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Abstract

The Madden-Julian Oscillation (MJO) and stratospheric polar vortex (SPV) are
prominent sources of subseasonal predictability in the extratropics. It has been
shown that the joint interaction of the MJO and the SPV can modulate the
preferred phase of the North Atlantic Oscillation (NAO) and the occurrence of
weather regimes. However, improving numerical weather prediction (NWP) at
3-week lead times remain underexplored. This study investigates how MJO and
SPV phases affect Greenland Blocking (GL) activity and integrates atmospheric
state information into a neural network to enhance week 3 weather regime activ-
ity forecasts. We define a weather regime activity metric using European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis and reforecasts. In
reanalyses we find increased GL activity following MJO phases 7, 8, and 1, as
well as weak SPV phases, indicating climatological windows of opportunity in
line with previous studies. However, ECMWF forecast skill improves only in
MJO phases 8 and 1 and weak SPV phases, identifying somewhat different model
windows of opportunity. Next, we explore using these findings in postprocessing
tools. Climatological forecasts based on MJO/SPV-NAO relationships provide
a purely statistical approach to subseasonal GL activity forecasting, indepen-
dent of NWP models. Notably, MJO-conditioned climatological forecasts show
clear signals when evaluated against observed GL activity. Statistical-dynamical
models, using neural networks that combine historical atmospheric state data
with NWP-derived weather regime metrics, improve weather regime activity
forecasts across all regimes considered, achieving an absolute accuracy increase
of 5.8 percentage points in forecasting the dominant weather regime com-
pared with ECMWEF. This is particularly beneficial to blocking in the European
domain, where NWP models often underperform. Atmospheric conditioned
and neural network forecasts serve as valuable decision-support tools alongside
NWP models, enhancing the reliability of subseasonal predictions.
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1 | INTRODUCTION

The demand for accurate subseasonal forecasting—
extending beyond 10 days and up to 2 months—has grown
over the past decade, driven by socio-economic needs.
Decision-makers in sectors such as public health, agricul-
ture, and energy rely on accurate forecasts several weeks
ahead. For example, in the United Kingdom, winter cold
spells can increase hospital admissions due to respiratory
diseases (Charlton-Perez et al., 2019; Elliot et al., 2008).
In agriculture, improved drought forecasting can save
millions of dollars by mitigating crop shortages (Salient &
Atlas, 2023). Additionally, large-scale weather patterns can
serve as indicators of peak winter energy demand, which
can place immense stress on power systems (Bloomfield
et al., 2020; Millin et al., 2024). Moreover, in the context
of renewable energy forecasting, Bloomfield et al. (2021)
show that pattern-based methods yield higher forecast
skill than grid-point-based methods for lead times beyond
12 days.

Large-scale quasi-stationary, recurrent, and persistent
weather patterns are commonly referred to as weather
regimes (Hannachi et al., 2017; Michelangeli et al., 1995;
Vautard, 1990). They represent the complex large-scale
circulations through a finite set of states, facilitating
the interpretation and categorisation of the prevailing
or forecasted atmospheric flow. For Europe, four sea-
sonal weather regimes are common; namely, the two
phases of the North Atlantic Oscillation (NAO+/NAO-),
Atlantic Ridge (AR), and Blocking (e.g., Cassou, 2008;
Ferranti et al,, 2015; Michelangeli et al, 1995). These
regimes are associated with distinct impacts on surface
variables, including 2-m temperature, 10-m wind, and
radiation (Grams et al., 2017; Yiou & Nogaj, 2004). Often,
the weather regimes are identified on the basis of the
500 hPa geopotential height field (Z500). The seasonal
regimes have been refined recently, for the European
region, by a year-round definition of seven weather
regimes (Grams et al., 2017) that can be formalised with
a seven-dimensional normalised weather regime index
(IWR). Two of these seven weather regimes, Zonal Regime
(ZO) and Greenland Blocking (GL), closely resemble the
positive and negative phase of the NAO, respectively; see
Beerli and Grams (2019) for more details. We focus on the
seven weather regimes, as they provide a more nuanced
view of surface weather impacts, particularly during win-
ter (Beerli & Grams, 2019; Mockert et al., 2023). The fore-
cast skill of the GL and ZO is generally the best among the
seven weather regimes, whereas the European and Scandi-
navian Blocking regimes are the worst predicted. This has
been demonstrated using reforecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
model alone (Biieler et al., 2021) and in combination with

the National Centers for Environmental Prediction and
the UK Met Office models (Osman et al., 2023), with the
forecast skill evaluated via the Brier skill score applied to
the categorical IWR. These results are further supported
when assessing a four-regime definition: the anomaly cor-
relation between NAO+/NAO- to blocking/anti-blocking
across six models indicates similar relative skill differences
(Ferranti et al., 2018).

Blocking regimes are especially important for the
prediction of renewable power generation in winter,
as periods of low wind and solar power output occur
mainly within these regimes (Driicke et al., 2021; Otero
et al., 2022; Wiel et al., 2019). GL is further connected
with colder-than-average winter temperature anomalies in
central and northern Europe, leading to increased heating
demand (Mockert et al., 2023). Improvements in the pre-
dictions for these three regimes, along with the other four
regimes, in winter would greatly benefit the energy sector,
particularly energy trading companies and transmission
grid operators.

Previous studies based on reanalysis data suggest
links between the atmospheric state at initialisation time
and the occurrence of weather regimes weeks later (e.g.,
Cassou, 2008). Though much weaker, these connections
are reflected in the skill of numerical weather predic-
tion (NWP) models in forecasting these regimes (e.g.,
Vitart, 2017). Two major atmospheric modes of variability
influencing GL (or NAO—-) are the Madden-Julian Oscilla-
tion (MJO; Madden & Julian, 1971), and the stratospheric
polar vortex (SPV). Cassou (2008) and Lin et al. (2009)
showed a lagged connection between MJO phases and the
preferred flow pattern in the North Atlantic-European
region in reanalysis data. The occurrence of NAO— is
anomalously high 2 weeks after MJO phases 6-8, whereas
NAO+ is anomalously more frequent following MJO
phases 3 and 4. Similarly, although considerably weaker
than in reanalysis, reforecasts by the ECMWF show posi-
tive NAO forecasts for lead times of 11-15 days following
phase 3 and negative NAO forecasts following phase 7
(Vitart, 2017). Ferranti et al. (2018) describe an asymmet-
ric connection of the MJO to forecasts of the NAO phases.
Forecasts of NAO— tend to have more (less) skill when
the MJO is active (inactive) at initialisation time, whereas
little sensitivity of the forecast skill to the MJO activity
at initial time is found for the NAO+ phase. The under-
lying mechanisms have been explored with idealised
model experiments, showing that tropical MJO forcing
excites Rossby waves that modulate the Pacific jet and
synoptic eddy activity, which in turn favours the devel-
opment of NAO+ after phase 3 and NAO— after phase 6
(Fromang & Riviere, 2020). Despite the MJO teleconnec-
tion to Europe shown, NWP still struggles exploiting this
potential source of subseasonal predictability. A potential
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reason is the multiscale interaction with other modes of
subseasonal variability and the chaotic growth of error
(Roberts et al., 2023).

Most importantly, the relationship between the MJO
and European weather regimes is further modulated by
the quasi-biennial oscillation (QBO), El Nifio Southern
Oscillation (ENSO), and the SPV. In this context, Feng and
Lin (2019) investigate the role of the QBO, Lee et al. (2019)
and Roberts et al. (2023) focus on ENSO-related mod-
ulation and its representation in forecasts, and Kent
et al. (2023) explore where skill improvements for the
MJO-NAO link might be achieved.

The MJO influences the NAO through both a tro-
pospheric pathway and a stratospheric pathway involv-
ing the polar vortex. Lee et al. (2019) show that the
Rossby-wave-driven tropospheric pathway linking the
MJO to NAO+ is strongly enhanced during El Nifio,
whereas the stratospheric pathway connecting the MJO
to NAO- is strengthened during La Nifia. When the SPV
is in a state that supports the expected NAO response,
the likelihood of the NAO being in the corresponding
state following active MJO periods increases by up to 30%
(Barnesetal., 2019). Reanalysis data show that GL (NAO—-)
occurs with an enhanced probability of up to 2 months fol-
lowing weak SPV conditions (e.g., Beerli & Grams, 2019)
due to persistent anomalies in the stratosphere (White
et al., 2020). Further, Domeisen et al. (2020c) state, based
on reanalysis data, that sudden stratospheric warmings
(SSWs) are also frequently followed by an Atlantic Trough
(AT) in the weeks after. GL is most likely if a blocking sit-
uation over western Europe and the North Sea prevailed,
whereas the AT is most likely when GL was present around
the SSW onset.

The connection between the atmospheric state at
initialisation time and the frequency of occurrence of
weather regimes, as well as the enhanced forecast skill
after forecast initialisation in certain atmospheric states,
indicates that the phases of the MJO and SPV could
potentially be considered as windows of opportunity for
subseasonal predictions. Windows of opportunity can gen-
erally be defined as specific atmospheric states in which
either the frequency of occurrence of an event is increased,
referred to as a climatological window of opportunity, or
the forecast of an event is improved, referred to as a model
window of opportunity—following the definition of Specq
and Batté (2022) applying windows of opportunity on the
MJO and heavy tropical precipitation events.

This study explores windows of opportunity linking the
MIJO and SPV to weather regimes during the extended win-
ter period (November to March). A key objective is to deter-
mine whether the established links between these atmo-
spheric modes of variability and weather regimes, typically
observed up to 2 weeks, extend into forecast week 3.

Royal Meteorological Society

To investigate this, we first focus on GL as an illus-
trative example. GL is chosen because it plays a criti-
cal role in European weather impacts in wintertime; for
instance, it is associated with cold Dunkelflauten (Mock-
ert et al.,, 2023), causing strong stress scenarios for the
power system in wintertime. Using GL as an example,
we investigate whether a climatological forecast condi-
tioned on the atmospheric state at initialisation can pro-
vide meaningful indications of GL occurrence beyond
week 2. Building on this, we then broaden the analy-
sis using statistical-dynamical models, particularly neural
networks (NNs) that combine prior atmospheric knowl-
edge with NWP outputs. In this context, we generalise
beyond GL to predict the full set of weather regimes, since
understanding the joint activity across all regimes is essen-
tial for anticipating societal impacts.

