝑆,𝑖
← 𝑟𝑆,𝑖

else 𝑟 ∗
𝑆,𝑖
← IOEnc(𝑝𝑘𝑖, 𝑐𝑖)

if 𝑖 ∈ R∗ then 𝑟 ∗
𝑅,𝑖
← 𝑟𝑅,𝑖

else 𝑟 ∗
𝑅,𝑖
← IOGen(𝑝𝑘𝑖)

𝑟 ∗
𝑆
← 𝑟 ∗

𝑆,1
∥ . . . ∥ 𝑟 ∗

𝑆,5𝑛

𝑟 ∗
𝑅
← 𝑟 ∗

𝑅,1
∥ . . . ∥ 𝑟 ∗

𝑅,5𝑛

return (𝑟 ∗
𝑆
, 𝑟 ∗

𝑅
)

Let 𝑐 be the honest encryption of fake message𝑚′. Let 𝑧 be the random integer sampled

from a hypergeometric distribution HGD(5𝑛, 𝑛, 𝑛)6. LetZ be a subset of size 𝑧 sampled from

subset S𝑚 . Let Z′ be a subset of size 𝑛 − 𝑧 sampled from integer set of size 5𝑛 excluding

subset S0,S1,Y. Let 𝑅∗ be the union ofZ andZ′. Let 𝑆∗ be 𝑆𝑚 . For any index 𝑖 ,

6
Hypergeometric distribution is to describe the distribution of sampling without replacement, which in our

case means that 𝑃𝑟 [𝑧 = 𝑘] = (
𝑛
𝑘) ( 4𝑛

𝑛−𝑘)
(5𝑛𝑛 )

and 𝑘 ∈ {1, . . . , 𝑛}
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4 Fundamental Deniability Notions

if 𝑖 ∈ S∗ and 𝑖 ∈ S∗ then 𝑟 ∗
𝑆,𝑖
← 𝑟𝑆,𝑖, 𝑟

∗
𝑅,𝑖
← 𝑟𝑅,𝑖 .

If 𝑖 ∈ S∗ and 𝑖 ∉ S∗ then 𝑟 ∗
𝑆,𝑖
← 𝑟𝑆,𝑖, 𝑟

∗
𝑅,𝑖
← 𝐼𝑂Gen(𝑝𝑘𝑖).

If 𝑖 ∉ S∗ and 𝑖 ∈ S∗ then 𝑟 ∗
𝑆,𝑖
← 𝐼𝑂Enc(𝑝𝑘, 𝑐𝑖), 𝑟 ∗𝑅,𝑖 ← 𝑟𝑅,𝑖 .

If 𝑖 ∉ S∗ and 𝑖 ∉ S∗ then 𝑟 ∗
𝑆,𝑖
← 𝐼𝑂Enc(𝑝𝑘, 𝑐𝑖), 𝑟 ∗𝑅,𝑖 ← 𝐼𝑂Gen(𝑝𝑘𝑖).

The fake sender randomness is the concatenation of 𝑟 ∗
𝑆,𝑖

i.e. 𝑟 ∗
𝑆
← 𝑟 ∗

𝑆,1
∥ ... ∥ 𝑟 ∗

𝑆,5𝑛
. The fake

receiver randomness is the concatenation of 𝑟 ∗
𝑅,𝑖

i.e.𝑟 ∗
𝑅
← 𝑟 ∗

𝑅,1
∥ ... ∥ 𝑟 ∗

𝑅,5𝑛
.

Performance Observation:
The time cost depends on the encryption schemes. Compared with the normal encryption

scheme, the encryption and the decryption of bi-deniable schemes, require at least five

times cost of time. The fake coin generation requires twice the cost of time as is required in

decryption or encryption. To encrypt a message of 𝑘-bits, the cost of space is 5𝑘 bits.

4.3 Transformation between Sender-deniable and
Receiver-deniable Encryptions

In this section, we observe a generally applicable transformation between sender-deniable

and receiver-deniable encryption.

4.3.1 From Sender-deniable Encryptions to Receiver-deniable Encryptions

Let 𝐴 be a sender-deniable encryption scheme, then a receiver-deniable scheme 𝐵 may be

constructed as follows:

Let𝑚 denote the message of length 𝑘 to be transmitted from sender S to receiver R. R
selects a randomness 𝑟 of length 𝑘 and sends the 𝑟 to S utilizing the scheme 𝐴. Afterwards,

S sends𝑚⊕𝑟 to R. If𝐴 is sender deniable, then, R may plausibly claim that 𝑟 is 𝑟 ′ as desired,
where 𝑟 ′ is a fake randomness of length 𝑘 . As a result, R may plausibly claim that the

message the receiver received is𝑚′ =𝑚 ⊕ 𝑟 ⊕ 𝑟 ′ accordingly. The scheme 𝐵 therefore, allows

the receivers to plausibly deny what they have received, i.e., receiver-deniable. The figure

4.2 visualizes the construction of the receiver-deniable encryption scheme 𝐵 with 𝐸𝑁𝐶

and 𝐷𝐸𝐶 representing the encryption and decryption algorithms of the sender-deniable

encryption scheme 𝐴.

