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A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

(Leslie Lamport, 1987)





Abstract

Resilience is the ability of a (distributed) system to withstand any stressful situation
without imposing massive restrictions and, above all, without long-term consequences.
Permissioned distributed ledgers based on state machine replication (SMR) offer a promis-
ing approach to achieving high resilience and fairness in federated systems. SMR provides
a fault-tolerant service for clients by relying on all replicas being in a consistent state. The
consistent state is achieved through a consensus algorithm, typically an atomic broadcast,
that decides on a total order of client requests. In the Byzantine fault model, replicas are
assumed to be potentially malicious; a Byzantine fault-tolerant (BFT) protocol withstands
a fixed share of malicious actors. Classic BFT SMR protocols require 𝑛 > 3𝑡 replicas
and multiple rounds of communication to withstand 𝑡 faulty replicas, making the imple-
mentation complex and limiting achievable throughput and increasing latency. Trusted
Execution Environments (TEEs) allow to implement SMR in the so-called hybrid fault
model in which replicas are assumed to be potentially Byzantine but the TEE is restricted
to only fail by crashing. In the hybrid fault model, SMR requires less communication and
can be implemented with a fault tolerance of 𝑛 > 2𝑡 replicas. While many proposals aim
to optimize BFT SMR by using TEEs, they still rely on a so-called leader that coordinates
the agreement process among the replicas. The leader is known to be a bottleneck and, if
it fails, the system has to recover from the failure and elect a new leader. The additional
coordination required to elect a new leader can cause significant performance degradation,
limiting the achieved resilience. Asynchronous protocols based on directed acyclic graphs
(DAGs) eliminate the reliance on distinguished replicas by allowing all replicas to partici-
pate equally in the agreement process. While asynchronous approaches and the hybrid
fault model independently contribute to increasing the resilience of BFT SMR systems,
their combination has largely been unexplored. This dissertation aims to fill this gap by
answering the following research question:

What is the achievable performance and resilience of DAG-based, hybrid fault-tolerant state
machine replication and under which preconditions can the leaderless nature be safely

exploited to maximize throughput?

We proceed in three steps to enhance the resilience and performance of BFT SMR systems
and to identify potential trade-offs that arise from the assumption of TEEs and asynchrony
in BFT SMR. First, we investigate the fit of TEE-based SMR for consortium-operated
applications using the example of Mobility-as-a-Service ticketing systems. We propose
an SMR application that uses TEEs to protect sensitive customer and mobility provider
data while limiting possibilities for fraud by both customers and mobility providers, and
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Abstract

ensuring correct billing. We find that as long as secure multiparty computation is not
competitive in terms of performance, TEE-based SMR can provide significant advantages
in terms of efficiency and resilience while providing reasonable confidentiality guarantees.
We describe the characteristics of the Mobility-as-a-Service use case and identify similar
use cases from other domains, e.g., central bank digital currencies, allowing us to conclude
that our findings generalize.

In the second step, we establish the foundation for a comprehensive analysis by proposing
and proving TEE-Rider, the first hybrid fault-tolerant, asynchronous, and DAG-based
atomic broadcast protocol. TEE-Rider builds upon the DAG-Rider protocol family and an
optimized, DAG-aware, and TEE-based causal order broadcast we propose and prove. We
then identify fundamental issues that arise from the combination of TEEs and asynchrony
in BFT SMR. These are the impossibility of a fault-tolerant setup and the impossibility
of garbage collection. Furthermore, we prove that for partially synchronous, TEE-based
reliable broadcast it is impossible to reinitialize a TEE after a crash without relying on the
participation of all 𝑛 replicas. We conclude the theoretical contributions with the proposal
of the NxBFT SMR framework. Following an assumption-algorithm co-design, NxBFT is
built upon TEE-Rider for the “Not eXactly Byzantine” (NxB) operating model to maximize
throughput without sacrificing resilience. Moreover, NxBFT leverages SMR state transfer
to circumvent the limitations imposed by TEEs and asynchrony and provides, under the
assumption of partial synchrony, garbage collection, recovery, and reconfiguration.

Finally, we contribute an extensive empirical evaluation. To this end, we develop the
ABCperf evaluation framework focusing on the fair and straightforward comparison of
fault-tolerant SMR and agreement protocols. We investigate the performance characteris-
tics of NxBFT and find that cryptographic operations for signature creation and verification
are the main bottleneck. We compare the performance of NxBFT with the state-of-the-art
leader-based, hybrid fault-tolerant protocols MinBFT and Chained-Damysus and inves-
tigate the impact of the SMR client model (BFT vs. NxB), payload sizes, network sizes,
network latencies, and crash faults. While all algorithms can benefit from the NxB client
model, NxBFT achieves the highest throughput in all scenarios with up to ∼ 500 000
requests per second. All algorithms show an improvement of the end-to-end latency when
using the BFT instead of the NxB client model. When small latencies are required, MinBFT
and Damysus are at an advantage with Damysus showing competitive throughput and
impressively low latencies for small deployments. In contrast to leader-based approaches,
NxBFT’s performance is almost not impacted when actual crash faults occur.
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1 Introduction

One key focus of system engineers and researchers is to build dependable services: Depend-
ability, as defined by the International Electrotechnical Commission (IEC), is the “ability
[of a system or organization] to perform as and when required” [Int15]. A computer
system, however, is known to eventually fail caused by a wide range of possible root
causes, so-called faults [Avi+04]. Such faults range from simple hardware faults, natural
disasters, and human errors to malicious behavior causing performance degradation, lim-
ited functionality, or full service outages [Gun+16]. Frequency and severity of failures
dominantly determine the confidence in the dependability of a service. Dependability can
be improved by relying on fault tolerance: a fault-tolerant system continues to provide a
correct service in the event of hardware and software faults [Avi+04; Ros+21].

Over the last 20 years the concept of resilience has evolved: Resilience is no longer solely a
property of a technical system that indicates the systems ability to tolerate faults regardless
of their intention [Avi+04, Sec. 5.2.2]. Rather, it is the ability of an organization (operating
a technical system) to withstand any stressful situation without massive restrictions and,
above all, without long-term consequences [AV11; RB11; Str12; Ros+21]. The U.S. National
Institute of Standards and Technology (NIST) defines resilience as “the ability to anticipate,
withstand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises
on systems [...]” [Ros+21, p. 1]. In this spirit, resilience is a crucial building block for
dependability but does not cover all dependability aspects (e.g., safety and functional
correctness). We informally define resilience as follows:

The property of a computer system

1. to offer a service with consistent quality, even under unfavorable conditions, and

2. to quickly recover in the case a quality degradation could not be prevented.

One approach for achieving resilience is to use a distributed ledger. A distributed ledger
is a record of ordered client requests that is replicated to a set of processes also known as
replicas [Kan+21; Int24]. Requests are ordered and added as the result of an agreement
process. The ordered requests are forwarded to a higher level (business) application, the
actual service, triggering state transitions. While the distributed ledger appears to be
a single atomic entity, it is operated on a number of physical computers. Distributed
ledgers are divided into permissionless and permissioned ledgers [WG18; Int21]: In a
permissionless setting, as it is the case for most prominent cryptocurrencies, everyone is
allowed to participate in the agreement process that forms the ledger. In a permissioned
setting, the focus of the work at hand, there is a fixed and predefined number of replicas,
that are allowed and, typically, required to actively participate in the agreement process.
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1 Introduction

The idea of a permissioned ledger is not new: A permissioned ledger essentially resembles
the state machine replication (SMR) approach [Lam78; Sch90] in which the transaction
history, i.e., the ledger, is input as operations to an arbitrary state machine. SMR employs
agreement algorithms to be able to tolerate a predefined class of faults, i.e., the fault model.
Distributed systems research distinguishes several fault models ranging from benign faults
like crashes to potentially malicious behavior, i.e., Byzantine faults. In the Byzantine fault
model, faulty processes are assumed to deviate arbitrarily from the protocol. A Byzantine
fault-tolerant (BFT) agreement primitive tolerates Byzantine faulty processes with the fault
tolerance defining their maximum number (e.g., 𝑛 > 𝑡 [LSP82; CVL10], 𝑛 > 2𝑡 [LLR02;
CNV04], or 𝑛 > 3𝑡 [PSL80; CL02] with 𝑛 being the total number of processes and 𝑡 being
the maximum number of faulty processes).

The notion of a permissioned ledger may seem to be equivalent to a distributed database
[Rua+21]. A permissioned ledger, however, is designed as a decentralized instead of a
distributed system with processes ideally being operated by independent parties [Int24, Sec.
3.20]. This design choice is also known as “political decentralization” [But17]. Those parties
may have limited trust in each other [WG18], implying that, in general, it is not sufficient
to be able to tolerate rather simple faults like crashes. Distributed ledgers are also chosen
for increased fairness and sovereignty [FH16; Ern+23]. When looking at the governance
of shared resources, such as public transport platforms, monopolies discriminate against
competitors and customers [Bun22; Bun23]. Instead of setting out rules and governance in
contracts alone, a distributed ledger enables the technical enforcement of the same (“law
is code”) [FH16; PFR20; Roz+21]. Permissioned ledgers based on BFT SMR appear to be
the perfect fit for consortia: the workload is distributed among all consortium members
and agreed-upon rules are enforced while severe faults and attacks can be tolerated.

However, BFT SMR comes at a high cost. BFT algorithms have a significant coordination
and communication overhead making their implementation complex and limiting the
achievable throughput in dependence on 𝑛 and 𝑡 . One of the biggest problems of a BFT
algorithm is to tolerate equivocation [Chu+07]. According to Merriam-Webster [Mer25],
an equivocal statement is “usually used to mislead or confuse”. In the context of agreement
primitives, equivocation means that a party sends different messages to different parties
in the same context where a correct party would send the same message to all parties.
Without additional assumptions, the system has to consist of at least 𝑛 > 3𝑡 replicas and
multiple rounds of communication are required to identify equivocal messages [LSP82;
CL02]. Required replica count and required communication clearly drive up operating costs.
Moreover, the additional coordination required in case of actual faults, e.g., as it is the case
for classic algorithms with a static leader, results in additional performance degradation
[Ami+24; BTR24] and may ultimately lead to a complete failure of the algorithm [LD24].
Ultimately, the aforementioned issues in terms of operation cost, achievable throughput,
and actual resilience lead to BFT SMR not being widely used or even recommended [Kle16,
p. 305]. To address the performance and resilience issues of BFT SMR, research followed
multiple directions [Ber+23], for example, optimistic algorithms [Kot+07], streamlined
algorithms [Yin+19], asynchronous algorithms [Mil+16], leaderless algorithms [Cra+18],
alternative communication topologies [NMR21], and the hybrid fault model [Ver+11].
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While providing significant improvements for fault-free cases, most of the optimizations
still rely on distinguished replicas or leaders. Such distinguished replicas, however, can
become both a bottleneck and a single point of failure [Cra+18; Yin+19; Gra22]. The
focus of this dissertation is to investigate the combination of asynchrony and the hybrid
fault model to design a practical, resilient, and efficient BFT SMR algorithm. Asynchrony
increases the achieved resilience of algorithms because it allows progress to be made more
independently of the network quality. Moreover, in asynchrony there cannot be a leader
thereby preventing the leader to become a bottleneck and a single point of failure. As
described above, the Byzantine fault model requires 𝑛 > 3𝑡 replicas to tolerate 𝑡 faulty
replicas. The hybrid fault model adapts the fault assumptions to be able to achieve an
improved resilience for BFT SMR, i.e., a fault tolerance of 𝑛 > 2𝑡 , thereby significantly
decreasing the required replica count and, thus, operation cost. The literature shows
that the hybrid fault model can be combined with other optimization techniques (e.g.,
streamlined [Dec+22a], tree topologies [Liu+19], optimistic approaches [Ver+11; DCK16]).
The combination with asynchronous approaches, however, has largely been unexplored.

While asynchronous SMR was long considered impractical, HoneyBadgerBFT [Mil+16]
and the DAG-Rider family [Kei+21; Dan+22; Spi+22; Spi+24; Aru+25] showed that asyn-
chronous atomic broadcast, an agreement primitive suitable for the coordination between
replicas in SMR, is practical and rather simple to implement. The DAG-Rider atomic broad-
cast family uses a directed acyclic graph (DAG) and a causal order broadcast as central
components and demonstrates both impressive throughput and resilience. Throughput
benefits from the inherent parallelism of the leaderless design that, for atomic broadcast,
allows each replica to propose unique requests per decision. The fact that algorithms
following the DAG-Rider idea use reliable broadcast as the only communication primitive
make them a promising candidate for the combination with the hybrid fault model.

Hybrid fault models have been investigated for at least two decades [CNV04]. In a hybrid
fault model, processes are equipped with a trusted subsystem that is assumed to only fail
by crashing. With the advent of hardware-based Trusted Execution Environments (TEEs),
e.g., Intel Software Guard Extensions (SGX) [McK+13; CD16], that allow confidential and
integrity protected execution of code, the assumption of a trusted subsystem became
realistic and led to a plethora of research in the field of hybrid fault models. Approaches
either execute significant parts of the agreement algorithm within the TEE (e.g., CCF
[How+23]) or they use a service deployed to the TEE combining digital signatures with
monotonic counters (e.g., MinBFT [Ver+11]). Both variants prevent the creation of valid
but equivocal messages. For asynchronous, DAG-based algorithms, however, an efficient
transformation allowing actual deployment, and a thorough investigation are missing.

Unsurprisingly, the use of a TEE does not come for free. First, it must be recognized that if
the assumption of a trusted subsystem does not hold, the SMR guarantees inevitably break.
Second, we observe that although many proposals for TEE-based systems exist, only few
address practical deployability. Most proposals lack procedures for setup, crash recovery,
and garbage collection. Third, we will show that TEEs actually make crash recovery harder.
Crash recovery is, however, a pivotal feature when designing a resilient SMR system as all
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hardware eventually breaks [Dis21]. In summary, with this dissertation we pursue the
following central research question:

What is the achievable performance and resilience of DAG-based, hybrid fault-tolerant state
machine replication and under which preconditions can the leaderless nature be safely

exploited to maximize throughput?

We approach an answer to the question in three parts. First, we propose an SMR-based,
privacy-enhancing, and fair federated ticketing platform for public and shared transport
services. We show that such a setting benefits from the use of a TEE not only for increased
performance and fault tolerance but also for privacy and utility reasons. We argue that in
such a highly regulated setting an attack on the TEE seems unlikely and its benefits clearly
outweigh the potential risks. Moreover, the ticketing platform is an example of a use case
in which the client will know when a replica gives incorrect responses. This eliminates the
need for client-side broadcasting of requests, which we identify as a bottleneck in SMR,
and renders voting on responses obsolete.

In a second step, we lay the theoretical foundations of an asynchronous, DAG-based,
hybrid fault-tolerant SMR algorithm by answering the following research question:

What optimizations can be applied to DAG-Rider when operating in the hybrid fault model?

To design TEE-Rider, we prove that DAG-Rider [Kei+21] itself is omission fault-tolerant
as long as 𝑛 > 2𝑡 and a BFT reliable broadcast is used. By doing so, we deliver evidence
for a long-standing belief in the research community that omission fault-tolerant SMR in
asynchrony with a fault tolerance of 𝑛 > 2𝑡 can be efficiently implemented. Moreover, we
provide the necessary TEE for the hybrid fault-tolerant causal order broadcast, a hybrid
fault-tolerant common coin required to circumvent the FLP impossibility [FLP83], and
optimize the communication complexity. We build upon this result to propose the NxBFT
SMR algorithm designed for the “Not eXactly Byzantine” (NxB) operating model. NxBFT
and NxB are an assumption-algorithm co-design focused on resilience, throughput, and
practicality: While, in general, operating in a Byzantine environment, we assume that
operators do not tamper with the business logic of the application. The partially relaxed
fault model of NxB allows maximum utilization of the inherent parallelism of TEE-Rider,
thereby increasing throughput significantly. Moreover, by requiring partial synchrony for
SMR state transfer, we overcome fundamental issues with garbage collection and crash
recovery. We argue that the NxB model is a realistic and useful assumption for settings
like the ticketing platform.

Lastly, we empirically investigate performance and resilience of NxBFT in comparison to
state-of-the-art proposals to pursue the following research question:

What are the trade-offs of DAG-based, hybrid fault-tolerant state machine replication in
comparison to the static leader and the streamlined paradigms?

4
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To this end, we develop the ABCperf experiment framework with a focus on a fair compar-
ison of SMR approaches. ABCperf can emulate client behavior depending on the business
application selected for the benchmark as well as omission faults and network latency. By
conducting micro benchmarks, we investigate the impact of implementation level design
choices like the common coin implementation and the selection of hash functions on the
performance of NxBFT. We select MinBFT (static leader) [Ver+11] and Chained-Damysus
(streamlined) [Dec+22a] as reference points in an extensive experiment study: We investi-
gate the impact of the number of replicas (up to 40), the network round trip latency (up to
150ms), the client model (NxB vs. BFT), the payload size, and crash faults on the maximum
achievable throughput as well as the latency of the three paradigms. While all algorithms
can benefit from the NxB client model, NxBFT achieves the highest throughput in all
scenarios. When small latencies are required, MinBFT and Damysus are at an advantage
with Damysus showing competitive throughput and impressively low latencies for small
deployments. In contrast to leader-based approaches, NxBFT’s performance is almost not
impacted when actual crash faults occur.

In summary, the contributions of this dissertation are

• an SMR application for privacy-preserving ticketing for public transport feder-

ations with increased fairness for mobility providers and customers,

• the design, proof, and analysis of TEE-Rider, an asynchronous, hybrid fault-
tolerant atomic broadcast algorithm,

• the design and evaluation of NxBFT, a pragmatic and performance-oriented
SMR protocol designed for the “Not eXactly Byzantine” (NxB) operating model with
automated setup, garbage collection, crash recovery, and impressive throughput, and

• a thorough throughput-latency trade-off analysis for state-of-the-art hybrid
fault-tolerant SMR algorithms using ABCperf, a novel evaluation framework.

The remainder of this dissertation is structured as follows. We give a background on state
machine replication (SMR), cryptographic primitives, fault models, timing models, and
the hybrid fault model in Chapter 2 where we also systemize SMR-related agreement
primitives. Please note that SMR research spans a time range of about 40 years and
Chapter 2 only contains the fundamentals necessary for this dissertation. Related work is
discussed in each chapter with a focus on the chapter’s contribution. In Chapter 3, we
discuss requirements and approaches for federated ticketing platforms and present our
approach using TEEs and SMR. In Chapter 4, we design and prove TEE-Rider and NxBFT.
In Chapter 5, we present ABCperf, our experiment design, and the results of our empirical
analysis. We discuss method, results, future work, and draw a conclusion in Chapter 6.
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• J. Schiffl, M. Grundmann,M. Leinweber, O. Stengele, S. Friebe, B. Beckert. “Towards
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2 Fundamentals

The aim of this dissertation is to design practical, efficient, and resilient services based on
state machine replication and Trusted Execution Environments (TEEs). In this chapter,
we give the required fundamentals from the area of state machine replication, secure
distributed systems, and agreement primitives. First, in Section 2.1, we introduce the
concept of state machine replication and its connection to fault tolerance and agreement
primitives. Then, in Section 2.2, we recap the cryptographic primitives used in this
dissertation. In Sections 2.3 and 2.4, we describe the prevalent fault and timing models in
which distributed algorithms are evaluated. In Section 2.5, we introduce TEEs and how
they can be used to increase the resilience of agreement primitives. Finally, in Section 2.6,
we systemize the agreement primitives used in this dissertation, reliable broadcast and
atomic broadcast, their internal relation as well as their relation to consensus, and their
optimal resilience levels depending on fault and timing models.

2.1 Fault-tolerant State Machine Replication

State machine replication (SMR) allows to operate a service tolerating faults of clients and
replicas. Clients are processes relying on the service. Replicas1 are processes offering the
service [Lam78; Sch90; CL02]. Each replica maintains a copy of a deterministic application
server (the “state machine”) implementing the actual service of value. The application
server consists of logic and state of which both may change over time; the state machine
can be a Turing-complete computer program. Clients may request to execute an operation
leading to a state transition in the application server. Replicas coordinate the execution of
operations to keep the application servers in a consistent state.

A replica and a client can either be correct, meaning they are currently following the
protocol, or faulty, meaning they are deviating in some way from the protocol. Faults that
may occur are defined by a fault model; faults range from simple crashes to malicious
behavior (see Section 2.3). Typically, the fault model limits the number of simultaneously
faulty replicas 𝑡 to a fix quotient of 𝑛, the total number of replicas, while the number
of faulty clients is unlimited. The timing model describes how long processes require
to compute and transmit their messages (see Section 2.4). This is of high importance

1 The literature uses the terms replica, process or processor synonymously. We use the term replica in the
context of SMR and process in the context of agreement primitives. In both cases, we use 𝑝 as an identifier.
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when using time itself to coordinate: While good knowledge on timings can significantly
simplify algorithms, typically the impact when such assumptions break is severe.

When all correct replicas start in the same initial state and the response of the application
server is solely determined by the requested operation and the operations executed before,
fault tolerance is achieved by ensuring the following two properties [Sch90; CL02; Abr19a;
Ale+22; HH24]:

• Liveness: If a correct client requests an operation, the operation will eventually be
executed and the client receives a response.

• Safety: Every correct replica executes the exact same order of operations.

A concrete instance following the SMR paradigm is called replicated state machine (RSM).
We say that an RSM is safe and live when the assumptions of fault and timing model are not
violated. The safety property leads the distributed system to appear at its system boundaries
(i.e., the externally state observed by clients) like a single central system [HW90] while the
liveness properties ensures that correct clients may use the promised service. Achieving
safety and liveness requires to deploy some ordered broadcast mechanism between the
replicas that ensures (1) that all correct replicas learn of all valid requests received by any
correct replica and (2) that all correct replicas execute the exact same order of operations.
Typically, this is achieved by using an atomic broadcast (see Section 2.6) primitive. Atomic
broadcast provides guarantees only between the replicas [Abr19a].

To provide a meaningful service for the clients, the atomic broadcast is part of an SMR
framework that is deployed to all replicas and clients and enforces guarantees for correct
clients. The SMR framework is generic and can be combined with any application. The
selected SMR framework and, thus, the deployed atomic broadcast, defines the fault
tolerance of an RSM under given fault and timing models. The generic SMR framework
architecture is depicted in Figure 2.1. In the following, we will describe a full request-
response cycle of a client request.

1. The application composes the request, typically containing the requested operation
and authorization information, and forwards the request to the SMR client module.

2. The SMR client module distributes the request to the SMR server modules of the
replicas. Depending on the assumptions of the SMR framework, a client may be
required to broadcast its request instead of using a unicast to a single replica.

3. The SMR server collects the request and, to increase performance, composes multiple
requests to a batch (or block) that is then forwarded to the atomic broadcast. If the
request was already forwarded or answered, it is not forwarded again.

4. The atomic broadcast ensures that the same block is received by all correct replicas
and that all correct replicas assign the block to the same position in the history of
blocks.

5. Once the atomic broadcast can guarantee that all correct replicas will handle the
block in the same way, i.e., it decides or delivers the block, the block is forwarded to
the SMR server module.
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2.1 Fault-tolerant State Machine Replication
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Figure 2.1: Generic state machine replication (SMR) framework architecture with three replicas and a single
client. An arbitrary application (blue, yellow) is made fault tolerant using an SMR framework (green).
A write request is processed as follows: After composing the request in the client application (1, blue),
depending on fault model and concrete implementation, the SMR client unicasts or broadcasts (dashed lines)
the request (2). The replicas then invoke the consensus layer (3) in form of an atomic broadcast. In multiple
rounds of communication (4), the atomic broadcast decides on the order of the request. Once decided (5), the
SMR server forwards the request to the server-side replicated application logic and state (6, yellow) actually
applying the request and computing a result (7) which is then forwarded to the SMR client (8). When the
SMR client received sufficient consistent responses (depends on the fault model), the response is forwarded
to the client application (9).

6. The SMR server removes requests from the block that were already decided in
previous blocks. It then forwards the block to the application server.

7. The application server executes all operations of the requests in a block in a deter-
ministic order and forwards the execution results as responses to the SMR server.
To increase execution performance, the application server can weaken the total
order provided by the atomic broadcast and execute requests in parallel if it can be
guaranteed that the requests do not interfere with each other.

8. The SMR server stores the response to be able to directly answer it if it was received
a second time and sends the response over the network to the SMR client.

9. Depending on the fault model, the SMR client awaits one ore more, i.e., quorum
many, consistent responses from the replicas before forwarding the response to the
application.
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The described cycle is, in general, required to handle any requested operation. How-
ever, depending on the application and assumptions, the request-response cycle may be
simplified (e.g., for read-only operations) [Sch90; CL02].

2.2 Cryptographic Primitives

Cryptographic primitives are the fundament of any distributed system. Nowadays every
SMR framework builds upon cryptography to achieve at least authenticated point-to-point
links. If assuming malicious behavior, cryptography, foremost digital signatures, can be
used to limit the capabilities of a possible attacker allowing to increase the fault tolerance or
to simplify algorithms. The power of Trusted Execution Environments, a dedicated focus
of this dissertation, comes with their ability to keep computation confidential. We give a
quick recap on the cryptographic primitives used based on [CGR11; KL14; Aum17].

Cryptographically Secure Pseudorandom Number Generator (CPRNG) Randomness, or
more generally speaking entropy, is the fundament of any cryptographic primitive. It is
required to generate secret keys and nonces. A CPRNG is a function that produces outputs
uniformly distributed on the codomain with two properties: forward and backward secrecy.
Forward secrecy states that it is impossible to reconstruct previous outputs whereas
backward secrecy requires that it is not possible to correctly predict future outputs with a
non-negligible probability.

Hash Functions Cryptographic hash functions are a crucial building block to build au-
thentication schemes for arbitrary-length messages. A cryptographic hash function 𝐻 is a
one-way function (i.e., pre-image resistant) taking a bit string 𝑥 of arbitrary length and
mapping it to a bit string 𝑦 of fixed length (the digest). This means that 𝐻 compresses 𝑥
and makes it impossible to calculate 𝑥 when only knowing 𝑦 and 𝐻 . The security-wise
more relevant property is collision resistance that states that for two inputs 𝑥 and 𝑥′ the
probability that both are mapped to the same 𝑦, i.e., 𝐻 (𝑥) = 𝐻 (𝑥′) = 𝑦, is negligible.
Widely used hash functions are the SHA-2 [Nat15a] and SHA-3 [Nat15b] families.

Digital Signatures A digital signature scheme ensures the authenticity and integrity of a
message. The scheme consists, overly simplified, of the two functions sgn(·) and vfy(·).
Given two parties Alice and Bob, Alice wants so send Bob a message𝑚 such that only
Alice could have defined its context. Alice now signs the message by using her secret
key 𝑠𝑘 (also known as private key) producing a signature 𝜎 = sgn(𝑠𝑘,𝑚) and sends both
signature and message to Bob. As public key cryptography is computationally expensive,
messages are hashed before the signature is computed or verified. Bob knows Alice’s
public key 𝑝𝑘 and, thus, can check if vfy(𝑝𝑘,𝑚, 𝜎) ?

= 1. If the digital signature scheme
used is secure there is only a negligible probability that a third party forged the signature.
A digital signature provides non-repudiation and is transferable: If Alice kept her secret
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Crash Stop Omission
Crash

Recovery
Authenticated

Byzantine
Byzantine

Figure 2.2: Hierarchy of fault models (extension and adaption of [CGR11, Figure 2.3]). A darker color
implies that a model is a superset of models in lighter colors: Crash Stop ⊂ Omission ⊂ Crash Recovery ⊂
Authenticated Byzantine ⊂ Byzantine. An algorithm proven correct for a fault model is also correct in all
subset fault models.

key private, no one but Alice could have signed the message and every party knowing
the public key can verify the signature. Both properties are very useful when limiting
Byzantine behavior. Examples for widely used signature schemes are ECDSA [Nat23a] and
EdDSA [Ber+12; Bre+21]. A public key infrastructure (PKI) distributes public keys and links
them to identifiers like domain names.

Authenticated Encryption and Secure Point-to-Point Links An authenticated encryption
scheme encrypts a message between two parties Alice and Bob and ensures the authenticity
of the ciphertext. Let Alice and Bob share a common secret key 𝑘 . If now Alice wants to
send an encrypted message𝑚 to Bob, she will call (𝑐, 𝑡) = encrypt(𝑘,𝑚) with 𝑐 being the
ciphertext and 𝑡 the authentication tag. Bob calls𝑚 = decrypt(𝑘, 𝑐, 𝑡). If the ciphertext
was altered, the function will yield an error. The standard for authenticated encryption is
the block cipher Advanced Encryption Standard using the Galois counter mode (AES-GCM)
[Nat23b]. Using the combination of digital signatures, a PKI, and a key exchange protocol
like Diffie-Hellman [Bar+18], an authenticated and confidential channel, i.e., a secure
point-to-point link, can be established.

2.3 Fault Models

A fault model captures the types of faults an algorithm designer assumes when designing
a distributed algorithm. The correctness of agreement primitives is proven under the
assumption of a fault model. The fault models can be arranged in an order (Figure 2.2). An
algorithm proven correct for a fault model is also correct for all subset fault models. The
fault models Crash Stop, Omission, and Crash Recovery form the group of benign faults.
In the following, we describe the classic fault models relevant for this dissertation based
on [CGR11, Section 2.2].
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Crash Stop In the crash fault model, a faulty replica is assumed to potentially crash at an
arbitrary point in time, i.e., it does not send anymore messages. A faulty replica can crash
while being in any state according to the protocol being executed. A crashed replica cannot
recover from its fault, i.e., a crashed replica is no longer part of the system. Real-world
deployments, however, require a way to recover from crashes as all hardware eventually
reaches its end of life [Dis21].

Omission The omission fault model addresses recoverable faults on the network layer.
In the omission fault model, a faulty replica may fail to send or receive a message. In
contrast to crash faults, this faulty behavior can be temporally limited. Messages between
two correct replicas are not influenced.

Crash Recovery The crash recovery model is an extension to the omission fault model.
Besides loosing messages in transition, faulty replicas may also loose state. A faulty
replica can become correct again using a recovery procedure that enables state transfer
or retransmission. Consequently, a replica may forget messages it already received or
sent and an algorithm needs to be able to handle duplicate messages. Please note that a
concrete implementation may not have a recovery procedure but still is crash recovery
fault-tolerant.

Byzantine A replica is assumed to be Byzantine faulty when it can deviate arbitrarily
from the protocol. Byzantine behavior includes any malicious behavior and collusion.
What makes the assumption of Byzantine behavior especially challenging is equivocation:
Not only can a replica actively lie, but the replica can lie in different ways to different
peers [Chu+07; Cle+12]. Equivocation makes it impossible to implement any agreement
primitive with a fault tolerance of 𝑛 ≤ 3𝑡 when assuming Byzantine faults [PSL80; LSP82].
Preventing equivocation alone, however, does in general not help to increase the fault
tolerance [Cle+12].

Authenticated Byzantine Authenticators, as originally defined by Pease et al. [PSL80,
Section 5], can be used to limit the misbehavior of faulty replicas in the Byzantine fault
model. An authenticator enforces that a faulty replica cannot alter a message when it
relays it. While authenticators do not prevent equivocal statements [Cle+12], they allow
to increase the fault tolerance of agreement primitives in selected cases (see Section 2.6).
Authenticators can be implemented asymmetric cryptography in the form of digital signa-
tures that offer non-repudiation and are transferable. A symmetric message authentication
code (MAC) cannot be used to implement authenticators.
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Synchrony Partial Synchrony Asynchrony

Figure 2.3: Hierarchy of timing models. A darker color implies that a model is a superset of models in lighter
colors: Synchrony ⊂ Partial Synchrony ⊂ Asynchrony. An algorithm proven correct for a timing model is
also correct for all subset timing models.

2.4 Timing Models

The timing assumption, i.e., the time required for messages to arrive at and be handled by
replicas, is crucial knowledge when designing and proving a distributed algorithm. Good
knowledge of time can be used to use time itself for coordination: If a message should
arrive within a certain time span but does not, a replica can be assumed to be faulty. As it
is the case for fault models, timing models can be arranged in an order as well (Figure 2.3).
An algorithm proven correct for a timing model is also correct for all subset fault models.
In the following, we describe the timing models relevant for this dissertation based on
[CGR11, Section 2.5].

Synchrony In a synchronous system there exist two known upper time bounds ΔT for
message transmission, i.e., the maximum communication delay, and ΔC for computation,
i.e., the maximum time for processing an incoming message and computing a possible
answer. Typically, the synchrony assumption is simplified to a single Δ. Synchronous
algorithms use timeouts (multiples of Δ) to determine if a peer is faulty. Relying on
synchrony inevitably implies that safety properties may break if the synchrony assumption
is not met [Cas00] and it is hard to choose a reasonable Δ: If the chosen value is too small,
rather simple network quality degradations may break the assumption. If the chosen value
is too high, faults may be detected too late impacting performance negatively.

Partial Synchrony To address the issues of the synchronous timing model, the notion
of partial synchrony was defined [DLS88]. Informally speaking, it is assumed that the
system is only synchronous most of the time. Literature defines at least three different
partially synchronous flavors: global stabilization time (GST), unknown latency (UL) and
weak synchrony. In the GST model, a Δ exists and is known to all replicas but Δ only
holds after an unknown stabilization time passed. Thus, replicas can never know if Δ
holds. In the UL model, a fixed Δ exists but is unknown. Weak synchrony as defined
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by Castro and Liskov is similar to the UL model except that Δ is not fixed but must be
in polynomial dependence on the wall clock time [Cas00; Mil+16]. Algorithms in the
UL model use some form of exponential back-off to increase the current timeout value
whenever a timeout is triggered. Eventually, the timeout will be bigger than Δ. This
behavior adapts the timeout to the worst case and potentially impacts the common case
performance negatively [Mil+16; Abr24]. Modern proposals typically rely on the GST
model [Abr24]. Partially synchronous algorithms only rely their liveness properties on
synchrony. If chosen timeouts are too small, the system may come to a temporal halt but
the safety properties are still guaranteed. In general, an algorithm for the UL model is
corect in the GST model as well. The opposite is only true for so-called “time-agnostic”
properties, i.e., such properties that are only proven based on the relative ordering of
events but not on elapsed time [Abr24; Con+24].

Asynchrony In the asynchronous model, there is no bound on communication and com-
putation latency. Because time cannot be used to coordinate, replicas are forced to solely
rely on incoming messages to decide when and how to continue. Fischer, Lynch and
Paterson [FLP83] showed with their infamous FLP impossibility result that determin-
istic consensus is impossible in asynchrony when having a single crash fault implying
the impossibility for all fault models. The FLP impossibility states that a deterministic
consensus primitive cannot be live in asynchrony as there exist traces, i.e., sequences of
message transmissions and the resulting state transitions, in which a replica observes a tie
vote and it has not sufficient information to break the tie with its own vote forcing the
replica to wait indefinitely. Ben-Or [Ben83] and Rabin [Rab83] showed that the use of
randomized protocols circumvents the FLP impossibility. A randomized protocol has only
a probabilistic liveness property. If an attacker could manipulate the network between
two correct replicas in a way that messages could get lost without notice, the two replicas
would suffer from the “Two Generals Problem” [AEH75; Gra78]: In asynchrony, there
is no way to use a finite series of acknowledgments to ensure the delivery of a message.
Any asynchronous agreement protocol relies on the assumption of eventual delivery
requiring that any message sent between correct replicas may be arbitrarily delayed but
will eventually arrive.

Perfect Links The assumption of eventual delivery is sometimes called a fair-loss link.
On a fair-loss link the probability for successful message transmission is non-zero [CGR11,
Subsection 2.4.2]. Such a link can be used to implement a perfect link [CGR11, Subsection
2.4.6], a typical assumption in distributed systems [CGR11, Subsection 2.4.7]. A perfect
link ensures reliable delivery, i.e., messages between correct processes are never lost, and
no duplication, i.e., a message is never delivered twice. A first-in first out (FIFO) perfect
link additionally ensures that messages are delivered in the order the sender hands them
to the link [CGR11, Module 2.11] In practice, this FIFO perfect links can be achieved
using reliable protocols like TCP [Edd22] that itself build upon adaptive routing protocols
achieving fair-loss [CGR11, Subsection 2.4.7].
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2.5 TEEs and the Hybrid Fault Model

While typically a process is subject to a single fault model, e.g., the Byzantine fault model,
researchers are investigating hybrid fault models for at least 20 years [CNV04; Bes+23].
In a hybrid fault model, a process is equipped with a subcomponent that is subject to a
different fault model than the process itself: A process may be assumed to be Byzantine
faulty but a trusted subsystem – which must be used to create valid protocol messages –
is assumed to be crash stop faulty. The hybrid fault model is not a benign fault model.

Such a trusted subsystem can be used to enforce non-equivocation and transferable
authentication: A process cannot send two messages with different contents to different
peers in the same context when a correct process would send the exact same message
to all peers and all processes can verify the authenticity of a message [Chu+07; Cle+12].
Peering processes rely on the fact that the subcomponent is not faulty in the same way as
the process itself. This dependence allows to increase the fault tolerance of an agreement
primitive and to simplify agreement algorithms: BFT SMR can be implemented with a
fault tolerance of 𝑛 > 2𝑡 when using a crash stop subcomponent [CNV04].