Before answering these questions, data and methods
are introduced in Section 2. This study provides a detailed
analysis of windows of opportunity conditioned on the
MJO and SPV for predicting the activity of GL on a lead
time of 3weeks (Sections 3.1 and 3.2). That information
is then further used to provide an atmospheric-based cli-
matology conditioned on the state of the MJO or SPV as a
tool alongside an NWP model (Section 3.3). In a final step,
all information from the NWP and the atmospheric state
at initialisation time are joined by an NN to improve the
forecasts of the activity of weather regimes (Section 3.4).
Section 4 summarises and discusses the main findings.

2 | DATA AND METHODS

2.1 | ECMWEF reforecast and reanalysis

This study utilises subseasonal to seasonal reforecast
data of the ensemble prediction system of the ECMWF,
provided through the Subseasonal-to-Seasonal Predic-
tion Project Database (Vitart et al., 2017). To increase
the number of forecast initial dates, we include fore-
casts from two consecutive model cycles, Cy46R1 and
Cy47R1 (ECMWEF, 2018). The forecasts from these two
model cycles are treated together and weighted equally;
differences between the cycles are minor compared with
larger changes in other model cycles and are not expected
to substantially affect the results. These reforecasts are
initialised twice a week (Mondays and Thursdays) from
ECMWEF Reanalysis v5 (ERAS5) reanalysis data (Hersbach
et al., 2020) for the past 20 years and consist of 11 ensem-
ble members. The forecasts cover a forecast lead time of
0-46 days at a native horizontal grid spacing of 16 km up
to day 15 and 32km from day 15 onwards. Forecast data
were remapped from their native resolution to a regular
latitude-longitude grid of 1° x 1° grid spacing. The two
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model cycles were operational from June 11, 2019, to
May 11, 2021, with a cycle change from Cy46R1 to Cy47R1
on June 30, 2020. As a result, for the period between
May 11 and June 30, reforecasts are only available from
Cy46R1. Our reforecast dataset comprises a total of 4,000
initial dates, each with 11 ensemble members. For fore-
cast evaluation, ERAS5 is used as the verification dataset
by aligning its data with each initialisation date and lead
time (cf. Wandel et al., 2024). Additionally, ERAS5 data are
remapped from their native grid to match the reforecast
grid spacing.

2.2 | Weather regimes

In this study, we use the seven year-round North
Atlantic-European weather regimes introduced by Grams
et al. (2017) adapted to ERA5 reanalysis as described
in Hauser et al. (2023a, 2023b) and applied to refore-
casts following the approach of Biieler et al. (2021) and
Osman et al. (2023). These weather regimes represent the
most common large-scale circulation patterns in the North
Atlantic-European region (30-90° N, 80° W-40° E).

For completeness, the key steps of the regime com-
putation are repeated here. First, we compute 500 hPa
geopotential height anomalies (Z500 anomalies) relative
to a 91-day running climatology, defined as the multi-
year mean for each calendar day smoothed with a 91-day
window, within the domain of weather regimes. As in
previous studies (e.g., Michel & Riviére, 2011) we sup-
press variability on time-scales shorter than 10days, by
applying a Lanczos low-pass filter with a 10-day cut-off
period. These filtered Z500 anomalies are then seasonally
normalised! to ensure that the anomalies from different
seasons are comparable in magnitude, allowing for a con-
sistent year-round classification of weather regimes. The
resulting six-hourly Z500 anomaly fields (1979-2019),
after filtering and normalisation, are used as input for an
empirical orthogonal function analysis. We then apply a
k-means clustering algorithm on the first seven EOFs and
set k = 7. These seven clusters represent the seven weather
regimes—for a visualisation of the weather patterns, see
Mockert et al. (2024, fig. S1)—with three cyclonic regime
types (AT, ZO, and Scandinavian Trough [ScTr]) and
four anticyclonic regime types (AR, European Blocking
[EuBL], Scandinavian Blocking [ScBL], and GL).

The projection of instantaneous anomalies onto the
mean regime patterns, whether in reanalysis or reforecast,
is determined by a seven-dimensional IWR following the
approach of Michel and Riviére (2011). As this study relies
on the dataset computed in Mockert et al. (2024), we refer
the interested reader to their publication for a detailed
explanation and only briefly outline the computation of

the IWR. Here, we specifically use the Z500 bias-corrected
IWR reforecasts and reanalysis from Mockert et al. (2024):

1. Compute Z500 anomalies for reforecasts/ERAS5 relative
to a 91-day running mean model/ERAS5 climatology
(1999-2015 and 1979-2019, respectively).

2. Apply low-pass filtering and normalisation to obtain
filtered and standardised Z500 anomalies.

3. Project filtered and standardised Z500 anomalies onto
seven cluster mean Z500 anomalies of distinct weather
regimes.

4. Compute IWR by normalising the projection against its
climatological mean and standard deviation.

2.3 | Weather regime activity

This study focuses on the predictability of weather regimes
at 3weeks forecast lead time. Owing to the reduced skill
of daily weather regime forecasts at this lead time (Biieler
et al.,2021) and the practical needs of decision-makers, we
consider weekly aggregated forecast information based on
daily data. To achieve this, we introduce the concept of
weather regime activity, which quantifies the presence of a
specific weather regime over a given period. The weather
regime activity is defined in two complementary ways.

2.3.1 | Weekly mean weather regime activity
The weekly mean weather regime activity (WRactmean),
suited for deterministic decision-making, considers a
weather regime active in ERAS5 or an ensemble mem-
ber (WRactmean = 1) in the respective week, if the weekly
mean of daily IWR? exceeds a predefined activity thresh-
old of IWRyi, = 1, otherwise WRactye,n, = 0. Applied to
the forecasts across 11 ensemble members, WRactyean
takes values between 0 and 1 in increments of 1/11, rep-
resenting a probability in the ensemble. Hence, for the
WRactyean, ERAS5 and the individual ensemble mem-
bers provide a deterministic measure of weather regime
activity, whereas the ensemble mean (across 11 mem-
bers) offers a probabilistic forecast of this deterministic
outcome.

232 |
activity

Aggregated daily weather regime

In contrast, the aggregated daily weather regime activ-
ity (WRact,g) provides a more detailed view by mea-
suring the fraction of days within a given week where
the daily IWR exceeds IWRp;,. Applied to ERA5 or an
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ensemble member, this results in values between 0 and
1, with discrete steps of 1/7, representing the fraction
of days per week with active regime conditions. When
applied to ensemble forecasts across 11 ensemble mem-
bers, WRact,g, yields values between 0 and 1 in steps of
1/77, allowing for a probabilistic perspective, representing
the fraction of days per week with active regime conditions
in the ensemble.

2.3.3 | Computation process

Figure 1 illustrates the computation process. Seven con-
secutive daily IWR values from ERAS5 reanalysis, shown
as turquoise circles in Figure 1a, are averaged to com-
pute the weekly mean IWR (blue lines). This value (here,
2.1 in week 3) is then compared with the activity thresh-
old TWRy,, (black dashed line; here, 1.0), determining
whether the regime is considered active (1.0) or inactive
(0.0). The corresponding WRactmean is represented as blue
bar in Figure 1b. The WRact,,, follows a similar approach,
but instead assesses each daily IWR value individually
against IWRp;,. The fraction of days exceeding IWRpin

(a)

Royal Meteorological Society

defines the WRact,g,, visualised by the turquoise bar in
Figure 1b.

The same procedure applies to ensemble forecasts,
where the IWR forecast for each ensemble member, ini-
tialised at the beginning of the period shown, is processed
in the same manner (green lines in Figure 1a). The result-
ing WRactyean for the ensemble is displayed as purple
bars in Figure 1b, whereas the WRact,s is shown in
green. This methodology enables a comprehensive assess-
ment of weather regime activity across both reanalysis
and forecasts. Since this process is applied individually to
each weather regime, multiple regimes can be considered
active simultaneously, reflecting the inherent variability in
large-scale atmospheric patterns.

2.3.4 | Maximum weather regime activity

To further simplify the interpretation of a weekly weather
regime activity, we introduce the maximum weather
regime activity (WRactpax). This metric assigns a sin-
gle dominant regime to each day, independent of any
IWR threshold, by selecting the regime with the highest

| == ERA daily
® ERA daily week 3

3

21 — ERA weekly mean
1+ —— NWP daily ensemble =

0

g —=—- Activity threshold B
=11 . \\;74
2 F — _— . . .

wl w2 w3 w4 w5
Lead time (days/weeks)
(b)
1.0 WRactmean: weekly mean

> 0.8 1 HEE ERA/truth Il forecast

2

= 0.61 WRactagq: daily aggregate

Jg ' BN ERA/truth  EEEE forecast

x 0.4
0.2
0.0 , m N

wl w2 w3

Lead time (days/weeks)

FIGURE 1

Visualisation of WRactpea, and WRact,g, by using the weather regime (WR) index (IWR). (a) The ensemble forecast

(green lines) and the verification data (European Centre for Medium-Range Weather Forecasts Reanalysis v5 [ERA5], turquoise line) of the
daily IWR. Further, the dark blue horizontal lines indicate the mean weekly IWR in ERAS5 and the turquoise dots the daily IWR in ERAS5 for
forecast week 3. The latter is used for the computation of the WRact,,, by comparing them against the activity threshold (black dashed line).
(b) The WRactyean (dark blue bars) and WRact,g, (turquoise bars) in ERA5 and in forecasts (purple and green bars, respectively) for each
forecast week. By definition, WRact e, (dark blue bars) for ERAS5 takes values of either 0.0 or 1.0. [Colour figure can be viewed at
wileyonlinelibrary.com|
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aggregated activity (WRact,e;, computed with the IWR
of the surrounding 7-day window, +3 days from the day
of interest). In case multiple weather regimes share the
highest WRact,g, at a particular time, the regime persist-
ing the longest is chosen. By designating the most active
regime, WRactn.x provides a practical and intuitive sum-
mary, ensuring that each atmospheric scenario is linked
to the prevailing large-scale circulation pattern. With this
definition, we aim to offer a simplified yet informative
representation of regime dominance, making it accessi-
ble to users beyond the meteorological sector, such as
decision-makers who rely on large-scale weather variabil-
ity information.

24 | Contingency table and metrics
We define windows of opportunity and validate the
WRactyean 0n the basis of contingency tables. We utilise
both traditional and probabilistic contingency tables—
following the methodology in Gold et al. (2020)—as well
as verification metrics that are derived from these.

