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Fig. 1: Grasp demonstrations for parallel jaw grippers via HOGraspFlow

Abstract— We propose Hand-Object(HO)GraspFlow, an
affordance-centric approach that retargets a single RGB with
hand-object interaction (HOI) into multi-modal executable
parallel jaw grasps without explicit geometric priors on target
objects. Building on foundation models for hand reconstruction
and vision, we synthesize S F(3) grasp poses with denoising flow
matching (FM), conditioned on the following three complemen-
tary cues: RGB foundation features as visual semantics, HOI
contact reconstruction, and taxonomy-aware prior on grasp
types. Our approach demonstrates high fidelity in grasp synthe-
sis without explicit HOI contact input or object geometry, while
maintaining strong contact and taxonomy recognition. Another
controlled comparison shows that HOGraspFlow consistently
outperforms diffusion-based variants (HOGraspDiff), achieving
high distributional fidelity and more stable optimization in
SE(3). We demonstrate a reliable, object-agnostic grasp syn-
thesis from human demonstrations in real-world experiments,
where an average success rate of over 83% is achieved.

I. INTRODUCTION

Recent years have witnessed a growing body of ap-
proaches in learning robotic manipulation behaviors directly
from human demonstrations, ranging from teleoperation to
internet-scale video corpora [1], [2], [3]. Specifically, learn-
ing from human-object interaction (HOI) demonstrations
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is increasingly framed as a retargeting problem, where a
robotic end—effector (EE) is mapped from anthropometric
hand motion discovered in the wild to the EE kinematics.

Towards the challenge of kinematic mismatch between
parallel jaw (PJ) EE and anthropometric hand in the video
observations, a popular abstraction in vision-based imitation
learning aligns the EE with the human thumb—index pair [1],
[4], [5], enabling simple pinch retargeting. While appealingly
concise, this proxy collapses the diversity of human grasp
taxonomy [6] and neglects contact—dependent antipodal force
closure [7]. Hence, this approach is limited to pinch-like
grasps and cannot be robustly applied to dynamic demon-
strations that exhibit diverse grasp types.

Moreover, recent research on multi-embodiment grasp
generations [8], [9] has demonstrated that object-conditioned
grasp priors can be learned and modulated by geometric
embeddings (e.g., Signed Distance Function (SDF), point
graph features) that capture EE morphology. While such
approaches enable transfer across different EEs, they are
fundamentally object—centric and typically assume access to
reliable 3D geometries and pose estimation at test time. Crit-
ically, they do not parse human intent or contact semantics
from HOI, and thus cannot directly exploit in-the-wild video
data, where hand pose, contact detection, and occlusions
introduce significant noise.
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Targeting these limitations, in this work, we develop a
vision-based generative hand-to—-EE retargeting framework
that supports adaptable transfer to dynamic, diverse anthro-
pometric grasp demonstrations, while explicitly recognizing
grasp taxonomy and contact with a single RGB crop of the
hand. Our design is motivated by the asymmetry between
intent and object variability, where objects vary widely while
the set of underlying grasp intents remains relatively limited.
On the object side, geometric diversity (shape, scale, etc.)
and sensing brittleness (missing depth, specular failures)
induce large, unstructured test-time shifts. In contrast, condi-
tioned on a demonstrated grasp, the space of physically valid
human hand poses with contact is constrained by anatomy,
kinematics, compact grasp taxonomy, and affordance-driven
intent, thus lying on a low-dimensional, structured manifold.

Moreover, building on recent advances in multi-modal
grasp synthesis with diffusion models [10], [11], [12], we
adopt denoising generative modeling on SF(3) for intent-
conditioned retargeting given the following advantages: (i)
Due to the kinematic mismatch between the human hand and
PJ grippers, a single human grasp type often corresponds
to multiple valid gripper approaches realizing the same
affordance. Denoising-based models naturally preserve this
multi-modality by sampling diverse modes in SE(3); (ii) The
iterative denoising process admits controllable guidance [13],
allowing generated poses to be steered by differentiable con-
straints (e.g., collision avoidance [14] or curated affordance
priors [12]); (iii) In contrast to end-to-end methods that
rely on post hoc filtering [15], [16], [17], where feasibility
check and affordance matching are performed after grasp
generation and invalid candidates are discarded, our in-the-
loop guidance enforces constraints during generation, thereby
reducing rejections and improving sample efficiency—a crit-
ical factor given the scarcity and sampling cost of force-
closure, affordance-consistent ground-truth datasets [18].

