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Abstract

Districting involves grouping smaller areas into larger ones or dividing a larger area into
multiple subareas. This thesis examines districting with a focus on multi-period dynamics
and uncertainty – two aspects that have received limited attention in existing models since
the field’s beginning in 1965. The consideration of these two factors not only better reflects
reality, but – as shown in this thesis – taking them into account can also lead to better
decisions.

A deterministic model is first proposed to serve as a basis, ensuring feasible solutions.
The first major contribution of the thesis then consists of an in-depth examination of the
multi-period setting, where time-dependent reassignments are allowed and a savings pa-
rameter is introduced to balance compactness and reassignments. Computational analyses
are conducted to identify when the multi-period model provides advantages over static
approaches. This is achieved through detailed computational experiments that perform
linear correlation analysis at different levels of granularity in order to provide a compre-
hensive assessment of the relation between demand fluctuations and values of multi-period
solutions.

The next part of the thesis then addresses the topic of districting under uncertainty in
detail. To this end, we adapt a two-stage stochastic model. Modifications are made
to the definition of the average allowed demand in each district, which is now scenario-
dependent. The analysis focuses on performance indicators, including the value of the
stochastic solution and the expected value of perfect information. The conditions under
which stochastic modeling is beneficial, particularly with demand fluctuations between
scenarios, are evaluated.

In the final methodological part, both uncertainty and multi-periodicity are combined in a
multi-stage stochastic districting model, supported by a relax-and-fix heuristic. The model
is tested on various instances, including larger instances, to assess its applicability and



performance with respect to cost, demand variability, and the number of territorial units
and periods.

The methodology proposed in this thesis is applied in a comprehensive case study of home
healthcare services in Karlsruhe. This realistic case demonstrates the benefits of the de-
veloped models in addressing districting challenges, highlighting their potential impact on
decision-making. The case study begins with a deterministic single-period setting, fol-
lowed by an exploration of a multi-period framework. It then transitions to a stochastic
setting before combining both time and uncertainty factors. The case study offers valu-
able insights into the practical application of the proposed districting models in real-world
settings, along with important managerial implications.
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Chapter 1

Introduction

“The worst form of injustice is pretended justice.”

— Plato

Plato’s quote above appears to be more closely related to the complex challenge of dis-
tricting than the author may have intended. This can be seen, for example, in the outward
appearance of seemingly fair electoral districts, which can mask deep manipulation for
partisan gain.

Districting is a relatively young field within operations research that involves grouping
smaller areas into larger ones or dividing a larger area into multiple subareas. The concept
of districting dates back to Hess et al. (1965) and is closely related to location planning,
sharing many similarities. However, certain constraints and goals in districting are beyond
the scope of pure location planning. One central aspect of districting is that it does not
always involve planning physical locations or facilities. In fact, in many applications, the
centers of a district serve as geographic points with no specific function other than being
a reference point. This distinguishes districting from the more well-known and extensively
researched field of location planning.
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Example 1 (Multiple Periods and Multiple Scenarios in Home Health Care Districting)
In Figure 1.1, two different home health care districting solutions in Karlsruhe (Germany)
are shown. The focus is on assigning patients to health aides, with each aide being assigned
a specific area that covers the assigned patients.

Case A: Multiple Periods Two periods are solved independently, which can lead to high
reassignment costs between these periods. Since each period is planned separately
with different data, the resulting districts may differ significantly. This discrepancy
can disrupt continuity of care for patients and health aides, resulting in increased
operational challenges.

Case B: Multiple Scenarios Two independent scenarios are evaluated, but only one will
be realized. Choosing one of these two solutions is not robust, as it fails to prepare
for both scenarios adequately. This approach could result in suboptimal or infeasible
solutions if the actual scenario differs from the chosen plan. Additionally, it may
incur significant costs and longer waiting times for patients if the scenario that was
not selected occurs instead.

The significant differences between these independent solutions highlight the challenges
posed by changes between periods and uncertainty in home health care districting. Ad-
dressing these challenges requires an integrated approach that considers multiple periods,
multiple scenarios, or both. These topics will be discussed in detail in this thesis, with
a comprehensive solution for the application of home health care districting presented in
Chapter 6.

(a) Districting solution for the first period
or scenario

(b) Districting solution for the second pe-
riod or scenario

Figure 1.1: Two independently solved districting plans illustrating the impact of data
changes and scenario uncertainty in home health care districting.

Districting and location planning are two important concepts of strategic planning, but
districting plays a more crucial role in ensuring fairness and equity across larger geo-
graphic areas. While location planning focuses on strategically selecting sites for facilities
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or businesses by optimizing factors such as accessibility and costs, it primarily addresses
the optimization of individual sites. In contrast, districting takes a more comprehensive
approach by grouping territorial units into clusters. This process is essential for promoting
equity, as it creates similar districts which can be based on various characteristics, includ-
ing population density, socio-economic factors, and environmental considerations. In most
cases, this measure is called demand.

While classical facility location planning is part of strategic planning, as it involves consid-
erations for facilities that require a longer time horizon, districting can be relevant to strate-
gic, tactical, and operational planning. If no facility is built in the center of the district,
the districts can be planned individually on a daily basis, allowing for territorial units to
be reassigned as needed. Consequently, the areas of application for districting are more ex-
tensive, as the construction of a facility does not limit them.

Three essential goals of districting are balance, contiguity, and compactness:

Balance refers to the fair distribution of demand. It ensures that no district or district
representative has an unfair advantage. Achieving balance is important because it
promotes fairness and equal utilization of workload or other resources.

Contiguity refers to the connectedness. It emphasizes the importance of connecting ad-
jacent or neighboring basic territory units. Contiguity ensures that at least one
neighbor is in the same district if the district contains more than just one territorial
unit.

Compactness refers to the closeness or concentration of territorial units within a given
area. It aims to minimize the dispersion of territorial units, resulting in a more
efficient and effective districting plan.

As described above – as part of the Supply Chain Management (SCM) – districting is
crucial to strategic planning, focusing on long-term goals and objectives. Districts with
a facility located in the center may be challenging regarding rearrangement. Districts
without a facility can be rearranged more easily and in shorter cycles. However, in applica-
tions where facilities are placed in district centers, replacing the facilities may be difficult,
but the boundaries of the districts can often be redefined relatively quickly. Districting
can also be used in tactical and operational planning. For example, the districts (and
routes within these districts) for postal workers can be planned daily based on the vol-
ume of letters and parcels, allowing for adjustments to be made as needed. Rearranging,
redefinition – or better – reassigning can not only be seen as a reaction but also as a
proactive strategy. In many cases, it is already known that data will change, which can
be considered while planning the districts for multiple periods. This thesis introduces a
comprehensive model for multi-period districting. In this model, the district centers can
change in each period or remain consistent throughout the planning horizon. In contrast,
reassignments and updates of the district allocations are allowed at the beginning of each
period.
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In many practical districting applications, the activity measures of territorial units (such
as demands) are not always known in advance for the entire planning horizon. This lack
of information can be particularly challenging, for example, in the case of school districts,
where the actual pupil numbers, which determine the demand for school classes and teach-
ers, can only be estimated with some uncertainty. One common approach is to use birth
rates in the respective territorial units to indicate the future number of students. How-
ever, it is essential to note that if a new residential area is designated in subsequent years,
the number of pupils may differ significantly from the estimated number. Therefore, it
is crucial to consider different scenarios for long-term planning to be prepared for such
uncertainties. Another example is home health care, where the need for assistance can
only be estimated. To address this issue, this thesis proposes a stochastic model that can
effectively capture and model the complexities associated with stochastic districting prob-
lems. By considering various scenarios and incorporating stochastic elements, this model
provides a more comprehensive and robust framework for long-term planning in districting
applications.

Hence, this thesis systematically investigates the effects of both stochasticity and multi-
periodicity in districting models, considering each factor individually as well as their com-
bined influence. By analyzing these dimensions separately and together, the work synthe-
sizes a comprehensive understanding of their respective and joint impacts on districting
outcomes.

Therefore, we introduce a new model and provide extensive computational results to eval-
uate its benefits in the context of districting. The literature frequently presents computa-
tional tests involving randomly generated data for stochastic and multi-period problems.
In this thesis, we examine the data generation process and evaluate whether employing
a stochastic or multi-period model is advantageous in these contexts. We also examine
which of these two factors has a significant influence on the benefits of using a combined
multi-period stochastic model.

In the following subsection, various applications of general districting problems are pre-
sented. For a deeper understanding of multi-period and uncertainty considerations, addi-
tional literature can be referenced in Chapter 3, Chapter 4, and Chapter 5.

1.1 Districting Applications

Districting is referred to by various names in the literature. Besides districting, terms such
as territory design and area planning are also commonly used. In addition to districts, the
term areas is frequently mentioned, and individual territorial units are referred to as basic
units. In this thesis, we use districting, districts, and territorial units.

Kalcsics and Ŕıos-Mercado (2019) provide a broad overview of districting problems, includ-
ing typical criteria and constraints found in various applications, as well as ways to measure
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and model these criteria. They also review the different areas of application for districting
problems and the various solution approaches that have been used.

Districting is defined in the literature from two points of view:

• On the one hand, districting can be seen as grouping smaller territorial units into
larger districts (Kong et al., 2019).

• Alternatively, districting can be considered a subdivision of a large district into sub-
districts consisting of territorial units (Salazar-Aguilar et al., 2011).

In both cases, some constraints must be fulfilled – such as balance, compactness, and
continuity – as some of the most popular ones. These requirements can be addressed
in the objective or as constraints. The papers in the following subsections address these
requirements in various ways.

Another way to categorize districting applications is by determining whether a physical
center needs to be established or not. In some cases, facilities should be placed in the
center or a representative territorial unit, for example, in school districting, where the
school has to be built physically. This case is more connected to the research field of
facility location. In other cases, like in political districting, there are no facilities that
have to be placed. Regardless, even if there is no facility, the distance to the represen-
tative center is minimized. For sales territories, the distance for the traveling salesman
is minimized by minimizing the distances or travel routes simultaneously, thus obtaining
the most compact districts possible. Some of these applications are considered in more
detail below. Many of these applications are not stochastic or multi-period, but they can
be extended to include those aspects. Later, the literature that considers these factors is
examined.

The classic applications of districting can be categorized as follows:

• In Section 1.1.1, we focus on political districting, which primarily involves the creation
of electoral boundaries.

• Section 1.1.2 discusses public districting, with a particular emphasis on school dis-
tricting and police districting.

• Applications of districting in the healthcare sector are presented in Section 1.1.3.

• Finally, Section 1.1.4 covers commercial districting.

1.1.1 Political Districting

In a political context, the term districting is often associated with gerrymandering. This
involves the manipulation of electoral boundaries to influence election outcomes in favor
of a particular party or candidate. The United States has seen several instances of gerry-
mandering in recent history. One of the most popular graphics in the context of political
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districting is depicted in Figure 1.2. This satirical image was printed in an article written
by Elkanah Tisdale in 1812 as a reaction to the new state senate election district of South
Essex created by the Massachusetts legislature under Governor Elbridge Gerry. The dis-
tricts look like a salamander. The word gerrymandering combines the name Gerry and the
word salamander.

Figure 1.2: The Gerry-Mander – A political cartoon from the Boston Gazette, highlighting
the manipulation of district boundaries for electoral gain (Tisdale, 1812).

Optimal partisan gerrymandering is extensively studied and remains a prominent topic,
particularly in the US. For example, Owen and Grofman (1988) examine optimal par-
tisan gerrymandering within a two-party competition system. They investigate two ob-
jective functions: maximizing expected seat share and maximizing the probability of a
working legislative majority. The findings indicate that the optimal districting schemes
generated under these objectives differ, highlighting conflicts between majority party leg-
islators’ self-interest and districting that maximizes party advantage. Additionally, they
review the 1982 California congressional plan as a risk-minimizing partisan gerryman-
der.

In contrast to the previous negative use of districting in a political context, Gurnee and
Shmos (2021) introduce a two-stage method for optimizing political districting for fairness,
called fairmandering. Their method involves a randomized divide-and-conquer column
generation heuristic and a master selection problem to choose the districts to include in
the final plan. They analyze the range of possible outcomes and implications of fairness in
a study of congressional districts.

Ricca et al. (2008) propose a method for political districting on a given territory using a
bi-objective partitioning of a graph into connected components. They use heuristics based
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on discrete weighted Voronoi regions to obtain compact and balanced districts and discuss
some formal properties of these algorithms. The performance of these algorithms is tested
on randomly generated rectangular grids and real-life benchmarks, and the resulting district
maps are compared with the institutional ones adopted in the Italian political elections from
1994 to 2001.

Dugošija et al. (2020) propose another integer linear programming formulation for the
political districting problem. They base their model on the graph representation of po-
litical territory. Unlike previous formulations, their model considers population equality,
compactness, and contiguity as major criteria. They also present two models, one fo-
cusing on compactness as an objective function and the other taking into account the
interests of the decision-maker. Finally, they provide numerical examples to illustrate
the general aspects of the problem and obtain experimental results using the CPLEX
solver.

In his thesis, Goderbauer (2020) develops a multi-stage heuristic to divide Germany into
electoral districts that comply with legal requirements, such as electoral equality and
administrative boundaries. The algorithm successfully allocates districts that are in ac-
cordance with the law and fulfill tolerances more closely than the current districting.
The problem of dividing a country into electoral districts is defined in this contribu-
tion as a multi-criteria graph partition problem. The multi-stage aspect does not in-
volve a connection across multiple periods, as discussed in later chapters of this the-
sis.

Arredondo et al. (2021) conduct a study on the design of electoral districts in Mexico,
focusing on the representation of minority groups, such as the indigenous community,
in the Parliament. They formulate mixed integer linear programs to address this issue,
considering criteria such as contiguity and population balance. The study employs a two-
phase approach, where the first phase aims to form a fixed number of indigenous districts
as prescribed by law, and the second phase focuses on forming non-indigenous districts.
They test their procedure on the territory of Chiapas in Mexico and on fictitious problem
instances represented by a grid graph, while also comparing their district map with the
institutional one currently adopted in Chiapas.

Identified research gap: Political districting primarily concerns the definition of electoral
districts, a process governed by different legal frameworks in nearly every country. However,
a crucial aspect often neglected in both research and practice is the dynamic and uncertain
evolution of electoral districts over time. For instance, demographic indicators such as birth
rates or the number of school-aged children could be used years in advance to forecast future
voter populations in a specific region. These forecasts, however, are uncertain due to unpre-
dictable factors such as migration, economic changes, or policy shifts. Despite this, current
approaches rarely incorporate either the temporal dimension or the uncertainty associated
with demographic developments. As a result, electoral districts are typically not designed
to be robust against future changes and developments.



8 Chapter 1 Introduction

1.1.2 Public Districting

Districting has numerous applications in the public sector. It includes the division of school
and police districts, as well as the categorization of fire brigade and waste management
districts. In some countries, healthcare districting is also part of public districting, but
it often belongs to service districting. Therefore, this topic is considered separately in
Section 1.1.3.

Caro et al. (2004) conducts a study on the school redistricting problem in a city. The
authors review existing approaches, establish the desired properties for a good school dis-
tricting plan, and propose an optimization model integrated with a geographic information
system to generate solutions. Specifically, they formulate the school redistricting problem
as an integer programming model, where the objective is to minimize overall student travel
distance while satisfying constraints such as school capacity and spatial contiguity. The
GIS component is used to manage and visualize spatial data, enabling the integration of
geographic factors directly into the optimization process. The authors outline a proto-
type of the system, address challenges related to its implementation, and examine two
case studies from Philadelphia. They analyze the trade-offs involved in the solutions and
explore questions of feasibility. The findings suggest that complex spatial issues, such as
school redistricting, can be effectively addressed by combining both objective, data-driven
analysis and subjective judgment.

Bruno et al. (2017a) addresses a debate in Italy about reducing the number of provinces
and rearranging their borders. They formulate a mixed integer model to support the
decision-making process for more efficient territorial configurations while safeguarding the
accessibility of essential services to the population within their boundaries. They compare
scenarios provided on four benchmark problems using real data associated with the most
representative Italian regions.

Bruno et al. (2017b) develop mathematical models to analyze amalgamation and redistrict-
ing policies in Italy, aimed at supporting stakeholders and policymakers in understanding
the impact of administrative reforms in local authorities. Specifically, they formulate a
territorial reorganization problem as a mixed-integer linear programming model. This ap-
proach optimizes the assignment of basic territorial units to provinces while incorporating
constraints to ensure service accessibility and administrative efficiency. The methodology
is applied to real-world data from several Italian regions, and various redistricting scenarios
are compared using computational experiments.

Liberatore et al. (2020) conduct a systematic review of the literature related to the police
districting problem, focusing on the efficient and effective design of patrol sectors to im-
prove performance attributes. They highlight the importance of effectiveness in influencing
the ability of police agencies to prevent and stop crime, while also emphasizing the need
for a fair and homogeneous distribution of workload to ensure the satisfaction of police
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agents. The review categorizes contributions in terms of attributes and solution methodol-
ogy adopted, and provides an annotated bibliography presenting the most relevant elements
of each research.

Liberatore et al. (2022) propose an equitable police districting model to balance crime-
reduction effectiveness with racial fairness in defining patrol districts. He formulates the
model as a mixed-integer program using compromise programming and goal programming.
The model is validated using a real-world case study in the Central District of Madrid,
Spain, and compared to standard patrolling configurations currently used by the police.
The results indicate a trade-off between racial fairness and crime control. They show that
integrating the proposed racial criterion greatly improves racial fairness with a limited
impact on policing effectiveness. The model’s solutions outperform the current patrolling
configurations used by the police, suggesting its capability to define efficient patrolling con-
figurations that consider both racial and territorial fairness.

Identified research gap: Public districting, particularly in areas such as school and po-
lice districting, involves the design and adjustment of administrative boundaries to ensure
adequate service provision and resource allocation. While numerous studies address the
optimization of district boundaries, the majority of existing approaches rely on static,
single-period models that assume fixed population and demand patterns. However, real-
world conditions are subject to significant temporal changes and uncertainties, such as
demographic shifts, migration, or unexpected events. For example, the demand for schools
or police presence may fluctuate due to birth rate trends, urban development, or socio-
economic changes. Yet, existing districting models rarely account for these dynamics.
Similarly, uncertainties in future population distributions or crime patterns are rarely in-
corporated into the planning process, despite their critical impact on long-term effective-
ness and robustness of districting decisions. Thus, most public districting plans are not
designed to adapt to future developments or to hedge against unforeseen changes, limiting
their practical relevance. Addressing these gaps would require the integration of multi-
period planning and stochastic modeling techniques, enabling decision-makers to create
more robust and future-proof districting solutions.

1.1.3 Healthcare

A good overview and literature review for districting in healthcare can be found in Yanık
and Bozkaya (2020). The authors review the districting literature in the healthcare domain
to provide readers with the most relevant studies and direction for future research. They
classify the healthcare districting problems into three main areas: home care services, pri-
mary and secondary healthcare services, and emergency healthcare services. They identify
the special characteristics of these different areas and present the modeling approaches,
assumptions, and solution methods for each of them. They limit their review mostly to
studies that include traditional districting models and formulations as well as solution
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approaches, discuss gaps in the literature, and provide directions for future areas of re-
search.

Blais et al. (2003) show a districting study for the Côte-des-Neiges local community health
clinic in Montreal, aiming to partition a territory into six districts while respecting five
districting criteria. They use a tabu search technique to solve the problem and implement
the solution over two years, after which the clinic management expresses satisfaction with
the results.

Enayati et al. (2020) propose a stochastic service district design model to address the service
district design problem for ambulances under uncertainty. The model recommends locating
ambulances to waiting sites and assigning demand zones to each ambulance at different
backup levels. The objective is to maximize the expected number of covered calls while
restricting the workload of each ambulance. The proposed model is evaluated through a
discrete-event simulation and shows a significant improvement in mean response time and
a reduction in the average workload of ambulances.

Darmian et al. (2021) addresse a districting problem based on a real-world case study
involving the partitioning of residential districts for a healthcare system operation. They
present a mixed-integer programming model incorporating graph theory to enforce contigu-
ity constraints and other practical criteria. Additionally, they extend robust optimization
approaches to handle uncertainty and develop an improved genetic algorithm to tackle
computational complexity. The authors present extensive computational results from real-
world and randomly generated instances to evaluate the models’ applicability, robustness
measures, and solution approach. They also examine a hierarchical districting approach
for decision-makers to obtain districting decisions at various levels of health services and
perform sensitivity analyses on key parameters to provide managerial insights for practi-
tioners.

Identified research gap: Healthcare districting involves designing and adjusting the bound-
aries of service districts to ensure equitable access to medical resources and efficient allo-
cation of healthcare facilities. While recent research has introduced advanced optimization
and spatial modeling techniques, the majority of existing approaches still rely on single-
period models that assume fixed demand and population patterns. However, real-world
healthcare needs are subject to temporal changes, such as demographic shifts, disease out-
breaks, and evolving service requirements, as well as uncertainty in demand. For example,
the number of patients requiring care in a region can fluctuate due to seasonal epidemics,
migration, or policy changes, and such variability is often difficult to predict with certainty.
Despite these challenges, most healthcare districting models do not explicitly account for
the dynamic evolution of service needs over time or the stochastic nature of healthcare
demand distribution. Hence, the district plans may lack adaptability, potentially leading
to inefficiencies or inequities in healthcare provision. Addressing these gaps would require
the integration of multi-period planning and stochastic modeling methodologies to create
better healthcare districts.
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1.1.4 Commercial Districting

Salazar-Aguilar et al. (2011) present the first multi-objective approach for the commercial
territory design problem with connectivity constraints. One of the main results of their
analysis is that the reduction of tolerance in the balancing constraints changes the efficient
Pareto fronts, and the increase in the number of districts makes it harder to achieve balance
with respect to the number of customers.

Ŕıos-Mercado and López-Pérez (2013) present a mixed-integer linear program for a com-
mercial districting problem with disjoint assignment requirements where some specified
units must be assigned to different territories, and similarity with an existing plan is re-
quired. An optimal design minimizes territory dispersion and similarity with the existing
design. They propose a solving procedure that is based on an iterative cut generation strat-
egy within a branch-and-bound framework for large-scale instances.

Bender and Kalcsics describe a multi-period service territory design problem and com-
putational experiments in Bender et al. (2016) and Bender and Kalcsics (2020). They
introduce a planning problem related to field service workforce in the context of service
territory design applications. The problem consists of partitioning customers into ser-
vice territories and scheduling customer visits throughout a multi-period planning hori-
zon. They focus on the scheduling subproblem and propose a mixed integer programming
model along with a location-allocation heuristic. The authors conduct extensive exper-
iments on real-world instances and find that the proposed heuristic yields high-quality
solutions.

Bender et al. (2020) propose a novel two-stage districting approach to solve the prob-
lem of assigning drivers and vehicles to customers for parcel delivery while taking into
account service consistency and daily demand fluctuations. They present three models
for the first stage problem and conduct a case study based on a real-world data set to
compare the models and analyze the effects of different factors on the delivery tours and
driver workload balance. The results show that only a few adaptations of the districts
are necessary for the second stage to achieve feasible daily delivery tours. They also
analyze the effects of fleet heterogeneity, driver type, depot location, and planning hori-
zon.

Álvarez-Miranda and Pereira (2021) propose a hybrid method for designing delivery zones
to improve the quality of express delivery services. The method combines a preprocessing
step, a heuristic for generating delivery zone candidates, and a mathematical model to
obtain a final territorial design. They test the method using a case study of a Chilean
courier company with low service fulfillment in express deliveries. The results show an
improvement of 12 percentage points in the ability to meet conditions associated with
express deliveries compared to the current situation, highlighting the validity of the method
and its potential impact on critical service factors.
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Ŕıos-Mercado et al. (2021) address a districting problem related to the distribution of
bottled beverage products in a commercial firm. They propose a heuristic procedure
based on a location-allocation scheme to minimize a dispersion function while address-
ing multiple-activity balancing and contiguity constraints. The proposed method consists
of two phases: determining centroids and allocating units to centroids. They also incorpo-
rate a local search phase to improve solution quality. Their approach outperforms existing
heuristics regarding feasibility and solution quality while requiring less computational ef-
fort.

Identified research gap: Commercial districting – such as the design of sales, delivery, or
service territories – is a critical task for ensuring market coverage, operational efficiency,
and customer satisfaction. While many studies focus on optimizing district boundaries
based on current demand, travel costs, or workload balance, most existing approaches rely
on static, single-period models that assume fixed market conditions and customer distribu-
tions. In practice, however, commercial environments are highly dynamic: customer bases
evolve, market trends shift, and demand patterns are subject to uncertainty due to fac-
tors like seasonality, economic fluctuations, or competitor actions. Despite these realities,
the literature rarely incorporates multi-period planning or explicitly models uncertainty in
commercial districting decisions. Hence, districts may quickly become suboptimal or fail
to adapt to unforeseen changes. Recent advances in multi-stage stochastic optimization,
such as those applied in energy and transportation planning, demonstrate the value of in-
tegrating both temporal and stochastic aspects. Tackling this gap would enable businesses
to design more robust and adaptable districting solutions that can better resist market
volatility and long-term changes.

After outlining the introduction, motivation, and relevant literature, we now turn to the
identification of the central research gap and the clarification of the thesis scope. A key
gap in the existing literature is that multi-period and uncertainty aspects are typically
examined in a highly application-specific way, with most studies focusing exclusively on
the unique requirements of their respective domains, such as healthcare, public services, or
commercial districting. What is largely missing, however, is a unifying and comparative
perspective that systematically analyzes the influence of multi-periodicity and uncertainty
across different districting contexts. This thesis addresses this gap by providing a com-
prehensive cross-domain investigation of these factors, thereby offering broadly applicable
insights that extend beyond individual application areas.

1.2 Research Gap and Scope of this Thesis

In the field of districting, mathematical models and solution methods have evolved sig-
nificantly over the past few years, with an increasing focus on challenges such as multi-
period planning and uncertainty. However, most methodologies still address these as-
pects separately, typically focusing on either multi-period districting or districting under
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uncertainty. Table 1.1 provides an overview that highlights the fragmented understand-
ing in the literature regarding the joint impact of these two dimensions. Additionally,
there has been limited exploration of approaches that systematically integrate both as-
pects.

Moreover, existing studies usually treat multi-period and uncertainty aspects in a highly
application-specific manner, tailoring models and analyses to the unique requirements of
individual domains. To date, no comprehensive study has combined these dimensions to
analyze their collective influence across districting contexts as illustrated by the individ-
ual examinations in the listed application-related references. This reveals a clear need
for models and analyses that jointly consider multi-periodicity and uncertainty, as well
as for research that provides cross-domain insights into their effects on districting out-
comes.

In addition, the evaluation methods and tools used to evaluate the impact of various
factors over multiple periods and stochasticity are often inadequately addressed. As shown
in Table 1.1, measures of the value of additional information on multiple periods and
uncertainty (VMPS, VSS, DVSS, and EVPI) are only examined in two papers, one of
which represents a major contribution of this dissertation. Although some frameworks
provide insights into the advantages and disadvantages of different assessment instruments,
they typically lack an exhaustive comparative analysis that can identify best practices.
This gap presents an opportunity to establish a more organized evaluation framework
that effectively measures the impact of multiple factors on districting performance over
time.

Furthermore, there is a lack of comprehensive computational analyses and case studies that
illustrate real-world applications incorporating both multi-period and uncertainty. While
some research has delved into these elements individually, the intersection of multi-period
approaches with uncertainty remains significantly underrepresented. The computational
experimentation in the listed references is highly heterogeneous because the publications
span from the 1960s to the 2020s. This thesis seeks to bridge this gap and reveal the
practical implications of considering these combined factors within districting, especially
when examined consistently in computational analyses focusing on multi-periodicity and
uncertainty.

From a methodological perspective, this thesis develops and analyzes both exact and heuris-
tic techniques for solving these problems. It focuses on developing and analyzing mathe-
matical models that address the complexities introduced by the challenges associated with
multi-periods and uncertainty. Through this exploration, the thesis aspires to make sub-
stantial contributions to the existing literature on districting and set a foundation for future
research.

Motivated by the research gaps identified in Section 1.1 and explored above, we formulate
four major research questions (RQ):
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Source
exact
model

heu-
ristic

un-
certainty

multi-
period

application
specific

VMPS EVPI (D)VSS

Hess et al. (1965) x x x

Owen and Grofman (1988) x x x

Blais et al. (2003) x x x

Caro et al. (2004) x x

Ricca et al. (2008) x x

Salazar-Aguilar et al. (2011) x x x

Lei et al. (2012) x x x x

Ŕıos-Mercado and López-Pérez (2013) x x x

Fazlollahi et al. (2014) x x x x

Lei et al. (2015) x x x x

Bender et al. (2016) x x x x

Lei et al. (2016) x x x x x

Bruno et al. (2017a) x x x

Bruno et al. (2017b) x x

Bender (2017) x x x x

Bender et al. (2018) x x x

Kalcsics and Ŕıos-Mercado (2019) x x x x x

Yanık et al. (2019) x x x

Enayati et al. (2020) x x x

Bender et al. (2020) x x x x

Dugošija et al. (2020) x x

Yanık and Bozkaya (2020) x x x x

Goderbauer (2020) x x x

Darmian et al. (2021) x x x x

Arredondo et al. (2021) x x x

Álvarez-Miranda and Pereira (2021) x x x

Ŕıos-Mercado et al. (2021) x x x

Gurnee and Shmos (2021) x x x

Diglio et al. (2020) x x x x

Diglio et al. (2021) x x x

Diglio et al. (2022) x x x

Lespay and Suchan (2022) x x x x

Liberatore et al. (2022) x x

Pomes et al. (2025) x x x x x x x

Table 1.1: Comprehensive overview of existing literature and identified research gaps.
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RQ1 What aspects and additional problem characteristics can be captured by integrating
multi-period considerations and uncertainty into districting models, and how does
this enrich the modeling of real-world districting problems compared to traditional
single-period deterministic approaches?

RQ2 What evaluation tools and methodologies can measure the impact of multi-period
and uncertainty factors on districting performance?

RQ3 How does considering multiple periods and stochasticity affect key performance indi-
cators, such as solution quality, robustness, and fairness, of the resulting districting
plans?

RQ4 How can a real-world case study be used to demonstrate and analyze the practi-
cal effects of integrating multi-period considerations and uncertainty in districting
models?

In conclusion, significant research gaps exist regarding the integration of multi-period con-
siderations and uncertainty in districting methodologies. Additionally, enhanced evalu-
ation tools and practical applications in real-world scenarios are needed. This thesis
addresses these gaps by providing models, in-depth analyses, and case studies, which
help advance our understanding of how these factors interact within the field of district-
ing.

1.3 Computational Environment and Experimental Setup

Extensive computational experiments are examined in sections Chapter 3 – Chapter 6
to address the identified research gaps. All experiments conducted in this thesis were
executed on a machine equipped with an Intel(R) Core(TM) i7-7700 processor running at
3.60 GHz, 64 GB of RAM, and the Windows 10 Pro 64-bit operating system. The models
and heuristic algorithms were implemented in Python 3.7, utilizing IBM ILOG CPLEX
12.10 as the optimization solver.

The computational experiments are crucial in supporting the answers to the formulated
research questions. Through systematic testing and analysis of the developed models and
algorithms, we can quantitatively assess the influence of multi-periodicity and uncertainty
(RQ1, RQ3), evaluate the effectiveness of different performance metrics and evaluation
methodologies (RQ2), and demonstrate the practical relevance of our approaches via real-
world case studies (RQ4). The results from these experiments provide the empirical foun-
dation for the insights and conclusions drawn in this thesis.
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1.4 Structure of this Thesis

This thesis aims to improve the understanding of districting through a structured approach
that addresses a multi-period planning horizon and uncertainties. The various sections
explore these topics as shown in Figure 1.3.
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Chapter 4 Chapter 5
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Figure 1.3: Overview of thesis organization along the two dimensions of multi-periodicity
and uncertainty.

This thesis is structured as follows:

Chapter 1 In the introductory section, Introduction, we present the motivation behind our
focus on districting, highlighting its significance and relevance across different con-
texts. We also discuss the importance of uncertainty and multi-period perspectives,
illustrating these aspects in each context.

Chapter 2 In Deterministic Districting, we start with fundamental definitions and dis-
tricting criteria relevant to all districting models presented in this thesis. Then,
we explore the definitions and characterizations associated with deterministic single-
period districting problems.

Chapter 3 In Multi-Period Districting, incorporating a time component enables us to ex-
amine multi-period deterministic districting. After reviewing the relevant literature,
we present a deterministic multi-period districting model that serves as the basis for
the stochastic multi-period model discussed later. This model contains reassignments
between periods. Following this, we address the extension for fixed centers over time
and introduce a new parameter for adding savings. Afterward, we examine how the
dynamics of time affect districting decisions and outcomes by calculating the value
of the multi-period solution and its relation to specific input parameters. We provide
an analysis to examine the linear correlation between the demand fluctuations and
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the value of the multi-period solution at different granular levels: first, the num-
ber of territorial units with highly fluctuating demand, second, the average demand
fluctuations, and finally, the average sum of demand fluctuations in each district.