A traditional contingency table (Table 1, text) repre-
sents the relationship between forecasted and observed
categorical events (e.g., whether a weather regime is active
or not). The contingency table classifies outcomes into
four categories: hit (or true positive, TP), where weather
regime activity is forecasted and the weather regime activ-
ity occurs; miss (or false negative, FN), where no weather
regime activity is forecasted but a weather regime activity
occurs; false alarm (or false positive, FP), where weather
regime activity is forecasted but no weather regime activ-
ity occurs; and correct rejection (or true negative, TN),
where no weather regime activity is forecasted and no
weather regime activity occurs. These categories form the
basis for several verification metrics, which are detailed

TABLE 1
contingency table (text in cells) and probabilistic equations for the

General classification terms of the traditional 2 x 2

occurrence of weather regime activities (equations in cells).

Weather regime active/inactive

Forecast Yes No

Yes Hit/True positive False alarm/False positive
(TP)E;; =p-k (FP)Ep,=p-(1-k)

No Miss/False negative Correct rejections/True

(FN)E,; =(1-p)-k  negative (TN)

Ep=Q0-p)-Q-k)

Note: p represents a vector of probabilities for a weather regime activity to
occur and k is a vector of binary indicators whether the weather regime
activities have occurred at the given dates (see Section 2.4). The operator “-”
denotes the inner product of two vectors, and “1” is the unit vector. The table
is adapted from Gold et al. (2020) and modified.

TABLE 2
the contingency table in Table 1 used to identify windows of

Collection of verification metrics originating from

opportunity and to validate the skill of a categorical WRact,x

forecast.
Metric Formula
Base rate BR = — PAFN
TP+FN+FP+TN
_ TP+FP
Forecast rate FR = TPTFNAFPIIN
: _ TP
Hit rate (recall, accuracy) HR =
False alarm rate FAR = ———
FP+ TN
Peirce skill score PSS = HR — FAR
.. _ TP
Precision Prec = T
F1 score F1 =2x PrecxHR

Prec+HR

Abbreviation: FN: false negative; FP: false positive; TN: true negative; TP:
true positive.

in Table 2. The key metrics include base rate (BR), repre-
senting the overall occurrence of a weather regime activity;
forecast rate (FR), which is the proportion of forecasts
predicting a weather regime activity; hit rate (HR, also
known as recall or accuracy), which is the proportion of
actual weather regime activities correctly predicted; false
alarm rate (FAR), the proportion of incorrect predictions of
weather regime activities; Peirce skill score (PSS), which is
the difference between the HR and the FAR; precision, rep-
resenting the proportion of true-positive forecasts out of all
positive predictions; and F; score, the harmonic mean of
precision and HR, balancing both metrics.

An alternative to the traditional contingency
table is the probabilistic contingency table (Table 1,
equations), which incorporates probabilistic fore-
casts (Gold et al., 2020). In this framework, the vector
p = (p1,p2, ... ,pn) represents the forecast probabilities
for an event (weather regime active) occurring, where n
is the total number of dates in the sample. Each p; is the
mean of the binary predictions from all ensemble mem-
bers for date i, with M being the number of ensemble
members; in this study, M = 11. Specifically, each ensem-
ble member m provides a binary prediction p;, (which
is either 0 or 1), and the overall probability for date i is
calculated as

M
1
pi = M Zpi,m~ €))
m=1

Similarly, the vector k = (ky,k,, ... ,k,) represents the
actual binary outcomes, where k; = 1 if the weather regime
activity occurs and k; = 0 if it does not occur. The scalar
product of the forecast probabilities p; and the binary out-
comes k; generates the probabilistic outcomes, which are
analogous to the traditional contingency table.

In addition to the verification metrics derived from
the contingency tables, we use the mean-squared error

85UBD 7 SUOWILIOD 3A1TeID) 8|l dde aLy Ag peusenoh a1e sajoie YO ‘SN JO'Sa|nJ Joj A%eiqI8UIIUO A3]1/\ UO (SUORIPUOD-pUR-SWB}/LI0D™ A8 | 1M Afeiq1|Bu JUO//SA1Y) SUORIPUOD pUe SWwie 13U} 88S *[9202/T0/T] uo AreigiTauuo A811M ‘06002 b/200T OT/I0p/w00 A8 1M AReiq Ul |uo STew//SARY WOJ4 papeo|uMod ‘0 XOL8LLYT



MOCKERT ET AL.

Quarterly Journal of the EIRMets 7 of 24

(MSE) to assess the quality of the forecasts (verifying
WRact,g,). The MSE quantifies the average squared dif-
ferences between the predicted values and the observed
values across all data points:

n
1 .
MSE = — 3 (i = )" ©)
i=1

where y; is the forecasted value and y; is the observed value
for the ith data point. To compare the MSE of a forecast
with that of a reference forecast, we compute the MSE
score (MSESS):

MSEforecast

MSESS =1 - .
MSEreference

(3)

Here, the MSESS represents the normalised performance
of the forecast relative to the reference, which in this case
is the NWP forecast. A higher MSESS indicates better
forecast skill compared with the reference forecast.

2.5 | Windows of opportunity

Windows of opportunity integrate knowledge of the atmo-
spheric state at the time of initialisation with the likelihood
of a particular event (specifically, weather regime activity)
occurring after a set time period. The atmospheric state
at initialisation time can be characterised by atmospheric
indicators, in this work, the MJO and the SPV. Following
Specq and Batté (2022), we categorise each 3-week fore-
cast by the prevalent state of the atmospheric indicators at
initialisation:

MJO: Unlike the commonly used real-time multivariate
MJO index (RMM) by Wheeler and Hendon (2004),
we adopt the outgoing long-wave radiation (OLR)
MJO index (OMI) (NOAA, 2025). The OMI is
derived solely from OLR anomalies, without incor-
porating zonal winds at 850 hPa and 200 hPa. Sim-
ilar to the RMM index, it is based on a pair
of empirical orthogonal functions computed from
near-equatorial (15° N-15° S) satellite-derived OLR
data. The temporal evolution of the MJO signal by
the OMI is smoother (measured by the variability
of the Euclidean distance between two consecu-
tive dates) compared with the RMM (not shown).
The MJO’s position and strength can be identified
in a two-dimensional phase space and split into
nine categories: eight active phases plus an inactive
phase. For the MJO, the inactive phase serves as the
reference state.

SPV: The strength of the SPV is quantified using
the zonal-mean zonal wind at 10hPa and 60°
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N, referred to as the SPV index. Daily anoma-
lies of this index are calculated relative to a
91-day running-mean climatology over the period
1979-2019. Based on these anomalies during the
extended winter season, the SPV index is cate-
gorised into weak, neutral, and strong states. The
categories are defined using terciles of the anomaly
distribution, with the lower tercile corresponding
to weak, the upper tercile to strong, and the mid-
dle tercile to neutral SPV states. The neutral phase
serves as the reference state. This anomaly-based
classification ensures an approximately equal distri-
bution among the three categories while accounting
for seasonality (see also Supporting Information
Figure S1). To highlight more extreme states of the
SPV, we additionally analyse the strongest 10% and
weakest 10% SPV states.

For each atmospheric state, we then calculate verifica-
tion metrics (BR, HR, PSS) for WRactyean, as defined in
Tables 1 and 2. Once the verification metrics are calcu-
lated, we categorise windows of opportunity into two main
types: climatological and model windows of opportunity,
with the model windows of opportunity further divided
into three subcategories.

2.5.1 | Climatological windows
of opportunity

A climatological window of opportunity is based on the
historical relationship between the atmospheric state at
initialisation time and the likelihood of a weather regime
to occur 3weeks later as derived from ERAS5 reanalysis.
A certain atmospheric state is considered to represent a
climatological window of opportunity if the frequency of
weather regime occurrence (referred to as the BR) is higher
after a specific state than after the reference state (top row
in Table 3). By identifying these climatological windows
of opportunity, a forecaster can estimate the likelihood
of a weather regime activity occurring simply by rely-
ing on past observational data corresponding to a given
atmospheric condition at initialisation.

2.5.2 | Model windows of opportunity

In contrast, a model window of opportunity takes into
account both the BR and the ability of the forecasting
system (here the ECMWF reforecasts) to detect and ben-
efit from the atmospheric signal. For a model window of
opportunity to be useful, it might not be enough for the
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system to simply identify a higher BR and HR. The sys-
tem should also demonstrate a reliable forecast quality,
which is where the PSS comes into play. The PSS assesses
the difference between the HR and FAR, allowing us to
distinguish between forecasts that are genuinely improved
and those that may have increased HRs at the cost of more
false alarms. Within the model window of opportunity
category, there are three subtypes (see also Table 3):

Type 1: This is characterised by an increase in both the
BR and the HR, but without an improvement
in the PSS due to an excessive FAR. In this
case, though the forecast may indicate a higher
likelihood of the event, it comes with a higher
number of false alarms, reducing overall forecast
reliability.

Type 2: This shows improvements in the BR, HR, and
the PSS. This subtype indicates a higher quality
forecast where the HR improves while minimis-
ing false alarms, resulting in a more accurate and
reliable forecast.

Type 3: This exhibits a positive anomaly in both the HR
and the PSS compared with the neutral phase,
even if this improvement cannot be explained by
a climatological signal, due to no increase in the
BR. These phases are still considered valuable
because they reflect an improvement in forecast
performance over what would be expected with-
out the active phase.

2.5.3 | Testing for confidence
and significance

To assess the confidence of the weather regime activity BRs
and FRs for each atmospheric state category, we apply a
bootstrap approach. Specifically, the dates associated with
each category are resampled 1000 times with replacement.
Alongside the non-resampled rates, we report the 5th and
95th percentiles as confidence bounds.

We also evaluate whether differences in BR, FR, and
PSS between individual states and the reference state,

TABLE 3

required for the computation of model windows of oppor-
tunity, are statistically significant. For each verification
metric and state category, we derive the 90% confidence
intervals (5th-95th percentiles) from 1,000 bootstrap
resamples with replacement. The difference to the ref-
erence state is considered statistically significant if the
corresponding metric for the reference state lies outside
this interval.

2.6 | Atmospheric-conditioned
climatology

The existence of windows of opportunity under certain
atmospheric conditions naturally motivates the com-
putation of an ERAS5 climatology conditioned on the
atmospheric state at initialisation time, which we refer
to as an atmospheric-conditioned climatology. Instead
of averaging over all historical data (an “unconditioned
climatology”), we calculate averages separately for differ-
ent atmospheric situations (an “atmospheric-conditioned
climatology”). Since the relationship between the atmo-
spheric conditioning variables and weather regimes is
sensitive to seasonality, all climatologies are computed
using a 91-day sliding window. For each atmospheric
state, we select all historical dates within the sliding
window that meet the state condition at initialisation (see
Supporting Information Figure S2, left column).