In summary, our contributions are: (i) We designed a
vision-based affordance-centric HOI retargeting framework
that produces multi-modal 6-DoF PJ grasps from a single
RGB frame. This is achieved by conditioning on foundational
features on HOI, without requiring explicit object models
or pose estimation, while accounting for the diversity of
human grasp taxonomy; (ii) We introduce two generative
retargeting frameworks, HOGraspDiff and HOGraspFlow,
inspired by SOTA SFE(3) generative approaches to a vision-
based setting. By integrating state-of-the-art visual founda-
tion models’ features as contact priors, our method operates
without explicit 3D geometric conditions or pose estimation
of objects; (iii) Through extensive ablations and real-world
deployment, we demonstrate consistent improvements in
grasp-type prediction, contact accuracy, and distributional
fidelity relative to the baselines, including a contact-oracle
variant. With a minor translational correction with depths
information at deployment, we achieved over 83% success
in grasp transfer in our real-world robot experiments.

II. RELATED WORKS
A. Generative 6-DoF grasp synthesis

Learning-based grasp generators model a distribution over
executable gripper poses conditioned on scene observa-
tions, enabling sampling-based exploration rather than hand-
crafted proposal scoring. For instance, GraspNet-1B [19] and
Contact-GraspNet [15] have established the effectiveness of
learning from local contact geometry for grasp generation.
In contrast, denoising-based grasp generators learn a latent
density field through an iterative denoising process [20],
representing a recent trend in robotic manipulation learning.
Among these, SE(3) diffusion fields [10] adapt denoising
diffusion to the Lie group [21], which learn grasp densities
and refine samples directly on the SE(3) manifold, coupling
pose synthesis with motion optimization for grasp execu-
tion. To handle symmetries and improve consistency under
object rigid motions, EquiGraspFlow [11] enforces SE(3)
equivariance while adopting flow-based denoising to handle
symmetries and rigid object motions. To incorporate task
constraints and human intent, HGDiffuser [12] augments
the diffusion process with hand-intent cues, producing task-
oriented 6-DoF grasps via guidance [22]. While effective,
these generators typically assume accurate object geometry
at inference, and thus usually fail under sensing artifacts and
large out-of-distribution (OOD) variability in object shape
and appearance.

B. Hand-object interaction (HOI) and reconstruction

Recent progress in HOI recovery has been driven by the
MANO parametric hand model [23] and modern monocular
reconstructions that deliver accurate 3D hand pose and shape
from RGB [24], [25]. As the foundation, rich HOI datasets
provide contact supervision and cross-object variability such
as DexYCB [26] and OakInk [27], which comprises af-
fordances and human interactions over diverse household
objects. Meanwhile, HOGraspNet [28] contributes dense
HOI annotations with grasp taxonomy in dynamic sequences,
facilitating systematic analysis of everyday human grasps.
Aligned with these trends, we condition grasp generation
on reconstructed hand poses and dense contact maps, while
deliberately avoiding direct dependence on object geometry,
which is prone to reconstruction artifacts and time latency.

C. Learning PJ manipulation from human demonstrations

Learning from human demonstrations has progressed from
teleoperation to in-the-wild human videos, which aim to
narrow down the gap between robotic imitation learning
and internet-scale demonstrations. As specific instances for
learning manipulation with PJ EE, R+x [1] mines large video
corpora to retrieve and adapt relevant HOI behaviors, while
Point Policy [2] learns visuomotor policies by extracting
EE-hand keypoint correspondences from demonstrations.
Focusing on grasping, GAT-Grasp [4] conditions on gestures
and affordances to translate human hand signals into task-
aware robotic grasps. However, these approaches typically
assume a thumb-index pair template as the basis for grasp
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Fig. 2: Pipeline for HOGraspFlow

retargeting, which severely limits their generalizability to
diverse and unconstrained in-the-wild demonstrations.

III. METHODOLOGY

We aim to recover affordance—centric grasp intent from a
human demonstration and retarget it to a PJ, which answers
two fundamental questions for affordance-centric grasping:
where to grasp and how to grasp. Fig. 2 summarizes the full
pipeline of our approach. Unlike prior pipelines that require
object meshes or partial point clouds at both training and
inference [8], [12], we condition grasp generation solely on
the outputs of a foundational hand reconstructor WiLoR [25],
represented by MANO [23] parameters and hand detections
with semantics from DINOv2 [29].