Chapter 4 In Stochastic Districting, we introduce the concept of uncertainty. First, we
provide a brief literature review and discuss an existing two-stage stochastic dis-
tricting model. Then, we explore potential modifications to the model that could
enhance its utility. We present an alternative two-stage stochastic districting model,
which also serves as the foundation for the stochastic multi-period model discussed
later. In the additional analysis, we focus on single-period stochastic districting and
investigate how uncertainty affects the districting process by evaluating the value of
the stochastic solution and its relation with the relative demand fluctuations in each
district.

Chapter 5 In Multi-Period Stochastic Districting, both key dimensions – time and un-
certainty – are integrated through the presentation of a multi-period stochastic dis-
tricting model. Additionally, we propose a relax-and-fix heuristic to efficiently solve
the resulting optimization problems. Extensive computational experiments are con-
ducted to analyze the performance of the model and the heuristics. To assess the
need to incorporate both stochasticity and multiple periods, we employ two values:
the dynamic value of the stochastic solution and the expected value of perfect infor-
mation.

Chapter 6 In Districting for Home Health Care: Case Studies, the models introduced in
the previous sections are applied to practical case studies within the domain of home
healthcare. Detailed numerical examples are presented and thoroughly analyzed to
examine the effects of stochasticity and a multi-period planning horizon in a real-
istic setting. This allows for an in-depth examination of how uncertainty and time
influence decision-making in home healthcare districting.

Chapter 7 Finally, the main findings of this work are summarized, and an outlook is pro-
vided in Conclusion, Outlook and Further Research, highlighting potential directions
and opportunities for future research.





Chapter 2

Deterministic Districting

In this chapter, we present the basic definitions and the foundations of districting, which are
relevant to this thesis. We focus on single-period deterministic districting (Figure 2.1) and
summarize the first single-period deterministic districting model, discussing its limitations.
We will also propose potential solutions to address the issue of infeasibility and suggest
extensions to enhance the model.
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Figure 2.1: Research Focus of Chapter 2: Single-period deterministic districting.

This chapter is organized as follows:
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• Section 2.1 presents the formal definitions for the districting context that serve as
the foundation for the subsequent chapters.

• In Section 2.2, the first mathematical formulation of a single-period deterministic
districting follows. An extension of this first model is also given, which ensures
feasibility. This formulation is the basis for most models in the literature.

2.1 Basic Definitions

In the following section, we present the formal definitions that serve as the foundation for
the subsequent chapters. An introduction to districting can be found in Laporte et al.
(2019) and Ŕıos-Mercado (2020). The definitions provided here are based on those in
Kalcsics and Ŕıos-Mercado (2019). A tailored version that is sufficient for the scope of this
work is outlined in the subsections below:

• The essentials of districting are explained in Section 2.1.1.

• Various districting criteria are discussed in Section 2.1.2. Several examples illustrate
the different criteria.

2.1.1 Foundations of Districting

We start with the definition of the territory units in our problem.

Definition 1 (Territory Units)
A Territory Unit (TU) represents a geometric object in the plane. The distance between
two TUs i, j ∈ I is denoted as cij = c(i, j).

For non-point objects, distances are determined based on representative points, such as
the midpoint of a street, the centroid of a polygon, or the distance from one surface
to another. Thus, within this thesis, a TU is consistently represented as a geometric
point.

Next, we define the activity measures, which are values for each TU that we focus on in
the districting plan.

Definition 2 (Activity Measure)
An activity measure of a TU is a quantifiable attribute of the TU that reflects relevant
characteristics. This attribute can be either deterministic or stochastic. For each TU
i ∈ I, the activity measure is denoted by di.
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Typical activity measures are demand, service time, estimated sales potential, or number
of voters.

In this thesis, we focus only on one activity measure. Later, we incorporate the multi-
period and stochastic influences into this measure. However, considering multiple activity
measures typically leads to multi-criteria optimization, particularly when the measures
conflict with one another.

Definition 3 (Districts)
A district Dk, for 1 ≤ k ≤ p, is a subset of TUs. The activity measure of a district
is the sum of the activity measures of its TUs. The size of district Dk is defined as
d(Dk) = ∑

i∈Dk
di.

The total number of districts, p, is typically specified as an input parameter in both the
literature and this thesis. However, depending on the context, p can also be treated as a
decision variable.

Definition 4 (Districting Problem)
A districting problem is a combinatorial optimization task that involves partitioning a set
I = {1, . . . , n} of TUs into districts. The aim is to design districts that satisfy predefined
planning criteria in accordance to the activity measure(s).

Various criteria for districting are discussed in Section 2.1.2.

Definition 5 (Solution of a Districting Problem)
A solution to a districting problem is a districting plan that assigns each TU to exactly one
of the p districts, such that all constraints are satisfied.

An optimal solution is a feasible solution that achieves the best possible value of the objective
function, i.e., it either minimizes or maximizes the objective, depending on the problem
formulation.

In districting, the objective function can be formulated in multiple ways. Often, the prob-
lem is modeled as a p-median problem where the distances are minimized. However, cover-
ing models with a maximization objective function are also possible.

A TU needs to serve as a representative to clearly identify a set of TUs as a district. This
facilitates the representation and modeling of the districts.

Definition 6 (Center of a District)
The center of a district is a TU within a district that represents the district. The repre-
sentative TU of a district is always assigned to itself.
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2.1.2 Districting Criteria

This section explains various criteria for districting and offers examples for illustration. The
examples in this section utilize a graph-theoretical representation of districting, featuring
nodes and edges.

Definition 7 (Complete and Exclusive Assignment)
Let I be the set of all territorial units (TUs), and let D1, . . . , Dp denote the districts. A
complete and exclusive assignment requires that:

D1 ∪D2 ∪ · · · ∪Dp = I (completeness),

Dl ∩Dk = ∅ for all l ̸= k, 1 ≤ l, k ≤ p (exclusivity).

According to this definition, each TU is assigned to exactly one district:

• Completeness: Every TU is part of a district (no TU is excluded).

• Exclusivity: No TU is in more than one district (districts are disjoint).

In other words, the collection of districts {D1, . . . , Dp} forms a partition of the set I of TUs.
The requirement of exclusivity is sometimes also called integrity.

For political districting, these criteria are obvious. In sales territory design, unique allo-
cations result in transparent responsibilities for the sales force, avoiding contentions and
allowing the establishment of long-term customer relations.

The following Figure 2.2 shows an example of a complete assignment. The TU, which
represents the district’s center, is shown in bold.

1 2

3

4 5

6

Figure 2.2: Complete and exclusive assignments.

Since districting aims at establishing equal districts, it is important to ensure that all dis-
tricts have a balanced activity measure. A district’s activity measure (or size) is calculated
by adding up the activity measures of all the TUs it contains (Definition 2). Unfortu-
nately, due to exclusive assignment (Definition 7) and the discrete nature of the problem,
it is generally impossible to achieve perfectly balanced districts. Therefore, the relative
percentage deviation of the district sizes from their average size must be calculated to
measure balance. The larger this deviation, the more unbalanced the district is (Kalcsics
et al., 2005).
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Definition 8 (Balance)
Balance is defined as the relative deviation of a district’s activity measure from the average
activity measure of all districts:

bal(Dk) = |d(Dk)− µ|
µ

with µ =
∑

i∈I di

p

A low value of bal(Dk) reflects a good balance. Conversely, a high value suggests that the
district is unbalanced.

Assuming that each node has the same activity measure, Figure 2.3 shows an example of
a balanced and an unbalanced solution.
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(a) Balanced

1 2
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4 5
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(b) Unbalanced

Figure 2.3: Comparison of two assignments: balanced assignment and an unbalanced as-
signment.

Definition 9 (Compactness)
A district is considered geographically compact if it is somehow round-shaped and undis-
torted (Kalcsics and Rı́os-Mercado, 2019).

The motivation behind creating compact districts is to prevent gerrymandering and to
reduce the travel distances within the districts. Although the idea of compactness may seem
intuitive, there is currently no strict definition of compactness, and it strongly depends on
the geometric representation of TUs.

Assuming that each node has the same activity measure, Figure 2.4 illustrates an example
of both a compact and a non-compact solution. From a visual perspective, it is possible
that with different distributions of the activity measure, districts that seem non-compact
may actually be compact.

Definition 10 (Contiguity)
Contiguity refers to geographically connected districts, such that any two points within the
district can be connected through a path that remains within that district. This ensures that
the district is not disconnected and that it is possible to travel between any two TUs within
the district without having to leave the district (Kalcsics et al., 2005; Tasnádi, 2011; Kong
et al., 2019).
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(a) Compact
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(b) Non-compact

Figure 2.4: Comparison of two assignments: compact assignment and non-compact assign-
ment.

Figure 2.5 shows an example of a contiguous and non-contiguous solution.
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(a) Contiguous
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(b) Non-contiguous

Figure 2.5: Comparison of two assignments: contiguous assignment and non-contiguous
assignment.

When addressing districting criteria such as balance and compactness, these factors can be
incorporated into the model in two ways: either directly within the objective function or
as constraints. The approach taken will depend on the specific requirements and priorities
of the districting problem being addressed.

Butsch (2016) explores different representations of TUs such as polygons, lines, or points,
and compares existing measures of compactness for these representations. They also de-
velop new algorithms and approaches to improve the balance and compactness of districts,
considering both geometric information and routing distances on road networks. Finally,
the authors test their methods on real-world data.

2.2 Deterministic Districting Models

Following the basic definitions of districting introduced in Section 2.1, we delve into the
first mathematical formulation in this section. This allows us to discuss the optimization
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criteria and their mathematical formulation in detail.

Hess et al. (1965) presented the first integer linear program for districting problems in
1965. The problem is modeled as a capacitated p-median facility location problem. In this
formulation, capacity is determined by a fraction of the total demand, and each district’s
demand is allowed to deviate only by a certain proportion from the average district size.
Hence, the balance is modeled here as a hard criterion in particular. However, this may
lead to infeasible instances. The following section presents a modified version of the original
model, which is the basis for all subsequent sections. As noted by Hess et al. (1965), the
population serves as the activity measure in this context, forming the basis for evaluating
district balance within the model.

The following parameters are used:

I = {1, . . . n} set of TUs

di population of the i–th TU for i ∈ I

cij distance between TU i and j for i, j ∈ I

p number of districts

a minimum allowable district population, as a percent of the average dis-
trict population

b maximum allowable district population, as a percent of the average dis-
trict population

With the decision variables:

xij =

 1, if the i–th population unit is assigned to the district represented by TU j,

0, otherwise,

(i, j ∈ I)

The assumption is that only TUs can be district centers.

Note that xii = 1 for some i ∈ I, indicates that TU i is assigned to itself, which also means
that it is selected as the representative TU of its district.

The initial model formulation of the Districting Problem (DP) by Hess et al. is presented
as follows:

DP:

min
∑
i∈I

∑
j∈I

c2
ijdixij (2.1)

s. t.
∑
j∈I

xij = 1 ∀i ∈ I (2.2)
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∑
i∈I

xii = p (2.3)

∑
i∈I

dixij ≥
a

100
∑
i∈I

di

p
xjj ∀j ∈ I (2.4)

∑
i∈I

dixij ≤
b

100
∑
i∈I

di

p
xjj ∀j ∈ I (2.5)

xij ∈ {0, 1} ∀i, j ∈ I (2.6)

The objective function 2.1 ensures that the sum of the weighted squared distances is min-
imized. Constraints 2.2 ensure that each TU must be fully allocated. This, together with
Constraints 2.6, ensure complete and exclusive allocation (Definition 7). The number of
districts is defined in Constraint 2.3. Constraints 2.4 and 2.5 specify the limits of the set
balance, i.e. how much demand or population has to be assigned to each district (Defini-
tion 8).

The criteria compactness and contiguity (Definition 9 and Definition 10) defined in Sec-
tion 2.1.2 are not explicitly formulated as separate hard criteria. In the objective function,
the squared distances are minimized to promote compactness. Still, compactness and con-
tiguity cannot be guaranteed.

This formulation is notable due to the presence of balance constraints with lower limit
a and upper limit b, which do not need to be symmetrical with the average popula-

tion in each district
∑n

i=1 di

p
. Following the publication by Hess et al., the literature

has predominantly utilized a symmetric variant. Therefore, two more parameters are re-
quired:

µ =
∑

i∈I
di

p
average population in each district

α maximum allowed deviation in each district from the average district
population µ

The extended model formulation of the Districting Problem with Symmetric Balance
(DPSB) is presented as follows:

DPSB:

min
∑

i,j∈I

c2
ijdixij (2.7)

s. t. (2.2), (2.3), (2.6)
(1− α)µxjj ≤

∑
i∈I

dixij ∀j ∈ I (2.8)∑
i∈I

dixij ≤ (1 + α)µ ∀j ∈ I (2.9)

xij ≤ xjj ∀i, j ∈ I (2.10)
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Constraints 2.8 and 2.9 ensure that the population in each district falls in an acceptable,
symmetric range. Additionally, Constraints 2.10 ensure that TUs can only be allocated to
centers. We can combine these constraints with 2.9 to get

∑
i∈I

dixij ≤ (1 + α)µxjj ∀j ∈ I

Finding a feasible solution for problems that can be modeled with Hess’ model (DP) is
not always possible. The number of districts p cannot be smaller than the number of
TUs. Otherwise, Constraint 2.3 can not be fulfilled. This constraint is easy to check,
but the feasibility of the balancing Constraints 2.4 and 2.5 are not easy to see in ad-
vance.

To ensure at least one feasible solution, the balancing constraint can be adjusted by adding
penalty costs to the objective function. This means that if a balanced solution cannot be
found, any deviation from the allowed range will incur a penalty in the objective function.
To achieve this, two additional variables are introduced to penalize shortages and surpluses
in each district:

ψj demand surplus in the district represented by TU j ∈ I

φj demand shortage in the district represented by TU j ∈ I

Parameters for the surplus and shortage penalties also need to be defined:

gj unit penalty for surplus at the district represented by TU j ∈ I

hj unit penalty for shortage at the district represented by TU j ∈ I

The model presented by Hess et al. can be extended to the Extended Districting Problem
guaranteeing feasibility :

EDP:

min
∑

i,j∈I

cijdixij +
∑
j∈I

(
gjψj + hjφj

)
(2.11)

s. t. (2.2), (2.3), (2.6), (2.10)
(1− α)µxjj ≤

∑
i∈I

dixij − ψj + φj ∀j ∈ I (2.12)∑
i∈I

dixij − ψj + φj ≤ (1 + α)µ ∀j ∈ I (2.13)

ψj ≥ 0 ∀j ∈ I (2.14)

φj ≥ 0 ∀j ∈ I (2.15)



28 Chapter 2 Deterministic Districting

The objective function 2.11 minimizes the weighted distance (not squared here). Each
unit of length has the same priority, making longer distances less important. Again,
we are searching for compact solutions by minimizing distances. Additionally, there is
a penalty term due to unbalanced districts from Constraints 2.12 and 2.13. Furthermore,
Constraints 2.14 and 2.15 state that ψ and φ must be non-negative. Compactness is ad-
dressed in the first part of the objective function, while balance is addressed in the second
part.

In the formulation of the model for EDP, two criteria of balance and compactness are
included in the objective function. Depending on the available data, a compact solution
may already be balanced. However, these two criteria can often be contradictory, requiring
consideration of which solution best achieves a balanced outcome based on both criteria.
Although two criteria are included, both are derived from a sum of distances and costs,
which makes them comparable.

Due to its NP-hardness (Kalcsics and Ŕıos-Mercado, 2019), larger instances quickly become
unsolvable within an acceptable time. When solving the exact model proves to be difficult
or time-consuming, it is often more efficient to use heuristics, especially for problems in-
volving a large number of TUs and districts. Effective heuristics can provide satisfactory
solutions within a reasonable amount of computational time.

p-median heuristics can be applied to districting problems that can be represented using
the extended version. However, this method may lead to unbalanced solutions or incur high
penalty costs. For districting, it is crucial to weigh the trade-off between allocation costs
and balance or the costs associated with unbalanced districts.

Hess et al. (1965) use a location-allocation heuristic to solve their problem. The location-
allocation method involves two phases that are executed alternately. In the first phase,
known as the location phase, the centers of the districts are determined. All TUs are
assigned to these district centers in the next phase. It is then checked whether it is
possible to select better centers. Additionally, new centers are determined if they dif-
fer from the previous ones. The stopping criterion is fulfilled when no better centers can
be found.

Kalcsics et al. (2005) develop a basic districting model and present two solution approaches.
A central idea in their work is introducing a geometric, computational approach to dis-
tricting, specifically the Line Partitioning Algorithm. This method recursively subdivides
the set of basic areas (e.g., points representing TUs) using straight lines, thereby gener-
ating a partition of the area into districts. The approach is particularly well-suited for
large-scale practical problems, as it uses geometry and can be integrated with Geographic
Information Systems. The authors also discuss various extensions to the basic model and
its applications. The Line Partitioning Algorithm is described in more detail in Kalcsics
(2006).



Chapter 3

Multi-Period Districting

This section introduces a new multi-period districting problem, which considers a planning
horizon with more than one period (Figure 3.1). The underlying model has already been
published in Pomes et al. (2025). In this thesis, we extend the previous work by providing a
detailed analysis of the model. Computational analyses are conducted to identify when the
multi-period model provides advantages over static approaches. This is achieved through
detailed computational experiments that perform linear correlation analysis at different
levels of granularity in order to provide a comprehensive assessment of the relation between
demand fluctuations and values of multi-period solutions.
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Figure 3.1: Research Focus of Chapter 3: Multi-period deterministic districting.
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The main difference between single-period and multi-period districting problems is the
possibility of adjustments between periods. In single-period districting, each allocation is
fixed, while multi-period districting allows for modifications, called redistricting or reas-
signments, if necessary.

If the allocation of TUs does not impact the districts themselves, for example, in organiza-
tional districts without a specific central institution, the districts can be planned separately
for each period. However, in some cases, districts should not be planned independently.
For instance, in the healthcare sector, where caregivers should not rotate too frequently, or
in the postal sector, where postmen can navigate their district more efficiently if they are
already familiar with it, it makes sense to adjust existing districts from period to period
rather than planning them from scratch.

This chapter is organized as follows:

• In Section 3.1, a literature review focusing on multi-period deterministic districting
problems is provided.

• Section 3.2 presents the multi-period deterministic model.

• Section 3.3 evaluates the benefits of using a multi-period deterministic model for
multi-period districting problems.

3.1 Related Literature

Fazlollahi et al. (2014) present a method to reduce the computational load of multi-period
optimization models for energy system districts. They use a k-means clustering algo-
rithm to reduce energy demand profiles into typical periods that preserve significant yearly
characteristics. The authors divide each period into segments to reduce complexity while
respecting peak demands. The method is demonstrated through two case studies, show-
ing that a limited number of typical periods is sufficient to accurately represent an entire
equipment’s lifetime.

Bender et al. (2016) and Bender (2017) introduce a multi-period service territory design
problem that primarily focuses on scheduling. In this problem, customers must be visited
multiple times within the planning horizon, and a location-allocation heuristic based on
Hess et al. (1965) is utilized. Customers have different needs, and service providers pos-
sess various skills. The challenge is to balance customer requirements with stable service
districts and working time-related objectives for service providers. Approximately 20%
of customer visits may need to be rescheduled in the short term. The approach involves
solving the districting problem first and then addressing the scheduling subproblem by
designing week and day clusters for each service territory.
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Bender et al. (2018) presents a branch-and-price algorithm to solve the problem of schedul-
ing customer visits in multi-period service territory design. They find that the algorithm
is effective for up to 55 customers and a four-week planning horizon. They use accel-
eration techniques and a fast pricing heuristic to reduce the symmetry inherent to the
problem.

Yanık et al. (2019) propose a multi-period multi-criteria districting problem in a health-
care context, specifically focusing on patient allocation to general practitioners. The
number of patients over the time horizon is predetermined. Additionally, patients can
be partially assigned, not solely in a binary manner. A similarity measure is intro-
duced and integrated into the target function to ensure minimal changes between peri-
ods.

Lespay and Suchan (2022) suggest a territory design for the multi-period vehicle routing
problem with time windows, which is solved using a mixed-integer linear program and a
proposed heuristic. The algorithm yields high-quality solutions within moderate running
times, and a methodology is proposed in which the territories computed by the proposed
heuristic on the past demand of one month are used for the operational routing during
the following month. The territories obtained with the methodology lead to better service
levels with fewer vehicles.

3.2 Multi-Period Districting Model

Based on the EDP presented in Section 2.2, the model is now extended to a multi-period
model with T periods. Although solving each period separately in the multi-period view of
the problem is possible, doing so could result in selecting new centers for each period and
constant reassignment. However, this approach may not be practical in many applications.
For instance, when the center represents a facility, selecting new centers in each period is
impossible. Therefore, we allow reassignments in our model.

The solution aims to provide a partitioning plan for the entire time horizon with minimal
reassignments, or only those necessary. To achieve this, a penalty factor is implemented
in the following multi-period districting problem, which must be paid if reassignments
occur between two periods. In some applications, the penalty factor represents real costs
incurred for reassigning TUs. For instance, a nurse providing home healthcare may require
additional time to become familiar with a new patient in their area, which is not necessary
for a patient they already know.

In some cases, a solution that is not possible in a previous period due to balancing issues
may become balanced in the next period. However, this solution might not be chosen
because it would result in additional costs for reassignments. To address this, a new
parameter is introduced called s, representing the savings that would be received if a
more compact solution is chosen in the current period. This would make the compact
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solution more attractive. If TU i is assigned to the district represented by TU j in the
last period and is now being reassigned, then sij can be saved by removing TU i from
the district represented by TU j. This particular parameter is further explained in Sec-
tion 3.2.2.

Each district has a representative TU center (Definition 6), which can change from one
period to another. Therefore, when a TU is assigned to a district, it is essentially assigned
to its representative only for a specific period. It is important to note that the TUs are still
assumed to be exclusively assigned to districts (Definition 7). To develop a mathematical
formulation for the problem, the following sets are used:

I set of TUs

TP set of time periods, TP = {1, . . . , T}

Additionally, the parameters that define the problem are introduced:

pt number of districts in period t ∈ TP

dit demand of TU i ∈ I in period t ∈ TP

µt reference value for the demand assigned to each district in period t ∈ TP

This value is defined as µt = 1
pt

∑
i∈I dit (t ∈ TP ), i.e., the exact demand

assigned to each district if the districts are perfectly balanced – which
may not be possible due to the single assignment assumption

α allowed deviation for the demand assigned to each district in each period
w.r.t. the reference value in that period

cij initial cost for assigning TU i ∈ I to TU j ∈ I in the first period

rijt cost for reassigning TU i ∈ I to TU j ∈ I in (the beginning of) period
t ∈ TP \ {1}

sijt saving for removing TU i ∈ I from the district represented by TU j ∈ I
in (the beginning of) period t ∈ TP \ {1}

gjt unit penalty for surplus at the district represented by TU j ∈ I in period
t ∈ TP w.r.t. the maximum deviation stated by α

hjt unit penalty for shortage at the district represented by TU j ∈ I in
period t ∈ TP w.r.t. the maximum deviation stated by α

The multi-period districting problem underlying this work can be formulated using the
following decision variables:
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xijt =

1, if TU i is assigned to TU j in period t

0, otherwise

(i, j ∈ I, t ∈ TP )

vijt =

1, if TU i is reassigned to the district represented by TU j in period t

0, otherwise

(i, j ∈ I, t ∈ TP \ {1})

wijt =

1, if TU i is removed from the district represented by TU j in period t

0, otherwise

(i, j ∈ I, t ∈ TP \ {1})

ψjt demand surplus in the district represented by TU j in period t, j ∈ I,
t ∈ TP

φjt demand shortage in the district represented by TU j in period t, j ∈ I,
t ∈ TP

Note that xiit = 1 for some i ∈ I and t ∈ TP , indicates that TU i is assigned to itself in
period t, which also means that it is selected as the representative TU of its district in that
period.

Definition 11 (Multi-Period Solution)
A multi-period solution refers to the outcome of a multi-period model, encompassing all de-
cision variables associated with the solution. We denote the objective value of this solution
as MP .

Considering the above parameters and decision variables, an optimization model can now be
formulated for the Multi-period Districting Problem (MPDP):

MPDP:

min
∑
i∈I

∑
j∈I

cijdi1xij1

+
∑

t∈T P \{1}

∑
i∈I

∑
j∈I

(rijtditvijt − sijtditwijt)

+
∑

t∈T P

∑
j∈I

(
gjtψjt + hjtφjt

)
(3.1)

s. t.
∑
j∈I

xijt = 1 ∀i ∈ I, t ∈ TP (3.2)

∑
i∈I

xiit = pt ∀t ∈ TP (3.3)

xijt ≤ xjjt ∀i, j ∈ I, t ∈ TP (3.4)

vijt ≥ xijt − xij,t−1 ∀i, j ∈ I t ∈ TP \ {1} (3.5)
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wijt ≤ xij,t−1 ∀i, j ∈ I, t ∈ TP \ {1} (3.6)

wijt + xijt ≤ 1 ∀i, j ∈ I, t ∈ TP \ {1} (3.7)

(1− α)µtxjjt ≤
∑
i∈I

ditxijt − ψjt + φjt ∀j ∈ I, t ∈ TP (3.8)∑
i∈I

ditxijt − ψjt + φjt ≤ (1 + α)µtxjjt ∀j ∈ I, t ∈ TP (3.9)

xijt ∈ {0, 1} ∀i, j ∈ I, t ∈ TP (3.10)

vijt ∈ {0, 1} ∀i, j ∈ I, t ∈ TP \ {1} (3.11)

wijt ∈ {0, 1} ∀i, j ∈ I, t ∈ TP \ {1} (3.12)

ψjt ≥ 0 ∀j ∈ I, t ∈ TP (3.13)

φjt ≥ 0 ∀j ∈ I, t ∈ TP (3.14)

In the model above, the objective function 3.1 represents the total cost for the entire plan-
ning horizon, given by the sum of three terms: (i) the total assignment cost incurred for
building districts at the beginning of the planning horizon, (ii) the total cost for redesigning
districts, i.e., reassigning TUs over the planning horizon minus the corresponding savings
(accounted for since period 2), (iii) costs for shortage or surplus. As often done in dis-
tricting, demands are used as weights when computing the assignment costs (Kalcsics and
Ŕıos-Mercado, 2019). Constraints 3.2 ensure that every TU is assigned to exactly one dis-
trict in every period. Constraints 3.5-3.7 quantify the reassignments/removals throughout
the planning horizon so that the corresponding costs are paid. In particular, Constraints
3.5 enforces that an actual reassignment is counted whenever a given TU i is assigned in
time period t to a district j to which it had not been assigned in the period before (i.e.,
xijt = 1, and xij,t−1 = 0). Constraints 3.6 ensure that the removal of some TU i from
district j in time period t cannot be accounted for if that TU is not assigned to that dis-
trict (xij,t−1 = 0). Also, Constraints 3.7 ensure that a TU i can be assigned or reassigned
to district j in each time period. Constraints 3.8 and 3.9 are the balancing constraints
which guarantee that the demand served by each district in every time period is within the
maximum prescribed deviation α from the reference value. Note that surplus and short-
ages are also considered. Finally, Constraints 3.10-3.14 define the domain of the decision
variables.

Remark 1
In the model described above, contiguity is not explicitly considered. However, optimizing
for compactness tends to favor contiguity. In other words, a highly compact solution is
likely to be contiguous. This conclusion is supported by exact solution approaches for dis-
tricting Salazar-Aguilar et al. (2011). Nonetheless, many authors do not explicitly address
contiguity in their models, particularly when working with point-like basic TUs Kalcsics
and Rı́os-Mercado (2019). This issue is also present in the work by Diglio et al. (2020)
and has resulted in Pomes et al. (2025), which serves as a foundation for this thesis.
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3.2.1 Model Extension: Fixed Centers

The multi-period model described earlier does not guarantee that the representatives or
centers remain constant over time. However, limiting reassignments as much as possible
helps to avoid unnecessary changes. To ensure consistency across all periods, the following
constraints can be added:

xiit = xii1 ∀i ∈ I, t ∈ TP \ {1}

Of course, the number of districts must remain the same for all periods. Otherwise, no
feasible solution can be found. As described earlier, the center must be fixed if, for example,
a facility represents it and cannot be changed.

3.2.2 The Influence of the Savings Parameter

The additional parameter sijt for all t ∈ TP \{1} has already been introduced above. Com-
putational results for the analysis of savings can be found in Section 5.5.2.2.

By introducing savings, it is possible to trigger reassignments, even when it is not neces-
sary to maintain the balance. Savings allow for more compact solutions, representing the
benefits of removing a TU from a district. This assumption is realistic because, once a TU
is reassigned, it no longer incurs costs in the district from which it was reassigned. While
there are costs associated with the reassignment for a new assignment, the previous district
does not have any further expenses related to that TU, which is reflected in the savings.
If sijt = rijt, the planning periods can be planned separately. Example 2 illustrates the
benefit of savings.

Example 2 (Impact on the Solution with Positive Savings)
Figure 3.2 shows a two-period example of how savings can trigger a more compact solution
without being less balanced. Within the nodes, the index of the TU is indicated, and above
it is the weight (demand) of the TU. In period 1 (Figure 3.2a), balance can be achieved with
the allocation of TU 3 and 4 as well as 1 and 2 within one district, even at the expense
of compactness. In period 2 (Figure 3.2b), the demands change, and a balance can be
established by grouping TU 1 and 4, as well as 2 and 3, in the same district. However, this
change requires reassignments and, as a result, reassignment costs. Although the districts
could be allocated as in period 1 to maintain the same solution, it would result in a less
compact solution than the optimal solution for this period independently.

To summarize the benefits of the MPDP:

• It allows for the consideration of different time periods, enabling the adjustment of
demand changes over these periods through redistricting.
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Figure 3.2: Illustration of a solution to a two-period optimization problem involving four
trade units and two districts.

• Changes in the number of districts can be implemented.

• The district representatives can be fixed or change over time.

• The ratio of penalty costs to redistricting costs can be indirectly weighted by the new
parameter savings.

• By accounting for both shortages and surpluses, a feasible solution can always be
found if the number of districts does not exceed the number of TUs.

In the next section, we evaluate the previously presented MPDP. In particular, we an-
alyze when it is beneficial to utilize the multi-period districting model for multi-period
problems.

3.3 Performance Analysis: Model Evaluation and

Correlation Comparisons

In the following, the value of the multi-period solution – a frequently used measure to
evaluate multi-period models – is explained and defined in Section 3.3.1. In Section 3.3.2,
the model and its solution are analyzed to examine the input data and the benefits of using
the MPDP.

3.3.1 The Value of the Multi-Period Solution

To evaluate the advantage of the multi-period model over the single-period model, Alumur
et al. (2012) first introduced the concept of the value of the multi-period model, which is
later defined as the value of the multi-period solution in Laporte et al. (2019). Further
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analyses of this value for capacitated location problems can be found in Bakker and Nickel
(2024).

There exist several ways to define the static counterpart for a multi-period problem. In
this thesis, we use the following definition:

Definition 12 (Solution of the Static Counterpart for Multi-Period Districting Problems)
A solution of the Static Counterpart (SC) for the MPDP (SSCMP ) is a solution of a
simplified single-period problem (SCMP ). All parameters are set to their average values
calculated over the entire time horizon. This single-period problem is then solved using a
single-period model, and the optimal districting decisions are stored. Next, we apply these
districting decisions to the multi-period problem. The solution value generated with this
procedure is called the SSCMP .

Definition 13 (The Value of the Multi-Period Solution)
The Value of the Multi-Period Solution (VMPS) compares the optimal value of the multi-
period problem (MP ) and the SSCMP :

VMPS = SSCMP −MP

MP
(3.15)

Frequently, the percentage notation is utilized:

%VMPS = SSCMP −MP

MP
· 100 (3.16)

3.3.2 Data and Solution Analysis

The analysis below focuses on the following questions:

• Is there a relationship between the %VMPS and the demand of an instance?

• Can we determine from the given data if using the MPDP is more beneficial than its
SCMP ?

A study on similar questions for Capacitated Facility Location Problems (CFLPs) has
been conducted and can be found in Bakker and Nickel (2024). This paper reveals that the
fixed cost is the most critical factor in determining the potential value of a multi-period
model. The study also indicates that the value of a multi-period approach depends on
how effectively relevant cost components can be reduced, rather than the extent to which
problem parameters change over time.
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The CFLP and districting problems share many similarities. However, there are also some
differences that must be considered when analyzing these two types of models. One signif-
icant difference is that, unlike the CFLP, classical districting problems do not have fixed
costs. This means that the most critical factor for the CFLP, as noted by Bakker and Nickel,
has no influence on districting problems and cannot be analyzed. Furthermore, differences
in the problem definition impact the %VMPS analysis. Specifically, districting problems
have no capacity, as considered in this thesis. Although the balance criterion has some sim-
ilarities, it results from the demands and is therefore not given separately from externally.
Additionally, there is no unit profit in the presented problem. Hence, the most interesting
and primary factor analyzed in the following is demand.