This approach gives us the climatological average of
the variable WRact,,; at a given time lag, but specifically
under the chosen atmospheric conditions (e.g., a certain
MIJO phase or SPV state), rather than over all conditions
mixed together. These climatologies offer insight into how
frequently weather regime activity occurs under different
atmospheric conditions (see Section 3.3).

2.7 | Atmospheric-conditioned
climatology forecast

Building on the atmospheric-conditioned clima-
tology, we construct an atmospheric-conditioned

Decision logic for climatological and model windows of opportunity based on anomalies (denoted with a prime) to the

reference state of the base rate (BR’), hit rate (HR'), and Peirce skill score (PSS’).

Window type BR' >0 HR’ >0
Climatological Yes N/A N/A
Model Type 1 Yes Yes No
Model Type 2 Yes Yes Yes
Model Type 3 No Yes Yes

PSS’ >0

Practical meaning
Higher climatological likelihood

Model predicts more events correct but with many
false alarms

Best: increased likelihood and model skill

Model gains skill predicting events even though
climatological likelihood not higher
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climatological forecast by selecting the corresponding
atmospheric-conditioned climatology for each initialisa-
tion date based on the prevailing atmospheric condition.
Although this simple, condition-based selection is
straightforward and effective, it can lead to abrupt changes
in forecasted WRact,z, when transitioning between atmo-
spheric states. To address this issue, we introduce a sliding
forecast, which smooths these transitions. This approach
differs depending on whether the conditioning variable is
two-dimensional (e.g., the MJO) or one-dimensional (e.g.,
in our case the SPV index). In the following, we detail
the method for the MJO and highlight modifications
required for one-dimensional variables (see Supporting
Information Figure S2, right column for a schematic
overview).

The sliding atmospheric-conditioned climatological
forecast for the MJO is generated as follows (illustrated
in Figure 2). First, all historical OMI1 and OMI2 pairs
(the first two principal components of the OLR anomaly
empirical orthogonal function) within a 91-day sliding cli-
matological window (grey dots) centred on the day of year
of the current initialisation date (red diamond) are col-
lected. Rather than selecting only the single MJO phase
for the current date, we include all historical dates whose
OMI1-OMI2 pairs fall within a 45° arc (blue dots) around
the current OMI pair in the phase space. Dates with an
OMI amplitude less than 1 (inner circle), representing the
MJO inactive phase, are excluded. Additionally, to ensure
independence from recent events all events in a windows
of +45 days (orange dots) are removed from consideration.
Finally, the mean WRact,g, is computed from the remain-
ing historical dates and used as the MJO-conditioned cli-
matological forecast for the current initialisation.

For one-dimensional atmospheric variables, such
as the SPV index, the sliding forecast approach is
adjusted accordingly. Instead of using a 45° arc in a
two-dimensional phase space, we select the 5% of histor-
ical values closest to the current SPV value from within
the 91-day sliding climatological window, excluding dates
from the current seasonal cycle. The mean WRact,,, from
these selected historical dates is then used to produce the
SPV-conditioned climatological forecast.

2.8 | Neural networks

To combine information from (atmospheric-conditioned)
climatological forecasts, NWP forecasts, and recent
WRact,s;, we employ a statistical-dynamical approach
represented with fully connected dense NNs. With
these networks, we aim to identify complex relation-
ships between predictors and enhance the predictability
of WRact,s, particularly for strong weather regime
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FIGURE 2 Phase diagram of the outgoing long-wave

radiation Madden-Julian Oscillation (MJO) index. The first and
second principal components derived from empirical orthogonal
function analysis of filtered outgoing long-wave radiation data are
given on the x- and y-axes. Further, the phases of the MJO are
indicated with dashed lines and labelling. For visualisation of how
the atmospheric-conditioned climatological forecast works, one
initial date, February 10, 2018, is marked with a red diamond and
all values in the 45° arc are used for the MJO-conditioned
climatological forecast of that initialisation date (blue dots). Values
in the +45-day window around the initial date (orange dots) are
excluded from the data used for the computation. With grey dots, all
other data points of the 91-day running climatology are indicated.
For a visualisation of the OLR MJO index (OMI) phase space
similar to the real-time multivariate MJO index (RMM1/2), OMI1 is
multiplied by —1 and OMI1 and OMI2 are exchanged with each
other. [Colour figure can be viewed at wileyonlinelibrary.com]

events in forecast week 3. For readers unfamiliar with
machine-learning techniques and terminology, we recom-
mend the machine-learning tutorials by Chase et al. (2022,
2023). A fully connected dense NN set-up is selected with
a relative simple architecture of two hidden layers with
64 and 16 nodes, each using a rectified linear unit acti-
vation function, and a dropout layer with a rate of 0.2
is inserted between the hidden layers to reduce overfit-
ting. The output layer has a single node with a sigmoid
activation function, producing a probability-like output
representing the WRact,,, for a specific weather regime.
The models are trained separately for each weather regime
and lead time. The final architecture and hyperparame-
ters were selected after testing different network depths,
loss functions, and output configurations (not shown).
Overall, model performance was influenced more strongly
by the choice of predictors than by the hyperparameters.
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Owing to computational expenses and data availability,
the hyperparameter tuning was not fully exploited. Each
predictor time series is individually normalised using
min-max scaling based on the training dataset, result-
ing in values ranging from 0 to 1 within the training set,
whereas values in the test set may exceed this range.

The network is trained for up to 50 epochs, but early
stopping is applied to prevent overfitting. Early stop-
ping monitors the validation loss with a patience of 10
epochs, halting training if the validation loss does not
improve. Additionally, a learning-rate scheduler reduces
the learning rate, which starts at 0.001, by a factor of
0.5 after five epochs without improvement, with a min-
imum learning rate of 107%. During training, the model
uses a batch size of 32 and a validation split of 20%,
without shuffling the data to preserve temporal depen-
dencies. To robustly assess model performance, we apply
fourfold cross-validation. The 1,720 data points from the
extended winter period (November-March, NDJFM) are
split into four consecutive subsets of 430 points each.
Each fold trains on 1,290 data points (data includes the
validation split of 20%) and tests on the remaining 430.
To ensure results are not dependent on a single ran-
dom initialisation parameter setting, 10 fully independent
models with identical configurations though different ran-
dom initialisation parameters are trained simultaneously,
and their ensemble mean is used as the final prediction.
The model predicts the WRact,g, for a single weather
regime and one specific lead time, such as GL activity for
forecast week 3.

To improve model performance while keeping model
complexity low, we apply a stepwise feature selection
procedure, restricting ourselves to the most informative
predictors and keeping the signal-to-noise ratio low. The
stepwise selection begins by training the model using
each predictor individually and recording the MSE from
cross-validation. In subsequent steps, the best-performing
predictor from the previous step is retained and additional
predictors are tested one by one. The set of predictors
with the lowest cross-validated MSE is selected. This pro-
cedure is performed separately for each lead time and
weather regime, tailoring the predictor set to the specific
forecast horizon and regime dynamics. The final models
are trained from scratch, though using these preselected
predictors which could be considered as a minor infor-
mation leakage. However, owing to the data availability,
selecting the features on a fully separate set of training data
isnot feasible and we consider the leakage through the pre-
dictor selection as small (without providing a quantitative
measure for our statement).

To ease interpretability, we group all available pre-
dictors into four distinct subcategories. Climatology pre-
dictors include a 91-day mean WRact,, climatology,

day-of-year, and atmospheric-conditioned climatological
forecasts based on large-scale drivers such as the MJO
and SPV. Atmospheric state predictors describe the current
state of the atmosphere, including indices representing
large-scale circulation patterns such as the MJO and SPV,
as well as sea-surface temperature anomalies in the North
Atlantic. NWP predictors capture forecast-based WRact,g,
indicators, including trends and variability across different
forecast weeks. Recent weather regime predictors repre-
sent recent observed WRact,z and IWR from reanalysis
data. A comprehensive description of these predictors is
provided in Supporting Information Tables S1 and S2.

Using these predictor subcategories, we train three
separate NNs with distinct predictor pools to explore the
contributions of different predictor types (Table 4). The cli-
matological NN, NN,,nwp, uses no data of the NWP model.
As it does not rely on forecast data, this model is trained on
a larger dataset, consisting of daily data from 1979 to 2020,
though itisevaluated on the same test set as the other mod-
els for fair comparison. The NWP and weather regime NN,
NNnwps+wr, uses only NWP and weather-regime-based
predictors, such as NWP weather regime forecast evo-
lutions and recent past WRact,g, and IWR from ERA.
This model is trained exclusively on the reforecast period.
Finally, the all-predictors NN, NN, combines all available
predictors, integrating (atmospheric-conditioned) clima-
tology, NWP, and recent past weather regime information.
This model provides insight into the added value of inte-
grating all sources of predictability.

3 | RESULTS

We approach our investigation of windows of opportu-
nity in subseasonal weather regime forecasting with an
analysis of the modulation of occurrence and forecast
quality for GL by different states of the MJO and SPV
(Sections 3.1 and 3.2), chosen because GL exhibits strong
links to both the MJO and SPV in forecasting weeks 1-2

TABLE 4
predictors for the three neural network (NN) configurations: NN,

Overview of predictor pools used as input

(all predictors), NNywpswr (numerical weather prediction [NWP]
and weather regime [WR] predictors), and NNonwp (excluding
NWP predictors). An “X” indicates inclusion of the respective
predictor pool.

Predictor pools NN.n NNNwp+WR NNnonwe
Climatology X X
Atmospheric state X X

NWP X

Recent WR X X X
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and it is highly relevant for European winter impacts
such as cold Dunkelflauten. Next, we utilise climatolog-
ical knowledge of the atmospheric state to produce an
atmospheric-conditioned climatological forecast for the
occurrence of GL (Section 3.3). Finally, we integrate infor-
mation from NWP regarding WRact,,, with knowledge
about the atmospheric state at initialisation, employing
a fully connected dense NN to enhance activity fore-
casts and expand our analysis on other weather regimes
(Section 3.4). The research presented here focuses exclu-
sively on the extended winter period (NDJFM) and a
forecast lead time of 3 weeks.

3.1 | Climatological windows
of opportunity

In our setting, a window of opportunity indicates whether
WRactea, is more likely to occur or to be forecasted
3weeks after the initialisation date, conditioned on the
state of the MJO phase or SPV state at forecast initialisa-
tion time. To identify these opportunities, we analyse the
BR of WRactpean following a given phase, along with the
HR and PSS (see Section 2.5).

