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Abstract
The lack of standardization across Wearable Human Activity Recog-
nition (WHAR) datasets limits reproducibility, comparability, and
research efficiency. We introduce WHAR datasets, an open-source
library designed to simplify WHAR data handling through a stan-
dardized data format and a configuration-driven design, enabling
reproducible and computationally efficient workflows with minimal
manual intervention. The library currently supports 9 widely-used
datasets, integrates with PyTorch and TensorFlow, and is easily
extensible to new datasets. To demonstrate its utility, we trained
two state-of-the-art models, TinyHar and MLP-HAR, on the in-
cluded datasets, approximately reproducing published results and
validating the library’s effectiveness for experimentation and bench-
marking. Additionally, we evaluated preprocessing performance
and observed speedups of up to 3.8× using multiprocessing. We
hope this library contributes to more efficient, reproducible, and
comparable WHAR research.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); Ubiquitous and mobile computing; • Computing
methodologies→Machine learning.
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1 Introduction
Wearable Human Activity Recognition (WHAR) research in areas
such as healthcare, sports analytics, and smart environments [17]
has led to the creation of a diverse and growing number of datasets
[5, 18, 29]. However, this growth has also exposed a significant chal-
lenge within the WHAR community: the lack of standardization.
Datasets are often characterized by significant variability in file
structures and formats, heterogeneous data, and general preprocess-
ing requirements [3, 5, 18, 29]. As a result, researchers frequently
rely on custom dataset-specific code to handle and experiment with
each dataset [3]. This leads to repetitive work, hinders the repro-
ducibility of published results, and complicates fair comparisons
across models, even when evaluated on the same dataset. Unlike
other fields such as natural language processing, where centralized
benchmarks are common, the lack of standardization in WHAR
makes such efforts difficult. Consequently, researchers still spend
considerable time and effort on the tedious and error-prone task of
data handling, diverting focus from their primary research goals
and novel contributions. Although the need for standardization has
been acknowledged in the literature [3, 16], only limited steps have
been taken to tackle these issues systematically.

To overcome these challenges, we introduce a novel open-source
library designed to standardize and streamline data handling in
WHAR research. The library is available onGitHub under theMIT li-
cense [8], encouraging community collaboration and wide adoption.
Our library allows the conversion of a growing number of datasets
from the literature into a standardized format using dataset-specific
parsers, which can subsequently be preprocessed and loaded with-
out requiring manual work. Using multiprocessing and caching, the
library achieves both computational and memory efficiency, mini-
mizing redundant recomputation. It is framework-agnostic at its
core, to allow integration with different deep learning frameworks
such as PyTorch [24] and TensorFlow [1] using framework-specific
adapters. A core strength of our library is its configuration-driven
design, enabling consistent and unified data handling while remain-
ing flexible to the unique requirements of each dataset. We designed
the library in such a way that custom WHAR datasets, which are
not yet supported, can easily be integrated and used with the library
by simply providing a dataset-specific configuration including a
parser. By abstracting away the complexities and inconsistencies of
individual dataset formats, this approach aims to provide a unified
data handling solution for WHAR. We hope that the introduction
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of this standardized library will lead to the following advancements
within the WHAR research community:

(1) Increased Efficiency: By providing ready-to-use data han-
dling, the library aims to allow researchers to focus on build-
ing and evaluating models instead of spending time on data
handling and integration.

(2) Improved Reproducibility: By enforcing consistent data
configurations, our library is expected to help researchers
replicate experiments more reliably, reducing the variability
introduced by inconsistent data handling.

(3) Fair Comparability: Standardized data handling has the
potential to enable fair and direct comparisons across models
and datasets, supporting the development of standardized
WHAR benchmarks.

2 Background and Motivation
WHAR relies heavily on the availability and reuse of open datasets
[3]. However, numerous challenges hinder effective utilization, as
identified by [3] through a comprehensive literature review and a
questionnaire survey of researchers with expertise in HAR. Their
study presents a conceptual framework encompassing four phases
in the open dataset lifecycle: construction, sharing, searching, and
usage. Across these phases, several recurring issues were identified,
that significantly impact research productivity and reproducibility.