To achieve this, our system converts a single RGB ob-
servation and the extracted hand poses from WiLoR into
a compact grasp—intent embedding (Sec. III-A), and then
synthesizes multi-modal PJ poses via a generative denoising
process in the SE(3) manifold (Sec. III-B). At inference (Sec.
II-C), depth information is only used to refine the absolute
translation of the reconstructed hand pose via Z-only ICP.

A. Hand-object Perception and Feature Extraction

We first extract HOI semantics from foundational features
(Sec. III-A.0.a). Then, these representations get refined and
guided with two complementary substreams (Sec. I1I-A.0.b):
(1) hand contact estimation, which principally encodes the
localization of feasible grasps by predicting contact maps on
the hand surfaces (i.e., answering where to grasp); and (ii)
grasp taxonomy recognition, which shapes categorical prior
on the distribution of PJ grasps, used jointly with a trainable
codebook (CB) as a reference embedding (i.e., answering
how to grasp).

a) HOI feature extraction: Given an RGB image I €
RHEXWX3 with a HOI demonstration, WiLoR [25] detects
n hand boxes B = {b;}""_;, and regresses the global hand
translation ¢; € R® and MANO parameters (w;, 0;,3,) with
global orientation w; € R?, joint angles 6; € R*5, and shape
B; € R'%. We then crop the image around each detection,
I, = C(I;b;), and apply background augmentation using
ground-truth HOI masks from the dataset [28].

To capture the underlying semantics in HOI, explicit CAD
or reconstructed meshes can fail under occlusion, specularity,
and category diversity. In contrast, foundation models like
DINOvV2 [29] are broadly invariant across instances and
appearances, making them well-suited for grasp representa-
tion and transfer without requiring explicit object models or
poses. Therefore, we process each augmented crop I, with
DINOV2, obtaining patch tokens Z; = fpwo(I;) € RPXP
that serve as compact, semantics-aware descriptors of the
local HOI context, where P and D denote the number of
patches and the feature dimensionality, respectively.

We map the hand parameters [0, 3,] € R to the same
dimension D using a small MLP, yielding a hand feature
h; = fene(0;,3;) € RP. Notably, to avoid ambiguity in
grasp localization under global hand orientation w, grasp
synthesis is grounded in the hand wrist frame and the feature
extractor omits w, using only articulated pose 6 and shape
3. Thus, the estimated grasp poses can be transformed to
the world coordinate via (t;,w,). The feature fusion is
performed with a self-attention operator after concatenation
between hand and image features':

y; = SelfAttn([h;, ReLU(f*(Z;))]) € R”, (D)

the output y; is a single HOI-aware descriptor and f* is the
feature adaptation layers.

'Only equations referenced in the text are numbered.



b) Hand contact and grasp taxonomy recognition: To
enrich the hand representation, we learn a contact-aware HOI
embedding with a lightweight MLP decoder adapted from
Prakash et al. [30], without requiring explicit contact input.

Principally, MANO parametric model [23] map the hand
pose parameters (0, 3) to compact hand meshes via: M =
M(0,8) € RN»*3 with N, = 778 vertices in structured
order. Given the fused descriptor y;, the decoder fqec :
RP — RN predicts per-vertex contact logits ¢; over M:

¢; = Sigmoid(fae(y;)) € [0,1]"".

Given the per-vertex contact labels c¢; € [0,1]V* that are
retrieved following [28], we optimize a weighted binary cross
entropy:

N,
1 <= R R
Leont = =3 2 | wicjulogeju+ (1—cju) log(1—&u)|.
You=1

w1 = 5 is chosen to address class imbalance empirically.

While the hand contact estimation captures instance-
specific HOI semantics over contact localizations, grasp
retargeting between the anthropometric hand and PJ is un-
derconstrained due to their morphological differences and
kinematic mismatch. To mitigate this, we leverage the grasp
taxonomy recognition as the morphological prior to comple-
ment the retargeted PJ grasp distributions.

