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Abstract

Deniability is an important feature of modern cryptography. This property allows a par-
ticipant to plausibly deny an action they have performed. Deniable encryption enables
participants to achieve deniability in addition to the two fundamental properties of encryp-
tion: security and correctness. In a state with a public and impartial electronic voting system
using encrypted ballots, the election should, in theory, be resilient to coercion. However, if
the transmission of encrypted ballots takes place over a non-secure channel and a powerful
but malicious party can coerce voters into revealing their votes, the election can no longer
be considered impartial. By employing sender-deniable encryption to encrypt the ballots,
the system could once again resist coercion.

The deniability notion in deniable encryption can be classified into three categories: sender-
deniability, receiver-deniability, and sender-and-receiver deniability. With sender-deniability,
the sender can plausibly deny what they have sent. With receiver-deniability, the receiver
can plausibly deny what they have received. With sender-and-receiver deniability, both the
sender and the receiver can plausibly deny what they have sent or received, respectively.

In this thesis, we examine four deniable encryption schemes, two of which are sender-
deniable schemes, one is a receiver-deniable scheme, and the other is a sender-and-receiver-
deniable scheme. We first examine how they work and how they achieve the desired
deniability property. In addition, we evaluate their performance with respect to the cost of
time and space. We also observe how a general transformation between a sender-deniable
and a receiver-deniable scheme is constructed. Furthermore, we compare the two sender-
deniable schemes proposed by Howlader and Basu [10] and Barakat [2]. Finally, we prove
that the scheme proposed by Howlader and Basu is not receiver-deniable, while the scheme
proposed by Ibrahim is not sender-deniable.






Zusammenfassung

Abstreitbarkeit ist ein wichtiges Merkmal der modernen Kryptographie. Diese Eigenschaft
erlaubt es einem Teilnehmer, eine von ihm ausgefithrte Handlung plausibel abzustreiten.
Abstreitbare Verschliisselung ermdglicht es den Beteiligten, neben den zwei grundlegenden
Eigenschaften der Verschliisselung — Sicherheit und Korrektheit — Abstreitbarkeit zu errei-
chen. In einem Staat mit einem &ffentlichen und unparteiischen elektronischen Wahlsystem,
das verschlisselte Stimmzettel verwendet, sollte die Wahl theoretisch resistent gegen No-
tigung sein. Findet die Ubertragung der verschliisselten Stimmzettel jedoch tiber einen
unsicheren Kanal statt und kann eine machtige, boswillige Partei Wahler dazu zwingen,
ihre Stimmen offenzulegen, kann die Wahl nicht mehr als unparteiisch gelten. Durch den
Einsatz sender-abstreitbarer Verschliisselung zur Verschliisselung der Stimmzettel konnte
das System erneut gegeniiber Notigung widerstandsfahig sein.

Der Abstreitbarkeitsbegriff in abstreitbarer Verschliisselung lasst sich in drei Kategorien
einteilen: Sender-Abstreitbarkeit, Empfanger-Abstreitbarkeit und Sender-und-Empfanger-
Abstreitbarkeit. Bei Sender-Abstreitbarkeit kann der Absender plausibel abstreiten, was er
gesendet hat. Bei Empfanger-Abstreitbarkeit kann der Empfanger plausibel abstreiten, was
er empfangen hat. Bei Sender-und-Empfanger-Abstreitbarkeit konnen sowohl Absender als
auch Empfanger plausibel abstreiten, was sie gesendet beziehungsweise empfangen haben.

In dieser Arbeit untersuchen wir vier abstreitbare Verschliisselungsverfahren: Zwei davon
sind sender-abstreitbar, eines ist empfanger-abstreitbar und eines ist sender-und-empfanger-
abstreitbar. Zunachst analysieren wir, wie sie funktionieren und wie sie die gewiinschte
Abstreitbarkeits-Eigenschaft erreichen. Dariiber hinaus bewerten wir ihre Leistung hinsicht-
lich Zeit- und Speicheraufwand. Ferner betrachten wir, wie eine allgemeine Transformation
zwischen einem sender-abstreitbaren und einem empfanger-abstreitbaren Verfahren kon-
struiert wird. Auflerdem vergleichen wir die beiden sender-abstreitbaren Verfahren von
Howlader und Basu [10] und Barakat [2]. Abschliefend zeigen wir, dass das von Howla-
der und Basu vorgeschlagene Verfahren nicht empfanger-abstreitbar ist, wahrend das von
Ibrahim vorgeschlagene Verfahren nicht sender-abstreitbar ist.
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1 Introduction

Consider a direct-election state with an e-voting system in which an authoritarian regime
seeks to stay in power indefinitely by abolishing elections through a mandated referendum.
Voters are forced to reveal their votes, and those who vote against the regime’s will face
strict punishment. As an e-voting system encrypts ballots using the voter’s public key and
transmits the encrypted ballots over a public, non-secure network, the regime—acting as
an eavesdropper or spy—may intercept and store the encrypted ballots. Later, the regime
could demand that voters reveal their public keys and corresponding votes. With access
to the public key and the intercepted ciphertexts, the regime would then be able to verify
whether the voters complied with its instructions. However, if deniable encryption were
used instead of traditional public-key encryption, a voter could generate a “fake” public key
and a corresponding “fake” vote that together produce a “fake” ciphertext indistinguishable
from the intercepted one. With such encryption, a voter may confidently vote according
to their own will, yet reveal a different result if placed under coercion after the election.
The coercer, however, is unable to prove or disprove whether the voter actually voted as
claimed.

In 1982, Yao proposed Yao’s Millionaires’ Problem [18]. He introduced a game in which Alice
and Bob each have assets valued at i and j million USD, respectively. They want to determine
who is wealthier without revealing their actual wealth to each other. Their communication
occurs over a non-secure channel, which may have zero, one, or multiple eavesdroppers or
saboteurs. Additionally, both Alice and Bob wish to learn only the comparative result—who
is wealthier—without disclosing their exact wealth or gaining any additional information
about the other’s assets. Yao aimed to develop an algorithm that would allow Alice and
Bob to determine who is wealthier without revealing their actual wealth. He then extended
this concept to multi-party scenarios, creating a more general secure computation protocol.
His work became the foundation of multi-party secure computation and inspired deniable
encryption: what if the participants in a multi-party computation are placed under the
coercion of a third party?