One of the most pressing challenges highlighted is the absence
of a standardized data format for HAR datasets. This lack of consis-
tency complicates data sharing, hinders reproducibility, and adds
unnecessary effort when benchmarking or applying novel methods.
Researchers reported that datasets often come with missing values,
errors, or in unstructured, non-presentable formats, discouraging
reuse and increasing the preprocessing burden. In fact, when using
existing datasets, nearly 67.7% of participants indicated needing
either “some” or “a lot” of preprocessing effort before the data could
be used experimentally. Moreover, while a large majority (96.9%)
of respondents download open datasets for experimentation, their
ability to make use of them is limited by poor metadata, inconsistent
annotations, and idiosyncratic formats. Key selection criteria for
dataset reuse include the availability of code or scripts for data pro-
cessing (48.4%), the data format itself (54.8%), and the presence of
clear metadata (45.2%). These concerns highlight the community’s
desire for datasets that are easy to integrate, well-documented, and
usable with minimal manual intervention.

Our work directly addresses these gaps by introducing a novel
open-source library designed to standardize and streamline dataset
handling in WHAR research. It tackles the root causes behind many
of the data-sharing and usability issues, such as lack of standard-
ization, metadata inconsistency, and preprocessing overhead, ulti-
mately promoting collaboration and reproducibility in the WHAR
community.

3 Related Work
Efforts to standardize dataset access and improve usability have
gained significant traction across machine learning domains. Promi-
nent general-purpose libraries and platforms such as Hugging Face
[19] and OpenML [13] have made substantial contributions in this
area. Hugging Face’s Datasets library enables seamless loading

of datasets for natural language processing, computer vision, and
audio tasks via a unified API. Integration with the Hugging Face
Hub further simplifies sharing and collaboration within the com-
munity. Similarly, OpenML serves as an open platform for sharing
datasets, provides standardized APIs, and encourages reproducibil-
ity and reuse through its collaborative design. While both platforms
promote dataset accessibility and interoperability, their primary fo-
cus is on general-purpose usage across domains. They neither offer
domain-specific preprocessing pipelines nor support the specialized
requirements of WHAR datasets, e.g. resampling or windowing.

Several domain-specific libraries address adjacent challenges.
For instance, [15] and sktime [20] offer comprehensive frameworks
for time series learning, supporting forecasting, classification, and
transformation pipelines. While including preprocessing function-
ality relevant to WHAR, their focus remains on general time se-
ries tasks. As such, these frameworks fall short in addressing the
domain-specific challenges of WHAR pipelines and cannot be di-
rectly applied without extensive adaptation.

Other initiatives such as MLCroissant [2] and DCAT-AP [12]
focus on standardizing dataset metadata and improving dataset
discoverability, particularly in the context of FAIR (findability, ac-
cessibility, interoperability, reusability) data principles [33]. While
these formats contribute to making datasets more “AI-ready,” they
are primarily concerned with semantic interoperability rather than
the structural readiness required for WHAR data handling.

The lack of standardization inWHAR has also been addressed by
prior work such as [16], which focuses primarily on standardizing
training methodologies and evaluation protocols. However, their
contribution centers on the modeling and training process rather
than on dataset access and preprocessing.

In contrast to these prior efforts, our proposed library is purpose-
built for WHAR data handling. It unifies dataset access, preprocess-
ing, and deep learning integration through a modular architecture
centered around a standardized data format. Crucially, our focus
on WHAR-specific requirements distinguishes our library from
general-purpose solutions. Over time, this framework can serve as
a foundation for benchmarking and sharing WHAR datasets in a
consistent and reproducible manner.

4 Requirements and Features
To help achieve the goals of increased efficiency, improved repro-
ducibility, fair comparability, the WHAR datasets library must sat-
isfy several key design requirements and offer a rich set of features.
We begin by outlining the non-functional requirements.

(R1) Usability: The library should offer a simple, intuitive inter-
face for preprocessing and loading WHAR datasets, enabling
users to start experiments with just a few lines of code.