As a preliminary step, we compare the BR and FR
of weekly GL activity 3 weeks after specific states of the
MIJO and SPV (Figure 3). For an analysis across all fore-
casting weeks, see Supporting Information Figure S3. On
average, throughout the analysis period, the BR and the
FR of WRactmean gL are approximately 15%, with the FR
slightly lower than the BR, indicating a slight negative
bias in WRactyean gL and, thus, in GL frequency, as found
earlier (e.g., Osman et al., 2023). An analysis conditioned
on the MJO phases reveals that, during the inactive MJO
phase, the BR and FR align closely, both at approximately
14%. The BR is generally higher for MJO phases 5-8 and
1, whereas it is lower for phases 2-4. Therefore, phases
5-8 and 1 can be considered as climatological windows of
opportunity (phases 7, 8 and 1 are identified as significant
for GL, according to the bootstrap test; see Section 2.5 and
the comparison of the confidence intervals to the BR of
the inactive MJO phase in Figure 3). Notably, FRs are con-
sistently closer to the climatological BR and the inactive
phase than the respective BRs. This discrepancy may be
attributed to the 3-week forecast lead time, as subseasonal
forecasts tend to regress toward climatological values.
Interestingly, the FRs following strong and weak SPV
states (particularly those following within the strongest
and weakest 10%) deviate more strongly from climatol-
ogy than the corresponding BRs (Figure 3, right side). A
more detailed discussion and possible explanation of this
behaviour are provided in Section 3.2. The BR following
a weak (weakest 10%) SPV state is 5.5 (13.0) percentage
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points higher, whereas the BR following a strong (strongest
10%) SPV state is 3.7 (6.6) percentage points lower than
for the neutral SPV state. These results align with previous
research conducted on the influence of the SPV on forecast
skill for the European region (e.g., Tripathi et al., 2015a,
2015b; Scaife et al., 2016; King et al.,, 2019; Domeisen
etal.,2020Db). The positive BR anomaly of WRactmean g1 fol-
lowing weak (and weakest 10%) SPV states indicates that
these periods represent a climatological window of oppor-
tunity. Although we do not consider these events further,
one could also consider the strong (and strongest 10%) SPV
state, as well as the MJO phases 2-4, as a climatological
window of opportunity but for a reduced occurrence of GL,
which is also captured by the FR.

Overall, Figure 3 suggests that, though the fore-
casted frequency of weather regime activity aligns with
observed occurrences, discrepancies remain in capturing
the observed WRactmean,cr, 3 weeks after a specific atmo-
spheric state. Large differences exist particularly when
separating by MJO phases at initialisation, with the mean
frequency of WRactmean g ranging from 6% following MJO
phase 3 to 28% following MJO phase 8. The absolute values
of the BRs and FRs should be treated with care owing to the
data size, hence the bootstrapping approach. The sample
size for individual MJO phases, where an NWP reforecast
is initialised, is small (1720 reforecasts considered across
21 winter seasons; sample size per phase is indicated at the
bottom of Figure 3).

MJO phases 7, 8, and 1 as well as the weak (and weak-
est 10%) SPV can be considered as climatological windows
of opportunity, with the MJO phases having significantly
different BRs compared with their neutral phases, marking
them as promising phases for further analysis to iden-
tify whether these climatological signals also translate into
model windows of opportunity.

3.2 | Model windows of opportunity
Following the approach described in Section 2.5, we now
analyse the model windows of opportunity by computing
the BR, HR, and PSS for each state of the MJO and SPV.
We then compute rate and skill score anomalies (denoted
with a prime) relative to the inactive MJO and neutral
SPV, respectively (Figure 4): R = Rsuate — Rref, Where
R € BR, HR, PSS and “ref” indicates either the inactive or
neutral phase.

The HR’' and PSS’ values closely align for almost
all MJO phases, suggesting that the FARs in these
sub-selections are similar to those of the neutral phases
(not shown). In contrast, the weak (and weakest 10%) SPV
state has considerably smaller PSS’ than HR’, indicating
that the FAR is greater than for the neutral state. As shown
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FIGURE 4 Indication of windows of opportunity for Greenland Blocking activity in week 3 by the base rate, hit rate, and Peirce skill
score anomalies and colour-coded indication. Similar to Figure 3, the metrics are separated by the state of the Madden-Julian Oscillation
(MJO) and the stratospheric polar vortex (SPV). Here, the base rate, hit rate, and Peirce skill score (blue, orange, and green dots, respectively)
are anomalies (6 in per cent) with respect to the neutral phases of the respective atmospheric variables. The combination of positive and
negative anomalies (denoted with a prime) for the base rate (BR'), hit rate (HR') and Peirce skill score (PSS’) are responsible for the model
window of opportunity type indicated by the coloured boxes at the bottom with its legend below. Further crosses in the dots for anomalies
indicate whether the rates in the specific categories are significantly different than their neutral phases with a 90% confidence interval.
[Colour figure can be viewed at wileyonlinelibrary.com]
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in Figure 3, the BR’ values are positive for MJO phases
5-8 and 1. Furthermore, for phases 8 and 1, both HR’
and PSS’ are positive, indicating that these phases act as
a type 2 model window of opportunity, where BR’, HR’,
and PSS’ are all positive. Note that only for MJO phase 1
are all three anomalies significantly different to the neu-
tral phase at a 90% confidence interval. MJO phase 4 is
classified as a type 3 model window of opportunity for
WRaCtpean gL With a 3-week lead time. In this case, HR'
and PSS’ are distinctly positive (significant difference to
neutral phase), despite the BR’ being negative. This sug-
gests that, although WRactmean g1, is significantly less fre-
quent following phase 4, the forecast accurately predicts
these fewer occurrences, with an even lower FAR than in
the neutral phase. The signals associated with strong and
weak SPV states are less distinct than for MJO phases 8
and 1, likely due to the broad classification into only three
categories (strong, neutral, and weak SPV) that encom-
passes a wide range of individual cases. To address this, we
additionally consider the weakest 10% and strongest 10%
SPV states. Further, our choice of a scalar definition for
the SPV index excludes information about its future tem-
poral evolution. At 3 weeks after a weak SPV, WRactmean gL
is increased (positive BR’), and the forecast also predicts
more frequent activity, leading to a higher HR. However,
the FAR also increases, which reduces PSS’. In fact, PSS’ is
negative, indicating that the HR/FAR ratio is worse than
for the neutral SPV state, thereby classifying this as a type 1
model window of opportunity. The BR’, HR’, and PSS’ val-
ues for the weakest 10% SPV state are all positive and show
stronger signals than for the weak SPV state, marking it as
a type 2 model window of opportunity. In contrast, strong
SPV states are followed by less frequent WRactmean gL,
along with a decrease in HR, PSS, and FAR, ultimately
resulting in no identifiable window of opportunity type.
The positive and negative BR’ for the weak and strong SPV
states, respectively, indicate that there is a link between
the SPV and the occurrence of a weather regime activity.
The negative PSS’ (and therefore the higher FAR) follow-
ing the weak SPV state indicates that the model has trouble
predicting GL activities correctly following an anomalous
state of the SPV. The model shows a GL activity response
too often following a weak SPV state, even when it does not
realise. A plausible explanation for the excessive GL activ-
ity following weak SPV states is an overly strong downward
lower stratosphere-troposphere coupling in the model, as
noted by Kolstad et al. (2020) and Garfinkel et al. (2025),
which can lead models to overamplify surface responses to
weak vortex conditions.

In summary, the frequency of WRactpean gL (BR) varies
across different MJO phases and SPV states. It is particu-
larly high (significantly different to the neutral phase) for
MIJO phases 8 and 1. The magnitude of the FR is generally

Royal Meteorological Society

too low for MJO phases. MJO phases 8 and 1 emerge as
type 2 model windows of opportunity, meaning that not
only is the BR increased for WRactyean g1 3 weeks after
these phases, but both the HR and PSS are also improved
compared with the neutral phase. All three values are sig-
nificantly different to the neutral phase for MJO phase 1.
Forecasts initialised during a weak SPV state show an
improved HR, but the FAR also increases compared with
the neutral phase, classifying this as a type 1 model win-
dow of opportunity, whereas for the weakest 10% SPV
states, the FAR' is positive, indicating a type 2 model win-
dow of opportunity. Finally, MJO phase 4 is a type 3 model
window of opportunity owing to better predicting the less
frequent GL activity.

3.3 | Atmospheric-conditioned
climatological weather regime activity
forecasts

The previous section and existing literature (e.g., Beerli &
Grams, 2019) suggest that the WRactyean 1. 3 weeks after
forecast initialisation is influenced by the prevailing states
of the MJO and SPV. To better understand this relation-
ship, an atmospheric-conditioned climatology is intro-
duced with a 91-day sliding window over extended winter.
This climatology expresses the likelihood of WRact,g,
3weeks after a given MJO phase or SPV state, demon-
strating that phase-specific climatological frequencies of
GL occurrence differ significantly from the overall cli-
matology and exhibit substantial intraseasonal variability
(Figure 5).

During the extended winter period, the 91-day run-
ning mean of the WRact,y; 1 fluctuates between 15%
and 18% (black lines). When categorised by MJO phases
(Figure 5a), notable deviations from this baseline emerge.
The most prominent signal appears for MJO phase 8,
where WRact,gs 1. increases from 12% in December to
30% in March (brown line). Similarly, MJO phase 1 (red
line) exhibits an increase from 14% in mid December to
23% in January, maintaining an elevated activity level of
approximately 20% until March. For SPV states (Figure 5b,
based on the 10hPa zonal-mean zonal wind at 60° N),
the separation is even clearer. The neutral state (grey line)
largely follows the overall climatological cycle, whereas
conditions following a weak SPV (blue line) show an over-
all increase in WRact,ge . This increase becomes even
more pronounced after the 10% weakest SPV states (cyan
line). Conversely, when a strong SPV (red line) is present,
WRact,g 1, decreases relative to the climatological cycle,
with an even stronger reduction following the strongest
10% SPV states. The latter is particularly evident in early
winter, when the strongest 10% SPV states are rare; and,
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FIGURE 5

Atmospheric-conditioned
climatology for WRact,gg g1,
during the extended winter
period (November-March),
conditioned on the state of (a) the

Madden-Julian Oscillation
(MJO) and (b) the stratospheric
polar vortex (SPV; 10 hPa, 60° N

0.05 1 —— MJO all dates == MJO 8 —— MJO2 =—— MJO 4 —— MJO 6
~—— MJO inactive === MJO 1 MJO 3 MJO 5 MJo 7 zonal-mean wind speeds) 3 weeks
0.00 Nov Dec Jan Feb Mar before the regime occurrence.