Specifically, a grasp type classifier MLP: fq (y,) cat-
egorizes K = 33 grasp types, defined by the GRASP
Taxonomy [6], and trained via cross entropy: Lgs =
CE(far(y;), cls;) with ground-truths class labels cls;. We
maintain a learnable codebook CB = {~, € RP}  of size
K, and obtain a semantics-aware prior as a softmax-weighted
mixture to mitigate the classification errors:

K
m; = Softmax(fg (y;)), Y= Z Tk Yk
k=1

This taxonomy-conditioned prior complements the contact
embedding by regularizing both contact topological and grip
orientational distributions.

B. SE(3) Pose Synthesis via Generative Denoising

Given the HOI-aware descriptor y; and the induced CB
embedding %, from Sec. III-A, we aim to generate di-
verse, retargeted SE(3) grasp poses. We deliberately adopt
denoising-based generative models since they preserve multi-
modality by sampling diverse modes in SFE(3). Moreover,
iterative samplers admit controllable, differentiable guid-
ance [13], enforcing feasibility during generation and im-
proving sample efficiency over post hoc filtering [15], [16].

We introduce two frameworks HOGraspDiff and
HOGraspFlow that follow the leading families of recent
denoising generative models: score-based diffusion [31],
[10] and flow matching [32] in SE(3), respectively, both
based on the Diffusion Transformer (DiT) architecture [33].

We formulate the hand grasp retargeting as a conditional
sampling process from a SF(3) pose distribution of PJ:

g == (pj.q;) ~p(g|vyi:¥;), &€ SEQ),

Denoising Process: t = (0,...,1) w/o Guidance w/ Guidance
WA

Fig. 3: Denoising process and generation results. Vertices
in contact are in red. Parameters for guidance: 6y, = 0.8,
M4 =1e — 3.

where p; € R? denotes the Euclidean position, and q; €
S$3 C R* is the unit quaternion of orientation. Since the
reference frame of the denoising process is constructed with
respect to the hand wrist frame, the framework naturally
inherits equivariance to the global transformation (t;,w;).

a) HOGraspDiff with score matching (SM): We model
the forward diffusion as left-invariant Brownian motion in
score matching (SM), by pushing forward isotropic Wiener
noise on the Lie algebra se(3) analogous to [34].

Specifically, let gz € SE(3) denote the grasp pose at
denoising time ¢ € [0,1] in the forward diffusion process.
We learn a time-dependent left-invariant score function 2
Sk(8t,t) = Vg, logpi(g:) € se(3) parametrized by «. The
learned score then drives the reverse-time diffusion:

dXt = uK(gt,t) dt —+ v Q,B(t) . th, (2)

where 5(t) > 0 is the diffusion schedule and W; is left-
invariant Wiener process on se(3).

In training, a displacement Ag; = (Apy, Aq;) € SE(3)
is sampled at a random noise level ¢ ~ £(0,1], with
decomposed translational and rotational elements [34]:

pi(Apy) = N(p; 0, O—tQI)v pi(Aqp) = 1950(3) (Rq; €t)-
3)
Here, A and ZG so(3) denote the isotropic Gaussian distri-
butions in R? and SO(3), parameterized by their respective
concentration 07 = apt and € = %“t Rq € SO(3) is
the rotation matrix of q. The grasp poses of each time step
g is then diffused by the twist in body frame using group

2We omit notations y;, 7; as conditions in s (+), u(+) for simplicity



product®:
pt + th J(Log(RAQt)) Apt

=gioAg;, = , (4)
q: ® Aqy

gt+At

where ® denotes quaternion multiplication and J(-) is the
left Jacobian. Hence, the objective is to learn a score head
that estimates the translational and rotational scores, namely
sP(gt,t) and s9(gt,t), by minimizing the mean squared
error to the ground-truth scores:

Escore = }Egg,t7 Ag,,[” vAp,, logpt(Apt) - SP(gta t ||;

+ Hqut log pt(Aqy) — s (g, 1) || }
Closed-form solutions are calculated via [34]:

Vap, logpi(Ap;) = —Apeo; 2,

3
= Li logZGso(3)(Raq,; €) €,
i=1
IL; is the left-trivialized Lie derivative of TG g0 (3)(Rq;€)
along the i-th orthogonal basis {e;};=12 3 on s0(3).
In sampling, for each translational or rotational element
x € {p,q} , the update increment follows Eq. (2):

AXt = Bx( ) gta At + V 26)( th7

where Sx(t) = %ai t*t with oy as the time exponent and the
sampling stochasticity of Wiener process: zx ~ AN(0,I?).
We then update the pose by left multiplication iteratively via:
gt At = 8t O Ag;l with SE(3) product in Eq. (4).

b) HOGraspFlow with flow matching (FM): We
adapted the SM’s formulations to construct the flow-based
alternative, which learns a deterministic flow and transports
the mass from a base distribution Py to P; = Pyaa.