(R2) Reproducibility: A standardized, dataset-agnostic configu-
ration schema should define data handling parameters trans-
parently, ensuring consistent and reusable experimentation.

(R3) Dataset-Agnosticism: The library should support diverse
WHAR datasets by converting them into a standardized for-
mat. Integrating new datasets should require minimal effort,
using a parser to map to this format, ensuring extensibility
and backward compatibility.
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(R4) Framework-Agnosticism: The library should be compati-
ble with major deep learning frameworks like PyTorch [24]
and TensorFlow [1], allowing flexible model development.

(R5) Computational Efficiency: To support large datasets and
changing hyperparameters, the standardized data format
should be optimized for computational efficiency, enabling
multiprocessing and caching to ensure scalability.

In addition to these non-functional requirements, the following
functional features are critical. They are tailored specifically to the
WHAR domain and underscore the necessity of a dedicated library
designed to address its unique challenges.
(F1) Subject-Wise Splitting: The library must support subject-

disjoint train/validation/test splits to prevent data leakage
and better reflect real-world deployment. It should enable
protocols like subject-wise and leave-one-subject-out (LOSO)
cross-validation.

(F2) Normalization: Built-in support for common normalization
methods, including min-max, z-score, and robust scaling,
is required. Both per-window and global (train-set-based)
normalization modes should be supported.

(F3) Sample Loading: To accommodate varying memory and
runtime constraints, the library should provide two sample-
loading strategies: on-demand (loading data from disk as
needed) for large datasets, and preload (loading all windows
into memory) for faster access when dealing with smaller
datasets, which is common for WHAR.

(F4) ClassWeighting: Given the prevalence of class imbalance in
WHAR due to varying activity durations, the library should
compute class weights from the training data for integration
into loss functions.

5 Design and Implementation
Building on the non-functional requirements and functional fea-
tures outlined in the previous section, the WHAR datasets library
is designed with a strong focus on modularity, extensibility, and
computational efficiency. As illustrated in Figure 1, the architecture
cleanly separates dataset-specific configuration and parsing, as well
as framework-specific adapters, from the core library. This separa-
tion enables straightforward integration of new WHAR datasets
(R3), ensures compatibility with major deep learning frameworks
(R4), thereby enhancing overall usability (R1), and offers robust
support for WHAR-specific data handling needs (F1–F4).

5.1 Standardized Data Format
To support scalable integration of diverse WHAR datasets (R3),
the library employs a standardized data format based on a session-
centric representation. Each session corresponds to a single sub-
ject performing a single activity and is stored as an individual
file containing timestamp-indexed, multivariate time series data
from inertial measurement units (IMUs) and other sensors. This
design enables multiprocessing of sessions, enhancing the library’s
scalability to very large datasets (R5).

Parquet was selected as the storage format due to its columnar
structure, built-in compression, and strong compatibility with scal-
able data processing frameworks such as Dask [28], all of which
enhance computational efficiency and scalability (R5). Its suitability

Framework-Specific

Tensorflow
Adapter

Pytorch
Adapter

Core Library

SubjectSplitting

SampleLoading

Normalization

ClassWeighting

Preprocessing

Dataset-Specific

Config 
(with Parser)

Figure 1: Structure of the library showing clear separation of
dataset- and framework-specific components from feature
components of the core library.

for large-scale time series machine learning tasks has also been
demonstrated in a prior evaluation by OpenML [22].

To support features such as subject-wise data splitting (F1) and
class weighting (F4) without repeated reads of raw sensor data,
metadata required for subject identification and activity labeling
is stored separately in centralized, structured tables. This meta-
data layer, illustrated in Figure 2, enables efficient filtering and
partitioning during preprocessing, further contributing to overall
computational efficiency (R5).

ActivityMetadata

PK activity_id: int

activity_name: str

WindowMetadata

PK window_id: str

session_id: int

SessionMetadata

PK session_id: int

subject_id: int

activity_id: int

Figure 2: Entity-relationship diagram illustrating the meta-
data schema for the standardized data format.