Canetti et al. introduced the concept of deniable encryption in their 1997 paper. Suppose an
encrypted message is intercepted by an adversary and the adversary later demands that the
sender reveal the private key and the corresponding randomness, which were presumably
used to produce the ciphertext. An encryption scheme is deniable if the sender can generate
a fake private key and a fake randomness under which the intercepted ciphertext decrypts to
a different plaintext, making it indistinguishable from an encryption of the original plaintext
under the real private key. Canetti et al. classified deniable encryption schemes according to
which parties may be coerced: sender-deniable, receiver-deniable, and sender-and-receiver-
deniable schemes. A sender-deniable encryption scheme allows the sender to plausibly
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deny what the sender has sent when a third party demands disclosure of the message or
plaintext. Similarly, a receiver-deniable encryption scheme allows the receiver to deny what
the receiver has received when a third party demands disclosure of the message or plaintext.
If a scheme allows both the sender and receiver to plausibly deny what they have sent or
received when a third party demands disclosure of the message or plaintext, it is called
a sender-and-receiver-deniable encryption scheme, or bi-deniable encryption scheme for
short.

In this thesis, we introduce the deniability notions with respect to deniable encryption. A
formal definition is provided to define the three key properties: correctness, security, and
deniability. We then present two protocols for sender-deniable encryption, one protocol
for receiver-deniable encryption, and one protocol for sender-and-receiver-deniable en-
cryption. Furthermore, we examine the differences between these protocols, discussing
their advantages and disadvantages. Finally, we explore the transformation between sender-
deniable and receiver-deniable encryption schemes. Still, there are a few more notions
and applications that are not introduced in this thesis, such as off-the-record deniability,
receipt-freeness, steganography;, etc.



2 Related Work

As this thesis mainly focuses on deniable encryption, which represents only a small area
within the broader topic of deniability, it is worth noting that many other studies explore
deniability in combination with different fields.

In a functional encryption system, a decryption key allows a user to learn a function of
the encrypted data [4]. De Caro, Iovino, and O’Neill proposed the essential properties of
deniable functional encryption and additionally summarized two models: full deniability
from trapdoor circuits and multi-distributional deniability from delayed trapdoor circuits [8].

Canetti, Park, and Poburinnaya introduced fully deniable interactive encryption. The goal
was to deal with situations where both parties are placed under the coercion of a single third
party. In this case, the third party may check whether the plaintexts revealed by both parties
correspond to each other. Therefore, a new deniability notion was proposed: off-the-record
deniability, which guarantees protection for each party independently of the other party’s
actions without prior coordination [5].

In electronic voting, several schemes have been proposed to solve the coercion scenario
described in the introduction by achieving deniability. Alwen et al. defined a security
notion for incoercible multiparty computation and proposed a protocol that achieves such
deniability [1]. The new deniability notions: receipt-freeness and coercion resistance are
introduced alongside.

Steganography is another field where deniability is applied. Steganography enables a sender
to conceal a secret message inside a piece of media that appears completely normal. For
example, a message can be embedded in an image, allowing the sender to transmit the image
instead of the message or ciphertext itself. Xu et al. introduced deniable steganography and
presented a receiver-deniable image steganography protocol [16].

Apart from deniable encryption, another major research focus is deniable message authen-
tication. Deniable message authentication protects the authentication process from spies
or malicious verifiers. It occurs between a sender (prover) and a receiver (verifier) and
allows the prover, in the strongest sense, to dispute that such a verification process has
taken place. Fischlin and Mazaheri further classified its deniability properties into five types:
content deniability, context deniability, time deniability, source deniability, and destination
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deniability [9].

Additionally, Yao and Zhao [17] proposed deniable Internet Key Exchange, which integrates
deniability into key exchange protocols and makes it compatible with widely deployed key
exchange standards. In the same work, Yao and Zhao introduced two additional deniability
notions: concurrent deniability and forward deniability.



3 Preliminaries

We introduce in this section some important definitions and security assumptions. In
addition, a few algorithms that are used in Section 4 are also included.

Definition 3.0.1 (Negligible Function'). A function negl is negligible if for every polynomial
p(+) there exists an N such that for all integers n > N it holds that negl(n) < ﬁ

Definition 3.0.2 (Computational Indistinguishability?). Two probability ensembles X =

{Xntnew and Y = {Y, }nen are computationally indistinguishable, denoted X £y, if for every
probabilistic polynomial-time distinguisher D there exists a negligible function neg| such that:

[Pr[D(X,) = 1] — Pr[D(Y,) = 1]| < negl(n)

The distinguisher D is given the unary input 1" so that it can run in time that is polynomial in
n in its attempt to distinguish.

Definition 3.0.3 (Transmission (txm)3). We denote a transmission of a message m between
a sender S and a receiver R as txm(m,rs, rg) with rs, rg being two randomly chosen inputs
from the sender S and the receiver R respectively.

Definition 3.0.4 (Quadratic Residue (QR)*). Let n be an odd, positive integer, and let x be
an integer that is relatively prime to n. The integer x is a quadratic residue modulo n if the
equation

x =y modn

has an integer solution y. We denote in this case x € Q,. In other words, the integer x is a
square modulo n. The integer x is a quadratic non-residue (QNR) otherwise, and we denote in
this case x € Q,

1[13, Def. 3.5]
2[13, Def. 6.31]
3Adapted from [6]
*[12]
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Definition 3.0.5 (Invertible Sampling®). LetA : Xx{0,1}* — Y be a probabilistic polynomial-
time algorithm. We say A has invertible sampling and that A is a probabilistic polynomial-time
algorithm with invertible sampling, if there exists a probabilistic polynomial-time random-bits-
faking-algorithm A™! : Y X X — {0, 1}* such that for all inputs x € X. uniformly random
bits r « Ra, output value y «— A(x,r), and fake random bitsr' < A~'(y, x) the random
variables (x,y,r") and (x,y,r) are computationally indistinguishable (see 3.0.2).