Day of year (months)

The x-axis indicates the timing of
regime activity. The black lines in
(a) and (b) indicate the 91-day

!/V

0.054 = All dates

Strongest 10% == Weak
=== Neutral === Strong

running climatology without any
atmospheric-conditioned
sub-selection. [Colour figure can
be viewed at
wileyonlinelibrary.com]
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when they do occur, they are seldom followed by GL
activity.

To use the atmospheric-conditioned climatology as a
forecast tool, a slight modification is introduced to the
computation method. Instead of strictly categorising the
atmospheric-conditioned climatology by discrete phases,
a sliding window approach is applied. This adjustment
ensures a smoother transition between categorical phases,
preventing abrupt shifts in activity forecast (see Section 2.7
for further details).

As a proof of concept, we select periods of active GL
and analyse atmospheric-conditioned climatological and
NWP forecasts leading up to these GL activities. Though
this approach may seem selective, as it focuses only on
active GL periods, it enables a targeted examination of two
key forecasting questions:

1. Do single forecast runs of the NWP model and
atmospheric-conditioned climatological forecasts indi-
cate the onset of WRact,gs g1, in week 3 and the subse-
quent evolution of WRact,ge 1.?

2. Do consecutively initialised week 3 forecasts show an
increasing signal leading up to the WRact,gg 61,7

To address these questions, two mean composite plots
are computed (Figure 6).

For both analyses, the actual GL activity onset is
defined as the first time when the ERA5 WRacCtyean,cL

Nov 'Dec ]an 'Feb

Mar

reaches 1. For the first question, individual forecasts ini-
tialised 3weeks prior to GL activity onset (or as close
as possible, given the availability of NWP reforecasts)
are analysed with lead times ranging from 0 to 36days
(Figure 6a). For the second question, only those forecasts
at a fixed lead time of 3 weeks (represented by 18 days, the
midpoint of week 3) are considered. Thus, instead of a sin-
gle forecast per event, consecutive forecasts leading up to
the GL activity are analysed to track the signal of GL activ-
ity over time (Figure 6b). The mean composite of forecasts
in Figure 6 is computed centring all events around the GL
onset. For the individual events, see Supporting Informa-
tion Figures S4 and S5; and for a case study example of
the prolonged GL activity in the winter of 2009-2010 see
Supporting Information Section S1.

The true (ERA5) WRact,g o1, (black line, right y-axis)
is identical in Figure 6a,b. As expected, there is a clear
increase in WRact,g 1, around the onset (vertical black
dashed line), peaking 3 days after the onset. Additionally,
a secondary local maximum appears around 12 days prior
to the GL onset, indicating that, in some of the scenarios,
two GL events occur in close succession (e.g., GL event
indices 129,137, 181 in Supporting Information Figure S4).
This secondary maximum may also indicate that the state
of weather regime activity prior to, at, and after initialisa-
tion carries valuable predictive information. Owing to the
centring of the data around the activity onset, the mean
composite shows actual WRact,gs g1, reaching up to 85%,
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Forecasts Reanalysis v5 (ERA5) values (right axis). (a) Forecasts initialised 3 weeks (18 days) before GL onsets, illustrating the evolution of

forecast lead times up to and beyond the onset. (b) Forecasts with a fixed 3-week (18-day) lead time, evaluated at valid times within +18 days

of the onset, showing the evolution of consecutive forecasts around the onset. Numerical weather prediction (NWP) forecasts are compared

with climatological and Madden-Julian Oscillation (MJO)/stratospheric polar vortex (SPV)-conditioned baselines. All composites are

restricted to the extended-winter period 1999-2020, when NWP forecasts are available. A GL onset is defined as the time when WRactyean 61,

transitions from 0 to 1. WR: weather regime. [Colour figure can be viewed at wileyonlinelibrary.com]

whereas forecasts only reach up to 25% of WRact,es L
in the mean composite. Therefore, the WRact,gs o1, fore-
cast values are displayed on a separate y-axis for better
visualisation (left y-axis).

The unconditional climatology (brown line) serves as
a reference, showing no distinct signal apart from the sea-
sonal BR of approximately 15% WRact,g c;. Comparing
the MJO- and SPV-conditioned climatological forecasts
(orange and green lines, respectively) to the NWP model
(blue line), the NWP forecast exhibits the strongest
WRact,ge g, signal. This result is not surprising, as the
NWP model incorporates full dynamical atmospheric
information, whereas the atmospheric-conditioned cli-
matological forecasts rely solely on the MJO phase or SPV
state at initialisation. Thus, rather than comparing abso-
lute values, the temporal changes of the forecast signals
relative to the unconditional climatology are the primary
focus.

For forecasts initialised 3weeks prior to GL onsets
(Figure 6a), the NWP forecast shows a strong increase
in WRact,g g1, beginning approximately 7days before
onset, mirroring the observed activity trend. An addi-
tional increase appears at earlier lead times, specifically
11-17 days before onset, aligning with the secondary max-
imum observed in the ERA5 WRact,gs 1. At longer lead
times (7-18 days after onset), the NWP forecast suggests
a prolonged high WRact,e L, even when the observed
activity declines. This behaviour is likely an artefact caused
by forecast timing errors, where some forecasts predict

WRact,g g1, too late (e.g., GL indices 142, 166, 202 in
Supporting Information Figure S4). As a result, in the
mean composite, WRact,e; g1 appears misleadingly pro-
longed in the forecast.

The MJO-conditioned climatological forecast impres-
sively captures the key characteristics of WRact,gs gL,
evolution. At earlier lead times (up to 5 days before onset),
WRact,g g1, is lower than the unconditional climatol-
ogy. However, from 4 days before to 10days after onset,
forecasted WRact,g g1, €xceeds the unconditioned clima-
tology, indicating an increased likelihood of WRact,es gL
This result reinforces previous findings that MJO phases
modulate WRact,es g1, 2-4weeks later, validating the
teleconnection mechanism.

In contrast, the SPV-conditioned climatological fore-
cast produces a less distinct signal. Forecasted WRact,gs 1.
remains higher than the unconditional climatology across
all lead times, yet the highest values appear at early lead
times and 5-10 days following the onset, with minimal val-
ues around the actual weather regime onset. One possible
explanation is that the one-dimensional SPV index lacks
the complexity of the two-dimensional MJO index (ampli-
tude and phase angle) in our analysis. Previous studies
(e.g., Domeisen et al., 2020c) suggest that sudden strato-
spheric warming events (indicated by low westerly wind
speeds at 60° N and 10 hPa or even a reversal of the wind
direction) can trigger concurrent GL activity, but not all
GL activities are linked to sudden stratospheric warming
events. Since the SPV-conditioned climatological forecast
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does not account for changes in the index over time, it
merges scenarios where the atmosphere is both approach-
ing and departing from a sudden stratospheric warming
event, leading to a diffuse climatological signal. Incorpo-
rating temporal changes in the SPV index could improve
the clarity of the forecast signal and better represent the
dependence between the SPV index at initialisation and
the WRact,ge ¢, With a lag in time. To account for this, we
introduced a two-dimensional index that incorporates the
SPV change over the past 7 days. However, integrating this
into the atmospheric-conditioned climatological forecast
did not yield noticeable improvements (and therefore is
not shown).

When analysing consecutive forecasts with a fixed
3-week lead time (Figure 6b), similar signals emerge,
though with distinct differences. The NWP forecast still
predicts GL activity onsets, indicated with an activity
increase starting for valid times 2 days prior to the onset.
In contrast to the single forecast runs, the WRactag g,
forecasts prior to the weather regime onset are already
higher than climatology. The delayed signal increase com-
pared with ERAS5 (2 days rather than 5days prior to the
onset) and the later maximum of the WRact,g 1. (5 days
rather than 3days after the onset) suggest a systematic
delay in predicted onset timing. Additionally, the previ-
ously active GL activity is still visible in the forecasts by
the NWP (7-14 days prior to the GL onset). This could
also indicate that the NWP model favours the persistence
of a GL activity rather than the transition into another
weather regime. The atmospheric-conditioned climato-
logical forecasts continue to provide meaningful signals.
The MJO-conditioned climatological forecast exhibits a
clear increase relative to the unconditional climatology,
beginning 3 days before the onset and persisting for up
to 10 days after the onset. The SPV-conditioned climato-
logical forecast, though more diffuse, shows an increase
multiple days prior to the weather regime onset and
from 3 to 10days after the onset. The first days of the
GL onset are not well captured by the SPV-conditioned
climatological forecasts. For both set-ups, the single
forecast runs and the consecutive forecasts around the
GL onset, the atmospheric-conditioned climatological
forecasts are above the unconditioned climatological
values. However, the extent of the differences is clearer
for the MJO-conditioned climatological forecast than for
the SPV-conditioned climatological forecast. The less dis-
tinct signal for SPV-conditioned climatological forecasts
also holds when analysing the same SPV index, but com-
puted on the 100 hPa rather than 10 hPa level (not shown).
However, these results could be due to the choice of the
computation of the forecasts, and a more complex method

considering, for example, time evolutions to indicate sud-
den stratospheric warming events could potentially better
indicate GL activity.

These results demonstrate that atmospheric-
conditioned climatologies offer a valuable framework for
forecasting WRact,ge gr.. The MJO-conditioned climato-
logical forecast exhibits a robust increase in WRact,g g1,
aligning well with observed WRact,es 1. and confirming
the role of the MJO in modulating WRact,gg g1, 2-4 weeks
later. The SPV-conditioned climatological forecast also
indicates a weak modulation of GL activity, though it is
more diffuse and less clear to interpret. Though the NWP
model predicts WRact,z, g1, well, it exhibits a system-
atic delay of predicting the onset. Overall, these findings
support the use of atmospheric-conditioned climato-
logical forecasts as a complementary tool to dynamical
NWP models. However, further refinements, particularly
incorporating temporal changes in the SPV index, could
enhance predictive accuracy. It is important to emphasise
that these findings provide only a partial interpretation of
the forecast signals, as the analysis is limited to mean com-
posites centred around actual ERA5 WRact,g g1, onsets.
The forecasts within this subset exhibit inherent vari-
ability, and the composites do not account for scenarios
where, for example, the NWP model predicts WRact,gs g1,
that does not verify.