The advent of Trusted Execution Environments (TEEs) made it possible to implement
practical hybrid fault model algorithms [Lev+09; Ver+11]. A TEE is rooted in a trustworthy
hardware component that isolates security-critical code and data, sometimes referred to
as a security kernel [JGS83], from the rest of the system. Industry has proposed several
differing architectures that can be – under the loss of precision but precise enough for
the focus of this dissertation – simplified into the following categories: secure boot,
confidential virtual machines (VMs), and enclaved execution [SAB15; JSS20; Gep+22;
Sch+22a; Li+23].

Secure boot ensures that only expected code can boot a system. “Expected” means that
the code is either signed by a trusted authority or that a specific code identity is expected.
Code identities are typically defined by a hash of the code (also known as measurement).
Furthermore, most solutions provide a way to attest the identity of the code to a remote
party. Examples for secure boot are ARM’s TrustZone [PS19] and the Trusted Platform
Module (TPM) [Ber+06; Tru25]2. Secure boot can be the basis to implement a security
kernel supporting higher-level functionality like attestation or encrypted persistent storage
(“sealing”) [SAB15]. Confidential VMs focus on the protection of VMs from the hypervisor
and other VMs currently running on the same cloud host [Eis+25]. Examples are AMD’s
Secure Encrypted Virtualization (SEV) [KPW21] and Intel’s Trust Domain Extensions
(TDX) [SMF21; Akt+23]. In contrast to confidential VMs, enclaved execution aims for the
protected execution of application layer software which means that all privileged software
including the operating system is not trusted. The most prominent example are Intel’s

2 The TPM also provides features for storing and using cryptographic keys, e.g., for signing, and was used
by the very first practical hybrid fault model agreement protocols [Chu+07; Ver+11].
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Software Guard Extensions (SGX) [McK+13; CD16] that are widely used in academia (e.g.,
[Arn+16; Liu+19; How+23]) and industry (e.g., at Fortanix3 and Azure4).

According to Anderson [And20], the Trusted Computing Base (TCB) “is defined as the set
of components (hardware, software, human, . . . ) whose correct functioning is sufficient to
ensure that the security policy is enforced, or, more vividly, whose failure could cause a
breach of the security policy.” In the context of the hybrid fault model, the size and tasks
of the trusted subsystem define the TCB. When instantiated with a hardware-based TEE,
the TCB is the TEE itself and the code running “inside”. To keep the attack surface as
small as possible and increase the dependability of the trusted subsystem, a small TCB is
preferred [McC+08; Lin+17]. Moreover, most TEEs have a performance overhead due to
context switches, encryption tasks, or limited resources [LMR12; Mof+18; Ngo+19]. In
conclusion, it is favorable to deploy only as much functionality as required to the TEE and
minimize the number of context switches between the TEE and the untrusted process for
security and performance reasons.

As Intel SGX allows very small TCBs while still having an acceptable performance overhead
and great flexibility [Lin+17; PVC18], in this dissertation we use a TEE model derived
from Intel SGX as the basis for our algorithms. Intel SGX is also used for the empirical
evaluations. In the context of this dissertation a TEE is informally defined as follows:

Definition 2.1 (Trusted Execution Environment (TEE), informal). A TEE is a trusted
subsystem of a process and provides the ability to execute arbitrary code in an enclave.
The TEE guarantees the following properties:

• Enclaved Execution:

– Confidentiality: Data inside the enclave cannot be read from the outside.

– Integrity: Code and data inside the enclave cannot be altered from the outside.

• Attestation: The TEE can certify the identity of an enclave, i.e., the code that is
currently being executed, to a remote party. Attestation can be used to bind arbitrary
data, e.g., a public key or a nonce, to the enclave identity.

• Sealing: An enclave can confidentially and authentically export/import data.

The attestation property is crucial for the use of TEEs in distributed systems. When
combined with enclaved execution, peering processes can rely on the fact that the code
executed inside the enclave is the same code that was attested to them. Thus, a peering
process knows all possible branches of the code; enclaved execution prevents Byzantine
behavior. The process hosting the TEE, however, can still be Byzantine faulty and prevent
that messages sent to the enclave are actually received by the enclave and that messages
created by the enclave are actually sent to the peers. Thus, when executing a complete
omission fault-tolerant algorithm inside an enclave, the algorithm is trivially compiled to

3 https://www.fortanix.com, accessed 2025-05-30
4 https://azure.microsoft.com/products/managed-ccf, accessed 2025-05-30
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2.6 Systematization of Agreement Primitives

withstand Byzantine faults. Minimizing the TCB is one focus of current research and this
dissertation, as we will discuss in Chapter 4.

2.6 Systematization of Agreement Primitives

In the context of SMR, two agreement primitives are of particular relevance: reliable
broadcast and atomic broadcast. In this section, we first give a short introduction to
consensus as agreement and consensus are overlapping terms. We then define both
agreement primitives and name their optimal fault tolerance depending on fault and
timing model.

2.6.1 The Idea and the Term of Consensus

Consensus is a rather overloaded term; there exist multiple definitions for agreement
problems all going under the name of consensus [MHS11; GK20]. Historically, consensus
refers to the problem in which each of the 𝑛 processes – out of which up to 𝑡 may behave
faulty – may propose a value and all correct processes must agree on the same value
selected from the set of proposals:

• Agreement: If two correct processes decide values 𝑣1 and 𝑣2, then 𝑣1 = 𝑣2.

• Termination: All correct processes eventually decide a value.

This definition lacks a so-called validity property and can be trivially fulfilled: every
process can decide on a fixed and pre-defined value 𝑣 . The exact formulation of the validity
property, however, defines the difficulty of the problem. Literature distinguishes between
several different validity definitions in the context of Byzantine fault tolerance5 of which
we give three examples strictly increasing in difficulty [MHS11]:

• Weak Unanimity (Weak Validity): If all processes are correct and propose the
same value 𝑣 , all processes decide 𝑣 .

• Strong Unanimity (Validity): If all correct processes propose the same value 𝑣 , all
correct processes decide 𝑣 .

• Strong Validity: If a correct process decides value 𝑣 , 𝑣 was proposed by a correct
process.

Strong unanimity consensus and atomic broadcast require to handle equivocation correctly
to be able to tolerate Byzantine faults. The mechanisms required to achieve this fault
tolerance make them equivalent to each other [MHS11]6. Strong unanimity consensus

5 For benign faults, the non-malicious setting allows a single validity definition: If a process decides value
𝑣 , 𝑣 was proposed by a process. [AAM10; MHS11]

6 Equivalency means that an atomic broadcast algorithm can be reduced to strong unanimity consensus
and vice versa.
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Synchrony Asynchrony
Crash Stop 𝑛 > 𝑡 [PT86] 𝑛 > 𝑡 [HT94]
Omission 𝑛 > 𝑡 [PT86] 𝑛 > 𝑡 [HT94]
Hybrid 𝑛 > 𝑡 [CVL10] 𝑛 > 𝑡 [CVL10]
Auth. Byzantine 𝑛 > 𝑡 [LSP82] 𝑛 > 3𝑡 [Cle+12]
Byzantine 𝑛 > 3𝑡 [LSP82] 𝑛 > 3𝑡 [BT85]

Table 2.1: Optimal fault tolerances of Reliable Broadcast for different fault and timing models.

is impossible to achieve in partial synchrony with a fault tolerance of 𝑛 ≤ 3𝑡 ; the hybrid
fault model cannot improve its fault tolerance since, with 𝑛 < 3𝑡 processes, malicious
processes have the ability to outvote correct processes [Xu21, Section 2.4]. However, as
we will see in Section 2.6.3, atomic broadcast has the validity requirement that a message
from a correct process will eventually be delivered. As long as this property is fulfilled, i.e.,
faulty processes cannot mute correct processes indefinitely, partially synchronous atomic
broadcast can be implemented with a fault tolerance of 𝑛 > 2𝑡 in the hybrid fault model
[CNV04].

2.6.2 Reliable Broadcast

While consensus and atomic broadcast have 𝑛 senders, reliable broadcast differs: There
is only a single sender allowed to propose a value. The goal is that all correct processes
eventually deliver the same value proposed by the sender. Based on [CGR11, Module 3.13],
[Cac+01], and [Kei+21], we define reliable broadcast as follows:

Definition 2.2 (Reliable Broadcast). A sender 𝑝𝑠 ∈ 𝑃 , 𝑃 := {𝑝1, . . . , 𝑝𝑛} can r_broadcast
tuples (𝑐,𝑚) where 𝑐 ∈ N is a tag and𝑚 an arbitrary message. Correct processes r_deliver
tuples (𝑐,𝑚) satisfying the following properties:

RB-Agreement: If a correct process delivers (𝑐,𝑚), then every other correct process
eventually delivers the same (𝑐,𝑚).

RB-Validity: If a correct sender broadcasts message𝑚 with tag 𝑐 , then every correct process
eventually delivers (𝑐,𝑚).

RB-Integrity: For each tag 𝑐 ∈ N, a correct process delivers at most one message.

To be more precise, Definition 2.2 defines a reliable broadcast channel, i.e., no “one-shot”
primitive as originally defined in [BT85] but closely related to the tagged version in [Bra87];
the multi-shot primitive can be composed to implement atomic broadcast and consensus
[Bra87; Cac+01; LLR02; MHS11]. For simplification, we use the term reliable broadcast in
the following. Since a reliable broadcast instance has only a single party that is allowed to
have initial input, reliable broadcast is not equivalent to any consensus definition and is
not impacted by the FLP impossibility [BT85]. It is, however, possible to have multiple
instances of reliable broadcast for different senders running concurrently (i.e., each of the
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𝑛 processes is a sender in its own reliable broadcast instance). The protocols investigated
in this dissertation rely on this property. Table 2.1 summarizes the optimal fault tolerances
of reliable broadcast for different fault and timing models. Except for the authenticated
Byzantine fault model, the optimal fault tolerances are the same for synchronous and
asynchronous systems. In synchrony, the correct use of digital signatures suffices to
maximize the fault tolerance [LSP82] while in asynchrony non-equivocation and digital
signatures are required to achieve the same [CVL10; Cle+12]7.

2.6.3 Atomic Broadcast and State Machine Replication

Atomic broadcast is an extension of reliable broadcast that allows multiple processes to
broadcast messages and deliver them in the same order. When implementing an RSM,
an atomic broadcast is deployed to all replicas. The replicas use the atomic broadcast to
ensure that all replicas execute all validly requested operations in the same order. As we
focus on asynchronous systems and the FLP impossibility applies to atomic broadcast
(atomic broadcast is a consensus variant), we give a probabilistic definition of atomic
broadcast based on [CGR11, Module 6.3], [Cac+01], and [Kei+21] as follows:

Definition 2.3 (Atomic Broadcast). Processes 𝑝 ∈ 𝑃 , 𝑃 := {𝑝1, . . . , 𝑝𝑛} can a_broadcast
tuples (𝑐,𝑚) where 𝑐 ∈ N is a tag and𝑚 an arbitrary message. Correct processes a_deliver
tuples (𝑝, 𝑐,𝑚) satisfying the following properties:

AB-Agreement: If a correct process delivers (𝑝, 𝑐,𝑚), then every other correct process
eventually delivers the same (𝑝, 𝑐,𝑚) with probability 1.

AB-Validity: If a correct process 𝑝 broadcasts 𝑚 with tag 𝑐 , then every correct process
eventually delivers (𝑝, 𝑐,𝑚) with probability 1.

AB-Integrity: For each process 𝑝 ∈ 𝑃 and for each tag 𝑐 ∈ N, a correct process delivers
(𝑝, 𝑐,𝑚) at most once.

Total Order: Let 𝑡1 and 𝑡2 be any two valid tuples that are delivered by any two correct
processes 𝑝𝑖, 𝑝 𝑗 . If 𝑝𝑖 delivers 𝑡1 before 𝑡2, then 𝑝 𝑗 delivers 𝑡1 before 𝑡2.

Table 2.2 summarizes the optimal fault tolerances of atomic broadcast for different fault
and timing models. For each combination, we try to give the oldest applicable result.
Note that we try to not use results for consensus primitives (e.g., [DLS88] for partial
synchrony) as we want to ensure that we give a correct result for atomic broadcast and
not a stronger or weaker primitive. Typically, the fault tolerance of atomic broadcast is
also the fault tolerance of SMR building on it. In the synchronous model, however, when
assuming either omission faults, hybrid faults, or authenticated Byzantine faults (marked

7 Please note that [CVL10, Algorithm 1] does not use the muteness failure detectors described in [CVL10,
Sec. 2.1] and, thus, does not rely on any timing assumption. The wormhole described by the authors is
the trusted subcomponent. The correctness of [CVL10, Algorithm 1] is proven in the extended version of
the paper [CVL09, Sec. A.1]
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Synchrony Partial Synchrony Asynchrony
Crash Stop 𝑛 > 𝑡 [Ray02] ◦ 𝑛 > 2𝑡 [Abr23] 𝑛 > 2𝑡 [AAM10] ◦
Omission 𝑛 > 𝑡 [Ray02] ⊲S 𝑛 > 2𝑡 [Lam98] 𝑛 > 2𝑡 [AAM10] ⊲
Hybrid 𝑛 > 𝑡 [Ray02] ⊕S 𝑛 > 2𝑡 [CNV04] 𝑛 > 2𝑡 [this work]

Auth. Byzantine 𝑛 > 𝑡 [PSL80] ⋄S 𝑛 > 3𝑡 [CL99] 𝑛 > 3𝑡 [Cac+01]
Byzantine 𝑛 > 3𝑡 [PSL80] ⋄ 𝑛 > 3𝑡 [Cas00] 𝑛 > 3𝑡 [CNV06]

Table 2.2:Optimal fault tolerances of Atomic Broadcast for different fault and timing models. Cells marked
with S do not directly apply for SMR. Other symbols mark results originally not for atomic broadcast but
applicable (explanations in Section 2.6.3): ◦ = crash stop fault-tolerant consensus, ⊲ = omission fault-tolerant
consensus, ⊕ = fault model compiler, ⋄ = interactive consistency.

with S), SMR requires at least a fault tolerance of 𝑛 > 2𝑡 [Abr19b] which is not the case
for atomic broadcast. If we are not aware of a result for atomic broadcast, we use results
that also apply for atomic broadcast for different reasons. Those results are marked with
the following symbols:

• ◦ = crash stop fault-tolerant consensus. Crash fault-tolerant atomic broadcast can be
reduced to crash fault-tolerant consensus [MHS11].

• ⊲ = omission fault-tolerant consensus. Omission fault-tolerant atomic broadcast can
be reduced to omission fault-tolerant consensus [MHS11].

• ⊕ = fault model compiler. Clement et al. [Cle+12] and Ben-David et al. [BCS22]
showed that any crash fault-tolerant agreement protocol can be compiled to with-
stand faults in the hybrid fault model without a change of the fault tolerance.

• ⋄= interactive consistency. Byzantine fault-tolerant atomic broadcast can be reduced
to Byzantine fault-tolerant interactive consistency [CNV06].

We can see that except for synchrony and crash stop failures, SMR always relies on quorum-
based voting to prevent inconsistencies. In synchrony, the use of digital signatures suffices
to achieve a fault tolerance of 𝑛 > 𝑡 for atomic broadcast and 𝑛 > 2𝑡 for SMR which is
not the case if faults cannot be reliably detected using timing assumptions (i.e., in partial
synchrony or asynchrony). In those cases, non-equivocation and digital signatures (i.e.,
the hybrid fault model) are required to achieve the maximum fault tolerance of 𝑛 > 2𝑡 for
atomic broadcast and SMR.
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3 Use Case: Mobility-as-a-Service
Ticketing

Mobility-as-a-Service (MaaS) ticketing platforms are a promising use case for a consortium-
operated application. They require the integration of and computation on data from multi-
ple providers, such as public transport providers, ride-sharing services, and infrastructure
providers, to offer customers a seamless travel experience. These systems face significant
challenges regarding privacy and fairness. Personal data, e.g., travel patterns, and trade
secrets, e.g., service utilization, must be protected. Furthermore, centralized approaches
can lead to unfair advantages for certain providers. In the following, we analyze how a
TEE-based SMR application can address these challenges.

In Section 3.1, we introduce the concept of Mobility-as-a-Service. In Section 3.2, we
motivate issues concerning privacy, fairness, and scalability, and define the objectives for a
privacy-preserving and fair MaaS ticketing platform. In Section 3.3, we discuss and analyze
different architectural approaches for privacy-preserving solutions by reviewing related
work from the domains of confidential databases, location-based services, confidential
SMR, and secure multi party computation. In Section 3.4, we present our TEE-based SMR
application design for an MaaS ticketing platform. Finally, in Section 3.5, we discuss the
achieved properties, opportunities for optimization, the characteristics of our design and
its potential for other application, and the impact of broken TEEs. We conclude that (1) that
our findings generalize to other use cases than MaaS ticketing and (2), as long as secure
multiparty computation is not competitive performance-wise, TEEs are an important
building block for modern, confidentiality-aware distributed applications.

This chapter is an extension to previous work by Leinweber, Kannengießer, Hartenstein,
and Sunyaev [Lei+23].

3.1 Introduction to Mobility-as-a-Service

As the name suggests, Mobility-as-a-Service (MaaS) is in line with the cloud-enabled
“as-a-service” paradigm [Jit+17; Cal+18]. MaaS provides a platform that integrates various
mobility services by different mobility service providers (MSP), such as public transport
(e.g., busses, trams, trains), micromobility sharing (e.g., bikes, scooters), car sharing, and
ride hailing (i.e., taxis and taxi-like services), into a single service offering1. By increasing

1 MaaS is a so-called multi-modal service as it combines different modes and means of transportation.
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the convenience, and thus attractiveness, of shared mobility services, MaaS is expected
to be a key enabler for the transition to sustainable and carbon-neutral mobility [Jit+17;
Eck+18; CS20b]. This integration allows customers to plan, book, and pay for their entire
journey through a single application, enhancing the user experience and promoting the use
of public transport and shared mobility services. Examples are Gaiyo2 in the Netherlands,
Jelbi3 in Berlin, Floya in Brussels4, and Regiomove5 in Karlsruhe.

Typically, MaaS breaks with established advance payment tariff schemes and, instead,
offers subscription-based and pay-as-you-go tariffs with features like fare capping. This
paradigm shift is deemed to be more flexible and user-friendly than classic tariff schemes
[Jit+17; CS20b; PBS22]. An MaaS platform may combine subscription-based tariffs and pay-
as-you-go tariffs: The subscription-based tariff is used for the basic mobility services, an
example is the “Deutschlandticket”6, while the pay-as-you-go tariff is used for additional
services, like sharing services or ride hailing. Karlsruhe’s public transport authority
“Karlsruher Verkehrsverbund” follows this scheme within Regiomove7.

According to the International Association of Public Transport (UITP) and the Smart
Ticketing Alliance, the number one challenge for MaaS is a functional, interoperable, and
trusted ticketing platform [PBS22, p. 28]. In fact, a well-designed ticketing platform
is “a great enabler of MaaS” [PBS22, p. 11]. Pay-as-you-go tariffs rely on the ability to
record travel information, i.e., the start, end, and type of a trip, to calculate the fare.
While this information theoretically could be recorded on the side of the customer, MaaS
typically follows the pattern of account-based ticketing [LV17; PBS22; Ack24]. Account-
based ticketing is based on an extensive back office [PBS22, p. 16]. In computer science
terms, the back office is a backend database system that records customer and travel-
related information for the purpose of physical access control to vehicles, fare calculation,
invoicing, revenue distribution, and analytics. The back office is of important value for
the MSPs: As the back office logically centralizes all travel-related information, MSPs
have real-time access to service utilization and customer behavior which can be used to
(automatically) optimize their services, pricing, and passenger routing [CS20b; Ack24]. The
back office is part of the MaaS platform (also including front-end software for customers
and MSPs) typically operated by an “MaaS operator” [PBS22].

3.2 Objectives

In the following, we derive the objectives for a privacy-preserving and fair MaaS back
office that still follows the needs of the MSPs in terms of utility and scalability.

2 https://gaiyo.com/?lang=en, accessed 2025-06-09
3 https://www.jelbi.de/, accessed 2025-06-09
4 https://www.floya.com/, accessed 2025-06-09
5 https://www.kvv.de/mobilitaet/regiomove.html, accessed 2025-06-09
6 https://en.wikipedia.org/wiki/Deutschlandticket, accessed 2025-06-10
7 https://www.kvv.de/service/kvv-webshops/deutschlandticket-shop.html, accessed 2025-06-10
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3.2 Objectives

Utility and Privacy Account-based ticketing is a location-based service known for process-
ing and storing potentially highly sensitive information: People’s movement trajectories,
i.e., sequences of spatiotemporal information, are rather unique and can be used to derive
information on wealth and income, health, sexual orientation, and political and religious
views [GKP11; Mon+13; Dra+19; Kap22]. In 2019, the “Berliner Beauftragte für Daten-
schutz und Informationsfreiheit” (in English approximately Data Protection and Freedom
of Information Officer of Berlin) has officially objected to the Jelbi platform due to a lack
of technical data protection [Dat19, Chapter 4.1]. This demands the back office of an
account-based ticketing approach to respect and maintain a high level of privacy. However,
the back office also has to be useful for the MSPs. The MSPs need to be able to access the
data in the back office to optimize service, pricing, and passenger routing [Kap22; Ack24].
Due to the need for revenue distribution in an MaaS context, MSPs inevitably have to share
data with each other in an approachable and efficient way, demanding high interoperability
of involved technology stacks [CS20b; PBS22]. While this data exchange is paramount for
MaaS, it poses a significant risk for business secret leakage (e.g., financial gain through
industry espionage) [Cal+18; Gar+23]. Mechanisms that protect the privacy of customers
and MSPs may severely limit the utility in terms of analytics and may lead MSPs to reject
the system [Kap22]. Potential customers, however, may reject the system when strong
privacy guarantees cannot be made [PPT20]. In conclusion, an MaaS approach deployed
within the European Union must comply with the General Data Protection Regulation
(GDPR) [EC16] not solely by policy but also by technical measures following the “privacy
by design” principle [Dat19; Cot20] and “create an ecosystem for data sharing accepted
by all parties involved” [PBS22, p. 30], i.e., bridge the gap between protection and utility.
The back office must hide spatiotemporal information of customers and business secrets
of MSPs from each other while still allowing for useful analytics. Metadata tracing, e.g.,
using IP addresses, is an orthogonal problem which is not in scope of this work.

Fairness and Dependability Due to the nature of their business in terms of investment risk
(e.g., for infrastructure and vehicles), operation cost, and customer-expected dependability,
MSPs are typically large companies with significant market power (if not monopolies) or
publicly owned entities [FFF07; PPT20]. This centralization can lead to unfair advantages
of established MSPs over smaller MSPs [Bun22; Bun23]. Additionally, the centralization
may increase the market entrance barrier for new MSPs. If now MaaS platforms are
operated or controlled by such central parties, which is to be expected [LV17; PPT20],
the required success of the MaaS paradigm for modal shift and sustainable transport
may be hindered. A successful adoption of the MaaS paradigm comes with the risk of
insider threats, i.e., federation members and customers may manipulate or spoof input
data for their own benefit [Che+17; Cal+18]. Finally, federation members may refuse to
have their computing infrastructure available and accessible which comes with the risk of
denial of service attacks. We require the back office to be fair by preventing central and
powerful parties, by being resilient against insider threats, and by technically enforcing
the governance of the MaaS platform (“law is code” [FH16]). Moreover, the back office
must be dependable by avoiding single points of failure.
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Scalability and Interoperability If MSPs were required to implement one-to-one custom
logic, interfaces, and contracts for each MaaS platform or peering MSP, this again would
increase the market entrance barrier significantly and, as customers would be required to
have accounts on multiple platforms, also lower customer convenience [Cal+17; PPT20].
The “The European Roadmap 2025 for Mobility as a Service” by the “Mobility as a Service
for Linking Europe” project of the Conference of European Directors of Roads (CEDR)
states that “national and international interoperability is needed” [Eck+18]. Consequently,
there must not be a plethora of MaaS platforms or MaaS standards. Instead, there should be
a single standard defining a single, commonly operated MaaS platform (which directly limits
the impact of central parties). Thus, an MaaS platform must be able to seamlessly integrate
with existing and future MSPs in Europe. Statista Market Insights [Sta25a] prognoses
approximately 303 million users of public transport for 2029 in the EU-27, i.e., the 27 states
that are forming the European Union in 2025. If we assume that all users use a single MaaS
platform for their daily commute, this leads to 606 million daily interactions with the MaaS
platform. If we further assume that half of these interactions are equally distributed over
a morning rush hour of two hours for the journey to work or education, this results in
42 000 interactions per second for the rush hour8. If we add a margin for staff requests
(e.g., ticket inspections) and to prevent the system from operating at its limits, we require
the back office to be able to handle at least 50 000 requests per second when scaling to the
European Union. The scalability requirement is not only on the number of requests but
also on the number of MSPs that can be integrated into the MaaS platform. This number
is hard to predict, but for the area of responsibility of a single regional transport authority,
the number is easily well into the two-digit range [VBB25].

3.3 Architectural Considerations and Related Work

In the context of location-based services, researchers have been investigating the utility-
privacy trade-off and the dependability of such systems for nearly two decades [Jia+22]. In
this section, we analyze related work from the domains of confidential databases, location-
based services, mobility services, confidential SMR, and secure multi party computation
regarding their ability to fulfill the objectives derived in the previous section. We first
start by reviewing centralized approaches, then we analyze decentralized approaches, and
finally we conclude with a summary explaining why we deem a permissioned, TEE-based
SMR application to be currently the best fit for an MaaS ticketing platform.

8 Please note that this is a clear overestimate, as, according to Statista Market Insights [Sta25b], only
around 45% of shared mobility journeys are billed via online sales channels in 2023 and, according to
Eurostat [Eur21], only 27% to 45% of all distances traveled are due to commuting.
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3.3 Architectural Considerations and Related Work

3.3.1 Centralized Approaches

In centralized approaches, a single party, the MaaS operator, controls and provides the back
office service and potentially the full software stack. While it is relatively straightforward
to implement the required functionality and to scale the system, e.g., through cloud-based
horizontal scaling [LML14], it is trivial that a naive centralized approach can neither enforce
fairness nor guarantee privacy9. To prevent the MaaS operator from learning movement
patterns of customers, research has investigated the use of obfuscation techniques like
cloaking [XC07; Al-+18], differential privacy [Kap22], and federated learning [CG24].
Obfuscation techniques work with noise or inaccuracies to hide the actual data and require
that potential attackers have limited additional information (e.g., metadata traces) they
could use to reverse the obfuscation. Because of the noise, obfuscation techniques may
have a significant impact on the service quality. If used in the context of MaaS, all data is
generated by the customers and obfuscation is applied to this data. MSP service utilization
cannot be obfuscated and, thus, business secrets are not protected. Recent research [Mir+23;
Buc+24] has shown that differential privacy, a technology that is currently being heavily
researched, is not sufficient to meet customers’ privacy demands.

Customer privacy can also be protected by means of sophisticated cryptographic protocols
securing the confidentiality of transferred and stored data. Besides tailored approaches for
location-based services (e.g., [SLL14]), also generic approaches like confidential databases
[KJH15], e.g., based on oblivious RAM [JSS14] exist. Those approaches have the problem
that, in general, complex queries for analytics cannot be executed on side of the storage
provider, i.e., the MaaS operator, without revealing the data yielding additional load on
the client side, possibly limited utility, and impeded scalability. TEE-based confidential
databases (see, e.g, [Sar+18; PVC18; MMS25]) can circumvent this issue. Additionally,
the attestation feature of the TEE can be used to enforce the governance and ensure that
the MaaS operator and MSPs do not learn more than agreed. But if the assumptions for
the TEE are not met, e.g., due to flaws in the TEE’s hardware isolation (e.g., [Bul+18]) all
confidentiality and dependability guarantees are lost. Anonymous credential systems have
been proposed to hide the identity of customers when interacting with a backend system
[Nab+21].

All centralized approaches have the problem that the central service is a single point of
failure. Any fault on the side of the MaaS operator – no matter if it is a technical failure, a
security incident, or a denial of service attack – may compromise the availability of the
back office. Obviously, the MaaS operator can apply distributed computing mechanisms,
i.e., redundancy, fail-over mechanisms, and fault tolerance, to increase the availability
of the back office. However, this has only small impact when the MaaS operator itself is
being compromised and, importantly, does not solve the requirement for fairness as the
federation has only limited control on the MaaS operator’s actions.

9 This is without relying on regulation or contracts.
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3.3.2 Decentralized Approaches

One key focus of decentralization in general and distributed ledgers in particular is to
prevent a single point of failure and to increase the autonomy of the involved parties.
The use of a distributed ledger to increase the fairness and the dependability is evident:
Information systems and economics literature has shown that ledger technology can be
used to enforce rules and regulations in a technical system by implementing the governance
model as part of the technical agreement process (i.e., following the paradigm “law is
code”) [FH16; PFR20; LWS21; Roz+21; Pet22; Gre+24]. Consequently, several authors
proposed the use of distributed ledgers for improved and automated governance and for
ensuring functional correctness of mobility services (e.g., [KH18; NPP19; Bot+19; WZ21]),
ticketing (e.g., [PE19; Lam+19; YZ22; PME24]), and location-based services (e.g., [Amo+18;
Nos+20; She+20; Amo+22; Rüs+22; Guo+23]). It has to be noted that a permissioned ledger
inherently is less inclusive than a permissionless ledger; consortia can be discriminatory.
When powerful parties are to be prevented at all, a permissionless ledger has to be used.

Scalability is in conflict with the coordination and replication required to operate a dis-
tributed ledger. It seams to be unfeasible for every MSP to run a state machine replica due
to (1) cost and required technical expertise and, more importantly, (2) due to the limited
scalability of distributed ledgers: Distributed ledgers suffer from the blockchain trilemma
(simplified) stating that it is impossible to maximize throughput without sacrificing either
decentralization (i.e., high number of independent replicas) or security (i.e., fault model
or fault tolerance) [MPP20; Nak+23; MK25]. If a permissionless ledger was chosen, the
choice would certainly not match the requirements of a public transport infrastructure
(for Europe): Permissionless ledgers are typically associated with a rather strong attacker
model but throughput is significantly limited and response latency ranges from a mini-
mum of several seconds to, in the worst case, several minutes or longer [Cro+16; EC25;
Hil+23]. Fast response times come with high cost [JM25] and requests suffer from potential
censorship, i.e., they are either not processed at all or only with delays, for example due to
external policies [Wah+24]. Additional to the throughput and latency issues, permission-
less ledgers have a non-negligible, ever-growing demand for storage space as it is typically
required to store the full request history permanently [FNL22]. Research investigates the
use of so-called second layer solutions [Gud+20] and sharding [ZMR18; Wan+19; Yu+20]
to improve the scalability of permissionless ledgers. Second layer solutions use an overlay
network formed by the clients on top of a distributed ledger. To minimize the use the of
the first layer, the distributed ledger is only used as a settlement and conflict resolution
layer. When using sharding, the ledger state is split into multiple shards, each of which is
processed by a subset of the replicas. Typically, those approaches come with a trade-off be-
tween scalability and security [Wan+19; Gud+20; Yu+20; AMW25] or added requirements
on side of the clients (e.g., being always online [Gud+20; BG22]). Permissioned ledgers
based on SMR achieve sub-second latency and impressive throughput while being able to
scale to a few hundred replicas and having strong security guarantees [Spi+22; Gir+24;
Aru+25]. Spanner [Cor+13] and CockroachDB [Taf+20] are examples for permissioned
ledgers using sharding for improved scalability.
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3.3 Architectural Considerations and Related Work

Confidentiality and privacy, outlined above as a key objective for an MaaS back office, are
even more in conflict with the nature of a distributed ledger: every replica holds a full copy
of the data and, thus, every replica can access all data [Bes+08]. There is a vast amount of
literature investigating confidentiality and privacy aspects of permissionless and permis-
sioned ledgers respectively. Moreover, the whole area of secure multi party computation
(MPC) [Has+19], tightly related to the idea of a permissioned ledger in particular and
to agreement primitives in general [GL05] but coming from the cryptography research
community, focuses on the protection of data from insider threats. In the following, we try
to give an overview of the most relevant10 general purpose approaches and approaches
that are tailored to location-based services and mobility use cases.

Permissionless ledgers are accessible by everyone making the confidentiality issue even
more severe as everyone can access the data and data cannot be deleted [FNL22; Pol+22;
Bel+23]. There exist solutions extending permissionless ledgers with functionality provid-
ing privacy-preserving decentralized computation using self-sovereign identities [FSZ18;
Feu+22], TEEs [Yua+18; Che+19; GLH19; Xia+20; Wu+25], homomorphic encryption
[WK18], secret sharing [Ben+20; Ste+21], and payment channel networks [GZH22] but,
in general, scalability issues and unfavorable trade-offs for second layer approaches still
apply. Moreover, a multiparty computation, i.e., a federation computes a common pub-
lic output on private inputs of the federation members, typically requires to make the
clear-text data available to distinguished computation nodes or TEEs or to rely on MPC.
Nevertheless, Ernstberger et al. [Ern+23] promote infrastructures rooted in permissionless
ledgers to foster data sovereignty. Please note that, in general, these approaches can also
be combined with permissioned ledgers. We argue that if choosing a permissioned ledger,
e.g., for scalability reasons, the additional complexity of a second layer solution is not
justified as confidentiality mechanisms can directly be integrated into the permissioned
ledger (see below).

Permissioned ledgers limit the access to the data to the members of the federation which is
a first line of defense against external threats [XXZ18; PP24]. Furthermore, permissioned
ledgers allow for garbage collection [Dis21] which allows to keep data only as long as
it is required for the business logic. But if the federation is formed by the MSPs, the
MSPs can access all data and, thus, neither business secrets nor customer locations are
protected from insider threats. Early work in the context of SMR investigated the gains of
separating ordering and execution [Yin+03] (improved by [DZ16]). A recent work, Qanaat
[Ami+22], follows and extends this idea for cooperating companies in a supply chain:
Data is clustered and companies replicate only those clusters relevant to them. These
ideas are related to sharding and aim at maximizing the number of parties that need to be
corrupted to compromise the confidentiality. Sharding approaches do not protect from
honest-but-curious parties, i.e., parties that do not deviate from the protocol but try to
learn as much as possible about the data. In particular, the approaches do not fit the data
sharing model of MaaS where it is a priori unknown which customers use which MSPs

10 Searches for “privacy blockchain” and “multiparty computation” on https://dblp.org yield 1 879 and
593 matches respectively (accessed 2025-06-22).
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and, thus, which data is relevant to which MSP. Bessani et al. [Bes+08] use secret sharing
– also a main building block of MPC – to achieve confidentiality. The approach only
supports set and read operations of client-side encrypted information. More sophisticated
state transitions have to be handled by a client itself and the replicas cannot validate
client-provided information which conflicts with the objective of dependability. Wang
and Zhang [WZ21] propose a proxy re-encryption scheme for ride-sharing services that
uses the ledger as data storage and for conflict resolution. Computations on user data
on the ledger are not possible as location data is handled off-chain. In P-CFT [Li+21],
clients send zero-knowledge proofs instead of the clear text data that are ordered in a
crash fault-tolerant manner. Vehicloak [Guo+23] is a privacy-preserving payment scheme
for location-based vehicular services based on zero-knowledge proofs. Computation is
limited to money transfer; the ledger is only used for dependability reasons (there are no
federating parties). While zero-knowledge proofs can be validated and invalid data is not
stored, similar to [Bes+08] replicas cannot compute on the data.

This is where MPC comes into play. MPC is a cryptographic primitive that allows a
set of parties to jointly compute a function on their private inputs while keeping those
inputs secret from each other. MPC is a well-established field of research with a large
body of literature [Has+19]. While MPC can, in theory, compute any function, some
operations come with a significant performance penalty limiting the scalability both
in terms of throughput and replicas [Has+19; Kel20]. POBA [Fau+25], a follow-up to
[Fet+22], is a tailored MPC solution for use cases like federated ticketing. They use
anonymous credentials to hide user identities when interacting with the back office.
They achieve a check-in latency of ∼ 3 s for 1 million customers per day and 9 replicas
limiting their use to city-scale deployments. Similar to MPC, TEEs can provide high
confidentiality guarantees while still allowing for complex queries and analytics. TEEs
have been used to implement general purpose, confidential, and replicated databases
[Bra+19; Wan+20; Yan+20] with recent advances focussing on feature-rich governance
and practicality [How+23]. EventChain [Sch+22b] is an example for a tailored TEE-based
replicated database for location-based services. In all works, the consensus is that the
additional performance overhead is negligible compared to a native permissioned ledger.
As in the centralized case, broken TEEs lead to a loss of confidentiality and dependability.
MPC does not make any hardware assumptions and, thus, is considered more robust.