Example 3 (Sufficiency of Static Models for Constantly Increasing Demand)
Consider a scenario where a multi-period model is not necessary, even though changes
occur over time. This situation occurs, for example, if demand increases, as shown in
Figure 3.3. Suppose we have an optimal solution for the first period, which remains optimal
for the subsequent periods, i.e., periods 2 and 3. This is because the areas remain balanced,
similar to the first period. Therefore, in this case, there is no need to use a multi-period
model. The static counterpart, either with the expected value or the values of one of the
three periods, can be used instead to find the optimal solution for the multi-period problem.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 3.3: A multi-period instance with constantly increasing demand over three periods.
The size of the nodes represents the demand.

In the context of multi-period districting, the %VMPS = 0 in cases where the demand
either constantly decreases or alternates between increases and decreases. Therefore, if the
relative distribution of demand remains identical in all time units, it can be inferred that
using a multi-period model is unnecessary.

Next, the properties of various instances are analyzed to determine the benefits of using the
MPDP in cases with no constant increase or decrease in demand.

As previously stated, there are cases where %VMPS = 0 despite demand changes. Thus,
it is important to investigate the relative demand (w.r.t. to the overall demand) of each
TU and its changes. The upcoming section analyzes scenarios where fluctuations impact
%VMPS and where the correlation between the two is significant.
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Definition 14 (Relative Demand)
The relative demand of a TU i ∈ I is defined as

dreli =
(

dit∑
j∈I djt

)
t∈TP

Definition 15 (Maximum Fluctuation of a TU)
The maximum fluctuation of a TU i ∈ I is defined as the difference between the maximum
relative demand for this TU and its minimum value:

∆abs
i = max(drel

i )−min(drel
i ) ∀i ∈ I

It is important to note that ∆abs
i = 0 for all TUs i ∈ I in the example shown in Figure 3.3

since max(drel
i )−min(drel

i ) = 0 for all TUs.

Definition 16 (Relative Maximum Fluctuation of a TU)
The relative maximum fluctuation for a TU i is defined as the relative difference between
the highest demand value over time and the lowest:

∆rel
i = max(drel

i )−min(drel
i )

max(drel
i ) ∀i ∈ I

Example 4 (Relative Maximum Demand Fluctuation Calculation)
If a particular TU i contains 10% of the total demand in the initial period and 15% in the
subsequent period, its relative share and influence on total demand demonstrate a fluctu-
ation of 33.3% (i.e., ∆rel

i = 0.33). The overall demand for this specific TU may remain
constant across both periods. As previously stated, our analysis focuses exclusively on rel-
ative demands, which may vary for a TU even in the presence of stable absolute demands
for this TU.

Definition 17 (Relative Maximum Fluctuation of an Instance)
The relative maximum fluctuation of an instance is defined as the average value of the
demands of all TUs i ∈ I of this instance:

∆rel =
∑

i∈I ∆rel
i

|I|

For the following evaluations, we use the sample correlation coefficient:

Definition 18 (Sample Correlation Coefficient)
As part of the analytical methodology, the use of sample correlation coefficients is employed
– a statistical tool that measures the strength and direction of the linear relationship between
two variables:
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Cor(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

where n is the sample size, xi, yi are the individual sample points indexed with i, x̄ =
1
n

∑n
i=1 xi (the sample mean) and analogously for ȳ (Devore and Berk, 2012).

The relationship between the relative demand and the fluctuations of TUs in a given
instance is explained in more detail in the following example.

Example 5 (Relative Demand Profiles: Low vs. High Fluctuations)
Figure 3.4 illustrates two different relative demand profiles. The analysis includes two
instances over two periods. In the figures, the black dots represent the relative demand for
the TU in the first period, while the white dots indicate the relative demand for the same
TU in the second period. The difference or fluctuation between the relative demands in both
periods is shown by a line connecting the points. The lines represent the ∆abs

i . A high ∆abs
i

is marked with a red line. In Figure 3.4a, there are no high relative fluctuations, while in
Figure 3.4b, there are numerous high relative fluctuations.
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(a) Instance 1
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(b) Instance 2

Figure 3.4: Two instances with two periods and different relative demand profiles.

In Figure 3.4, we can also see that the instance on the left has a low number of high-
fluctuating TUs and the instance on the right has a high number of high-fluctuating TUs.
The exact count of high-fluctuating TUs depends on the definition or, more specifically,
the level of the threshold value used to determine what qualifies as a high fluctuating TU.
This threshold is denoted in the following as τ .

Using this threshold value τ , we can define the number of highly fluctuating TUs of an
instance:
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Definition 19 (Number of Highly Fluctuating TUs of an Instance)
The number of TUs with a higher fluctuation of the relative demand than the threshold
value τ is defined as:

r =
∣∣∣{i ∈ I | max(drel

i )−min(drel
i ) ≥ τ

}∣∣∣
With Definition 15 this can also be written as:

r =
∣∣∣{i ∈ I | ∆abs

i ≥ τ
}∣∣∣

The correlation between the number of TUs with a higher fluctuation of the relative demand
than the threshold value τ and the %VMPS is denoted as Cor (r,%VMPS).

It is assumed that a high number of high fluctuating TUs r is connected to a high %VMPS
or at least that these two values are positively correlated. Also, the relative maximum fluc-
tuation of an instance ∆rel can impact the %VMPS and is analyzed.

We subsequently provide a detailed analysis of the following:

• In Section 3.3.2.1, the correlation between r and the %VMPS is examined.

• In Section 3.3.2.2, the focus is on the correlation between the average relative demand
fluctuation over a two-period planning horizon and the %VMPS.

• In Section 3.3.2.3, a combined approach is adopted that utilizes the SSCMP (Defini-
tion 12).

3.3.2.1 Correlation Analysis: High Fluctuating TUs and the VMPS

In this section, we analyze whether and how the number of highly fluctuating TUs of an
instance r correlates with the %VMPS (Definition 19).

We analyze six different combinations of number of TUs (|I|) and number of districts (p),
consisting of two periods, all generated using the same distribution function. For each of
the six combinations, 500 instances are generated and 80 different values for the threshold
parameter τ .

The results are presented in Figure 3.5 and Table 3.1. The correlation between the number
of TUs with a fluctuation higher than τ and the %VMPS varies between zero and 0.36,
depending on the level of τ . The correlation is mostly positive, indicating a positive linear
relationship between the number of high-fluctuating TUs and the %VMPS. Notably, the
peak correlation occurs at a relative deviation, represented by τ , of approximately 0.14. As
we can also see in the figure, if the threshold value τ is set too high, no TUs are identified
as having high fluctuations. Conversely, if it is set too low, all ten TUs are classified as
high-fluctuating.
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In conclusion, while we cannot predict the %VMPS solely by counting high-fluctuating
TUs in the data, a positive linear relationship exists between them. Additionally, the
likelihood of an instance having a high percentage of the %VMPS increases with a larger
number of fluctuating TUs.
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Figure 3.5: Linear correlation between r and the %VMPS for |I| = 10, p = 5, and two
periods depending on τ .

The results for different numbers of TUs and districts are presented in Table 3.1, where
3000 instances in total are analyzed. This demonstrates that the average %VMPS is
higher when the ratio of TUs to districts is smaller. In these cases, a single TU has
a greater impact on the balance of a district, which, in practice, significantly influences
the objective value and the advantages of using the multi-period model that considers all
relevant information.

As we can also see, both the average CPU runtimes for solving the multi-period model
(CPUMP ) and the static counterpart for the multi-period model (CPUSCMP

) increase with
the size of the instance, but the multi-period model does so at a greater rate.

Next, we analyze another detail level and focus on the correlation between the average
relative maximum fluctuations and the %VMPS, and compare the correlations with the
results above.

3.3.2.2 Correlation Analysis: Average Fluctuation and the VMPS

In this section, the correlation between the average value of the relative maximum fluctua-
tion of the relative demand ∆rel in the planning horizon of two periods and the %VMPS
is analyzed.
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|I| p Cor(r, %V MPS) τ %V MPS CPUMP CPUSCMP

10 2 0.19 0.24 5.0058 0.14 0.07

10 5 0.36 0.14 8.7515 0.15 0.06

20 2 0.27 0.24 6.2648 0.77 0.19

20 5 0.37 0.24 11.4022 1.77 0.20

20 10 0.39 0.17 14.5296 0.67 0.21

100 2 0.15 0.04 4.6143 26.91 4.51

Table 3.1: Computational results for various values of τ , multiple numbers of TUs, multiple
numbers of districts, and two periods.

A computational analysis, using the same instances as in Section 3.3.2.1 is conducted with
the outcomes presented in Table 3.2. The following points should be highlighted:

• In all test cases, the average %VMPS > 0. This means that every instance variant
includes at least one instance with a positive %VMPS, making them suitable for our
analysis. If the randomly generated instances all had a %VMPS = 0, no meaningful
correlation could be determined.

• The correlation between ∆rel and the %VMPS is smaller if the number of TUs per
district is higher. In other words, a higher average number of TUs per district tends
to decrease the correlation.

• The correlation between ∆rel and the %VMPS is about as high as the correlation
between the %VMPS and the number of TUs with a high ∆rel value (Table 3.1).

|I| p Cor(∆rel, %V MPS) %V MPS CPUMP CPUSCMP

10 2 0.17 5.0058 0.14 0.07

10 5 0.38 8.7515 0.15 0.06

20 2 0.22 6.2648 0.77 0.19

20 5 0.31 11.4022 1.77 0.2

20 10 0.38 14.5296 0.67 0.21

100 2 0.09 4.6143 26.91 4.51

Table 3.2: Computational results for multiple numbers of TUs, multiple numbers of dis-
tricts, and two periods.
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The results depicted in Figure 3.6 illustrate the relation between ∆rel and the %VMPS
for the instances with 10 TUs, 5 districts, and 2 periods. While many %VMPS values are
observed to be close to zero, a few instances have a %VMPS of up to 50. However, this
does not necessarily imply that higher ∆rel values always lead to a higher %VMPS. In fact,
the correlation between ∆rel and %VMPS across 500 instances, which involve 10 TUs, 5
districts, and 2 periods, is Cor(∆rel,%VMPS) = 0.38.
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Figure 3.6: Relation between ∆rel and %VMPS for |I| = 10, p = 5, and two periods.

The observations above are based on instances with two periods. However, in many cases,
a multi-period model is typically used for problems that involve more than two periods.
We now analyze the effects on correlation when additional periods are added to these
instances.

Table 3.3 shows the results for instances with different numbers of periods. The average
%VMPS increases with the number of periods. This is because the number of periods in
the multi-period model allows for redistricting, whereas the solution generated with the
mean value cannot be adjusted between periods. Hence, it becomes increasingly important
to use a multi-period model in such instances.

At the same time, the correlations are decreasing. The values for Cor(∆rel,%VMPS)
decrease from 0.17 to 0.04, and for Cor(r,%VMPS), from 0.19 to 0.12. This indicates
a very weak relationship between these variables. This decreasing correlation may be
attributable to the method used to calculate ∆rel and to the fact that, as the num-
ber of periods increases, the average value becomes less sensitive to individual fluctua-
tions.

As the correlations between the values mentioned above decrease with an increasing number
of periods, we explore a new variant in the next section. This variant aims to enhance or
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|I| p T Cor(∆rel, %V MPS) Cor(r, %V MPS) τ %V MPS CPUMP CPUSCMP

10 2 2 0.17 0.19 0.24 5.0058 0.14 0.07

10 2 3 0.16 0.17 0.15 7.7396 0.31 0.1

10 2 4 0.09 0.13 0.39 12.1375 0.61 0.12

10 2 5 0.13 0.15 0.24 14.8764 1.14 0.16

10 2 6 0.02 0.1 0.35 15.889 2.00 0.19

10 2 7 0.04 0.12 0.38 18.3192 3.52 0.22

Table 3.3: Computational results and correlations comparison for multiple numbers of pe-
riods and p = 2.

maintain the stability of the relationship between demands and %VMPS, particularly
when analyzed over more than two periods.

3.3.2.3 Correlation Analysis: District Fluctuations and the VMPS

The previous subsections have shown that the fluctuations of relative demand correlate
with the %VMPS. However, it is reasonable to assume that other indicators besides the
average fluctuations or the absolute number of TUs with high relative fluctuations within
an instance have an influence on the %VMPS or allow conclusions or forecasts. As can
be seen in the examples already mentioned, %VMPS = 0 if there is no fluctuation in
the relative demand. This is also possible under other circumstances, for example, if the
fluctuations are balanced by the TUs in the surroundings, as long as these TUs are in
the same district. In the following, we therefore examine how strong the correlations are
between the fluctuations within predefined neighborhoods and the %VMPS. We use the
districts created by solving the SCMP as the neighborhood groups. Other groupings are
also possible.

The following analysis is at a different detail level than the previous two analyses. While
we have previously focused on TUs within an instance, this time we shift our atten-
tion to the district level. First, we will define the number of districts that exhibit high
fluctuations. This definition will once again depend on the threshold value denoted as
τ .

Definition 20 (Number of High Fluctuation Districts)
Let Dt be the number of districts in period t for which the relative deviation from the
average demand exceeds a threshold value τ . Formally, we define:
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Dt =
∣∣∣∣∣
{
j ∈ I |

(
ψjt

µt

+ φjt

µt

)
xjjt ≥ τ

}∣∣∣∣∣
where ψjt and φjt represent the surplus and shortage for district j in period t, µt is the
average demand in period t and xjjt is is the decision variable which is 1 if j is the repre-
sentative TU of an district in period t.

The sum over all periods is defined as:

D =
∑

t∈T P

Dt

Note that ψjt · φjt = 0 for all TUs j and periods t since a district can only have a surplus,
shortage, or neither.

The following approach is analyzed:

1. Firstly, the SCMP problem is solved.

2. Secondly, D for the resulting districts are calculated.

3. After that, the MP is solved and the %VMPS is calculated.

4. Finally, the correlation between D and the %VMPS are calculated.

The recommendation is then to calculate the MPDP completely if there is a high value for
D for an instance.

An analysis of 500 instances is conducted, each consisting of 12 TUs and 3 districts. The
number of periods varied, but the demand generation remained identical in each instance
and period, as in Section 3.3.2.1 and Section 3.3.2.2. The threshold value, or tolerance
level τ , is 0.2

12 for 12 TUs, while the TUs had a randomly generated uniformly distributed
demand d ∈ [50 · (1− 0.2), 50 · (1 + 0.2)] in each period.

The results are presented in Figure 3.7. They show a positive linear correlation between
the number of periods and districts with a high value of D and the percentage of %VMPS.
In Figure 3.7a, there are three districts and two periods, allowing for a maximum of six
fluctuations (where D ∈ {0, . . . , 6}). Instances with a high value of D tend to have a
higher %VMPS. However, there are also cases where D is high, but %VMPS remains
low.

As shown in Table 3.4, the correlation Cor(D,%VMPS) is significantly stronger than the
correlation Cor(∆rel,%VMPS). Specifically, the correlation between D and %VMPS
ranges from [0.47, 0.54], while the correlation between ∆rel and %VMPS ranges from
[0.11, 0.22]. This indicates that D is much more strongly associated with the percentage



3.4 Conclusion 47

of %VMPS compared to ∆rel. In other words, changes in D have a clearer impact on the
%VMPS values, while ∆rel shows only a weak relationship with %VMPS.

The results also indicate a linear relationship between D and %VMPS, with an approxi-
mate slope of 0.5 across all tested numbers of periods. As illustrated in Figure 3.7, there
are no high %VMPS values associated with low D values. However, as D increases, the
likelihood of observing a higher VMPS also increases.

It is advisable to run the MPDP only if the solution generated by solving the SCMP has
a high value of D. Otherwise, there is a high probability of a lower %VMPS. However,
the MPDP can always be used to make an exact statement. Nevertheless, by making a
forecast in advance, a lot of computing time can be saved.

|I| p T Cor(D, %V MPS) Cor(∆rel, %V MPS) %V MPS CPUMP CPUSCMP

12 3 2 0.47 0.20 7.172 0.27 0.08

12 3 3 0.47 0.21 12.2958 0.67 0.13

12 3 4 0.51 0.22 15.7617 1.50 0.18

12 3 5 0.49 0.11 17.8877 3.57 0.22

12 3 6 0.49 0.07 19.1954 9.70 0.26

12 3 7 0.54 0.19 22.0554 27.04 0.30

Table 3.4: Computational results and correlations comparison for multiple numbers of pe-
riods and p = 3.

3.4 Conclusion

This chapter first reviews the relevant literature on multi-period districting problems
and identifies existing gaps. We introduce a new multi-period model (Pomes et al.,
2025) that incorporates reassignment variables, allowing for reassignments between pe-
riods. Additionally, the model features the option to integrate savings, helping to man-
age the motivations for reassigning TUs. Surplus and shortage variables are included
to prevent violations of the balancing constraints from rendering the problem unsolv-
able.

We conduct a detailed performance analysis of the VMPS. This analysis examines the
circumstances under which applying the MPDP is beneficial in multi-period contexts and
when it may be less advantageous. The analysis proceeds through multiple stages, varying
in detail. We analyze demand fluctuations and the value of the multi-period solution
at different granular levels: first, the number of territorial units with highly fluctuating
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Figure 3.7: Linear correlations between D and %VMPS for |I| = 12, p = 3, and multiple
numbers of periods.
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demand, second, the average demand fluctuations, and finally, the average sum of demand
fluctuations in each district.

The findings reveal a positive linear correlation between the number of highly fluctuating
TUs and the VMPS. Additionally, there is a positive linear correlation between average
fluctuations and the VMPS. The strongest linear correlation is observed at the district
level, and this relationship additionally remains stable over several periods. This may be
due to the number of periods already being included in the definition of D, whereas the
other key figures are only averaged.





Chapter 4

Stochastic Districting

In this chapter, we address districting under uncertainty, where future parameters are
not fully known at the time decisions must be made. Unlike the previous chapter, which
considered a multi-period setting, we focus here on a stochastic single-period districting
problem, as illustrated in Figure 4.1. The foundational model for this chapter is based
on the work of Diglio et al. (2020). The novel contribution of this thesis lies in adapting
the existing model and providing a comprehensive performance analysis. Specifically, we
evaluate the value of the stochastic solution and the expected value of perfect information.
Through these analyses, we offer new insights into the benefits of incorporating stochastic
elements into single-period districting. The topic of multi-period stochastic districting,
which introduces additional complexity and research opportunities, is addressed separately
in Chapter 5.

The term Stochastic Districting is not clearly defined. The uncertainty can refer to various
parameters. Distances can be stochastic, for example, in a road network where it is unclear
exactly when and where a traffic jam will form, and journey times are only realized during
the journey. Costs can be stochastic. Transport prices, for example, can depend on fuel
prices and, therefore, cannot always be planned correctly in advance. The number of
districts required can also be stochastic. For a parcel delivery company, for example, the
delivery areas may vary daily depending on the number of employees available on that day,
taking into account holidays, illness, and other factors. In the following, we use the term
Stochastic Districting to mean districting with uncertain demand and only use this term in
this context. Stochasticity in demand may occur, for example, in school districting, where
the number of pupils is unknown, or in ambulance districting when the number of patients
is uncertain.
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Figure 4.1: Research Focus of Chapter 4: Single-period stochastic districting.

Deterministic models can be used when all information is known. These models are prac-
tical if complete information is available, and decisions must be made based on that infor-
mation. On the other hand, deterministic models can also be used when some information
is not yet known. In such cases, for example, the expected values can serve as input pa-
rameters, providing some guidance for decision-making. Alternatively, a stochastic model
may be utilized to incorporate the stochastic parameter directly into the decision-making
process. This enables decision-makers to evaluate different scenarios that may occur, rather
than relying solely on one deterministic input.

This chapter is organized as follows:

• In Section 4.1, a literature review focusing on stochastic districting problems is pro-
vided.

• Section 4.2 presents a two-stage stochastic model.

• Section 4.3 evaluates the benefits of using a stochastic model for stochastic districting
problems.

4.1 Related Literature

A general introduction to stochastic programming is found in Birge and Louveaux (2011).
The following literature directly addresses the topic of districting.

Enayati et al. (2020) propose a two-stage stochastic mixed-integer programming model
called stochastic service district design to address the service district design problem for
ambulance services, aiming to maximize the expected number of emergency calls that
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are responded to on time while limiting the workload of ambulances. The proposed
model recommends how to locate ambulances at the waiting sites in the service area
and how to assign a set of demand zones to each ambulance at different backup lev-
els.

Diglio et al. (2020) investigates a stochastic districting problem where a random vector
with a given joint probability distribution function represents demand. They propose
a two-stage mixed-integer stochastic programming model in which the initial territory
design is decided in the first stage, and balancing requirements are met in the second
stage through outsourcing and reassignment of TUs based on the known demand. The
objective function accounts for the total expected cost and includes the cost for the first-
stage assignments plus the expected cost incurred at the second stage. The model extends
in different ways to account for practical aspects such as maximum desirable dispersion,
reallocation constraints, or similarity of the second-stage solution to the first-stage one.
The new modeling framework is tested computationally using instances built with real
geographical data.

The same authors investigate a new districting problem with stochastic demands Diglio
et al. (2021), aiming to divide a geographic area into contiguous districts balanced with
respect to given thresholds. They use a p-median problem with contiguity constraints and
chance-constrained balancing requirements. A two-phase heuristic is developed to derive
a deterministic equivalent for the problem. Different families of probability distributions
for the demands are investigated, and a simulation procedure is proposed to estimate the
probability of a given solution to yield a balanced districting. The results of computational
tests performed on a set of testbed instances are discussed.

Later, the same authors Diglio et al. (2022) investigate a districting problem with stochastic
demand and contiguity constraints. They use chance constraints to model the balancing re-
quirements and propose an approximate deterministic counterpart as a solution algorithm.
The algorithm is based on a location-allocation scheme, and they develop two variants of a
new heuristic. The authors use an attractiveness function to find a good trade-off between
the solutions obtained for single-scenario problems. The results of extensive computational
tests are reported.

The results from the papers mentioned above and others can be found in the book Facility
Location Under Uncertainty (Saldanha-da-Gama and Wang, 2024). In addition to the
chapters focused on districting under uncertainty, the book also presents various modeling
paradigms and solution techniques for managing uncertainty in general, and specifically in
the context of facility location problems.

Lei et al. (2012) introduce a new problem called the vehicle routing and districting problem
with stochastic customers and solve it using a two-stage stochastic program. In the first
stage, the districting decisions are made, and in the second stage, the expected routing
cost of each district is approximated. The authors also consider district compactness as
part of the objective function. They develop a large neighborhood search heuristic for
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their problem, which they test on modified Solomon instances and on modified Gehring
and Homberger instances. They provide extensive computational results that confirm the
effectiveness of the proposed heuristic.

Lei et al. (2015) introduce a new problem called the Multiple Traveling Salesmen and
Districting Problem with Multi-periods and Multi-depots. They consider several factors
such as the compactness of subdistricts, the dissimilarity measure of districts, and an equity
measure of salesmen’s profit as part of the objective function. They estimate the travel costs
for salesmen in each subdistrict using an approximation formula and develop an adaptive
large neighborhood search metaheuristic for the problem. The proposed metaheuristic is
tested on modified Solomon and Gehring and Homberger instances, and the computational
results confirm its effectiveness.

4.2 Two-Stage Stochastic Districting Model

Diglio et al. (2020) describe the problem of stochastic districting with uncertain demand.
The problem is modeled as a two-stage mixed-integer stochastic program. The first stage
defines the decision on the initial districting, and in the second stage, where the demand is
known, penalties can occur. They want to minimize the total costs, but not only the sum
of costs for the first stage, where they decide the districting plan, but also the expected
total costs for the penalties in the second stage.

The following sets are used:

I set of TUs

S set of Scenarios

The following parameters are used:

p number of districts

ξ = (d1, . . . , d|I|) random vector with the demand for each TU i ∈ I

µ̂ reference value for the demand assigned to each district

α allowed deviation for the demand assigned to each district

cij cost for assigning TU i ∈ I to TU j ∈ I

gj unit penalty for surplus at the district represented by TU j ∈ I

hj unit penalty for shortage at the district represented by TU j ∈ I

As described in Birge and Louveaux (2011), a number of decisions have to be taken before
the experiment, these are the first-stage decision variables that represent the assignment
decisions:
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xij =

1, if TU i is assigned to the district represented by TU j ∈ I
0, otherwise

A number of decisions can be taken after the experiment, the second-stage decisions:

φj(ξ) demand shortage in the district represented by TU j ∈ I under ξ

ψj(ξ) demand surplus in the district represented by TU j ∈ I under ξ

Definition 21 (Stochastic Solution)
A stochastic solution refers to the outcome of a stochastic model, containing all decision
variables associated with the solution. We denote the objective value of this solution as
SP .

Due to the auxiliary variable character of the decision variables in the second stage, Diglio
et al. (2020) call the following problem the Stochastic Districting Problem with Auxiliary
Recourse (SDPAR):

SDPAR:

min
∑
i∈I

∑
j∈I

cijxij +Q(x) (4.1)

s. t.
∑
j∈I

xij = 1 ∀i ∈ I (4.2)

∑
i∈I

xii = p (4.3)

xij ≤ xjj ∀i, j ∈ I (4.4)

xij ∈ {0, 1} ∀i, j ∈ I (4.5)

with the expected second stage value functionQ = Eξ[Q(x, ξ)].

Q(x, ξ) = min
∑
j∈I

gjψj(ξ) +
∑
j∈I

hjφj(ξ) (4.6)

s. t. (1− α)µxjj ≤
∑
i∈I

dixij + φj(ξ)− ψj(ξ) ≤ (1 + α)µxjj ∀j ∈ I (4.7)

φj(ξ) ≥ 0 ∀j ∈ I (4.8)

ψj(ξ) ≥ 0 ∀j ∈ I (4.9)

The assignment costs cij = lijEξ[di] are the product of the expected demand and the
distance lij between TU i and j.

The first-stage objective function 4.1 minimizes the assignment costs and the expected
second-stage value. Constraints 4.2 ensure complete assignment for each TU (Definition 7)
while 4.3 defines the number of districts. Constraints 4.4 ensure that TUs can only be
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assigned to district representatives, and Constraints 4.5 define the domain of the first-stage
decision variables. The second-stage problem is formulated in 4.6 – 4.9. In the objective
function 4.6, the expected second-stage value function gets minimized. Constraints 4.7
ensure the balancing by adjusting the surplus or shortage variables. Constraints 4.8 and
4.9 define the domain of the second-stage decision variables.

As there is for each first-stage solution a feasible completion in the second stage, the stochas-
tic program has relatively complete recourse (Birge and Louveaux (2011); Diglio et al.
(2020). And because the coefficient matrix of the second-stage decision variables is deter-
ministic and can be written as [I|−I], the model has also simple recourse.

Diglio et al. (2020) assume that the support Ξ for the random vector ξ is finite. Hence,
the problem can be formulated as a deterministic equivalent, and it is possible to index the
different scenarios in a finite set S = {1, ..., |Ξ|}. Moreover, in S, the stochastic demands, as
well as the assignment costs and the second-stage decision variables, can be indexed. Hence,
πs ≥ 0 is the probability associated with scenario s ∈ S, and dis is the demand of TU i ∈ I
in scenario s ∈ S. Clearly, we impose that

∑
s∈S πs = 1.

Also, the second-stage decision variables can now be indexed by the scenario:

φjs demand shortage in the district represented by TU j ∈ I in scenario
s ∈ S

ψjs demand surplus in the district represented by TU j ∈ I in scenario s ∈ S

The detailed representation of the deterministic equivalent of the SDPAR can now be
formulated as follows:

SDPAR-DE:

min
∑
i∈I

∑
j∈I

cijxij +
∑
s∈S

πs

(∑
j∈I

gjψjs +
∑
j∈I

hjφjs

)
(4.10)

s. t.
∑
j∈I

xij = 1 ∀i ∈ I (4.11)

∑
i∈I

xii = p (4.12)

(1− α)µ̂xjj ≤
∑
i∈I

disxij − ψjs + φjs ≤ (1 + α)µ̂xjj ∀j ∈ I, s ∈ S (4.13)

φjs ≥ 0 ∀j ∈ I, s ∈ S (4.14)

ψjs ≥ 0 ∀j ∈ I, s ∈ S (4.15)

xij ≤ xjj ∀i, j ∈ I (4.16)

xij ∈ {0, 1} ∀i, j ∈ I (4.17)

The model includes |I| assignment constraints, one district count constraint, 2 · |I| · |S|
balancing constraints (counting upper and lower bounds), 2 · |I| · |S| non-negativity con-
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straints for slack variables, and |I|2 constraints linking assignments to representative TUs,
with |I|2 binary variables for all assignments.

In the objective function 4.10, the assignment costs and the expected penalty costs are
minimized.

The assignment costs cij for the first-stage decision (which is not scenario dependent)
are chosen as the distance lij multiplied by the expected demand over all scenarios cij =
lij ·

∑
s∈S πsdis.

The stochastic two-stage model described in Diglio et al. (2020) serves as the basis for
extending a multi-period model in the following. However, the definitions of µ̂, gj and hj

are changed.

In Diglio et al. (2020), the unit penalty gj and hj for TU j are set to:

gj = hj = max
i∈I
{lij

∑
s∈S

πsdis} ∀j ∈ I

However, in the objective function, the unit penalties are multiplied by the surplus and
shortage, which are already demand-dependent. We recommend selecting penalty costs in-
dependently of demand because, otherwise, they are considered twice.

The costs

gj = hj ≥ max
i∈I
{lij} ∀j ∈ I

should be chosen to ensure that it is never more advantageous to incur the penalty costs
than to assign a TU to a distant TU.

In Diglio et al. (2020) µ̂ is a mean value that runs across all scenarios.

µ̂ = 1
p

∑
s∈S

(πs

∑
i∈I

dis) (4.18)

However, the Constraints 4.13 are defined individually for all scenarios:

(1− α)µ̂xjj ≤
∑
i∈I

disxij − ψjs + φjs ≤ (1 + α)µ̂xjj ∀j ∈ I, s ∈ S

Therefore, the definition in (4.18) is changed to a scenario-based definition in the follow-
ing:

µs = 1
p

∑
i∈I

dis ∀s ∈ S (4.19)

The reason for this change is that, in many scenarios, it may not be possible to achieve an
average demand of µ̂ in each district, especially when the total demand is already lower
or higher than this value. Since Constraints 4.13 are scenario-based, the mean value to be
achieved can also be defined as scenario-based.

This change is illustrated in the following example.
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Example 6 (Alternative Definition for the Reference Value of the Average Demand)
Let 10 TUs be divided into 2 districts. In the first scenario, all TUs have a demand of 1
(
∑

i∈I di1 = 10), in the second scenario, a demand of 5 (
∑

i∈I di2 = 50), both scenarios have
the same probability (π1 = π2 = 0.5). As defined by Diglio et al. (2020) in equation (4.18),
the following result is obtained:

µ̂ = 1
2
∑
s∈S

(0.5
∑
i∈I

dis) = 1
2(0.5 · 10 + 0.5 · 50) = 1

2(5 + 25) = 15

However, this mean value should not be aimed for in either of the two scenarios, as∑
i∈I di1 = 10 and

∑
i∈I di2 = 50 and p = 2. In the first scenario, µ̂ would exceed the

total demand, and in the second scenario, both districts would fall short of the target de-
mand µ̂ even with a perfect split (50:50). Thus, costs for surplus or shortage would be
incurred in each of the two scenarios and the split would only depend on which of these
costs is higher or lower.

According to the new definition in (4.19) and the use of µs then applies:

µ1 = 1
2 ·
∑
i∈I

di1 = 5

µ2 = 1
2 ·
∑
i∈I

di2 = 25

Costs in the individual scenarios are only incurred if there are deviations from the respective
mean value within the scenarios.

The model on which the further work is based is the following extensive form of the deter-
ministic equivalent called the Stochastic Districting Problem (SDP):

SDP:

min
∑
i∈I

∑
j∈I

cijxij +
∑
s∈S

πs

(∑
j∈I

gjψjs +
∑
j∈I

hjφjs

)
s. t.

∑
j∈I

xij = 1 ∀i ∈ I
∑
i∈I

xii = p∑
i∈I

disxij − ψjs + φjs ≤ (1 + α)µsxjj ∀j ∈ I, s ∈ S

(1− α)µsxjj ≤
∑
i∈I

disxij − ψjs + φjs ∀j ∈ I, s ∈ S

φjs ≥ 0 ∀j ∈ I, s ∈ S
ψjs ≥ 0 ∀j ∈ I, s ∈ S
xij ≤ xjj ∀i, j ∈ I
xij ∈ {0, 1} ∀i, j ∈ I



4.3 Performance Analysis: Model Evaluation and Correlation Comparisons 59

Apart from the modified definition of µs described above, the SDP model has the same
properties as the deterministic equivalent of SDPAR and, in particular, the recourse prop-
erties are preserved.