3.4 | Statistical-dynamical approach
Given the promising results observed in WRact,g, g1, fore-
casts conditioned on the MJO and SPV, as well as the
performance of the NWP model, we explore whether
these forecasts (along with additional atmospheric vari-
ables) can be combined to enhance the NWP model’s skill
in predicting WRact,g, 3weeks in advance. To achieve
this, we employ statistical-dynamical models using fully
connected NNs (as described in Section 2.8) to predict
WRact,g, at week 3.

To systematically assess the impact of different infor-
mation sources, we construct three NNs based on distinct
predictor pools (see Supporting Information Tables S1
and S2 for a complete list of predictors). The “NWP and
weather regime” NN (NNywpswr) combines information
from the NWP model with recent WRact,g. The “no
NWP” NN (NNponwp) incorporates all available predic-
tors except those derived from the NWP model. The
all-predictors NN (NN,y) utilises the full set of available
predictors, including climatological forecasts, atmospheric
indicators at initialisation, NWP-based weather regime
forecasts and temporal changes, and WRact,g, history.
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Each NN undergoes a stepwise feature selection
process (see Section 2.8) to identify the most rele-
vant predictors. Once the predictors yielding the highest
skill are determined, models are retrained using k-fold
cross-validation, ensuring a robust evaluation across mul-
tiple forecast instances.

3.4.1 | Stepwise predictor selection

Our analysis begins with the predictor selection for the
NN,y in predicting WRact,gg 1, for GL, followed by a com-
parison of the predictor order across all weather regimes.
The most influential predictor for WRact,g g1, in NNy is
the NWP model’s week 3 mean IWR forecast, followed
closely but not chosen by its WRact,g, forecast of the NWP
model for the same week, which is inherently derived from
the IWR forecast (Supporting Information Figure S6). The
second most important predictor is, somewhat unexpect-
edly, the 10 hPa SPV-conditioned climatological forecast.
Though this may appear surprising given the weaker SPV
signal compared with the MJO discussed in the previous
section (Figure 6), it is consistent with prior findings that
the SPV can serve as an indicator of GL activity. This sug-
gests that, although the SPV-conditioned climatological
forecast provides a less distinct signal than the MJO, its
combination with the NWP forecast adds more predictive
value than combining the NWP forecast with MJO-related
predictors. The third strongest predictor is the NAO index
at initialisation. Given the strong correlation between GL
and NAO-, this likely reflects the persistence of GL activ-
ity. Additional key predictors include the QBO-, MJO-, and
oceanic Nifio index-conditioned climatological forecasts,
the Pacific-North American index, as well as the trend of
the IWR forecast for GL in forecasting weeks 1 and 2.

Extending the predictor selection analysis to all seven
weather regimes (Figure 7) reveals that, except for GL and
AR, the NWP forecast of the WRact,y, (target variable)
remains the dominant predictor. NWP-derived predictors
designed to mimic a human forecaster’s analysis (such
as the temporal change of the IWR across consecutive
forecasts or its evolution in week 2) play a minor role in
the NNs. Similar to GL, the ZO network (representing
the NAO+ phase, the counterpart to GL/NAO-) includes
information from the MJO, QBO, and SPV, though dif-
ferences in the actual predictors show. The ZO network
learns from the phase of the MJO and the 100 hPa SPV
index rather than the MJO and 10 hPa SPV-conditioned
climatological forecast.

An unexpected but recurrent predictor is the Antarc-
tic Oscillation (AAO). Its index ranks second for EuBL
and ScBL, fourth for AT, highlighting its potential link
to WRact,s,. The AAO has been associated with its
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FIGURE 7
neural networks (NN,)). The predictor order is shown for all seven

Summary of the predictor order for all-predictor

weather regimes. Blue boxes indicate the last predictor which is
considered due to the best mean-squared error for the predictor
combination of all predictors with a lower predictor order number
(indicated with grey boxes). A detailed explanation of the predictors
can be found in Supporting Information Tables S1 and S2. AAO:
Antarctic Oscillation; AO: Arctic Oscillation; AR: Atlantic Ridge;
AT: Atlantic Trough; DOY: day of year: ERA: European Centre for
Medium-Range Weather Forecasts Reanalysis; EuBL: European
Blocking; GL: Greenland Blocking; IWR: weather regime index;
MJO: Madden-Julian Oscillation; NAO: North Atlantic Oscillation;
NWP: numerical weather prediction; OMI: outgoing long-wave
radiation MJO index; ONI: oceanic Nifio index; PNA: Pacific-North
American; QBO: quasi-biennial oscillation; ScBL: Scandinavian
Blocking; ScTr: Scandinavian Trough; SPV: stratospheric polar
vortex; SST: sea-surface temperature; WR: weather regime; ZO:
Zonal Regime. [Colour figure can be viewed at
wileyonlinelibrary.com]

Northern Hemisphere counterpart, the Arctic Oscillation
(AO), which is closely linked to the NAO. Tachibana
etal. (2018) demonstrate that the AAO and AO exhibit cor-
relations, particularly in October and February, whereas
Song et al. (2009) find that negative AAO phases corre-
spond to anomalously high 300 hPa geopotential heights
over the North Atlantic-European region, with a lag of
25-40days. This is consistent with the AAO being a good
predictor for EuBL and ScBL in our NNs. Despite the
potential connections between the AAO and EuBL/ScBL,
our results only establish the existence of a relationship,
without clarifying whether it reflects correlation or causal-
ity. Rather than reflecting a direct dynamical connection,
the relationship between the AAO and EuBL/ScBL may
instead arise from a mutual dependence on a common
atmospheric mode, such as the QBO, ENSO, or MJO.
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The highly variable predictor selection across NNs for
different weather regimes highlights the diverse sources
of predictability. Key predictors stem from the Arctic
(AO-related predictors for AR, ZO, and ScBL), the strato-
sphere (SPV-related predictors for ZO, ScTr, AR, EuBL,
ScBL, and GL; QBO-related predictors for AT, ZO, and
GL), and even the Southern Hemisphere (AAO-related
predictors for AT, EuBL, and ScBL; El Nifio-related pre-
dictors for AR, EuBL, and GL). This diversity under-
scores the complexity of weather regime forecasting in the
North Atlantic-European region, where no single factor
(aside from NWP predictors) dominates WRact,g, across
all regimes.

3.4.2 | Performance evaluation

Following the predictor selection, we evaluate the NNs’
performance in forecasting the WRact,g, (Figure 8). Com-
paring the MSE skill score) across all forecasts in the
extended winter season provides key insights into the
statistical-dynamical model performance relative to both
the NWP model and climatology. The climatological
forecast, based on a standard 91-day running mean of
WRact,g,, serves as a baseline for assessing NWP skill.
Consistent with previous research (e.g., Biieler et al., 2021;
Osman et al., 2023), the NWP model struggles to out-
perform climatology for ScBL and, particularly, EuBL at
week 3 but performing well for ZO and GL. All three
NN set-ups generally outperform the NWP model for
EuBL and ScBL, with NN,; showing the most pronounced
improvements of 11.0%. Notably, NN ,nwp surpasses the
NWP model for EuBL and ScBL, demonstrating that, even
without NWP-derived inputs, it achieves lower MSEs in
WRact,g, forecasts. Meanwhile, NNnywp4wr provides only
minor improvements compared with the NWP model, sug-
gesting that it mainly corrects biases rather than intro-
ducing new sources of skill. The most striking result
comes from NN, which consistently outperforms the
NWP model across all weather regimes, achieving MSE
reductions of 3.1-11.0%, with the largest gains observed
for ScBL activity. Furthermore, NN, is the only neu-
ral network that enhances the already high forecast skill
of WRact,gs gr. These improvements go beyond simple
error reduction; as illustrated in the WRact,y, forecasts
(Supporting Information Figure S7), some NNs better cap-
ture key WRact,g, patterns than the NWP model alone.
Notably, NNponwp successfully captures the prolonged GL
activity during the winters of 2009-2010 and 2010-2011.
Additionally, for forecasts with the largest x% differences
(x € (0,100]) in predicted activity between NN,; and NWP,
NN, consistently achieves lower MSE, regardless of the
magnitude of the difference (not shown here).

NNa"7 .

NNnwp + wR -

|-

-0.04

NN nonwp -

Climatology .-

AT ZO ScTr AR EUBLSCBL GL
Weather regimes

Forecasting models
o
o
o
SESnwp

FIGURE 8
climatological forecasts in comparison with the numerical weather

Performance of the different neural network and

prediction (NWP) forecast for WRact,,,. As performance measure,
the mean-squared error (MSE) is calculated for each model and
weather regime (WR) and put into perspective against the MSE of
the NWP model (MSE skill score, MSESS). AT: Atlantic Trough; ZO:
Zonal Regime; ScTr: Scandinavian Trough; AR: Atlantic Ridge;
EuBL: European Blocking; ScBL: Scandinavian Blocking; GL:
Greenland Blocking. [Colour figure can be viewed at
wileyonlinelibrary.com]

In the final stage of our analysis, we evaluate whether
the improvements observed for individual WRact,s
forecasts translate into better predictions of the WRact,ax
3weeks after forecast initialisation. We determine the
weather regime with the maximum predicted activity for
both the NN,; and the NWP model and then compare
their performance using verification metrics derived from
the contingency table (Tables 1 and 2), including accuracy
(HR), FAR, precision, and F; score (Figure 9). Across all
metrics, a rather uniform image emerges: the NN, per-
forms equal or better for all weather regimes except the
ScTr. The HR improves for all weather regimes except ScTr,
with the overall accuracy increasing from 28.7% for the
NWP model to 34.5% for the NNy, representing a rel-
ative improvement of 20%. FARs decrease for ZO, ScTr,
EuBL, ScBL, and GL, and they increase for AT and AR.
The precision and F; score improve for all weather regimes
except the ScTr, which is due to the decrease in the HR.
The stepwise predictor selection for ScTr already indicates
its limited predictive skill, as the two strongest predictors,
NWP,gs wractiviy and NWPrwrmean, are closely related.
Moreover, adding further predictors leads to only marginal
reductions in MSE compared with the predictor selections
for the other weather regimes (not shown).