3.3.3 Conclusion

Table 3.1 summarizes the analysis. The analysis above and the findings of related work rule
out any centralized approach as it cannot meet the objectives of fairness and dependability
and proposed obfuscation and encryption techniques do not meet the requirements of
customers and MSPs. Consequently, we require the use of a distributed ledger. While a
permissionless ledger would be most inclusive, we find that permissionless ledgers are not
a good fit for MaaS ticketing due to their limited scalability, high latency, high cost, and
the risk of censorship. The permissioned model is a first line of defense against outside
threats and allows for garbage collection and efficient algorithms limiting the resource
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Centralized: naive × × — × ⃝
Centralized: client-side obfuscation ⃝ × ⃝ ⃝ × ⃝
Centralized: client-side encryption × × × ⃝ ⃝
Centralized: TEE ⃝ ⃝ ⃝

Permissioned: naive × × — ⃝
Permissioned: sharding ⃝ × ×
Permissioned: client-side encryption × × ×
Permissioned: multi party computation ×
Permissioned: TEE ⃝ ⃝

Table 3.1:Design space analysis for federated Mobility-as-a-Service ticketing applications comparing variants
of centralized solutions and decentralized permissioned ledgers. Permissionless ledgers (and their possible
extensions) are left out as permissioned ledgers are equal or superior in all listed categories. As long as MPC
is not competitive performance-wise, the choice of TEEs offers the best trade-off.
Classification: = good, ⃝ = medium, × = insufficient, — = does not apply.

requirements of the system. Furthermore, permissioned ledgers achieve strong security
guarantees and sub-second latency while being able to scale to a few hundred replicas.
While MPC is clearly the best fit in terms of achieved security guarantees, it is simply not
feasible (yet) to scale MPC to the required number of requests per second and the number
of replicas in an MaaS federation. We conclude to use a TEE-based application layer for a
permissioned ledger as the back office of an MaaS federation. To maximize efficiency and
minimize the trusted computing base (general purpose databases come with a full-featured
SQL interface), a TEE-based database tailored to the requirements of an MaaS ticketing
back office should be used. It needs to be ensured that any observable communication
with the back office does not leak information about the customers’ movement patterns.
To this end, anonymous credentials should be considered.

3.4 SMR Application for Anonymous and Fair Federated
Ticketing

We focus on the realization of a federated combined pay-as-you-go and subscription-based
ticketing platform that supports check-in and check-out, invoicing and fare distribution.
Our focus is on the back office and the interaction with the same which we define as an
SMR application layer protocol. We first define the scenario and the system model. Then,
we define the functional and security requirements of the resulting RSM followed by an
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overview of the protocol. Finally, we describe the protocol in detail and analyze if and
how it meets the security requirements.

3.4.1 Scenario Definition

We design an SMR application layer implementing the following scenario: A customer
registers with a single MSP, called home provider (HP), and creates an MaaS account. If
customers want to use a mobility service, they must check in before using it. The check-in
is performed using a smartphone application that interacts with a check-in/check-out
terminal. This can happen at the vehicle (e.g., for buses at the entrance door or for rental
bikes at a device on the bike) or at an entrance control (e.g., at a turnstile). After use has
ended, customers must perform a check-out. For services where check-in can be bypassed
(e.g., buses or trams), ticket inspection is supported. A ticket inspector can ask to see proof
of check-in and check its validity.

The back office is responsible for the recording of proofs-of-interaction (PoI) that are
check-ins and check-outs of customers. In regular pre-defined intervals (billing period),
e.g., every month, invoice generation and revenue distribution is performed: The back
office calculates for each customer the total fare based on the recorded PoIs and possible
subscriptions according to a pre-defined billing function. Additionally, the back office
creates a list of transfers to be made between MSPs in order to distribute the revenue.
Each HP is responsible for collecting the fare from its registered customers including those
fares that accrue for using mobility services of peering MSPs. Then, each HP distributes
revenues across all federation members according to the usage of their mobility services.
We define trip planning, payment, and analytics beyond invoicing and fare distribution to
be out of scope.

3.4.2 Requirements

Based on the scenario definition above and the objectives derived in Section 3.2, we define
functional and security requirements for the SMR application layer protocol as follows.

Functional Requirements

• Check-in and check-out. Customers must be able to check-in and check-out
a mobility service at arbitrary valid locations. Valid locations are defined by the
provider of the mobility service.

• Ticket inspection. Ticket inspectors must be able to verify that a customer has
checked-in to the mobility service currently used.

• Invoice generation. The back office must be able to calculate the total fare due for
a customer for a billing period. The fare must be available to a customer’s HP.
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• Verifiable fares. Customers must be able to verify the correctness of calculated
fares and invoices.

• Revenue distribution. The back office must be able to calculate revenue shares
and resulting money transfers for MSPs based on their actual service utilization.
Each MSP must be able to receive the information about the amounts it owes to or
receives from other MSPs.

Security Requirements

• Confidentiality of customer identifiers. AnyMSP, including the HP of a customer,
must not learn who the customer is or where the customer is registered when
recording a PoI or when inspecting a ticket for invoicing, the back office may link
the identity of a customer to its total fare and present it to the corresponding HP.

• Confidentiality of spatiotemporal information. The back office and communica-
tion with the same must not leak spatiotemporal data of customers. Ticket inspectors
must not be able to re-identify customers in different inspections.

• Confidentiality of mobility service utilization. Any MSP, except the MSP
providing the mobility service, must not learn which mobility service is being used
when recording a PoI, when inspecting a ticket, or during revenue distribution.
Revenue distribution may only leak revenue shares between two peering MSPs but
not what actual services or customers generated those shares.

• Correctness of PoIs. The back office must not accept PoIs that are not valid, i.e.,
check-ins and check-outs must be at valid locations by a customer actually owning
the identity used. Thus, customers must not be able to spoof identity or location
information.

• Correctness of fares and revenue shares. The back office must calculate fares
and revenue shares according to a pre-defined billing function.

• Availability. The back office must be available for check-ins, check-outs, ticket
inspections, and invoicing at all times as long as a majority of replicas is operational.

3.4.3 Protocol Overview

In this subsection, we give an overview of the application layer protocol. The protocol is
based on a permissioned ledger that is replicated using SMR.
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Figure 3.1: Mobility-as-a-Service ticketing architecture. Each MSP hosts a local customer database (blue) and
a ticketing back office (yellow) encrypted using TEEs (safe icon, thick border) and replicated using SMR
(green). The customers registers with its home provider (1) which creates an entry in its customer database.
Now, the customer can use mobility services by checking in: the customer interacts with the service using
their smartphone and a terminal (2) which creates a proof-of-interaction (PoI) that is sent to the replicated
back office (3). On ticket inspection, the inspector asks the customer for a proof of check-in (4) which is
verified by the back office (5). Check-out is equivalent to check-in (6, 7). At the end of a billing period,
an accountant initializes the billing process via the customer database (8) which is executed by the back
office. The back office responds with revenue distribution information and pseudonymous total fares; the
pseudonyms can be mapped by the customer database. The accountant bills the customer (9). The MSPs
distribute the revenue according to the revenue distribution information (10). To simplify, replica-to-replica
SMR communication is left out in this figure.

System Model We assume a federation of 𝑛 MSPs, each of which is a legal entity with a
unique identifier. Each MSP provides a set of mobility services, e.g., public transport or
sharing services, and operates a replica of the MaaS platform. MSPs may behave Byzantine
(either 𝑛 > 3𝑡 or 𝑛 > 2𝑡 ). Each replica hosts a TEE (see Definition 2.1) that is assumed to
be crash stop faulty. When a TEE crashes, it looses its state. Customers are SMR clients
and may be Byzantine; correct customers behave according to the defined application
layer protocol and the SMR framework. The timing assumption depends on the SMR
framework. We assume a PKI that allows for the secure identification of customers, MSPs
and their employees, and check-in/check-out terminals (pk identifies a public key, sk a
secret key). Replicas and clients communicate via perfect and secure point-to-point links
(see Section 2.2). Communication in which one endpoint is hosted inside an enclave is
established using the TEE’s attestation feature; the encryption is terminated inside the
enclave. We propose to use near-field communication (NFC) between customers and
terminals.

System Architecture and Basic Protocol Flow The architecture of the ticketing platform
and the basic protocol flow is shown in Figure 3.1. Each MSP hosts a local customer
database (not replicated) and an SMR-based ticketing back office. The customer database
is used to store customer billing information, e.g., clear-text customer identities, addresses,
and payment information. The back office implements encrypted and replicated PoI
(PoIDB) and authentication (AuthDB) databases and the business logic, i.e., access control,
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validity checks, the billing function for fare calculation and revenue distribution, and the
governance model, inside an enclave. A concrete enclave is associated with the MSP it
belongs to and carries information to authenticate as an enclave operated by the respective
MSP. The basic protocol flow is as follows:

1. Customers register with their HP which creates an entry in the HP’s customer
database.

2. A registered customer can use the mobility services of all MSPs by checking in: the
customer interacts with the service, e.g., a turnstile or other interface, which creates
a PoI.

3. The check-in PoI is sent to the replicated back office which validates the PoI and
stores it on success.

4. On ticket inspection, the ticket inspector asks the customer for a proof of check-in.

5. The ticket inspector uses the presented information to query the back office for the
validity of the check-in.

6. Check-out is equivalent to check-in: the customer interacts with the service which
creates a PoI.

7. The check-out PoI is sent to the replicated back office, validated, and stored.

8. At the end of a billing period, the accountants of all MSPs initialize the billing process
which is executed by the back office. The back office calculates the total fare due for
all customers of all MSPs for a billing period and the revenue shares for each MSP.
The back office sends as a result to each MSP’s accountant a list of pseudonymous
total fares due and a list of transfers to be made between the accountant’s MSP and
the other MSPs. The pseudonyms can be mapped to the clear-text customer identities
by the customer database.

9. The accountant bills all customers of the MSP according to their total fares due.

10. The MSPs distribute the revenue according to the revenue distribution information.

3.4.4 Protocol Description

In this subsection, we describe the protocol in detail. We assume proper authorization of
MSP staff (i.e., accountants, ticket inspectors).
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Figure 3.2:Exemplary Mobility-as-a-Service check-in protocol flow. Alice wants to use a train of MSP “A” and
enters the train in Karlsruhe. She checks in using her smartphone and the terminal in the train. The terminal
creates a proof-of-interaction (PoI) that Alice verifies and sends to the back office as a check-in request.
The back office validates the PoI and replicates it using the SMR framework. On successful validation, the
check-in becomes a new entry in the enclaved PoIDB.

Registration, Customer Database and Authentication Database If a person wants to use
the MaaS platform, they must first register with an MSP (selected at the person’s discre-
tion). This registration makes the person a customer of the MSP and the MSP becomes
the customer’s HP. Each MSP maintains a local customer database that contains their
customers’ contract information, e.g., name, address, and payment information. The
customer database is not replicated and is only accessible by the responsible MSP. Addi-
tional to the customer database entry, the registration process creates an entry in AuthDB:
⟨customerID,mspID, authToken, interactionToken⟩. The customerID is a unique identifier
for the customer, i.e., a UUID [DPL24], that is chosen by the HP. The mspID is the unique
identifier of the MSP where the customer registered. Both authToken and interactionToken
are randomly generated and cryptographically secure secrets that are used to authenticate
the customer. They are generated by the customer. The back office rejects the registration
if any of the three values is not unique or does not conform to the expected format (i.e., in
terms of length and character set to ensure sufficient entropy). While the authToken must
not be used outside the secure channel to the back office, the interactionToken is designed
to be transmitted in clear text and be read by MSP employees and devices, i.e., for check-in,
check-out, and ticket inspection. To this end, the interactionToken is a one-time token that
is exchanged after every use.

Check-In and Check-Out Protocol A customer 𝑐 must check-in to a mobility service 𝑠 in
the ticket system to start a trip. Customer 𝑐 needs to check-out when the use of service 𝑠
ended to communicate the ticket system that their trip has finished. Both, check-in and
check-out, are write operations to PoIDB and AuthDB11. The procedure is as follows:

1. Customer 𝑐 sends their current interactionToken to terminal 𝑠 .

11 Please recall that both databases are managed in the enclave and, thus, benefit from the security guarantees
provided by the TEE.
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2. Terminal 𝑠 creates a signature 𝜎𝑠 over the interactionToken, the current time ts, and
the current location gps and sends the following message to customer 𝑐:

interaction = ⟨INTERACTION, pk𝑠, interactionToken, ts, gps, 𝜎𝑠⟩

3. Customer 𝑐 checks if they agree with current location and time and chooses a new
interaction token interactionToken′.

4. Customer 𝑐 sends ⟨CHECKIN, interaction, authToken, interactionToken′⟩ as a check-
in request to the back office using its SMR client.

5. Each back office replica performs the following validation checks:

a) authToken and interactionToken belong to the same customer 𝑐 (lookup in
AuthDB, yields customerID on success)

b) interactionToken′ is unique, i.e., not used before (lookup in AuthDB)

c) Customer 𝑐 is currently not checked-in (lookup in PoIDB using customerID)

d) interaction contains a valid signature by 𝑠

6. If the checks are successful, the back office replicas order the check-in request using
the SMR framework. Otherwise the request is rejected and customer 𝑐 receives a
negative response.

7. On successful replication, each back office replica repeats the validation checks,
adds the check-in to PoIDB, sets interactionToken← interactionToken′ in AuthDB, and
sends a positive response to the customer using the SMR framework.

8. In case of physical access control, e.g., for rental bikes, terminal 𝑠 unlocks the service
when receiving positive information from the back office.

9. Customer 𝑐 collects the responses using the SMR client, uses the rules of the SMR
framework to determine the result of the operation, and, on success, updates their
local state with the new interactionToken and the information that they are currently
checked-in to service 𝑠 .

For check-out, the procedure is equivalent to check-in except that the message type is
⟨CHECKOUT, ·⟩ and the the validation check requires a valid check-in as the current cus-
tomer state (instead of validating that the customer is currently not checked-in). Figure 3.2
shows an exemplary check-in protocol flow.
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Entry#
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Alice enters train of MSP A 
at Karlsruhe main sta�on as 
“abc123”
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……

Alice exits at Frankfurt main 
sta�on as “qos316”

6

……

End of billing period9

45€ by Alice, 10€ by Bob, […]
Transfer 2304€ to MSP B, […]

Figure 3.3: Exemplary Mobility-as-a-Service billing protocol flow with four MSPs. MSP “A” initializes the
billing process by sending a conforming request to the back office. The back office waits until 𝑛 − 𝑡 , i.e., a
majority of MSPs (three in the example), have sent their requests. Then, the back office calculates the total
fare due for each customer and the revenue shares. Each MSP receives a list of pseudonymous total fares
due and a list of transfers to be made between the MSP and the other MSPs, i.e., it neither contains fares of
customers where the MSP is not the HP nor transfers where the MSP is not involved.

Ticket Inspection The ticket inspection allows a ticket inspector 𝑡 to verify that a customer
𝑐 has checked-in to the mobility service 𝑠 currently used. The procedure is as follows:

1. Customer 𝑐 provides the current interactionToken, i.e., the one that was established
during check-in, to ticket inspector 𝑡 .

2. Ticket inspector 𝑡 sends request inspection = ⟨INSPECTION, interactionToken, 𝑠⟩
using their SMR client to the back office.

3. Each back office replica maps the interactionToken to the corresponding customer 𝑐
identified by customerID using AuthDB.

4. Each back office replica identifies the last entry in PoIDB for customer customerID
and service 𝑠 identified by pk𝑠 .

5. Each back office replica reports success if the last entry is a check-in to 𝑠 and failure
otherwise.

6. Ticket inspector 𝑡 receives the responses using the SMR client and uses the rules of
the SMR framework to determine the result of the inspection.

Invoicing and Revenue Distribution After the end of a billing period (e.g., monthly),
the back office needs to calculate the total fare due for each customer and distribute the
revenue across the MSPs according to the usage of their mobility services. The TEEs itself
have no access to a trusted time source and, thus, the initiation of the billing process has
to come from outside the back office. To prevent faulty billing processes, the back office
waits for a majority of MSPs to initiate the billing process. In the following, MSP𝐴 is an
arbitrary MSP and pk𝐴 its public key. The procedure is as follows:
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1. When the untrusted part of the back office replica ofMSP𝐴 observes that the current
billing period is over, the replica issues a request billing = ⟨BILLING, 𝑏𝑡 , pk𝐴, 𝜎MSP𝐴⟩
where 𝑏𝑡 is an identifier for the current billing period and 𝜎MSP𝐴 a signature over the
request by MSP𝐴.

2. The SMR framework orders the billing request.

3. As soon as 𝑛 − 𝑡 validly signed billing requests for the same billing period 𝑏𝑡 and
issued by different MSPs have been ordered, the back office starts the billing process:
The back office inserts a special entry into PoIDB that marks the end of the billing
period. Subsequently, the back office collects all PoIs between the markers for 𝑏𝑡−1
and 𝑏𝑡 and inputs them to a predefined billing function.

4. The result of the billing function is unique for every MSP. The result consists of
two lists: First, a billing list with entries of the form ⟨customerID, totalFare⟩. All
customerIDs listed must be registered with MSP𝐴. Second, a revenue distribution list
with entries of the form ⟨fromMSP, toMSP, amount⟩. In the revenue distribution list,
either fromMSP or toMSP has to be equal to MSP𝐴.

Figure 3.3 shows an exemplary billing protocol flow with four MSPs.

3.4.5 Security Analysis

In this subsection, we analyze how the protocol described above meets the security
requirements defined in Section 3.4.2.

Confidentiality of Customer Identifiers The back office handles three different types
of identifiers: (1) the customerID that is used to identify a customer in the back of-
fice, (2) the authToken that is used to authenticate operations of a customer, and (3) the
interactionToken that is used to identify a customer in the context of a PoI. Two of those
identifiers, customerID and authToken are static while the interactionToken is a one-time
token. The customerID is static and leaves the enclave. However, it is only used (in clear
text) to link a customer to their total fare when the back office sends the billing information
to the customer’s HP. As a HP knows its customers, this does not leak any additional
information. The authToken is only used inside secure channels and known in clear text
only by the customer and the enclaved back office. The interactionTokenmust not be secret
and must be read by MSP employees and terminals. As the interactionToken is a one-time
token, two different tokens can only be linked inside the enclaved back office.

Confidentiality of Spatiotemporal Information Spatiotemporal information is generated
when a customer checks-in or checks-out to a mobility service. The terminal of the mobility
service creates a PoI by signing the request of the customer. The PoI is then confidentially
transmitted to and stored by the enclaved PoIDB of the back office. The PoIs of a customer
are aggregated to a total fare due for a billing period that is revealed to the HP. The PoI
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contains the one-time interactionToken, which, as discussed above, is not secret and can
only be linked by the enclaved back office. In terms of customer privacy, each PoI is public
information. During ticket inspection, the ticket inspector receives the interactionToken.
Thus, a ticket inspector is only able to re-identify a customer12 if the customer is inspected
more than once between check-in and check-out, i.e., on the same trip.

Confidentiality of Mobility Service Utilization As it is the case for spatiotemporal infor-
mation, the utilization information is generated when customers check-in or check-out to
a mobility service. The PoI contains the public key of the mobility service, i.e., the identi-
fier of the service or terminal. While the PoI is public information in terms of customer
privacy, it is confidential in terms of the MSPs’ business secrets. As stated before, the PoI
is confidentially transmitted and stored. The only time a PoI is handled in clear text is
during check-in, check-out, and ticket inspection. Those clear-text interactions are with
the MSP providing the service. This MSP is allowed to learn which of its services are used
how often. Revenue distribution presents aggregated information. While this hides the
actual services used, it reveals how many customers of a HP used the services of a peering
MSP. Please see Section 3.5 for a discussion of the impact of this information leak.

Correctness of PoIs The correctness of PoIs is crucial for the correctness of the billing
process. Correct PoIs ensure that the correct customers are charged the correct fare for
the mobility services used: for this, customers must not be able to spoof their identity
or location information. The location information (i.e., which station or terminal, where
in terms of GPS coordinates) is provided by the terminal and signed by the same. The
signature ensures that customers cannot modify this information. Thus, the only en-
tity capable of spoofing location information is the terminal itself. However, this only
produces damage (in terms of lost revenue) for the MSP operating the terminal and no
peering MSPs. The identity information is provided by the customer in the form of the
interactionToken. We require the interactionToken to be a cryptographically secure random
string. Thus, if the customer’s smartphone is not compromised, an attacker can only guess
the interactionToken with negligible probability. Furthermore, the interactionToken is only
accepted if it as accompanied by a valid authToken that is unique for the customer. The
authToken is a secret that is only known to the customer and the enclaved back office.
Thus, an attacker can only present a valid authToken with negligible probability. Finally, a
check-in will only be accepted if currently checked-out and vice-versa for a check-out.
This ensures that only valid input data is provided to the billing function.

Correctness of Fares and Revenue Shares The correctness of fares and revenue shares
relies on the correctness of the PoIs and the correctness of the billing function. As discussed
above, the PoIs are correct. The billing function is implemented inside the enclaved back
office and is only executed after a majority of MSPs have initiated the billing process. The

12 We speak of re-identification in a technical sense. Ticket inspectors who are good at remembering faces
obviously will re-identify customers especially when they use the same service regularly
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voting ensures that the billing function is only executed when a majority of MSPs agree
that a billing period is over. As the back office is an SMR application, the enclaved back
office executes the billing function deterministically, i.e., the same input always produces
the same output. The enclaved back office is assumed to be crash stop faulty. Combined
with the attestation feature of the TEE that allows customers and peering MSPs to ensure
code integrity, this ensures that the enclaved back office is not compromised and that the
billing function is executed correctly. In conclusion, the total fare due for each customer
and the revenue shares are correct at all MSPs.

Availability The back office is operated as an SMR application. Thus, it is available as
long as 𝑛 − 𝑡 of MSPs operate their replicas.

3.5 Discussion on Approach and Its Generalization

With this section, we discuss the proposal, the features achieved by using an TEE-based
SMR application, limitations concerning scalability, and the impact of broken TEEs. We
discuss the applicability of our approach to similar use cases and conclude the chapter.

3.5.1 Achieved Privacy, Fairness, and Dependability

As discussed above (see Section 3.3), trajectories can be used to identify a person, and,
more crucially, also a person’s habits. Current obfuscation techniques do not suffice to
prevent this [Mir+23; Buc+24]. Instead, the idea of the presented protocol is to prevent that
trajectories are accessible. To this end, spatiotemporal information is not transmitted in
clear text and only stored and processed inside of an enclave. The MaaS ticketing use case,
however, requires that some aggregated information, i.e., total fares due, can be learnt by
an MSP. Related work [Jol+24], however, has shown that aggregated information may still
leak sensitive information. The possible leakage heavily depends on the parametrization
of the tariff system. If a sufficient amount of different trajectories lead to the same fare, the
leakage can be minimized [Fet24, Section 3.6]. Thus, the achieved privacy depends on the
actual tariff system with fare capping and subscription models increasing the privacy.

For business secrets, the possibilities for privacy-improving parametrization are more
limited. The presented protocol leaks to an MSP how many service it provided to which
MSP’s customers. Especially, when shares are compared over time, this may allow con-
clusions about customer movements. Moreover, if an MSP has only a small number of
services and service also change over time, this may allow conclusions on the rentability
of the services. Again, the parametrization of the tariff system and the internal structure of
the MSPs can help to mitigate this. The protocol does not leak any information about the
customers themselves or which services are used. The revenue distribution information is
an aggregation of an aggregation – a transfer amount is a sum of sums – and, thus, an
added layer of indirection that makes it harder to draw conclusions.
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Substantial fairness gains are achieved by the use of an SMR application layer: The protocol
ensures that all MSPs and customers are treated equally. The protocol does not allow for
any preferential treatment of customers or MSPs. However, the use of a permissioned
model is a clear caveat: a majority within the federation can push the federation to be
discriminatory. A permissionless model would allow for more inclusiveness but, if not
relying on second layer solutions, would not be able to provide the same level of privacy
and scalability. In conclusion, the choice between a permissionless and permissioned ledger
is a trade-off between fairness/inclusiveness and scalability/privacy with the permissioned
ledger being superior in all but the fairness/inclusiveness category.

The use of TEEs and SMR ensures the correct operation. Finally, the application is available
as long as amajority of replicas is operational and the request load can be handled. However,
SMR comes with a performance overhead which we will investigate in Chapter 5.

3.5.2 Extending Functionality

Our proposal only contains the basic functionality for a federated MaaS ticketing platform.
A “full” MaaS ticketing platform, however, would require additional functionality: The
analysis in Section 3.2 identified a clear demand for a solution that can be adapted (over
time) to the needs of the federation. The lack of support functions limits the usability and,
thus, the adoption of the system design.

Comprehensive analytics is relatively straightforward to achieve. The federation needs
to agree on a set of analytics functions (e.g., service utilization by date and time or by
location/station). Based on this agreement, the back office software can be extended. The
attestation feature of the TEE ensures that only the agreed functions are executed. A
similar case is the inclusion or exclusion of an MSP: As long as the federation supports a
change, it can be deployed. Recent related work [How+23] proposed an automated change
of the federation structure and even the federation rules.

The protocol depends on the customers to manage their secrets. However, in practice,
customers may lose their secrets, e.g., when they lose their smartphone. The protocol
can be extended to allow a customer to request a new authToken from their HP. The HP
can then allow the customer to create new secrets. Another very common issue is that
customers may forget to check-out. While, obviously, the protocol cannot prevent this, it
can support the MSPs in correcting location data (e.g., after the customer authorized the
MSP to do so). While such features give the HP the possibility to correct mistakes, they
also introduce a risk of abuse. Such trade-offs are not unique to the presented approach
but do also apply for other federated approaches, e.g., based on MPC.

Finally, the systems requires a way to recover crashed replicas to be practical as, eventually,
every hardware will reach its end of life [CL02; Dis21; How+23]. This feature depends
on the SMR framework used. For classic BFT SMR, checkpoints and state transfer can be
used to recover crashed replicas [CL02; Dis21]. We investigate the recovery of crashed
replicas in TEE-based SMR in Chapter 4.
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3.5.3 Protocol Optimizations

Scaling the proposed protocol to a wide area, e.g., the European Union, comes with two
rather obvious questions: Why should an MSP in Malmö replicate the data of travels in
Porto? And how can SMR scale to such a high number of involved MSPs? In summary, the
question is if the described approach can be optimized to fit the goal of Europe-wide MaaS
ticketing. Obviously, if all MSPs in a Europe-wide MaaS federation would run a replica,
the number of replicas would be too high. As discussed in the design space analysis (see
Section 3.3), sharding is a possible solution to this problem. Sharding allows to partition the
data and the replicas into smaller groups, i.e., shards, that can be replicated independently.
For the mobility use case primarily designed for regional services, a possible solution could
be to shard the data by region, e.g., by country or by state. This would limit the interaction
between shards to cases where customers travel between regions. However, this approach
has implications for the privacy goals (cross-region travels can be distinguished from
intra-region travels) and also complicates the billing process.

Consequently, the question is if immediate ordering of all requests is necessary or if a
delayed and batched ordering, e.g., only directly before billing, is sufficient. Ticketing
is a form of asset transfer: the customer pays for the right to use a mobility service.
Related work has shown that asset transfer does not require global consensus but only
agreement between the involved parties [Gue+19]. Limiting the agreement to the involved
parties comes with two downsides: (1) the billing subprotocol would be significantly more
complex and (2) the privacy goals would be impacted as for every trip the assets would
have to be transferred separately (Grundmann et al. [GZH22] follow such an approach).
Faut et al. [Fau+25] propose to minimize the number of consensus invocations. MSPs
are responsible for collecting all PoIs that accrue from the use of their mobility services.
Before billing, the PoIs of all MSPs are anonymously collected and ordered. A downside
of reduced consensus invocation is that analytics functions, e.g., for utilization analysis,
cannot be performed in real-time.

We conclude that a consensus-based approach can simplify the billing process and improve
the privacy at the cost of full replication. The number of consensus invocations is a trade-
off between utility and scalability. For real deployments, future work should consider to
use an approach that minimizes the number of consensus invocations while still allowing
for sufficient analytic capabilities. As this significantly reduces the load on the consensus
layer (e.g., one invocation every 20 minutes), it can also be used to scale the system to
a very large number of MSPs. The optimization of read-only operations (like analytics
functions) is not impacted by the number of consensus invocations but further reduces
the number of consensus invocations [BRB21].

3.5.4 On the Impact of Broken TEEs

TEEs are used as they promise efficient and secure federated applications. Related work and
the work at hand show that they can be used to build convincing SMR frameworks and SMR
applications. Such a design heavily relies on the correct operation of the TEE. However,
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for all major TEE implementations exist known attacks [Bul+18; Cer+20; Buh+21]. A
broken TEE assumption can have a significant impact. Typically, those attacks can be
mitigated by updating the TEE firmware but the risk of future vulnerabilities is not
negligible. On the application layer, a broken TEE leads to the leakage of all PoIs stored
and, thus, to the loss of all confidentiality guarantees. In terms of fairness, the customer
can use their request history to prove their correct behavior, i.e., that they checked-in
and checked-out correctly. Thus, while a broken TEE can lead to unfair treatment of
customers, such conflicts can be resolved. On the coordination layer, the TEE is used to
prevent equivocation. A broken TEE may lead to equivocation which can lead to a safety
violation: Different replicas transition to conflicting states which leads to different output
of application layer operations. Consequently, the goal for future work should be to use
TEEs to boost efficiency while limiting the impact of broken TEEs to liveness violations
or making the compromising of a single TEE not sufficient for an attack to be successful.
CoVault [Vit+25], a very recent approach, follows this goal and combines MPC with TEEs
to increase efficiency while limiting the impact of broken TEEs.

3.5.5 Characteristics and Related Use Cases

The MaaS ticketing use case has some characteristics – in terms of required features and in
terms of the deployment scenario – that allow to conclude a generalization of the proposed
protocol to other use cases. Those characteristics are:

Management of Shared Resources The SMR application is used to manage shared re-
sources: the customers share the mobility services, the MSPs share the back office and,
thus, the customers. The use of a distributed ledger allows for a shared view of the state
of the system and for an equal treatment of all customers and MSPs.

High Demand for PrivacyandUtility On the one hand, the SMR application handles highly
sensitive data. On the other hand, this data has to be of value for the MSPs to be accepted.
As the design space analysis (see Section 3.3) and the discussion above highlighted, this is
a clear conflict and requires a careful design of the SMR application.

Asset Transfer and Auditability The core of the MaaS ticketing use case is the transfer of
assets: the right to use the service is exchanged for a fare. The asset transfer characteristics
enforces a customer to participate in all state transitions concerning their state stored on
the ledger. As such, a customer is always able to know its current ledger state without
contacting the ledger and the customer’s request history can be used for conflict resolution
as a proof of correct behavior. We conclude that, while not strictly necessary for asset
transfer, a global consensus can be beneficial for utility and privacy.
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Regulated Environment and Involvement of Public Parties In Europe, public transporta-
tion is regarded as critical infrastructure [EC22] and, thus, heavily regulated (e.g., [Bun22;
Bun23]). As such, the operation of public transport typically involves (semi-)public parties,
e.g., transportation authorities, municipalities, governments, or publicly owned companies.
This setting significantly lowers the risk of a peering party to attack their TEE.

There are several endeavors by researchers and government agencies proposing or investi-
gating the use of ledger technology for use cases sharing the characteristics above:

• Central Bank Digital Currencies (CBDCs). CBDCs aim at replacing or comple-
menting cash transactions with a digital currency. CBDCs are issued or at least
regulated by a central bank. The flexibility of our proposal in terms of governance
decisions [Wüs+22, Section 4] as well as the achieved privacy guarantees [Eur24,
Section 5.3] make it a good candidate for a CBDC. Ledger technology is considered
as a possibility for the basic infrastructure of the digital euro [Eur23, Recital 64]. Mi-
crosoft promotes to use their Confidential Consortium Framework (CCF) [How+23],
a TEE-based, confidentiality-preserving distributed ledger, for CBDCs [WJP24].

• Smart Grids and EV Charging Federations. In smart grids, energy is traded for
money but, in contrast to classic power grids, the end users, i.e., private households or
organizations, are consumers and producers of energy at the same time (“prosumer”).
Such a system is inherently decentralized [Bun25]. With electric vehicles (EVs),
the consumption is no longer bound to buildings. Instead, customers want to buy
the energy wherever they need it – as it has been for combustion engine cars ever
since. The modern smart grid – that is (1) reactive to current energy demands and
(2) offers a seamless service for prosumers, consumers, and producers – can benefit
from privacy-preserving and efficient distributed ledgers [Bao+21; Mol+21; FCV25].

• (General Purpose) Statistics. Many states operate agencies that collect and analyze
data for statistical purposes. Eurostat pursues a project to use privacy-enhancing
technologies to improve the privacy in statistical data sharing and analytics [Ric24].

• Public Administration and E-Government. The public administration often
relies on data exchange between different agencies. A citizen’s or organization’s
data is only of value if it is up-to-date and correct. However, stored data must only
be accessible as long as an agency has the right (e.g., by law or consent) to access the
data. Fatz et al. [FHF20] show the value of confidentiality-preserving data sharing
on a distributed ledger at the example of tax documents. Other examples could be
any publicly managed registry (e.g., civil registries) or censuses.

• Healthcare and Medical Data Sharing. Medical doctors rely on a comprehensive
medical record to find the best treatment. However, due to strict regulations, sharing
between doctors is either not feasible or cumbersome. There is a vast amount
of work investigating the benefits of using distributed ledgers for healthcare data
management, access control, and sharing (e.g., [Hal+21; Ami+25]).
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3.5.6 Conclusion

With MaaS ticketing, we analyzed a use case of a federated application. We identified
privacy, utility, fairness, dependability, scalability, and interoperability as key objectives.
We found that the use of a distributed ledger is beneficial for the use case as it increases
the fault tolerance and allows for a shared view of the state of the system and for an equal
treatment of all customers and MSPs. The discussion and analysis of different architectural
approaches showed that when not relying on TEEs, either utility, privacy, or scalability is
sacrificed. We were able to show that the use of TEEs allows to achieve all three objectives
and comes with the necessary flexibility to adapt the system to the needs of the federation.
While the use of TEEs is not without risk, we conclude that the benefits outweigh the risks,
especially when (1) operating in a regulated environment with public parties involved and
(2) clients are in the position to prove their correct behavior at any time.
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Historically, SMR protocols rely on a leader to implement an efficient agreement process
[Lam98; CL02]. The introduction of a leader simplifies the fault-free agreement process in
which the leader is responsible for coordination of the same. There are, however, three
major drawbacks caused by the leader being a bottleneck (or single point of failure):

1. The leader is on the performance-critical path of every request that is to be processed
[Gra22]. The leader must maintain connections to all clients, handle every request,
and coordinate the ordering the requests. For the latter, the leader communicates
with every replica. Hence, the leader is the bottleneck for scalability and throughput
[Bie+12; VG19; NMR21].

2. When the leader becomes faulty, the system must initiate a so-called view change
to elect a new leader [CL02]. A view change is typically a complex and expensive
operation [Cra+18; Yin+19] that requires multiple communication rounds and the
participation of a majority of replicas. The view change is crucial for the system’s
safety and liveness; its correct implementation is, however, non-trivial [BSA14;
Din+17; WKM24]. Moreover, the additional overhead caused by the view change
protocol limits the resilience of the protocol even to simple faults like crashes or
omissions [Dan+22; Ant+23] and can, when operating close to the peak performance,
lead to a metastable failure from which the system is not able to recover [Hua+22;
LD24].

3. In leader-based SMR, timing information is used to identify faulty replicas (e.g.,
[CGR11, Section 2.6.4]). If a replica does not receive a response from the leader
within a certain timeframe, it assumes the leader is faulty and triggers a view change.
If this timeouts are too small, this can lead to unnecessary view changes. If timeouts
are too big, this can lead to prolonged periods of unresponsiveness and degraded
performance [Mil+16; Dan+22].

The focus of this chapter is to lay the theoretical foundations for asynchronous, leaderless,
hybrid fault-tolerant BFT SMR protocols. Asynchronous BFT SMR protocols do neither
rely on a leader nor on timing assumptions [Mil+16; Kei+21], thereby circumventing
the leader bottleneck and making them more independent from the network quality.
Related work using asynchronous, DAG-based atomic broadcast as the basis for SMR
has shown tremendous throughput improvements and competitive performance under
faults [Dan+22] which leads to the question whether the hybrid fault model can further
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improve performance and resilience. However, while it is known that any crash fault-
tolerant atomic broadcast protocol can be transformed into a BFT atomic broadcast protocol
with polynomial overhead [BCS22], a thorough investigation of the implications of using
asynchrony – positive and negative ones – when aiming at a practical, production-ready
protocol with minimal overhead is missing for two reasons:

1. We observe that the combination of asynchrony and TEEs makes setup, garbage
collection, and crash recovery impossible.

2. Existing hybrid fault-tolerant, asynchronous proposals [Fu+22; Xie+25] fail short in
providing a thorough analysis and proper solutions for the aforementioned issues.

This chapter aims to fill this gap by providing a theoretical foundation for asynchronous
BFT SMR protocols based on a TEE-based atomic broadcast protocol inspired by DAG-Rider
[Kei+21]. We contribute the following:

• Design, proof, and analysis of a communication-efficient, TEE-based reliable

broadcast protocol (Section 4.2).

• Design and analysis of two TEE-based common coin protocols (Section 4.3).

• Design, proof, and analysis of the TEE-Rider asynchronous atomic broadcast

(Section 4.4).

• The finding of three impossibility results (Section 4.5) stating that

– the setup of a TEE-based agreement primitive requires consensus on the enclave
identities and, thus, is impossible to achieve in partial synchrony with a fault
tolerance of 𝑛 < 3𝑡 when assuming Byzantine faults,

– backfilling-based reliable broadcast and garbage collection are incompatible
when operating in asynchrony, and

– TEE reinitialization, i.e., the establishment of a new enclave identity for a sending
process, in partially synchronous, TEE-based reliable broadcast requires active
participation of all processes.

• The NxBFT SMR framework based on TEE-Rider addressing scalability issues,
request duplication, setup, garbage collection, reconfiguration, and crash recovery
(Section 4.6).

We give an overview on related work in Section 4.1.

The proof of TEE-Rider was in parts published by Leinweber and Hartenstein [LH23]. The
PRNG-based common coin, the optimized broadcast, the impossibility result for recovery,
and NxBFT were previously published by Leinweber and Hartenstein [LH25]. The secret
sharing-based common coin stems from the master’s thesis by Marius Haller [Hal25].
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4.1 Background and Related Work

In this section, we discuss related work in the field of SMR that addresses the leader
bottleneck and work that uses the hybrid fault model to increase efficiency. In addition,
we provide a background and discuss related work on checkpoint protocols and garbage
collection, as well as recovery and reconfiguration.