4.3 Performance Analysis: Model Evaluation and

Correlation Comparisons

In Section 4.3.1, we define the most common values used to measure the benefits of stochas-
tic models. In Section 4.3.2, we analyze the SDP and its solution to explore the relation
between the input data and the benefits of using the model.

4.3.1 The Value of the Stochastic Solution and the Expected Value of

Perfect Information

To evaluate the advantages of using a stochastic model over a deterministic model, vari-
ous measures have been developed and are commonly used to assess the benefits of using
these models. An introduction can be found in Birge and Louveaux (2011). Stochas-
tic problems typically require more time to solve than deterministic models. This is
because they involve multiple scenarios and additional variables and constraints to rep-
resent uncertainty, significantly increasing the model size and computational tractability.
Hence, their benefits must be weighed against their additional burdens, such as extra CPU
time.

The following measures are defined for minimization problems, analogous measures can be
formulated for maximization problems.

Definition 22 (Expected Value Problem)
The Expected Value Problem (EV ) is defined as the deterministic problem obtained by re-
placing all random variables with their expected values. The Expected result of the Expected
Value Problem (EEV ) is the expected objective value that results when the solution obtained
from solving the EV problem is implemented in the stochastic setting.

Building upon the concept of the Expected Value problem, we can further analyze the
performance of solutions in a stochastic setting.

Definition 23 (Value of the Stochastic Solution)
The Value of the Stochastic Solution (V SS) is defined as the difference between the EEV
and the solution of the Stochastic Problem (SP ):

V SS = EEV − SP
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Frequently, the percentage notation is utilized:

%V SS = EEV − SP
SP

· 100

To further explore decision-making under uncertainty, we can consider the approach of
determining optimal decisions across all scenarios.

Definition 24 (“Wait and See” Solution)
The “Wait and See” Solution (WS) is calculated by first determining the optimal decision
for each scenario and then taking the expected value of these optimal values across all
scenarios.

Now, we can evaluate the benefits of obtaining perfect information in our decision-making
process.

Definition 25 (Expected Value of Perfect Information)
The Expected Value of Perfect Information (EV PI) is defined as the difference between
the WS and the “here-and-now” (SP ) solution value:

EV PI = SP −WS

Frequently, the percentage notation is utilized:

%EV PI = SP −WS

SP
· 100

4.3.2 Data and Solution Analysis

In this section, the exploration focuses on the following questions:

• Is there a positive linear relation between the %V SS or %EV PI with the stochastic
demand of a given instance?

• Can we determine from the given data whether it is beneficial to use a stochastic
districting model instead of its static counterpart?

Since the SDP exhibits simple recourse, using the EEV always yields feasible district-
ing decisions for the stochastic problem, although this solution is unlikely to be opti-
mal.

Example 7 (Sufficiency of Static Models for Scenarios with Equal Relative Demands)
An example with three scenarios is shown in Figure 4.2, where each node represents a TU,
and the size of the nodes indicates the demand for each TU. Based on the same reasoning
as in Section 3.3, it can be said that if a feasible or optimal districting plan is provided for
the scenario shown in Figure 4.2a, it is also feasible or optimal for the demand distributions
of the scenarios in Figure 4.2b and Figure 4.2c. The total demands differ, but the relative
demands are the same in each scenario, thus maintaining the balance.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 4.2: A stochastic instance with different demands and three scenarios. The size of
the nodes represents the demand.

Although Example 7 seems similar to the example in Section 3.3, there are clear differences
between the stochastic and the multi-period districting problems. In the stochastic case,
a single solution must be determined that is feasible for all scenarios, even though only
one scenario will actually occur, and no reassignments are possible. In contrast, in the
multi-period case, the demands for each period are known with certainty, and reassigning
is allowed.

We now investigate whether a correlation exists with %EV PI or %V SS, based on the dis-
tricts found by the solution of the EV and the analysis of this solution.

To evaluate our approach, we define the number of districts with high fluctuations based
on a threshold value τ , which indicates whether a district is highly fluctuating or not. This
number is defined similarly to the number of highly fluctuating districts in a multi-period
setting (Definition 20).

Definition 26 (Number of High Fluctuation Districts)
Let Ds denote the number of districts in scenario s for which the relative deviation from
the average demand exceeds a threshold value τ . Formally, we define:

Ds =
∣∣∣∣∣
{
j ∈ I |

(
ψjs

µs

+ φjs

µs

)
xjjs ≥ τ

}∣∣∣∣∣
where ψjs and φjs represent the surplus and shortage for district j in scenario s, µs is
the average demand in scenario s and xjjt is is the decision variable which is 1 if j is the
representative TU of an district in scenario s.

The sum over all scenarios is defined as:

D =
∑
s∈S

Ds

Note that ψjs ·φjs = 0 for all TUs j and scenarios s since a district can only have a surplus,
shortage, or neither.
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The following three-stage approach is analyzed, and the correlations between D and the
%V SS and %EV PI are examined.

1. Firstly, the EV problem is solved.

2. Secondly, D for the resulting districts are calculated.

3. After that, the SP is solved and the %V SS and %EV PI are calculated.

4. Finally, the correlation between D and the %V SS and D and the %EV PI are cal-
culated.

The %V SS is analyzed in Section 4.3.2.1, while the %EV PI is examined in Section 4.3.2.2.
In both sections, we utilized the same randomly generated 500 instances, each containing
12 TUs. Additionally, 3 districts are used for each number of scenarios, ranging from 2 to
7.

4.3.2.1 Correlation Analysis: District Fluctuations and the VSS

The results of the analysis for the %V SS are displayed in Figure 4.3 and Table 4.1.

Using the same data generation as in the multi-period model in Section 3.3, it is evi-
dent that the %V SS values are significantly lower than the %VMPS values. This differ-
ence may be attributed to the fact that not all scenarios occur when analyzing scenarios,
whereas, in a multi-period model, all future period data occur and must be considered
(the probability for each period is 1). It is also interesting that the %V SS decreases as
the number of considered scenarios increases. Consequently, the importance of using a
stochastic model decreases as more scenarios are considered. In the multi-period model
in Section 3.3, the %VMPS increases with the number of periods considered. Table 4.1
also shows that the correlation between the number of fluctuations within the groups and
the %V SS is lower than in Section 3.3, but also remains relatively constant (averaging
0.26).

4.3.2.2 Correlation Analysis: District Fluctuations and the EVPI

Figure 4.4 and Table 4.2 show the results of the analysis with the EV PI. As can be
seen, there is no clear trend indicating that the correlation between the fluctuations in the
districts and the %EV PI consistently increases or decreases as the number of scenarios
considered grows, although a slight positive correlation can be observed. In other words,
while there appears to be a weak tendency for the correlation to rise with more scenarios,
the relation is not strong across all cases examined. This means that simply increasing the
number of scenarios does not guarantee a stronger association between district fluctuations
and the %EV PI.
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Figure 4.3: Linear correlations between D and %V SS for |I| = 12, p = 3, and multiple
numbers of scenarios.

|I| p |S| Cor(D, %V SS) %V SS CPUSP CPUEV

12 3 2 0.30 2.0005 0.05 0.07

12 3 3 0.28 1.8095 0.05 0.07

12 3 4 0.26 1.5810 0.05 0.07

12 3 5 0.22 1.4872 0.06 0.08

12 3 6 0.31 1.2894 0.06 0.08

12 3 7 0.18 0.8861 0.07 0.08

Table 4.1: Computational results for |I| = 12, p = 3, and multiple numbers of scenarios.
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However, it is worth noting that the average %EV PI itself tends to increase as the number
of analyzed scenarios grows. This may be due to the fact that a larger set of scenarios
captures a wider range of possible outcomes and uncertainties, thereby increasing the
potential value of having perfect information. As more scenarios are included, the decision-
making process can account for a broader spectrum of variability, which in turn may
highlight the benefits of reducing uncertainty.
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Figure 4.4: Linear correlations between D and %EV PI for |I| = 12, p = 3, and multiple
numbers of scenarios.

4.4 Conclusion

This chapter first reviews the relevant literature on stochastic districting problems and
identifies existing gaps. We adjust an existing two-stage stochastic model and modify the
definition of the reference value µs. To ensure feasibility, we use surplus and shortage
variables that prevent violations of the balancing constraints from making the problem
unsolvable.

A detailed performance analysis of the V SS and EV PI is conducted, examining the con-
ditions under which applying the SDP is beneficial in stochastic contexts and when it may
be less advantageous.
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|I| p |S| Cor(D, %EV PI) %EV PI CPUSP CPUEV

12 3 2 0.16 2.4714 0.05 0.07

12 3 3 0.25 3.2667 0.05 0.07

12 3 4 0.23 3.9584 0.05 0.07

12 3 5 0.25 4.1307 0.06 0.08

12 3 6 0.21 4.3616 0.06 0.08

12 3 7 0.14 4.5104 0.07 0.08

Table 4.2: Computational results for |I| = 12, p = 3, and multiple numbers of scenarios.

The findings reveal a positive linear correlation between the number of highly fluctuating
districts and both the V SS and the EV PI. To facilitate comparability between V SS
and VMPS, the demand fluctuations in the scenarios in our tests corresponded to the
demand fluctuations of the periods from Section 3.3.2. When we compare these results
with the analysis of VMPS, it becomes clear that the impact of time outweighs that of
uncertainty in the tested instances. This observation raises important questions about
the relative effects of these two aspects. This effect may arise because, in a multi-period
context, disadvantageous decisions can be avoided in each period by explicitly consider-
ing demand developments over time. When these expensive decisions accumulate over
time, the overall outcome becomes worse than in a stochastic setting, where a disad-
vantageous decision occurs at most once. In Chapter 5, both aspects are analyzed to-
gether.





Chapter 5

Multi-Period Stochastic
Districting

This chapter combines both dimensions that we examined separately: the aspect of multi-
periods (Chapter 3) and stochasticity (Chapter 4), as illustrated in Figure 5.1. We examine
the multi-stage stochastic model discussed in Pomes et al. (2025) and provide a compre-
hensive analysis of a multi-period stochastic districting problem, which represents the most
complex setting in this thesis.
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Figure 5.1: Research Focus of Chapter 5: Multi-period stochastic districting.
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The benefit of using a multi-period stochastic model lies in its ability to account for un-
certainties in demand over multiple time periods.

As discussed in the previous section, demand is not always known in advance. In many
real-world problems, demand is uncertain and must be managed or anticipated accordingly.
Additionally, it can be important to consider a longer planning horizon during which the un-
derlying parameters may change. These two factors contribute to a more realistic and com-
prehensive representation of practical districting problems.

Chapter 3 and Chapter 4 already provide a thorough description of the stochastic and
multi-period aspects of the problem. These sections serve as the foundation for the sub-
sequent model and analysis that integrates both components. To address uncertain de-
mands in future periods, districts can be reassigned after each period – either for the
entire district plan or for specific districts. This structure characterizes it as a multi-stage
problem.

This chapter is organized as follows:

• In Section 5.1, a literature review focusing on multi-stage problems is presented.

• Section 5.2 discusses a multi-period stochastic districting problem.

• In Section 5.3, a heuristic approach for the multi-period stochastic districting problem
is outlined.

• Section 5.4 covers the dynamic value of the stochastic solution and the expected value
of perfect information for multi-stage stochastic districting problems.

• Section 5.5 presents and discusses the computational experiments.

• Finally, Section 5.6 concludes this chapter.

5.1 Related Literature

An introduction to the foundational concepts applied in the following section is provided in
the book Facility Location Under Uncertainty (Saldanha-da-Gama and Wang, 2024). As
mentioned in the previous chapter, this book not only addresses districting under uncer-
tainty but also systematically presents a range of modeling paradigms and solution tech-
niques for managing uncertainty in facility location problems. The text introduces readers
to basic and advanced concepts in facility location problems, such as stochastic program-
ming, robust optimization, and chance-constrained programming.

Relevant literature focusing specifically on multi-period districting can be found in Sec-
tion 3.1, while stochastic districting literature can be viewed in Section 4.1.
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Bakker et al. (2020) review methods for optimizing multi-stage problems under uncertainty,
noting the growing emphasis on the interaction between uncertainty and time. The authors
highlight that existing methods vary in their representation of uncertainty and evaluation of
performance, leading to a fragmented understanding. Their review aims to integrate these
methods into a cohesive framework to improve sequential decision-making. They emphasize
the importance of differentiating between uncertainty models and solution methods, as
well as establishing standardized performance metrics for better optimization strategies in
uncertain environments.

Lei et al. (2016) propose a solution to a multi-objective dynamic stochastic districting and
routing problem. In this problem, the customers of a territory evolve stochastically over
a planning horizon, and the authors consider several objectives, including the number of
service vehicles, the compactness of the districts, the dissimilarity measure of the districts,
and an equity measure of the vehicles’ profits. The authors model and solve the problem as
a two-stage stochastic program, where districting decisions are made in the first stage, and
the expected routing cost of each district is approximated using an approximation formula
in the second stage. They develop an enhanced multi-objective evolutionary algorithm,
called the preference-inspired co-evolutionary algorithm, which utilizes mating restriction
to solve the problem, and compare it with two state-of-the-art multi-objective evolutionary
algorithms. Finally, the authors describe a procedure for selecting a preferred design for
the proposed problem.

Despite the related literature above, there is a notable lack of studies specifically addressing
multi-period stochastic districting. To the best of the author’s knowledge, no additional
references exist that comprehensively investigate this topic, highlighting a significant gap in
the literature. The following chapter is therefore motivated by this gap and aims to advance
the understanding of multi-period stochastic districting. For context and background, rele-
vant literature on districting in the context of multi-period models and stochastic optimiza-
tion is discussed in Section 3.1 and Section 4.1, respectively.

5.2 Multi-Period Stochastic Districting Model

As mentioned in Chapter 4, uncertainty is assumed to be represented by a finite set
of previously identified scenarios. In a multi-period setting, this leads to the construc-
tion of a scenario tree. Each node in this tree – apart from the root – corresponds to
the realization of all the (uncertain) parameters up to that node. The root node repre-
sents the initial setting (status quo), directly calling for a here-and-now decision to be
made.

Starting from stage 2, at each stage, a new realization of demand occurs. This means
that, from stage 2 onward and up to the final stage, the actual demand for the respective
period is revealed at each node. At every stage except the last, it is possible to react
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to these realizations by planning and implementing reassignment decisions, as well as by
considering the potential costs of shortages and surpluses. Thus, in stages 2 through the
following stages, both reassignment and shortage/surplus considerations are possible and
must be evaluated based on the newly revealed demand.

Thus, the nodes in stage 2 are represented by child nodes of the root. The tree proceeds
by enumerating all the possible moments in which the costs can be accounted for and the
districting can be changed. In the final stage, the only task remaining is to account for the
costs of shortages and surpluses based on the observed demand, as no further reassignments
are possible.

Figure 5.2 illustrates a multi-stage scenario tree with three stages. In the second stage,
the uncertainty associated with that stage is revealed, and similarly, in the third stage, the
uncertainty related to that stage is disclosed.

Stage 1 Stage 2 Stage 3

1

3

7

6

2

5

4

Figure 5.2: A multi-stage scenario tree – three stages in the planning horizon and four
scenarios.

Remark 2
It is worth noting that the scenario tree in Figure 5.2, along with the described problem
setting, can also be interpreted in time-related terms. Stage 1 marks the beginning of the
planning horizon. Stage 2 represents the end of period one and the start of period two.
Stage 3 marks the end of period 2 and the planning horizon. In other words, the example
above depicts a scenario tree with three stages and two time periods. The demands are
realized during a time period, i.e., between two consecutive stages. However, since the
problem is not cast within a multi-horizon setting (Escudero and Monge, 2018; Kaut et al.,
2014), there is no reason to make a difference between periods and stages. Hence, only the
term stage is used hereafter.

In the given terminology, one scenario is a full sequence of events from the first stage to
the last one. In other words, one scenario fully determines all the information for the
entire planning horizon and thus induces a deterministic multi-period districting problem
as defined in Section 3.2. In Figure 5.2, four possible sequences can be observed, i.e., four
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scenarios. Each scenario is associated with one and only one leaf node in the scenario tree.
In the example, there are four scenarios. For instance, the scenario culminating in node
5 consists of the sequence of events leading from the status quo (stage 1) to the possible
future observed in stage 2, which is represented by node 2, and, finally, to the possible
future in stage 3, which is represented by node 5.

Based on the representation used for uncertainty, a multi-stage stochastic programming
model can be developed for the problem. To develop such a model, some additional notation
is introduced as follows:

N set of nodes in the scenario tree

M number of stages in the decision-making process

Nm set of nodes in stage m ∈M

Ω set of scenarios in the scenario tree

Since there is only one path from the root node to every leaf in the tree,
a scenario is fully identified by the corresponding leaf node.

γ(n) immediate predecessor of node n ∈ N \ {1}

m(n) stage to which node n ∈ N belongs to

πn probability associated with node n ∈ N \ {1}

It is unnecessary to consider the probability associated with node 1 since
it is equal to 1 (the node corresponds to the current state of nature).
Note also that in each stage, one node occurs for sure. Therefore, the
probabilities of the nodes are such that, for every stage m ∈M \{1}, the
sum of πn over n ∈ Nm is equal to 1.

In the case of the scenario tree depicted in Figure 5.2, there is N = {1, . . . , 7} and Ω =
{4, 5, 6, 7}. For instance, N2 = {2, 3}, γ(5) = 2, m(6) = 3.

To formulate the multi-stage stochastic programming problem, we adopt the notation previ-
ously presented, specifically cij for i, j ∈ I, and α, maintaining their meanings as indicated
before. It is important to note that a node n ∈ N \ Ω in the scenario tree represents
stage m(n). For that stage, it is known that the number of districts should be pm(n). To
simplify the notation, this number is represented by pn, and it is associated with node
n. In other words, the value pn (n ∈ N \ Ω) is the same for all nodes in the same
stage.

To ensure that a general setting is investigated, it is assumed that all the other parameters
are stochastic. This calls for them to be redefined as follows:
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dn
i demand of TU i ∈ I in stage m(n) if node n ∈ N \ {1} in the scenario

tree occurs

Note that the demand of each TU in each stage is unknown beforehand.
In the scenario tree, node n belongs to stage m(n), so it represents a
possible realization that may be observed. Thus, for some node n ∈
N \ {1}, dn

i represents one possible observation of the demand of TU i
in stage m(n).

µn = 1
pm(n)−1

∑
i∈I d

n
i (n ∈ N \ {1}) average demand for each district

Reference value for the demand that should be assigned to each district
in stage m(n), the stage of node n. As the number of districts pn is only
defined for n ∈ N \ Ω, we have to shift the stage index by −1.

gn
j unit penalty cost for surplus at the district represented by TU j in node

n (j ∈ I, n ∈ N \ {1})

Due to uncertainty, the penalty for surplus can be assessed over time.
Hence, in the stochastic model, these costs are associated with nodes in
stages 2, . . . ,M .

hn
j unit penalty cost for shortage at the district represented by TU j in node

n (j ∈ I, n ∈ N \ {1})

As for the surplus costs, in the stochastic model, these costs are associated
with nodes in stages 2, . . . ,M .

rn
ij unit cost for reassigning TU i to the district represented by TU j in node

n (i, j ∈ I, n ∈ N \ (Ω ∪ {1}))

Note that reassignments are made neither at stage 1 (node 1) nor at stage
M (nodes in Ω).

sn
ij unit saving for removing TU i from the district represented by TU j in

node n (i, j ∈ I, n ∈ N \ (Ω ∪ {1}))

As for the reassignment costs, only stages 2, . . . ,M − 1 are considered
(from stage 2 to stage M − 1).

Concerning the decision variables, they are organized into two sets and can be formally
defined as follows:

(i) Variables corresponding to planning for a stage. These correspond to (re-)districting
decisions.
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xn
ij =

1 if TU i is assigned to the district represented by TU j in node n

0 otherwise.

(i, j ∈ I, n ∈ N \ Ω)

vn
ij =

1 if TU i is reassigned to the district represented by TU j in node n

0 otherwise.

(i, j ∈ I, n ∈ N \ (Ω ∪ {1}))

wn
ij =

1 if TU i is removed from the district represented by TU j in node n

0 otherwise.

(i, j ∈ I, n ∈ N \ (Ω ∪ {1}))

(ii) Variables accounting for the shortage and surplus in each stage. Note that such
values can only be assessed after the demand in the stage is disclosed.

ψn
j demand surplus in the district represented by TU j in node n (j ∈ I,

n ∈ N \ {1}).

φn
j demand shortage in the district represented by TU j in node n (j ∈ I,

n ∈ N \ {1}).

Similar to the stochastic districting problem outlined in Section 4.2, which has simple
recourse, we only evaluate costs in the last stage, where penalty costs for surplus or
shortage are calculated. In all other stages, (re-)assignment decisions are necessary or
allowed.

Using the node-indexed decision variables presented, we can formulate a multi-stage stochas-
tic programming model for the multi-period stochastic districting problem being investi-
gated.

The Multi-Stage Stochastic Districting Problem (MSSDP) can be finally formulated as the
following model:

MSSDP: min
∑
i∈I

∑
j∈I

cijx
1
ij

 ∑
n∈N |γ(n)=1

πndn
i


+

∑
n∈N \(N1∪N2)

∑
i∈I

πndn
i

∑
j∈I

(rγ(n)
ij v

γ(n)
ij − sγ(n)

ij w
γ(n)
ij )


+

∑
n∈N \{1}

πn
∑
j∈I

(
gn

j ψ
n
j + hn

jφ
n
j

)
(5.1)

s. t.
∑
j∈I

xn
ij = 1 ∀i ∈ I, n ∈ N \ Ω (5.2)

∑
i∈I

xn
ii = pn ∀n ∈ N \ Ω (5.3)
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xn
ij ≤ xn

jj ∀i, j ∈ I, n ∈ N \ Ω (5.4)

vn
ij ≥ xn

ij − x
γ(n)
ij ∀i, j ∈ I, n ∈ N \ (Ω ∪ {1}) (5.5)

wn
ij ≤ x

γ(n)
ij ∀i, j ∈ I, n ∈ N \ (Ω ∪ {1}) (5.6)

wn
ij + xn

ij ≤ 1 ∀i, j ∈ I, n ∈ N \ (Ω ∪ {1}) (5.7)∑
i∈I

dn
i x

γ(n)
ij − ψn

j + φn
j ≤ (1 + α)µnx

γ(n)
jj ∀j ∈ I, n ∈ N \ {1} (5.8)

(1− α)µnx
γ(n)
jj ≤

∑
i∈I

dn
i x

γ(n)
ij − ψn

j + φn
j ∀j ∈ I, n ∈ N \ {1} (5.9)

xn
ij ∈ {0, 1} ∀i, j ∈ I, n ∈ N \ Ω (5.10)

vn
ij ∈ {0, 1} ∀i, j ∈ I, n ∈ N \ (Ω ∪ {1}) (5.11)

wn
ij ∈ {0, 1} ∀i, j ∈ I, n ∈ N \ (Ω ∪ {1}) (5.12)

ψn
j ≥ 0 ∀j ∈ I, n ∈ N \ {1} (5.13)

φn
j ≥ 0 ∀j ∈ I, n ∈ N \ {1} (5.14)

The objective function 5.1 represents the total expected cost (initial districting, plus terri-
tory redesign, shortages, and surplus).

Constraints 5.3 ensure that the required number of districts for each node is met. Con-
straints 5.5,5.6, and 5.7 ensure that both reassignments and removals are accurately ac-
counted for, allowing for the correct calculation of reassignment costs and savings in the
objective function. The constraints that are less straightforward are Constraints 5.8 and
5.9. Consider a node n ∈ N \ {1}. This means that in stage m(γ(n)) + 1 ≡ m(n), the
demand is observed as part of the realization leading to node n, i.e., dn

i , i ∈ I. The
shortage and surplus at the district represented by TU j are represented by ψn

j and φn
j ,

respectively. However, the shortage and surplus depend on the (re-)districting in stage

m(γ(n)) + 1 ≡ m(n), which is represented by variables x
γ(n)
ij . On the other hand, the refer-

ence value for this stage depends on the observed demand, which explains the use of value
µn in Constraints 5.8 and 5.9. This explanation is illustrated in Figure 5.3. Constraints
5.10–5.13 specify the variable domain constraints.

In the objective function, different cost factors are considered: penalty costs and (re-)
assignment costs/savings. Due to the non-negativity of parameters gn

j and hn
j , surplus and

shortages can be calculated as follows:

ψn
j = max{0,

∑
i∈I

dn
i x

γ(n)
ij − (1 + α)µnx

γ(n)
jj } j ∈ I, n ∈ N \ {1}

φn
j = max{0, (1− α)µnx

γ(n)
jj −

∑
i∈I

dn
i x

γ(n)
ij } j ∈ I, n ∈ N \ {1}

In practice, they account for the deviation from the upper and lower thresholds in the
balancing constraints. These quantities turn out to be crucial for the trade-off between
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Figure 5.3: Illustration of the building blocks for Constraints 5.8 and 5.9.

two different courses of action that the model is seeking throughout the planning horizon:
Reassignment of TUs and performing extra actions to compensate for shortages/surplus.
Hence, the problem has a bi-objective character, although it is not explicitly handled in a
multi-criteria setting.

5.3 Relax-and-Fix Heuristic

The mathematical model introduced for the MSSDP in the previous section becomes com-
putationally intractable as the number of scenarios in the scenario tree may grow exponen-
tially with the number of stages. Therefore, this section proposes a heuristic algorithm de-
signed to efficiently identify high-quality feasible solutions to the problem.

The procedure relies on resolving the problem by considering a restricted model in which
the set of representative TUs that can be selected in each node n ∈ N \ Ω of the scenario
tree is limited to a restricted set of candidates, say Cn. Recall that in the last stage, M ,
only reassignments, surplus, and shortages based on districting decisions made in stage
M − 1 are accounted for, which explains why no restricted sets are defined in stage M .
Thus, the restricted model, which is called (MSSDP-R), results from (MSSDP) with the
following additional constraints:∑

j∈Cn

xn
ij = 1, i ∈ I, n ∈ N \ Ω, (5.15)

xn
ij = 0, i ∈ I, j ∈ I \ Cn, n ∈ N \ Ω. (5.16)

Constraints 5.15 allow the assignment of TU i in node n only to a potential representative,
while Constraints 5.16 forbid assignments to non-potential representatives. Note that it is
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possible to avoid the introduction of variables xn
ij, i ∈ I, j ∈ I \ Cn, n ∈ N \ Ω although

they are kept for a clearer exposition.

The heuristic is formalized in Algorithm 1. Lines 1–8 seek to iteratively define the restricted
sets Cn, n ∈ N \ Ω. Initially, no restriction is imposed on the candidate sets Cn (line 1).
Thus, all sets coincide with I, and models (MSSDP) and (MSSDP-R) coincide (all the TUs
are initially regarded as potential representatives).

A loop starts in stage 1 and ends in stage M −1 to define all the restricted sets to consider
in each stage. In particular, in iteration m, the sets Cn for nodes n in stage m become
fixed. This is accomplished as follows. First, the linear relaxation of (MSSDP-R) is solved.
Note that, in the current iteration m, the restricted sets Cn for all stages before m have
been fixed, which is already reflected in (MSSDP-R) and thus in its linear relaxation, via
Constraints 5.15 and 5.16, that should be updated each time new restricted sets are found.
Now, the solution of the linear relaxation is examined, and the values of the self-assignment
variables xn

jj for n in stage m are retrieved. Those greater than zero provide a candidate
for being a TU representative. Accordingly, every set Cn in stage m is built from scratch
using only such TUs (lines 5–8). When the model (MSSDP-R) is solved next time, these
restricted sets are updated accordingly.

When the sets Cn are fully determined, the model (MSSDP-R) (that now has embedded all
the restricted sets) is solved. This is done in line 9 of Algorithm 1. The obtained solution is
the approximation proposed for the optimal solution of MSSDP.

Algorithm 1

1: Cn ← I, n ∈ N \ Ω // set of candidate representatives for each node
2: for m ∈ {1, ..,M − 1} do // for each stage, except the last one
3: Solve MSSDP-R. Denote the corresponding solution by x̄
4: for n ∈ Nm do // examine the solution
5: Cn ← ∅
6: for j ∈ I do
7: if x̄n

jj > 0 then
8: Cn ← Cn ∪ {j} // store TU j as a potential representative for node n

9: Solve MSSDP-R
10: return x⋆ // a feasible solution for MSSDP

Example 8 (Applying the Fix-and-Relax Heuristic for an Instance)
Consider revisiting the scenario tree depicted in Figure 5.2 (three stages, two time periods).
When fixing the restricted sets, the first iteration (m = 1) refers to the first stage. Here,
only node 1 requires analysis. From the solution of the linear relaxation of (MSSDP-R)
(Cn = I, n ∈ N \Ω), set C1 is identified. Then, the second iteration begins. At this point,
when solving the model (MSSDP-R), set C1 is fixed according to the first iteration, and
thus, the assignments in node 1 can only be made to potential representatives in set C1.
Since this is the second iteration (m = 2), the focus shifts to stage 2 and, consequently,
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to nodes 2 and 3. The solution to the linear relaxation of (MSSDP-R) is analyzed, and
sets C2 and C3 are determined. No further restricted sets need to be identified since the
penultimate stage has been reached. Therefore, the process exits the main loop and solves
the model (MSSDP-R) with sets C1, C2, and C3 fixed as described.

5.4 Quantifying Uncertainty: Stochastic Solutions and

Perfect Information

Evaluating a multi-stage stochastic model involves assessing the advantages of using it
over a simpler model. In two-stage stochastic programming, this is often assessed by the
value of the stochastic solution (Definition 23). This value can be extended to the multi-
stage case in different ways (Escudero et al., 2007; Ziegler, 2012). The underlying idea
is to compute an expected value solution and compare it with the multi-stage solution
(Saldanha-da-Gama and Wang (2024); Pomes et al. (2025).

Another important value for evaluating multi-period stochastic problems is the EV PI, as
explained in Definition 25. The subsequent subsection provides a detailed explanation of
the calculation of both values.

5.4.1 The Dynamic Value of the Stochastic Solution and the Expected

Value of Perfect Information

As described in Section 4.3.1, in stochastic programming, the V SS measures the advantages
of incorporating uncertainty into a stochastic problem. Similarly, the dynamic version of
the V SS should address uncertainty at each stage of a multi-stage problem, rather than
depending only on deterministic expected values.

To calculate the dynamic version of the V SS, we follow this process:

1. Compute the expected values for all random variables and determine the deterministic
solution.

2. Fix the first-stage decision.

3. For each node in the subsequent stage of the scenario tree, compute the conditional
expected values for all random variables in the subtree.

4. Solve the deterministic problem that is induced by each node.

5. Use these solutions to fix the decisions for the current stage.

6. Proceed to the next stage and repeat the process until the leaf nodes of the scenario
tree are reached.
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According to this procedure, a model of the EV problem, here EV n is solved in every node
of the scenario tree (Definition 22). We denote its optimal value by ZEV n . This is done
sequentially for stages 1, 2, . . . ,M −1. Every model EV n “aggregates” the costs from stage
m(n) to the end of the planning horizon.

Following Escudero et al. (2007), the expected result in stage m of using the dynamic
solution of the average scenario is defined and denoted as EDEVm (m = 1, . . . ,M−1). This
represents the expected value of the optimal results from the problems EV n, with n ∈ N ,
such that m(n) = m. In other words, EDEVm is defined as:

EDEVm =
∑

n∈Nm

πnZEV n , m = 1, . . . ,M − 1.

Definition 27 (Dynamic Value of the Stochastic Solution)
The Dynamic Value of the Stochastic Solution (DV SS) is defined as:

DV SS = EDEVM−1 − SP,

or

%DV SS = EDEVM−1 − SP
SP

· 100,

where SP is the optimal value of the multi-stage stochastic model.

The DV SS provides valuable insight into how well the expected value solution approxi-
mates the optimal solution of the multi-stage stochastic model. Another value to measure
the relevance of capturing uncertainty in the problem is the Expected Value of Perfect Infor-
mation (EV PI), which is already defined in Section 4.3.2.

The EV PI measures the maximum price a decision maker would be willing to pay for access
to complete information about future demand realization(s).

In contrast to Section 4.3.2, which deals with single-period stochastic problems, we need
to calculate the optimal values for each corresponding multi-period deterministic (single-
scenario) problem. We denote these values as Zω.

According to Definition 24, the value of theWS solution is then defined as:

WS =
∑
ω∈Ω

πωZω,

and, finally as in Definition 25:

EV PI = SP −WS,

or

%EV PI = SP −WS

WS
· 100.
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5.5 Computational Experiments

This section reports on the extensive computational experiments performed to validate the
proposed model for the MSSDP and the heuristic proposed for approximating its optimal
solution.

The results of the computational experiments are structured as follows:

• Section 5.5.1: Test Data and Implementation Details
This section describes the test data used in the computational experiments.