3.1 Security Assumptions

In this section, several important security assumptions are introduced. These assumptions
provide the theoretical foundation for the schemes discussed in the later sections.

Definition 3.1.1 (Strong RSA Assumption®). Let 1 < 7 € Z be a security parameter. Let
n = pq be a product of two random t—Dbit primes and let x be an element of group Z;. The
strong RSA-Problem is defined as follows:

given (n,x) as an input, find a pair a,b € Z
such that a® = x mod n and b # +1

The strong RSA assumption states that for a sufficiently large T the strong RSA problem cannot
be solved in probabilistic polynomial-time.

Definition 3.1.2 (Quadratic Residuosity Assumption 7). The Quadratic Residuosity Problem
(ORP) is to determine whether an integer x with Jacobi Symbol 1 modulo a composite number
n (n = pq and p, q are prime) is a QR (see 3.0.4), where the Jacobi symbol of x modulo n is
defined as the product of the Legendre symbols of x modulo each prime factor of n. In other
words, QRP is to determine whether an integer x exists so that (3;) = 1.

The Quadratic Residuosity Assumption (QR-Assumption) states that the QRP cannot be effi-
ciently solved if only given x and n, but could be solved efficiently if p, q, the factorization of n,
are given.

Definition 3.1.3 (Computational Diffie-Hellman Assumption®). Fix a cyclic group G and
generator g € G. Let a,b be two randomly chosen group elements. The Computational
Diffie-Hellman (CDH) problem is to compute g°° given g% g* . The CDH assumption states
that there is no known feasible algorithms capable of solving the CDH problem in probabilistic
polynomial-time.




3.2 Symmetric and Asymmetric Encryption

3.2 Symmetric and Asymmetric Encryption

Definition 3.2.1 (Symmetric Encryption °). A symmetric encryption scheme is a tuple of
probabilistic polynomial-time algorithms (GEN, ENC, DEC) such that:

1. The key-generation algorithm GEN takes as input the security parameter 1" (i.e. length
of the key) and outputs a key k. We write this ask < GEN(1") . We will assume without
loss of generality that any key k output by GEN(1") satisfies |k| > n.

2. The encryption algorithm ENC takes as input a key k and a plaintext message m €
{0,1}*, and outputs a ciphertext c. Since ENC may be randomized, we write this as
¢ < ENCr(m).

3. The decryption algorithm DEC takes as input a key k and a ciphertext ¢, and outputs a
result m’. We assume without loss of generality that DEC is deterministic, and so write
this as m’ := DECy(c).

It is required for correctness that for every n, every key k output by GEN(1"), and every
m € {0, 1}, it holds that DECy(ENCy(m)) = m’ and m = m’. Symmetric encryption is also
known as shared-key encryption or private key encryption.

Definition 3.2.2 (Asymmetric Key Encryption!®). An asymmetric encryption scheme is a
tuple of probabilistic, polynomial-time algorithms (GEN, ENC, DEC) that satisfies the follow-

ing:

1. Algorithm GEN takes as input a security parameter 1" (i.e. length of the key) and outputs
a pair of keys (pk, sk). We refer to the first of these as the public key and the second as
the private key or secret key. We assume for convenience that pk and sk each have length
at least n, and that n can be determined from pk, sk.

2. Algorithm ENC takes as input a public key pk and a message m from some underlying
plaintext space (that may depend on pk). It outputs a ciphertext c, and we write this as
¢ < ENCp(m).

3. Algorithm DEC takes as input a private key sk and a ciphertext c, and outputs a message
m or a special symbol L denoting failure. We assume without loss of generality that DEC
is deterministic and write this as m’ := DECy.(c).

We require that for every n, every (pk, sk) pair output by GEN(1"), and every message m in
the appropriate underlying plaintext space, it holds that DECs (ENCp(m)) = m’ andm = m’.
Asymmetric encryption is also known as public-key encryption.

°[13, Def.3.8]
10713, Def.10.1]
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Definition 3.2.3 (RSA encryption). In RSA encryption, we need to select two prime num-
bers (sufficiently big'’) p and q and consequently compute n = pq. Then we compute
r = (p—1)(q —1). Next we select an e, with1 < e < r — 1 such that gcd(r,e) = 1.
We take (n, e) as the public key and (n,d) as the private key. In the following parts of this
thesis, we take the public key as e instead of (n, e) and the private key as d instead of (n, d)
since n is available to everyone (see figure 3.1). To encrypt a message m, the sender needs to
use the receiver’s public key to calculate the ciphertext with c = m® mod n. The receiver may
decrypt the ciphertext by computing m = ¢ mod n (see figure 3.2).

The strong RSA assumption 3.1.1 states that given any n = pq, where p,q are prime and
unknown, for any given ciphertext c, there is no probabilistic polynomial-time algorithm to
find any pair (m, e) such that c = m® mod n. Therefore, RSA encryption is considered secure.

In the variant mediated RSA (mRSA), a neutral third-party, also called the SEcurity Mediator
(SEM), is introduced, and the secret key is split into two parts: the user-owned private key dRec¢iver
and the SEM-owned private key d>F™. The encryption proceeds exactly as RSA encryption.
What distinguishes it from a naive implementation is the decryption. The detailed encryption
and decryption procedures of mRSA will be presented with the protocol in 4.2.2 [11].