4.1.1 Addressing the Leader Bottleneck

Typically, approaches aiming at increasing the efficiency in BFT SMR focus in some
way on reducing the impact of the leader bottleneck. To this end, approaches either (1)
optimistically reduce the communication, (2) enable pipelining techniques, (3) follow a
multi-leader approach allowing load balancing between leaders, or (4) circumvent a leader
at all. In this subsection, we discuss related work from each direction.

Speculative and Optimistic Protocols Speculative and optimistic protocols aim at reducing
the communication overhead on side of the leader to reduce the impact of the leader
bottleneck. In speculative protocols, the replicas execute and answer requests based on
the leader’s proposal without waiting for the agreement process to finish. It is the task
of the client to detect inconsistencies in the responses. If the client observes a mismatch,
it can re-issue the request to the replicas triggering the agreement process. In such a
case, replicas have to invalidate/roll back their state to the point before the speculative
execution. Prominent examples are Zyzzyva [Kot+07] and its hybrid fault-tolerant variant
MinZyzzyva [Ver+11]. The possibility to roll back is in contradiction with the atomic
broadcast’s agreement property (AB-Agreement, Definition 2.3), i.e., such approaches
do not implement an atomic broadcast between the replicas. As the client can detect
inconsistencies and have them corrected, safety from the client’s point of view is not
endangered. Instead of speculative execution, Aublin and Vogel [AV25] propose speculative
ordering: The leader executes validation and ordering of requests in parallel. In optimistic
protocols, e.g., ReBFT [DCK16], not all replicas participate in the agreement process to
minimize the communication overhead. Passive replicas are only activated in the case
of a view change. While reducing the communication overhead on side of the leader,
neither speculative nor optimistic protocols are leaderless and fault handling is at least as
expensive as in classic approaches.

Pipelining and Streamlined Protocols Another approach to increase performance is to
use pipelining. PBFT [CL02] already contained a pipelining mechanism: The leader does
not wait for the agreement process to finish before proposing the next request. The number
of requests that can be pipelined is limited by a sliding window. This approach was later
adopted by many protocols (e.g., MinBFT [Ver+11], JPaxos [SS12], 𝜇BFT [Agu+23], or
Bandle [Wan+24]) and can be combined with other techniques (e.g., alternative fault
models or speculation). Santos and Schiper [SS13] describe that pipelining can amplify
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overloading effects on side of the leader, leading to inverse performance effects. Antoniadis
et al. [Ant+18] show that the size of the pipeline can have a negative effect on the latency
observed by clients. Tendermint [Buc16] and the HotStuff family [Yin+19; MN23; Kan+25a;
Gup+25] promoted to simplify the leader regime in partially synchronous BFT SMR in
comparison to PBFT-inspired approaches. Their goal is to reduce the complexity of the view
change. In contrast to the static leader in PBFT which is only re-elected when faults are
assumed, the leader is exchanged after every decision (rotating leader). Moreover, Chained
HotStuff streamlines the protocol by reducing the number of message to a single generic
message and by arranging decisions in a four-step pipeline [Yin+19; CS20a; Dec+22a;
Gup+25]. As a result, there is one decision per network round trip and a linear number
of messages per round. Due to the missing implicit synchronization of the replicas that
PBFT achieves by all-to-all communication, rotating leader protocols need an orthogonal
consensus primitive to ensure that sufficient enough replicas are at the same time in the
same view. This protocol is called pacemaker [Yin+19; Lew22; MN22]. The rotating leader
approach, however, still requires a leader and faulty replicas have a significant impact on
the performance of the protocol [Ant+23; Ami+24].

Load Balancing and Multi-Leader Protocols Biely et al. [Bie+12] find that the necessary
client communication has a significant impact on the performance of the SMR protocol.
They investigate for the omission fault-tolerant Paxos protocol how the client requests can
be evenly distributed among the replicas to reduce the load on the leader. In BFT SMR, it is
not sufficient to receive a response from a single replica; the client has to collect responses
from a quorum of replicas to ensure safety. Depending on the implementation, these are
either 𝑡 + 1 or 2𝑡 + 1 consistent responses [BRB21; Bes+23]. If the client would not collect
responses from a quorum, it could be tricked by a faulty leader (e.g., the leader did not order
the request at all or it manipulated the response of the application layer). To allow equal
distribution of clients among the replicas, SBFT [Gol+19] andCART [HHM24] use threshold
signatures to reduce the number of responses the client has to collect. A valid aggregated
signature signals that sufficient replicas agree on the response. Troxy [Li+18] uses a TEE
instead of threshold signatures to achieve the same. In multi-leader protocols, multiple
agreement processes are executed in parallel allowing clients to select one of the possible
leaders to issue their requests. Kauri [NMR21] arranges the replicas of Chained HotStuff
in a tree topology to reduce the communication overhead of the leader to a constant and
to execute a constant number of agreement processes in parallel thereby increasing the
pipelining effect. ISS [SPV22] is a BFT generic wrapper for leader-based protocols that uses
request partitioning, a form of sharding, to instantiate multiple independent consensus
instances in parallel. Moreover, they explicitly address the issue of request duplication
in multi-leader protocols (inspired by Mir-BFT [Sta+22]). Hybster [BDK17] is a hybrid
fault-tolerant protocol that allows to execute multiple independent consensus instances in
parallel. For NxBFT, limit replicas to omission faults when interacting with clients. This
adaption allows the client to collect responses from a single replica. To handle omission
faults, a NxBFT client contacts a new replica after a timeout and repeats this until it
receives a response from a replica. In fault-free cases, this allows every replica to propose a
disjunct block of requests thereby increasing throughput and reducing latency. We discuss
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for which uses cases this decision is reasonable and how NxBFT could incorporate CART
or Troxy to maintain the assumption of Byzantine faults.

Leaderless Protocols Leaderless, also known as egalitarian [MAK13], consensus protocols
do not rely on a leader. They allow every replica to propose requests without the need to
task a leader with the ordering, hence eliminating the leader bottleneck and having the
potential to significantly improve throughput in comparison to the previously discussed
techniques [Dan+22]. This, however, comes at the cost of all-to-all communication, i.e.,
every replica has to send and receive messages from/to every other replica and, thus, at
least a communication complexity of 𝑂 (𝑛2) [Zha+24a]. Modern BFT leaderless protocols
can be split in DAG-based/inspired (e.g., Hashgraph [BL20], the DAG-Rider family [Kei+21],
or Autobahn [Gir+24]) and “non-DAG” protocols (e.g., DBFT [Cra+18], ISOS [ED21], or
the HoneyBadgerBFT family [Mil+16]). Both categories can further be split in partially
synchronous and asynchronous protocols. As a rule of thumb, DAG-based protocols
achieve better throughput and scalability due to the inherent parallel request pipelining
[Zha+24a]. In a single round, DAG-based protocols typically exchange messages that
disseminate 𝑛 blocks in parallel. Typically, partially synchronous DAG protocols have
lower latencies but are less resilient to crash faults or degraded network quality than
asynchronous protocols [Spi+22; Gir+24; Wan+24; Ton+25]. Concurrent works lower this
resilience gap significantly [Aru+25; Bab+25; Ton+25]. Lewis-Pye et al. [LNS25] provide a
theoretical model to compare leader-based and leaderless approaches in terms of latency
and throughput finding that DAG-based protocols achieve better throughput (by a factor
of 𝑛) at the cost of latency.

In summary, we consider the empirical results of the related work on DAG-based pro-
tocols to be groundbreaking and therefore rely on DAG-based protocols as the basis for
researching efficient and resilient hybrid fault-tolerant SMR for the following reasons:

1. The DAG-based approach promises the best throughput and scalability. In contrast
to DAG-Rider, Hashgraph [BL20] builds the graph following a non-deterministic rule
making consensus derivation more complex and denying garbage collection [Spi+22].
Moreover, Hashgraph has worst-case exponential time complexity [SBK22].

2. Missing timing assumptions make the protocols more resilient.

3. Finally, relatedwork [Spi+22; Aru+25; Bab+25] has shown that efficient asynchronous
protocols are a perfect base to be later extended to the partially synchronous model
for improved latencies.

The work at hand delineates itself from the existing leaderless protocols as follows:

• We prove the omission fault tolerance of the DAG-Rider protocol with a quorum size
of ⌊𝑛2 ⌋ + 1 and otherwise unchanged assumptions.

• We instantiate DAG-Rider with a TEE-based common coin and a TEE-based reliable
broadcast in the hybrid fault model with a fault tolerance of 𝑛 > 2𝑡 .
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• We adapt Narwahl’s backfilling approach [Dan+22] for hybrid faults to improve the
constant communication overhead (common case 𝑛2 for TEE-Rider, 3𝑛2 for Narwhal;
worst case 3𝑛2 for TEE-Rider, 5𝑛2 for Narwhal).

• We investigate ways to better exploit parallelism in DAG-based protocols and propose
limiting replicas to omission faults when communicating with clients. We discuss
under which circumstances this assumption is not compromising security.

4.1.2 The Hybrid Fault Model: Limiting Potential Faults

Adapting the fault model such that a potential attacker is assumed to have less possibilities
for malicious behavior typically comes with less complex protocols and, hence, better
performance. There are numerous proposals for benign fault-tolerant SMR protocols (e.g.,
[MAK13; Cor+13; OO14; Taf+20; Wan+24])1. Those protocols assume that the replicas are
non-malicious but may crash or omit messages (e.g., due to network partitions). Clients,
however, may behave Byzantine. Typically, Byzantine clients can be handled without
additional communication (e.g., by using cryptography and stateful protocols) which is
not possible for Byzantine replicas. If now a replica shows a Byzantine fault, e.g., caused
by a compromised host system, a bug, or a misconfiguration, safety and liveness of the
protocol are at risk [Agu+23]. We argue that in use cases as categorized in Chapter 3,
i.e., where the system is not operated by a single entity, the risk that the replicas are not
operated with the same necessary diligence by everyone is high; thus, amplifying the risk
of (unintended) Byzantine faults.

If Byzantine faults still should be tolerated, the hybrid fault model (see Section 2.5) is a
valid choice to reduce the complexity of the protocol. Ben-David et al. [BCS22] extend the
seminal work by Clement et al. [Cle+12] and show that any crash fault-tolerant atomic
broadcast protocol can be compiled into a BFT atomic broadcast protocol with polynomial
overhead when non-equivocation and transferable authentication can be assumed. In
general, however, the compiler may produce non-ideal results in terms of overhead: The
compiler reliably broadcasts every message and every message is processed by the trusted
subsystem. As an example, if an omission fault-tolerant protocol is used as base protocol,
at least the additional reliable broadcast added by the compiler is not required.

Independent from the generic compiler approach, there exists a variety of proposals that
transform a BFT agreement protocol to the hybrid fault model by adding just as much
functionality to the trusted subsystem as required. Prominent examples are MinBFT
[Ver+11] and FastBFT [Liu+19] for PBFT and Damysus [Dec+22a], OneShot [Dec+24], and
Achilles [Niu+25] for HotStuff. Recent work [Zha+24c] investigates leaderless, hybrid
fault-tolerant consensus in partial synchrony. All proposals share a signature service that
combines a digital signature with a monotonic counter and are designed for the partially
synchronous model. This idea goes back to TrInc [Lev+09] and MinBFT’s USIG (Unique

1 Please note that in publications authors often speak of the crash fault model without specifying the fault
model in more detail.
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Sequential Identifier Generator) [Ver+11]. Such a device can be used to implement a BFT
reliable broadcast – a crucial building block for consensus primitives in general and atomic
broadcast in particular (see Section 2.6) – with a fault tolerance of 𝑛 > 𝑡 (see Section 4.2).
Bessani et al. [Bes+23] discuss such classic hybrid fault-tolerant approaches and point out
that it is important for TEE-based SMR to ensure the agreement property of the atomic
broadcast is correctly implemented; otherwise, clients may loose their liveness guarantee.
Moreover, they point out that concurrent/parallel ordering of a multitude of proposals,
e.g., as in leaderless protocols, is possible and required for accelerated performance.

Xu et al. [Xu+18] and Amoussou-Guenou et al. [AHP25] propose an asynchronous, hybrid
fault-tolerant (binary) consensus protocol that relies on a simple signature service with a
monotonic counter as described above. Both have non-constant expected time complexity
and use local randomness to break possible ties, but Mostéfaoui et al. [MPW24] showed
that for 𝑛 < 3𝑡 a common coin achieves better results. Moreover, a direct implementation
of atomic broadcast instead of a composition of consensus instances may be more efficient
[Mil+16; Kei+21]. To the best of our knowledge, Teegraph [Fu+22] and Fides [Xie+25] are
the only proposals for asynchronous, TEE-based atomic broadcast. Since Teegraph builds
upon Hashgraph, it inherits the problems of Hashgraph, i.e., the lack of a deterministic
construction rule and possible exponential time complexity (see above). Fides is concur-
rent work to this dissertation and proposes a transformation of DAG-Rider by using a
TEE-based reliable broadcast, a TEE-based common coin, and a TEE-based transaction
disclosure. The TEE-based common coin is similar to one of the two we propose and uses
a PRNG inside the enclave to minimize the cryptographic overhead of otherwise required
threshold cryptography. To the best of our knowledge, Fides is the only work proposing
an asynchronous, TEE-based common coin. The transaction disclosure mechanism keeps
requests confidential until they are to be executed and aims at reducing the probability
for censorship. This mechanism is related to HoneyBadgerBFT’s dissemination technique
[Mil+16] and uses a TEE to minimize the cryptographic overhead. In contrast to Fides,
we show that the reliable broadcast can be implemented with a 𝑂 (𝑛2) communication
complexity. Finally, we show that Fides’ proposal to reduce the wave length of DAG-Rider
breaks the common core property required for liveness, regardless of the adoption of
omission, hybrid, or Byzantine faults.

Note that due to the impossibility of strong validity consensus with 𝑛 < 3𝑡 (see Section 2.6),
not every BFT atomic broadcast can be transformed using non-equivocation and transfer-
able authentication. A relevant example is the HoneyBadgerBFT protocol [Mil+16] which
relies on a binary strong validity consensus. In contrast to most proposals, CCF [How+23]
deploys the full SMR stack, based on Raft [OO14], to the enclave. The CCF approach
enforces more than only non-equivocation and transferable authentication: Instead of
the untrusted host system, the enclave itself produces the consensus messages. Hence,
there are no malicious parties participating in the consensus protocol. This pragmatic
fault model compiler would allow to compile protocols like HoneyBadgerBFT with 𝑛 < 3𝑡
as there are only benign faults for which there is no need for different validity notions
(see Section 2.6). The downside is that the enclave has to process all messages limiting the
performance (see Sections 2.5 and 3.3) in comparison to approaches reducing the use of
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the enclave. We deploy only as much functionality to the enclave as required to implement
hybrid fault-tolerant reliable broadcast and common coin.

In summary, the work at hand delineates itself from existing work in the following ways:

• For TEE-Rider, we design, similar to Fides [Xie+25], a small TEE to implement a
hybrid fault-tolerant atomic broadcast protocol based on DAG-Rider. We improve
the communication complexity of the atomic broadcast to 𝑂 (𝑛2) (𝑂 (𝑛3) for Fides).

• We show that, contrary to the intuitive believe, the hybrid fault model does not allow
to shorten the wave length in DAG-Rider-like protocols.

• We propose two TEE-based common coins, one based on a PRNG and one based on
secret sharing, that can be used in the hybrid fault model and compare the impact of
a broken TEE on both approaches.

• We propose the first mostly asynchronous, hybrid fault-tolerant SMR protocol and
investigate the implications of the combination of asynchrony and TEEs on setup,
garbage collection, and crash recovery.

4.1.3 Checkpoints, State Transfer, and Garbage Collection

Replicas cannot store the entire history of the ledger indefinitely; storage is limited [Dis21].
If replicas would delete without coordination, at least liveness properties and the success
of recovery and backfilling mechanisms would be at non-negligible risk2. To this end,
practical SMR systems rely on the combination of checkpoints and garbage collection to
limit the required storage. The checkpoint protocol proposed for PBFT [CL02], which
remains highly influential to this day [Dis21], works as follows: A checkpoint is achieved
in a voting process that operates independently from the protocol ordering client requests.
Whenever a replica reaches a checkpoint, i.e., it successfully committed and executed a
pre-defined number of requests, it broadcasts a checkpoint message to the other replicas.
The checkpoint message contains information to identify the checkpoint (e.g., a sequence
and view number) and the current state of the replicated application in form of a digest. As
soon as sufficient consistent checkpoint messages, i.e., 2𝑡 + 1, are received, the checkpoint
is stable. A stable checkpoint is a proof that at least 𝑡 +1 correct replicas had the same state
when reaching the checkpoint. Correct replicas can delete all data belonging to requests
older than the stable checkpoint.

Distler [Dis21, Section 7] points out that garbage collection must not violate SMR liveness:
Faulty replicas can help to stabilize a checkpoint but commit omission faults towards
clients, e.g., by not sending responses. Assume a client request is part of a garbage collected
decision but the client did not receive a quorum of responses yet. If now a correct replica
has fallen behind, e.g., due to the partially synchronous or asynchronous channel, and
other correct replicas already deleted the messages that led to the request being ordered,

2 Please note that a synchrony assumption is also a form of coordination.
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the delayed replica cannot perform all computations that led to the response anymore.
To close the gap to the other correct replicas, the replica must initiate a state transfer to
apply the missing requests. In a state transfer protocol, a replica receives the state of a
stable checkpoint allowing to safely fast forward the receiving replica’s local state. Due
to the garbage collection, the state transfer typically does not transfer all requests in the
order they have to be applied. Instead, the end result after all requests of a checkpoint
interval have been applied is transferred. In particular, the replica cannot execute the
request and, thus, cannot send a response to the client. To circumvent this problem, the
state transfer must contain all responses sent to clients such that replicas that received
a state transfer can send responses to clients if required to ensure liveness. MinBFT
[Ver+11] adopts the mechanism of PBFT with an altered quorum size of 𝑡 + 1. However,
an explanation how expected counter values – which are required to validate USIG-signed
messages – are updated during a state transfer is missing. Stathakopoulou et al. [SPV22]
implement a wrapper around PBFT, HotStuff, and Raft that provides checkpoint-based
garbage collection. Hence, the checkpoint-based garbage collection is also applicable to
the rotating leader paradigm.

With asynchrony, the garbage collection problem is more difficult to solve than with partial
synchrony. This is especially true for DAG-based protocols [Dan+22; Spi+22]. Spiegelman
et al. [Spi+22] find that garbage collection in asynchronous, DAG-based protocols in
conflict with the validity property of atomic broadcast (AB-Validity, Definition 2.3). A
replica must continue the protocol whenever it receives 𝑛 − 𝑡 messages for the current
protocol stage. From those 𝑛 − 𝑡 messages, 𝑡 messages may be from faulty replicas, and,
in the worst case, 𝑡 messages of correct replicas may still be missing. Consequently, a
replica can only be sure that it has received all messages from other correct replicas
when it received 𝑛 messages. In all other cases, the replica cannot distinguish whether
the missing messages are from (very) slow correct replicas or from faulty ones [Spi+22,
Section 7]. Danezis et al. [Dan+22] and Spiegelman et al. [Spi+22] propose to delete parts
of the DAG that are already ordered. If now old parts of the DAG are deleted, the replica
cannot make sense of messages from correct replicas that were heavily delayed. While the
DAG structure ensures that AB-Agreement is not violated, AB-Validity is violated as the
message must be dropped. The only known workaround is for replicas that observe that
their proposal for a garbage-collected part of the DAG was not yet ordered to re-issue their
proposal. Raikwar et al. [RGV25] claim that garbage collection is a current research gap in
DAG-based protocols. They propose to investigate checkpoint-based garbage collection
for DAG-based protocols as well.

TEE-Rider uses a backfilling-based reliable broadcast to achieve 𝑂 (𝑛2) communication
complexity. We show that the backfilling is in conflict with the garbage collection as
proposed by Danezis et al. A single correct replica may be the only correct replica that
received a certain message and, thus, the only one that can backfill the message for others.
If this replica deletes the message after it used it in a decision, the replica cannot backfill the
message for other replicas which breaks AB-Agreement and, thus, SMR safety of NxBFT.
We propose a checkpoint-based garbage collection with state transfer to ensure that SMR
safety is not violated. Optimizations to minimize the communication overhead of the state
transfer are possible (see, e.g., [CL02; Dis21]) but are out of scope of this dissertation.
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4.1.4 Recovery and Reconfiguration

For practical systems, recovery and reconfiguration mechanisms are crucial [Bes+13;
BSA14; Dis21]. Eventually, every system will experience faults, e.g., due to hardware
failures. If faulty replicas are not recovered, the system may not be able to provide liveness
guarantees anymore. Moreover, recovery mechanism are required to be able to perform
maintenance work, e.g., for software updates or hardware replacements. Reconfiguration
is tightly coupled with recovery as it allows to change the set of replicas, i.e., to add or
remove replicas. A new replica must be able to synchronize with the current state of the
system to be able to participate as a correct replica. Administrative commands, e.g., for
recovery or reconfiguration, are typically special client operations that are ordered like
any other request. State synchronization of crashed or new replicas is achieved by state
transfer that is also used to ensure that garbage collection does not violate liveness (see
above) [CL02; Dis21]. Replicas in need of state transfer issue a recovery request to other
replicas to send their current state. When now the recovery request is ordered, the stable
checkpoint following the ordered recovery request is the recovery checkpoint that will
be transferred to the recovering replica. The recovering replica can then be sure that any
consensus message following the recovery checkpoint (1) can be handled by the recovering
replica and (2) is consistent with the state it received. We are not aware of any work that
investigates recovery of DAG-based protocols.

There are several works that outline that rollbacks, i.e., the TEE is started on a previously
sealed, potentially outdated state, are a significant problem for TEE-based SMR [Mat+17;
Bra+19; Niu+22; Ang+23; KCG25; Niu+25; Wil+25]. To circumvent this problem, either (1)
very slow performing rollback prevention mechanisms have to be deployed or (2) for parts
of the TEE enforcing non-equivocation there must be no possibility to seal state making
replay of old state impossible in the first place. Because of the performance impact, the
first solution is typically not feasible in practice [Niu+25]. The second solution, however,
makes TEEs lose all their state when being restarted, e.g., after a power outage, a crash,
or simple maintenance work requiring a reboot. Recovery must now bring such parts of
the TEE back into a useful state; otherwise, the replica is not able to participate in the
consensus protocol anymore. As the TEE prevents equivocation, recovery can, if not done
carefully, enable equivocation and, thus, become an attack vector.

Messadi et al. [Mes+25] investigate recovery of replicated confidential VMs (see Section 2.5);
they do not support a fault tolerance of 𝑛 ≤ 3𝑡 and, thus, cannot be used for hybrid fault-
tolerant SMR. To the best of our knowledge, CCF [How+23] and Achilles [Niu+25] are the
only TEE-based SMR protocols with a fault tolerance of 𝑛 > 2𝑡 that support recovery; both
protocols operate in partial synchrony. The recovery in CCF is rather straightforward:
Whenever a replica crashes, it is removed from the set of replicas and a new replica is
added, i.e., a reconfiguration step is performed. This new replica receives a state transfer
from the incumbent leader. As the complete SMR logic is implemented in the TEE, this
single state transfer is sufficient to bring the new replica into a consistent state. Achilles,
in contrast, does not support reconfiguration. The authors argue that reconfiguration can
lead crashed nodes to contact replicas that are not part of the current replica set because
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said set may have changed while the replica was down. A recovering node in Achilles
sends a recovery request to the replicas and waits for a quorum of consistent recovery
replies which are used to re-initialize the TEE.

We will show that the recovery of TEE-Rider is more complex than in CCF and Achilles.
This is due to the asynchronous nature of TEE-Rider and the fact that the only interactive
coordination mechanism is the TEE-based reliable broadcast. In particular, we show that
Achilles-like recovery breaks TEE-Rider’s properties if the quorum size is smaller than 𝑛.
The impossibility result does not apply to Achilles because in Achilles, the enclaves manage
a common counter that is equal at every replicas’ enclave. Similar to CCF, NxBFT replicas
recover through reconfiguration to circumvent the impossibility. This reconfiguration
builds upon the checkpoint-based state transfer mechanism that is also used for garbage
collection.

4.2 TEE-Based Reliable Broadcast

As outlined in Section 2.6, reliable broadcast (Definition 2.2) is a crucial building block
for atomic broadcast and, thus, for state machine replication. Typical reliable broadcast
implementations rely on echoing (single echo for hybrid faults, double echo for Byzantine
faults) to ensure RB-Agreement. In the common case, i.e., when the sender is not faulty,
this echoing step induces significant overhead. Danezis et al. [Dan+22] observed that,
when having 𝑛 senders, a causal relationship between broadcast messages can be used to
leverage backfilling to implement a reliable broadcast. Whenever a message in the causal
history is missing, a process can request the missing message from the peering processes.
As a result, the echoing step can be avoided and the communication complexity of the
reliable broadcast is reduced from 𝑂 (𝑛2) to 𝑂 (𝑛) for single process and from 𝑂 (𝑛3) to
𝑂 (𝑛2) for the distributed system respectively. In this section, we use TEEs to improve on
the result by Danezis et al. [Dan+22].

The section is structured as follows. First, we give a brief overview of the history of reliable
broadcasts and the seminal work by Correia et al. [CVL10] and Veronese et al. [Ver+11] that
introduced hybrid fault-tolerant reliable broadcast using the Unique Sequential Identifier
Generator (USIG). Then, we present the USIG-based hybrid fault-tolerant causal order
broadcast protocol, show its correctness, and compare it to the original DAG-Rider protocol
and the Narwhal protocol. The protocol was, except the formal proofs, previously published
by Leinweber and Hartenstein [LH25].

4.2.1 Background

To date, Bracha’s reliable broadcast [Bra87] is the most influential, asynchronous reliable
broadcast protocol. The protocol is divided in three phases: init, echo, and ready. In the
init phase, the sending process broadcasts its message to all other processes. The echo
phase ensures that all correct processes receive a message. The ready phase ensures that
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all correct processes deliver the same message. A process will continue to the next phase
if there was a quorum in the previous phase. Bracha’s reliable broadcast requires 𝑛 > 3𝑡
processes to tolerate 𝑡 Byzantine faults. Digital signatures do not suffice to increase the
fault tolerance (see Section 2.6). Due to the echo phase, Bracha’s reliable broadcast has
a communication complexity of 𝑂 ( |𝑚 |𝑛2) bit for a message 𝑚 of size |𝑚 |. Cachin and
Tessaro [CT05] showed that erasure codes can be used to decrease the communication
complexity to 𝑂 ( |𝑚 |𝑛 + 𝑐𝑛2 log𝑛) bits where 𝑐 is a small constant referring to the size of
the erasure code. Narwhal [Dan+22], a follow-up to DAG-Rider, uses backfilling to achieve
linear communication complexity in the common case: A sender broadcasts a message
𝑚 to all other processes. Every process that receives the message stores it and sends an
acknowledgement in form of a signature to the sender. When the sender received 𝑛 − 𝑡
acknowledgements, the sender can accumulate the signatures to a certificate which is then
broadcast to all other processes. The certificate is a proof that the previous message was
received by at least 𝑡 + 1 correct replicas, and replicas that did not receive the message can
receive it from said 𝑡 + 1 replicas. In the common case, the communication complexity
is |𝑚 |𝑛 + |𝜎 |𝑛 + |Σ|𝑛 bits where |𝜎 | is the size of a signature and |Σ| is the size of the
certificate. In the case of a faulty sender, one more round of communication is added,
yielding a communication complexity of roughly 5𝑛 protocol messages in the worst case.
We observe that, when using a TEE, the construction of certificates can be omitted and the
communication complexity is reduced to |𝑚 |𝑛 bits in the common case and 3𝑛 protocol
messages in the worst case. The reason is that the USIG signature suffices to prove that
any correct replica will accept the message if it is received. In Narwhal, however, the
certificate is required to prove that at least 𝑡 + 1 correct replicas received the exact same
message. In summary, the Narwhal certificate mechanism certifies a successful voting step
which is not required when using a USIG.

Correia et al. [CVL10] were the first to show that reliable broadcast can be implemented
in the hybrid fault model with a fault tolerance of 𝑛 > 𝑡 . Veronese et al. [Ver+11] describe
the Unique Sequential Identifier Generator (USIG) that can be used to practically achieve
the result by Correia et al. The idea is rather simple: the sender is equipped with the USIG
that assigns every message with a unique, increment-only counter (or identifier) and a
digital signature. The sender broadcasts the message together with the counter and the
signature. The combination of the counter and the signature is a proof that the message is
the only message with this counter, i.e., non-equivocation is guaranteed. Consequently, a
receiver can directly deliver a message after it received the message together with a valid
signature for a counter value for the first time. The result is a single echo reliable broadcast
with communication complexity 𝑂 (𝑛2) but one phase, i.e., half a network round trip, less
than Bracha’s reliable broadcast.

Algorithm 1 shows the USIG module of the sender. It is initialized with an asymmetric
key pair (sk, pk) and a counter 𝑐 . The sender can sign a message𝑚 by calling the SIGN(𝑚)
function. The function computes a signature 𝜎 for the pair (𝑐,𝑚) using the secret key
sk and the current counter 𝑐 . The counter is then incremented. To prevent equivocation
through rollbacks, the module must not support sealing and re-import of its state.
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Algorithm 1 Unique Sequential Identifier Generator (USIG) [Ver+11]
1: state (sk, pk) : asymmetric key pair
2: state 𝑐 : N, initialized with 1
3: function sign(𝑚)
4: 𝜎 ← sgn(sk, (𝑐,𝑚))
5: 𝑐 ← 𝑐 + 1
6: return (𝑐 − 1, 𝜎)

Algorithm 2 USIG-Based FIFO Reliable Broadcast for Process 𝑝𝑖 [CVL10; Ver+11]
1: state 𝑝𝑠 : N identifier of sender 𝑝𝑠
2: state pk𝑠 : public key of sender’s USIG
3: state 𝑃 : set of all processes
4: state expectedCounter : N, initialized with 1
5: state received : addressable priority queue of messages, initialized empty
6: state usig : USIG instance // Only for sender 𝑝𝑠
7: // The function r_broadcast is only available for the sender 𝑝𝑠
8: function r_broadcast(m)
9: (𝑐, 𝜎) ← usig.sign(𝑚)
10: send ⟨BCAST, 𝑐,𝑚, 𝜎⟩ to 𝑝𝑠
11: upon BCAST(𝑝𝑘 , 𝑐,𝑚, 𝜎)
12: if ¬vfy(pk𝑠, (𝑐,𝑚), 𝜎) then
13: abort

14: if 𝑐 < expectedCounter ∨ received .containsKey(𝑐) then
15: abort

16: for all 𝑝 𝑗 ∈ 𝑃 \ {𝑝𝑠, 𝑝𝑘 , 𝑝𝑖} do
17: send ⟨BCAST, 𝑐,𝑚, 𝜎⟩ to 𝑝 𝑗

18: received .insert(𝑐,𝑚)
19: while ¬received .isEmpty() do
20: (𝑐′,𝑚′) ← received .peek()
21: if 𝑐′ ≠ expectedCounter then
22: abort

23: expectedCounter ← expectedCounter + 1
24: (𝑐,𝑚) ← received .pop()
25: r_deliver (𝑐,𝑚)

Algorithm 2 shows the USIG-based single echo reliable broadcast protocol. Only the
sender is equipped with a USIG. Formally, it implements a first-in first-out (FIFO) reliable
broadcast [CGR11, Module 3.8] to prevent indefinite memory growth. A naive, non-FIFO
solution would rely on an ever-growing set of already delivered counters. The sender 𝑝𝑠
has a function R_BROADCAST(𝑚) that invokes the sender’s USIG to create a signature over𝑚
and the USIG’s current counter value. The function then sends the BCAST message to 𝑝𝑠
itself triggering the BCAST message handler. The BCAST handler is triggered whenever a
process 𝑝𝑖 receives a message. The handler first verifies that the message is validly signed
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and that a message for the counter value 𝑐 was not already received. The message would
have been already received if the current expected counter value is higher than 𝑐 or if there
is a message in the priority queue of received but not yet delivered messages (received)
that has the counter value 𝑐 as its sorting key. If the message is valid, it is broadcast to all
but the sender 𝑝𝑠 , the relayer of the message 𝑝𝑘 , and the current process 𝑝𝑖 . Note that it
may 𝑝𝑠 = 𝑝𝑘 = 𝑝𝑖 . In a second step, the messages are delivered in the order of their counter
values using the received priority queue; gaps in the counter values are not allowed.

The correctness of the protocol crucially relies on the USIG and is easy to show: Due to
the echoing of messages (ll. 16–17), the protocol ensures that, if a correct process receives
a message, the same message is received by every correct process. As the USIG enforces
non-equivocation for assigned counters, RB-Agreement follows. If the sender is correct,
it will send the message to itself (l. 10) and, subsequently, forward the message to all
processes. Moreover, a correct sender will send all messages it created a USIG signature
for. If the sender is faulty and no correct process receives the message𝑚 or a message with
a lower counter from the same sender, no correct process will deliver𝑚. By the argument
for RB-Agreement, RB-Validity follows as well. RB-Integrity is ensured by the USIG and
the conditional aborts in ll. 12–15.

4.2.2 USIG-Based Causal Order Reliable Broadcast Protocol

We build upon the USIG-based reliable broadcast to propose a USIG-based causal order
reliable broadcast [CGR11, Module 3.9]. The causal order of messages allows to achieve
linear communication complexity in the common case. The idea of the protocol is relatively
simple. When a process broadcasts a message, it includes the history of already received
messages. Correct processes do not echo messages by default. Instead, if an ancestor is
unknown, i.e., it was neither already delivered nor received, a request for the missing
message is sent to all processes. Due to asynchrony, correct processes cache message
requests if they cannot answer them directly: It is possible that the corresponding message
arrives delayed and the process receiving the message request is the only correct process
that receives the requested message due to faults by the sender.

The protocol is listed in Algorithm 3. When a process aims to broadcast a message, it
invokes the USIG to receive a counter and a signature for the message (l. 9). The process
then creates a history array that contains the expected counters of all processes (ll. 12–14).
If no message was received from a process yet, i.e., the expected counter is 1, the history
entry is set to ⊥. The process then sends the message to all processes (l. 15). When a
process receives a broadcast message, it first verifies the signature (l. 17) and that a message
for the counter was not yet received (l. 18). If the message is valid, it is added to the
received messages and, to prevent indefinite growth of set of requested messages, removed
from the set of requested messages (l. 19). The process then checks if it has received
requests for the message which are answered by sending the message to the requesting
processes (ll. 20–21). Then, the process iterates over all processes and checks if it can
deliver messages from the received messages (ll. 22–36). For a message to be delivered, it
must be the next expected counter for the process (l. 25), and the ancestry of the message
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Algorithm 3 USIG-Based Causal Order Reliable Broadcast for Process 𝑝𝑖
1: state 𝑃 : set of all processes
2: state PK : array of public keys
3: state expectedCounters : array of N, initialized with 1
4: state received : array of addressable priority queues, initialized empty
5: state delivered : array of array of messages, initialized empty
6: state requested : set of tuples (N,N), initialized empty
7: state receivedRequests : map of key (N,N) to list of processes, initialized empty
8: state usig : USIG instance
9: function r_broadcast(m)
10: (𝑐, 𝜎) ← usig.sign(𝑚)
11: history ← array of size 𝑛 initialized with ⊥
12: for all 𝑝 𝑗 ∈ 𝑃 do

13: if expectedCounters[𝑝 𝑗 ] > 1 then
14: history [𝑝 𝑗 ] ← expectedCounters[𝑝 𝑗 ] − 1
15: for all 𝑝 𝑗 ∈ 𝑃 do send ⟨BCAST, 𝑝𝑖, 𝑐,𝑚, 𝜎, history⟩ to 𝑝 𝑗

16: upon BCAST(𝑝𝑘 , 𝑝𝑠, 𝑐,𝑚, 𝜎, history)
17: if ¬vfy(PK [𝑝𝑠], (𝑐,𝑚), 𝜎) then abort

18: if 𝑐 < expectedCounters[𝑝𝑠] ∨ received [𝑝𝑠] .containsKey(𝑐) then abort

19: received [𝑝𝑠] .insert(𝑐, (𝑚,𝜎, history)); requested .remove((𝑝𝑠, 𝑐))
20: for all 𝑝 𝑗 ∈ receivedRequests.remove((𝑝𝑠, 𝑐)) do
21: send ⟨BCAST, 𝑝𝑠, 𝑐,𝑚, 𝜎, history⟩ to 𝑝 𝑗

22: for all 𝑝 𝑗 ∈ 𝑃 do

23: while ¬received [𝑝 𝑗 ] .isEmpty() do
24: (𝑐′, (𝑚′, 𝜎′, history)) ← received [𝑝 𝑗 ] .peek()
25: if 𝑐′ ≠ expectedCounters[𝑝 𝑗 ] then continue

26: ancestryComplete← True
27: for all (𝑝ℎ, ℎ) ∈ history do

28: if ℎ ≥ expectedCounters[𝑝ℎ] then
29: ancestryComplete← False
30: if (𝑝ℎ, ℎ) ∉ requested then

31: for all 𝑝 𝑗 ∈ 𝑃 do send ⟨REQ, 𝑝ℎ, ℎ⟩ to 𝑝 𝑗

32: requested .add((𝑝ℎ, ℎ))
33: if ¬ancestryComplete then continue

34: expectedCounters[𝑝 𝑗 ] ← expectedCounters[𝑝 𝑗 ] + 1
35: (𝑐,𝑚, 𝜎, history) ← received [𝑝 𝑗 ] .pop()
36: r_deliver (𝑐,𝑚); delivered [𝑝 𝑗 ] [𝑐] ← (𝑚,𝜎, history)
37: upon REQ(𝑝𝑘 , 𝑝𝑠, 𝑐)
38: 𝑚 ← ⊥;𝜎 ← ⊥
39: if delivered [𝑝𝑠] [𝑐] ≠ ⊥ then (𝑚,𝜎, history) ← delivered [𝑝𝑠] [𝑐]
40: if 𝑚 = ⊥ ∧ received [𝑝𝑠] .containsKey(𝑐) then
41: (𝑚,𝜎, history) ← received [𝑝𝑠] .get(𝑐)
42: if 𝑚 ≠ ⊥ then send ⟨BCAST, 𝑝𝑠, 𝑐,𝑚, 𝜎, history⟩ to 𝑝𝑘
43: else receivedRequests[(𝑝𝑠, 𝑐)] .add(𝑝𝑘)
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must be complete, i.e., all expected ancestors must be known (ll. 26–33). If the ancestry
is not complete, the process checks if it already requested the missing ancestor (l. 30),
and, if not, sends a request to all processes (l. 31). If the ancestry is complete, the process
increments its expected counter (l. 34), pops the message from the received messages (l.
37), and delivers the message (l. 36). When a process receives a request for a message, it
checks if it has the message in its delivered (l. 39) or received messages (ll. 40–41). If it has
the message, it sends the message to the requesting process (l. 42); otherwise it adds the
requesting process to a list of processes that requested the message (l. 43).