• Section 5.5.2: Performance Analysis: Model Evaluation and Solution Analysis
This section provides an overview of the extensive results obtained from the analysis.

– Section 5.5.2.1: In-Depth Analysis of Selected Instances
This part offers a detailed examination of the results for a specific instance and
extends the analysis further.

– Section 5.5.2.2: Cost Breakdown, Demand Variability, and the Role of Savings
This section presents additional insights, including:

(i) Cost Breakdown for Multiple Values of α
A breakdown of costs through analysis.

(ii) Varying Demand Scenarios
An assessment of different demand scenarios.

(iii) The Role of Savings
An analysis of parameter savings.

• Section 5.5.3: Performance Analysis: Heuristic Evaluation and Solution Analysis
This section provides results and an analysis of the effectiveness of the proposed
heuristic approach.

– Section 5.5.3.1: Solution Comparison: Exact Model and Heuristic
This part shows the comparison between the solutions derived from the model
and the results obtained from the proposed heuristic.

– Section 5.5.3.2: In-Depth Exploration of Larger-Sized Instances
This section presents additional results for larger-sized instances, focusing on
the number of TUs and stages.

(i) The Impact of the Number of TUs
Analyzes the impact of the number of TUs on both the solution quality and
runtime.

(ii) The Impact of the Number of Stages
Examines the impact of the number of stages on both the solution quality
and runtime.
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5.5.1 Test Data and Implementation Details

For the computational experiments, the set of instances from Diglio et al. (2021) is used as
a starting point. These instances use real geographical data corresponding to the province
of Novara in Italy. Specifically, there are 88 point-like basic TUs (|I| = 88), which are deter-
mined as the centroids of the municipalities in the province ( Figure 5.5).

To investigate the relevance of considering a multi-stage decision-making process under
uncertainty, the focus is on a small case with three stages, as depicted in Figure 5.4.
Hence, for illustrative purposes, four scenarios (|Ω| = 4) and seven nodes (|N | = 7) are
considered. The probabilities of reaching each node n ∈ N from the immediate predecessor
are the same for each node.

1

2

3

4

5

6

7

1
2

1
2

1
2

1
2

1
2

1
2

Stage 1 Stage 2 Stage 3

Figure 5.4: A scenario tree with three stages and probabilities of reaching each node start-
ing from its predecessor.

The following introduces a setting where the only stochastic parameter is represented by
demands. The corresponding data is obtained as follows. The demands in node 1 are gen-
erated assuming they are represented by random variables following a uniform distribution
with a fixed expected value equal to 50, and relative standard deviation (RSD) equal to
0.1 1. It is assumed that the demands in the lower branch of the scenario tree remain
unchanged. This means that for i ∈ I, d3

i = d6
i = d7

i = d1
i .

However, some variability is introduced in the upper branch of the scenario tree, specifically
in nodes 2, 4, and 5. For node 2, it is assumed that we have a 50% probability that TUs

1 For a random variable d, its RSD is given by the ratio between the square root of its variance (Var[d])
and its expected value (E[d]), namely:

√
Var[d]
E[d] . When considering such values, for a uniform distribution

in the range [a, b], it is possible to calculate a as E[d](1−
√

3 ·RSD), and b as E[d](1 +
√

3 ·RSD).
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will experience a 25% reduction in demand compared to that in node 1. To achieve this, a
random number λ2

i is generated following a Bernoulli distribution with a parameter of 0.50.
If the generated random number equals one, the demand in node 2 is computed as 75% of
the corresponding demand in node 1. Otherwise, the demand in node 2 will remain the same
as that in node 1. The same mechanism applies to nodes 4 and 5, with a 50% probability
of a 50% and 75% reduction in demand, respectively.

The generation process can replicate situations where demand originating from TUs may
undergo unexpected severe reductions or increases in the future. In summary, there
is:

dn
i =

(1− θn) · dγ(n)
i , if λn

i = 1,
d

γ(n)
i , if λn

i = 0.
i ∈ I, n ∈ {2, 4, 5}

with θ2 = 0.25, θ4 = 0.50, and θ5 = 0.75.

A certain procedure is followed to create ten instances, referred to as Instances 1. Ad-
ditionally, a second set of instances, called Instances 2, is created, in which the same
demand-generation procedure is applied only to the southern TUs. These TUs are 50%
of the centroids with the lowest y-coordinates. Doing so enforced a local trend in demand
variation. This approach is expected to make balancing constraints more challenging to
meet in the following stages, which may result in higher reassignment/penalty costs. In
Figure 5.5, the southern TUs are displayed as empty dots.

Concerning the other parameters underlying the given instances, they are set as fol-
lows:

• Assignment costs: cij = ℓij, i, j ∈ I, where ℓij is the Euclidean distance between TUs
i and j;

• The probabilities of the nodes n ∈ N \ {1} in the scenario tree are set equal to 1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
4 , and

1
4 for nodes 2 to 7, respectively.

• The reassignment costs are defined as rn
ij = ℓij, i, j ∈ I, n ∈ N \ {Ω ∪ {1}};

• The savings from removing a TU from a district are determined as sn
ij = ζ ·lij, i, j ∈ I,

n ∈ N \ (Ω∪ {1}), with ζ ∈ [0, 1]. Hence, the savings are defined as a fraction of the
assignment costs. ζ = 0 is set to zero, which means no savings are considered.

• Finally, for the penalty costs, the maximum distance between any pair of TUs is
considered as gn

j = hn
j = maxi,j∈I{ℓij}, j ∈ I, n ∈ N\{1}. In other words, it is set as

the maximum distance between any pair of TUs.
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Figure 5.5: Test instance – basic TUs corresponding to the centroids of the province of
Novara. Northern centroids are marked in blue, while southern centroids are
indicated with empty dots.

Remark 3
The settings discussed above lead to an interesting interpretation of the unit penalty costs.
To clarify, we focus on a specific TU, denoted as i. It is supposed that by reassigning
this TU in node n to a new district k, a surplus in the district it currently belongs to,
say j, can be avoided. The corresponding penalty and reassignment costs can be computed
respectively, as gj · dn

i , and ℓik · dn
i . Therefore, a reassignment is performed only if ℓik < gj.

The same logic can be applied to shortages. In practice, penalty costs can be interpreted
as the maximum distance within which reassignments are worth accepting. In this specific
case, a TU is reassigned as long as its distance from the new representative is less than the
maximum distance among the TUs. Otherwise, penalties are preferred. This observation
is in line with the already mentioned bi-objective character of the problem (Section 5.2).

Once the above parameters are fixed, various experiments are realized by varying the value
of the tolerance α ∈ {0.05, 0.10, 0.15, 0.20, 0.25}, and the number of districts p ∈ {4, 6}. In
total, 200 experiments are performed, resulting from five values of α, two values of p, and
ten different instances for both Instances 1 and Instances 2.

All experiments are performed with the computational environment described in Sec-
tion 1.3.

A time limit of three hours is set for the solution of the MSSDP. The procedures for calcu-
lating the DV SS and the EV PI are only run when the corresponding MSSDP is solved
up to proven optimality within the prescribed time limit. For both procedures, an overall
time limit of three hours – 10800 seconds – is considered.
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5.5.2 Performance Analysis: Model Evaluation and Solution Analysis

The following section discusses the results obtained by solving the model MSSDP for all the
instances generated as described in Section 5.5.1. The results are summarized in Table 5.2
and Table 5.1. For every instance, the presented information includes:

• The computational performance of the model, by showing: (i) the number of optimal
solutions – out of ten – obtained within the imposed time limit; (ii) the minimum,
maximum, and average optimality gap of the obtained solutions (the gap equals zero
when solutions are optimal); (iii) the minimum, maximum, and average computing
times. The table displays “t.l.” under the maximum computing time column if at
least one instance is not optimally solved within the time limit. Of course, if no
optimal solutions are obtained, “t.l.” would also occur for the minimum and average
cases.

• The importance of accounting for uncertainty in the problem can be evaluated using
the %EV PI, which represents the value of having perfect information – it measures
how much better the solution could be if all uncertainty were resolved. Meanwhile,
the %DV SS can be used to assess how closely the expected value solution approxi-
mates the optimal solution to the stochastic problem. These indicators are only cal-
culated when the corresponding model’s solutions are optimal. Accordingly, “N/A”
is displayed if none of the ten instances are solved to proven optimality.

Starting with a focus on Instances 1, it can be observed that the model can optimally
solve all the tested instances for p = 4 within acceptable computing times, averaging 117
seconds. In fact, the number of optimal solutions is the same for all considered values
of the tolerance α, equaling 10. It is also worth highlighting that computing times tend
to increase as α decreases. This result is not unexpected, as lower values of α tighten
the balancing constraints, thus making them harder to meet. This emphasizes the trade-
off between the (re-)assignments and penalty costs when seeking the optimal solution to
the problem. Interestingly, this finding is reflected by the distributions of the %DV SS
and %EV PI. In particular, as α increases, the %DV SS reduces to about 8% for α =
0.20 and α = 0.25. This suggests that as instances become relatively easier to solve,
deterministic problems with expected values can produce better approximate solutions to
the MSSDP. Nevertheless, the above values are not negligible. Furthermore, note that
the %DV SS equals 15.50% on average, with a peak of more than 30% for α = 0.10.
Therefore, it can be argued that explicitly considering uncertainty in the model is crucial.
The relevance of hedging against uncertainty is also supported by the obtained values for
the %EV PI.

A similar behavior is observed for p = 6. However, these instances proved harder to
solve, especially for α = 0.05. Indeed, under such settings, the model can not obtain
the optimal solutions for two instances, exhibiting an optimality gap equal to 1.71% in
the worst case. Recall that an increase in the value of p reduces the lower and upper
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thresholds used in the balancing constraints. This effect is amplified if it jointly occurs
with a decrease of α. Finally, no significant differences are found in terms of the %DV SS
and %EV PI.

The computational performance of the model drastically reduces when tackling Instances 2.
In particular, optimal solutions are not obtained for p = 6 and α = 0.05. Remarkably,
the corresponding average optimality gap is about 7% in this case. Also, the running
times increase significantly, being higher than 3000 and 5000 seconds for p = 4 and
p = 6, respectively. These results highlight that resorting to heuristic procedures is
necessary to reduce the computational effort required to obtain feasible (and, hopefully,
higher-quality) solutions to the problem, even for small-sized instances, as shown in Sec-
tion 5.5.3.

The key difference between Instances 1 and Instances 2 lies in the procedure for gener-
ating demand. In Instances 2, the same demand-generation process used for Instances 1
is applied exclusively to the southern TUs. This induces a local trend in demand vari-
ation, concentrating changes in the southern TUs. Therefore, the poorer performance
observed with Instances 2 can be attributed to this geographically localized shift in de-
mand.

Additionally, it is observed that the uncertainty considerations turn out to be more relevant
for these instances, as the higher values of %DV SS and %EV PI reveal, which suggests
that capturing uncertainty becomes more relevant when it only affects a subset of locally-
distributed TUs. More detailed results can be found in Appendix A, Table A1 – Table A4.
Moreover, a deeper look into these indicators is given in Section 5.5.2.1.

5.5.2.1 In-Depth Analysis of Selected Instances

This subsection provides information about two specific instances to illustrate the rele-
vance of capturing uncertainty in the problem, in addition to what is already shown in
Section 5.5.2.

Recall that the instances tested are of two types, namely Instances 1 and Instances 2,
which differ depending on whether the demand generation mechanism described in the pre-
vious section applies to all the TUs or only the southern ones. The instances analyzed are
those defined by p = 4 and α = 0.10: one from Instances 1, and one from Instances 2. They
are denoted by Instance a and Instance b, respectively.

First, the focus is on Instance a. Figure 5.6 depicts the maps of the first- and second-stage
solutions (i.e., nodes 1, 2, and 3). In the figure, the representatives of the four districts
are highlighted in yellow. As reallocation decisions only apply in stage 2, the districting
plans obtained for nodes 2 and 3 hold for their immediate successors (in this case, the
leaves of the scenario tree). Therefore, the corresponding third-stage solutions are not
shown.
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(a) First stage – node 1 (b) Second stage – node 2 (c) Second stage – node 3

Figure 5.6: Solutions for Instance a (Instances 1, p = 4, α = 0.10).

Firstly, it is observed that the model suggests a first-stage solution that remains unchanged
in node 3 (Figure 5.6a and Figure 5.6c). Nonetheless, some variations are observed in node
2 (Figure 5.6b). In particular, TUs 6 and 62 are reallocated, respectively, from the green
and dark blue districts to the cyan and green ones. Such behavior is consistent with the
characteristics of the instances. Indeed, demands do not vary across the lower branch of
the tree (Nodes 3, 6, and 7). Additionally, it indicates that the model aims for a relatively
“robust” first-stage solution that remains stable over time, adapting when necessary to
changing demands to fulfill balancing requirements.

The need for such reassignments can be explained as follows: if the first-stage solution
changes, it necessarily means that such a districting plan fails to be balanced in at least
one of the following nodes. To confirm this fact, the demand vector associated with each
node n ∈ {2, . . . , N} needs to be considered and checked whether the first-stage solution
is balanced for that demand occurrence. In this case, some violations of the balancing
requirements must be seen to justify the observed reallocations as a viable (and “cheaper”)
action to avoid or reduce penalty costs.

Table 5.3 shows the computation of demand associated with each first-stage district rep-
resented by TU j in node n as

∑
i∈I d

n
i x

1
ij, where x1

ij denotes the values of the first-
stage decision variables. Additionally, the table reports the total demand in each node
(i.e.,

∑
i∈I d

n
ij) and the corresponding lower and upper bounds in the balancing require-

ments (LB and UB, respectively, with LB = (1/p)(1 − α)∑i∈I d
n
ij and UB = (1/p)(1 +

α)∑i∈I d
n
ij). By using this information, districts violating these thresholds can be easily
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identified.

As highlighted in bold in the table, such a circumstance occurs in two cases, both in node
4: a surplus in district 2 and a shortage in district 38. Accordingly, it is suggested to
modify the first-stage solution in node 2 by:

(i) “unloading” district 2 through the removal of TU 62 and its reassignment to district
1;

(ii) “loading” district 38 with TU 6 (reassigned from district 1). Due to such moves,
balancing constraints are never violated in the first-stage solution. Therefore, no
penalty costs are paid.

District node 1 node 2 node 3 node 4 node 5 node 6 node 7

1 1106 982.5 1106 660.75 611.25 1106 1106

2 1195 1039.25 1195 792.25 684.69 1195 1195

35 1103 975.75 1103 780.25 563.63 1103 1103

38 993 907 993 634 637 993 993

Total demand 4397 3904.5 4397 2867.25 2496.56 4397 4397

LB 989.33 878.51 989.33 645.13 561.73 989.33 989.33

UB 1209.18 1073.74 1209.18 788.49 686.55 1209.18 1209.18

Table 5.3: Instance a (Instances 1, p = 4, α = 0.10): Analysis of the balance in the first-
stage solution.

Similar considerations can be drawn for Instance b, depicted in Figure 5.7. However, it
should be noted that five reassignments are performed in node 2: TU 14 from the dark
blue to the green district; TUs 23, 53, 59, and 87 from the green and orange districts
to the cyan one. This outcome reflects that demand variations only interest southern
TUs; hence, adjustments are needed to avoid penalty costs, especially in the cyan dis-
trict.

For the above solutions, the %DV SS and the %EV PI are also computed. The %DV SS
equals 41.76% and 55.11% for Instance a and Instance b, respectively. These values reveal
that a sequence of deterministic problems, obtained by replacing the uncertain demands
with their expectations, produces a poor approximation to the MSSDP.

Furthermore, this implies that the two approaches produce distinct solutions to the prob-
lem. Some differences can be observed between the first-stage solutions yielded by the
MSSDP and the EV problem rooted in node 1 (EV 1, see Section 5.4), as shown in Fig-
ure 5.8 and Figure 5.9. In particular, it is worth underlining that the latter is characterized
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(a) First stage – node 1 (b) Second stage – node 2 (c) Second stage – node 3

Figure 5.7: Solutions for Instance b (Instances 2, p = 4, α = 0.10).

by better compactness values (i.e., lower first-stage allocation costs). Nevertheless, it turns
out to be weak when employed as a first-stage solution to the stochastic problem. The
model’s behavior can be observed: paying more for the initial districting to obtain signifi-
cant savings in the expected reallocation/penalty costs.

The relevance of capturing uncertainty in these two particular instances is also shown by the
value of the %EV PI, which equals 0.94% for Instance a and 7.25% for Instance b. Both
the %DV SS and %EV PI are higher in the case of Instance b. As shown Section 5.5.2 –
Section 5.5.3, such a finding holds in more general terms for the whole set of Instances 2.
This is an interesting result emerging from the given analysis, as it proves that deterministic
approximations can be less effective and also that accessing perfect information about the
future becomes more relevant when uncertainty only affects a subset of locally distributed
TUs.

To better understand the above values of the %DV SS and %EV PI, the following Table 5.4
reports for both Instance a and Instance b: (i) the objective function (OF) and its three
components, i.e., (ii) the initial assignment costs (AssCosts), (iii) the reassignment costs
(ReassCosts), and (iv) the penalty costs (PenCosts) for both the MSSDP model, which has
its first-stage solution illustrated in Figure 5.8a, and the expected value approximation of
the solution, referred to as EDEVM−1, for which the first-stage solution is represented as
EV 1 in Figure 5.8b. Hence, the assignment costs in the table are, in fact, the assignment
costs associated with the above displayed solutions. The same values are also shown for
WS.
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(a) MSSDP (b) EV 1

Figure 5.8: Instance a (Instances 1, p = 4, α = 0.10) – First-stage solutions yielded by the
MSSDP and the Expected Value solution.

(a) MSSDP (b) EV 1

Figure 5.9: Instance b (Instances 2, p = 4, α = 0.10) – First-stage solutions yielded by the
MSSDP and the Expected Value solution.
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Instance OF AssCosts ReassCosts PenCosts

Instance a MSSDP 2.95 · 107 2.93 · 107 2.15 · 105 0.00

EDEVM−1 4.18 · 107 2.91 · 107 1.10 · 107 1.66 · 106

WS 2.92 · 107 2.92 · 107 0.00 0.00

Instance b MSSDP 3.35 · 107 3.19 · 107 1.60 · 106 0.00

EDEVM−1 5.19 · 107 3.11 · 107 1.89 · 107 2.01 · 106

WS 3.12 · 107 3.12 · 107 5.78 · 104 0.00

Table 5.4: Cost breakdown for Instance a and Instance b.

As the table reports, the reassignment costs in the EDEVM−1 are much higher than in
the MSSDP. Also, penalty costs are paid for the EDEVM−1. This explains the difference
between the overall objective function values and, hence, the high %DV SS. When looking
at the WS solution, neither reassignment nor penalty costs are identified. Additionally,
the initial assignment costs are slightly lower than the MSSDP, which explains the low
value found for the %EV PI.

The following Section 5.5.2.2 offers additional insights and results from the MSSDP solu-
tion, including a breakdown of costs, scenarios with increased demand, and an examination
of how savings influence the outcomes.

5.5.2.2 Cost Breakdown, Demand Variability, and the Role of Savings

This section explores three further aspects of relevance to the problem:

(i) a cost breakdown analysis, to assess the values of the %DV SS and %EV PI discussed
above for multiple values of α

(ii) the effect of considering both scenarios with decreasing and increasing demand

(iii) the effect of savings.

(i) Cost Breakdown for Multiple Values of α

Hereafter, a cost breakdown analysis of the obtained solutions is presented to explain
the values of the %DV SS and %EV PI that emerged from the performed experiments.
To this end, a subset of solutions is considered – specifically, those obtained for In-
stances 1, p = 4, and α = 0.10, 0.15, 0.20 (i.e., rows 2, 3, and 4, respectively, in Ta-
ble 5.1).
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For these 30 solutions, Table 5.5 reports: (i) the objective function (OF) and its three
components, i.e., (ii) the initial assignment costs (AssCosts), (iii) the reassignment costs
(ReassCosts), and (iv) the penalty costs (PenCosts) for the MSSDP, its expected value
approximation, i.e., the EDEVM−1, and the wait-and-see (WS) solution. For brevity, the
above indicators are expressed as the average of the ten solutions obtained for each value
of α.

α OF AssCosts ReassCosts PenCosts

0.10 MSSDP 2.93 · 107 2.92 · 107 1.10 · 105 4.60 · 104

EDEVM−1 3.83 · 107 2.90 · 107 8.29 · 106 9.15 · 105

WS 2.91 · 107 2.91 · 107 0.00 4.66 · 103

0.15 MSSDP 2.88 · 107 2.86 · 107 8.51 · 104 5.39 · 104

EDEVM−1 3.44 · 107 2.84 · 107 4.87 · 106 1.12 · 106

WS 2.85 · 107 2.85 · 107 3.93 · 103 3.14 · 103

0.20 MSSDP 2.82 · 107 2.80 · 107 1.64 · 105 2.40 · 104

EDEVM−1 3.05 · 107 2.79 · 107 1.78 · 106 8.42 · 105

WS 2.79 · 107 2.79 · 107 5.45 · 103 1.27 · 104

Table 5.5: Cost breakdown for a subset of obtained optimal solutions (88-TUs, p = 4,
Instances 1 ).

The comparison between the MSSDP and EDEVM−1 explains the high observed %DV SS.
As the table shows, the objective function of the EDEVM−1 is higher than the MSSDP
regardless of the value of α. Indeed, approximating the stochastic program by its expected
value leads to a more compact first-stage solution (i.e., the Expected Value solution rooted
in node 1, i.e., the EV 1). The latter, in fact, has lower initial assignment costs than the
first-stage solution of the MSSDP (see the “AssCosts”-column). However, this turns out to
be ineffective when hedging against uncertainty, leading to more expensive reassignments
and penalties for unmet balancing.

The comparison between the WS and MSSDP reveals that, regardless of α, accessing per-
fect information about uncertainty can foster the identification of more compact first-stage
solutions (the initial assignment costs –“AssCosts”– are lower than theWS). Also, it helps
hedge against uncertainty more effectively, as the lower reassignment costs and penalties re-
veal. However, the differences are somewhat limited when one looks at the values involved,
which clarifies the low observed %EV PI values.
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(ii) Varying Demand Scenarios

So far, instances with decreasing demand scenarios have been considered. In this section,
additional tests are performed where changes in the demand can occur also in the lower
branch of the tree, i.e., in nodes 3, 6, and 7. Specifically, it is assumed that demands can
increase following the procedure for their generation described in Section 5.5.1 (and using
the same values of θ therein defined). In practice, demands in node 3 can increase by 25%
compared to node 1, while in nodes 6 and 7 they can increase by 50% and 75% w.r.t. node
3, respectively. These increases are represented by the random variable λi, which takes
the value 1 with probability 0.5 and 0 with probability 0.5. Mathematically, the following
holds:

dn
i =


(1− θn) · dγ(n)

i , n ∈ {2, 4, 5}, if λn
i = 1,

(1 + θn) · dγ(n)
i , n ∈ {3, 6, 7}, if λn

i = 1,
d

γ(n)
i , n ∈ N \ {1}, if λn

i = 0.

with θ2 = θ3 = 0.25, θ4 = θ6 = 0.50, and θ5 = θ7 = 0.75.

We test the 88-TUs of the type of Instances 1 are considered and solved for p = 4 and α ∈
{0.10, 0.15, 0.20}, thus resulting in 30 new experiments (10 instances for each combination
of p and α). Table 5.6 summarizes the main findings, by showing, for each value of α the
average (i) %DV SS, (ii) % EV PI, and (iii) CPU Time (in sec.). Specifically, results are
given for both cases, i.e., without and with increasing demands (denoted by “w/o” and
“w”, respectively). Note that results for the “with”-cases are the same as in Table 5.1 and
Table 5.2.

%DV SS %EV PI CPU Times

α w/o w w/o w w/o w

0.10 30.45 31.85 0.87 1.05 59 154

0.15 19.57 33.18 1.15 1.13 101 82

0.20 8.25 18.03 0.95 1.28 19 95

Table 5.6: Results for the 88-TUs instances without (w/o) and with (w) increasing demand
scenarios.

The table reveals several key findings. Firstly, the values of %DVSS are consistently higher
for the instances including increasing demand scenarios. This indicates that determinis-
tic approximations are less accurate when considering mixed-demand scenarios. Secondly,



94 Chapter 5 Multi-Period Stochastic Districting

slightly higher values of the %EVPI are observed, meaning that accessing perfect informa-
tion has higher relevance in such a setting. Thirdly, the instances appear to be relatively
more challenging to solve — except for α = 0.15 — as the corresponding running times
underscore. Overall, these initial findings suggest that this line of investigation holds
promise. However, further and more extensive analysis is needed to confirm their general-
izability.

(iii) The Role of Savings

This section aims to demonstrate how savings can influence the solutions generated by the
proposed model. To achieve this, additional computational experiments are conducted.
For illustrative purposes, we consider a specific instance selected from the ten generated
for Instances 2 and test it with parameters p = 4 and α = 0.25, by varying the savings
sn

ij. Recall that savings obtained by removing a TU from a district are defined as follows:
sn

ij = ζ · lij, i, j ∈ I, n ∈ N \ (Ω∪ {1}), with ζ ∈ [0, 1]. Hence, the savings are a fraction of
the assignment costs. In these new experiments, ζ varied from 0 (no savings considered)
to 1 (where the savings equal the initial assignment cost) with a rate of 0.2. The obtained
results are summarized in Table 5.7, which reports, for each tested value of ζ: (i) the
objective function (OF) and its three components, i.e., (ii) the initial assignment costs
(AssCosts), (iii) the reassignment costs (ReassCosts, net of the savings), (iv) the penalty
costs (PenCosts), and (v) the CPU Times needed to solve these instances up to optimality
(in seconds).

ζ OF AssCosts ReassCosts PenCosts CPU Time

0 3.16 · 107 3.00 · 107 1.57 · 106 3.01 · 104 588

0.2 3.15 · 107 3.00 · 107 1.45 · 106 3.01 · 104 3105

0.4 3.14 · 107 3.00 · 107 1.34 · 106 3.01 · 104 4677

0.6 3.13 · 107 3.00 · 107 1.22 · 106 3.01 · 104 21 941

0.8 3.05 · 107 2.88 · 107 1.74 · 106 0.00 17 289

1 2.81 · 107 9.83 · 107 −7.02 · 107 0.00 5272

Table 5.7: Assessing the impact of savings (88-TUs instances, p = 4, α = 0.25, In-
stances 2 ).

As the table shows, the model produces the same optimal solutions for ζ values up to
0.6. Indeed, the initial assignment costs and the penalty costs are the same, while the
reassignment costs are obviously different because of the different savings being consid-
ered.
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When looking at the solution obtained for ζ = 0.8, it can be observed that the first-
stage solution has lower initial assignment costs but higher reassignment costs. However,
such reassignments allow the model to identify a fully balanced solution, i.e., with penalty
costs equal to 0. This fact underscores the impact of savings. Indeed, if they are in play,
the model can seek more compact first-stage solutions and has an incentive for numerous
(cheaper) reassignments in the second stage. In turn, these reassignments can help avoid
penalty costs.

For lower values of ζ, instead, penalty costs have to be paid. Indeed, to avoid them
and maintain balance, numerous (highly expensive) reassignments would be needed. This
explains why, to reduce reassignments and penalties, a less compact first-stage solution
is observed. It is worth noticing that these findings further underline the inherent multi-
objective character of the model.

For ζ = 1, the initial assignment costs are high, suggesting a poorly compact first-stage
solution. However, the value of reassignment costs is negative, indicating that the savings
outweigh the reassignment costs. This means that numerous and less expensive reassign-
ments are made to evolve the initial solution into a more compact and fully balanced
districting plan (penalty costs are again zero).

Finally, it is observed that the impact of savings is significant, with computational times
at least five times greater than in the case whith ζ = 0.

5.5.3 Performance Analysis: Heuristic Evaluation and Solution Analysis

This step of analysis consists of assessing the performance of the heuristic introduced in
Section 5.3. To this end, Algorithm 1 is applied to the whole set of generated instances
and benchmarked its results against those obtained from the implementation of the model
(MSSDP).

5.5.3.1 Solution Comparison: Exact Model and Heuristic

A brief comparative assessment is reported in Table 5.8, which displays, for each instance:
(i) the minimum, maximum, and average gap between the objective function values (∆OF );
(ii) the number of optimal solutions yielded by the model (“Model”) and the heuristic
(“Heur”); (iii) the minimum, maximum, and average computing times required by the
model and the heuristic. Note that the above-mentioned gap is computed as ∆OF = 100 ·
(ZHeur−ZModel)(ZModel), with ZModel and ZHeur denoting the objective function values for
the solutions obtained by the model and heuristic, respectively. Thus, a negative deviation
indicates cases in which the heuristic solution outperforms the best feasible solution found
by the model. Clearly, such a circumstance may occur only when the model does not
achieve an optimal solution within the imposed time limit.
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As the table shows, the heuristic produces good solutions, particularly for Instances 1 and
p = 4, where it achieves the optimal solution in 42 out of 50 cases. In the remaining ones,
the corresponding gaps are small, being equal – at most – to 0.83% (for α = 0.05) and 0.03%
on average. The number of optimal solutions achieved by the heuristic increases to 46 for
p = 6. Again, the few non-zero gaps between the objective function values are limited and
equal to 0.36% in the worst case, i.e., for α = 0.10. These results highlight an interesting
outcome. Specifically, if the focus is on α = 0.05, it can be found that the minimum and
maximum gaps equal −0.12% and 0%, respectively. Therefore, it can be concluded that the
heuristic either attains the optimal solution to the problem or outperforms the model when
its solution reaches the time limit prescribed by producing higher-quality solutions. These
(near-)optimal solutions are obtained at an acceptable computational effort. It should be
observed that while computing times are comparable for higher values of α, savings become
significant as α decreases. On average, it is noticed that the heuristic runs for 28 and 61
seconds for p = 4 and p = 6, respectively. In particular, in the latter case, it is worth
underlining that the algorithm produces almost the same number of optimal solutions by
lowering the computing times from 977 to 61 seconds.

These findings are confirmed when focusing on the more challenging Instances 2. The
number of optimal solutions reached by the heuristic reduces (19 out of 31). However,
the gaps are relatively small and equal to 0.85% in the worst case (p = 6, α = 0.15). It
must be highlighted that the heuristic can produce significantly better solutions whenever
the model fails to achieve the optimal solutions to the problem within the imposed time
limit. In fact, the average gap equals −1.66% for p = 6, α = 0.05, with an improvement
of 3.55% in the best case. Although increased w.r.t. to the first set of instances, running
times remain acceptable and, above all, they are one order of magnitude lower than the
corresponding solution times of the model (on average, 111 vs. 3199 seconds for p = 4; 478
vs. 5307 seconds for p = 6). More detailed results are given in Appendix A, Table A1 –
Table A4. Overall, these findings validate the proposed heuristic and classify it as effective
for the investigated problem.

5.5.3.2 In-Depth Exploration of Larger-Sized Instances

The last step of the empirical analysis consists of additional computational tests to assess
the capability of the model and the heuristic to solve larger-sized instances for the inves-
tigated problem in terms of (i) an increased number of TUs and (ii) a higher number of
stages (and scenarios).

(i) The Impact of the Number of TUs

For these computations, the 120-TUs instances (i.e., |I| = 120) used by Diglio et al. (2020)
are considered, and the same experimental setting as above is replicated. Thus, 200 addi-
tional experiments are performed, summarized in Table 5.9. For the sake of brevity, only the
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∆OF # Optimal Computing time (sec.)

(%) (out of 10) Model Heur

Instance p α Min Max Avg Model Heur Min Max Avg Min Max Avg

Instances 1 4 0.05 0 0.83 0.08 10 9 26 3101 390 26 40 30

0.1 0 0.21 0.03 10 8 19 165 59 27 28 28

0.15 0 0.22 0.06 10 5 23 386 101 27 31 28

0.2 0 0 0 10 10 13 29 19 26 27 27

0.25 0 0 0 10 10 12 21 14 25 27 26

Total 0 0.83 0.03 50 42 12 3101 117 25 40 28

6 0.05 -0.12 0 -0.02 8 8 162 t.l. 4738 29 754 192

0.1 0 0.36 0.04 10 9 13 296 88 26 39 30

0.15 0 0 0 10 10 14 70 29 26 42 30

0.2 0 0.02 0 10 9 11 27 16 26 30 27

0.25 0 0 0 10 10 10 21 14 25 28 26

Total -0.12 0.36 0 48 46 10 t.l. 977 25 754 61

∆OF # Optimal Computing time (sec.)