Generator GEN

Take in security parameter k

Choose two large prime numbers p, g of length k
Compute n = pg,r = (p—1)(¢ — 1)

Compute A =lem(p — 1,9 — 1)

Select e, where 1 < e < r and ged(r,e) =1
Compute d where ed = 1 mod A

Save pk = (n,e), sk = (n,d)

Discard everything else

Figure 3.1: Key Generation of RSA Encryption

Has of 2025, typically 2048-4096 bits long



3.3 Oblivious Transfer

Sender S Receiver R

(pk, sk) < GEN (k)
pk

message 1m
Compute ¢ = m*® mod n

Compute m = ¢ mod n

Figure 3.2: RSA Encryption and Decryption

Definition 3.2.4 (Simulatable Public Key Encryption!?). Let Gen, Enc, Dec be the algorithms
for key generation, encryption, and decryption as defined in 3.2.2, respectively. Let M be the
message space.
Let OGen(1", roGen) denote an oblivious key generation algorithm which produces a public
key Opk and has invertible sampling via algorithm IpGen, -
Let OEnc(pk) denote an oblivious encryption scheme which produces a ciphertext Oc and has
invertible sampling via Ipgy..
For a simulatable public key encryption scheme (Gen, Enc, Dec, OGen, OEnc), the distribution
of pk should be computationally indistinguishable from Opk. Further, the outputs of the follow-
ing games, the generator game (left) and the simulatable game (right) shall be computationally
indistinguishable:
pk — Gen(1",rg)
m«— M
¢ < Enc(pk, m)
Return (pk,rg,c)

pk « Gen(1",rg)
Oc « OEnc(pk)
Return (pk, rg, Oc)

3.3 Oblivious Transfer

Oblivious transfer (OT) was first proposed by Rabin [15]. It was designed to transmit
secrets between a sender and a receiver: the sender sends multiple secrets at once without
knowing which one the receiver receives, and the receiver obtains exactly one secret with
no acknowledgment of the other secrets.

Let G4 be a subgroup of order g of Z; where p is prime and p — 1 is divided by g with
no remainder (i.e. g|p — 1). Let g be a generator of the group, and assume that the CDH
assumption holds. Let H be a hash function. We call an oblivious transfer consisting of
n messages OTnl : The sender owns n strings, ry, ..., ',—1 and picks n — 1 random values
Ui, ..., Up—1 and publishes them. The sender also picks a random R and sends g® to the
receiver. The receiver selects a random k and sets pk, = g* with o € {0,..,n — 1} at
the receiver’s own choice. The receiver sends pky to the sender. The sender computes

12 [7]
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pkX and pkR = UR/pkE, Vi € {0,..,n — 1}. The sender sends the encryption of every
ri, H (pklR, w, i) @ r;, where w is a random string known to both parties. Finally, the receiver
is able to decrypt the receiver’s choice using pk, (see figure 3.3)[11].

Receiver R

Sender S
g publicly known
MESSALE 7, - - - T'n—1 ¢ publicly known
random values Uy, ..., U,
randomness R .
Ul: R Unfhg
randomness k
o €{0,...,n— 1} at receiver’s choice
PK, = g*

compute (PKy)?

compute Vi € {0,...,n — 1},
(PK;)" =U!/(PKy)®
H((PI{O)R: w, 0) ©ro,.. ., H((P-[(n—l)ﬂv w,n — 1) B rn-1

decrypt r, = (H((PK,)" w,0) ®r,) @ H(PK,)™ w,0)

Figure 3.3: Oblivious Transfer in Game Display

10



4 Fundamental Deniability Notions

In this section, we first define the concept of deniable encryption. Then, we introduce the
three primary notions of deniability. Subsequently, several classic encryption schemes are
discussed with respect to these notions. Finally, we analyze the schemes and provide the
amortized cost of time and space.

4.1 Deniable Encryptions

In this section, we introduce the fundamentals of deniable encryption and define three
notions of deniability: sender deniability, receiver deniability, and sender-and-receiver
deniability. We consider in this thesis only asymmetric deniable encryption.

Definition 4.1.1 (Deniable Encryption ). Canetti et al. [6] formalized deniable encryption
as follows. Let (pk, sk) be a key pair, where pk # sk. We denote a transmission (3.0.3) between
sender and receiver as txm(m, rs, rgr) with rs, rg being two randomly chosen inputs from the
sender and the receiver respectively.

A deniable encryption scheme must satisfy the regular encryption notions, which are:

1. Correctness: For every message m, if
¢ < ENCy(m), m' < DECq(c),
then the probability that the outcome of decryption m’ differs from the original plaintext
m is negligible, i.e. Pr[m’ # m] is smaller than a negligible function (3.0.1).

2. Security?: For any two messages my, m; of equal length and any public key pk, the
distributions
txm(my, rs,rr) and txm(my,rs,rR)

are computationally indistinguishable.

Additionally, it must satisfy a third notion.

3. Deniability: There exists an efficient faking algorithm f that allows a party to plau-
sibly produce alternative randomness consistent with some other plaintext. The formal
definition will be addressed in 4.1.1.

! Adapted from [6]
2Equivalent to the IND-CPA security

11
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4.1.1 Three Fundamental Types of Deniability

We detail the three types of deniability:

Definition 4.1.2 (Sender Deniability®). A sender-deniable encryption shall satisfy the above
mentioned correctness and security. Besides, it shall satisfy the deniability property defined as
follows:

There is an efficient algorithm fs such that, for any two messages m; # my and any sender ran-
domnessrs, (ma, 15, ¢) is computationally indistinguishable (3.0.2) from (my, rs, txm(ms, s, 1r)),
where

¢ — txm(my,rs, 1), rg — fs(my,rs,c,my),

Intuitively, the sender can “fake” having encrypted my instead of my. We use a simple game
to illustrate the process (see 4.1). The sender wins the game if the chance that the adversary
makes the right guess is less than 1/2 + negl(n). The game is rather simple, we would only
visualize the game here. The game for receiver-deniability or sender-and-receiver deniability
can be constructed analogously.