4.2.3 Correctness

The algorithm still resembles a USIG-based FIFO broadcast. Thus, it leans on arguments
for the FIFO reliable broadcast presented above.

Theorem 4.1 (RB-Integrity property of Algorithm 3). Under the assumption of perfect
point-to-point links and a TEE-based USIG, the causal order broadcast protocol in Algorithm 3
fulfills RB-Integrity with a fault tolerance of 𝑛 > 𝑡 : For each tag 𝑐 ∈ N, a correct process
delivers at most one message.

Proof. By the check in l. 17, processes are forced to combine their message with a valid
USIG signature. The USIG increments the counter after each signature (Algorithm 1, l. 5),
thus, under the assumption of a correct TEE, enforces the uniqueness of the combination
of counter and message. When a correct process receives a message for the first time, it
will be added to the received messages (l. 19). Moreover, a correct process will reject any
message for a counter value that it already received (l. 18). As soon as the message can
be delivered, the process increases the expected counter value (l. 34) and removes the
message from the received messages (l. 35). Thus, if a correct process delivers a message
for a counter value 𝑐 , it will only do so once.

Theorem 4.2 (RB-Agreement property of Algorithm 3). Under the assumption of perfect
point-to-point links and a TEE-based USIG, the causal order broadcast protocol in Algorithm 3
fulfills RB-Agreement with a fault tolerance of 𝑛 > 𝑡 : If a correct process delivers (𝑐,𝑚), then
all correct processes deliver the same message𝑚 for tag 𝑐 .

Proof. If a correct process 𝑝𝑖 delivers a message 𝑚, it was able to deliver its complete
ancestry. This follows from the recursive application of the ancestry condition in ll. 27–32.
If another correct process 𝑝 𝑗 receives this message 𝑚 and it does not know one of its
ancestors, this is due to two reasons: (1) the ancestor is from a correct process and the
corresponding message was not yet delivered by the asynchronous channel or (2) the
ancestor is from a faulty process that committed a send omission fault. In case (1), by the
assumption of perfect point-to-point links, 𝑝 𝑗 will receive the ancestor eventually. In case
(2), 𝑝𝑖 will be able to answer any ancestor request: Since 𝑝𝑖 delivered𝑚, it added it to its
delivered messages (l. 36). In both cases, by Theorem 4.1 and the USIG-enforced binding
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of message and counter (l. 17), all correct processes will deliver the same message as there
is only one message for each tag 𝑐 .

Lemma 4.1. When a correct process broadcasts a message𝑚, it will immediately deliver𝑚,
i.e., it does not require additional communication to be able to deliver.

Proof. Correct processes will only use counter values as history information that they
already delivered (ll. 14 and 34). From the recursive application of this behavior follows
that each of those counter values is the highest of a set of already delivered counter
values. Consequently, when now the BCAST handler is invoked at the sender, the checks
in ll. 17–18, 25, and 26–33 will pass and the sender will be able to deliver the message
directly.

Theorem 4.3 (RB-Validity property of Algorithm 3). Under the assumption of perfect
point-to-point links and a TEE-based USIG, the causal order broadcast protocol in Algorithm 3
fulfills RB-Validity with a fault tolerance of 𝑛 > 𝑡 : If a correct sender broadcasts message𝑚,
then every correct process eventually delivers𝑚.

Proof. By Lemma 4.1, the correct sender 𝑝𝑠 will deliver𝑚 immediately. By Theorem 4.2,
all correct processes will eventually do alike.

4.2.4 Analysis and Comparison

We compare the communication complexity of the USIG-based causal order broadcast
protocol in Algorithm 3 to the single echo reliable broadcast protocol by Correia et
al. [CVL10] and the Narwhal reliable broadcast [Dan+22]. Figure 4.1 shows the common
case communication patterns for the three protocols.

In the single echo reliable broadcast, each process echos each message it receives for the
first time. Hence, the single echo reliable broadcast requires in the common and in the
worst case 𝑛 + 𝑛2 messages. For 𝑛 senders, we get a communication complexity of 𝑛2 + 𝑛3
messages.

The pattern in Narwhal [Dan+22] is as follows: The sender sends the message to all
processes (i.e., 𝑛 messages). Each process that receives the message sends an acknowledge-
ment to the sender (i.e., another 𝑛 messages). When the sender collected 𝑛 − 𝑡 ≥ 2𝑡 + 1
acknowledgements, it sends a certificate to all processes (i.e., another 𝑛 messages). When
a process received a valid certificate for a message, it can deliver the message. Thus, for 𝑛
senders, the communication complexity is 3𝑛2 messages in the common case. A process
must include 𝑛 − 𝑡 certificates to be allowed to broadcast a new message. In the case of
faults or a slow sender, the certificates in received messages can be used to backfill their
ancestry. In this case, a process requests the missing message at the 𝑛− 𝑡 processes that are
listed in the certificate giving 𝑛 − 𝑡 responses. Thus, in the worst case, the communication
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𝑛2 init 𝑛3 echo

(a) Single Echo Reliable Broadcast: 𝑛2 + 𝑛3

𝑛2 vertex 𝑛2 ack 𝑛2 cert

(b) Narwhal Reliable Broadcast: 3𝑛2

𝑛2 BCAST

(c) USIG-based Causal Order Broadcast: 𝑛2

Figure 4.1: Common case communication patterns for single echo reliable broadcast (e.g., [CVL10]), Narwhal
reliable broadcast [Dan+22] and USIG-based causal order broadcast (this work) with 𝑛 senders. Blue vertical
lines delimit communication rounds, black vertical lines delimit broadcast tags. The colors of the arrows
signify the payloads’ originator. The USIG-based causal order broadcast proceeds with one round of
communication per broadcast round.

complexity is 3𝑛 + 2(𝑛 − 𝑡) = 5𝑛 − 2𝑡 messages for a single sender, i.e., 5𝑛2 − 2𝑡𝑛 ≃ 5𝑛2
messages for 𝑛 senders.

The USIG-based causal order broadcast as presented in Algorithm 3 proceeds with one
broadcast message in the common case: The sender sends the message to all processes
(i.e., 𝑛 messages). Thus, for 𝑛 senders, the communication complexity is 𝑛2 messages in
the common case. In the case of faults or a slow sender, a correct process will learn about
the existence of a message through the history information in other received messages. In
this case, the process must request the message from all processes yielding 𝑛 requests and
𝑛 responses. Thus, in the worst case, the communication complexity is 3𝑛2 messages for 𝑛
senders.

In Figure 4.2, we instantiate the communication complexity for 𝑛 = 2𝑡 + 1 senders and
𝑡 = 2𝑖, 𝑖 ∈ [0, 9] ⊂ N. It is clearly visible that the single echo reliable broadcast is dominated
by the cubic complexity of the echo phase (Figure 4.2a). In the common case, the USIG-
based causal order broadcast (denoted as COB in the figure) saves 2

3 of the messages
(Figure 4.2c) which are roughly 30k messages (Figure 4.2b) for 𝑡 = 64. In the worst case,
the savings are reduced to at most ∼ 30% for 𝑡 = 1. Here, Narwhal shows a benefit of
the certificates: a process is not required to contact all processes to retrieve the missing
message. The number of saved messages of the USIG-based causal order broadcast declines
with increasing 𝑡 .

In summary, both causal order broadcast protocols, Narwhal and the USIG-based causal
order broadcast, are more efficient than the single echo reliable broadcast. They trade
a lower communication complexity in the common and in the worst case for a higher
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Figure 4.2: Number of exchanged message for single echo reliable broadcast (RB, e.g., [CVL10]), Narwhal
reliable broadcast [Dan+22] and USIG-based causal order broadcast (COB, this work) with 𝑛 = 2𝑡 + 1 senders
and 𝑡 = 2𝑖 , 𝑖 ∈ [0, 9] ⊂ N. In Figure 4.2a, CC denotes the common case and WC denotes the worst case. The
small plots show the absolute (Figure 4.2b) and the relative (Figure 4.2c) number of saved messages when
using the USIG-based causal order broadcast instead of Narwhal.

algorithmic complexity and memory consumption. The single echo reliable broadcast
protocol is not required to store delivered messages for backfilling requests, leading to
a memory consumption of 𝑂 (𝑛) in the common case. In contrast, the Narwhal and the
USIG-based causal order broadcast protocol require to store all delivered messages for
backfilling requests (i.e., Ω(𝑛 +𝑚) where𝑚 is the number of messages broadcast). Thus,
consensus-based garbage collection is required.

4.3 TEE-Based Common Coins

The FLP impossibility [FLP83] shows that for a deterministic consensus protocol in an
asynchronous system it is impossible to tolerate a single crash fault. Ben-Or [Ben83] and
Rabin [Rab83] were the first to use randomization to circumvent the impossibility. Ben-Or
relies on local randomness. Whenever a process has to decide but it observes a tie, the
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process invokes a local random function to break the tie. In contrast, Rabin uses a common
coin that is shared among all processes. In a common coin, all processes receive the same
random value for the 𝑖th invocation of the coin. Asynchronous, DAG-based approaches
rely on a common coin; in current designs, the common coin cannot be replaced by a local
coin. Thus, in this dissertation, we solely focus on common coins.

We define a common coin (or global perfect coin) based on [CKS05; Kei+21] as follows:

Definition 4.1 (Common Coin). Each process 𝑝 ∈ 𝑃 , 𝑃 := {𝑝1, . . . , 𝑝𝑛}, can start the
coin protocol for arbitrary instances 𝑐 ∈ N by calling CREATECOINSHARE(𝑐) that returns
a coin share 𝑠𝑝 . Let 𝑡 ∈ N, 0 ≤ 𝑡 < 𝑛, be the reconstruction threshold and 𝜖 a security
parameter. The function COMPUTECOIN(𝑐, 𝑆) takes a coin instance 𝑐 and a set of coin shares
𝑆 and returns a value 𝑣 ∈ 𝑉 where𝑉 := [1, 𝑛] ⊂ N or ⊥. The functions CREATECOINSHARE(𝑐)
and COMPUTECOIN(𝑐, 𝑆) can be combined to a blocking function TOSS(𝑐) that returns a value
𝑣 ∈ 𝑉 or ⊥ and abstracts the coin internals. A valid implementation satisfies the following
properties:

CC-Agreement: If two correct processes call COMPUTECOIN(𝑐, ·) for the same instance 𝑐 with
return values 𝑣1 and 𝑣2, then 𝑣1 = 𝑣2.

CC-Termination: If at least 𝑡 + 1 correct processes call CREATECOINSHARE(𝑐) for the same
instance 𝑐 , then every call to COMPUTECOIN(𝑐, ·) eventually returns a value 𝑣 ≠ ⊥.

CC-Unpredictability: As long as less than 𝑡 + 1 process call CREATECOINSHARE(𝑐) for the same
instance 𝑐 , the return value of COMPUTECOIN(𝑐, ·) is indistinguishable from a uniformly
random value except with negligible probability 𝜖 .

CC-Fairness: The probability for all instances 𝑐 to output any value 𝑣 ∈ 𝑉 is 1
𝑛
.

Typically, common coins are implemented using some form of threshold cryptography.
State of the art for implementing a common coin is the “Cachin coin” by Cachin et al.
[CKS05, Section 6] which is based on the Diffie-Hellman problem and a lightweight zero-
knowledge proof. The coin originates in the work by Naor et al. [NPR99]. The second
famous variant stems as well from Cachin et al. and is based on threshold signatures
[CKS05, Section 4.3]. Both coins require a distributed key generation (DKG) during setup
to generate a threshold-shared key pair with threshold 𝑡 . A recent empirical evaluation
[Bar+25] shows that the Cachin coin is the most efficient known common coin that does
not rely on a TEE. Still, the use of threshold cryptography is costly. In most cases, the cost
stems from the verification steps that ensure that only valid coin shares are combined to
retrieve the coin value. In contrast, a TEE-based common coin implementation can leverage
the properties of trusted execution environments to reduce the cost of these verification
steps. We propose and compare two TEE-based common coin implementations: a “naive”
approach deploying a cryptographically secure pseudorandom number generator (CPRNG)
to the TEE and the TEE-based Cachin coin.
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4.3.1 Naive TEE-Based Coin

This coin implementation differs slightly from the above definition. The coin instances
must be tossed in a total order startingwith coin instance 𝑐 = 1. It is not possible to skip coin
instances. This means that it is not possible to start the protocol at any time for arbitrary
coin instance. The implementation assumes a cryptographically secure pseudorandom
number generator (CPRNG), a digital signature scheme (for both see Section 2.2), and a
TEE (Definition 2.1). This coin implementation was previously published by Leinweber
and Hartenstein [LH25]; Xie et al. [Xie+25] proposed an equivalent approach in concurrent
work.

Protocol The TEE maintains a counter 𝑐 that is incremented after each successful invo-
cation of the common coin. Additionally, the TEE maintains a list of public keys of all
processes and a CPRNG state. Moreover, each process maintains a secret key. During
setup, the processes must reach agreement on the TEE identities of all processes, all TEEs
must be initialized with the same set of public keys, and all TEEs must establish a common
seed which is used to initialize the CPRNG. The counter 𝑐 is initialized with 1 and is
incremented after each successful invocation of the common coin. When a process 𝑝𝑖
invokes CREATECOINSHARE(𝑐), the process creates a signature 𝜎 over 𝑐 as the coin share
𝑠𝑝𝑖 := (𝑐, 𝜎) using its secret key. As soon as 𝑝𝑖 collected 𝑡 + 1 valid coin shares for instance
𝑐 , it can invoke COMPUTECOIN(𝑐, ·), a function hosted by the TEE, to retrieve the coin value 𝑣 .
The TEE verifies that it received 𝑡 + 1 validly signed coin shares created by 𝑡 + 1 processes
and that they all belong to the same coin instance 𝑐 expected to be next by the TEE. If
these conditions are met, the TEE invokes the CPRNG to retrieve a random value 𝑣 which
is returned. Moreover, 𝑐 is incremented by 1. If the conditions are not met, the TEE aborts
and returns ⊥.

Correctness Note that CREATECOINSHARE(·) does not require to be executed inside the
TEE. The enclave will not reveal a toss unless at least sufficient processes requests a toss.
However, as soon as at least 𝑡 + 1 processes request a toss for an instance and distribute the
generated coin share, the TEE will return a value 𝑣 that is, due to the CPRNG properties
and the TEE assumption, indistinguishable from a uniformly random value and fair. Under
the assumption that all correct processes initialize the CPRNG with the same seed, the
TEE will return the same value 𝑣 for all correct processes and coin instances.

4.3.2 TEE-Based Cachin Coin

This coin implementation allows to generate coin shares for arbitrary instances 𝑐 . This
implementation is based on [CKS05, Section 6] and [NPR99]. It is based on the Diffie-
Hellman problem, i.e., the discrete logarithm is hard to compute, and additionally assumes
a TEE (see Definition 2.1), cryptographic hash functions, and a digital signature scheme
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(see for both Section 2.2). This coin implementation was developed in the master thesis by
Marius Haller [Hal25].

Protocol The TEE’s state is limited to a secret key and a so-called result key share.
The result key share is a threshold-shared secret and used to generate the coin shares.
The secret key is used to sign coin shares. The coin share is created and signed within
the enclave; a valid signature signals the authenticity and the correctness of the coin
share. During setup, the processes must reach agreement on the TEE identities and the
TEE’s public keys of all processes. Moreover, in a distributed key generation, the TEEs
must generate a result key pair (rk, PK) where rk

(𝑡,𝑛)
−−−→ (rk1, . . . , rk𝑛) is threshold-shared

between all 𝑛 parties with threshold 𝑡 and PK is the global verification key using Shamir’s
secret sharing scheme [Sha79]. When a process 𝑝𝑖 invokes CREATECOINSHARE(𝑐), the TEE
maps 𝑔 := 𝐻1(𝑐) to the prime field of the result key pair using a hash function 𝐻1 and
computes the coin share 𝑠𝑝𝑖 := (𝑐, 𝑔𝑝𝑖 , 𝜎) where 𝑔𝑝𝑖 := 𝑔rk𝑖 and 𝜎 is a signature over (𝑐, 𝑔𝑝𝑖 )
using the TEE’s secret key. As soon as 𝑝𝑖 collected 𝑡 + 1 validly signed coin shares for
instance 𝑐 , it can invoke COMPUTECOIN(𝑐, ·). The COMPUTECOIN(𝑐, 𝑆) function can be executed
outside the TEE and computes

𝑣 = 𝐻2(
∏
𝑝𝑖∈𝑇

𝑔
𝑙𝑖
𝑝𝑖
).

This is the polynomial interpolation of the coin shares where 𝑇 is the set of process
identifiers contributing to the collected shares 𝑆 , 𝐻2 is a hash function mapping from
the prime field to the coin’s domain and 𝑙𝑝𝑖 the adequate Lagrange coefficient. Similar to
modern signature schemes (e.g, ECDSA and EdDSA, see Section 2.2), instead of a finite
field with prime order, implementations should use elliptic curves to decrease the size of
the coin shares and improve computation speed [Bar+25]. In this case, all exponentiations
translate to scalar multiplications on the elliptic curve.

Correctness This coin implementation resembles the Cachin coin with the difference that
the zero-knowledge proof is replaced by the TEE constructing the coin share and signing
it. Instead of verifying the zero-knowledge proof, receiving processes verify the signature.
For CC-Agreement, it is crucial that only valid coin shares are combined to retrieve the
coin value. Hence, if the TEE assumption holds, CC-Agreement, CC-Unpredictability, and
CC-Fairness follow from Cachin et al.’s original proof [CKS05, Section 6.2]. If at least 𝑡 + 1
correct processes invoke CREATECOINSHARE(𝑐) and distribute the coin share for the same
instance 𝑐 , every correct process will eventually receive at least 𝑡 + 1 valid coin shares and
be able to calculate the interpolation.

4.3.3 Comparison

Table 4.1 summarizes the cost of the common coin operations for the Cachin coin, the naive
TEE-based coin, and the TEE-based Cachin coin. The costly operations are the context
switches (CS) to the enclave [CD16; Li+18; WAK18] and the scalar multiplication (MUL)
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Protocol CREATECOINSHARE() Validate coin share COMPUTECOIN()
Cachin coin [CKS05] 3MUL 4𝑛MUL (𝑡 + 1)MUL
Naive TEE coin 1MUL (+1CS USIG) 2𝑛MUL 1CS + (2𝑡 + 2)MUL
Cachin TEE coin 1CS + 2MUL 2𝑛MUL (𝑡 + 1)MUL

Table 4.1: Analytical evaluation of common coin operation cost. The table lists for the Cachin coin, the
naive TEE-based coin, and the TEE-based Cachin coin the cost for the operations CREATECOINSHARE(·), coin
share validation, and COMPUTECOIN() the cost in terms of the number of context switches to the TEE (CS)
and the number of scalar multiplications with elliptic curve points (MUL). The dominant operations are the
coin share validation and COMPUTECOIN() for which the TEE-based Cachin coin is the most efficient. If the
naive coin is combined with a USIG, one additional context switch during coin share creation is required.
The Cachin coin requires a zero-knowledge proof for coin share generation and verification, which is not
required for the TEE-based Cachin coin.

with elliptic curve points [BL07] required for signature generation (one multiplication),
signature verification (two multiplications), and, for the Cachin variant, interpolation (one
multiplication per coin share). In addition to this operations, the Cachin coin requires two
multiplications for the generation of the zero-knowledge proof and four multiplications
for the verification of the zero-knowledge proof. While the TEE-based Cachin coin out-
performs the naive TEE-based coin, the naive TEE-based coin solely relies on standard
cryptography that is typically available in a TEE. We provide an empirical analysis in
Section 5.4.3. Both implementations can be combined with a USIG signature service as
described in Section 4.2 or any round-based protocol that produces signatures per process
and round (e.g., as DAG-Rider does, see Section 4.4.1). For the naive coin, the signature has
to be generated inside the TEE, causing an additional context switch. The USIG signatures
serve as coin shares and no additional coin share generation is required. For the TEE-based
Cachin coin, the combination with a USIG causes no additional overhead: The coin share
is created within the TEE anyways and the USIG signature is then on the coin share, the
counter, and the message, thus, serving as validation for the coin share.

If the TEE assumption does not hold, the naive TEE coin sacrifices CC-Unpredictability.
An attacker could simply generate coin values as it gains access to the CPRNG state and
seed. CC-Agreement, however, is still guaranteed as the attacker cannot manipulate the
CPRNG state at processes it does not control. In contrast, the TEE-based Cachin coin
sacrifices CC-Agreement while CC-Unpredictability is still guaranteed: The attacker can
generate invalid coin shares but sign them correctly. Correct processes will now combine
the invalid coin share with valid coin shares and receive a wrong coin result. If the attacker
disseminates different invalid coin shares to different processes, the processes will receive
different coin values. If the coin shares are reliably broadcast, which may incur overhead,
the attacker cannot disseminate different coin shares for the same coin instance but there
is no guarantee which shares a correct process uses (if 𝑡 + 1 < 𝑛). Hence, reliable broadcast
of shares does not ensure CC-Agreement in the light of broken TEEs.

DAG-based protocols use the common coin in the context of their consensus mechanism.
If CC-Unpredictability is broken, an attacker can foresee coin values and potentially bias
consensus decisions. If CC-Agreement is broken, different processes may use different
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coin values, leading to differing consensus decisions which typically is a safety violation.
In conclusion, for the use cases in this dissertation, the naive TEE-based coin is easier to
implement, more robust, and for coin share generation and validation equally efficient
as the TEE-based Cachin coin. For coin computation, it is roughly twice as costly as the
TEE-based Cachin coin.

4.4 TEE-RIDER: TEE-Based Asynchronous Atomic Broadcast

In this section, we propose TEE-Rider, an asynchronous, DAG-based, hybrid fault-tolerant
atomic broadcast protocol. TEE-Rider builds upon DAG-Rider, a seminal proposal by
Keidar et al. [Kei+21], and optimizes the algorithm for the hybrid fault model. First, we
introduce and explain the DAG-Rider protocol as the basis for TEE-Rider. Next, we define
the system model and the assumptions we make for TEE-Rider. Then, we present the
following contributions:

1. We change the quorum size to ⌊𝑛2 ⌋ + 1 to increase the fault tolerance of the protocol.
In this step, we show that DAG-Rider itself can withstand 𝑡 Byzantine faults with
𝑛 > 2𝑡 processes if the used reliable broadcast has a fault tolerance of at least 𝑛 > 2𝑡 .
It follows that DAG-Rider withstands omission faults with a fault tolerance of 𝑛 > 2𝑡 .

2. DAG-Rider distinguishes two edge types: strong and weak edges. We show that it is
safe to not rely on weak edges if a fair network scheduler can be assumed thereby
reducing the computational complexity.

3. DAG-Rider operates in rounds; rounds are grouped in waves. We show that it is not
possible to reduce the wave size to less than four rounds without harming the proof
of the AB-Agreement property.

4. Finally, we list and describe the full protocol instantiated with the USIG-based causal
order broadcast (see Section 4.2) to improve the communication complexity. The
DAG can be used to enforce the causal history which reduces the overhead of the
required reliable broadcast data structures.

The proofs were, except for the removed weak edges and the claims on expected latencies,
previously published by Leinweber and Hartenstein [LH23]. The counter example for the
wave size was previously published by Leinweber and Hartenstein [LH25].

4.4.1 Background: DAG-Rider

While there were proposals for asynchronous atomic broadcast, e.g., by Cachin et al.
[Cac+01; CP02; CT05], until the advent of the HoneyBadgerBFT protocol family [Mil+16],
asynchronous protocols were considered impractical and practical protocols were based
on the partially synchronous model. HoneyBadgerBFT built upon the work by Cachin
et al. and introduced a practical asynchronous atomic broadcast protocol based on reliable
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broadcast, binary agreement, and a common coin. The team around Alexander Spiegel-
man invented the DAG-Rider protocol family [Kei+21; Dan+22; Spi+22; Spi+24; Aru+25;
Ton+25] that became the state of the art for high throughput asynchronous and, later,
partially synchronous atomic broadcast.

DAG-Rider [Kei+21] was the first asynchronous atomic broadcast protocol that builds upon
a deterministically constructed directed acyclic graph (DAG) that is structured in rounds.
DAG-Rider assumes an asynchronous reliable broadcast primitive (e.g., Bracha’s reliable
broadcast) and a common coin. The unique feature of the DAG-Rider atomic broadcast is
that the reliable broadcast is the only communication-based building block. In particular,
DAG-Rider does not rely on a strong validity consensus building block. Consensus is
achieved by interpreting the state of the DAG whenever the DAG construction made
sufficient progress. In the following, we will first give an overview on DAG-Rider and
introduce the DAG-Rider vocabulary. Then, we explain the DAG-Rider protocol consisting
of DAG construction and the consensus logic. Finally, we will provide the intuition behind
the correctness of the protocol. For the description we assume, without loss of generality,
that 𝑛 = 3𝑡 + 1, making 2𝑡 + 1 the quorum size.

Overview and Vocabulary

In the following, we introduce the core concepts of DAG-Rider.

Round-Structured DAG The DAG captures the communication history of all processes.
Each process maintains a local copy of the DAG. Processes disseminate protocol messages
by using the reliable broadcast primitive. Hence, each process participates in 𝑛 reliable
broadcast instances, one for each process. The DAG is structured in rounds and each
round contains maximally one vertex – that is one protocol message – per process. The
vertex data structure carries a broadcast message (𝑣 .block), a round number (𝑣 .𝑟 ), a process
identifier naming the process who created the vertex (𝑣 .𝑝), and a binary flag indicating
if the broadcast message was delivered (𝑣 .delivered). A vertex can only be added to the
graph if all its outgoing edges are present in the local DAG.

Edges and Paths The vertices of the DAG are connected via directed edges. Edges always
point from a vertex of a higher round to a vertex of a lower round. DAG-Rider distinguishes
strong and weak edges. A strong edge connects a vertex of round 𝑟 to a vertex of round
𝑟 − 1. A weak edge connects a vertex of round 𝑟 to a vertex of round 𝑟 ′ ≤ 𝑟 − 2. A correct
process will only select vertices as edges if they are already part of its local DAG. For a
vertex to be valid, it requires to have at least 2𝑡 + 1 outgoing strong edges. Outgoing weak
edges are optional. If a vertex 𝑣 of round 𝑟 reaches a vertex 𝑣′ of round 𝑟 ′ < 𝑟 by only
using strong edges, the resulting path is called a strong path. A path instead contains at
least one weak edge.
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Waves and Commit Rules Every disjoint four consecutive broadcast rounds are grouped
into a wave 𝑤 . A wave𝑤 is completed, when its last round is completed. When a process
completes a wave, it checks if it can commit a wave directly: The process selects a wave
root using a common coin (Definition 4.1) from the first round of the wave. The direct
commit rule requires that the wave root is reachable via a strong path from at least 2𝑡 + 1
vertices of the last round of the wave. If the direct commit rule is not fulfilled, the wave
cannot be committed and the consensus logic is aborted. There is, however, the guarantee
that a correct process will eventually complete a wave that can be committed directly.
The process will then check for uncommitted waves if the retrospective commit rule is
fulfilled: The process selects the wave root of the uncommitted wave using the common
coin and checks if the wave root has a single strong path to the wave root of the next
wave which can be committed.

DAG Construction

In Algorithm 4, we present the original DAG-Rider protocol based on [Kei+21, Algorithms
1–3]. Algorithm 5 lists the utility functions used in Algorithm 4. Each process 𝑝𝑖 maintains
a local round counter 𝑟 that is incremented whenever the process can start a new round.
Furthermore, each process 𝑝𝑖 maintains a local message buffer that contains messages that
are to be atomically broadcast by 𝑝𝑖 and a local vertex buffer that contains vertices that
were received by a reliable broadcast but are not yet part of the DAG. When process 𝑝𝑖
invokes A_BROADCAST(𝑚) to atomically broadcast a message𝑚, the message is stored in the
message buffer (l. 21). DAG-Rider has a “main loop” (ll. 7–19) that is endlessly repeated
and consists of two parts: adding received vertices to the DAG (ll. 8–10) and the round
transition logic including the construction of new vertices and triggering the consensus
logic (ll. 11–19). First, we explain how a vertex is created. Then, we explain how vertices
are received and handled and then how rounds can be completed.

Vertex Creation Whenever a process 𝑝𝑖 can transition to a new round 𝑟 , it constructs a
new vertex 𝑣 (ll. 13–19). The first message of the message buffer is selected as the vertex’
payload and stored in 𝑣 .block. The strong edges of the vertex are those vertices of round
𝑟 − 1 that 𝑝𝑖 already added to its DAG; 𝑝𝑖 must select at least 2𝑡 + 1 vertices as strong
edges (l. 25). Weak edges are selected as follows: 𝑝𝑖 searches all vertices 𝑣′ of rounds
𝑟 ′ ≤ 𝑟 − 2 that have no path, i.e., no sequence of strong and weak edges, from 𝑣 to 𝑣′. Those
vertices are added as weak edges to 𝑣 (ll. 16–18). The number of weak edges is not limited.
Subsequently, 𝑝𝑖 reliably broadcasts the vertex 𝑣 to all other processes using the reliable
broadcast instance in which 𝑝𝑖 is the sender (l. 19).

Vertex Reception and Vertex Validation DAG-Rider operates in asynchrony. This implies
that, while process 𝑝𝑖 currently being in round 𝑟 , vertices for rounds 𝑣 .𝑟 < 𝑟 or 𝑣 .𝑟 > 𝑟

may be received any time. To this end, received vertices are not added directly to the
DAG but buffered in a vertex buffer. When a process 𝑝 𝑗 receives a vertex 𝑣 created by 𝑣 .𝑝 ,
it verifies that the vertex is valid. As DAG-Rider operates above the reliable broadcast,
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Algorithm 4 DAG-Rider Atomic Broadcast: Main Loop for Process 𝑝𝑖 [Kei+21, Algs. 2–3]
1: state DAG : array of array of vertices, DAG [0] initialized with genesis vertices
2: state 𝑟 : N, initialized with 1
3: state decidedWave : N0, initialized with 0
4: state messageBuffer : queue of messages, initialized empty
5: state vertexBuffer : set of vertices, initialized empty
6: state coin : common coin instance with TOSS(·)
7: while true do
8: for 𝑣 ∈ vertexBuffer do
9: if 𝑣 .𝑟 ≤ 𝑟 ∧ ∀𝑢 ∈ 𝑣 .strong ∪ 𝑣 .weak : 𝑢 ∈ ∪𝑟 ′≥0DAG [𝑟 ′] then
10: DAG [𝑣 .𝑟 ] [𝑣 .𝑝] ← 𝑣 ; vertexBuffer .remove(𝑣)
11: if |DAG [𝑟 ] | < 2𝑡 + 1 then continue

12: if 𝑟 mod 4 = 0 then waveReady( 𝑟4 )
13: 𝑟 ← 𝑟 + 1
14: wait until ¬messageBuffer .isEmpty()
15: 𝑣 ← new vertex; 𝑣 .block ← messageBuffer .pop(); 𝑣 .strong ← DAG [𝑟 − 1]
16: for 𝑟 ′← 𝑟 − 2 down to 1 do
17: for 𝑢 ∈ DAG [𝑟 ′] do
18: if ¬path(𝑣,𝑢) then 𝑣 .weak.add(𝑢)
19: r_broadcast(𝑟, 𝑣)
20: function a_broadcast(𝑚)
21: messageBuffer .insert(𝑚)
22: // The r_deliver handler is triggered whenever a reliable broadcast instance (of 𝑛) delivers.
23: upon r_deliver(𝑝𝑘 , 𝑟 ′, 𝑣)
24: 𝑣 .𝑝 ← 𝑝𝑘 ; 𝑣 .𝑟 ← 𝑟 ′; 𝑣 .delivered ← False
25: if |𝑣 .strong | ≥ 2𝑡 + 1 then vertexBuffer .add(𝑣)
26: function waveReady(𝑤 )
27: 𝑣𝑤 ← DAG [round(𝑤, 1)] [coin.toss(𝑤)]
28: if 𝑣𝑤 = ⊥ ∨ |{𝑢 | 𝑢 ∈ DAG [round(𝑤, 4)] : strongPath(𝑢, 𝑣𝑤 )}| < 2𝑡 + 1 then
29: return

30: committedRoots← new stack; committedRoots.push(𝑣𝑤 )
31: for𝑤 ′← 𝑤 − 1 down to decidedWave + 1 do
32: 𝑣𝑤 ′ ← DAG [round(𝑤 ′, 1)] [coin.toss(𝑤 ′)]
33: if 𝑣𝑤 ′ ≠ ⊥ ∧ strongPath(𝑣𝑤 , 𝑣𝑤 ′) then
34: committedRoots.push(𝑢); 𝑣𝑤 ← 𝑣𝑤 ′

35: while ¬committedRoots.isEmpty() do
36: 𝑣𝑤 ← committedRoots.pop()
37: verticesToDeliver ← {𝑢 | 𝑢 ∈ ∪𝑟 ′>0DAG [𝑟 ′] : path(𝑣𝑤 , 𝑢) ∧ ¬𝑢.delivered}
38: for 𝑢 ∈ verticesToDeliver in deterministic order do
39: 𝑢.delivered ← True
40: a_deliver (𝑢.𝑝,𝑢.𝑟,𝑢.block)
41: decidedWave← 𝑤
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Algorithm 5 DAG-Rider Atomic Broadcast: Utility Functions [Kei+21, Alg. 1]
1: function path(𝑣,𝑢)
2: return exists a sequence of vertices (𝑣1, 𝑣2, ..., 𝑣𝑘) ∈ ∪𝑟 ′≥0DAG [𝑟 ′] such that
3: 𝑣1 = 𝑣 ∧ 𝑣𝑘 = 𝑢 ∧ ∀𝑖 ∈ [2, 𝑘] : 𝑣𝑖 ∈ 𝑣𝑖−1.strong ∪ 𝑣𝑖−1.weak
4: function strongPath(𝑣,𝑢)
5: return exists a sequence of vertices (𝑣1, 𝑣2, ..., 𝑣𝑘) ∈ ∪𝑟 ′≥0DAG [𝑟 ′] such that
6: 𝑣1 = 𝑣 ∧ 𝑣𝑘 = 𝑢 ∧ ∀𝑖 ∈ [2, 𝑘] : 𝑣𝑖 ∈ 𝑣𝑖−1.strong
7: function round(𝑤, 𝑖)
8: if 𝑖 < 1 ∨ 𝑖 > 4 ∨𝑤 < 1 then abort

9: return 4(𝑤 − 1) + 𝑖

the only validity check is that 𝑣 has at least 2𝑡 + 1 strong edges. In particular, it is not
necessary perform authenticity checks or to check if a vertex for the DAG slot, which is the
combination of round and vertex creator, was already received. If this check is successful,
𝑝𝑖 adds 𝑣 to its vertex buffer (ll. 23–25). Otherwise, the vertex is discarded.

Vertex Handling and Round Completion As part of the main loop, DAG-Rider regularly
performs the “buffer walk” (ll. 8–10): Process 𝑝𝑖 checks for every vertex in the buffer if
it can be added to the DAG. This is possible if 𝑝𝑖 has already reached the round of the
vertex, i.e., 𝑟 ≥ 𝑣 .𝑟 . Moreover, it is required that all vertices that 𝑣 references as strong and
weak edges are part of 𝑝𝑖 ’s local DAG (l. 9). By transitively applying this rule, the complete
ancestry of a newly added vertex is guaranteed to be part of the DAG. The combination of
DAG construction rules and reliable broadcast of vertices yields a causal order reliable
broadcast of vertices; the DAG encodes the causal order of messages. When 𝑝 𝑗 was able
to add 2𝑡 + 1 vertices to round 𝑟 of its local DAG, it completes round 𝑟 and transitions to
round 𝑟 + 1 and starts the round with the creation of a new vertex (ll. 11–19).