In conclusion, NNs can extract additional predictive
information beyond what is provided by the NWP model
alone. Though the NWP-based WRact,s forecast (or IWR
forecast for AR and GL) remains the most influential pre-
dictor, added value comes from atmospheric indicators
such as the SPV, QBO, MJO, and AAO indices. The
NN, not only outperforms the NWP model for individ-
ual weather regime forecasts (based on the MSE) but
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European weather regimes, with a focus on the activity of
GL, 3weeks later. Furthermore, we leverage information
describing the atmospheric state prior to and at initiali-
sation to enhance NWP week 3 weather regime activity

We compute a weather regime activity metric
(WRactyean and WRact,gs), representing the fraction of
daily IWR values in a given week exceeding a given thresh-
old, based on reanalysis and reforecasts. Our findings show
that GL WRactmean gL is significantly enhanced following
MIJO phases 7, 8 and 1, as well as weak (and weakest 10%)
SPV state (though not significant), suggesting a climato-
logical window of opportunity (BR anomaly to neutral

MOCKERT ET AL.
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FIGURE 9 Verification metrics comparing the skill of the

numerical weather prediction (NWP) model and the all-predictors
neural network in predicting the WRact,,,, at a lead time of

3 weeks. Four metrics, the hit rate, the false alarm rate, the
precision, and the F; score, are visualised (x-axis). Further, together
with the hit rate, the accuracy for the full time series is given and
indicated by percentages in text. For each metric, on the left the
NWP model and on the right the all-predictors neural network
(NN,) is represented, joined by a thin line that serves as a guiding
line for the reader to directly see whether the respective metric
increases or decreases for the neural network in comparison with
the NWP model. AT: Atlantic Trough; ZO: Zonal Regime; ScTr:
Scandinavian Trough; AR: Atlantic Ridge; EuBL: European
Blocking; ScBL: Scandinavian Blocking; GL: Greenland Blocking.
[Colour figure can be viewed at wileyonlinelibrary.com]|

also achieves a 20% relative improvement in predicting
the dominant weather regime at week 3. Furthermore,
the NNyonwp, Which excludes NWP-derived inputs, per-
forms equally well or better for three of the four blocked
regimes (EuBL, ScBL, GL), highlighting the importance of
non-NWP sources of predictability. These findings under-
score the potential of hybrid forecasting approaches that
integrate dynamical and statistical models to enhance sub-
seasonal WRact,g, predictions.

4 | CONCLUSIONS AND
DISCUSSIONS

Various studies documented the connection between sub-
seasonal sources of predictability (e.g., MJO or SPV) and
the large-scale circulation in the North Atlantic-European
region (e.g., Cassou, 2008; Lee et al., 2019, 2020; Domeisen
et al., 2020c; Roberts et al., 2023). However, only a few
studies so far could demonstrate its practical applicabil-
ity to improve subseasonal NWP forecasts (e.g., Scaife
etal., 2022).

In this study, we investigate the influence of the
state of the MJO and SPV at initialisation on the occur-
rence and forecast of seven year-round North Atlantic

state is positive). However, ECMWF reforecast HRs show
improvement over the respective neutral phase only in
MIJO phases 1 (significant) and 8 and in the weak SPV state
(not significant). A positive PSS in MJO phases 8 and 1, as
well as in the weakest 10% SPV state, classifies them as a
model window of opportunity type 2—according to Specq
and Batté (2022), with a positive anomaly in BR, HR, and
PSS with respect to neutral state—whereas the weak SPV
state corresponds to a model window of opportunity type 1
(BR and HR anomalies to neutral state are positive and
PSS anomaly is negative). GL is rare following the MJO
phase 4, though the NWP model is performing well in cor-
rectly predicting these rare GLs, classifying MJO phase 4
as a window of opportunity type 3 (HR and PSS anomalies
are positive and the BR anomaly is negative). We demon-
strate the potential skill for predicting GL activity in
week 3 purely derived from reanalysis data by constructing
an atmospheric-conditioned climatological forecast that
utilises historical information of the MJO state (amplitude
and phase) or SPV state to estimate the mean historical
WRact,g g1, for the prevailing situation. Incorporating this
information (alongside MJO, SPV, and other atmospheric
variability indices) with NWP-derived WRact,y; metrics
in a statistical-dynamical model using NNs improves
WRact,q, forecasts across all seven weather regimes. When
aggregating individual WRact,y, forecasts to determine
the dominant regime (WRacty,.x), the best-performing NN
achieves accuracy increases for all regimes individually,
except the ScTr. The overall accuracy increase of the neural
network is 5.8 percentage points, representing a relative
improvement of 20% compared with the NWP model.
Our findings on windows of opportunity align with
previous studies on the MJO-NAO (Cassou, 2008; Fer-
ranti et al., 2018; Vitart, 2017) and SPV-NAO (Beerli &
Grams, 2019; Biieler et al., 2020) connection. In partic-
ular, we find an increased climatological occurrence of
GL following weak SPV states, a relationship that is well
captured by the ECMWF forecast model. This supports
the results of Spaeth et al. (2024), who show that ensem-
ble forecasts exhibit greater confidence in predicting the
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dominant regime (typically GL) after a weak SPV state
compared with neutral or strong states. However, our
results also reveal a downside: the NWP model tends
to overpredict GL in these situations, leading to (as we
can show) frequent false alarms. In contrast, the NWP
model shows poor performance in predicting the rela-
tively rare GL occurrence during strong SPV states. These
limitations are likely related to the findings of Domeisen
et al. (2020c), who show that the tropospheric response to
a sudden stratospheric warming (i.e., a weak SPV state)
varies depending on the tropospheric conditions at the
time of the warming. It is plausible that the model lacks the
ability to distinguish between these different pathways.

A further limitation of our analysis lies in the choice
of the SPV index itself. We rely on the 10 hPa zonal-mean
zonal wind at 60° N as a one-dimensional diagnostic,
but this definition may not fully capture the complexity
of stratosphere-troposphere coupling. More sophisticated
predictors could provide a better representation of the SPV
state. For example, a combination of indices on different
vertical levels (10 and 100 hPa), a combination of temper-
ature and potential vorticity on a specific level (Baldwin
etal., 2024), or predictors that reflect the time evolution of
the SPV, either in the form of extended one-dimensional
indices or time series inputs, may be more suitable. For the
NNs, we provide the SPV index on the 10 and 100 hPa level,
though the 10 hPa level dominates.

The SPV-conditioned climatological forecast shows
only a weak signal for GL onsets, especially when com-
pared with the signal by the MJO. However, in the NN
framework, the SPV emerges as a more important predic-
tor alongside the NWP forecasts. This suggests that the
NN is able to extract complex, nonlinear dependencies
between the SPV, other predictors, and NWP information
in ways that are not easily accessible to purely statistical
analyses.

To our knowledge, this study is the first to demonstrate
how the MJO/SPV-NAO relationship can be harnessed
as a decision-support tool for subseasonal GL forecasts,
based on purely statistical information and independent of
NWP models. Additionally, our NN approach shows par-
ticular value for predicting blocking over Europe (EuBL
and ScBL). Consistent with previous findings that NWP
models struggle with these regimes—often performing
worse than simple climatological forecasts (e.g., Biieler
et al., 2021; Osman et al., 2023; Wandel et al., 2024)—we
find that two of our NNs, one excluding and one including
NWP information, both outperform the raw NWP fore-
casts for these blocked regimes. These results highlight
that predictability sources should not be approached with
a “one-size-fits-all” strategy but rather tailored to specific
weather regimes.

This perspective may have uncovered previously
unknown sources of skill, such as the AAO index’s poten-
tial relevance for EuBL and ScBL. To our knowledge,
this connection has not been reported in the literature,
and it raises important questions about the underlying
mechanisms. Though previous studies suggest some links
between the AAO and Northern Hemisphere circulation
(e.g., Song et al., 2009; Tachibana et al., 2018), the path-
ways through which the AAO could influence EuBL/ScBL
remain unclear. One possibility is that the AAO exerts a
delayed influence on North Atlantic circulation by mod-
ulating planetary wave propagation into the stratosphere,
thereby affecting the strength and variability of the polar
vortex. Through this pathway, changes in the Southern
Hemisphere circulation could indirectly alter EuBL/ScBL
probabilities. Alternatively, the statistical importance of
the AAO may reflect an indirect relationship: the AAO
and EuBL/ScBL could both respond to another large-scale
mode of variability, such as the QBO, ENSO, or MJO,
rather than being causally linked. Our results should be
interpreted as revealing a statistical connection rather
than demonstrating a direct dynamical mechanism.
Future work will be needed to disentangle the influence
of the AAO on European weather regimes. Either way,
the apparent relevance of the AAO for blocking predic-
tion highlights the potential of data-driven approaches to
uncover predictors that are not readily anticipated from a
purely dynamical perspective.

Though our analysis highlights statistical links
between the MJO, SPV, AAO, and European weather
regimes, we do not examine the underlying dynamical
pathways, as this lies beyond the scope of the article. For
the MJO and SPV, we instead refer the reader to studies
that provide detailed discussions of the relevant mecha-
nisms (e.g., Cassou, 2008; Stan et al., 2017, 2022; Domeisen
et al., 2020a, 2020b, 2020c; Fromang & Riviere, 2020).

Further research should focus on refining predic-
tor selection for individual weather regimes to establish
robust connections. One approach could be incorpo-
rating time-series analysis of indices in more complex
machine-learning models, such as transformers, to cap-
ture temporal dependencies. Additionally, conducting
case studies on specific forecasts and their associated
atmospheric states may provide deeper insights into the
mechanisms driving predictability. Another important
step is extending the analysis to longer lead times
within the extended range to evaluate how different
predictors contribute to forecast skill over increasing
time horizons. By enhancing our understanding of
regime-specific sources of predictability, we can further
improve subseasonal forecasting and develop more
reliable decision-support tools for subseasonal prediction.
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These tools have the potential to benefit a wide range of
weather-sensitive sectors. For example, anticipating pro-
longed cold spells is crucial for managing energy demand,
and forecasts of temperature and precipitation extremes
can support agricultural planning during sensitive stages
such as harvest. Similarly, reliable information on the like-
lihood of floods, cold air outbreaks, or heatwaves can
enhance risk management and preparedness. The inter-
pretability of regime forecasts makes them particularly
valuable for stakeholders who require actionable guidance
rather than raw model output.

To conclude, our study demonstrates the potential of
statistical-dynamical forecasting with NNs for the sub-
seasonal prediction of North Atlantic-European weather
regimes, providing valuable improvements to NWP perfor-
mance, particularly in situations where traditional NWP
models struggle.
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ENDNOTES

!The seasonal normalisation accounts for the inherently stronger
variability in winter compared with summer. This is achieved by

Royal Meteorological Society

dividing the filtered Z500 anomaly fields at each grid point by a
calendar-day-dependent normalisation factor. The factor is com-
puted as the spatial average (across the weather regime domain) of
the 31-day running standard deviation of the Z500 anomalies for the
corresponding calendar day.

2Note that the weekly mean of daily IWR equals the IWR of the
weekly mean geopotential height field (after filtering and normali-
sation).
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