Sender § Adversary A Oracle O

get rp
generate rg
ma, ... m, (any amount of messages)

compute Vi € {1,...,n},
(mi, rs, tem(mi,rs,TR))

(my, rg, tem(my, rs,TR)), - - ., (M, rs, tam(my, rs,r))

message by, by and by, by & {my,...,m,
by, by by

compute ¢ = tem(by, rs,rr

compute rg = fs(by,rs, {‘ by
compute ¢; = (ba, r,

compute ¢y = (b, rg, tem(by, s, 7R)

selects j € {1,2}

1)
; compute (by, rg, tam(by, s, 7R))
)

(ba, Tg, tam(bs, 75, TR))

<

output j’, a guess value of j

J

4

Figure 4.1: Sender Deniability in Game Display

Definition 4.1.3 (Receiver Deniability?). A receiver deniable encryption shall satisfy the
above mentioned correctness and security. Besides, it shall satisfy the deniability property

defined as follows:

3[6, Def 2]
4[6, Def.9]

12



4.2 Example Deniable Encryption Schemes

There is an efficient algorithm fg such that, for any m; # my and any receiver randomness rg,
(ma, T c), is computationally indistinguishable (3.0.2) from (my, rg, txm(my, rs, rr)), where

¢ — txm(my,rs,1r), rg — fr(my,rr,c,my),
Intuitively, the receiver can “fake” a claim to have decrypted ¢ as m;.

Definition 4.1.4 (Sender-and-Receiver Deniability®). A sender-and-receiver deniable en-
cryption shall satisfy the above mentioned correctness and security. Besides, it shall satisfy the

deniability property defined as follows:

There is an efficient algorithm fsg such that, for any my # my, sender randomness rs and
receiver randomness rg, if

¢ «— txm(my,rs, 1), 15 — fsr(my,rs,e,my), rp <« fsr(my, rp,c,my),
then both
(Mg, rg,¢) = (my,rs,txm(my,rs,rr)) and (mg,rg,c) = (mg, g, txm(my,rs,1g))

are computationally indistinguishable (3.0.2). In other words, both sender and receiver can
independently claim the plaintext was m,. Sender-and-receiver deniable encryption is also
known as bi-deniable encryption.

However, if both parties do not coordinate with each other on how to generate fake randomness
before the coercion, the bi-deniability does not provide the desired deniability when both parties
are placed under coercion by the same coercer.

4.2 Example Deniable Encryption Schemes

We introduce two sender-deniable public-key encryption schemes, one receiver-deniable
public-key encryption scheme, and one sender-and-receiver deniable encryption scheme.
We assume that all key-exchange procedures are secure.

4.2.1 Sender Deniable Public Key Scheme

In this subsection, we first introduce a sender deniable public key encryption scheme
proposed by Howlader and Basu, which achieves sender-deniability.

36, Def.10]
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4 Fundamental Deniability Notions

Let n > 3 be an odd composite number.J;" is the set of all pseudosquares, and J, ], are
defined as follows.

Ji={acZy| (4 =1} J, ={aczZ;| (%) =-1}.

Let n be a product of two distinct primes. Then half of the elements in J are quadratic
residues and the other half are quadratic nonresidues. That is, if a € ], then

Prla € Q,] = %

We then define how to communicate a binary stream y of k bits.

For each bit b?, 0 <i<k—1:Ifthe i'" bit is 1, then the sender selects t elements Xj € Zy,
for 0 < j <t —1and computes a; = sz. mod n. Otherwise, the sender selects t numbers of
elements such thata; € J; for0 < j <t —1.

The binary streams y can be represented as:

a(o,0) ao,1) - Aot-1)

a(1,0) a(1,1) o A(1t-1)
Aj) =

A(k-1,0) 4k-11) " A(k-1,t-1)

Let y be a binary stream of k bits. For every single bit in the binary stream, the sender does
one of the following, depending on the bit biy.

1. If b? =1, select t elements
Xj€Z;, 0<j<t-1,

and compute
aj = x]2 (modn), 0<j<t-1.

2. If b? =0, select t elements

a;jeJ;, 0<j<t-1.

The sender then encrypts the message m to c as

k-1 k-1 k-1
¢= c = m @ Y
be b by
c m
bO bO bO

14



4.2 Example Deniable Encryption Schemes

the ciphertext c, together with y = A(; j) will be sent. Receiver decrypts the message c to m
as

m c )
bk—l bk—l bk—l
m = . — . ey .
by’ b1 by
by’ b b

with bY the binary stream reconstructed from matrix A(; ;. The reconstruction is executed
as follows:

W - 0, if3}tag)€Qn 0<j<t—1,

o\l ifVYau) €0n 0<j<t-1

In case the sender is under coercion, the sender may modify A(; ;) and flip some bit in y
from 1 to 0. The fake binary stream § can be constructed without being noticed by the
coercer. The sender may then construct a fake message ms based on the fake binary stream
§ and ciphertext ¢ with ms =5 P c.

However, this scheme suffers from the Quadratic Residue Problem (QRP) (3.1.2). The scheme
is considered secure as there are no feasible algorithms known to date, that resolve QRP
efficiently. However, as of now, it is still not known if QRP can be reduced to the problem
of integer factorization.

Performance Observation:

We recall that ¢ is the number of randomly chosen elements. To encrypt a message of k bits,
tO (k) modular exponentiation computations and O(k) XOR operations are required.

To decrypt a message of k bits, tO(k) modular exponentiation computations are required.
The ciphertext of a k-bit plaintext takes up tO(k log n) bits of space.

Lemma 1. The scheme is not receiver deniable.

Proof. The trick of the sender-deniable scheme is that the sender can manipulate the matrix
A efficiently without being detected by the coercer. However, the receiver has no
information about the secret key and therefore cannot interpret A(; j dishonestly. Thus,
the scheme is not receiver-deniable.

]

We use a simple example to disprove the receiver deniability.

For a better understanding, we present an example deniable encryption as follows:

Let p = 11, g = 13; hence n = pq = 143 (in practice, p and g are much bigger and might be
512 bits long in binary format. We use simple numbers for a simplified explanation).

15



4 Fundamental Deniability Notions

Let the message to be encrypted be m = 1011,. Let y be a binary string: y = 11005.

We can produce

25 64
100 49
Aip=|q9 4|
81 16

The sender sends A(; j) and ciphertext ¢ together to the receiver. In the honest case, the
receiver can decrypt the ciphertext and obtain m = 1011,.