(%) (out of 10) Model Heur

Instance p α Min Max Avg Model Heur Min Max Avg Min Max Avg

Instances 2 4 0.05 -0.1 0.6 0.26 2 2 1307 t.l. 9775 56 1388 396

0.1 -0.14 0.59 0.14 8 4 246 t.l. 3928 31 147 64

0.15 0 0.36 0.07 10 8 45 8362 1525 29 58 36

0.2 0 0.31 0.05 10 7 37 1594 468 27 35 31

0.25 0 0.67 0.19 10 5 71 588 297 27 44 30

Total -0.14 0.67 0.14 40 26 37 t.l. 3199 27 1388 111

6 0.05 -3.55 0.1 -1.66 0 0 t.l. t.l. t.l. 1019 3502 1588

0.1 -0.26 0.32 -0.03 1 1 8417 t.l. 10567 67 1693 657

0.15 0 0.85 0.14 10 5 140 10385 3640 36 161 84

0.2 0 0.31 0.03 10 8 29 453 126 29 37 32

0.25 0 0.18 0.06 10 5 17 238 48 27 32 29

Total -3.55 0.85 -0.29 31 19 17 t.l. 5037 27 3502 478

Table 5.8: Assessing the performance of the proposed heuristic.
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average values of some relevant indicators are reported in the latter, while a more extensive
overview is provided in Appendix A, Table A5 – Table A8.

Three main elements seem to emerge from these extended experiments. First, capturing
uncertainty in the problem remains crucial. In particular, the average values of %DV SS are
often higher than those obtained for the 88-TUs instances (Table 5.1 and Table 5.2), thus
revealing that the size of the problem seems to affect this aspect. Second, and as expected,
the latter has a clear effect on the computational performance of the model. Indeed,
although most of the tested instances are optimally solved within the imposed time limit,
the average running times are significantly increased w.r.t. to the former tests. Finally,
the heuristic confirms its effectiveness, being capable of attaining (near-)optimal or even
improved solutions at an acceptable computational effort.

(ii) The Impact of the Number of Stages

For these experiments, the 88-TUs instances are considered. To this end, demands are
generated by using the method described in Section 5.5.1. Recall that the following values
of θ are assumed for three stages: 0.25 for node 2, 0.5 for node 4, and 0.75 for node 5.
Recall also that, for a given node n, θn expresses the percentage by which the demand for
a generic TU i may reduce w.r.t. to its predecessor.

The scenario tree shown in Figure 5.2 is used as a reference and extended to include four
(Figure 5.10) and five stages (Figure 5.11), resulting in eight and 16 scenarios, respec-
tively.

In the case of four stages, nodes 8 and 9 would be successors of node 4, with associated
values of θ = 0.5 and θ = 0.75. The same applied to nodes 10 and 11, successors of
node 5. No variations in the demand occurred for nodes 3, 6, 7, and their successors.
The same reasoning is assumed for a five-stage scenario tree. It is worth underlining that
in this generation process, no differentiation is made between the northern and southern
TUs, which means that demand changes can apply to all the TUs (as for Instances 1 ).
Finally, the equiprobability of the scenarios is still assumed, i.e., with each scenario having
a probability equal to 1

|Ω| to occur.

The initial focus is on four stages. Various tests are performed by setting p = 4 and varying
α ∈ {0.10, 0.15, 0.20}. Again, for each combination of p and α, ten instances are generated
by varying the demands. This resulted in 30 additional experiments, whose results are
summarized in Table 5.10.

It is important to underline that no time limit is imposed for these runs. Hence, all the
tested instances are solved up to proven optimality, and the corresponding %DV SS and
%EV PI are calculated. Interestingly, it can be observed that both indicators are higher
(even significantly) when compared to those reported in Table 5.1 and Table 5.2. This
indicates that capturing uncertainty becomes more and more relevant as the number of
stages (and scenarios) increases in the investigated problem.



5.5 Computational Experiments 99

Avg Avg # Optimal (out of 10) Avg ∆OF Avg Computing Times (sec.)

Instance p α %DV SS %EV PI Model Heur (%) Model Heur

Instances 1 4 0.05 42.43 1.17 10 9 0.02 738 91

0.1 12.1 1.26 10 9 0.01 1030 59

0.15 33.9 1.23 10 9 0.01 224 58

0.2 23.05 1.24 10 10 0 325 57

0.25 27.04 1 10 10 0 125 54

Total 27.7 1.18 50 47 0.01 488 64

6 0.05 30.23 2.14 8 7 0.03 5531 228

0.1 15.61 1.11 10 7 0.02 373 58

0.15 19.04 0.54 10 10 0 63 55

0.2 17.2 0.34 10 10 0 39 54

0.25 14.72 0.3 10 10 0 29 53

Total 19.36 0.88 48 44 0.01 1207 89

Avg Avg # Optimal (out of 10) Avg ∆OF Avg Computing Times (sec.)

Instance p α %DV SS %EV PI Model Heur (%) Model Heur

Instances 2 4 0.05 N/A N/A 0 0 -0.33 t.l. 4011

0.1 67.62 4.33 6 3 0.07 6468 669

0.15 58.4 3.96 10 1 0.17 1232 114

0.2 56.07 4.12 10 8 0.05 2035 186

0.25 49.77 3.63 10 9 0 1247 77

Total 57.96 4.01 36 21 -0.01 4358 1012

6 0.05 N/A N/A 0 0 -0.56 t.l. 2748

0.1 26.01 3.25 1 1 -0.07 9747 355

0.15 41.67 2.38 10 9 0.01 1856 66

0.2 35.65 1.33 10 9 0 88 56

0.25 44.4 0.72 10 10 0 42 54

Total 36.93 1.92 31 29 -0.12 4509 656

Table 5.9: Results for the 120-TUs instances.
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Stage 1 Stage 2 Stage 3 Stage 4

1
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15

14
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8

Figure 5.10: A multi-stage scenario tree – four stages in the planning horizon and eight
scenarios.

Avg Avg # Optimal (out of 10) Avg ∆OF Avg Computing Times (sec.)

α %DV SS %EV PI Model Heur (%) Model Heur

0.10 34.34 2.01 10 9 0.02 13735 231

0.15 27.15 2.06 10 9 0.00 10690 167

0.20 18.97 1.93 10 8 0.03 8484 136

Total 26.82 2.00 30 27 0.02 10970 178

Table 5.10: Results for the 88-TUs instances with four stages.
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
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Figure 5.11: A multi-stage scenario tree – five stages in the planning horizon and 16 sce-
narios.
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Moreover, it can be noticed that the heuristic still classifies as effective, being able to
achieve 27 optimal solutions out of 30, with negligible optimality gaps in the remanding
cases (on average equal to 0.02% – see the “Avg ∆OF”-column). Finally, the computing
times remain reasonable, with the output of the algorithm converging on average in 178
seconds (231 seconds in the worst case, for α = 0.10), that is, about 60 times faster than
the solver. Further details on the performed experiments can be found in Appendix A,
Table A9.

Ten additional experiments are performed for five stages, corresponding to ten different
demand generations for the 88-TUs instances, with p = 4 and α = 0.20. In this case, a
time limit of 3 hours is again imposed. The detailed results for these runs are reported
in Appendix A, Table A10, and some summary statistics are reported in Table 5.11. In
the latter table, the following indicators are also displayed in addition to already presented
information for previous tests:

• The average optimality gap – across the ten experiments – of the solutions obtained
by CPLEX (Avg GAPopt);

• The average relative gap – across the ten experiments – between the objective func-
tion of the solutions yielded by the heuristic and the lower bound provided by CPLEX
(Avg GAPHLB). It is measured as GAPHLB = ZH−ZLB

ZLB
, with ZH and ZLB denoting

the objective function values of the heuristic solution and the lower bound, respec-
tively.

# Optimal (out of 10) Avg ∆OF Avg GAPopt Avg GAPHLB Avg Computing Times (sec.)

Model Heur (%) (%) (%) Model Heur

2 0 -4.76 5.58 0.89 10185 2803

Table 5.11: Results for the 88-TUs instances with five stages.

As the table shows, the solver attains only two optimal solutions within the given time
limit, with an average running time of more than 10000 seconds. The optimality gap
reported by CPLEX is not negligible for the remaining cases, averaging 5.58% (as shown
in the “Avg GAPopt”-column) and reaching 22.87% in the worst case (Table 5.11). In
contrast, the heuristic runs approximately four times faster, in just over 2800 seconds.
More importantly, it outperforms the solver significantly in terms of solution quality. The
proposed algorithm improves the best integer solution returned by the solver by an average
of about 4.76% (as shown in the “Avg ∆OF”-column). Remarkably, the relative gap of the
heuristic from the lower bound provided by CPLEX is limited and equal to 0.89% on
average (see the “Avg GAPHLB”-column).

The results once again confirm the effectiveness of the heuristic, demonstrating that it can
represent a valuable tool for solving medium-sized instances involving up to five stages and
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16 scenarios. However, results for six stages, which are not presented for brevity, show
that the running times of the heuristic increase significantly. This indicates the need for
more refined solution methods to handle instances involving higher-cardinality scenario
sets.

5.6 Conclusion

In this chapter, the two aspects of multi-period and uncertainty from Chapter 3 and Chap-
ter 4 are combined and developed into a new model for multi-period stochastic districting
problems.

The proposed multi-stage stochastic programming approach modeled uncertainty using a fi-
nite set of scenarios, represented as a scenario tree. At the root node of the scenario tree (the
start of the planning horizon), an initial districting plan is created.

Given the time-dependent and uncertain nature of demands, districts can be adjusted
at each stage by reassigning some TUs to maintain balance. Additionally, the model
incorporated special actions to address shortages or surpluses in each district at every
node.

The objective of the proposed model is to minimize a cost function composed of three
components: i) initial districting costs – costs associated with creating the initial districting
plan, ii) reassignment costs – costs incurred from reassigning TUs during subsequent stages,
iii) penalty costs – costs for shortage and surplus.

A heuristic algorithm is developed to find approximate solutions to this complex problem
efficiently. The heuristic solves a restricted version of the model, focusing on a subset of
candidate district representatives. These candidates are identified using insights gained
from the linear relaxation of the problem, which helps guide the search for optimal or
near-optimal solutions.

Extensive computational tests conducted with generated instances based on the literature
and on real geographical data demonstrate the models’ ability to tackle computational
challenges and, most importantly, highlight the relevance of capturing uncertainty in the
problem being examined. To this end, appropriate measures such as the DV SS and the
EV PI are computed. Besides, the proposed heuristic proved effective, producing near-
optimal solutions with reduced computational effort.





Chapter 6

Districting for Home Health Care:
Case Studies

In this chapter, we analyze various case studies on districting in Home Health Care (HHC).
The models developed in this thesis are tested using this realistic case. By dividing a geo-
graphical area into smaller districts based on demographic characteristics, HHC providers
can serve a particular district more efficiently. This helps to optimize the use of resources,
such as health aides and equipment, while reducing travel time and costs. Districting also
allows health aides to become more familiar with their communities, enabling them to
understand their patients’ unique healthcare needs better. By tailoring their care to the
specific needs of patients, healthcare providers can significantly improve the quality of care
and efficiency. Moreover, districting helps improve communication between health aides
and patients.

Overall, districting can play a critical role in HHC by improving the quality of care while
reducing costs. Healthcare organizations can carefully design and implement districting
strategies to ensure that patients receive the best possible care in the comfort of their own
homes.

The importance of districting increases significantly when we consider uncertain demand,
which is frequently a factor in HHC. Many people may not be aware that they will need
assistance until a crisis arises. This uncertainty complicates the planning and assignment
of health aides within the planning area.

Moreover, the need for assistance is not static, it can fluctuate over time. New patients
may require care, while existing patients might no longer need health services as their



106 Chapter 6 Districting for Home Health Care: Case Studies

conditions improve or change. This dynamic nature of demand underscores the necessity for
flexible and responsive districting strategies that can accommodate these shifts in patient
needs.

Key roles in HHC, such as HHC providers, patients, and health aides, can be interpreted
in the context of districting and applied as follows:

HHC Provider The HHC Provider refers to an individual or organization interested in
creating a balanced and efficient districting plan. The HHC provider divides his
health aides into different districts and serves as the decision-maker.

Patient In the context of HHC, each TU is associated with a specific number of patients
who require service. This patient count is used as the activity measure (Definition 2)
for the respective TU.

Health Aide Health aides are individuals who represent a district. Each health aide is
responsible for a specific district and provides assistance to all patients within that
district. The number of health aides corresponds to the districts that the HHC
provider must assign their patients to.

In this chapter, we examine the significance of districting in HHC and its impact on both
patients and health aides under different conditions.

• In Section 6.1, we use the extended model (EDP) introduced in Section 2.2 to examine
fundamental districting aspects. Specifically, we analyze how varying the number of
districts, denoted as p, influences both the geographical shape of these districts and
the costs incurred by the HHC provider as p increases. Additionally, we conduct a cost
analysis to clarify how much total cost can be reduced by increasing the value of α.
This analysis investigates the relation between compactness and balance, specifically
assessing the selected centers within the city area of Karlsruhe and analyzing the
resulting districts for various values of α.

• In Section 6.2, we analyze a specific multi-period instance for the HHC provider in
Karlsruhe and solve it with the MPDP, focusing on the geographical shapes of the
resulting districts over two different periods. Furthermore, we calculate the VMPS
to determine whether it is beneficial for the HHC provider to implement the model
from Section 3.2.

• In Section 6.3, we analyze a stochastic setting for the HHC provider, calculating the
EV PI and the V SS to evaluate the SDP model presented in Section 4.2. Addi-
tionally, we examine the emerging centers based on 100 randomly selected instances,
investigating the variation among these centers and analyzing the similarity of the
resulting groupings of TUs.

• In Section 6.4, we consider a multi-period stochastic case for the HHC provider. To
assess whether using the MSSDP model from Section 5.2 is worthwhile, we calculate
the DV SS and EV PI as outlined in that section.
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• In Section 6.5, the results of the previous sections are summarized and provide guid-
ance to the HHC provider on how to proceed with its planning.

The TUs used in the following sections are located in the Karlsruhe region of Germany
and are depicted in Figure 6.1. The city of Karlsruhe spans approximately from latitude
48.99◦N to 49.03◦N and longitude 8.36◦E to 8.44◦E. Initially, it is assumed that there is
one patient in each TU. This assumption is extended in the multi-period and stochastic
case. The city area of Karlsruhe is divided into districts to ensure that all TUs are clearly
assigned to a health aide.

Figure 6.1: Map of Karlsruhe highlighting the marked TUs for the case study on districting
within HHC for different settings of uncertainty, with both single-period and
multi-period models. Created with www.openstreetmap.org.

6.1 Case Study: Single-period Deterministic Case

In this section, we examine a deterministic setting for an HHC provider to divide its pa-
tients, the TUs in the center of Karlsruhe depicted in Figure 6.1, into smaller districts for
their health aides. There are 80 TUs, each representing a single household that requires
service from a health aide. The required number of health aides for each TU is assumed to
be one. The aim is to assign the patients to districts such that each health aide has a similar
number of patients, while the districts are as compact as possible. The model EDP de-
scribed in Section 2.2 and the following parameters are used.

The parameters and data described above, including the 80 TUs with demands di and
the distance matrix cij based on Euclidean distances, are used consistently throughout the
analyses. The parameter µ is computed from the total demand and the number of districts
p, while α and p vary depending on the specific study.

www.openstreetmap.org
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Parameter Description Value/Formula

I Set of TUs {1,. . . ,80}

di Demand for all TUs i ∈ I [1,. . . ,1]

cij Euclidean distances between all TUs i, j ∈ I

µ Average demand for each district

∑
i∈I

di

p

α Allowed deviation from µ for each district

p Number of districts

We analyze the following:

• In Section 6.1.1, we conduct a comprehensive analysis of the resulting districts by
systematically varying the number of districts p. This examination not only inves-
tigates the geometric configurations of the districts but also assesses the resulting
changes in the objective function values, which include assignment costs and penalty
costs.

• The influence on the objective value for varying values of α is analyzed and discussed
in Section 6.1.2. By systematically varying α, we examine the sensitivity of the
objective values against more tolerant restrictions and less balanced solutions.

• An analysis of the resulting centers in the Karlsruhe region for different values of α is
conducted in Section 6.1.3. We also examine whether varying the value of α affects
only the centers of the emerging districts or if it also alters the groups themselves.

6.1.1 Comparative Analysis of Varying the Number of Districts

This subsection focuses on how district sizes vary as the number of districts increases. The
first step examines the district shapes, and the second evaluates cost changes.

In Figure 6.2, the solution for four different numbers of districts is illustrated. Two districts
are shown in Figure 6.2a, four districts are generated in Figure 6.2b, eight districts are
shown in Figure 6.2c, and 16 districts in Figure 6.2d. The value of α = 0.001 indicates
that every imbalance is penalized. With 80 TUs, it is possible to perfectly balance the
districts for p = 2, 4, 8, 16, with |TU | = 40, 20, 10, 5 in each district. We can observe that
doubling the number of districts does not result in halving the geographical size of each
district.

In the next step, we analyze the influence of different numbers of districts p on the objective
value.
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(a) 2 districts (b) 4 districts

(c) 8 districts (d) 16 districts

Figure 6.2: Comparison of district shapes for different numbers of districts p, in a single-
period deterministic model for districting in HHC.
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The main observation here is that no penalty costs arise if the patients can be perfectly
balanced (80

p
∈ N). For every number of districts, the number of patients in all districts does

not differ by more than one patient, which is the best-balanced outcome. For instance, if 80
patients have to be divided into three districts, the distribution is 27 : 27 : 26. This implies
that the penalty factors g and h are set high enough to ensure that the solution remains as
balanced as possible. If the values are set too low, it may disrupt the balance of the solution.
In these instances, a more compact solution is preferable.

In Figure 6.3, it can be seen that the objective value does not consistently decrease as the
number of districts increases. This effect is due to the balancing constraints that must
be satisfied and the penalty costs incurred if these constraints are not met. The penalty
costs are represented by dark gray bars. Contrarily, the overall compactness, or assignment
costs, steadily decreases, as indicated by the light gray bars.
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Figure 6.3: Comparison of objective values based on different numbers of districts p in a
deterministic, single-period HHC setting, classified into assignment and penalty
costs.

It can be summarized that the compactness, defined as the sum of the distances between
the TUs and their district centers, is consistently increasing (as indicated by the decreasing
assignment costs). However, as the number of districts increases, the differences or improve-
ments in costs become smaller. Therefore, the HHC provider must carefully consider when
it is worthwhile to hire additional health aides.

Districts would be most balanced if every health aide managed the same workload –



6.1 Case Study: Single-period Deterministic Case 111

meaning each health aide would handle the same number of patients—thus eliminat-
ing any penalty costs. In practice, however, achieving this balance is not always fea-
sible or necessary. In this analysis, we used a threshold of α = 0.001. While this
may be too strict for practical applications, it is essential to understand the costs in-
volved.

6.1.2 Comparative Analysis of the Objective Value with Varying Values
of the Maximum Allowed Deviation

The following analysis examines the impact on the objective value of varying values for α,
which represents the allowed deviation from the average value µ in each district. In this
case, the number of districts is p = 4.

The value α represents the balancing aspect between different health aides. The HHC
provider faces the choice of paying for overtime to create more compact yet unbalanced
districts or avoiding overtime to establish completely balanced districts. However, the
latter may lead to increased travel time for all health aides.

The compactness is represented by the assignment costs, while overtime leads to additional
costs for surplus. Shortage can be interpreted as costs that have to be paid but could have
been avoided, which is also penalized in the objective function.

Previously, α = 0.001 was chosen, resulting in penalty costs when the number of patients
is not divisible by the number of districts. The analysis focuses on whether certain sets of
TUs are consistently grouped in a single district and whether some TUs switch for different
values of α.

The values for α range from 0.1 to 0.95 in increments of 0.05, so we analyze 18 different
settings for the same instance. However, the objective values do not show significant
differences as shown in Figure 6.4. Finding a fully balanced solution for all values within
the range [(1 − α)µ; (1 + α)µ] for each district means that no penalty costs need to be
paid.

The lowest value for α = 0.1 leads to the highest sum of travel distances 66.10 km
between the representative of a district and the TUs of the district. The lowest sum
of travel distances is 61.64 km while the allowed deviation between the workloads is
α = 0.95, which is a very unbalanced workload for each district. With a higher al-
lowed tolerance for an unbalanced workload, the objective value can only improve by
6.75%.

The interpretation is as follows: the travel time for all health aides does not increase
much when a balanced solution is prioritized. Thus, it is more important to focus on
equalizing the workload among health aides rather than solely minimizing travel distances
by maximizing compactness.
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The recommendation for the decision-maker is as follows: It is advisable to accept a small
increase in travel time in order to achieve more balanced districts. This approach results in
a more equitable distribution of patients and a fairer workload for health aides, all without
significantly increasing costs.
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Figure 6.4: Comparison of objective values for different values of α in a deterministic,
single-period HHC setting, classified into assignment costs and penalty costs.

6.1.3 Comparative Analysis of Centers with Varying Values of the

Maximum Allowed Deviation

In the next step, the focus turns to the chosen district representatives to observe whether
they remain consistent or how they vary for the different values of α. The district centers are
evaluated for α = [0.1, 0.15, . . . , 0.9, 0.95] while the number of districts remains p = 4. Af-
terward, we analyze the set of TUs that are clustered together.

The concept of a district center in the context of HHC is not entirely straightforward. It
can be interpreted as the ideal starting point for health aides when visiting patients. This
location allows for the shortest travel distances to patients within the same area. If health
aides do not need to return to the center between patient visits, optimizing their route
could resemble a traveling salesperson problem (TSP).

For all 18 instances, 10 different representatives were chosen. Only one center was consis-
tently chosen in all solutions (Figure 6.5, marked in purple). TUs that were never selected
as a center are marked with a grey x. The frequency of TUs selected as a center can be
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seen from the color scale on the right. We can see that the 10 selected centers form four
groups, which we examine further below.
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Figure 6.5: Selected centers for 18 instances with varying values of α in a deterministic,
single-period setting with p = 4.

We now examine the set of TUs that are grouped together within a district, even if they
are assigned to different representatives for specific values of α. To this end, we conduct a
stability analysis of the assignments to the district centers.

Figure 6.6 displays the results of this analysis. Each subfigure corresponds to one district
(group), labeled according to its geographic position as left outer, left central, right central,
and right outer. The selected district centers are highlighted in red. TUs marked in color
indicate assignments to these centers at least once in all 18 runs, with the frequency shown
by the color scale on the right. TUs that are not assigned to this group of centers in any
of the 18 runs are represented by grey x.

In Figure 6.6a and Figure 6.6d, we observe that the districts labeled left outer and right
outer, which are located at the edges of Karlsruhe city center, are almost identical across
all values of α. In contrast, the districts left central and right central shown in Figure 6.6b
and Figure 6.6c display considerable instability. Depending on the value of α, these TUs
are sometimes included in one district or another.

In summary, based on the data used for this case study, the districts at the edge of the plan-
ning area demonstrate greater stability. In contrast, the two groupings in the central part of
the city of Karlsruhe show more fluctuations in the assignments.
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Figure 6.6: Comparison of resulting TU groups and their centers with 18 different values
of α in a deterministic single-period setting with p = 4.
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6.2 Case Study: Multi-period Case

In this scenario, TUs are considered as small neighborhoods rather than individual pa-
tients. These neighborhoods can have multiple patients residing within them. The aim
of the HHC provider is to distribute the patients among their health aides for several
periods. The following parameters and the model (MPDP) described in Section 3.2 is
used:

Parameter Description Value/Formula

I Set of TUs {1, . . . , 80}

TP Set of periods {1, 2}

cij Euclidean distances between all TUs i, j ∈ I

α Allowed deviation from µ for each district 0.001

rt
ij Unit costs for reassigning TU i to district j in period t

(i, j ∈ I, t ∈ TP )) cij

st
ij Savings for removing TU i from district j in period t

(i, j ∈ I, t ∈ TP ) 0

gt
j Unit costs for surplus at district j in period t

(j ∈ I, t ∈ TP ) maxi,j∈I{cij}

ht
j Unit costs for shortage at district j in period t

(j ∈ I, t ∈ TP ) maxi,j∈I{cij}

p Number of districts 4

dt
i Demand for all TUs i ∈ I for all periods t ∈ TP

µt Average demand for each district for all periods t ∈ TP

∑
i∈I

dt
i

p

According to demographic evolution, the rising share of elderly people in the neighborhood
and the range of services for senior citizens in the southern part of the city are expected
to increase significantly over the next few years. As a result, the demand for HHC is
predicted to be twice as high in the second period. The HHC provider would like to define
its districts today to ensure that patients are informed early about their personal health
aides.

• In Section 6.2.1, we analyze the district shapes across different periods and compare
them with the solutions of the assignments from the single-period solution using the
average scenario.
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• In Section 6.2.2, we analyze the VMPS for the two-period problem of the HHC
provider described above.

6.2.1 Comparative Analysis of District Shapes across Different Periods

In this subsection, we analyze the district shapes in a two-period setting. In Figure 6.7, we
can see that the centers remain the same for both periods, but the assignment decisions
differ between both periods.

(a) Period 1 (b) Period 2

Figure 6.7: Solutions for two periods in a deterministic, multi-period setting with reassign-
ments and p = 4.

In the next step, we compare the resulting districts from the two-period problem solved
using the multi-period model with the deterministic single-period solution derived from

the average scenario problem. The demands are calculated as follows: davg
i = d1

i +d2
i

2 for all
i ∈ I. The resulting districts are shown in Figure 6.8. Three out of the four centers remain
the same in the SCMP solution. The districts in both the westernmost and easternmost
regions of Karlsruhe closely resemble those found in the two-period solution. The main
differences arise in the two central districts, where the average-period solution cannot adjust
the assignments.

In the experiments mentioned above, 7 reassignments were made between periods 1 and 2,
and the centers remained consistent for both periods. The SCMP solution, while tending
to lead to an unbalanced outcome, incurs lower assignment costs compared to when the
periods are taken into account. The distribution of the TUs in the SCMP solution to the
districts is as follows: 18 : 19 : 20 : 23. Consequently, this results in the need to incur
penalty costs. The cost comparison is shown in Table 6.1.

After analyzing the shapes and costs of the resulting districts, it seems that the HHC
provider would benefit from using the multi-period model to address its multi-period prob-
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Figure 6.8: Solution for the deterministic single-period model using average demands from
two periods of the multi-period setting and p = 4.

Costs

Model Objective Value Assignment Reassignment Penalty

MP 0.7281 0.6646 0.0635 -

SCMP 1.6206 0.6061 - 1.0146

Table 6.1: Cost breakdown and comparison of the MP solution and the SSCMP .
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lem. This is demonstrated in the following Section 6.2.2, where the VMPS is calculated
and interpreted.

6.2.2 Analysis of the VMPS in a Multi-Period Setting

To evaluate the solution, the VMPS is used, as introduced in Section 3.3.1. The solu-
tion of the multi-period problem (MP ) is compared to the solution of a static counter-
part (SSCMP ). There exist several ways to define a static counterpart. For this pur-
pose, the single-period problem is formulated with the average demands over the plan-
ning horizon for each TU. Alternatively, either the maximum values or the values at
the beginning of the planning horizon could be used to formulate the static counter-
part.

%VMPS = SSCMP −MP

MP
· 100 = 1.6206− 0.7281

0.7281 · 100 = 122.5%

In this case, the value can be interpreted as the cost of ignoring the possibility of re-
districting patients for the second period or the cost of being unable to redistrict. The
HHC provider should be willing to pay this amount to enable reassignments to the dis-
tricts. The benefit of using the multi-period model to generate a multi-period solution
is very beneficial to the HHC provider due to the high penalty costs in the SSCMP (Ta-
ble 6.1).

To summarize, the districts are changing in response to the changes in demand, leading
to some patients being assigned new health aides. While this reassignment may require
patients to adjust to a different health aide, it ensures that no individual health aide
becomes overloaded and that all health aides share the workload equally. This approach
benefits the patients as well since health aides who are not overburdened are less likely
to be absent due to stress-related illnesses or dismissal. Without this balance, patients
would have to adjust to new health aides regardless, if their assigned health aides become
overworked and unavailable.

6.3 Case Study: Stochastic Case

In this section, we examine a stochastic approach for the HHC application. The HHC
provider is entering the Karlsruhe HHC market and must divide patients into different
districts. Their districting plan is based on various demand scenarios, which depend on
anticipated demographic changes and city development, each associated with a specific
probability of occurrence. While it is common practice to plan districts using an average
scenario and the single-period deterministic model (EDP) Section 2.2, the HHC provider
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also has the option to utilize the stochastic model (SDP) presented in Section 4.2. The
parameters used in the analysis are outlined below, followed by the presentation of the
results in the subsequent subsections.

Parameter Description Value/Formula

I Set of TUs {1, . . . , 80}

S Set of scenarios

cij Euclidean distances between all TUs i, j ∈ I

gs
j Unit costs for surplus at district j in scenario s

(j ∈ I, s ∈ S \ {1}) maxi,j∈I{cij}

hs
j Unit costs for shortage at district j in scenario s

(j ∈ I, s ∈ S \ {1}) maxi,j∈I{cij}

α Allowed deviation from µ for each district 0.001

p Number of districts

ds
i Demand for all TUs i ∈ I for all scenarios s ∈ S

µs Average demand for each district in scenarios s ∈ S

∑
i∈I

ds
i

p

• In Section 6.3.1, we analyze the district shapes using a stochastic model in the
stochastic setting.

• In Section 6.3.2, we evaluate the stochastic model solution against the average sce-
nario solution and the single-period deterministic model using the V SS.

• In Section 6.3.3, we compare the stochastic model solution to the average scenario
solution using the EV PI.

• In Section 6.3.4, we analyze the district centers under different scenarios.

6.3.1 Comparative Analysis of District Shapes with Multiple Scenarios

In this subsection, we analyze the district shapes resulting from solving the stochastic
model applied to the HHC provider with multiple scenarios. Consider the two periods
described in Section 6.2.1 as two distinct single-period scenarios that the HHC provider
anticipates for the future, which have the same probability of occurrence. This means that
demand in the second scenario doubles in the southern TUs compared to the first scenario,
and p = 4.
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The result from the stochastic model is depicted in Figure 6.9. Since the demands differ
from north to south, the districts in the solution show a vertical form to balance the
uncertainty. As the TUs are distributed more horizontally in the city area of Karlsruhe,
the resulting districts appear very distorted and not compact. This observation is also
reflected in the cost breakdown shown in Table 6.2. The assignment costs of the stochastic
solution are 29.64% higher than the average assignment costs for each of the two scenarios
solved separately.

Figure 6.9: Solution for a stochastic, single-period problem with two scenarios and p = 4.

In contrast, the districts in the SCSP are the same as in the solution of SCMP shown in
Figure 6.8. Hence, it makes no difference in the solution if the scenarios occur in a row in
two periods like in Section 6.2.1 or if the scenarios occur with a specific probability in the
same period.

In the stochastic case, the decision made by the HHC provider regarding the modeling
approach for the planning of their district plays a crucial role in its overall shape and
structure. When the HHC provider uses the stochastic model that incorporates multiple
scenarios, it allows for a more comprehensive analysis that considers various potential
outcomes and uncertainties. This approach can lead to a more complex and nuanced
district design that better reflects real-world variability.

Otherwise, if the HHC provider chooses to create its district based only on an average sce-
nario, it misses important factors that could influence its development. This simpler model
might also provide a less accurate representation of the potential challenges and opportu-
nities the district could face. Ultimately, the choice of modeling technique has important
implications for how the districts function, making it essential for the HHC provider to
carefully consider which approach best aligns with its goals.

The comparison above shows that the districts generated by the stochastic model have
notably different shapes compared to those produced by the single-period deterministic
models with the average scenario. In the following two subsections, we investigate whether
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these differences are solely geographical or if the solutions also exhibit quantitative differ-
ences.

The results of the experiments are presented in a cost comparison found in Table 6.2. It
is evident that the assignment costs of the less compact solution, illustrated in Figure 6.9,
are more effectively hedged against uncertainty. This is because the less compact solution
incurs no penalty costs, unlike the SSCSP .

Costs

Model Objective Value Assignment Penalty

SP 1.0275 1.0275 -

SCSP 1.2321 0.7248 0.5073

Single Scenario

Scenario 1 0.6163 0.6163 -

Scenario 2 0.8297 0.8297 -

Table 6.2: Cost breakdown and comparison of the SP solution and the SSCSP .

6.3.2 Analysis of the VSS in a Stochastic Setting

To quantify the benefit of using the stochastic model, we use the V SS, as outlined in
Section 4.3.1.

By contrasting the EEV and SP two values, we can quantify the benefits of incorporating
uncertainty into our decision-making process:

%V SS = EEV − SP
SP

· 100 = 1.2321− 1.0275
1.0275 · 100 = 19.91%

The %V SS indicates that explicitly considering uncertainty in the model provides a signif-
icant advantage over purely deterministic planning. Specifically, a %V SS of 19.91% means
that the expected total cost obtained from the stochastic model is 19.91% lower than the ex-
pected cost when using the average scenario in the deterministic model. In other words, this
is the expected cost of ignoring uncertainty when making a decision.