Consensus Logic

Every disjoint four consecutive broadcast rounds are grouped into a wave. Waves are
indexed starting from 1; round 𝑟 belongs to wave 𝑤 = ⌈ 𝑟4⌉. Rounds within a wave can
be addressed using ROUND(𝑤, 𝑖) (see Algorithm 5, ll. 7–9). In the consensus logic, process
𝑝𝑖 tries to derive a total order of vertices from rounds ≤ round(𝑤 − 1, 4) and, thus, of
messages as vertex payloads. In the following, we first describe when a wave is completed
and how wave roots are selected. Then, we describe when and how waves are committed.
Finally, we describe how the total order is derived.

Wave Completion and Wave Roots When process 𝑝𝑖 completes round(𝑤, 4) of some wave
𝑤 , it completes wave 𝑤 and can start the consensus logic (call to WAVEREADY(·) in l. 12).
Each wave𝑤 has exactly one wave root 𝑣𝑤 which is selected from round(𝑤, 1) using the
common coin (l. 27). Wave roots play a crucial role in ensuring the safety of DAG-Rider:
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Wave roots are used as start points for the graph traversal that defines the total order of
vertices (see below).

Wave Commit: Direct and Retrospective Commits If the wave root 𝑣𝑤 of wave𝑤 that is to
be committed was not yet received or there are no 2𝑡 + 1 vertices in round(𝑤, 4) that reach
𝑣𝑤 by using a strong path, the direct commit rule is not fulfilled and the consensus logic
is aborted (l. 28). If the direct commit rule is fulfilled, process 𝑝𝑖 can continue. Process
𝑝𝑖 will then check if there are uncommitted waves. Uncommitted waves are such waves
for which the direct commit rule was not fulfilled when the wave was completed. Process
𝑝𝑖 will then iterate over all uncommitted waves 𝑤 ′ from the most recent to the oldest,
i.e., in descending order of wave index (ll. 31–34). For the retrospective commit rule to
be fulfilled the wave root 𝑣𝑤 ′ of wave𝑤 ′ must be part of the local DAG. Moreover, wave
root 𝑣𝑤 ′ must have a strong path to the wave root 𝑣𝑤 of the wave𝑤 > 𝑤 ′ which 𝑝𝑖 could
either directly or retrospectively commit before verifying the retrospective commit rule
for 𝑤 ′ (l. 33). All wave roots which can be committed are added to the committedRoots
stack. The retrospective commit rule is only checked once for each uncommitted wave. In
future commits, the search for uncommitted waves stops before the wave that could last be
committed directly (variable decidedWave, ll. 31 and 41). If the retrospective commit rule is
not fulfilled for an uncommitted wave𝑤 ′ when the check is carried out, the corresponding
wave root 𝑣𝑤 ′ is never committed.

Deriving a Total Order The last part of the consensus logic is to determine the total order
of vertices. To this end, process 𝑝𝑖 will perform a deterministic graph traversal, e.g., a
depth-first search, starting from the wave roots in the committedRoots stack (ll. 35–40).
Because waves are traversed in descending order when checking the retrospective commit
rule and wave roots are added to a stack, the wave root of the wave with the smallest index,
i.e., the oldest uncommitted wave, is the top-most element and serves as the starting point
for the very first graph traversal. The graph traversal uses both strong and weak edges
when moving through the DAG. DAG-Rider a_delivers the messages as the payload of the
vertices in 𝑣 .block in the order the vertices are traversed3. The “most recent” message, i.e.,
the message that is the payload of the vertex with highest round identifier, is the payload
of the wave root 𝑣𝑤 of wave𝑤 for which the direct commit rule is fulfilled. Finally, 𝑝𝑖 sets
decidedWave := 𝑤 (l. 41).

Correctness

The atomic broadcast properties (Definition 2.3) AB-Agreement and Total Order rely on
the DAG structure and the consensus logic. The properties AB-Validity and AB-Integrity

3 As vertices are traversed “backwards” in the graph, the messages are delivered in reverse order. Moreover,
vertices of the same round have no relation to each other. The graph search algorithm must define an
order for these vertices (e.g., sorted by process identifiers). This may seem strange but is not in conflict
with the atomic broadcast properties.
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follow, more or less directly, from the reliable broadcast primitive. In the following, we
will provide an intuition for the correctness of the DAG-Rider protocol.

AB-Agreement For AB-Agreement, we have to make sure that, if a correct process delivers
a message (which is the payload of a vertex), eventually every other correct process does
alike and that messages are equal. A correct process delivers a message as part of the
consensus logic which is invoked whenever a wave is completed. As there are at least 2𝑡 +1
correct processes that propose a vertex for a round, by the reliable broadcast properties,
all correct processes will receive at least 2𝑡 + 1 vertices for a round. Hence, under the
assumption of indefinite broadcast requests at each correct process, a correct process will
eventually complete the same rounds as every other correct process. Consequently, it only
remains to argue that a correct process, when it terminates a wave, has the possibility
to start the consensus logic. A correct process can start the consensus logic if the direct
commit rule is fulfilled. For the direct commit rule to be fulfilled, the wave root 𝑣𝑤 must
be part of the DAG and at least 2𝑡 + 1 vertices in round(𝑤, 4) must reach 𝑣𝑤 using a strong
path. Using the common core, get-core, or gather argument [AW04, Section 14.3], we can
show that there are at least 2𝑡 + 1 vertices from round(𝑤, 1) that are reachable from a
set of 2𝑡 + 1 vertices in round(𝑤, 4) using a strong path in every wave 𝑤 . Hence, when
the common coin is fair, the probability that the direct commit rule is fulfilled is at least
2𝑡+1
3𝑡+1 . Applying the Bernoulli distribution, it follows that a correct replica will be able
to directly commit every 1.5 waves in expectation and we can conclude that a correct
process will eventually commit with probability 1. At this point, we know that eventually
every correct process will be able to commit a wave directly. This, however, only allows
to conclude that a correct process will deliver some messages. For AB-Agreement, we
need to ensure that correct processes deliver the same messages. When a correct process
commits, it will deliver all payloads, i.e., messages, of vertices in its DAG that were not
yet marked as delivered. As vertices are reliably broadcast and vertices can only be added
when their ancestry is part of the DAG, all correct processes will eventually know the
ancestry of all received vertices, thus, allowing them to add all vertices delivered by the
reliable broadcast to the DAG. In particular, it is guaranteed that the local DAG of every
correct process contains the complete ancestry of a vertex 𝑣 when 𝑣 is added to the DAG.
The RB-Agreement property ensures that every DAG slot – the combination of round and
vertex creator, i.e., process – contains the exact same vertex for all correct processes. The
combination of the RB-Agreement property and the knowledge of the full ancestry implies
that when a correct process 𝑝𝑖 is able to directly commit a wave root 𝑣𝑤 , process 𝑝𝑖 reaches
the exact same vertices, i.e., 𝑣𝑤 ’s ancestry, when it starts a graph traversal from 𝑣𝑤 . Please
note that the retrospective commit rule is only relevant for the Total Order property (see
below). For AB-Agreement, it is sufficient to show that the same vertices are traversed; the
traversal order is not relevant. Consequently, it is irrelevant whether a process starts the
graph traversal as part of a direct or a retrospective commit. In any case, the exact same
vertices will be traversed. We can conclude that the AB-Agreement property holds.
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AB-Validity For AB-Validity, we have to show that if a correct process broadcasts a
message, every other correct process will eventually deliver that message. A correct
process can only deliver a message if it was part of a vertex that was added to the DAG.
Correct processes can only add vertices to the DAG if they received the vertex via the
reliable broadcast primitive and know the vertex’ ancestry. When a correct process 𝑝𝑖
creates a vertex 𝑣 , it will create a valid vertex for which it knows the ancestry. Thus,
said process 𝑝𝑖 will be able to add the vertex to its own DAG. By the reliable broadcast
properties, all correct processes will receive the vertex and add it to their DAG. Any correct
process 𝑝 𝑗 will now add 𝑣 , if possible, as a strong edge to its next vertex. In any case, 𝑝 𝑗 will
add 𝑣 as a weak edge to its next vertex if 𝑣 is not already reachable from the new vertex.
Because of the weak edges, 𝑣 will eventually be in the ancestry of any vertex created by a
correct process. Figure 4.5 in Section 4.4.4 shows in an example the importance of weak
edges in DAG-Rider. In particular, 𝑣 will eventually be in the ancestry of a wave root 𝑣𝑤
created by a correct process. Following the argument for agreement, 𝑣𝑤 will eventually be
committed which implies that 𝑣 will be delivered.

AB-Integrity For AB-Integrity, we have to show that a correct process delivers a tuple
(𝑝, 𝑟,𝑚), where 𝑝 is the process identifier, 𝑟 is the round, and𝑚 is the message, at most
once. DAG-Rider uses the round as the tag of the reliable broadcast. Thus, by RB-Integrity,
any process can only broadcast a single vertex for a round. In the consensus logic, a
process marks a vertex as delivered when it delivers the message and it will not traverse
vertices that were marked twice. Thus, a process will never deliver the same tuple twice.

Total Order From the agreement argument, we know that all correct processes will
eventually deliver the same messages. It remains to be shown that all correct processes
deliver the messages in the same order. The order is primarily determined by the start
points of the graph traversals. Thus, to ensure total order, all correct processes must use
the exact same start points. Put differently, if a correct process uses a wave root 𝑣𝑤 as a
start point, every other correct process must use the same vertex 𝑣𝑤 as a start point. If
all correct processes observe the direct commit rule to be fulfilled for the same waves,
this is trivially the case. Asynchrony, however, may lead to a situation where a correct
process 𝑝𝑖 observes the direct commit rule to be fulfilled for wave𝑤 while another correct
process 𝑝 𝑗 does not: The asynchronous link may have delayed 𝑣𝑤 , so that the DAG of 𝑝 𝑗

does not contain 𝑣𝑤 at the completion of wave 𝑤 . In this case, 𝑝𝑖 will use 𝑣𝑤 as a start
point while 𝑝 𝑗 will not. The retrospective commit mechanism must ensure that 𝑝 𝑗 will
eventually use 𝑣𝑤 as a start point before 𝑝 𝑗 commits any other “younger” wave, i.e., a
wave with a higher wave index. For uncommitted waves 𝑤 ′ > decidedWave, a correct
process will check exactly once – decidedWave is incremented after a direct commit – if
the retrospective commit rule is fulfilled. This will be done when the process is able to
directly commit a wave𝑤 > 𝑤 ′. The graph construction of DAG-Rider must ensure that
whenever a correct process 𝑝𝑖 is able to directly commit a wave 𝑤 ′, any other correct
process 𝑝 𝑗 must in any case be able to (1) to directly commit𝑤 as well, or (2) to observe the
retrospective commit rule to be fulfilled when directly committing a “younger” wave𝑤 ,
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𝑝1 . . .

𝑝2 . . .

𝑝3 . . .

𝑝4 . . .
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Figure 4.3:Example DAG as constructed by 𝑛 = 4 DAG-Rider processes of which at maximum 1 may be faulty
illustrating the interplay of direct and retrospective commit rules. Shown is the “global” state of the graph,
i.e., after every process eventually received every vertex of 8 rounds. The 𝑥 axis denotes 𝑖 := (𝑟 mod 4) + 1,
i.e., the round within the wave. For simplicity, all vertices are valid. For readability, weak edges are left out.
Vertices that have a path to the root of their wave are drawn slightly bigger and are colored according to
the wave root. The vertex created by process 𝑝4 for round(𝑤, 1) was selected as wave root 𝑣𝑤 for wave𝑤 .
From the strong edges process 𝑝1 selected for its vertex for round(𝑤 + 1, 1), we can conclude that 𝑝1 did not
observe the direct commit rule for wave𝑤 to be fulfilled when it completed the wave. Consequently, 𝑝1 did
not deliver any vertices when completing wave𝑤 . All other process, however, observe the vertices created
by 𝑝2, 𝑝3, and 𝑝4 for round(𝑤, 4) to have a strong path to 𝑣𝑤 . Thus, they all observe the direct commit rule to
be fulfilled and deliver all vertices that have a path to 𝑣𝑤 when completing wave𝑤 . The direct commit rule
ensures that any vertex of rounds 𝑟 ≥ round(𝑤 + 1, 1) have a strong path to 𝑣𝑤 . Moreover, the direct commit
rule is fulfilled for wave𝑤 + 1 for all processes as all vertices of round(𝑤 + 1, 4) have a strong path to the
selected wave root 𝑣𝑤+1 allowing all processes to directly commit wave𝑤 + 1. Because the complete ancestry
of a vertex 𝑣 must be part of the DAG to be able to add 𝑣 to the DAG, 𝑝1 can neither propose its own vertex
for round(𝑤 + 1, 1) nor complete said round before receiving and adding 𝑣𝑤 to its DAG as at least 2 of the
vertices 𝑝1 must select as strong edges have 𝑣𝑤 in their ancestry. Hence, when 𝑝1 completes round(𝑤 + 1, 4)
and, thus, wave𝑤 + 1, it will observe the retrospective commit rule for wave𝑤 to be fulfilled. Consequently,
𝑝1 will first start a graph traversal from 𝑣𝑤 and then from 𝑣𝑤+1 which ensures the Total Order property.

i.e.,𝑤 > 𝑤 ′. As explained above, asynchrony makes it impossible to ensure (1). Instead, we
have to rely on the retrospective commit mechanism (2). To this end, DAG-Rider ensures
a property we call the wave root connectivity property: The direct commit rule enforces
that a wave root 𝑣𝑤 of wave 𝑤 which is selected from round(𝑤, 1) can only be directly
committed if at least 2𝑡 + 1 vertices of round(𝑤, 4) have a strong path to 𝑣𝑤 . We define the
set of these vertices of round(𝑤, 4) that have a strong path to 𝑣𝑤 as the set 𝑉 , |𝑉 | ≥ 2𝑡 + 1.
For a process 𝑝𝑖 to create a valid vertex 𝑣𝑝𝑖 for round(𝑤 + 1, 1), 𝑝𝑖 must select at least 2𝑡 + 1
out of 3𝑡 + 1 vertices from round(𝑤, 4) as strong edges. By quorum intersection, process
𝑝𝑖 will at least select 𝑡 + 1 vertices from 𝑉 . Thus, it is guaranteed that in any case, 𝑣𝑝𝑖 will
have a strong path to 𝑣𝑤 . Hence, any valid vertex of round(𝑤 + 1, 1) will have a strong
path to 𝑣𝑤 . In particular, any valid vertex of any round 𝑟 ≥ round(𝑤 + 1, 1) will have 𝑣𝑤
in its ancestry. Because any valid vertex can only be added to the DAG if its complete
ancestry is already part of the DAG, any vertex of any round 𝑟 ≥ round(𝑤 + 1, 1) can only
be added to the DAG if 𝑣𝑤 was already received and added to the DAG. This includes any

78



4.4 TEE-Rider: TEE-Based Asynchronous Atomic Broadcast

possible wave root of any future wave. Thus, when a correct process 𝑝 𝑗 was not able to
directly commit wave𝑤 ′ with wave root 𝑣𝑤 ′ while correct process 𝑝𝑖 directly committed
𝑤 ′, 𝑝 𝑗 will have 𝑣𝑤 ′ in its DAG when it completes any wave 𝑤 > 𝑤 ′. In particular, this
means that 𝑝 𝑗 will observe the retrospective commit rule to be fulfilled for wave𝑤 ′ when
it directly commits a wave𝑤 > 𝑤 ′. Hence, all correct processes will use in any case the
same wave roots as start points for their graph traversals. A correct process will order
the waves for which the retrospective commit rule was fulfilled from the oldest to the
newest (the stack of committed roots if traversed last-in first-out). This ensures that all
correct processes will start their graph traversals from the same wave roots in the same
order. Figure 4.3 exemplarily illustrates the importance of the direct and retrospective
commit rules. In conclusion, all wave roots that are committed by any correct process
are connected via strong paths ensuring that all correct processes will use the same wave
roots as start points for the graph traversals which enforces the total order property.

4.4.2 System Model

We consider a system of 𝑛 processes 𝑃 := {𝑝1, . . . , 𝑝𝑛} that aim to implement an atomic
broadcast primitive. The processes are connected via an asynchronous network; the
processes communicate via secure, perfect point-to-point links (see Sections 2.2 and 2.4).
Thus, messages can be reordered and arbitrarily delayed but not dropped. Each process
is equipped with a trusted execution environment (TEE, see Definition 2.1). Of the 𝑛
processes, at most 𝑡 < 𝑛

2 processes can be Byzantine faulty. The TEE is assumed to only
fail by crashing; its internal state is lost when the TEE crashes. If not explicitly stated,
code is not executed inside the TEE.

4.4.3 Reducing the Quorum Size – Increasing the Fault Tolerance

In this subsection, we show that DAG-Rider can be adapted to withstand 𝑡 Byzantine faults
with a fault tolerance of 𝑛 > 2𝑡 processes if a reliable broadcast with a fault tolerance of
at least 𝑛 > 2𝑡 (e.g., as described in Section 4.2), and a common coin with reconstruction
threshold of 𝑡 is used. DAG-Rider (Algorithm 4) uses a quorum condition in exactly three
places: (1) in l. 11 as a condition to complete a round, (2) in l. 25 to verify that a vertex
is valid, and (3) in l. 28 to verify that the direct commit rule is fulfilled. We change the
required quorum size at all three occurrences to ⌊𝑛2 ⌋ + 1. A quorum intersection argument
is required to prove Total Order (wave root connectivity) and AB-Agreement (common
core argument). In the original DAG-Rider paper [Kei+21], the wave root connectivity is
proven in Lemma 1 and the common core argument is proven in Lemma 2. In the following,
we formally specify and prove both lemmas for a quorum size of ⌊𝑛2 ⌋ + 1. Both proofs were
previously published by Leinweber and Hartenstein [LH23].

Lemma 4.2 (Wave root connectivity). If a correct process 𝑝𝑖 ∈ 𝑃 commits the wave root
𝑣𝑤 of a wave𝑤 when it completes wave𝑤 in round(𝑤, 4), then any valid vertex 𝑣′ of any
process 𝑝 𝑗 ∈ 𝑃 broadcast for a round 𝑟 ≥ round(𝑤 + 1, 1) will have a strong path to 𝑣𝑤 . In
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𝑝1 . . .

𝑝2 . . .

𝑝3 . . .

𝑝4 . . .
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Figure 4.4: Example DAG as constructed by 𝑛 = 5 TEE-Rider processes of which at maximum 2 may be
faulty. Shown is the “global” state of the graph, i.e., after every process eventually received every vertex of 9
rounds. The 𝑥 axis denotes 𝑖 := (𝑟 mod 4) + 1, i.e., the round within the wave. For simplicity, all vertices
are valid. The direct commit rule is not fulfilled for any process for wave 𝑤 as the wave root 𝑣𝑤 is only
reached by two vertices of round(𝑤, 4). The direct commit rule is fulfilled for processes 𝑝3, 𝑝4, and 𝑝5 for
wave𝑤 + 1 (wave root 𝑣𝑤+1). Vertices that have a path to the root of their wave are drawn slightly bigger and
are colored according to the wave root. The direct commit rule ensures that a correct process can commit
a wave retrospectively if it was not able to commit when it finished the wave. Consequently, 𝑝1 and 𝑝2
will eventually commit wave𝑤 + 1. Since 𝑣𝑤+1 has a path to 𝑣𝑤 , wave𝑤 will be committed retrospectively
although no process observed the direct commit rule for wave𝑤 to be fulfilled.

particular, the wave root 𝑣𝑤 ′ of any wave𝑤 ′ > 𝑤 that can be committed will have a strong
path to 𝑣𝑤 .

Proof. Since 𝑝𝑖 commits 𝑣 in round(𝑤, 4), the direct commit rule is fulfilled (l. 28): ∃𝑈 ⊆
DAG [round(𝑤, 4)] : |𝑈 | ≥ ⌊𝑛2 ⌋ + 1 ∧ ∀𝑢 ∈ 𝑈 : strongPath(𝑢, 𝑣𝑤 ). A valid vertex must
reference at least ⌊𝑛2 ⌋ + 1 distinct vertices of the previous round with a strong edge (l. 25).
Thus, a process 𝑝 𝑗 ∈ 𝑃 broadcasting a valid vertex 𝑣 𝑗 for round(𝑤 + 1, 1) selected at least
⌊𝑛2 ⌋ + 1 vertices of round(𝑤, 4) as strong edges for 𝑣 𝑗 . Any two subsets of size ⌊𝑛2 ⌋ + 1 of a
superset of size 𝑛 intersect in at least one element. Thus, every valid vertex of a process
broadcast for round(𝑤 + 1, 1) must have at least one edge to a vertex of𝑈 , and, via𝑈 to
𝑣𝑤 . As every valid vertex of round(𝑤 + 1, 1) has a strong path to 𝑣𝑤 and every valid vertex
of round(𝑤 + 1, 2) connects to at least ⌊𝑛2 ⌋ + 1 vertices of round(𝑤 + 1, 1), by induction,
any valid vertex 𝑣′𝑗 of any process 𝑝 𝑗 ∈ 𝑃 broadcast for a round 𝑟 ≥ round(𝑤 + 1, 1) has a
strong path to 𝑣𝑤 . Because wave roots that can be committed are valid vertices, the wave
root 𝑣𝑤 ′ of any wave𝑤 ′ > 𝑤 will have a strong path to 𝑣𝑤 .

An example for a resulting graph with 𝑛 = 5 processes, i.e. 𝑡 ≤ 2, is shown in Figure 4.4.
The example shows the impact of the direct commit rule: If a process can directly commit,
the wave root will have a path to any future valid vertex. This allows processes 𝑝1 and 𝑝2
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to commit wave𝑤 + 1 retrospectively when committing a wave ≥ 𝑤 + 2, even though they
were not able to commit wave𝑤 + 1 directly, thus, maintaining the total order property.

Lemma 4.3 (Common core). When a correct process 𝑝𝑖 ∈ 𝑃 completes round(𝑤, 4) of
wave 𝑤 , then ∃𝑉1 ⊆ DAG [round(𝑤, 1)],𝑉4 ⊆ DAG [round(𝑤, 4)] : |𝑉1 | ≥ ⌊𝑛2 ⌋ + 1 ∧ |𝑉4 | ≥
⌊𝑛2 ⌋ + 1 ∧ (∀𝑣1 ∈ 𝑉1,∀𝑣4 ∈ 𝑉4 : strongPath(𝑣4, 𝑣1)).

Proof. By use of reliable broadcast and validity checks in ll. 9 and 25, faulty processes are
limited to omission faults. Thus, the get-core argument of Attiya and Welch [AW04, Sec.
14.3.1] still holds [AW04, Sec. 14.3.3]: Let 𝐴 ∈ {0, 1}𝑛×𝑛 be a matrix that contains a row for
each possible vertex of round(𝑤, 3) and a column for each possible vertex of round(𝑤, 2).
Let 𝐴[ 𝑗, 𝑘] = 1 if the vertex of process 𝑝 𝑗 of round(𝑤, 3) has a strong edge to the vertex of
process 𝑝𝑘 of round(𝑤, 2) or 𝑝 𝑗 sends no vertex (or an invalid one) but 𝑝𝑘 sends a valid
vertex for round(𝑤, 2). As there are at least ⌊𝑛2 ⌋ + 1 ≤ 𝑛 − 𝑓 correct processes, each row of
𝐴 contains at least ⌊𝑛2 ⌋ + 1 ones and 𝐴 contains at least 𝑛(⌊𝑛2 ⌋ + 1) ones. Since there are
𝑛 columns, there must be a column 𝑙 with at least ⌊𝑛2 ⌋ + 1 ones. This implies there is a
vertex 𝑣𝑙 by process 𝑝𝑙 in round(𝑤, 2) s.t. ∃𝑉3 ⊆ DAG [round(𝑤, 3)] : |𝑉3 | ≥ ⌊𝑛2 ⌋ +1∧∀𝑣3 ∈
𝑉3 : strongPath(𝑣3, 𝑣𝑙 ). As at most 𝑓 vertices in 𝑉3 belong to faulty processes that may
commit send omission faults for round(𝑤, 3) and ⌊𝑛2 ⌋ + 1 ≥ 𝑡 + 1, by quorum intersection
at least one vertex of 𝑉3 is received by any correct process 𝑝 𝑗 ∈ 𝑃 before it sends its vertex
for round(𝑤, 4). Thus, every valid vertex in DAG [round(𝑤, 4)] has at least one strong
edge to a vertex of 𝑉3. Since 𝑣𝑙 must be valid and thus has a strong edge to each vertex of
a set 𝑉1 ⊆ DAG [round(𝑤, 1)], |𝑉1 | ≥ ⌊𝑛2 ⌋ + 1, any valid vertex of rounds 𝑟 ≥ round(𝑤, 4)
has a strong path to every vertex, including 𝑉1, reached by 𝑣𝑙 via strong paths. Please note
that the construction of the set 𝑉1 is valid for all correct processes that complete the wave
and, thus, represents the ‘common core’.

Due to the changed quorum size, we have to adapt [Kei+21, Claim 6] to the following
lemma:

Lemma 4.4 (Expected commit latency). For every correct process 𝑝𝑖 and for every wave𝑤 ,
the expected number of waves until 𝑝𝑖 observes the direct commit rule to be fulfilled is 2.

Proof. By Lemma 4.3, the probability for the direct commit rule to be fulfilled for an
arbitrary correct process 𝑝𝑖 is at least

lim
𝑛→∞

( ⌊𝑛2 ⌋ + 1
𝑛

)
=
1
2 .

By applying the Bernoulli distribution, the expected number of waves until the direct
commit rule is fulfilled is 2.

Lemmas 4.2 and 4.3 are a direct stand-in for the lemmas 1 and 2 in [Kei+21]; Lemma 4.4
replaces Claim 6. Thus, all atomic broadcast properties follow directly from the original
proofs.
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Figure 4.5: Example DAG as constructed by 𝑛 = 4 DAG-Rider processes of which at maximum 1 may be
faulty illustrating the importance of weak edges. Shown is the “global” state of the graph, i.e., after every
process eventually received every vertex of 3 rounds. The 𝑥 axis denotes the round index 𝑟 . For simplicity,
all vertices are valid. Strong edges are solid, black arrows. Weak edges are orange, dashed arrows. Vertices
of 𝑝4 are only referenced with strong edges of 𝑝4 itself. As a result, the vertices of 𝑝4 are not in the ancestry
of vertices by other processes and, if the common coin selects a vertex of 𝑝4 as a wave root, the commit
rules will not be met. Thus, vertices of 𝑝4 will never be committed. For the example, we assume that 𝑝4 is
only delayed by one round and, thus, all processes have added 𝑣 to their DAG when starting round 3. Thus,
starting from round 3, any correct process will observe that 𝑣 is not reachable and connect its vertex for
round 3 with a weak edge to 𝑣 . This ensures that any 𝑣 will eventually be in the ancestry of a wave root
created by a correct process and, subsequently, will be delivered.

4.4.4 Removing Weak Edges – Reducing Computational Complexity

The weak edges in DAG-Rider have a single purpose: They are required to ensure that,
when a correct process broadcasts a message, i.e., a vertex, eventually all correct processes
will deliver the vertex (i.e., AB-Validity) [Kei+21, Proposition 4]. Figure 4.5 illustrates an
example for the importance of weak edges. While being important for the correctness of
DAG-Rider, the weak edges come with two significant trade-offs:

1. Weak edges increase the expected computational complexity of the protocol as every
time a vertex is created the reachability of vertices has to be checked.

2. Weak edges make garbage collection impossible as every new vertex received may
have a weak edge to a vertex that was already garbage collected [Dan+22, Sec. 8.2].

In the following, we will show that weak edges can be removed from DAG-Rider without
losing AB-Validity if a fair network scheduler can be assumed, i.e., if an attacker can-
not control the delivery delays of network messages and network delays are uniformly
distributed. First, we show that when using the USIG-based causal order broadcast as
the reliable broadcast abstraction, correct processes can immediately deliver their own
vertices. Then, we show that we can safely remove weak edges from the protocol without
sacrificing AB-Validity. Finally, we show that a correct process will be able to deliver its
own vertex in expectation after a constant number of waves.
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Lemma 4.5 (Immediate delivery of vertices). When a correct process 𝑝𝑖 constructs and broad-
casts a vertex 𝑣 for round 𝑟 using the USIG-based causal order broadcast, 𝑝𝑖 can immediately,
i.e., without additional communication, add 𝑣 to its DAG.

Proof. A correct process 𝑝𝑖 is required to reliably broadcast a new vertex 𝑣 (Algorithm 4, ll.
19 and 23ff.). By Lemma 4.1, the reliable broadcast abstraction will directly deliver 𝑣 at 𝑝𝑖 .
Subsequently, 𝑝𝑖 will add 𝑣 to its vertex buffer (Algorithm 4, l. 25). As 𝑣 is a valid vertex
and 𝑝𝑖 only adds vertices as edges which it already added to the DAG (Algorithm 4, l. 15),
as soon as the r_deliver handler was invoked (ll. 23–25), 𝑣 will be added to the DAG in the
next iteration of the main loop (ll. 7–10).

Theorem 4.4 (AB-Validity without weak edges). If a correct process 𝑝𝑖 constructs and
broadcasts a vertex 𝑣 for an arbitrary but fixed round 𝑟 using the USIG-based causal order
broadcast, network message delays are uniformly distributed, and process 𝑝𝑖 ensures that 𝑝𝑖 ’s
vertex of round 𝑟 − 1 is a strong edge of 𝑣 , then every correct process will eventually deliver 𝑣
with probability 1.

Proof. When 𝑝𝑖 constructs, broadcasts, and handles a vertex 𝑣 for round 𝑟 , by Lemma 4.5,
𝑝𝑖 will add 𝑣 in the next iteration of the main loop. Thus, a simple extension to the check
in l. 12, i.e., checking if 𝑣 is already in the DAG (DAG [𝑟 ] [𝑝𝑖] ≠ ⊥), and the check in l. 25,
i.e., checking that the strong edges contain the creator’s vertex of the previous round,
ensures that 𝑝𝑖 will have 𝑣 in its DAG before completing round 𝑟 . Moreover, this check
does not conflict with liveness or cause additional latency, as, in the worst case, 𝑝𝑖 simply
adds all vertices it received for round 𝑟 to its DAG before adding its own vertex 𝑣 and
completing the round. It follows by induction that the vertices of 𝑝𝑖 build a chain made
of strong edges. Following the argument for Lemma 4.4, the probability for 𝑝𝑖 to directly
commit a wave is at least 1

2 . The probability that the wave root 𝑣𝑤 is a vertex of 𝑝𝑖 is 1
𝑛
.

Due to the uniformly distributed network delays, these probabilities are independent and,
thus, the probability that 𝑝𝑖 commits a wave with a wave root 𝑣𝑤 of 𝑝𝑖 is at least 1

2𝑛 . Thus,
in expectation, 𝑝𝑖 will commit a wave with a wave root 𝑣𝑤 of 𝑝𝑖 after 2𝑛 waves, i.e., with
probability 1, which then will deliver 𝑣 as part of the ancestry of 𝑣𝑤 .

While Theorem 4.4 gives a sufficient condition for AB-Validity without weak edges, the
result to wait 2𝑛 waves is not promising. However, the result is only an upper bound on
the expected time until a correct process 𝑝𝑖 delivers its own vertex 𝑣 for round 𝑟 :

Lemma 4.6 (Expected time of ancestry inclusion). Under the assumption that for an
arbitrary but fixed 𝑣′ of round 𝑟 + 1 every vertex 𝑣 of round 𝑟 has the same probability to be
selected as a strong edge, a vertex 𝑣 of round 𝑟 created by process 𝑝𝑖 will, in expectation, be in
the ancestry of every valid vertex 𝑣′′ of round 𝑟 + 2, i.e., every valid 𝑣′′ will have a strong path
to 𝑣 .
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Proof. If we simplify the quorum size, i.e., the required number of strong edges, to 𝑛
2 , we

get an estimate for the probability that 𝑣′ has a strong edge to 𝑣 using the hypergeometric
distribution [Wik25b]:

Pr[𝑋 = 𝑣 is strong edge of 𝑣′] =

(
1
1

) (
𝑛−1
𝑛
2−1

)(
𝑛
𝑛
2

) =
1
2 .

Now, by construction, every vertex 𝑣′
𝑘
, i.e., the vertex of 𝑝𝑘 for round 𝑟 + 1, has a strong

edge to 𝑣𝑘 , i.e., 𝑝𝑘 ’s vertex for round 𝑟 . Thus, a vertex of every round ≥ 𝑟 + 2 has at least
the same probability of 1

2 to “hit” a vertex that has a strong path to 𝑣 . Hence, by applying
the Bernoulli distribution, in expectation every valid vertex of round 𝑟 + 2 has a strong
path to 𝑣 .

Remark. The probability of 1
2 is a lower bound. If we use the correct quorum size of ⌊𝑛2 ⌋ +1,

the true probability of inclusion is, depending on 𝑛, at least 1
2 or higher.

Lemma 4.7 (Expected time of delivery). Let𝑤 be the wave of round 𝑟 and 𝑣 a vertex created
by a correct process 𝑝𝑖 for round 𝑟 . Under the assumption of a uniform distribution of message
delays, the probability that 𝑝𝑖 will deliver 𝑣 in expectation not later than when committing
wave𝑤 + 3 is 1.

Proof. By Lemma 4.6, if 𝑟 < round(𝑤, 4), we can conclude that the probability of 𝑣 to be in
the ancestry of the wave root 𝑣𝑤+1 of wave𝑤 + 1 is 1. If 𝑟 = round(𝑤, 4), we can conclude
that the probability of 𝑣 to be in the ancestry of the wave root 𝑣𝑤+2 of wave𝑤 + 2 is 1. By
Lemma 4.4, 𝑝𝑖 will, in expectation, be able to commit either wave 𝑤 + 2 or wave 𝑤 + 3
directly. Hence, in expectation, 𝑝𝑖 will deliver 𝑣 not later than when committing wave
𝑤 + 3.

Remark. If uniformly distributed latencies, i.e., a fair scheduler, cannot be assumed, the
results above do not hold as there exist executions in which a vertex of a process is never
delivered4. As we use TEE-Rider in the remainder of the work at hand as the basis for
SMR, we do not suffer from this limitation: Depending on the actual client implementation,
an SMR client either broadcasts its request to all replicas or uses a timer to broadcast if
needed. Both ensures that the client request will be proposed by a correct replica that
can, by the design of DAG-Rider-like protocols, not suffer from a network adversary5.
Moreover, an attacker that controls the links between a majority of correct replicas seems
to be unlikely if replicas are sufficiently distributed.

4 Please note that a wide-area network deployment where some replicas have a significantly higher latency
to the remainder of the peer-to-peer network, e.g., when placing replicas around the globe, the fair
scheduler assumption is not met.

5 In DAG-Rider-like protocols, replicas can only make progress if there is sufficient progress in adding new
DAG vertices. If a network attacker prevents this progress, the protocol will stall. The common coin and
the design of the quorums ensure that there are always correct replicas part of the replica set that is able
to make progress. These correct replicas will propose all valid client requests they received.
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Figure 4.6: Counter example for the common core property with 𝑛 = 5 and a wave length of three rounds.
As all vertices are valid, all vertices of round 3 should have a path to a shared subset of round 1 which is
of size 3. The maximum shared subset, however, is of size 2 (vertices 4 and 5 in blue). If now a process
completes round 3 with vertices A, B, and C of round 3, there will be no common core of size 3 but of size 2.
If, however, it completes round 3 with vertices C, D, and E, the common core will be of size 4. This is in
conflict with the common core property that requires that for any combination of vertices in round 3 the
common core is at least of size 3. Thus, for the common core property to be fulfilled, all vertices of round 3
must have an additional path to the same vertex of the vertices 1–3 in orange.

4.4.5 Reducing the Expected Commit Latency?

In DAG-Rider, waves are the construct defining the expected commit latency. A wave
consists of four consecutive rounds. If we could reduce the number of rounds per wave,
obviously we would reduce the expected commit latency. The wave length of four rounds
is required to prove the common core argument (Lemma 4.3) that, in turn, is required to
prove AB-Agreement. The underlying get-core construct by Attiya and Welch [AW04,
Section 14.3] relies on three steps of all-to-all communication: In the first step, every
process sends a message to every other process. In the second step, every process collects
𝑛 − 𝑡 messages sent by other processes and broadcasts the collected set of messages. In
the third step, every process collects 𝑛 − 𝑡 of these sets and broadcasts a union of the sets.
It is tempting to compare this scheme to the three phases of reliable broadcast: init, echo,
ready. We know that when using a TEE, e.g., a USIG, the ready phase is not required (see
Section 4.2). Naively, we could map this optimization and try to reduce the number of
rounds per wave to three. However, as we show in the following counter example, this is
not possible without breaking the common core property.

Let 𝑛 = 5, the quorum size be ⌊𝑛2 ⌋ + 1, i.e., 𝑡 = 2, and the wave length be three rounds. For
the common core property to hold, any combination of three vertices in round 3 must
share a set of at least three reachable vertices in round 1, i.e., there is a path between the
vertex of round 3 and the vertex of round 1. Figure 4.6 shows a counter example for the
common core property. If a correct process finishes the third round with vertices A, B, and
C, the common core is of size 2 (vertices 4 and 5 in blue). Put differently, only vertices 4
and 5 are reachable from any valid vertex of round 3. If, however, the process finishes the
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third round with vertices C, D, and E, the common core is of size 4: all three vertices have
a path to the same vertices 1, 3, 4, and 5 of round 1. The authors of Fides claim a similar
property for their protocol (with 𝑛 > 2𝑡 and three rounds per wave): “For every wave𝑤
there are at least 𝑓 + 1 [i.e., 𝑡 + 1] vertices in the first round of𝑤 that satisfy the commit
rule” [Xie+25, Lemma 6]. However, if a process completes the wave as depicted above
with vertices A, B, and C in the third round, the direct commit rule, i.e., the condition that
the selected wave root is reached by at least 𝑡 + 1 vertices of round 3, is only fulfilled for 𝑡
vertices of round 1, i.e., the vertices 4 and 5.