If the receiver is under coercion and tries to convince the coercer that m is 0000, instead
of 10115, the receiver would need to find a y’ such that y’ = 0111,. But 143 factors only as
11 X 13. So we cannot find alternative p’, ¢’ such that p’ # 11, ¢’ # 13, and p’q’ = 143.

Therefore, y is fixed at 1100,, and the scheme is not receiver-deniable.

Sender Deniable Public Key Scheme by Barakat[2] In this paragraph, we focus on an im-
proved version of sender-deniable encryption scheme built on the scheme by Howlader and
Basu. The scheme by Howlader and Basu is not secure against the QRP (3.1.2) and executes
slowly as multiple square root computations are required.

Same as the previous scheme, y is communicated separately and displayed as matrix A,
where a; represents the j — th column of matrix A. If the sender would encrypt the true
message (honest encryption), the sender may proceed as follows:

« Selects two primes p, g with p # q.

+ Let PK be n = pq with p and g secret.

« Selects a pseudosquare y € Z, (i.e., y is QNR).

+ Let message m be a binary string m = my, my, ..., my.

« Fori=1,...,ldo:
- Select x € Z; at random.
- If m; =0, sender computes a; = X]? mod n, where X; € Z;,for0 < j <m— 1.
- Otherwise, sender computes a; =y - X ]2 mod n.

+ The sender scans the binary representation of y for an index i; such that bl.(jy) = b;M‘ ),

« To ensure that the receiver is able to distinguish whether X € Qy or X € Qy as well
as to allow the receiver to stop at the correct QNR which is y in our scheme, we use a
strong hash function H with an output bit-length L as follows:

— Let ¢ = 2™ — 1. Defines strings Ry, ..., R,, selects a random i < ¢, and sets
R; = H (y). Then, sets each other R; # i € {0,1}’.
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4.2 Example Deniable Encryption Schemes

« Randomly selects 0 < r < n, and then the sender computes C = ¢g*"" mod n, where
g is some element of Z;.

 Sends (ip—1,...,10,C, Ry, ..., R;) to the receiver.

If the sender would encrypt the false message (dishonest encryption), the sender may
proceed as follows.

« Selects two primes p, g and n where n = pq.

« Selects a bit stream y of k bits, where y is a QNR.

+ Picks two small integers 0 < (r1,72) < n and lets g be some element of Z;,.
« Computes y; = g™ mod n.

« Scans the binary representation of both y and y; such that

(y) _ (M) (My)
b =pM) bl

Im-1

(y1) _ 4 (My) (My)
and bl.m‘_1 =b, ...bio )

« Let £ = 2™ — 1 be the number of strings y; (i.e., each y; corresponds to one fake My).

« Defines strings Ry, . .., R, selects a random i < ¢, and sets R; = H (y), and sets each
other R; # i € {0, 1} as a value of H(y).

« Computes C = g¥"*"2 mod n.

« Sends (im_1,...,10,C, Ry, ..., R,) to the receiver.

The decryption process works as follows:
The receiver decrypts the received message (ip-1, - - -, io, C, Ry, - - ., Re) starting with C. Then,
the receiver keeps on computing y mod n until the receiver reaches

_ L(C* mod n?)

=—>" d
v L(g* mod n?) o

as a QNR in I satisfying that R; = H (y) for any i =0, ..., ¢. Hence, the receiver decrypts
b_(y) b(y)
A N

im-1>"

as the cleartext bits, where L(x) = xT_l

Performance Observation:

To encrypt a message of k-bits, O (k) modular exponentiation computations, 1 hash function
computation are required.

To decrypt a message of k-bits, in best practice O(|n|?>*%) if g is chosen, so that |a| = |n|€,
where e = 2™ — 1.

Space Cost: O(2)
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4 Fundamental Deniability Notions

4.2.2 Receiver Deniable Public Key Scheme

In this subsection, we introduce a receiver-deniable public-key encryption scheme proposed

by Ibrahim [11].

This scheme is realized based on Mediated RSA (mRSA) (3.2.3) and Oblivious Transfer
(3.3).

Key Generation A public key and private key pair is generated as described in 3.2.3. Let
(e, N) represent the receiver’s public key.

Denote by dg the piece of receiver’s private key held by the receiver and dsgys the piece of
SEM’s private key held by the SEM.

Encryption Let m be the message to be encrypted by the sender for the receiver, and let m;
be the ¢-th bit in the message. The sender encrypts each message bit m; in m as follows

« Picks a log N-bit string R € Zy. Let ro, 11, . .., ry—1 be the binary representation of R.
« Scans the binary representation of R for an index i such that r; = m;.

« Computes and sends C; and Cg, where
Ci=i® mod N, Cr=R° modN

to the receiver.

Decryption The decryption is executed jointly by the SEM and the receiver, and proceeds
as follows:

Step 1: Receiver partial decryption (PD)(Rec¢ive)  The receiver computes
PD}(QReceiver) _ CzR mod N,
PDi(Receiver) — CflR mod N.

The receiver then sends PDI(QReceiver) and C; to the SEM.

Step 2: SEM partial decryption (PD) M) The SEM computes
PDl.(SEM) = C?SEM mod N.

R = PDFEM )0 mod N.

The SEM then sends PDi(SEM) back to the receiver.

Step 3: Reconstruction. The receiver computes

i = PDI.(SEM) .PDi(Receiver) mod N,

18



4.2 Example Deniable Encryption Schemes

Step 4: Oblivious Transfer. Using the reconstructed values, the receiver and the SEM per-
form an Oblivious Transfer protocol. As a result, the receiver obtains the bit m;. The scheme
is receiver-deniable under the assumption that the communication between the receiver
and the SEM is beyond the eavesdropping capabilities of the coercer.

Performance Observation:

The encryption and decryption of a single-bit message have no significant difference com-
pared with mRSA encryption schemes together with Oblivious Transfer. Only negligible
overhead is required. However, the encryption and decryption of a k-bit message would
cost k times mRSA encryptions and k times Oblivious Transfers.

The ciphertext of a k-bit plaintext takes up NO(k) bits.