4.3.2 From Receiver-deniable to Sender-deniable Encryptions

Let 𝐴 be a receiver-deniable encryption scheme, then a sender-deniable scheme 𝐵 may be

constructed as follows:

Let𝑚 denote the message of length 𝑘 to be transmitted from sender S to receiver R. The
receiver R selects a randomness 𝑟 and sends the 𝑟 to S utilizing the scheme 𝐴. Afterwards,
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S sends𝑚 ⊕ 𝑟 to R. If 𝐴 is receiver deniable, then, S may plausibly claim that the value of 𝑟

is 𝑟 ′ as desired, where 𝑟 ′ is a fake randomness of length 𝑘 . As a result, S may plausibly claim

that the message the sender sent is𝑚′ ⊕ 𝑟 ′ =𝑚 ⊕ 𝑟 accordingly. The scheme 𝐵, therefore,

allows the senders to plausibly deny what they have sent, i.e. sender-deniable. The figure 4.3

visualizes the construction of the sender-deniable scheme 𝐵 with 𝐸𝑁𝐶 and𝐷𝐸𝐶 representing

the encryption and decryption algorithms of the receiver-deniable encryption scheme 𝐴.

4.3.3 Remarks

Although a generally applicable transformation between a sender-deniable and a receiver-

deniable scheme has been proposed, in practice it is not common to achieve a sender-

deniable scheme from a receiver-deniable scheme with such a transformation or vice versa.

This transformation makes no modification to the original schemes but treats them as

black boxes. This provides a simple and straightforward way for the user to achieve a

sender-deniable/ receiver-deniable scheme when one only has a feasible receiver-deniable/

sender-deniable scheme at hand. Since additional communications and computations are

required, the performance with respect to space and time is both negatively impacted. To

realize sender-deniability or receiver-deniability, it is often more practical to propose a new

scheme.
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Figure 4.2: The construction of scheme B from scheme A

Figure 4.3:Caption
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5 Conclusion

The goal of this paper was to briefly introduce the notions of deniable encryption and ob-

serve their performance. We presented the three key deniability notions: sender-deniability,

receiver-deniability, and sender-and-receiver-deniability. For each notion, we introduced

at least one feasible encryption scheme. We also described a generally applicable transfor-

mation between a sender-deniable encryption scheme and a receiver-deniable encryption

scheme. Next, we compared the schemes proposed by Howlader and Basu [10] and Barakat

[2]. Additionally, we examined the scheme proposed by Ibrahim [11] to determine whether

it also achieves receiver deniability. Finally, we provided general performance observations

for all three schemes.

Due to the limited time available for this bachelor’s thesis, we discussed only the three

fundamental deniability notions. As deniability in modern cryptography is highly interdis-

ciplinary, many related topics lie outside the scope of this work. However, future research

could explore these interdisciplinary fields as introduced in Section 2.

While the schemes mentioned above achieve the desired properties, they nonetheless leave

several questions unanswered.

First, all of these schemes rely on specific assumptions. For example, the receiver-deniable

encryption scheme proposed by Ibrahim is secure only under the strong RSA assumption.

The RSA assumption is generally believed to be secure, as no feasible algorithm is currently

known to solve the factoring problem. However, Shor’s algorithm can efficiently solve the

factoring problem on a quantum computer. Therefore, once large-scale quantum computers

become available, all encryption schemes based on the RSA cryptosystem will no longer

be secure. Research into quantum-resistant deniable encryption is still in a preliminary

stage.

Second, all existing schemes require additional computational power and storage compared

to standard encryption schemes without deniability. It remains an open question whether a

deniable encryption scheme can be designed that does not require extra computational or

storage overhead compared to standard encryption schemes.
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6 Disclaimer

AI generative tools were utilized in the preparation of this thesis in accordance with the

“Guidelines for the Use of Generative AI in Teaching at the KIT Faculty of Computer Science

(AI Guidelines for Computer Science)” [[https://www.informatik.kit.edu/downloads/

studium/Guidelines_Generative_AI_Informatics.pdf]

The following outlines the AI tools used and their specific contributions:

Search Engine In the initial phase of this thesis, ChatGPT was used to gather background

information on the topic and to generate summaries of potential research directions.