Principally, flow matching (FM) parametrizes the drift
Bx(t) sX(gt,t) by learning left-trivialized velocity compo-
nents uP(g;,t) and u(g;,t) along the geodesics in se(3),
bypassing noise schedules and score normalization.

The smooth time-dependent linear and angular velocity
fields uP(gy,t),ud(gy,t) : [0,1] x SE(3) — R3, mapping
from g;,t € [0,1] to g1 ~ Py are learned, such that poses g
follow the distribution of the ground-truth data. Therefore,
the deterministic flow is constructed and applied via:

g = go o [uB(g:, 1), ud(g, t)] . (&)

While the body twist naturally unifies translation and rota-
tion, the fully coupled formulation in Eq. (5) creates strong
correlations between them, often impeding stable optimiza-
tion and denoising process. We therefore adopt a decoupled
product manifold flow on R3 x SO(3) with independent
priors pp and qo that are sampled same as Eq. (3). Given a
ground-truth pose g1 = (p1,q1), the geodesics can then be
calculated as (in body frame):

Ap = R} (P1 — Po), Ap =

3Log : SO(3) —s0(3) and Exp : 50(3) — SO(3) denote the logarithm
and exponential maps, whereas “log” is the standard scalar logarithm.

Vi, log pe(Aqy)

Log(Rqalql). (6)

Subsequently, the interpolation between the initial grasp
pose go and the ground-truth grasp pose g1 ~ P is
performed to get the linear and angular transformation ap-
proaching the ground-truth value:

= q; ® Exp(AtA¢).
(7

In this way, the translational field is independent of the initial
rotation qg. The objective is to minimize the mean squared
error between the ground-truth velocities and the predictions:

Lstow = Ego, 1, ag.[I18p—uE (1, ) 3+ Ad—u (g1, DI 3]

At inference, a grasp pose is calculated by sampling an
initial pose and solving an ordinary differential equation
(ODE) over t € [0, 1]. We use either 4th-order Runge—Kutta
[35] or the generic Euler sampling as Eq. (7) iteratively over
t, trading off between sample quality and efficiency.

c) Guidance-based sampling: To better align the syn-
thesized PJ grasps with the hand intention, guidance is
applied in both SM and FM. In the hand frame, ey, =
[0,1,0]T is empirically taken as the palm’s axis in the local
wrist frame. For a noisy pose g;, we apply soft guidance
only when angular alignment (in cosine similarity) exceeds
a threshold:

& = V%tct]l[ct < bine, ¢ =

Pt+at = Pt + AtRg, AP, Qitat

<RQt [y]a eapp>'

With guidance weight A¢¢ > 0, during sampling the rota-
tional score/flow field is superposed via:

s (g0, 1)  sH(ge )A€y, wl(gr, t)  ul(gr, ) HN €,

We additionally apply classifier-free guidance [36] by sam-
pling a weighted sum of the conditional and unconditional
flow inspired by [11] for both approaches. The generation
processes are illustrated in Fig. 3 for HOGraspFlow.

C. Deployment

Given grasp candidates g; sampled in the wrist frame,
we transform them to the world frame via the hand’s world
pose (t;,w;). In particular, to compensate for the translation
bias of WiLoR in t; [4], [5], we apply and constrain the
ICP algorithm [37] that only allows correction along the ray
from the camera origin to the hand center (“Z-only ICP”),
which enables accurate 3D hand pose with the monocular
recognition, in contrast to multi-view setups in [2], [4]. In
addition, this retargeting strategy improves generalization by
decoupling grasp generation from the object’s absolute pose.