5.2 Configuration and Parsing
WHAR datasets are integrated through lightweight configurations
containing dataset-specific metadata, data handling hyperparame-
ters, and a parser. While implementing a parser requires an initial
manual effort, it guarantees dataset-agnosticism (R3) by converting
raw dataset formats into the standardized data format described
earlier. Once integrated, the dataset is fully compatible with the
core library’s preprocessing pipeline and feature components dis-
cussed in the next section. Users can easily adapt preprocessing by
modifying configuration values, thereby supporting usability (R1).
Moreover, using the same configuration with the library ensures
consistent results, which promotes reproducibility (R2).

To further improve usability and ensure configuration correct-
ness (R1), the configuration schema is implemented using Pydantic,
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Downloaded?

no no

Resample

Select Channels

Download Original
Dataset

Processed?
yes yes

Standardized?
yes

no

Generate Windows

Cache WindowsCache Windows &
WindowMetadata

Parse Original
Dataset

Process 
Session 1

Process Session

Cache Sessions,
Session- &

ActivityMetadata
Extract Original

Dataset

Process 
Session N

Figure 3: Activity diagram illustrating the preprocessing workflow. The process is divided into three main steps: (1) downloading
the dataset, (2) converting it into a standardized data format, and (3) processing sessions to produce windows, optionally using
multiprocessing. Each step is cached to prevent redundant computations.

enabling automatic validation. This allows users to catch misconfig-
urations early and enhances the overall reliability of data handling.
An example configuration is shown in Figure 4.

5.3 Feature Components
The core library implements a modular preprocessing pipeline
alongside components that realize various functional features. These
components operate on the standardized data format and are fully
driven by dataset-specific configurations described in the previous
section, promoting reproducibility across experiments (R2). Func-
tional features, including subject-wise splitting (F1), normalization
(F2), sample loading (F3), and class weighting (F4), are implemented
as individual components. This design ensures consistent behavior
across datasets while effectively addressing WHAR-specific data
processing requirements.

The preprocessing pipeline handles the complete dataset prepara-
tion workflow, from downloading and parsing into the standardized
format to executing a series of user-defined operations such as ac-
tivity filtering, channel selection, resampling, and windowing. It
validates the output of parsing against constraints of the standard-
ized data format, utilizes caching to prevent redundant processing,
and employs optional multiprocessing, ensuring efficiency and scal-
ability (R4). The resulting data windows are saved as individual
Parquet files, each linked to its session via a centralized metadata
table (see Figure 2), ensuring full data traceability. An overview of
this pipeline is shown in Figure 3.

5.4 Framework Integration
Tomeet the requirement of framework-agnosticism (R4), the library
provides dedicated adapters for the popular deep learning frame-
works PyTorch [24] and TensorFlow [1]. These adapters utilize the
core library’s components while presenting familiar, framework-
specific interfaces, enabling easy integration with existing training
workflows and thus enhancing usability (R1). As illustrated in Fig-
ure 5, all core library functionality is fully abstracted and driven
by configuration, ensuring consistency and reproducibility across
experiments.

Figure 4: An example configuration containing metadata and
hyperparameters, organized into sections for information,
parsing, preprocessing, and training.
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Figure 5: Example usage of the library with PyTorch.

5.5 Supported Datasets
To ensure immediate usability, the library includes built-in support
for a set of WHAR datasets commonly used in the literature. These
datasets vary widely in the number of subjects, activities, and sam-
pling rates, as summarized in Table 1. Each dataset comes with a
complete configuration and a dedicated parser, enabling out-of-the-
box use and enhancing usability (R1). These implementations also
serve as practical templates for users who wish to integrate addi-
tional datasets. Note that our current focus has been on integrating
a broad range of datasets by converting them into the standardized
format. While we have applied basic data cleaning, we intend to
enhance these efforts by refining and updating the parsers in the
future.

Table 1: WHAR datasets currently supported by the library.