If the HHC provider has the chance to utilize the SDP for their districting plan rather than
relying on average demand values, it is recommended to use it to save costs.
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6.3.3 Analysis of the EVPI in a Stochastic Setting

Another value to measure the value of additional information is the EV PI as described
in Section 4.3.1. The EV PI measures the maximum amount a decision-maker would be
willing to pay to obtain perfect information about future demands. A high EV PI indicates
that this information is highly valuable, suggesting that uncertainty plays a significant role
in the decision-making process. Conversely, a low EV PI implies that acquiring further in-
formation would not enhance the decision-maker’s solution.

By contrasting the WS and SP solutions, we can quantify the advantages of incorporating
additional information into the decision-making process:

%EV PI = SP −WS

SP
· 100 = 29.93%

This value reflects the amount that the HHC provider should be willing to pay to obtain
better information about their patient’s demands.

6.3.4 Comparative Analysis of Centers with different Scenarios

In this subsection, we examine the distribution of center locations resulting from 100
randomly generated instances within the Karlsruhe city area. Each instance consists
of:

1. Stochastic values di ∈ {1, 2} i ∈ I, for all scenarios

2. A constant value of α = 0.001 for all instances

3. p = 2

Our objective is to analyze the district centers across these randomly generated scenarios,
focusing on the similarity and variability of the chosen district representatives.

Figure 6.10 illustrates the distribution of representative TUs across the 100 randomly gen-
erated instances. TUs that were selected as centers in at least one instance are highlighted,
while those that were never chosen as centers are marked with a grey x. This visualization
provides insights into the frequency of center selection for each TU, highlighting districts
that were consistently avoided as centers and revealing potential patterns or preferences in
center placement.

The visualization in Figure 6.11 shows how frequently TUs are assigned to each of the two
groups, which are highlighted in red. The results show a clear pattern: most of the TUs
tend to stay within the same district, even when the representative TU for that district
varies across different scenarios. This consistency indicates a strong underlying structure in
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Figure 6.10: Selected centers for 100 randomly generated instances in a stochastic, single-
period setting with p = 2.

the districting solution. However, the analysis also uncovers a trend at district boundaries.
A small set of TUs located along these borders frequently shifts assignments between the
two districts.

6.4 Case Study: Multi-period Stochastic Case

In the following section, we analyze a multi-period stochastic setting for the HHC provider.
Extensive experiments related to the MSSDP are detailed in Chapter 5.

In this multi-stage setting, we examine a situation incorporating elements from the previous
two cases (Section 6.2 and Section 6.3). The setting focuses on demographic changes in
the next few years in Karlsruhe and the need for care for individuals who could become
patients for the HHC provider. Since the future is uncertain for the HHC provider, different
scenarios are used to make a decision.

The objective is to group the patients among the health aides into districts to ensure that
current neighborhoods receive adequate care over multiple periods, while also preparing for
potential changes in the future. This multi-stage districting challenge requires us to plan
for both present and future factors, considering possible variations in demand. We examine
different scenarios for the future to get a districting plan for the HHC provider within this



124 Chapter 6 Districting for Home Health Care: Case Studies

Latitude

L
on

gi
tu
d
e

(a) Center Group 1

Latitude

L
on

gi
tu
d
e

(b) Center Group 2

Figure 6.11: Comparison of resulting districts and their centers with 100 randomly gener-
ated instances in a stochastic, single-period setting and p = 2.

dynamic and stochastic environment, addressing the uncertainties of future demand and the
need for flexibility in response to changing circumstances.

The green nodes (2 and 4) in Figure 6.12 in the first scenario indicate the shifts in demand
such as in Section 6.2 and Section 6.3 where the demand in the southern TUs is assumed to
be 2. In all other nodes, a demand of 1 is assumed for each TU. The probability assigned
to each node is assumed to be 0.5. Therefore, the assumed probability for scenario 1 is
0.25.

Stage 1 Stage 2 Stage 3

1

3

7

6

2

5

4

Figure 6.12: A multi-stage scenario tree with 4 scenarios and 3 stages for a stochastic,
multi-period districting problem in HHC.

In the following subsections, we analyze the resulting costs and two key performance mea-
sures introduced in Chapter 5.

• In Section 6.4.1 we have a closer look into the cost structur of the multi-stage solution.
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Parameter Description Value/Formula

I Set of TUs {1, . . . , 80}

N Set of nodes

cij Euclidean distances between all TUs i, j ∈ I

rn
ij Unit costs for reassigning TU i to district j in node n

(i, j ∈ I, n ∈ N \ (Ω ∪ {1})) cij

sn
ij Savings for removing TU i from district j in node n

(i, j ∈ I, n ∈ N \ (Ω ∪ {1})) 0

gn
j Unit costs for surplus at district j in node n

(j ∈ I, n ∈ N \ {1}) maxi,j∈I{cij}

hn
j Unit costs for shortage at district j in node n

(j ∈ I, n ∈ N \ {1}) maxi,j∈I{cij}

α Allowed deviation from µ for each district 0.001

p Number of districts 4

dn
i Demand for all TUs i ∈ I for all nodes n ∈ N

µn Average demand for each district and node (i ∈ I, n ∈ N )

∑
i∈I

dn
i

p
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• In Section 6.4.2, we discuss the DV SS to evaluate the advantages of using the multi-
stage model introduced in Section 5.2 over a dynamic version of the expected multi-
period model, as described in Section 5.4.1.

• In Section 6.4.3, we compare the solution of the multi-stage model with the WS
solution presented in Section 5.4.1 and calculate the EV PI.

6.4.1 Cost Breakdown and Solution Analysis

In the following, we analyze the different cost structures of the solutions from the multi-
stage model, the solution from the static counterpart (EDEV), and the single scenario
cases.

In Table 6.3, we observe that the objective function values from the multi-stage solution
differ from those of the static counterpart solution in terms of the cost structure. The
multi-stage solution has no reassignment costs or penalty costs, while the static coun-
terpart solution has lower assignment costs (27.78% lower). However, the static solution
incurs some reassignment costs and higher penalty costs due to the lack of hedging against
uncertainty.

Costs

Model Objective Value Assignment Reassignment Penalty

SP 1.0275 1.0275 - -

EDEV 2.0677 0.7420 0.3935 0.9321

Single Scenario

Scenario 1 0.8297 0.8297 - -

Scenario 2 0.9482 0.8529 0.0953 -

Scenario 3 0.6163 0.6163 - -

Scenario 4 0.6163 0.6163 - -

Table 6.3: Cost breakdown and comparison of the MSSDP solution, the EDEV , and the
results from the single scenario cases.

The districts generated by the multi-stage model are the same as those shown in Figure 6.9.
In Scenario 1, the outcomes are equivalent to those in Scenario 2 in the stochastic single-
period case, while Scenarios 3 and 4 reflect Scenario 1 from the stochastic single-period
context (refer to Table 6.2). Scenario 2 is unique due to a change in demand over time.
However, this change is not directly comparable to the change observed in the multi-period
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deterministic case. In this scenario, the initial demand is 1 in the northern TUs and 2 in
the southern TUs, but then it returns to a demand of 1 in each TU, which differs from
what is illustrated in Table 6.1.

6.4.2 Analysis of the DVSS for a Multi-Stage Setting

To evaluate the result, the DV SS is used, as described in Section 5.4.1. This value com-
pares the solution of the multi-stage model with the dynamic version of the EED, the
EDEV . It quantifies the benefit of using the multi-stage model for the multi-stage setting
instead of using the average of each stage and solving the multi-period model.

%DV SS = EDEV − SP
SP

· 100 = 101.23%

In the described setting, theDV SS for the HHC provider is relatively high. This reflects the
costs associated with ignoring uncertainty in the decision-making process. Hence, the HHC
provider should use the multi-stage model to avoid these costs.

As can be seen in Table 6.3 the high value of the DV SS results from the fact that the
more compact solution of the EDEV leads to reassignment and penalty costs in the later
stages.

6.4.3 Analysis of the EVPI for a Multi-Stage Setting

Based on Definition 25, we use the EV PI to evaluate the solution of the multi-period
stochastic solution (SP ) and the wait-and-see solution (WS):

%EV PI = SP −WS

SP
· 100 = 27.01%

This value reflects the amount the HHC provider should be willing to pay on average for per-
fect information about the future of the city development and demographic change.

The relatively low value of %EV PI (compared to %DV SS) in Table 6.3 can be attributed
to the fact that the MSSDP is able to hedge against uncertainty, allowing it to find a solu-
tion without incurring reassignments or penalty costs. Consequently, if the average of the
single-scenario solutions is not significantly better than this solution, the %EV PI remains
relatively low. Additionally, in Scenario 2, the single-scenario solution incurs reassignment
costs, which contributes to an increase in the WS value.
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From the results in Section 6.4.1, Section 6.4.2, and Section 6.4.3, it is clear that the HHC
provider would benefit from using the MSSDP model to plan its districts in this uncertain
situation.

6.5 Conclusions and Outcomes for a HHC Provider in

Karlsruhe

The benefits of using the models outlined in this thesis for the HHC provider are summa-
rized in Table 6.4. Each identified benefit is compared to the outcomes derived from using
average values and the corresponding static counterpart, which represents the alternative
method most commonly used in practice. This traditional approach is often favored when
instances are too large or complex to be effectively handled by a more complex model, such
as MSSDP. Runtime limitations frequently force practitioners to resort to these simpler
methodologies, as they offer a more immediate solution. However, the models proposed in
this thesis highlight the potential for more detailed results.

By distinguishing between these approaches, the implications for HHC providers become
clearer, emphasizing the importance of selecting the right models to drive better out-
comes.

Model %V MPS %(D)V SS %EV PI

MPDP 122.5 - -

SDP - 19.91 29.93

MSSDP - 101.23 27.01

Table 6.4: Comparison of the benefits of different district models.

In summary, the results indicate that the temporal aspect has a more significant influence
on the objective function value than the stochastic aspect, based on the data analyzed.
When periods are aggregated, the objective function value is noticeably lower compared
to when scenarios are aggregated. Although the %VMPS for the MPDP is very high, the
%V SS for the SDP is relatively low. On the other hand, the %DV SS for the MSSDP is
once again very high. This suggests that the DVSS is more sensitive to the multi-period
aspect than to uncertainty in these instances.

From a managerial perspective, this case study highlights the importance of analyzing data
fluctuations before making decisions. Decision-makers should assess whether significant
variations exist in the data across different scenarios, time periods, or both. If significant
fluctuations are identified, it is advisable to use the MSSDP model, taking both aspects
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into account. However, if computational capacity is limited, valuable insights can still be
obtained by running the MPDP and SP models separately, focusing on the most critical
aspect.





Chapter 7

Conclusion, Outlook and Further
Research

The study of districting is a relatively young research area, dating back to 1965. Since then,
it has seen extensive investigation and practical application in various fields. Recently, there
has been an increasing focus on two main aspects: multi-period dynamics and uncertainty,
which have been tailored separately to specific applications. The increased focus on multi-
period dynamics and uncertainty in districting research can be attributed to several aspects.
One reason is that demographic shifts, economic changes, and political developments have
become increasingly dynamic and unpredictable, which requires models that can adapt
to these factors. Another reason for the heightened interest in these areas is the wish
to move beyond static analyses of districting problems. Traditional models often treated
districting as a single-period or single-scenario decision, overlooking the implications of
future changes. The multi-period and stochastic approaches enable a more comprehensive
understanding of how districting decisions can impact the future. This shift in perspective
facilitates the examination of potential methods that better reflect real-world complexities,
where data can change. Moreover, these approaches are particularly worthwhile, as they
enable decision-making at all levels, including tactical and strategic, where decisions can
have significant impacts. For such decisions, sufficient computational resources should be
allocated to adequately address the multi-period and uncertainty aspects in the decision-
making process. This work aims to make a meaningful contribution to advancing research
in this field.
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7.1 Conclusion

The thesis is based on a comprehensive analysis of various districting issues, specifically
multi-period and stochastic problems, as well as the combination of both aspects. It starts
with a general overview of the districting topic, providing background information on its
challenges and complexities. The existing models and studies are often highly problem-
specific and do not typically account for factors such as uncertainty and multiple periods.
In Chapter 1, these gaps are identified in the current research, which are later addressed.
The models presented in this thesis help to close these gaps.

In Chapter 2, we define the fundamental concepts and criteria for districting, providing clear
illustrations to enhance understanding. We introduce the first districting model, initially
presented by Hess et al. (1965), and examine the symmetries in the balancing constraints.
We also address the limitations of this model, which can pose practical challenges. This
thesis proposes an adaptive deterministic model as a foundation for the subsequent models
discussed in this thesis, as it consistently has a feasible solution. At the end of the chap-
ter, we also present the most common heuristics for solving a deterministic single-period
districting problem.

As the first extension, we add time to our problem and look at deterministic multi-period
districting problems. In Chapter 3, we start with an overview of the related literature. We
present a model for multi-period districting, as published in Pomes et al. (2025). In the
proposed model, reassignments between periods are allowed, and an additional parameter
for savings is introduced, allowing for the preference of more compact solutions instead
of solutions with minimal reassignments. This is particularly useful in practical applica-
tions, such as when redistricting incurs only minor costs and focuses on creating compact
districts. With this, a transition is created between completely independent periods and
dependent periods. We also provide an additional constraint for fixing centers, which can
be beneficial in situations where, for example, a facility must be built in the center or when
other strategic decisions cannot be altered in the short term. Furthermore, we examine the
conditions under which it is beneficial to use the proposed multi-period model and those
under which it is not. Computational experiments are conducted at various levels of gran-
ularity concerning the TUs and the resulting districts from the static counterpart. This
analysis examines the relation between the input data and the key performance indicator
VMPS.

In Chapter 4, we shift our focus to districting under uncertainty. Instead of examining
periods, we now analyze different scenarios. After conducting a literature review, we present
an adapted version of an existing two-stage districting model from the literature. We
modify the definition of µ, the average allowed demand in each district, which is not
scenario-dependent in the previous model. The modifications made to this model are
illustrated with examples. We examine the key performance measures V SS and EV PI,
which serve as indicators of the benefits of using a stochastic model. Similarly to the
computational experiments discussed in the previous chapter, we evaluate the types of
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data that make it advantageous to use a stochastic model, as well as settings where it may
not be beneficial. We analyze here the relations between demand fluctuations in the input
data and the V SS as well as the EV PI.

Furthermore, both aspects – uncertainty and multi-periodicity – are combined and dis-
cussed in Chapter 5. We present a multi-stage stochastic districting problem along with
a relax-and-fix heuristic that addresses real-world districting challenges. This multi-stage
stochastic model is also published in Pomes et al. (2025). Rigorous validation tests are
conducted to support this research. To measure the benefit of using the MSSDP, we use
a dynamic version of the V SS and the EV PI. The validation process involves extensive
testing under various scenarios to verify the effectiveness and applicability of the proposed
model and heuristic across different instances. The test instances are described in detail
before discussing the results, which include cost breakdowns, an analysis of demand vari-
ability, and the role of savings. Furthermore, we conduct a comprehensive exploration
of larger instances and analyze the impact of the number of TUs and the number of
stages.

Finally, all models are analyzed through a comprehensive case study involving home health-
care services in Karlsruhe in Chapter 6. This real-world application demonstrates the
viability and usefulness of the developed models in addressing districting challenges, show-
casing their potential impact on practical decision-making. We begin with a deterministic
single-period setting and then examine a multi-period setting. Next, we examine a stochas-
tic setting before incorporating both time and uncertainty. The case study offers insights
into the practical implementation of the proposed districting models in real-world scenarios,
providing managerial implications.

Overall, the thesis thoroughly examines districting issues, offers new models for multi-
period and stochastic problems, and validates their usefulness through rigorous testing and
real-world application. This comprehensive analysis contributes to the existing knowledge
on districting and provides practical insights.

The research questions outlined in Chapter 1 can now be answered through the results of
this thesis:

RQ1 What aspects and additional problem characteristics can be captured by integrating
multi-period considerations and uncertainty into districting models, and how does
this enrich the modeling of real-world districting problems compared to traditional
single-period deterministic approaches?

Multi-period considerations allow for a more dynamic approach to districting, ac-
knowledging that decisions made in one period can affect subsequent periods. In
Chapter 3, we present and analyze a multi-period model that incorporates the op-
tion of reassignments between periods. Generally, it is recommended to utilize a
multi-period model whenever there is a possibility for reassignments, as the VMPS
is always greater than or equal to zero. The primary drawback is that finding the
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exact solution may require more computational time. The centers can be fixed with
additional constraints presented in the same section. This is particularly useful when
a facility must be constructed at the center or when other restrictions prevent the
reassignment of the center. In Chapter 4, we present an adapted stochastic model
that allows for multiple scenarios in the decision-making process. Since the value of
the V SS is always greater than or equal to zero, using a stochastic model is rec-
ommended when there is more than one scenario. The solution obtained through
this approach is at least as good as that of the deterministic solution from the static
counterpart. One of the key advantages of this model is that it enables recourse pos-
sibilities in the event of surplus or shortage, allowing for more flexible decisions based
on the realization of each scenario. However, the only drawback is the possibility of
increased computational time required. In Chapter 5, we introduce a multi-period
stochastic model for districting that allows for reassignments across multiple periods
and incorporates multiple scenarios within each time period. This model integrates
the additional flexibilities offered by both aspects. Districting and reassignment de-
cisions for each path of the scenario tree are determined before the outcomes of the
random variables are known, enabling decision-making under uncertainty.

RQ2 What evaluation tools and methodologies can measure the impact of multi-period and
uncertainty factors on districting performance?

In this thesis, we analyze various key performance measures that are essential for
evaluating the effectiveness of multi-period and stochastic models. We discuss the
VMPS for multi-period problems, as well as the V SS and EV PI for stochastic prob-
lems. Additionally, we examine the DV SS and EV PI specifically for multi-period
stochastic problems. As a further aspect of the analysis, we analyze the relations
between these values and the input data. We develop several measures to quantify
demand fluctuations in the data. The primary parameter we analyze is the demand
in various scenarios, as this value must be balanced in classical districting problems.
Our focus is solely on fluctuations in demand. Next, we examine settings with fluc-
tuations in relative demand to determine if there is a linear correlation between these
changes and the effectiveness of the models. We utilize various measures, such as
fluctuations in demand over different periods or scenarios, to analyze their correla-
tion with VMPS, V SS, and EV PI. It is demonstrated that fluctuations alone do
not justify the use of a multi-period or stochastic model for the problem. When the
relative changes in demand remain consistent, there are instances where the same so-
lution can be optimal across multiple periods or scenarios. Our computational results
also include an evaluation of computational times, as these may influence the deci-
sion to use a static counterpart versus a dynamic or deterministic versus stochastic
approach.

RQ3 How does considering multiple periods and stochasticity affect key performance indi-
cators, such as solution quality, robustness, and fairness, of the resulting districting
plans?
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This thesis employs various approaches to check under which conditions neglecting
multi-periodicity or stochastic data may result in higher costs. It also explores when
using a multi-periodic model for multi-periodic instances and a stochastic model for
stochastic data is appropriate. In Chapter 3 and Chapter 4, we observe that multiple
periods or stochasticity do not always lead to high values for V SS or VMPS. There
are instances where the presence of stochasticity and multiple periods does not affect
these values, particularly when the relative demand remains consistent across each
period or scenario. As a further aspect of the analysis, we examine the relation
between fluctuations in relative demand across periods or scenarios and their positive
influence on V SS and VMPS, while the influence on EV PI is much lower. In the
case study presented in Chapter 6, we observe that the temporal aspect has a more
significant influence on the objective function value than the stochastic aspect, as
indicated by the analyzed data. When periods are aggregated, the objective function
value is noticeably lower compared to when scenarios are aggregated. This suggests
that the DVSS is more sensitive to the multi-period aspect than to uncertainty in
these instances.

RQ4 How can a real-world case study be used to demonstrate and analyze the practical
effects of integrating multi-period considerations and uncertainty in districting mod-
els?

The thesis presents a case study focused on home healthcare services in Karlsruhe
in Chapter 6. This real-world application demonstrates how the developed models,
which integrate multi-period approaches and stochastic considerations, address dis-
tricting challenges. Adding these considerations to the HHC decision-making process
helps to prevent overworked health aides and reduce waiting times for patients. As
in many districting applications, there are two goals to consider: compactness and
balance. In the HHC context, compactness refers to minimizing the travel times
to the patients. At the same time, balance ensures that the health aides assigned
to patients remain as consistent as possible across different periods or scenarios.
Integrating both of these factors into the objective function is important. The im-
plications of this case study highlight that the proposed multi-period and stochastic
models can significantly enhance practical decision-making for the HHC provider.
The presented study also demonstrates that the temporal aspect is more significant
than the stochastic aspect. Neglecting both aspects could result in increased costs.
However, it is evident that considering the temporal aspect can either lead to higher
costs or, when taken into account, result in lower costs.

7.2 Outlook and Further Research

The results of this thesis exhibit several limitations that suggest various directions for future
research, including data generation, the runtime of computational experiments, missing
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data and result analyses, and the need for a real multi-criteria approach or other model
extensions.

In our computational experiments, we frequently establish a time limit on runtime to
maintain a manageable threshold. Without this limit, the runtimes could become exces-
sively long. Given the complexity of the models presented, we restrict our experiments
to smaller sizes, which involve fewer periods or scenarios. This limitation drives the need
for heuristics or more efficient algorithms. Furthermore, incorporating machine learning
techniques to automate the selection process of representative scenarios could yield im-
provements in efficiency. Additionally, examining which characteristics in the data lead to
specific groups being assigned to the same district under different scenarios or in different
periods is crucial for understanding the mechanisms at play. Whether there is a consistent
methodology for selecting representatives for various random scenarios or different periods
has been raised, which is essential for future investigations. Understanding the character-
istics that influence a TU’s selection as a representative may offer predictive insights into
which representatives might qualify. This exploration could simplify or enhance heuristic
approaches.

The proposed relax-and-fix heuristic serves as an initial approach to addressing the MSSDP
heuristically. However, there is significant potential for improvement. A critical line of re-
search would involve defining more sophisticated algorithms capable of handling larger-sized
instances with a higher number of TUs, more time periods, and more complex scenario
trees. This could also include the exploration of heuristics and the application of meta-
heuristics to optimize performance further. Analyzing computation times across different
implementations, including those that employ line partitioning or other algorithms from
computational geometry, could provide valuable insights into the efficiency of these meth-
ods.

Furthermore, the bi-objective character of the proposed model, with its focus on compact-
ness and balance, highlights the need for clear multi-objective extensions of MSSDPs. To
enhance the analysis of districting problems in general, future research should focus on
developing more specific approaches to multi-objective optimization, incorporating param-
eters such as the tolerance level α for the balancing constraints in the objective function
or other districting criteria.

Especially in practical applications, the consideration of different periods raises the question
of whether the frequency of reassignments should be limited. For instance, no citizen wants
to vote in a different district each election, and siblings should ideally be placed in the same
school district. This is a specific problem that could be further explored in the future by in-
tegrating additional conditions into the multi-period models.
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Appendix A: Extensive results

This appendix provides the detailed results for the computations reported in Section 5.5.3.
Specifically, Table A1 –Table A4 refer to the 88-TUs instances presented in Section 5.5.2,
while Table A5 –Table A8 refer to the 120-TUs instances discussed in Section 5.5.3.2.
Besides, Table A9 and Table A10 refer to the 88-TUs instances with four and five stages,
respectively, also reported in Section 5.5.3.2.

Each table conveys results for a specific combination of (i) typology of instance (i.e., In-
stances 1 or Instances 2 ), and (ii) value of p (4 or 6), and reports the following informa-
tion:

• Value of α

• Number of performed experiments, “No. Exp” from 1 to 10 (ten different instances
were generated per combination of the number of TUs, α, and p)

• Value of the objective function of the best integer solution found by resolving model
MSSDP via CPLEX within the imposed time limit of 3 hours (ZM)

• Value of the objective function returned by the heuristic (ZH)

• CPU time (in seconds) taken by CPLEX (TM)

• CPU time (in seconds) taken by the heuristic (TM)

• Optimality gap (i.e., the MIP relative gap, in %) returned by CPLEX upon termi-
nation (if GAPopt = 0 , the corresponding solution is optimal)

• Value of the objective function of the lower bound provided by CPLEX upon termi-
nation (ZLB coincides with ZM if the solution is optimal)

• Relative gap (in %) between the values of the objective functions of the solutions
returned by the heuristic and CPLEX (GAPHM = ZH−ZM

ZM
)
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• Relative gap (in %) between the values of the objective functions of the solutions re-
turned by the heuristic and the lower bound given by CPLEX (GAPHLB = ZH−ZLB

ZLB
).

Notably, it coincides with the optimality gap (GAPopt) if the optimal solution was
attained.

The last two rows of each table inform on the average and maximum values for TM , TH ,
MIPgap, GAPHM , and GAPHLB. Finally, “t.l.”denotes occurrences where the imposed time
limit was reached.
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Table A1: Results for 88-TUs instances, p = 4, Instances 1.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 29976058.22 29976058.22 29 26 0.00 29976058.22 0.00 0.00
2 29827800.81 29827800.81 42 26 0.00 29827800.81 0.00 0.00
3 29916961.54 29916961.54 33 28 0.00 29916961.54 0.00 0.00
4 30063459.05 30063459.05 168 31 0.00 30063459.05 0.00 0.00
5 30267588.98 30267588.98 87 30 0.00 30267588.98 0.00 0.00
6 29791120.42 29791120.42 3101 40 0.00 29791120.42 0.00 0.00
7 29739176.12 29739176.12 26 28 0.00 29739176.12 0.00 0.00
8 30082932.50 30082932.50 35 30 0.00 30082932.5 0.00 0.00
9 30028424.58 30278385.91 265 28 0.00 30028424.58 0.83 0.83
10 29954673.67 29954673.67 113 28 0.00 29954673.67 0.00 0.00

0.10 1 29404769.66 29404769.66 26 28 0.00 29404769.66 0.00 0.00
2 29343876.61 29343876.61 19 28 0.00 29343876.61 0.00 0.00
3 29469178.93 29469178.93 165 28 0.00 29469178.93 0.00 0.00
4 29048983.33 29110748.71 35 27 0.00 29048983.33 0.21 0.21
5 29661694.08 29661694.08 125 28 0.00 29661694.08 0.00 0.00
6 28937782.84 28937782.84 33 28 0.00 28937782.84 0.00 0.00
7 29210622.02 29210622.02 23 27 0.00 29210622.02 0.00 0.00
8 29536484.02 29536484.02 32 27 0.00 29536484.02 0.00 0.00
9 29202984.73 29202984.73 32 28 0.00 29202984.73 0.00 0.00
10 29320286.36 29337004.71 103 28 0.00 29320286.36 0.06 0.06

0.15 1 29020287.27 29020287.27 170 28 0.00 29020287.27 0.00 0.00
2 28926954.26 28926954.26 65 28 0.00 28926954.26 0.00 0.00
3 28817008.90 28845870.21 79 29 0.00 28817008.9 0.10 0.10
4 28511466.86 28534662.14 37 27 0.00 28511466.86 0.08 0.08
5 29063301.07 29126316.97 386 31 0.00 29063301.07 0.22 0.22
6 28451879.21 28451879.21 94 29 0.00 28451879.21 0.00 0.00
7 28737235.46 28737235.46 35 27 0.00 28737235.46 0.00 0.00
8 29055139.46 29055139.46 72 28 0.00 29055139.46 0.00 0.00
9 28752683.16 28793129.09 44 27 0.00 28752683.16 0.14 0.14
10 28552566.21 28578390.21 23 27 0.00 28552566.21 0.09 0.09

0.20 1 28234132.89 28234132.89 23 27 0.00 28234132.89 0.00 0.00
2 28329195.77 28329195.77 25 26 0.00 28329195.77 0.00 0.00
3 28204615.48 28204615.48 17 26 0.00 28204615.48 0.00 0.00
4 27944613.61 27944613.61 13 26 0.00 27944613.61 0.00 0.00
5 28359444.34 28359444.34 29 27 0.00 28359444.34 0.00 0.00
6 27786036.78 27786036.78 15 26 0.00 27786036.78 0.00 0.00
7 28144895.89 28144895.89 19 26 0.00 28144895.89 0.00 0.00
8 28335080.94 28335828.59 16 27 0.00 28335080.94 0.00 0.00
9 28197083.12 28197083.12 20 27 0.00 28197083.12 0.00 0.00
10 28004647.80 28004647.80 15 26 0.00 28004647.8 0.00 0.00

0.25 1 27812143.68 27812143.68 15 26 0.00 27812143.68 0.00 0.00
2 27908249.81 27908249.81 12 25 0.00 27908249.81 0.00 0.00
3 27882448.11 27882448.11 13 26 0.00 27882448.11 0.00 0.00
4 27715370.54 27715370.54 12 26 0.00 27715370.54 0.00 0.00
5 28014064.77 28014064.77 21 26 0.00 28014064.77 0.00 0.00
6 27460014.04 27460014.04 13 26 0.00 27460014.04 0.00 0.00
7 27776811.73 27776811.73 13 26 0.00 27776811.73 0.00 0.00
8 27970538.14 27970538.14 13 27 0.00 27970538.14 0.00 0.00
9 27790063.84 27790063.84 14 26 0.00 27790063.84 0.00 0.00
10 27833468.00 27833468.00 12 26 0.00 27833468.00 0.00 0.00

Average 117 28 0.00 0.03 0.03
Max 3101 40 0.00 0.83 0.83
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Table A2: Results for 88-TUs instances, p = 6, Instances 1.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 23393036.57 23393036.57 6172 82 0.00 23393036.57 0.00 0.00
2 23156401.85 23156401.85 860 66 0.00 23156401.85 0.00 0.00
3 23475833.31 23475833.31 274 32 0.00 23475833.31 0.00 0.00
4 23872497.29 23864179.85 t.l. 754 0.48 23757909.3 -0.03 0.45
5 23605241.94 23605241.94 4569 117 0.00 23605241.94 0.00 0.00
6 23437144.06 23409920.37 t.l. 386 1.71 23036368.9 -0.12 1.62
7 22819670.54 22819670.54 162 29 0.00 22819670.54 0.00 0.00
8 23050501.09 23050501.09 253 30 0.00 23050501.09 0.00 0.00
9 23536037.89 23536037.89 7774 290 0.00 23536037.89 0.00 0.00
10 23240706.05 23240706.05 5702 138 0.00 23240706.05 0.00 0.00

0.10 1 22645626.42 22645626.42 23 27 0.00 22645626.42 0.00 0.00
2 22768758.94 22768758.94 50 33 0.00 22768758.94 0.00 0.00
3 23040302.10 23040302.10 296 39 0.00 23040302.1 0.00 0.00
4 22974399.34 22974399.34 256 28 0.00 22974399.34 0.00 0.00
5 22732183.29 22732183.29 31 33 0.00 22732183.29 0.00 0.00
6 22425832.73 22425832.73 115 27 0.00 22425832.73 0.00 0.00
7 22402012.49 22402012.49 15 26 0.00 22402012.49 0.00 0.00
8 22376240.81 22376240.81 13 27 0.00 22376240.81 0.00 0.00
9 22611503.57 22693220.64 53 36 0.00 22611503.57 0.36 0.36
10 22497242.62 22497242.62 28 27 0.00 22497242.62 0.00 0.00

0.15 1 22444594.99 22444594.99 20 28 0.00 22444594.99 0.00 0.00
2 22559006.68 22559006.68 26 31 0.00 22559006.68 0.00 0.00
3 22691634.46 22691634.46 34 31 0.00 22691634.46 0.00 0.00
4 22571620.73 22571620.73 70 28 0.00 22571620.73 0.00 0.00
5 22605407.36 22605407.36 27 31 0.00 22605407.36 0.00 0.00
6 22026141.36 22026141.36 20 26 0.00 22026141.36 0.00 0.00
7 22314782.01 22314782.01 14 27 0.00 22314782.01 0.00 0.00
8 22341834.03 22341834.03 19 27 0.00 22341834.03 0.00 0.00
9 22427758.98 22427758.98 43 42 0.00 22427758.98 0.00 0.00
10 22387022.15 22387022.15 19 27 0.00 22387022.15 0.00 0.00

0.20 1 22276047.98 22276047.98 14 26 0.00 22276047.98 0.00 0.00
2 22399690.92 22399690.92 14 26 0.00 22399690.92 0.00 0.00
3 22457788.18 22457788.18 21 27 0.00 22457788.18 0.00 0.00
4 22375862.52 22375862.52 17 27 0.00 22375862.52 0.00 0.00
5 22494690.47 22494690.47 27 30 0.00 22494690.47 0.00 0.00
6 21902828.50 21906546.23 12 27 0.00 21902828.5 0.02 0.02
7 22255314.49 22255314.49 14 26 0.00 22255314.49 0.00 0.00
8 22209313.70 22209313.70 11 26 0.00 22209313.7 0.00 0.00
9 22227724.25 22227724.25 22 27 0.00 22227724.25 0.00 0.00
10 22252815.11 22252815.11 12 26 0.00 22252815.11 0.00 0.00