IV. EXPERIMENTS

In the experiments, we aim to evaluate our framework
along the following factors regarding the framework de-
sign: (i) the advantage of foundation vision features for
synthesized grasp quality and representation; (ii) the relative
performance of HOGraspFlow versus HOGraspDiff under
matched settings; (iii) the real-world performance and gen-
eralization to unseen objects. We report distributional fidelity
of synthesized grasps, per-vertex contact errors, and grasp-
type classification scores in Sec. IV-B. To further assess
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Fig. 4: Generated PJ grasps via region—conditioned contact
matching with HOGraspNet annotations [28] via hand re-
gions defined by [38].

generalization, we perform real-world evaluations to examine
our approach on various objects and grasp types in Sec. IV-C.

A. Data preparation

We evaluate our method on the HOGraspNet dataset [28],
which provides 1.5M HOI demonstrations in RGB-D frames,
annotated with MANO hand parameters, object meshes and
poses, contact maps, and grasp labels defined by GRASP tax-
onomy [6]. To generate supervision of PJ grasp distributions
systematically, we synthesize grasp annotations offline in the
following two steps: First, PJ grasps are sampled using the
MetaGraspNet workflow [18] on each object mesh from the
HOGraspNet. This produces collision-free grasps that fulfill
antipodal constraints [7] and are agnostic to the affordance.
Second, given the ground-truth hand vertices and their poses
relative to the objects, the sampled PJ grasps are filtered via
region—conditioned contact matching (Fig. 4): Specifically,
we adopt the A-MANO [38] semantic partition of the MANO
surface into 16 disjoint regions (Fig. 4, right) as a prior for
filtering. A pre-generated force-closure candidate is accepted
only if its implied contacts can be assigned to two distinct
hand regions, reflecting the hypothesis that a realizable PJ
grasp engages at least 2 opposing anatomical areas rather
than a single region.

Baseline TA(%)T CA(%)T EMD/]

HOGraspDiff, w/io DINOv2 69.4 71.8 1.02 +0.22
w/ DINOv2 90.3 88.8 0.82 +£0.23
w/ DINOv2 CB 914 89.5 0.80 + 0.23
w/ Contact 78.8 90.5 0.88 £ 0.22
HOGtraspFlow, w/o DINOv2 68.9 69.2 0.81 £0.24
w/ DINOv2 91.4 87.6 0.69 £0.21
w/ DINOv2 CB 92.5 88.1 0.67 +0.21
w/ Contact 78.5 90.5 0.76 £ 0.22

TABLE I: Comparison of Taxonomy Accuracy (TA(%))),
Contact Accuracy (CA(%)), and earth mover’s distance
(EMD).

B. Grasp generation performance with ablations

a) Objective: We train perception and generation
end-to—end with £ = A¢sLes + AcontLeont + AgenLgen

Depending on the chosen generator, either the score or flow-
based objective is enabled Lgen € {Lfow, Lscore}. We
choose Acis = 0.1, Acont = 0.1 and Lgen, = 1 in all baselines.

b) Baselines: Our first study probes two design choices
in the framework: 2D vision features and the taxonomy-
aware codebook. For this purpose, we evaluate four variants
both on HOGraspDiff and HOGraspFlow: (i) w/o DINOv2:
remove DINO-based self-attention and condition only on the
hand MLP feature (i.e. y; = h; in Eq. (1)), while holding
identical architecture; (ii) w/ DINOv2: restore self-attention
to DINOv2 patch tokens on the RGB hand crops; (iii)
w/ DINOv2 CB: further augment with the taxonomy-aware
trainable codebook (CB); and iv) w/ Contact (or contact-
oracle): replace visual conditioning with the ground-truth
per-vertex contact signal (with NV,, dimensions) concatenated
to the MANO input (i.e., y; = h;j = fenc(0;,8;,¢;)). No-
tably, the contact-oracle serves as a strong upper bound for
conditioning and contact reconstruction quality, which is not
available for deployment. In total, 8 baselines are considered
in the ablation studies. For the sampling steps, to balance
between the quality convergence and the evaluation time,
HOGraspFlow samples with 40 steps, while HOGraspDiff
requires 100 steps. The Euler sampler is used for both.

c¢) Metrics: Our evaluation metrics involve: (i) earth
mover’s distance (EMD), which quantifies the mismatch
between predicted and ground-truth grasp poses via SE(3)
geodesic (lower means better), where we generated 100
grasps for each data sample for the measurement (following
[11]); (ii) Contact Accuracy (CA(%)), measuring the accu-
racy of reconstructed contact. In addition, the classification
accuracy with respect to the grasp taxonomy (TA(%)) serves
as a complementary metric. We evaluate each baseline on 26k
validation samples from HOGraspNet at two granularities:
(i) overall performance on the full validation split (Tab. I)
in parallel with the EMD distribution for each baseline
(Fig. 5); (ii) per grasp type performance (Tab. II) across
eight representative grasp classes selected to evenly cover
the power, intermediate, and precision categories [6].