Lemma 2. The scheme is not secure against sender coercion.

Proof. The scheme is not secure against sender coercion as a coerced sender is forced to
reveal R and the index i, which are verifiable by the coercer using the receiver’s public
key. O

4.2.3 Sender-and-receiver Deniable (Bi-deniable) Encryption Scheme

Bi-deniable encryption proposed by O’Neill, Peikert, and Waters utilized simulatable public
key encryption as well as Oblivious Transfer (3.3). The scheme with message space {0, 1}
works as follows:

Honest Key Generation:

BI-DEN.Gen(1") :
R «— P,([5n])
fori =1to 5ndo:

if i € R then
pki «— Gen(1";rg ;)
else
pki < OGen(1";rg ;)
pk — pki|l ... || pksn
return pk

Let R be a subset of size n sampled uniformly at random from a natural number set of size
5n. Any sub-public-key pk; is generated by Gen(1";rg;) if i € R, otherwise generated by
OGen(1";rg ;). The public key will be the concatenation of all sub-public-keys in order, i.e.,
pk — pkill...|[pksn.
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Honest Encryption:

BI-DEN.Enc(pk, m) :
S — Pu([5n])
for i =1 to 5n do:
ifi € S then
¢i < Enc(pki, b;rs;)
else
¢i < OEnc(pk;;rs,;)
ce—ci|l ... 1lcsn
return c

Let S be a subset of size n sampled uniformly at random from a natural number set of size
5n. Any sub-ciphertext c; is the outcome of Enc(pk;, m;rg;) if i € S, otherwise the outcome
of OEnc(pk;;rs;). The ciphertext will be the concatenation of all sub-ciphertexts in order,
ie. ¢ « cil|...]|csn.

Decryption:

BI-DEN.Dec((R,rRr),c) :
for all i € R do:
d; < Dec(rg;, c;)
if most of the d;’s are 1 then
return 1
else return 0

i € R, d; « Dec(rg;, c;). If more d; are 1, then return true, otherwise false.

Deniable Key Generation:

BI-DEN.DenGen(1") :
R — Pn([5n])
for i =1 to 5n do:
pki «— Gen(1%;rg ;)
pk —pkill ... |l pksn
re—reall ... lrrsn

return (pk,R,r)

Let R be a subset of size n sampled uniformly at random from a natural number set of
size 5n. Any sub-public-key pk; is generated by Gen(1";rg ;). The public key will be the
concatenation of all sub-public-keys in order, i.e. pk < pk1||...||pksn. The randomness r
will be the concatenation of all sub-randomness, i.e. rg1]|...||rr sn. Instead of returning pk,

(pk, (R, r)) will be returned.
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Deniable Encryption:

BI-DEN.DenEnc(pk, m’) :

So «— Pn([5n])

S1 — Pu([5n] \ So)

Y — Pu([5n] \ (SoUS))

fori =1 to 5n do:
if i € Sy then ¢; « Enc(pk;, 0;75s,;)
if i € Sy then ¢; < Enc(pk;, 1;7s;)
ifi € Y then ¢; « Enc(pk;,m’;rs;)
else ¢; «<— OEnc(pk;;rs;)

ce—ci|l ... |lcsn

return c

Let Sy be a subset of size n sampled uniformly at random from a natural number set of size
5n. Let S; be a subset of size n sampled uniformly at random from a natural number set
of size 5n excluding Sy. Let Y be a subset of size n sampled uniformly at random from a
natural number set of size 5n excluding Sy and S;. Any sub-ciphertext ¢; is the outcome
of Enc(pk;, 0;rs;) if i € Sp, the outcome of Enc(pk;, m’;rs;), otherwise the outcome of
OEnc(pk;;rs;). The ciphertext will be the concatenation of all sub-ciphertexts in order, i.e.
¢ «— c|l...||esn.

Generation of fake randomness:

BI-DEN.FakeCoins(pk, fi,rs,m’,m) :
¢ < BI-DEN.Enc(pk, .;rs)
z «— HGD(5n, n, n)
Z « PZ(Sb)
Z' = Pp([5n] \ (So U S1 U Y))
R*—ZUZ
S* Sb
for i =1 to 5n do:
if i € §* then r;"l. —rs;
else r;l. « IOEnc(pk;, ¢;)
if i € R* then r;’l. — IR,
else rp; « I0Gen(pk;)

r;‘ — r;"l || r;"jn
* * *
R < Tra || ...| "R5n

return (rg, rp)

Let ¢ be the honest encryption of fake message m’. Let z be the random integer sampled
from a hypergeometric distribution HGD(5n, n, n)°. Let Z be a subset of size z sampled from
subset S,,. Let Z’ be a subset of size n — z sampled from integer set of size 5n excluding
subset Sy, S1, Y. Let R* be the union of Z and Z’. Let $* be S,,. For any index i,

SHypergeometric distribution is to describe the distribution of sampling without replacement, which in our

() G

case means that Pr(z = k] = o and k € {1,..., n}
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ifi € S*and i € 8* then r;l. — 15, r;,i — TR,

Ifie S*andi ¢ S* then r;"’l. — rsi, r;’l. — IoGen (Pki).

Ifi¢ S*andi € S* then r;’i — Iognc(pk, ci), r;,l. — IRj.

Ifi¢S*andi ¢ S thenrg; « lopnc(pk, i), ry; <= IoGen (pki).

The fake sender randomness is the concatenation of rg; i.e. rg « rg I ...l rgs,- The fake

receiver randomness is the concatenation of r} . i.e.rj «— r; || ... || r5-..
R,i R R1 R5n

Performance Observation:

The time cost depends on the encryption schemes. Compared with the normal encryption
scheme, the encryption and the decryption of bi-deniable schemes, require at least five
times cost of time. The fake coin generation requires twice the cost of time as is required in
decryption or encryption. To encrypt a message of k-bits, the cost of space is 5k bits.

4.3 Transformation between Sender-deniable and
Receiver-deniable Encryptions

In this section, we observe a generally applicable transformation between sender-deniable
and receiver-deniable encryption.