0.25 1 22263613.55 22263613.55 17 27 0.00 22263613.55 0.00 0.00
2 22345046.65 22345046.65 11 26 0.00 22345046.65 0.00 0.00
3 22359813.37 22359813.37 15 28 0.00 22359813.37 0.00 0.00
4 22150376.91 22150376.91 11 25 0.00 22150376.91 0.00 0.00
5 22406287.16 22406287.16 21 28 0.00 22406287.16 0.00 0.00
6 21878260.03 21878260.03 11 27 0.00 21878260.03 0.00 0.00
7 22249902.44 22249902.44 17 26 0.00 22249902.44 0.00 0.00
8 22203946.17 22203946.17 15 26 0.00 22203946.17 0.00 0.00
9 22107873.34 22107873.34 13 25 0.00 22107873.34 0.00 0.00
10 22207321.11 22207321.11 10 25 0.00 22207321.11 0.00 0.00

Average 568 61 0.04 0.00 0.05
Max 7774 754 1.71 0.36 1.62
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Table A3: Results for 88-TUs instances, p = 4, Instances 2.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 35290396.75 35501163.99 t.l. 417 0.94 34958667.02 0.60 1.55
2 34798989.86 34979516.03 t.l. 885 1.45 34294404.51 0.52 2.00
3 33909262.36 33909262.36 1307 60 0.00 33909262.36 0.00 0.00
4 34162344.29 34361400.33 t.l. 237 0.42 34018862.44 0.58 1.01
5 33979032.90 34183871.16 t.l. 56 0.27 33887289.51 0.60 0.88
6 33871591.34 33871591.34 9998 284 0.00 33871591.34 0.00 0.00
7 35879613.21 35842071.90 t.l. 1388 1.95 35179960.75 -0.10 1.88
8 33154982.58 33148578.21 t.l. 77 0.70 32922897.7 -0.02 0.69
9 33398568.10 33484133.11 t.l. 97 0.56 33211536.12 0.26 0.82
10 34294466.11 34363467.81 t.l. 457 1.30 33848638.05 0.20 1.52

0.10 1 33790603.32 33989583.63 981 141 0.00 33790603.32 0.59 0.59
2 33491109.05 33564154.57 1218 34 0.00 33491109.05 0.22 0.22
3 32519397.36 32519397.36 1821 44 0.00 32519397.36 0.00 0.00
4 33068239.25 33068239.25 t.l. 54 0.41 32932659.47 0.00 0.41
5 33036745.27 32989993.92 t.l. 147 0.88 32746021.91 -0.14 0.75
6 32538442.48 32538442.48 1028 37 0.00 32538442.48 0.00 0.00
7 33538392.89 33645206.17 558 33 0.00 33538392.89 0.32 0.32
8 31889815.17 31889815.17 246 31 0.00 31889815.17 0.00 0.00
9 32188305.03 32309586.33 1636 78 0.00 32188305.03 0.38 0.38
10 33057193.36 33057193.36 10180 38 0.00 33057193.36 0.00 0.00

0.15 1 32828405.69 32945419.85 413 35 0.00 32828405.69 0.36 0.36
2 32635421.50 32741155.57 2490 34 0.00 32635421.5 0.32 0.32
3 31490037.80 31490037.80 395 31 0.00 31490037.8 0.00 0.00
4 32128068.04 32128068.04 1396 35 0.00 32128068.04 0.00 0.00
5 31838939.89 31838939.89 365 34 0.00 31838939.89 0.00 0.00
6 31846610.17 31846610.17 954 36 0.00 31846610.17 0.00 0.00
7 32774304.93 32774304.93 8362 58 0.00 32774304.93 0.00 0.00
8 31093709.23 31093709.23 45 29 0.00 31093709.23 0.00 0.00
9 31298878.16 31298878.16 137 29 0.00 31298878.16 0.00 0.00
10 31957736.19 31957736.19 693 38 0.00 31957736.19 0.00 0.00

0.20 1 32356582.90 32356582.90 1594 35 0.00 32356582.9 0.00 0.00
2 32050212.51 32148130.08 601 32 0.00 32050212.51 0.31 0.31
3 30961390.42 30973196.04 123 28 0.00 30961390.42 0.04 0.04
4 31611938.76 31611938.76 305 31 0.00 31611938.76 0.00 0.00
5 30957934.55 30957934.55 37 27 0.00 30957934.55 0.00 0.00
6 31418070.71 31468500.31 780 32 0.00 31418070.71 0.16 0.16
7 32008354.48 32008354.48 671 34 0.00 32008354.48 0.00 0.00
8 30678403.17 30678403.17 73 29 0.00 30678403.17 0.00 0.00
9 30627812.00 30627812.00 136 28 0.00 30627812 0.00 0.00
10 31373113.40 31373113.40 364 31 0.00 31373113.4 0.00 0.00

0.25 1 31635192.65 31847424.16 588 30 0.00 31635192.65 0.67 0.67
2 31499049.06 31623512.88 215 30 0.00 31499049.06 0.40 0.40
3 30403467.16 30403467.16 71 28 0.00 30403467.16 0.00 0.00
4 31110202.60 31165957.18 407 28 0.00 31110202.6 0.18 0.18
5 30487016.46 30487016.46 76 27 0.00 30487016.46 0.00 0.00
6 31005517.00 31197384.70 526 44 0.00 31005517 0.62 0.62
7 31487643.61 31487643.61 345 29 0.00 31487643.61 0.00 0.00
8 30118185.11 30126878.77 119 27 0.00 30118185.11 0.03 0.03
9 30299027.56 30299027.56 292 27 0.00 30299027.56 0.00 0.00
10 30718896.10 30718896.10 334 27 0.00 30718896.1 0.00 0.00

Average 3199 111 0.18 0.14 0.32
Max 10806 1388 1.95 0.67 2.00
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Table A4: Results for 88-TUs instances, p = 6, Instances 2.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 29363622.61 28601850.08 t.l. 1072 10.01 26424323.99 -2.59 8.24
2 27498050.72 27300526.61 t.l. 1347 4.15 26356881.62 -0.72 3.58
3 27276869.88 27202313.31 t.l. 1444 5.37 25812101.97 -0.27 5.39
4 27769496.24 27413535.02 t.l. 2346 7.64 25647906.73 -1.28 6.88
5 27644255.83 26946385.47 t.l. 1075 8.09 25407835.53 -2.52 6.06
6 27305890.66 26691961.48 t.l. 1204 7.20 25339866.53 -2.25 5.34
7 30257847.67 29611293.73 t.l. 1299 7.75 27912864.48 -2.14 6.08
8 25536678.26 25562789.96 t.l. 1019 2.70 24847187.95 0.10 2.88
9 26562904.86 26204340.72 t.l. 1577 6.85 24743345.88 -1.35 5.90
10 28653206.40 27637061.46 t.l. 3502 11.56 25340895.74 -3.55 9.06

0.10 1 26140081.36 26071590.24 t.l. 403 0.94 25894364.6 -0.26 0.68
2 25395556.21 25412068.00 t.l. 173 1.45 25027320.64 0.07 1.54
3 24797133.68 24797133.68 t.l. 425 0.00 24797133.68 0.00 0.00
4 25444189.04 25424756.66 t.l. 1106 0.42 25337323.45 -0.08 0.35
5 25139736.76 25102846.34 t.l. 1054 0.27 25071859.47 -0.15 0.12
6 24969679.54 25049331.66 t.l. 1693 0.00 24969679.54 0.32 0.32
7 26026656.06 26043762.91 t.l. 120 1.95 25519136.27 0.07 2.06
8 24117467.28 24117467.28 8417 67 0.70 23948645.01 0.00 0.70
9 24480420.53 24432461.37 t.l. 856 0.56 24343330.18 -0.20 0.37
10 25243557.50 25225584.70 t.l. 670 1.30 24915391.25 -0.07 1.24

0.15 1 24879428.35 24879428.35 10385 113 0.00 24879428.35 0.00 0.00
2 24459339.46 24459339.46 1650 40 0.00 24459339.46 0.00 0.00
3 23544834.76 23744699.46 140 53 0.00 23544834.76 0.85 0.85
4 24359496.27 24375642.53 2166 132 0.41 24259622.34 0.07 0.48
5 24005205.50 24044978.04 2802 59 0.88 23793959.69 0.17 1.05
6 23938368.11 23972486.40 764 53 0.00 23938368.11 0.14 0.14
7 24781811.20 24781811.20 8327 161 0.00 24781811.2 0.00 0.00
8 23745519.71 23795005.82 206 36 0.00 23745519.71 0.21 0.21
9 23678914.60 23678914.60 291 37 0.00 23678914.6 0.00 0.00
10 24173206.16 24173206.16 9672 156 0.00 24173206.16 0.00 0.00

0.20 1 24135927.84 24135927.84 453 37 0.00 24135927.84 0.00 0.00
2 23846945.95 23846945.95 30 29 0.00 23846945.95 0.00 0.00
3 23264360.31 23268580.28 129 30 0.00 23264360.31 0.02 0.02
4 23758302.65 23758302.65 130 36 0.00 23758302.65 0.00 0.00
5 23391466.01 23391466.01 34 32 0.00 23391466.01 0.00 0.00
6 23450866.24 23450866.24 89 33 0.00 23450866.24 0.00 0.00
7 23776845.40 23849593.25 267 32 0.00 23776845.4 0.31 0.31
8 23498665.10 23498665.10 29 30 0.00 23498665.1 0.00 0.00
9 23392028.39 23392028.39 68 30 0.00 23392028.39 0.00 0.00
10 23415612.68 23415612.68 36 31 0.00 23415612.68 0.00 0.00

0.25 1 23630365.79 23630365.79 238 32 0.00 23630365.79 0.00 0.00
2 23533086.99 23533086.99 18 27 0.00 23533086.99 0.00 0.00
3 22993223.18 23008391.93 32 27 0.00 22993223.18 0.07 0.07
4 23478874.08 23478874.08 44 30 0.00 23478874.08 0.00 0.00
5 23206288.95 23236425.12 37 30 0.00 23206288.95 0.13 0.13
6 23167689.62 23167689.62 18 28 0.00 23167689.62 0.00 0.00
7 23366206.90 23366206.90 24 28 0.00 23366206.9 0.00 0.00
8 23406065.26 23448460.08 23 30 0.00 23406065.26 0.18 0.18
9 23299997.00 23333619.93 26 28 0.00 23299997 0.14 0.14
10 23036897.45 23055603.64 17 29 0.00 23036897.45 0.08 0.08

Average 5037 478 0.00 -0.29 1.41
Max 10812 3502 0.00 0.85 9.06
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Table A5: Results for 120-TUs instances, p = 4, Instances 1.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 48828804.78 48946424.05 610 190 0.00 48828804.78 0.24 0.24
2 48261381.46 48261381.46 361 62 0.00 48261381.46 0.00 0.00
3 48532701.52 48532701.52 169 109 0.00 48532701.52 0.00 0.00
4 48460854.11 48460854.11 173 72 0.00 48460854.11 0.00 0.00
5 48606758.35 48606758.35 4175 144 0.00 48606758.35 0.00 0.00
6 48608174.19 48608174.19 333 73 0.00 48608174.19 0.00 0.00
7 48420302.25 48420302.25 180 57 0.00 48420302.25 0.00 0.00
8 48471146.93 48471146.93 864 82 0.00 48471146.93 0.00 0.00
9 48333377.90 48333377.90 448 61 0.00 48333377.9 0.00 0.00
10 48533933.55 48533933.55 65 61 0.00 48533933.55 0.00 0.00

0.10 1 48313054.36 48313054.36 2558 64 0.00 48313054.36 0.00 0.00
2 47579951.30 47579951.30 106 57 0.00 47579951.3 0.00 0.00
3 48228643.10 48261438.24 932 66 0.00 48228643.1 0.07 0.07
4 47808153.18 47808153.18 276 57 0.00 47808153.18 0.00 0.00
5 47838800.24 47838800.24 284 65 0.00 47838800.24 0.00 0.00
6 48067536.68 48067536.68 4277 63 0.00 48067536.68 0.00 0.00
7 48044410.89 48044410.89 107 58 0.00 48044410.89 0.00 0.00
8 47385597.70 47385597.70 56 55 0.00 47385597.7 0.00 0.00
9 47719351.12 47719351.12 1634 55 0.00 47719351.12 0.00 0.00
10 47906340.45 47906340.45 72 56 0.00 47906340.45 0.00 0.00

0.15 1 47686752.69 47686752.69 183 62 0.00 47686752.69 0.00 0.00
2 46858391.10 46858391.10 100 53 0.00 46858391.1 0.00 0.00
3 47651291.18 47682481.91 472 63 0.00 47651291.18 0.07 0.07
4 47226874.92 47226874.92 103 58 0.00 47226874.92 0.00 0.00
5 47148622.64 47148622.64 73 54 0.00 47148622.64 0.00 0.00
6 47327318.73 47327318.73 186 63 0.00 47327318.73 0.00 0.00
7 47632970.14 47632970.14 799 58 0.00 47632970.14 0.00 0.00
8 46896842.67 46896842.67 67 53 0.00 46896842.67 0.00 0.00
9 47039694.94 47039694.94 72 60 0.00 47039694.94 0.00 0.00
10 47303574.46 47303574.46 182 55 0.00 47303574.46 0.00 0.00

0.20 1 47166567.01 47166567.01 1692 66 0.00 47166567.01 0.00 0.00
2 46387950.33 46387950.33 60 54 0.00 46387950.33 0.00 0.00
3 46932184.36 46932184.36 465 55 0.00 46932184.36 0.00 0.00
4 46710683.71 46710683.71 208 64 0.00 46710683.71 0.00 0.00
5 46736899.17 46736899.17 95 55 0.00 46736899.17 0.00 0.00
6 46724226.22 46724226.22 362 56 0.00 46724226.22 0.00 0.00
7 46806838.52 46806838.52 66 57 0.00 46806838.52 0.00 0.00
8 46275896.84 46275896.84 36 54 0.00 46275896.84 0.00 0.00
9 46518645.88 46518645.88 177 58 0.00 46518645.88 0.00 0.00
10 46776544.84 46776544.84 95 56 0.00 46776544.84 0.00 0.00

0.25 1 46520561.22 46520561.22 92 55 0.00 46520561.22 0.00 0.00
2 45898071.67 45898071.67 61 53 0.00 45898071.67 0.00 0.00
3 46396966.90 46396966.90 59 55 0.00 46396966.9 0.00 0.00
4 46199587.48 46199587.48 79 54 0.00 46199587.48 0.00 0.00
5 46092293.03 46092293.03 62 53 0.00 46092293.03 0.00 0.00
6 46270081.34 46270081.34 66 53 0.00 46270081.34 0.00 0.00
7 46129740.73 46129740.73 56 54 0.00 46129740.73 0.00 0.00
8 46055111.88 46055111.88 58 54 0.00 46055111.88 0.00 0.00
9 45997866.79 45997866.79 629 56 0.00 45997866.79 0.00 0.00
10 46280109.55 46280109.55 88 54 0.00 46280109.55 0.00 0.00

Average 488 64 0.00 0.01 0.01
Max 4277 190 0.00 0.24 0.24
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Table A6: Results for 120-TUs instances, p = 6, Instances 1.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 37859434.99 37859434.99 204 64 0.00 37859435 0.00 0.00
2 37836765.89 37836765.89 10745 140 0.00 37836766 0.00 0.00
3 37387783.25 37387783.25 134 74 0.00 37387783 0.00 0.00
4 38261546.33 38317197.18 t.l. 225 0.30 38146762 0.15 0.45
5 37612487.06 37612487.06 6613 143 0.00 37612487 0.00 0.00
6 37606796.70 37606796.70 6640 300 0.00 37606797 0.00 0.00
7 37766402.65 37766402.65 t.l. 633 0.19 37694646 0.00 0.19
8 37831525.40 37831525.40 2102 106 0.00 37831525 0.00 0.00
9 37509906.60 37584526.81 4040 422 0.00 37509907 0.20 0.20
10 38110904.50 38110904.50 3216 168 0.00 38110905 0.00 0.00

0.10 1 37468994.54 37474027.21 2440 62 0.00 37468995 0.01 0.01
2 37222251.80 37222251.80 138 58 0.00 37222252 0.00 0.00
3 37004218.83 37004218.83 39 53 0.00 37004219 0.00 0.00
4 37121877.20 37121877.20 113 56 0.00 37121877 0.00 0.00
5 36989833.92 36989833.92 491 56 0.00 36989834 0.00 0.00
6 37012706.30 37012706.30 37 59 0.00 37012706 0.00 0.00
7 37089325.07 37156853.75 176 63 0.00 37089325 0.18 0.18
8 37083210.85 37083210.85 115 55 0.00 37083211 0.00 0.00
9 36634901.31 36650284.62 76 54 0.00 36634901 0.04 0.04
10 37508597.26 37508597.26 106 59 0.00 37508597 0.00 0.00

0.15 1 36996197.77 36996197.77 79 59 0.00 36996198 0.00 0.00
2 36869670.17 36869670.17 34 53 0.00 36869670 0.00 0.00
3 36778118.64 36778118.64 37 54 0.00 36778119 0.00 0.00
4 36671586.66 36671586.66 41 55 0.00 36671587 0.00 0.00
5 36675176.03 36675176.03 53 53 0.00 36675176 0.00 0.00
6 36922016.05 36922016.05 190 58 0.00 36922016 0.00 0.00
7 36745472.43 36745472.43 45 54 0.00 36745472 0.00 0.00
8 36637949.80 36637949.80 52 55 0.00 36637950 0.00 0.00
9 36448852.86 36448852.86 47 54 0.00 36448853 0.00 0.00
10 37268163.48 37268163.48 47 56 0.00 37268163 0.00 0.00

0.20 1 36796632.23 36796632.23 38 54 0.00 36796632 0.00 0.00
2 36773741.08 36773741.08 38 52 0.00 36773741 0.00 0.00
3 36762289.39 36762289.39 42 54 0.00 36762289 0.00 0.00
4 36520787.12 36520787.12 31 52 0.00 36520787 0.00 0.00
5 36514810.85 36514810.85 34 53 0.00 36514811 0.00 0.00
6 36823870.39 36823870.39 70 60 0.00 36823870 0.00 0.00
7 36562154.80 36562154.80 27 53 0.00 36562155 0.00 0.00
8 36447736.35 36447736.35 31 53 0.00 36447736 0.00 0.00
9 36356173.41 36356173.41 26 53 0.00 36356173 0.00 0.00
10 37060944.88 37060944.88 52 57 0.00 37060945 0.00 0.00

0.25 1 36756854.82 36756854.82 36 53 0.00 36756855 0.00 0.00
2 36615044.84 36615044.84 26 55 0.00 36615045 0.00 0.00
3 36700091.21 36700091.21 32 52 0.00 36700091 0.00 0.00
4 36441208.90 36441208.90 27 54 0.00 36441209 0.00 0.00
5 36466345.53 36466345.53 23 53 0.00 36466346 0.00 0.00
6 36686928.31 36686928.31 25 52 0.00 36686928 0.00 0.00
7 36562154.80 36562154.80 28 51 0.00 36562155 0.00 0.00
8 36383878.77 36383878.77 27 52 0.00 36383879 0.00 0.00
9 36356173.41 36356173.41 31 53 0.00 36356173 0.00 0.00
10 36941821.36 36941821.36 31 54 0.00 36941821 0.00 0.00

Average 1207 89 0.01 0.01 0.02
Max 10810 633 0.30 0.20 0.45
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Table A7: Results for 120-TUs instances, p = 4, Instances 2.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 52815608.80 52800501.77 t.l. 2355 0.31 52651880.41 -0.03 0.28
2 53522881.26 53312036.26 t.l. 2172 1.15 52907368.13 -0.39 0.76
3 53110039.41 52839218.61 t.l. 5173 1.46 52334632.83 -0.51 0.96
4 53600883.48 53565959.36 t.l. 3107 1.01 53059514.56 -0.07 0.95
5 53098585.23 53322324.60 t.l. 3872 0.38 52896810.61 0.42 0.80
6 53080918.92 53079204.29 t.l. 5118 0.54 52794281.96 0.00 0.54
7 52601158.96 52331942.22 t.l. 4036 1.32 51906823.66 -0.51 0.82
8 54695064.39 53762334.14 t.l. 10177 3.06 53021395.42 -1.71 1.40
9 52615123.80 52578140.35 t.l. 816 0.94 52120541.64 -0.07 0.88
10 54101350.40 53868385.40 t.l. 3288 1.79 53132936.23 -0.43 1.38

0.10 1 51201512.77 51233836.41 1769 124 0.00 51201512.77 0.06 0.06
2 51615712.52 51615712.52 4369 219 0.00 51615712.52 0.00 0.00
3 50957671.99 50957671.99 2657 175 0.00 50957671.99 0.00 0.00
4 51902800.13 51976304.67 t.l. 2166 0.39 51700379.21 0.14 0.53
5 51551039.84 51551039.84 t.l. 1176 0.12 51489178.59 0.00 0.12
6 51688248.20 51756375.11 t.l. 1997 0.45 51455651.08 0.13 0.58
7 50578538.01 50688437.22 1121 172 0.00 50578538.01 0.22 0.22
8 51869910.88 51869910.88 t.l. 235 0.07 51833601.94 0.00 0.07
9 50865723.60 50963948.47 6196 302 0.00 50865723.6 0.19 0.19
10 51881181.11 51881181.11 5328 124 0.00 51881181.11 0.00 0.00

0.15 1 50490090.68 50582333.85 630 90 0.00 50490090.68 0.18 0.18
2 50695690.39 50695690.39 1240 106 0.00 50695690.39 0.00 0.00
3 50197212.06 50326362.15 452 90 0.00 50197212.06 0.26 0.26
4 50931423.47 51072792.13 539 113 0.00 50931423.47 0.28 0.28
5 50522638.07 50565925.74 535 103 0.00 50522638.07 0.09 0.09
6 50763122.06 50892228.22 2775 116 0.00 50763122.06 0.25 0.25
7 50095000.16 50192442.18 341 99 0.00 50095000.16 0.19 0.19
8 50860963.12 50961006.56 2387 164 0.00 50860963.12 0.20 0.20
9 50370390.99 50449991.93 1046 80 0.00 50370390.99 0.16 0.16
10 50852346.81 50921732.59 2375 176 0.00 50852346.81 0.14 0.14

0.20 1 49646311.73 49646311.73 2091 93 0.00 49646311.73 0.00 0.00
2 50063071.25 50063071.25 1321 101 0.00 50063071.25 0.00 0.00
3 50074427.04 50158490.28 1696 978 0.00 50074427.04 0.17 0.17
4 50566084.85 50566084.85 1282 73 0.00 50566084.85 0.00 0.00
5 50167420.83 50167420.83 1280 100 0.00 50167420.83 0.00 0.00
6 50119743.90 50119743.90 1046 60 0.00 50119743.9 0.00 0.00
7 49939383.05 49939383.05 1640 105 0.00 49939383.05 0.00 0.00
8 50064894.64 50209321.83 133 74 0.00 50064894.64 0.29 0.29
9 50244521.10 50244521.10 1178 108 0.00 50244521.1 0.00 0.00
10 50325122.15 50325122.15 8680 169 0.00 50325122.15 0.00 0.00

0.25 1 48852237.43 48852237.43 106 60 0.00 48852237.43 0.00 0.00
2 49286533.56 49286533.56 1554 64 0.00 49286533.56 0.00 0.00
3 49330255.00 49344406.13 3475 93 0.00 49330255 0.03 0.03
4 49780867.06 49780867.06 214 65 0.00 49780867.06 0.00 0.00
5 49201311.50 49201311.50 881 56 0.00 49201311.5 0.00 0.00
6 49337331.41 49337331.41 2310 67 0.00 49337331.41 0.00 0.00
7 49341004.99 49341004.99 2602 153 0.00 49341004.99 0.00 0.00
8 49935505.60 49935505.60 682 62 0.00 49935505.6 0.00 0.00
9 49548292.52 49548292.52 107 65 0.00 49548292.52 0.00 0.00
10 49371452.68 49371452.68 537 89 0.00 49371452.68 0.00 0.00

Average 4358 1012 0.26 -0.01 0.26
Max 10811 10177 3.06 0.42 1.40
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Table A8: Results for 120-TUs instances, p = 6, Instances 2.

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.05 1 40911468.04 40911447.68 t.l. 3886 1.26 40395983.54 0.00 1.28
2 42127398.86 41698392.38 t.l. 1995 3.52 40644514.42 -1.02 2.59
3 42282276.70 41572717.85 t.l. 4770 4.83 40240042.74 -1.68 3.31
4 41860521.34 41585480.84 t.l. 1540 2.26 40914473.56 -0.66 1.64
5 41335990.97 41248783.94 t.l. 4524 1.92 40542339.94 -0.21 1.74
6 41643710.39 41295515.77 t.l. 3673 2.72 40511001.47 -0.84 1.94
7 41266644.61 41023400.52 t.l. 2836 3.07 39999758.62 -0.59 2.56
8 42282094.57 42131546.47 t.l. 1466 1.61 41601352.85 -0.36 1.27
9 41331166.96 41223422.80 t.l. 1451 1.37 40764929.97 -0.26 1.12
10 42006038.73 41999415.93 t.l. 1344 1.85 41228927.01 -0.02 1.87

0.10 1 39062930.30 39062930.30 181 65 0.00 39062930.3 0.00 0.00
2 39737276.04 39737276.04 t.l. 328 0.31 39614090.48 0.00 0.31
3 39766108.41 39586523.31 t.l. 595 1.66 39105991.01 -0.45 1.23
4 39974099.40 39946262.67 t.l. 416 0.94 39598342.87 -0.07 0.88
5 39427095.20 39427095.20 t.l. 243 0.19 39352183.72 0.00 0.19
6 39661153.95 39604904.24 t.l. 638 0.45 39482678.76 -0.14 0.31
7 39176330.04 39161122.88 t.l. 430 0.82 38855084.13 -0.04 0.79
8 40329851.67 40323047.24 t.l. 288 0.54 40112070.47 -0.02 0.53
9 39606017.29 39606017.29 t.l. 191 0.43 39435711.42 0.00 0.43
10 39886013.01 39886013.01 t.l. 352 0.64 39630742.53 0.00 0.64

0.15 1 38306539.83 38306539.83 70 58 0.00 38306539.83 0.00 0.00
2 38695150.55 38695150.55 412 68 0.00 38695150.55 0.00 0.00
3 38275946.71 38275946.71 360 71 0.00 38275946.71 0.00 0.00
4 38824378.07 38824378.07 44 56 0.00 38824378.07 0.00 0.00
5 38272304.63 38272304.63 383 60 0.00 38272304.63 0.00 0.00
6 38486066.89 38486066.89 7524 107 0.00 38486066.89 0.00 0.00
7 37981949.76 37981949.76 45 55 0.00 37981949.76 0.00 0.00
8 38943156.18 38943156.18 85 60 0.00 38943156.18 0.00 0.00
9 38667780.44 38670551.37 55 58 0.00 38667780.44 0.01 0.01
10 38672028.88 38706902.60 9586 72 0.00 38672028.88 0.09 0.09

0.20 1 37868391.42 37868391.42 58 54 0.00 37868391.42 0.00 0.00
2 37979154.82 37989936.21 55 55 0.00 37979154.82 0.03 0.03
3 37769794.59 37769794.59 70 57 0.00 37769794.59 0.00 0.00
4 38420468.01 38420468.01 36 55 0.00 38420468.01 0.00 0.00
5 37759104.25 37759104.25 61 55 0.00 37759104.25 0.00 0.00
6 37775115.13 37775115.13 178 57 0.00 37775115.13 0.00 0.00
7 37572137.48 37572137.48 34 55 0.00 37572137.48 0.00 0.00
8 38343088.45 38343088.45 63 55 0.00 38343088.45 0.00 0.00
9 38283978.80 38283978.80 31 55 0.00 38283978.8 0.00 0.00
10 37880184.44 37880184.44 295 63 0.00 37880184.44 0.00 0.00

0.25 1 37528021.25 37528021.25 34 54 0.00 37528021.25 0.00 0.00
2 37640623.33 37640623.33 46 55 0.00 37640623.33 0.00 0.00
3 37480587.61 37480587.61 51 54 0.00 37480587.61 0.00 0.00
4 38155626.27 38155626.27 40 53 0.00 38155626.27 0.00 0.00
5 37464246.79 37464246.79 40 53 0.00 37464246.79 0.00 0.00
6 37441497.23 37441497.23 37 55 0.00 37441497.23 0.00 0.00
7 37320504.28 37320504.28 38 54 0.00 37320504.28 0.00 0.00
8 37917190.28 37917190.28 43 54 0.00 37917190.28 0.00 0.00
9 38062278.92 38062278.92 33 53 0.00 38062278.92 0.00 0.00
10 37487135.87 37487845.46 56 53 0.00 37487135.87 0.00 0.00

Average 4509 656 0.61 -0.12 0.50
Max 10811 4770 4.83 0.09 3.31
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Table A9: Results for 88-TUs instances with four stages (p = 4, Instances 1 ).

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.10 1 29599522.27 29599522.27 5743 131 0.00 29599522.27 0.00 0.00
2 30776164.85 30776164.85 5432 169 0.00 30776164.85 0.00 0.00
3 30690752.53 30690752.53 37250 518 0.00 30690752.53 0.00 0.00
4 30179190.42 30179190.42 6048 236 0.00 30179190.42 0.00 0.00
5 30255143.93 30255143.93 23172 142 0.00 30255143.93 0.00 0.00
6 30372990.20 30372990.20 5454 134 0.00 30372990.2 0.00 0.00
7 29312039.26 29312039.26 21612 166 0.00 29312039.26 0.00 0.00
8 29139737.85 29139737.85 2809 112 0.00 29139737.85 0.00 0.00
9 29010838.37 29082589.16 4612 117 0.00 29010838.37 0.25 0.25
10 30730320.93 30730320.93 25218 582 0.00 30730320.93 0.00 0.00

0.15 1 29098115.73 29098115.73 1576 118 0.00 29098115.73 0.00 0.00
2 30292679.01 30292679.01 8453 149 0.00 30292679.01 0.00 0.00
3 29971690.82 29971690.82 2649 111 0.00 29971690.82 0.00 0.00
4 29639701.95 29639701.95 25937 138 0.00 29639701.95 0.00 0.00
5 29605293.30 29605293.30 30118 200 0.00 29605293.3 0.00 0.00
6 29983897.14 29983897.14 12283 126 0.00 29983897.14 0.00 0.00
7 28487613.62 28487613.62 10340 148 0.00 28487613.62 0.00 0.00
8 28514815.90 28514815.90 842 128 0.00 28514815.9 0.00 0.00
9 28137386.11 28137838.22 593 108 0.00 28137386.11 0.00 0.00
10 29913855.49 29913855.49 14104 449 0.00 29913855.49 0.00 0.00

0.20 1 28443990.86 28443990.86 410 120 0.00 28443990.86 0.00 0.00
2 29812518.38 29891550.16 19353 240 0.00 29812518.38 0.27 0.27
3 29486391.20 29501363.10 10170 109 0.00 29486391.2 0.05 0.05
4 28989098.46 28989098.46 4503 123 0.00 28989098.46 0.00 0.00
5 29051994.92 29051994.92 19105 157 0.00 29051994.92 0.00 0.00
6 29452350.32 29452350.32 15893 150 0.00 29452350.32 0.00 0.00
7 27764416.69 27764416.69 408 113 0.00 27764416.69 0.00 0.00
8 27990925.99 27990925.99 456 115 0.00 27990925.99 0.00 0.00
9 27851441.78 27851441.78 356 109 0.00 27851441.78 0.00 0.00
10 29248631.51 29248631.51 14190 119 0.00 29248631.51 0.00 0.00

Average 10970 178 0.00 0.02 0.02
Max 37250 582 0.00 0.27 0.27

Table A10: Results for 88-TUs instances with five stages (p = 4, Instances 1 ).

α No. Exp ZM ZH TM TH GAPopt ZLB GAPHM GAPHLB

0.20 1 28651162.80 28650635.22 8046.00 1154.00 0.00 28651163 0.00 0.00
2 31885682.36 29993536.39 t.l. 10432.00 7.77 29408165 -5.93 1.99
3 29988545.00 29708213.20 t.l. 4588.00 1.94 29406767 -0.93 1.03
4 37320255.03 29186888.70 t.l. 1416.00 22.87 28785113 -21.79 1.40
5 29754053.60 29183113.44 t.l. 3033.00 2.87 28900112 -1.92 0.98
6 30021672.48 29680565.49 t.l. 3193.00 2.67 29220094 -1.14 1.58
7 27896820.37 27898341.04 7227.00 849.00 0.00 27896820 0.01 0.01
8 30958514.44 28166577.14 t.l. 1313.00 9.59 27989593 -9.02 0.63
9 29868434.27 28060066.99 t.l. 957.00 6.60 27897118 -6.05 0.58
10 29582271.26 29350227.70 t.l. 1097.00 1.49 29141495 -0.78 0.72

Average 10185 2803 5.58 -4.76 0.89
Max 10823 10432 22.87 0.01 1.99
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