WHAR
Dataset

Number of
Subjects

Number of
Activities

Sampling
Rate (Hz)

UCI-HAR [5] 30 6 50
WISDM [18] 36 6 20
MHEALTH [6] 10 12 50
PAMAP2 [25] 9 18 100

OPPORTUNITY [29] 4 3 30
MotionSense [21] 9 6 50

DSADS [4] 8 19 25
Daphnet [23] 10 2 64
HARSense [11] 12 6 25

Thanks to the library’s modular architecture, extending support
to new datasets generally requires only implementing a parser
and specifying a configuration, without modifying the core code-
base. Potential datasets that could be integrated by the community
to expand this collection include SHL [32], RealLifeHar [14], Ex-
traSensory [31], RealWorld [30], UTD-MHAD [9], USC-HAD [34],
HuGaDB [10], w-HAR [7], HAPT [27], and WISDM-19 [26].

6 Experiments
6.1 Model Training and Evaluation
To implicitly demonstrate the functionality of the library, its dataset
support, and its usability for benchmarking, we trained two popular
WHARmodels, TinyHAR [36] andMLP-HAR [35], on the 9 natively
supported datasets (see Table 1). Results are shown in Figure 6.
We did not perform hyperparameter tuning or other performance

optimizations such as data cleaning, as the goal was simply to
illustrate the usability and ease of benchmarking with the library.
As a result, the reported performance is not directly comparable to
results from papers that involvemodel-specific tuning or preprocess
the dataset differently. Due to the library’s design, the training and
evaluation process only requires to implement a newmodel together
with a training script as all the necessary components to obtain
the dataloader are included in the library, therefore making this
a fair comparison between the two tested models. Training was
performed on a single NVIDIA A100 GPU with 40GB of memory,
using a batch size of 256, the Adam optimizer, and a learning rate
of 0.001. To prevent overfitting, early stopping was implemented,
halting training after 15 consecutive epochs without improvement
in validation loss. Evaluation followed a Leave-One-Subject-Out
(LOSO) cross-validation protocol, with test subjects for each split
predefined in the dataloader to ensure consistent and reproducible
splits in line with the library’s framework.

6.2 Preprocessing Performance Analysis
Furthermore, we assessed the impact of multiprocessing on pre-
processing performance in comparison to sequential execution
across the 9 natively supported datasets. As illustrated in Figure
7, we report both absolute time differences and speedup factors,
based on measurements conducted on an M2 MacBook Pro with 10
CPU cores. For 8 out of the 9 datasets, multiprocessing achieved
speedups between approximately 2.1× and 3.8×. The only excep-
tion was HARSense, the smallest dataset, where the overhead of
multiprocessing outweighed its benefits. These findings demon-
strate notable time savings when preprocessing multiple datasets,
underscoring the library’s computational efficiency and scalability
to larger datasets.

7 Conclusion and Future Work
This paper introduces WHAR Datasets, an open-source library de-
signed to standardize and streamline data handling for Wearable
Human Activity Recognition (WHAR). By addressing challenges
related to inconsistencies in data structures and formats, which
often require dataset-specific handling, the library aims to improve
research efficiency, enhance reproducibility, and enable fairer com-
parability within the WHAR community.

Key contributions of the library include a standardized data for-
mat, a configuration- and parser-based approach for dataset integra-
tion, WHAR-specific preprocessing and other functional features
built on this format, and framework-agnostic adapters compatible
with popular deep learning frameworks. These features allow re-
searches to concentrate on application development rather than
data handling, facilitating faster experimentation and more reliable
comparison across different approaches. The design emphasizes
extensibility, enabling straightforward integration of new datasets
and ensuring the library’s long-term applicability.

Currently, the library includes a curated collection of 9 widely
used WHAR datasets. Future efforts focus on expanding the repos-
itory by adding more datasets from the literature, along with ad-
vanced data cleaning, augmentation and preprocessing techniques.
New functional features are planned, such as window-level auxil-
iary feature generation (e.g., spectrograms, statistical summaries)
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alongside raw sensor data, enabling hybrid modeling approaches.
We also aim to encourage community contributions to further en-
rich the library and support the development of standardized bench-
marks for WHAR research.
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