Code Generation ChatGPT was used to convert mathematical equations from screenshots

or handwritten notes into LATEX code. Figure 3.1 is also generated by ChatGPT based on my

handwritten draft.

Grammar Correction The thesis was originally written in English. ChatGPT was used

solely for grammar checking and correction to improve readability. Writefull assistant in

Overleaf was also used.

Translation The "Zusammenfassung" section was translated entirely using ChatGPT, based

on the English abstract.

27

[https://www.informatik.kit.edu/downloads/studium/Guidelines_Generative_AI_Informatics.pdf
[https://www.informatik.kit.edu/downloads/studium/Guidelines_Generative_AI_Informatics.pdf




Bibliography

[1] Joël Alwen et al. “Incoercible multi-party computation and universally composable

receipt-free voting”. In:Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35. Springer.
2015, pp. 763–780.

[2] Tamer Mohamed Barakat. “A new sender-side public-key deniable encryption scheme

with fast decryption”. In: KSII Transactions on Internet and Information Systems (TIIS)
8.9 (2014), pp. 3231–3249.

[3] Dan Boneh. “Strong RSA Assumption”. In: Encyclopedia of Cryptography, Security and
Privacy. Springer, 2025, pp. 2545–2545.

[4] Dan Boneh, Amit Sahai, and Brent Waters. “Functional encryption: Definitions and

challenges”. In: Theory of Cryptography Conference. Springer. 2011, pp. 253–273.

[5] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. “Fully deniable interactive encryp-

tion”. In: Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings,
Part I 40. Springer. 2020, pp. 807–835.

[6] Ran Canetti et al. “Deniable encryption”. In: Advances in Cryptology—CRYPTO’97: 17th
Annual International Cryptology Conference Santa Barbara, California, USA August
17–21, 1997 Proceedings 17. Springer. 1997, pp. 90–104.

[7] Ivan Damgård and Jesper Buus Nielsen. “Improved non-committing encryption

schemes based on a general complexity assumption”. In: Annual International Cryp-
tology Conference. Springer. 2000, pp. 432–450.

[8] Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. “Receiver-and sender-deniable

functional encryption”. In: IET Information Security 12.3 (2018), pp. 207–216.

[9] Marc Fischlin and Sogol Mazaheri. “Notions of deniable message authentication”.

In: Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society. 2015,
pp. 55–64.

[10] Jaydeep Howlader and Saikat Basu. “Sender-side public key deniable encryption

scheme”. In: 2009 International Conference on Advances in Recent Technologies in
Communication and Computing. IEEE. 2009, pp. 9–13.

[11] Maged Hamada Ibrahim. “Receiver-deniable Public-Key Encryption.” In: Int. J. Netw.
Secur. 8.2 (2009), pp. 159–165.

29



Bibliography

[12] Burt Kaliski. “Quadratic Residuosity Problem”. In: Encyclopedia of Cryptography and
Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA: Springer US,

2011, pp. 1003–1003. isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-5_429.

url: https://doi.org/10.1007/978-1-4419-5906-5_429.

[13] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography: principles
and protocols. Chapman and hall/CRC, 2007.

[14] Adam O’Neill, Chris Peikert, and Brent Waters. “Bi-deniable public-key encryption”.

In: Annual Cryptology Conference. Springer. 2011, pp. 525–542.

[15] Michael O Rabin. “How to exchange secrets with oblivious transfer”. In: Cryptology
ePrint Archive (2005).

[16] Yong Xu et al. “Deniable steganography”. In: arXiv preprint arXiv:2205.12587 (2022).

[17] Andrew C Yao and Yunlei Zhao. “Deniable internet key exchange”. In: International
Conference on Applied Cryptography and Network Security. Springer. 2010, pp. 329–348.

[18] Andrew C. Yao. “Protocols for secure computations”. In: (1982), pp. 160–164. doi:

10.1109/SFCS.1982.38.

30

https://doi.org/10.1007/978-1-4419-5906-5_429
https://doi.org/10.1007/978-1-4419-5906-5_429
https://doi.org/10.1109/SFCS.1982.38

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Preliminaries
	Security Assumptions
	Symmetric and Asymmetric Encryption
	Oblivious Transfer

	Fundamental Deniability Notions
	Deniable Encryptions
	Three Fundamental Types of Deniability

	Example Deniable Encryption Schemes
	Sender Deniable Public Key Scheme
	Receiver Deniable Public Key Scheme
	Sender-and-receiver Deniable (Bi-deniable) Encryption Scheme

	Transformation between Sender-deniable and Receiver-deniable Encryptions
	From Sender-deniable Encryptions to Receiver-deniable Encryptions
	From Receiver-deniable to Sender-deniable Encryptions
	Remarks


	Conclusion
	Disclaimer
	Bibliography