d) Results and analysis: Tab. 1 reports the over-
all performance across all 8 baseline approaches. In the
HOGraspDiff branch, the EMD drops from 1.02 to 0.82
when semantic cues from DINOvV2 are integrated. This is fur-
ther improved by 0.02 with the taxonomy-aware codebook.
Moreover, A significant increase in the contact accuracy is
identified given the semantic feature by over 15% compared
to embedding from MANO only input, and has only 1 —2%
loss compared to the contact-oracle model. In contrast, the
HOGraspFlow branch shows simultaneous gains: the mean
drops from 0.81 to 0.69, and finally reached 0.67 with the in-
tegrated codebook. Regarding the classification performance,
starting from MANO-only, taxonomy accuracy climbs up by
over 25% when semantics are embedded in both denoising
approaches. In comparison, the confact-oracle attains high
CA but around 78% in TA, suggesting that per-vertex contact
alone is less discriminative of grasp category than visual
semantic cues.

Besides, Fig. 5 presents the concrete EMD distributions of
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CA(%)TEMDJ CA(%)} EMDJ) CA(%)}EMDLCA(%)! EMD/ CA(%)1EMDJCA(%)}EMD/CA(%)TEMDJCA(%)tEMD.

HOGraspDiff, wio DINOv2 82.1 0.93 84.9 1.24 777 088 84.1 086 609 122 740 094 694 091 716 0.92
w/ DINOv2 88.1 0.85 88.9 0.71 85.3 0.87 882 0.75 89.5 0.72 841 0.86 91.3 085 84.8 0.80
w/ DINOv2 CB 90.6 0.71 88.5 0.67 870 086 882 0.70 89.3 0.72 872 0.83 86.7 0.84 87.6 0.77
w/ Contact 90.1 0.79 90.1 0.79 904 0.88 922 071 899 0.78 89.3 092 959 0.89 91.5 0.84
HOGraspFlow, w/o DINOv2 84.5 0.75 86.9 0.82 789 0.75 846 069 722 077 696 0.80 885 0.73 83.0 0.75
w/ DINOv2 87.2 0.63 86.5 0.66 84.6 0.63 848 0.66 886 0.69 875 0.69 925 070 889 0.67
w/ DINOv2 CB 87.0 0.61 88.1 0.64 846 0.62 87 0.67 89.6 0.67 86.1 0.66 95.0 0.67 89.9 0.61
w/ Contact 89.1 066 91.7 0.71 88.0 0.66 91.1 0.67 89.9 0.72 90.1 0.74 91.7 0.71 91.8 0.73
TABLE II: 8 typical grasp types and their corresponding contact accuracy and EMD.
meansstd = 1.022+0.220 meanzstd = 0.877+0.220 meansstd = 0.815+0.230 meanzstd = 0.802+0.225 meanzstd = 0.808+0.235 meanzstd = 0.761+0.222 meanzstd = 0.689+0.214 meanzstd = 0.672+0.209
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Fig. 5: Comparison of EMD histograms between HOGraspDiff and HOGraspFlow on HOGraspNet (in frequency).

each baseline. Across the board, adding RGB semantics pro-
duces a clear down-shift of the EMD. The taxonomy-aware
codebook yields a consistent additional shift upon the others,
represented by higher frequencies in the central area of distri-
butions. HOGraspFlow consistently dominates HOGraspDIiff
across baselines, with lower central tendency and tighter
spread in terms of interquartile range. Furthermore, Tab. II
further reports per grasp type results and shows that the
trends above hold across the grasp taxonomy. Consistent
with Table I, adding RGB-derived semantic features and CB
yields performance comparable to the contact-oracle model
even under strong occlusions, while preserving low EMD.
This justified that contact-only supervision is inadequate for
semantic understanding compared with integrating object-
aware visual priors.