4.3.1 From Sender-deniable Encryptions to Receiver-deniable Encryptions

Let A be a sender-deniable encryption scheme, then a receiver-deniable scheme B may be
constructed as follows:

Let m denote the message of length k to be transmitted from sender S to receiver R. R
selects a randomness r of length k and sends the r to S utilizing the scheme A. Afterwards,
S sends m@r to R. If A is sender deniable, then, R may plausibly claim that r is 7 as desired,
where r’ is a fake randomness of length k. As a result, R may plausibly claim that the
message the receiver received is m" = m@r @r’ accordingly. The scheme B therefore, allows
the receivers to plausibly deny what they have received, i.e., receiver-deniable. The figure
4.2 visualizes the construction of the receiver-deniable encryption scheme B with ENC
and DEC representing the encryption and decryption algorithms of the sender-deniable
encryption scheme A.

4.3.2 From Receiver-deniable to Sender-deniable Encryptions

Let A be a receiver-deniable encryption scheme, then a sender-deniable scheme B may be
constructed as follows:

Let m denote the message of length k to be transmitted from sender S to receiver R. The
receiver R selects a randomness r and sends the r to § utilizing the scheme A. Afterwards,
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S sends m @ r to R. If A is receiver deniable, then, S may plausibly claim that the value of r
is r’ as desired, where r’ is a fake randomness of length k. As a result, S may plausibly claim
that the message the sender sent is m’ @ r’ = m & r accordingly. The scheme B, therefore,
allows the senders to plausibly deny what they have sent, i.e. sender-deniable. The figure 4.3
visualizes the construction of the sender-deniable scheme B with ENC and DEC representing
the encryption and decryption algorithms of the receiver-deniable encryption scheme A.

4.3.3 Remarks

Although a generally applicable transformation between a sender-deniable and a receiver-
deniable scheme has been proposed, in practice it is not common to achieve a sender-
deniable scheme from a receiver-deniable scheme with such a transformation or vice versa.
This transformation makes no modification to the original schemes but treats them as
black boxes. This provides a simple and straightforward way for the user to achieve a
sender-deniable/ receiver-deniable scheme when one only has a feasible receiver-deniable/
sender-deniable scheme at hand. Since additional communications and computations are
required, the performance with respect to space and time is both negatively impacted. To
realize sender-deniability or receiver-deniability, it is often more practical to propose a new
scheme.
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Sender &

message m of length k

Receiver R

randomness r of length &

compute ¢, = ENCpyg(r)
Cr

compute 1 = DECy,

compute m @ r
compute Cpa, = ENCpi, (m & 1)

CmEBT

7@ ENCopCmgr =7OmdDr =m

compute a r’ that ENCp () looks like ¢,
" @ ENCsppCmar =7 ®@m & r =m'

honest decryption:

dishonest decryption:

Figure 4.2: The construction of scheme B from scheme A

Sender §

message m of length &

compute r = DECg,

Receiver R

randomness 7 of length k

compute ¢, = ENCipp (1)
Cr

compute a 1/, that ENCpy;(r') looks like ¢,

compute m @ r
compute Cpar = ENCpip (m &)

Cmer

In case of coercion:

| J . Lot decrypt using r & ENCyppCnar =S m B =m
claim sending m' @& " instead of m & r

Figure 4.3: Caption
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5 Conclusion

The goal of this paper was to briefly introduce the notions of deniable encryption and ob-
serve their performance. We presented the three key deniability notions: sender-deniability,
receiver-deniability, and sender-and-receiver-deniability. For each notion, we introduced
at least one feasible encryption scheme. We also described a generally applicable transfor-
mation between a sender-deniable encryption scheme and a receiver-deniable encryption
scheme. Next, we compared the schemes proposed by Howlader and Basu [10] and Barakat
[2]. Additionally, we examined the scheme proposed by Ibrahim [11] to determine whether
it also achieves receiver deniability. Finally, we provided general performance observations
for all three schemes.

Due to the limited time available for this bachelor’s thesis, we discussed only the three
fundamental deniability notions. As deniability in modern cryptography is highly interdis-
ciplinary, many related topics lie outside the scope of this work. However, future research
could explore these interdisciplinary fields as introduced in Section 2.

While the schemes mentioned above achieve the desired properties, they nonetheless leave
several questions unanswered.

First, all of these schemes rely on specific assumptions. For example, the receiver-deniable
encryption scheme proposed by Ibrahim is secure only under the strong RSA assumption.
The RSA assumption is generally believed to be secure, as no feasible algorithm is currently
known to solve the factoring problem. However, Shor’s algorithm can efficiently solve the
factoring problem on a quantum computer. Therefore, once large-scale quantum computers
become available, all encryption schemes based on the RSA cryptosystem will no longer
be secure. Research into quantum-resistant deniable encryption is still in a preliminary
stage.

Second, all existing schemes require additional computational power and storage compared
to standard encryption schemes without deniability. It remains an open question whether a
deniable encryption scheme can be designed that does not require extra computational or
storage overhead compared to standard encryption schemes.
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6 Disclaimer

Al generative tools were utilized in the preparation of this thesis in accordance with the
“Guidelines for the Use of Generative Al in Teaching at the KIT Faculty of Computer Science
(AI Guidelines for Computer Science)” [[https://www.informatik.kit.edu/downloads/
studium/Guidelines_Generative_AI_Informatics.pdf]

The following outlines the Al tools used and their specific contributions:

Search Engine In the initial phase of this thesis, ChatGPT was used to gather background
information on the topic and to generate summaries of potential research directions.

Code Generation ChatGPT was used to convert mathematical equations from screenshots
or handwritten notes into EIgX code. Figure 3.1 is also generated by ChatGPT based on my
handwritten draft.

Grammar Correction The thesis was originally written in English. ChatGPT was used
solely for grammar checking and correction to improve readability. Writefull assistant in
Overleaf was also used.

Translation The "Zusammenfassung" section was translated entirely using ChatGPT, based
on the English abstract.
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