It is important to note that the violation of the common core property is no safety violation.
Safety solely relies on the direct commit rule. From a safety point of view, it would be
possible to try to commit every round. However, the common core property is required to
proof Lemma 4.4 (Claim 6 in [Kei+21] and Lemma 7 in [Xie+25]). Using a combinatorial
argument, the findings in Section 4.4.4 show that when assuming a “fair” network scheduler
the common core property is not required to show liveness and that a lower commit latency
can be expected. Xie et al. follow a similar argument in their Lemma 8 [Xie+25]. Under
adversarial conditions, however, we are not aware of a proof that shows liveness for a
DAG-based approach with a fault tolerance of 𝑛 > 2𝑡 that does not rely on the common
core property. In fact, Xie et al. show that, under adversarial conditions, the wave length
must be greater than two rounds to prevent stalls [Xie+25, Claim 2]. However, this does
not rule out the existence of a combinatorial proof for a wave length of 3 assuming an
asynchronous adversary. For TEE-Rider, we use a wave length of four rounds and leave
the investigation of combinatorial arguments to future work.

4.4.6 TEE-RIDER Protocol

In this subsection, we present the complete TEE-Rider protocol, i.e., with changed quorum,
removed weak edges and with an “inlined” USIG-based causal order broadcast. The goal
of the enclave design is a small trusted computing base and the reduction of costly context
switches for efficient execution. The enclave combines the well-known USIG concept to
prevent equivocation (see Section 4.2) and a variant of the naive TEE-based common coin
to provide randomness (see Section 4.3.1). We describe the protocol in three parts: the
main loop of the protocol, the broadcast logic, and the enclave logic.

The main loop of the protocol, i.e., “vertex buffer walk” and consensus logic, is shown in
Algorithm 6. Besides the changed quorum sizes and the removed weak edges, the logic
is not changed to DAG-Rider. Whenever the process wants to atomically broadcast a
message, it calls the A_BROADCAST(·) function (l. 21) which adds the message to the message
buffer. In an endless loop, the process checks the vertex buffer for vertices that can be
added to the DAG (ll. 9–20). Note that, in a practical implementation, one would not
implement this as a busy waiting loop but as an event-driven logic that is triggered by
the arrival of a new message. However, with the loop representation, we are not required
to handle edge cases (e.g., how the very first vertex of a process is created). When the
process was able to add ⌊𝑛2 ⌋ + 1vertices including its own vertex to the current round of
the DAG (l. 13), it first checks if it completed a wave (l. 14) and transitions then to the next
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round (l. 15ff.). Before it can create a vertex for the new round, it has to have received at
least one broadcast request (l. 16). It then creates the vertex, lets it sign by the enclave
and broadcasts the vertex in best effort fashion. If the process has completed a wave, it
calls the WAVEREADY(·) function (l. 23ff.) which implements the logic to deliver vertices and,
thus, messages. First, the naive TEE-based common coin is tossed (l. 24). As the coin can
only be tossed once for an instance, the result is stored in the coin store variable. Then,
the process verifies if the direct commit rule is met (l. 26–27). If this is the case, it will
check undelivered waves for the fulfillment of the retrospective commit rule (ll. 29–32).
Finally, the process delivers the vertices wave by wave in deterministic order, updates the
decidedWave variable, and clears the coin store to limit memory consumption (coins of
decided waves are not required anymore) (ll. 33–39).

Algorithm 7 lists the broadcast logic that implements a USIG-based causal order broadcast
on top of the DAG. As we track the system state in the DAG and the vertex buffer, in
contrast to the USIG-based causal order broadcast, we do not require a separate data
structure for the received messages and the expected counter values. Instead, the round
is used as the counter value. The use of the round instead of a separate counter value
does not break the FIFO property as a process must create exactly one vertex for each
round to be correct. First, the process checks if the vertex is valid in terms of edges (l.
5), if a vertex by the creating process for the vertex round was already received, i.e., the
USIG-enforced RB-Integrity property (l. 6), and if it is accompanied by a valid enclave
signature (l. 7). If any of these checks fail, the vertex is ignored. If the vertex is valid, as
we do in the USIG-based causal order broadcast, possible vertex requests are answered (ll.
9–10). Then, the process checks if it has to request vertices referenced as edges (ll. 11–16).
Finally, the process can add the vertex to the vertex buffer (l. 17) which will be processed
in the next iteration of the main loop. If a process receives a V_REQUEST message (l. 18),
it checks if it has a vertex for the requested round and process in its DAG or vertex buffer
and answers the request (ll. 19–22). If it does not know a matching vertex, it adds the
request to the receivedRequests map (l. 23). The utility functions PATH(·) (ll. 24–26) and
ROUND(·) (ll. 27–29) are the same as in DAG-Rider.

In Algorithm 8, we show the enclave logic that implements a USIG-equivalent signature
service and the naive TEE-based common coin (see Section 4.3.1) in which validly signed
vertices are used as coin shares. The enclave is hosted by a TEE (Definition 2.1). The
enclave state is small: it only contains the asymmetric key pair, a round counter for
the signatures, an array of public keys, a variable to track the next toss round, and the
cryptographically secure pseudorandom number generator (CPRNG). The SIGN(·) function
(ll. 5–8) is equivalent to the USIG. When invoked, it signs the message𝑚 together with the
current round counter value and subsequently increments the counter. The COMPUTECOIN(·)
function (ll. 9–17) implements a form of the naive TEE-based common coin. Note that, in
contrast to Definition 4.1, the function does not take the coin instance as an argument.
The naive TEE-based common coin enforces a total order on the coin tosses by using the
round counter of the enclave as a coin instance. In TEE-Rider, we use the vertices of
the last round of the wave as the coin shares. To be able to toss a coin, a process has to
convince the coin implementation that it made sufficient progress on the consensus layer
by providing sufficient validly signed vertices from peering replicas. Thus, the function
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Algorithm 6 TEE-Rider Atomic Broadcast for Process 𝑝𝑖 : Main Loop
1: state DAG : array of array of vertices, DAG [0] initialized with genesis vertices
2: state 𝑟 : N, initialized with 1
3: state decidedWave : N0, initialized with 0
4: state messageBuffer : queue of messages, initialized empty
5: state vertexBuffer : set of vertices, initialized empty
6: state coinStore : map of key N to value N, initialized empty
7: state enclave : enclave instance
8: state 𝑃 : set of processes
9: while true do
10: for 𝑣 ∈ vertexBuffer do
11: if 𝑣 .𝑟 ≤ 𝑟 ∧ ∀𝑝𝑢 ∈ 𝑣 .edges : DAG [𝑣 .𝑟 − 1] [𝑝𝑢] ≠ ⊥ then

12: DAG [𝑣 .𝑟 ] [𝑣 .𝑝] ← 𝑣 ; vertexBuffer .remove(𝑣)
13: if |DAG [𝑟 ] | < ⌊𝑛2 ⌋ + 1 ∨ DAG [𝑟 ] [𝑝𝑖] = ⊥ then continue

14: if 𝑟 mod 4 = 0 then waveReady( 𝑟4 )
15: 𝑟 ← 𝑟 + 1
16: wait until ¬messsageBuffer .isEmpty()
17: 𝑣 ← new vertex; 𝑣 .block ← messageBuffer .pop(); 𝑣 .𝑟 ← 𝑟 ; 𝑣 .𝑝 ← 𝑝𝑖
18: for all 𝑢 ∈ DAG [𝑟 − 1] do 𝑣 .edges.add(𝑢.𝑝)
19: 𝜎 = enclave.sign(𝑣)
20: for all 𝑝 𝑗 ∈ 𝑃 do send ⟨VERTEX, 𝑣, 𝜎⟩ to 𝑝 𝑗

21: function a_broadcast(𝑚)
22: messageBuffer .insert(𝑚)
23: function waveReady(𝑤 )
24: coinStore[𝑤] ← enclave.computeCoin(DAG [r])
25: 𝑣𝑤 ← DAG [round(𝑤, 1)] [coinStore[𝑤]]
26: if 𝑣𝑤 = ⊥ ∨ |{𝑢 | 𝑢 ∈ DAG [round(𝑤, 4)] : path(𝑢, 𝑣𝑤 )}| < ⌊𝑛2 ⌋ + 1 then
27: return

28: committedRoots← new stack; committedRoots.push(𝑣𝑤 )
29: for𝑤 ′← 𝑤 − 1 down to decidedWave + 1 do
30: 𝑣𝑤 ′ ← DAG [round(𝑤 ′, 1)] [coinStore[𝑤 ′]]
31: if 𝑣𝑤 ′ ≠ ⊥ ∧ path(𝑣𝑤 , 𝑣𝑤 ′) then
32: committedRoots.push(𝑢); 𝑣𝑤 ← 𝑣𝑤 ′

33: while ¬committedRoots.isEmpty() do
34: 𝑣𝑤 ← committedRoots.pop()
35: verticesToDeliver ← {𝑢 | 𝑢 ∈ ∪𝑟 ′>0DAG [𝑟 ′] : path(𝑣𝑤 , 𝑢) ∧ ¬𝑢.delivered}
36: for 𝑢 ∈ verticesToDeliver in deterministic order do
37: 𝑢.delivered ← True
38: a_deliver (𝑢.𝑝,𝑢.𝑟,𝑢.block)
39: decidedWave← 𝑤 ; coinStore.clear()
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Algorithm 7 TEE-Rider Atomic Broadcast for Process 𝑝𝑖 : Broadcast Logic and Utility
1: state PK : array of public keys
2: state requested : set of tuples (N,N), initialized empty
3: state receivedRequests : map of key (N,N) to list of processes, initialized empty
4: upon VERTEX(𝑝𝑘 , 𝑣, 𝜎)
5: if |𝑣 .edges | < ⌊𝑛2 ⌋ + 1 ∨ 𝑣 .𝑝 ∉ 𝑣 .edges then abort

6: if DAG [𝑣 .𝑟 ] [𝑣 .𝑝] ≠ ⊥ ∨ vertexBuffer .knows((𝑣 .𝑟, 𝑣 .𝑝)) then abort

7: if ¬vfy(PK [𝑣 .𝑝], (𝑣 .𝑟, 𝑣), 𝜎) then abort

8: 𝑣 .𝜎 ← 𝜎 ; 𝑣 .delivered ← False
9: for all 𝑝 𝑗 ∈ receivedRequests.remove((𝑣 .𝑟, 𝑣 .𝑝)) do
10: send ⟨VERTEX, 𝑣, 𝑣 .𝜎⟩ to 𝑝 𝑗

11: for all 𝑝𝑢 ∈ 𝑣 .edges do
12: if DAG [𝑣 .𝑟 − 1] [𝑝𝑢] = ⊥ ∧ ¬vertexBuffer .knows((𝑣 .𝑟 − 1, 𝑝𝑢)) then
13: if (𝑣 .𝑟, 𝑝𝑢) ∉ requested then

14: for all 𝑝 𝑗 ∈ 𝑃 do

15: send ⟨V_REQUEST, 𝑣 .𝑟 , 𝑝𝑢⟩ to 𝑝 𝑗

16: requested .add((𝑣 .𝑟, 𝑝𝑢))
17: vertexBuffer .add(𝑣)
18: upon V_REQUEST(𝑝𝑘 , 𝑟 ′, 𝑝𝑣 )
19: 𝑣 ← ⊥
20: if DAG [𝑟 ′] [𝑝𝑣 ] ≠ ⊥ then 𝑣 ← DAG [𝑟 ′] [𝑝𝑣 ]
21: if 𝑣 = ⊥ ∧ vertexBuffer .knows((𝑟 ′, 𝑝𝑣 )) then 𝑣 ← vertexBuffer .get((𝑟 ′, 𝑝𝑣 ))
22: if 𝑣 ≠ ⊥ then send ⟨VERTEX, 𝑣, 𝑣 .𝑐, 𝑣 .𝜎⟩ to 𝑝𝑘
23: else receivedRequests[(𝑟 ′, 𝑝𝑣 )] .add(𝑝𝑘)
24: function path(𝑣,𝑢)
25: return exists a sequence of vertices (𝑣1, 𝑣2, ..., 𝑣𝑘) ∈ ∪𝑟 ′≥0DAG [𝑟 ′] such that
26: 𝑣1 = 𝑣 ∧ 𝑣𝑘 = 𝑢 ∧ ∀𝑖 ∈ [2, 𝑘] : 𝑣𝑖 ∈ 𝑣𝑖−1.edges
27: function round(𝑤, 𝑖)
28: if 𝑖 < 1 ∨ 𝑖 > 4 ∨𝑤 < 1 then abort

29: return 4(𝑤 − 1) + 𝑖

takes a set of vertices vs as input. It first checks if the vertices are valid, i.e., if they are
for the next toss round and if the signatures are valid (l. 12). Moreover, we ensure that
the potentially Byzantine host system does not propose the same vertex multiple times
(enforced by the seen set.). If at least ⌊𝑛2 ⌋ + 1 many valid vertices are provided (l. 16), the
next toss round is incremented by 4, i.e., to the end of the next wave (l. 17), and a random
number in the range of [0, 𝑛] ⊂ N is returned by invoking the CPRNG (l. 18).

4.4.7 Concluding Remarks

The algorithm as presented in this section proposes a single message per vertex. To achieve
a scalable system, practical deployments require that a protocol step orders a batch of
requests [Sin+08; Dan+22; Gir+24]. In the case of TEE-Rider, this can be achieved by
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Algorithm 8 TEE-Rider Atomic Broadcast for Process 𝑝𝑖 : Enclave (in TEE)
1: state (sk, pk) : asymmetric key pair
2: state 𝑟 : N, initialized with 1
3: state PK : array of public keys
4: state nextTossRound : N, initialized with 4
5: state rng : CPRNG, initialized with a common seed
6: function sign(𝑚)
7: 𝜎 ← sgn(sk, (𝑟,𝑚))
8: 𝑟 ← 𝑟 + 1
9: return (𝑟 − 1, 𝜎)
10: function computeCoin(vs)
11: valid ← 0; seen← empty set
12: for all 𝑣 ∈ vs do
13: if 𝑣 .𝑝 ∉ seen ∧ 𝑣 .𝑟 = nextTossRound ∧ vfy(PK [𝑣 .𝑝], (𝑐, 𝑣), 𝜎) then
14: seen.add(𝑣 .𝑝)
15: valid ← valid + 1
16: if valid < ⌊𝑛2 ⌋ + 1 then return ⊥
17: nextTossRound ← nextTossRound + 4
18: return rng.uniform(0, 𝑛)

adding more than one message as a vertex’ payload. As batching adds complexity to the
protocol description and only affects the performance but not the correctness, we did not
include batching in the protocol description.

For TEE-Rider to work properly, we can identify the following requirements:

• Setup: The enclave and the host system must be able to verify the validity of the
vertices. In fact, it has to be ensured that every correct process works with the same
set of public keys. In particular, the corresponding public keys must be managed
inside an enclave that is trusted by all parties which is verified using attestation. For
the common coin to work properly, it has to be ensured that every enclave initializes
the CPRNG with the same seed.

• Garbage collection: Since TEE-Rider has an endlessly growing state, practical
deployments require garbage collection to manage memory consumption.

• Crash recovery: Every process will eventually crash which will also crash the
enclave. Without a recovery procedure, the system will eventually come to an halt
since the number of crashed processes 𝑓 becomes greater than 𝑡 . When the enclave
crashes, however, it must be impossible to rollback the enclave state. Otherwise, the
enclave could sign the same vertex multiple times, which would violate the USIG
property. Thus, USIG-based agreement protocols require procedures to reinitialize
the USIG of a crashed process.

In the next two sections, we first discuss fundamental issues that arise from the require-
ments above and the combination of asynchrony and TEEs. Then, we present NxBFT, a
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resilient and practical state machine replication protocol that addresses these issues in a
pragmatic way.

4.5 Fundamental Issues with Asynchrony and TEEs

As pointed out before, a practical protocol following the SMR approach must ensure
seamless operation – not only in the presence of faults. For this, the protocol must have
support functions that go beyond the core of achieving some form of consensus and
answering client requests. These functions increase resilience and usability in a practical
deployment and must include mechanisms to set up the protocol, i.e., to initialize the
system and to add new processes, to constrain the memory consumption with garbage
collection, and to recover from faults, e.g., by restarting crashed processes. When a TEE is
used to prevent equivocation, the TEE is trivially safety-critical and wrong usage can lead
to safety violations. We find that, while the TEE alone makes this support functions harder
to implement, the combination with asynchrony makes it even harder. In the following,
we show that

1. the setup of a TEE-based agreement primitive requires consensus on the enclave
identities and, thus, is impossible to achieve in partial synchronywith a fault tolerance
of 𝑛 < 3𝑡 when assuming Byzantine faults,

2. the backfilling of the USIG-based causal order broadcast forbids garbage collection
when operating in asynchrony and having no additional supporting protocols, and

3. USIG reinitialization, i.e., the establishment of a new enclave identity for a send-
ing process, in partially synchronous, TEE-based reliable broadcast requires active
participation of all processes.

The impossibility of crash recoverywas previously published by Leinweber andHartenstein
[LH25]. The requirement for consensus during setup was also discussed by Marius Haller
[Hal25].

4.5.1 Setup of a USIG-Based Peer-to-Peer Network

In TEE-Rider, every process is equipped with a USIG-like TEE that ensures that processes
cannot equivocate. As pointed out above, in such a peer-to-peer network, it must be
ensured that every correct process communicates with the same set of enclave identities. If
correct processes would not use the same enclave identity for the same peering process 𝑝𝑖 ,
𝑝𝑖 could start multiple enclaves, each with its own identity and counter value. A malicious
process 𝑝𝑖 could then use these different identities to send conflicting messages to different
peering processes. Hence, 𝑝𝑖 would have the ability to equivocate.

Moreover, it is important that the signature keys used by the USIG are actually bound
to the enclave identity to prevent so-called simulation attacks in which an attacker can
pretend to execute code inside TEE when it is not the case. Assume we have a set of 𝑛
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processes 𝑃 := {𝑝1, . . . , 𝑝𝑛} and a PKI assumption that allows the processes to identify
each other. This PKI does not allow to distinguish between correct and faulty processes
and it does not allow to verify enclave identities. Assume further that during setup, each
process 𝑝𝑖 will start its enclave that generates an asymmetric key pair. If now 𝑝𝑖 would
simply broadcast its public key, others would have no means to ensure that this public key
stems from an enclave. If 𝑝𝑖 is malicious, it could use a key pair that is not managed by an
enclave and, thus, sign messages with arbitrary counter values which, again, is the ability
to equivocate. Hence, the attestation must be used to bind the public key to the currently
executed enclave.

In summary, we need to solve the following problem: 𝑛 processes start their enclave
which generates an asymmetric key pair and produces an attestation certificate that binds
the public key to the enclave identity. Then, every process must provide its attestation
certificate to the other processes and all correct processes must agree on the same set of
enclave identities. Put differently, 𝑛 processes propose an input value (their attestation
certificate) and all correct processes must agree on the same output value (the set of
attested enclave identities). This is a consensus problem (see Section 2.6.1 and [LLR02,
Section 5, first paragraph]). In Section 2.6 and Table 2.2, we show that when assuming
either partial synchrony or asynchrony, a PKI assumption, i.e., the authenticated Byzantine
fault model, is not sufficient to reach consensus with a fault tolerance of 𝑛 > 2𝑡 . Thus, if the
setup phase should be able to tolerate the same amount of faults as the operation phase, we
require either synchrony, the assumption of benign faults during setup, or a trusted third
party that distributes the enclave identities to the processes. Another option is to abort
in the case of a fault instead of tolerating it (see Section 4.6.4). Note that the distributed
key generation required to establish common (for the naive TEE-based common coin) or
shared (for the TEE-based Cachin coin) secrets requires consensus as well.

4.5.2 Backfilling vs. Garbage Collection

Narwhal proposes the following simple garbage collection scheme for asynchronous,
DAG-based atomic broadcast protocols [Dan+22, Section 3.3]:

1. There is a predefined garbage collection offset 𝑔 used by correct processes.

2. When a correct process updates its decidedWave variable to𝑤 , it garbage collects all
rounds 𝑟 < round(𝑤 − 𝑔, 1).

3. When a correct process 𝑝𝑖 garbage collects a vertex 𝑣 that was created by 𝑝𝑖 itself, it
checks if 𝑣 was delivered. If 𝑣 was not delivered, 𝑝𝑖 proposes 𝑣 ’s payload with the
next vertex it creates again (“re-injection” in the original Narwhal paper).

This garbage collection scheme piggybacks the ongoing consensus logic and does not
require any additional communication or coordination. The re-injection of undelivered
payloads ensures that AB-Validity is not violated. As discussed before, weak edges are
in conflict with such a garbage collection scheme: a process may receive a vertex with
a weak edge to a very old round. If the process garbage collected this round already, it
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𝑝𝑖
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Figure 4.7: Network setup for the backfilling counter example with 𝑛 = 5. Blue processes on the left form
the set of correct processes |𝐶 | = 𝑡 + 1, orange processes on the right form the set of faulty processes |𝐹 | = 𝑡 .
There is a temporary network partition between two correct processes, one of which is 𝑝𝑖 , and the rest of
the network. The network partition enforces that only 𝑝𝑄 and the two faulty processes together can for a
quorum |𝑄 | ≥ ⌊𝑛2 ⌋ + 1 and make any progress.

cannot accept the vertex. Safety will not be at risk but the consensus logic at said process
will eventually stall. While we safely removed weak edges, we introduced backfilling to
significantly improve the communication complexity. Backfilling is necessary: without
backfilling, the processes would “drown” in messages (see Figure 4.2) that, in most cases,
are not required to make progress. In the following, however, we will show that backfilling
and garbage collection are in conflict with each other when operating in asynchrony.
In Section 4.6.5, we make us of the fact that we use the atomic broadcast for SMR and
present a garbage collection scheme that is compatible with backfilling and does not
require secondary storage to ensure liveness.

Let 𝑛 ≥ 2𝑡 + 1 and, thus, the quorum size be ⌊𝑛2 ⌋ + 1 > 𝑡 . The actual number of faulty
processes is 𝑓 = 𝑡 . Thus, we can divide the set of processes 𝑃 into the set of correct
processes 𝐶, |𝐶 | = 𝑡 + 1 and the set of faulty processes 𝐹, |𝐹 | = 𝑡 . Further, we assume that
all but one correct process 𝑝𝑞 ∈ 𝐶 observe a network partition denying any progress. Now
assume that wave𝑤 is the last wave a correct process 𝑝𝑖 ∈ 𝐶 committed. Further assume
that the correct process 𝑝𝑄 ∈ 𝐶 , which does not suffer from the network partition, commits
a wave𝑤 ′ with𝑤 ′ − (𝑔 + 1) > 𝑤 . As 𝑝𝑄 is correct, it observed vertices of at least ⌊𝑛2 ⌋ + 1
processes (in the following grouped in set 𝑄, |𝑄 | = 𝑡 + 1) in round(𝑤 ′, 4) and 𝑝𝑄 garbage
collected all rounds 𝑟 ′ < 𝑟𝑔 := round(𝑤 ′ − (𝑔 + 1), 1). By assumption, all processes in 𝑄

except 𝑝𝑄 are also in 𝐹 : 𝑄 𝑓 = 𝑄 ∩ 𝐹, |𝑄 𝑓 | = 𝑡 and𝑄𝑐 = 𝑄 ∩𝐶 = {𝑝𝑖}, |𝑄𝑐 | = 1. The network
configuration is shown for 𝑛 = 5 in Figure 4.7. Thus, 𝑝𝑖 is only guaranteed to eventually
receive the vertices of rounds 𝑟 ′ > round(𝑤, 4) that 𝑝𝑄 created as all other processes are
faulty. If now 𝑝𝑖 receives a vertex 𝑣 created by 𝑝𝑄 for round 𝑟𝑣 , 𝑟 ′ ≤ 𝑟𝑣 < 𝑟𝑔 that has an
edge to a vertex it did not receive, it cannot accept 𝑣 (yet). The reason is that 𝑣 is for a
round that lies in the range where 𝑝𝑄 already garbage collected (< 𝑟𝑔) and 𝑝𝑖 could not
transition to yet (≥ 𝑟 ′). As all correct processes except 𝑝𝑄 lag behind, 𝑣 must have been
created by a process in 𝐹 . Process 𝑝𝑖 will send a V_REQUEST message to all processes.
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There is no guarantee that any server in 𝐹 will answer and the only server in 𝐶 that could
answer is 𝑝𝑄 . As 𝑝𝑄 is correct, it applied the garbage collection scheme and, thus, cannot
answer the request once the network partition is lifted. Thus, progress at 𝑝𝑖 will stall.

It follows that garbage collection breaks liveness when combined with backfilling in asyn-
chronous (and also partially synchronous) networks. Narwhal implicitly acknowledges this
observation by stating that garbage collection moves vertices to cheap and slow storage
[Dan+22, Section 3.3, last paragraph] even though they state to have made a significant
improvement concerning garbage collection in comparison to DAG-Rider [Dan+22, Section
8.2]. Under the assumption that network partitions as described above do not happen
frequently, this slow storage must not be accessed a lot. However, graph data must not be
deleted from the slow storage to ensure liveness and, once a network partition occurs, the
slow storage may become a bottleneck and hinder progress.

4.5.3 Crash Recovery: USIG Reinitialization

Faults like hardware failures, human configuration errors, and maintenance require that a
process can be put back into the condition to validate received messages and produce valid
messages. We are interested in an algorithmic solution that can recover processes while
allowing the system to continuously operate. For TEE-Rider, such a recovery procedure
must ensure that the recovery does not allow (1) equivocation and (2) to learn coin values
beforehand. Hence, a recovery procedure must be aware of the enclave.

The enclave must not be able to be started in a rolled back state. This is a safety requirement
as the enclave must not be able to sign different vertices with the same counter value.
However, there is no practical solution out there that allows that every state transition
is persisted in a way that it can be recovered from and previous states are inaccessible.
Instead, TEE technology allows to export data from the enclave to the host system with
confidentiality, integrity, and authenticity being preserved. Freshness, however, is not
guaranteed. Hence, the enclave logic must not support to export or import safety critical
state. In case of TEE-Rider, this means that the enclave must neither import nor export
the private key. For the common coin, rollbacks are not an issue: A rollback does not allow
to learn coin values beforehand; instead, it allows coin values to be tossed a second time.

If now an enclave crashes, it must be restarted in a fresh state with a new asymmetric key
pair and, thus, a new identity as the corresponding public key is bound to the enclave iden-
tity during attestation (see Section 4.5.1 above). Consequently, a recovery procedure has to
safely ensure that all correct processes agree on the new public key of the restarted enclave.
In TEE-Rider and similar approaches, the only interactive coordination mechanism are
the 𝑛 asynchronous, TEE-based reliable broadcast instances. Following the argumentation
in this chapter, all decisions are safely and passively derived from the reliable broadcast
message history, i.e., the DAG. Thus, recovering a TEE-Rider process is recovering the
reliable broadcast state in a way that the reliable broadcast properties RB-Agreement,
RB-Validity, and RB-Integrity are preserved for all correct processes. We show that to
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preserve the reliable broadcast properties, a recovery procedure must honor the input of
all correct processes making it impossible to work with a quorum size smaller than 𝑛.

Assumptions Let 𝑃 be a set of processes that implement a reliable broadcast primitive
for a single sender 𝑝𝑠 ∈ 𝑃 as in Definition 2.2. Of the 𝑛 := |𝑃 | processes, 𝑡 < 𝑛 processes
may be Byzantine faulty. The processes communicate over partially synchronous, perfect
point-to-point links. The sender 𝑝𝑠 is equipped with a USIG (see Algorithm 1) hosted in a
TEE (Definition 2.1). The USIG may only fail by crashing and looses its private key when
it crashes. USIG reinitialization is the process when a sender 𝑝𝑠 aims to change its USIG
identity. When 𝑝𝑠 (re-)initializes the USIG, the USIG creates a new asymmetric key pair,
i.e., a new identity.

Lemma 4.8 (Multiple valid USIG instances allow equivocation). When USIG reinitialization
allows a faulty sender in USIG-based reliable broadcast to exchange its USIG identity only for
a subset of correct receiving processes, this allows equivocation and RB-Agreement is violated.

Proof. Assume that the reliable broadcast protocol was properly set up and that the sender
𝑝𝑠 is the only faulty process. The set 𝐶 ⊂ 𝑃 \ {𝑝𝑠}, |𝐶 | = 𝑛 − 1 is the subset of correct
processes. Now, 𝑝𝑠 starts a new USIG instance with a new public key; 𝑝𝑠 initializes
attestation with the processes of a proper subset 𝐶𝐴 ⊂ 𝐶 of correct processes. As the
attestation is valid, the processes in 𝐶𝐴 accept the new public key and start to use it.
From this point on, the processes in 𝐶𝐴 reject messages signed by the old USIG identity.
Receiving processes in 𝐶𝐵 := 𝐶 \𝐶𝐴 still accept messages signed by the old USIG identity.
RB-Agreement requires that all correct processes 𝐶 deliver the same message for a given
tag 𝑐 . In USIG-based reliable broadcast, the tag is the USIG counter value. As 𝑝𝑠 can now
sign messages with both USIGs, 𝑝𝑠 can commit an equivocation fault and can send two
different messages for the same tag 𝑐 to the processes in𝐶𝐴 and𝐶𝐵 . As USIG-based reliable
broadcast omits measures to prevent equivocation (besides the USIG), the processes in 𝐶𝐴

and 𝐶𝐵 will deliver different messages for the same tag 𝑐 . This violates RB-Agreement as
the processes in 𝐶𝐴 and 𝐶𝐵 do not agree on the message delivered for tag 𝑐 .

Remark. Forcing the sender to reliably broadcast the new USIG identity or the attestation
to all correct processes does not suffice to solve the problem as it does only ensure that
eventually all correct processes will exchange the USIG identity of the same identity. In
particular, it does not enforce this change to happen simultaneously.

Consequently, the recovery procedure must ensure that all correct processes exchange
the public key of the sender’s USIG at the same point in logical time, i.e., the change
must become effective at the same round. It follows that it must be possible to logically
assign tags to the time before and after the change which can be achieved by enforcing
an ordering on the tags (e.g., as done in FIFO broadcast presented in Algorithms 2 and 3)
or by changing the tag to be a tuple (𝑒, 𝑐) where 𝑒 is a monotonic epoch identifier that is
incremented when the USIG identity is changed. Such agreement can be achieved starting
a separate consensus protocol or by piggybacking the running atomic broadcast algorithm:
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Processes do not only have their enclave to sign messages but also a second key pair that
can be used to identify the process itself. This second key pair is managed outside the
enclave and it can be saved in backups. After the crash, the now recovering process sends
an administrative request, i.e., a special message, to all processes in which it requests to
update its enclave identity. This request is signed with the second key pair and ordered
using the running consensus algorithm. Once the consensus algorithm decided on the
request, correct processes will exchange the public key of the crashed process’ enclave. As
long as not more than 𝑡 processes crash, the new public key will be known to all correct
processes. For TEE-Rider and similar approaches however, this procedure is not safe
without additional measures.

Theorem 4.5 (USIG reinitialization in partial synchrony requires 𝑛-sized quorums). As-
sume that a reinitialization procedure achieves consensus on the counter value up to which
a previous USIG public key is accepted and after which the new public key has to be used.
If this consensus does not ensure that the inputs of all correct processes are honored in the
decision, i.e., the quorum size required to achieve consensus is smaller than 𝑛, RB-Agreement
is violated.

Proof. Let the sender 𝑝𝑠 be the only faulty process and let 𝐶 ⊂ 𝑃 \ {𝑝𝑠}, |𝐶 | = 𝑛 − 1 be the
set of receiving processes. Moreover, let 𝑝𝑖 ∈ 𝐶 be a correct process that is not part of a
set𝐶𝐴 ⊂ 𝐶 \ {𝑝𝑖} of correct processes. Assume that a partially synchronous, fault-tolerant
consensus protocol D is given in which each process can vote on the new USIG identity
and the highest counter value 𝑐′ for which the old USIG public key is accepted. Output
of the consensus protocol is an attestation with a public key and a counter value 𝑐′ from
which on the new identity is to be used. The reinitialization protocol proceeds as follows:

1. When receiving the administrative request, a correct process 𝑝 𝑗 ∈ 𝐶 checks if the
attestation is valid. If the attestation is invalid, 𝑝 𝑗 aborts.

2. Process 𝑝 𝑗 stops accepting messages signed by the old USIG identity.

3. Process 𝑝 𝑗 inputs the received attestation and all messages it was able to deliver –
together with their counter value and their signature – into the consensus protocol
D.

4. The consensus protocolD identifies the maximum counter 𝑐′ value for which a valid
signature was input by a process. Once the consensus protocol D decides on the
attestation and counter value 𝑐′, process 𝑝 𝑗 accepts the new USIG identity and starts
to accept messages from the sender again.

5. Process 𝑝 𝑗 requests messages for counter values 𝑐 ≤ 𝑐′ which it was not able to
deliver from the processes in 𝑃 to ensure RB-Agreement for these counter values.

In Section 2.6.3 and Table 2.2, we discuss that atomic broadcast, which is equivalent to
consensus (see Section 2.6.1), cannot be solved in partial synchrony with a fault tolerance
of 𝑡 ≥ 𝑛

2 . Consequently, the consensus protocol D must work with a quorum to be able to
tolerate faults. Assume that, without loss of generality, the quorum size is 𝑛 − 1. Hence, D
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Figure 4.8: Illustration of the rollback problem in USIG reinitialization for 𝑛 = 3 processes; all processes are
correct. The sending process is not illustrated. A quorum of size 𝑛 − 1 build with processes 𝑝1 and 𝑝2 may
outvote process 𝑝3. This can happen due to the partially synchronous communication links. As 𝑝3 already
delivered the message for tag 𝑐 = 3, it is forced to rollback to prevent that RB-Agreement is violated.

must proceed as soon as it received 𝑛−1 votes. By the assumption of partially synchronous
links, it is possible that the processes in 𝐶𝐴 form the quorum being used to decide and
𝑝𝑖 ’s vote is not considered. Assume now that the maximum counter value 𝑝𝑖 delivered a
message for is 𝑐 . USIG-based reliable broadcast can deliver messages without coordination
(it does not require a ready phase, see Section 4.2.1). Although 𝑝𝑖 is correct and echos the
message for 𝑐 , the partially synchronous link can delay the delivery of the echo message
such that 𝑝𝑖 is the only process who delivered the message for counter value 𝑐 before 𝑝𝑠
crashed. Thus, D must output a counter value 𝑐′ < 𝑐 . It follows that processes in 𝐶𝐴

will at least reject the message for counter value 𝑐 which 𝑝𝑖 delivered. Hence, either 𝑝𝑖
performs a rollback undoing the delivery or the processes in𝐶𝐴 deliver different messages
for counter value 𝑐 . Both variants break RB-Agreement.

Figure 4.8 illustrates the problem for 𝑛 = 3 processes. With Theorem 4.5, the following
corollary follows trivially:

Corollary 4.1. USIG reinitialization in TEE-based reliable broadcast protocols requires a
quorum size of 𝑛 to maintain RB-Agreement when operating in asynchronous networks.

Remark. The impossibility result stems from the fact that USIG-based reliable broadcast
protocols work without quorums. If the broadcast protocol would establish a quorum of
at least ⌊𝑛2 ⌋ + 1 processes and the reinitialization protocol would use a quorum size of
𝑛 > 3𝑡 to prevent that Byzantine processes can outvote correct processes in quorums, the
reinitialization protocol could ensure that 𝑐′ is set to the maximum counter value 𝑐 that
was delivered by any correct process. This, however, would nearly completely nullify the
benefit of using the USIG as it would require to follow the well-known Bracha protocol
scheme with three phases (see Section 4.2.1).

If the reliable broadcast protocol is used as a building block in higher-level protocols, e.g.,
causal order reliable broadcast, atomic broadcast or state machine replication, as it is the
case for TEE-Rider, the violation of RB-Agreement obviously may break safety properties
as well. On the one hand, if the RB-Agreement property can be changed such that rollbacks,
i.e., the “undoing” of r_deliver decisions, are allowed, the presented impossibility results
do not hold. However, if this would also cause a rollback in the higher-level protocol,
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Lewis-Pye and Roughgarden [LR25] show that the number of rollbacks is unbounded if no
additional synchrony assumptions are made. On the other hand, additional agreement
primitives may be used to ensure that the properties of the higher-level protocols are
preserved while, at the same time, the reliable broadcast properties are violated. We will
propose such an approach to enable reconfiguration in NxBFT in Section 4.6.5.

4.6 NXBFT: Resilient and Practical State Machine Replication

Until now, we discussed reliable broadcast and atomic broadcast protocols as a crucial
fundament for state machine replication (SMR) protocols. With TEE-Rider, we presented
an optimized atomic broadcast protocol that is, from a theoretical point of view, an efficient
and resilient solution for atomic broadcast. As this dissertation aims at the investigation
of practical SMR protocols, the question arises how TEE-Rider can be used to implement
a practical SMR protocol. The discussion of the leader bottleneck in Section 4.1.1 and the
impossibility results above show that simply adding an SMR client logic to TEE-Rider is
not sufficient to implement a practical and efficient SMR protocol. We propose NxBFT, a
practical SMR framework that is based on TEE-Rider and addresses the leader bottleneck,
setup, garbage collection, and recovery issues.