In line with the findings from [11], we observe a sig-
nificant EMD gap of over 0.15 between flow- and score-
based models under identical encoding and denoising archi-
tectures. Our key insight is that, although both approaches
aim to approximate the same data distribution through a
time-dependent vector field, they differ fundamentally in the
nature of their denoising targets. The SM models learns
the score of perturbed marginals under a variance-exploding
(VE) perturbation on the Lie algebra. This score is in-
trinsically heteroskedastic, since its typical norm scales as
1/a(t) o< t~/2 for both translation and rotation, and its
variance increases with ¢t as p:(-|zg) spreads along the
score directions of SE(3) space. In contrast, FM directly

UR10e with
Robotiq 2F-85 EE
« Orbbec
Femto Mega

| p—

r»
Grasp

demonstration

Fig. 6: Experiment setup (left) and objects in real-world
experiments (right). The hammer, marker, mug and bowl are
from the HOGraspNet (In dist.), others are OOD (QOut dist.).

regresses the instantaneous velocity induced by a chosen
bridge between the same marginals, parameterized by de-
coupled translational and rotational elements (Eq. 6) instead
of explicit SE(3) geodesics. Hence, the training reduces to
unscaled standard regression, where every time step exposes
the network to the same target magnitude and direction. This
eliminates the scale drift present in score-based convergence
and sampling, yielding a well-conditioned optimization on
the Lie algebra.

C. Real-world Performance

a) Setups: We further conducted real-world experi-
ments to evaluate the practical quality of our generated
grasps. The experimental setup consists of a UR10e manip-
ulator equipped with a Robotiq 2F-85 EE. A static Orbbec



Femto Mega is used for perception. The object set in the
experiments (shown in Fig. 6) consists of a representative
set of daily objects, common tools and mechanical parts,
which demand a wide range of grasping strategies in prac-
tice, spanning from firm power grasps to precise and fine
manipulations. Each object was evaluated using 2 selected
grasp types, with 4 trials per grasp type, chosen to match its
functional utility.

b) Performance: Tab. III summarizes the real-world
performance under the baselines of HOGraspFlow, where
our approach achieved 83.8% (67/80) in grasp success rate
with 200ms latency on grasp synthesis, outperforming other
aforementioned baselines. We also incorporate: (i) Thumb-
index template, adopted from [4], [5]; (ii)) GraspNet-1B
[19], a point cloud-based grasp generation baseline, filtering
its candidate grasps to match the observed hand approach
direction and contact regions. While GraspNet-1B yields
dense and robust grasps on clean, fully visible point clouds,
it struggles to balance high grasp confidence with hand-
alignment constraints after filtering and is sensitive to point
artifacts (e.g., shiny angle grinder motor, the thin body of a
pen), reaching 66.2% (53/80) overall success.

Fig. 1 further demonstrates qualitative grasp retargeting
results, including power, tool-oriented, and fine manipulation
grasps. Notably, given reliable ICP alignment, our method
remains robust due to ignorance of sensory artifacts, whereas
geometry-centric approaches often fail due to perception
errors. In general, we show the flexibility and generalization
of our approach in retargeting diverse human grasps to a PJ
EE without accurate geometry or pose estimation on objects.

Nevertheless, three main failure types are identified: (i)
imperfect hand-pose estimation from WiLoR, which can
propagate through the entire pipeline; (ii) /CP registration
errors of hands; (iii) motion planning failures during grasp
executions.

Baseline Overall In dist.  Out dist.
Thumb-index template [4], [5] 33/80 13/32  20/48
GraspNet-1B [19] 53/80 21/32 32/48
HOGtraspFlow, w/o DINOv2 55/80  18/32 37/48
w/ DINOv2 63/80 21/32 42/48
w/ DINOv2 CB 67/80 26/32 41/48

TABLE III: Success in real-world grasp retargeting.

V. CONCLUSIONS

We proposed HOGraspFlow, a vision-based, hand pose-
centric retargeting framework that converts a single RGB
HOI frame into multi-modal SFE(3) parallel jaw grasps. By
combining foundational RGB features with a learned contact
decoder and a taxonomy-aware codebook, our method injects
intent priors that improve distributional fidelity and semantic
correctness, with FM consistently outperforming the score-
based variant while maintaining high contact and taxonomy
accuracy. Real-world experiments confirm robust transfer
across diverse objects and grasp types with over 83% success

rate, which outperforms the existing template-based proxies
and point-based grasp learning approach.
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