We first define the system model of NxBFT and then present the NxBFT SMR framework
in four parts:

1. We discuss the requirement for voting in BFT SMR protocols and its scaling-limiting
implication for leaderless protocols. To minimize redundancies in the TEE-Rider
DAG and improve scalability, we propose the “Not eXactly Byzantine” (NxB) client
model, an adaption of the hybrid fault model. Moreover, we present and briefly
discuss alternatives to the fault model adaption.

2. We describe the NxBFT SMR framework logic for normal case operation (i.e., without
setup, garbage collection, and reconfiguration) at the example of a full Request–
Consensus–Reply cycle. NxBFT deploysmeasures to improve performance by request
batching while at the same time ensuring progress in low-load scenarios.

3. We propose an algorithmic setup procedure that allows to set up a peer-to-peer
network of enclaves for NxBFT. We argue that in practical deployment faults should
not be simply tolerated, i.e., ignored. Instead, the proposed protocol detects faulty
behavior and reliably aborts in the case of faults thereby circumventing the impossi-
bility result from Section 4.5.1. In a fault-free setup, the protocol achieves consensus
on the enclave identity of each of the replicas ensuring the safe operation of NxBFT.

4. We propose a protocol that regularly establishes agreement on the current application
state (a checkpoint). In a state transfer protocol, checkpoints can be safely transmitted
between replicas. We find that a checkpoint-based state transfer protocol can be
used to circumvent the garbage collection impossibility result (see Section 4.5.2) and
the recovery impossibility result (see Section 4.5.3).
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The NxBmodel, the NxBFT framework, and the setup procedure were previously published
by Leinweber and Hartenstein [LH25]. The same publication contains an alternative
recovery procedure similar to the one described in the proof of Theorem 4.5. This recovery
procedure requires the participation of all replicas to circumvent the impossibility result for
quorum-based recovery protocols. Recovery based on reconfiguration, as presented in this
dissertation, is a novel contribution improving the resilience of the recovery procedure.

4.6.1 System Model

We consider a federation of 𝑛 predefined operators 𝑜𝑖 offering a common service for an
arbitrary number of clients. Operators can be authenticated using a public key infrastruc-
ture (PKI). Each operator operates a replica 𝑝𝑖 ∈ 𝑃 := {𝑝1, . . . , 𝑝𝑛}, |𝑃 | = 𝑛. The replicas
are connected via an asynchronous network; replicas and clients communicate via secure,
perfect point-to-point links (see Sections 2.2 and 2.4). Thus, messages can be reordered
and arbitrarily delayed but not dropped. For liveness of garbage collection, state transfer,
and reconfiguration, we assume partial synchrony in the GST model (see Section 2.4).
Each replica is equipped with a trusted execution environment (TEE, Definition 2.1). Of
the 𝑛 replicas, at most 𝑡 < 𝑛

2 replicas can be Byzantine faulty (see Section 2.3). The TEE
is assumed to only fail by crashing; its internal state is lost when the TEE crashes. The
number of Byzantine clients is not limited.

4.6.2 Not eXactly Byzantine: Unlock TEE-RIDER’s Scaling Capabilities

Probably the most important difference between atomic broadcast and SMR is that the
latter promises guarantees towards an possibly unbounded number of clients of which all
may behave Byzantine. In SMR, a client must be aware of the fact that it interacts with a
distributed system to maintain the safety and liveness guarantees towards the client. In
this subsection, we discuss the implications of this requirement and we propose the “Not
eXactly Byzantine” (NxB) operating model allowing NxBFT to scale to a large number of
clients, requests, and replicas.

Problem Statement: On the Requirement for Voting in BFT SMR

The SMR system can be split into two groups: the group of clients and the group of 𝑛
replicas. Tolerating a Byzantine client is not more complex than in the centralized setting
with a single server: The server-side logic must ensure that the client cannot influence
the server’s state in a malicious way. This is typically achieved by ensuring the client’s
request’s authenticity and integrity using signatures as well as by a stateful application
logic that ensures that the client cannot influence the server’s state in a way that violates
the server’s safety properties.

The client, however, cannot distinguish between correct and Byzantine faulty replicas (as
correct replicas cannot as well). If the client talks to a single replica, this replica may be
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faulty and, by a simple omission fault, the client may never receive a response. Moreover,
the client must ensure that, before accepting a response, it received a correct response and
that the state transition leading to the response will eventually be persisted at all correct
replicas. Consequently, BFT SMR clients must perform a voting procedure ensuring that a
consistent response is received from a quorum of replicas [Li+18; BRB21; HHM24]. This
step cannot be omitted in the hybrid fault model; a client must receive a consistent reply
from at least 𝑡 + 1 replicas. Typically, the client communicates with all 𝑛 replicas (see, e.g.,
[Ver+11, Figure 1]).

TEE-Rider, as the underlying atomic broadcast protocol of NxBFT, comeswith a significant
performance improvement over leader-based coordination protocols: Every process can
independently propose messages. If we now naively add well-known BFT SMR client logic,
at least 𝑡 + 1 replicas will receive the same client request. Because of the leaderless nature,
there is no designated replica that tasked with proposing the request. Consequently, all 𝑡 +1
replicas will add the request to their next TEE-Rider vertex. Hence, the TEE-Rider DAG
contains a significant amount of redundant request data. Moreover, the voting requires
communication which itself causes additional overhead on client and replica side. This
issue is not unique to NxBFT and a common issue for DAG-based protocols [WKM24,
Section 3.4]. As a result, the performance results reported in the literature (e.g., [Aru+25;
Ton+25]) do not directly translate to the BFT SMR use case of atomic broadcast. To the
best of our knowledge, there is no clear statement in the literature that addresses the
non-negligible impact of BFT SMR clients on the performance of DAG-based protocols.
Similar challenges have been observed in non-DAG protocols as well [Gol+19; Sta+22].
In conclusion, it is disadvantageous to use a consensus-agnostic SMR framework. To
maximize the benefits of using DAG-based atomic broadcast, it is required to pursue a
co-design of the client logic and the underlying protocol.

Approaches to Maximizing the Uniform Distribution of Clients Across Replicas

In the following, we discuss three alternative approaches, namely client agents, the NxB
model, and threshold cryptography, to reduce the impact of SMR client logic on the
performance of TEE-Rider and similar protocols. As this makes the presentation and
the implementation a lot easier, we assume that correct clients are synchronous: A client
blocks until it receives the required amount of consistent responses. Only then may a new
request be submitted. Consequently, faulty clients breaking this assumption will loose the
SMR guarantees for their requests.

Client Agents The first approach is to assign clients to a fixed set of replicas with size 𝑡 +1.
Each of these replicas is then a client agent that is responsible for handling the requests
of the clients assigned to it. The client only contacts a replica not part of the agent set
if the client does not receive 𝑡 + 1 consistent responses (i.e., to preserve safety) or a not
sufficient number of responses within a reasonable time span (i.e., to preserve liveness).
This fallback behavior requires that each replica stores for each client the last request and
response [Dis21; Bes+23]: If a client observes a timeout and contacts a replica not part
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Figure 4.9: Illustration of the NxB operating model. Clients are potentially Byzantine faulty. Replicas
are potentially Byzantine faulty when interacting with other replicas but limited to omission faults when
interacting with clients.

of its agent set, said replica must be able to answer the request. However, it is possible
that the replica already forwarded the request to the application layer and dropped the
response because there was no active connection to the client. Because the replica cannot
forward the request to the application layer a second time – this would trigger another
state transition –, the replica must retain the response to be able to answer a client request
after the request was already ordered by the atomic broadcast protocol. The client agent
approach preserves Byzantine fault tolerance and allows limited scaling. In expectation,
replicas share 50% of client requests limiting the improvement to a constant of factor 2 in
the common case.

Not eXactly Byzantine: The NXB Operating Model Omission fault-tolerant SMR clients do
not require to contact more than one replica to maintain safety. In the omission fault model,
a replica will, at most, omit to forward the request to the atomic broadcast or the response
to the client. If the client receives a response, it is guaranteed to be correct. If we could
assume that replicas do not bribe their clients or that such misbehavior is guaranteed to
be detected and prosecuted, we could adapt the fault model to allow omission faults when
replicas interact with clients. This is the Not eXactly Byzantine (NxB) model (see Figure 4.9):
the assumption of potentially Byzantine behavior from clients and between replicas but
only omission faults when replicas interact with clients. Adapting this approach to TEE-
Rider allows to have one client agent per client. In expectation, this would eliminate any
shared client connections between replicas and improve the performance by a factor of
𝑂 (𝑛) in the common case. There are two different situations in which the NxB assumption
has no negative impact on security:

• Fully enclaved execution: The complete server side of the SMR framework, i.e.,
SMR server, atomic broadcast, and application server, is executed inside a TEE. Based
on attestation, the client can ensure that it interacts with a correct replica. The client
then has the guarantee that every response received has been correctly sorted and
processed. The Confidential Consortium Framework (CCF) [How+23] follows this
approach. Fully enclaved execution eliminates any Byzantine behavior on the replica
side. However, such an approach significantly increases the trusted computing base,
and the significantly increased number of context switches into and out of the TEE
has a negative impact on performance [Li+18; WAK18].

• Auditability: The client can ensure that misbehavior of a replica can always be
detected. While this misbehavior breaks SMR guarantees, the client can prove its
correct behavior to a quorum of replicas or a third party (e.g., a court) to ensure
that there will be no negative consequences for the client. An example for such a
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scenario is the ticketing system as discussed in Chapter 3. The client can provide
evidence of its correct behavior (i.e., its signed history of check-ins and check-outs
and signed answers of replicas), thus protecting itself from potential repercussions.

Server-Side Voting Proxy If a client can safely task a replica to perform the voting step
on the client’s behalf, it suffices for the client to contact a single replica. As with the NxB
model, this approach allows a performance improvement of factor 𝑂 (𝑛) but it achieves
full Byzantine fault tolerance. A recent line of research [Gol+19; HHM24] proposes to
use threshold cryptography to allow a client to derive from a single response whether
its request was safely ordered and handled. The simplified CART approach [HHM24]
works as follows6: Clients contact a single replica, i.e., their client agent, with their
request. The client agent forwards the request to the atomic broadcast protocol. After the
request was ordered and executed, replicas sign their responses using a threshold signature
scheme. The client agents collect the threshold signatures and, when having received
𝑡 + 1 valid partial signatures, the client agents can combine them to a full signature. The
full signature is sent to the client together with the response. However, this approach
adds additional overhead to the protocol: Replicas have to exchange partial signatures
whenever they delivered a request on the atomic broadcast and subsequently computed a
response. Heß et al. [HHM24] show that such a protocol has a non-negligible negative
impact on performance: The author’s report between 10% and 20% reduced throughput
and between 10% and 20% increased latency. An alternative is to execute the response
aggregation inside a TEE as proposed by Troxy [Li+18]. The authors implement the Troxy
approach for the Hybster hybrid fault-tolerant, multi-leader protocol [BDK17] and report
a performance loss of up to 43%. We conclude that threshold cryptography as proposed by
Heß et al. [HHM24] should be used if the NxB model cannot be justified, i.e., in the case of
non-enclaved execution or when auditability cannot be guaranteed. As in our intended
use cases the NxB model can be justified, we do not consider threshold cryptography in
the following and leave the investigation of a suitable NxBFT protocol extension and the
analysis of the performance impact to future work.

4.6.3 The NXBFT SMR Framework

NxBFT is a state machine replication framework that is based on TEE-Rider and the NxB
model. NxBFT is structured in three layers (see Figure 4.10): SMR framework, causal order
broadcast (i.e., dissemination), and atomic broadcast (i.e., consensus). The latter two are
unchanged from TEE-Rider. The SMR framework implements the client logic and the
SMR server that ensure, by deploying an atomic broadcast, the SMR properties. In the
following, we describe the normal operation, i.e., without setup, garbage collection, and
reconfiguration, with a full Request–Consensus–Response cycle.

6 The authors also propose optimizations for batched processing of requests which we do not consider in
the explanation.
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Figure 4.10: NxBFT SMR framework components for normal operation (setup, garbage collection, and
reconfiguration left out). Red colored components are added in comparison to TEE-Rider. The safe icon
marks components executed inside the TEE. Solid arrows show the flow for a client request to be successfully
ordered and executed. After being received by the replica, a request is buffered and eventually broadcast
as a vertex payload in TEE-Rider. A vertex is added to the DAG when its ancestry was already added
(optional backfilling, dashed arrows). Each added vertex will eventually be ordered by a graph traversal; the
corresponding root is selected using a common coin. After request deduplication, the request is output to
the application layer and the response sent to the client. The dotted arrows highlight components using the
DAG as input.

Request: NXB Client Model for Throughput Scaling When a client wants to use the feder-
ated service, it composes a request containing the command and a sequence number and
sends the request to a single replica. Clients select the replica at random and unicast their
request accompanied with a client id and a sequence number. When the client issues its
request, it starts a timer. If the selected replica does not answer within the time interval,
the client selects a different replica for its request (and so forth). A receiving replica buffers
the request until it can be included in the payload of a broadcast round. If the request
was already ordered and executed, the replica responds to the client immediately. As
explained above, to be able to answer already ordered requests, the replica stores the last
request-response pair for each client. A correct client will only have one unanswered
request at a time. If a client issues more than one request simultaneously or equivocates
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on sequence numbers, i.e., it is faulty, it is possible that some of its requests will not be
answered.

Vertex Construction and Consensus Invocation: Pacing Pending requests are buffered at
the replica until the replica is allowed to broadcast a new vertex. To increase the achievable
throughput, a replica holds back its vertex until it can propose at least a configurable
amount of client request as the vertex payload. To prevent denial-of-service attacks,
additionally a maximum vertex payload size is configured. Without broadcast requests,
TEE-Rider cannot make progress. A replica needs at least ⌊𝑛2 ⌋ + 1 valid vertices for its
current round to transition to the next round and to be allowed to broadcast its next vertex.
It is a common pattern in asynchronous atomic broadcast protocols that progress depends
on a sufficient number of processes with not yet delivered A_BROADCAST(·) requests. If
now only a few clients issue requests, the system would come to a halt as the quorum
for a round to complete would need a lot of time to be established. The NxB client model
worsens this problem as requests are equally distributed among the replicas. We address
this issue by working with local timers on the side of the replica: When a replica is not
able to broadcast a vertex containing enough client request within a pre-defined time
interval, the replica will broadcast the vertex anyway. This allows to complete the round
within a reasonable time span.

Response: At-Most-Once Semantics The requests are executed by the server-side applica-
tion in the order they were added to the vertex by the proposing replica. After execution,
the result is sent as a response to the initially requesting client. The client is guaranteed
that its request will eventually be ordered, however, due to the timeout-based fallback
logic to ensure liveness, a request can appear in the DAG up to 𝑛 times. NxBFT employs
a simple deduplication logic: The replicas store for each client the client’s last executed
sequence number. A request is only input to the state machine when its sequence number
is greater than the stored sequence number.

Remark. Please note that NxBFT can also be operated with a classic, synchronous BFT
SMR client or with the client agent model as described above that both contact in the
common case at least 𝑡 + 1 replicas. This allows the client to tolerate Byzantine behavior
of replicas in any case but has a significant performance impact (see Section 5.5.1).

4.6.4 Algorithmic Enclave Network Setup

During setup, NxBFT enclaves mutually attest and verify their integrity, reach consensus
on the deployed enclave code as well as the peers’ public enclave keys to prevent simulation
attacks (see Section 4.5.1), and establish the authenticated channels between replicas. The
second objective of the setup protocol is to initialize the CPRNG underlying the common
coin with a collaboratively generated random seed. We do not consider a fault-tolerant
setup procedure to be reasonable: When a replica already shows a fault during setup, the
actual fault tolerance of the operation phase would be reduced from the very beginning. We
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argue that an implicit task of the setup phase is to ensure that all replicas are available and
correctly configured (e.g., deployed code and parameters not defined during setup). Thus,
the proposed setup protocol aborts in the case of faults. We require the participation of all
𝑛 replicas and construct the setup protocol using 𝑛 synchronous authenticated reliable
broadcast instances with a fault tolerance of 𝑛 > 𝑓 [PSL80] to preempt equivocation
by faulty replicas. By requiring all replicas to participate and aborting in the case of a
fault instead of tolerating the fault, we circumvent the impossibility result identified in
Section 4.5.1.

We describe the setup protocol of NxBFT as a one-way handshake between replicas 𝑝𝑖
and 𝑝 𝑗 . A replica 𝑝𝑖 also performs this setup handshake with itself.

1. Upon initialization, the enclave of 𝑝𝑖 initializes its state variables and generates both
a new enclave key pair and a random seed share for the later initialization of the
common coin PRNG.

2. Replica 𝑝𝑖 now uses a synchronous authenticated single-echo reliable broadcast to
disseminate its identifier and its signed attestation certificate carrying its public
enclave key.

3. Replica 𝑝 𝑗 waits to receive 𝑛 validly signed echo messages carrying consistent and
valid attestation certificates.

4. Replica 𝑝 𝑗 then sends its encrypted seed share to 𝑝𝑖 (encrypted using 𝑝𝑖 ’s public
enclave key), thereby completing its part of the handshake.

5. Replica 𝑝𝑖 then invokes its enclave with the received encrypted seed share. The
enclave decrypts the seed share and XOR’s it with the current seed value.

6. Once a replica has completed all 𝑛 handshakes, it has completed the setup protocol
and broadcasts a ready message to all replicas.

The XOR construction is a variant of the straightforward 𝑡 = 𝑛 secret sharing; the resulting
seed is kept confidential by the secure communication and the TEE. Replicas start a timer
for each handshake, the expiration of which raises an error and leads to an abortion of
the entire setup. Similarly, conflicting or invalid messages and certificates raise errors and
lead to an abort.

4.6.5 Checkpoint-Based Garbage Collection and Reconfiguration

Garbage collection typically relies on the checkpoint concept [CL02; Dis21]. When a replica
processed a certain amount of requests, it creates a snapshot of its state and deletes all
information that is older than the snapshot. Partially synchronous and asynchronous links,
however, complicate the procedure: Assume 𝑛 > 2𝑡 and a replica 𝑝𝑐 reached a checkpoint.
It may now be the case that 𝑝𝑐 is the only correct replica that reached the checkpoint.
When now other correct replicas, due to network delays, fell behind and, due to Byzantine
faulty replicas that contributed to the checkpoint but do not send all their messages to all
replicas, they may not be able to catch up with the correct state. In the following, we call
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such replicas stale. To allow stale replicas to catch up, other correct replicas that are “up
to date”, in our scenario only replica 𝑝𝑐 , must be able to provide the required information
that allows stale replicas to safely update their state. Such information can either be the
full message history of the atomic broadcast protocol or a quorum of snapshots. If replica
𝑝𝑐 would delete the state information without coordinating with other replicas, it cannot
prove to stale replicas that the snapshot it created is the result of the consecutive execution
of all request ordered by the atomic broadcast protocol. In such a case, the correct replica
𝑝𝑐 would have applied requests that other correct replicas cannot apply thus breaking
SMR safety.

As discussed in Section 4.1.3, the combination of a checkpoint protocol and a state transfer
protocol is the basis for garbage collection that does neither break SMR safety nor SMR
liveness. A checkpoint protocol establishes so-called stable checkpoints. A checkpoint is
stable when a replica received a quorum of consistent votes that confirm the validity of
the checkpoint. When a replica stabilizes a checkpoint, it can safely delete all information
that is older than the stable checkpoint but it keeps the received signed votes. In a state
transfer protocol, the state of a stable checkpoint is transferred to a stale replica [CL02;
Dis21]. The state transfer allows the stale replica to safely update its local state to the
checkpoint state such that it (1) can validate messages received from clients and peering
replicas and (2) that it can send messages that other replicas will accept. Moreover, state
transfer can be used to implement a reconfiguration protocol in which replicas can be
added, removed, and replaced [Dis21, Section 8].

In this subsection, we describe how checkpoint and state transfer protocols can be imple-
mented as the basis for garbage collection and reconfiguration in NxBFT such that the
impossibility results of Sections 4.5.2 and 4.5.3 are circumvented. In the following, we will
first derive how the state that is agreed upon in the checkpoint protocol and transferred in
a state transfer must be structured to ensure a safe and live state transfer. Subsequently, we
use the checkpoint protocol to propose garbage collection and reconfiguration protocols
for NxBFT. Finally, we analyze the proposed protocols and discuss their relation to the
impossibility results from Section 4.5.

State Transfer Requirements

According to Distler [Dis21, Section 7], the required checkpoint data can be split into
three parts: application state, replies, and protocol state. When the checkpoint is created,
a correct replica must create an atomic snapshot of all three parts that is then immutably
stored until it may be garbage collected. Following Distler’s classification, application state
and replies are consensus-agnostic and, thus, do not differ for NxBFT in comparison to
other BFT SMR protocols. The application state is the state of the replicated business logic
that is executed by the SMR framework. The set of replies contains for each client the last
request (including the request sequence number) and the corresponding response. The
set of replies ensures that the receiving replica can maintain the at-most-once semantics
of the SMR framework and that a receiving replica can answer client requests that were
already answered by other replicas.
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Figure 4.11: Exemplary illustration of the checkpoint protocol of NxBFT for 𝑛 = 3 replicas. Checkpoints
are aligned with waves and correct replicas try to establish a checkpoint when a wave can be committed.
Replica 𝑝1 is faulty and commits omission faults towards 𝑝3 (illustrated by orange, dotted vertices). Replica
𝑝3 is correct but stale. Replica 𝑝2 makes progress together with replica 𝑝1. The checkpoint protocol must
ensure that 𝑝3 will be able to eventually catch up, even if 𝑝2 has already deleted old checkpoints and can no
longer backfill old messages. checkpoint 𝑐 will only become stable if 𝑝2 receives a consistent and correctly
signed vote from 𝑝1. Otherwise, 𝑝2 cannot stabilize the checkpoint and will not delete old state to be able to
answer backfill request by 𝑝3 for vertices created by 𝑝1.

The protocol state, however, is specific and depends on NxBFT. As described above, the
state transfer protocol must ensure that stale replicas can continue to participate in the
protocol after the state transfer. This means that the receiving replica must be able to
continue to add vertices to the TEE-Rider DAG and to order them. In particular, this means
that a stale replica must be able to add all vertices it receives to its DAG if at least a single
other correct replica was able to add those vertices. Hence, the state transfer must contain
all information that is required to validate and add a vertex to the DAG which includes a
vertex’ ancestry, process identifiers, and public keys. To be able to perform coin tosses,
the state transfer must also include the sealed CPRNG state (sealing is the TEE-specific
way to confidentially export enclave state, see Section 2.5). To be able to produce valid
vertices, the stale replica must update its enclave state after state transfer such that the
enclave-managed round counter (see Algorithm 8) matches the applied checkpoint.

Checkpoint Protocol and Garbage Collection

The checkpoint protocol is a consensus protocol that allows to agree on the checkpoint data
as described above. Since the output is known to correct replicas a priori, the checkpoint
protocol can be implemented using a simple broadcast protocol: It only collects a quorum
of signed votes.

Checkpoints are identified by an identifier 𝑐; a checkpoint belongs to wave 𝑤 . Correct
replicas use a predefined, configurable checkpoint interval 𝑔; a checkpoint will be created
every 𝑔 waves. The checkpoint is created when a corresponding wave 𝑤 is committed,
i.e., when the wave root 𝑣𝑤 of 𝑤 is added to the stack of committed roots (Algorithm 6,
ll. 28 and 32). The last stable checkpoint must be stored by each correct replica until a
new checkpoint is stabilized. Each replica maintains a set of checkpoint votes for future
waves.
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The checkpoint creation protocol works as follows:

1. When a replica 𝑝𝑖 commits a wave𝑤 where𝑤 mod 𝑔 = 0, it creates a checkpoint
𝑆𝑐, 𝑐 = ⌊𝑤𝑔 ⌋, consisting of:

• a snapshot of the application data,

• the sequence numbers and responses for the request executed last for each
client,

• the current network configuration consisting of the replica identifiers, their
public keys, and their USIG public keys,

• the sealed CPRNG state, and

• the vertices of ROUND(𝑤 − 1, 4) that have a path to𝑤 ’s wave root 𝑣𝑤
2. Replica 𝑝𝑖 computes a hash ℎ𝑐 = ℎ((𝑆𝑐, 𝑐)) and a signature 𝜎 over ℎ𝑐 using the

operator’s private key7.

3. Replica 𝑝𝑖 broadcasts a message ⟨CHECKPOINT_VOTE, 𝑐, ℎ𝑐, 𝜎⟩ to all replicas.

4. When a replica 𝑝 𝑗 receives a checkpoint vote message, it verifies the signature and
stores the message in its checkpoint votes set.

5. When a replica 𝑝 𝑗 received 𝑡 + 1 consistent checkpoint votes for the same checkpoint
𝑐 , it stabilizes checkpoint 𝑐 .

6. Replica 𝑝𝑖 stores the votes for checkpoint 𝑐 together with the checkpoint data 𝑆𝑐 and
the hash ℎ𝑐 and deletes all vertices of rounds 𝑟 ′ ≤ round(𝑤 −1, 4) and all checkpoints
𝑐′ < 𝑐 .

Figure 4.11 illustrates the case for three replicas where one replica is correct but stale
and another replica is faulty. Note that there may be checkpoints that will never stabilize
because the corresponding wave is never committed.

Remark. Re-injection to preserve AB-Validity, as proposed for Narwhal [Dan+22], is not
required for NxBFT. The client logic ensures that a request is eventually handled by the
federated service and, thus, ensures SMR liveness.

State Transfer Protocol

The state transfer protocol is used to transfer the checkpoint data to a stale replica. It
works as follows:

7 Please note that this is not a signature computed by the enclave/USIG.
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1. When a replica 𝑝𝑖 requests a vertex from a replica 𝑝 𝑗 and 𝑝 𝑗 already garbage collected
the corresponding state, 𝑝 𝑗 will respond with a ⟨CHECKPOINT, 𝑐, ℎ𝑐, Σ⟩ where Σ is
the set of all checkpoint vote signatures collected for checkpoint 𝑐 that stabilized
last for 𝑝 𝑗 .

2. Replica 𝑝𝑖 verifies that its round 𝑟 < round(𝑐𝑔, 1), that the signatures in Σ are valid
signatures over ℎ𝑐 , and checks whether the checkpoint 𝑐 is stable, i.e., |Σ| > 𝑡 .

3. If a check fails, replica 𝑝𝑖 will request the checkpoint from another replica.

4. If all checks pass, replica 𝑝𝑖 will initiate a state transfer with replica 𝑝 𝑗 by sending
a ⟨STATE_TRANSFER_REQUEST, 𝑐, 𝐷⟩ message. The set 𝐷 may contain additional
information for an efficient state transfer (see, e.g., [CL02, Section 6.2]).

5. Replica 𝑝 𝑗 responds with a ⟨STATE_TRANSFER_RESPONSE, 𝑐, 𝑆𝑐⟩ message contain-
ing the checkpoint data 𝑆𝑐 .

6. Replica 𝑝𝑖 verifies the correctness of the received state using ℎ𝑐 and Σ. If the verifica-
tion fails, it will request the state from another replica.

7. If the verification passes, replica 𝑝𝑖 will update its state with the received checkpoint
data 𝑆𝑐 , fast forward its TEE-Rider round to 𝑟 := round(𝑐𝑔, 1), set the vertices
received with the checkpoint as its genesis vertices, and fast-forward its enclave by
letting the enclave increment the counter to 𝑟 and update the CPRNG state according
to the sealed information.

Reconfiguration Protocol

As analyzed above, we must not allow a replica to rollback or reinitialize the USIG. To
circumvent the impossibility result but enable recovery, we rely on a reconfiguration step.
A reconfiguration protocol allows to change the set of replicas that form the distributed
system, i.e., that operate an replicated state machine: Active replicas can be removed from
or new replicas can be added to the system. A recovery is then the removal of a crashed
replica and the addition of a new replica operated by the same operator.

To support reconfiguration, we have to introduce the concept of epochs inside the enclave.
Each enclave maintains an epoch counter 𝑒 . A stable reconfiguration checkpoint (see
below) for epoch 𝑒 allows a replica to invoke an epoch change to epoch 𝑒 + 1 at its enclave.
When the epoch is incremented, the enclave will reset its round counter to 1 and increment
its epoch counter by 1.

The removal of a replica 𝑝𝑖 works as follows; 𝑝 𝑗 is a correct replica operated by 𝑜 𝑗 , 𝑝𝑘 is an
arbitrary but fixed correct replica:

1. When an operator 𝑜 𝑗 aims to remove a replica 𝑝𝑖 , it inputs the administrative request
⟨REMOVE_REPLICA, 𝑝𝑖, 𝜎⟩, where 𝜎 is a signature created with operator 𝑜 𝑗 ’s private
key, in form of a special client command to the SMR framework.
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2. As soon as 𝑝𝑘 observes that 𝑡 + 1 unique and consistent ⟨REMOVE_REPLICA, 𝑝𝑖, 𝜎⟩
messages are payload of vertices and committed by a wave root, 𝑝𝑘 starts the removal
protocol.

3. Let𝑤 ′ be the wave that commits the next checkpoint. As soon as 𝑝𝑘 reaches the next
checkpoint, i.e., 𝑐 = ⌊𝑤 ′

𝑔
⌋, it will

a) stop the ongoing consensus process until the checkpoint is stabilized, and

b) add the removal of 𝑝𝑖 to the checkpoint data and extend the checkpoint vote
message with the reconfiguration information for transitioning from epoch 𝑒 to
epoch 𝑒 + 1

4. As soon as the reconfiguration checkpoint stabilizes (see above), 𝑝𝑘 performs an
epoch change to epoch 𝑒 + 1:

a) Replica 𝑝𝑘 lets its enclave perform an epoch change.

b) Replica 𝑝𝑘 wipes the complete vertex buffer and the DAG.

c) Replica 𝑝𝑘 re-injects deleted requests that were not yet ordered to its request
buffer.

d) Replica 𝑝𝑘 restarts the consensus process in epoch 𝑒 + 1 accepting no more
vertices of 𝑝𝑖 .

The addition of a replica 𝑝𝑖 works equivalently, except that the message exchanged is
⟨ADD_REPLICA, 𝑝𝑖, 𝑜𝑖, pkO𝑖 , pkUSIG𝑖 , 𝜎⟩, where 𝑜𝑖 a operator identifier, pkO𝑖 is 𝑜𝑖 ’s public key,
pkUSIG𝑖 is the USIG’s public key of 𝑝𝑖 , and 𝜎 a signature created with operator 𝑜 𝑗 ’s private
key, and that, from epoch 𝑒 + 1 on, 𝑝𝑖 is allowed to propose vertices. The new replica 𝑝𝑖
performs a state transfer to catch up with the current state of the system.

For crash recovery, there is a combined command ⟨RECOVER_REPLICA, 𝑝𝑖, 𝑝′𝑖 , pk
USIG
𝑖 , 𝜎⟩

that can be used to exchange a crashed replica 𝑝𝑖 operated by 𝑜𝑖 . The command has to be
signed-off by 𝑡 + 1 unique operators and, once aided by a quorum, it will remove 𝑝𝑖 and
add 𝑝′𝑖 as a new replica operated by 𝑜𝑖 following the protocols above within a single epoch
change.

Analysis and Discussion

We analyze the protocols for checkpoint creation, state transfer, and reconfiguration
concerning their safety and liveness as well as their positive and negative impact on the
performance of NxBFT.
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Safety In the following, we argue that the checkpoint protocol, state transfer protocol,
and reconfiguration protocol preserve safety under the assumption of an asynchronous
network. The checkpoint protocol with garbage collection may only delete data, if it
can guarantee that any other correct replica will be able to eventually reach the same
state. To this end, it relies on the state transfer protocol to allow state replicas to catch up
with the current state of the system. The state transfer protocol ensures that only stable
checkpoints can be transferred and applied. Stable checkpoints are backed by 𝑡 + 1 replicas,
i.e., at least one correct replica. This quorum guarantees that the state of the system is
the result of applying the correct client requests in the correct order. The stability check
and the fact that a replica only fast-forwards its state in a state transfer – in particular,
there is no possibility for rollbacks – the state transfer protocol preserves safety. The
reconfiguration protocol could harm safety if a correct replica would execute a request that
another correct replica has not executed. Hence, it must be ensured that as soon as a correct
replica delivered a vertex and executed the corresponding requests, this cannot be undone
and all other correct replicas will eventually do alike. The state transfer ensures that all
replicas can reach the same, most current state. The alignment of the checkpoint protocol
with waves ensures that the reconfiguration is executed before any “younger” wave is
committed. The use of epochs allows to safely delete DAG state, i.e., future rounds, and to
reset the round counter of the enclave. If the reconfiguration would not rely on epochs,
replicas who already proposed vertices for future rounds have to rollback their enclave’s
round counter which is impossible. Moreover, if the reconfiguration protocol would not
stop the consensus process until the reconfiguration checkpoint stabilizes, a correct replica
would continue its operation and commit future waves that will eventually be deleted
by the reconfiguration protocol. Replicas that invoke the epoch change when there is no
actual epoch change cannot produce valid vertices anymore. They have either to wait
until the epoch is reached or to be removed from the system. Thus, the reconfiguration
protocol preserves safety.

Liveness As long as there is a quorum of replicas, the SMR protocol makes progress
in ordering and executing client requests also in asynchrony. Checkpoint protocol and
reconfiguration protocol preserve liveness also under the assumption of an asynchronous
network: They make progress whenever they reach a quorum and there is the guarantee
that eventually all correct replicas propose a vote to build said quorum. This is not the case
for the state transfer protocol as a receiving replica must have the chance to receive the
checkpoint data from a correct replica before all replicas already deleted the checkpoint
data. If the detection of the staleness of a replica and the corresponding state transfer
request take too much time on the communication layer, the requested state will be gone.
The state transfer is only live when the receiving replica’s communication is faster than
the communication required for a quorum to establish the next checkpoint. Hence, the
garbage collection interval 𝑔 is equivalent to a timeout and must be chosen such that it
allows, in phases of synchrony, for timely state transfer requests to be fulfilled. To this
end, the state transfer protocol relies on partial synchrony in the GST model for liveness.
Note that Byzantine replicas can answer state transfer requests with outdated checkpoints.
If they are newer than what a receiving replica knows, it will apply the transfer. Hence,
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it may “linger” behind. This can be circumvented through voting: a checkpoint is only
accepted by the receiving replica if it collected a quorum for it. We do not propose this
here as it would require additional communication overhead.

Effect on Memory Consumption and Communication Overhead Following the results for
the expected commit latency in TEE-Rider (Lemma 4.4), the garbage collection lowers
the memory consumption, in expectation, to 𝑂 (𝑛). The checkpoint protocol requires the
exchange of checkpoint votes resulting in 𝑂 (𝑛) constant-sized messages per checkpoint
interval. Reconfiguration messages are exchanged as regular client requests and do not
add additional overhead. The state transfer protocol requires the exchange of state data;
its size is primarily driven by the number of clients and the size of the application state.

Concluding Remarks In this subsection, we used the checkpoint concept and state trans-
fer to circumvent the impossibility results of garbage collection in backfilling-based reliable
broadcasts (see Section 4.5.2) and USIG reinitialization (see Section 4.5.3). We take ad-
vantage of the fact that NxBFT “only” has to ensure SMR safety and SMR liveness. As
long as these properties are preserved, the properties of the reliable broadcast component
may be broken. For garbage collection, it is sufficient that the state transfer protocol can
replace the backfilling property of backfilling-based reliable broadcast (see Section 4.2).
We enable recovery through reconfiguration which eliminates the need to renew a USIG
identity while the replica identity remains the same. On closer inspection, reconfiguration
is a setup protocol based on a functioning BFT consensus protocol in which agreement
must be reached on only a single party. This circumvents the impossibility result from
Section 4.5.1.
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From a theoretical point of view, the results of the previous chapter appear to be superior in
a number of categories: fault tolerance is maximized, replicas are maximally independent
from the quality of the network, and the leader bottleneck is eliminated. In comparison to
state-of-the-art partially synchronous approaches, however, the number of messages is
increased and probabilism as well as the wave construct increase the expected commit
latency. While this fact is known from the literature (e.g., [Dan+22; Aru+25; LNS25]),
the gains of the hybrid fault model in asynchrony and the impact of a BFT SMR client on
DAG-based atomic broadcast have not been evaluated in the literature so far. Moreover,
related work has shown more than once that theoretical results do not necessarily translate
into practical performance. Practical performance is, amongst other factors, influenced by
implementation quality [Din+17; WKM24; NO25], the programming language [Lia+24;
WKM24], the network stack [Sec+24], network quality [BTR24; LG24], selected crypto-
graphic primitives [Hyl+24; SRC24], and, obviously, parametrization [Ami+24; KK25].
An evaluation of NxBFT and the NxB client model simply based on analytical results or
reported performance results of related work falls short of providing a complete picture.

Consequently, a comprehensive and comparative evaluation of NxBFT and the NxB client
model is necessary to understand their practical performance characteristics, benefits,
and limitations in contrast to state-of-the-art approaches. The evaluation approach must
ensure that the comparison is fair and conclusive. We must ensure that we only consider
the effects of algorithm logic, and not those resulting from different uses of, e.g., network
technology, cryptography, or programming languages. In particular, to ensure plausible
and conclusive results, a reasonable, scientifically grounded software and experiment
design is required.

As discussed before (see Section 4.1), the distributed systems research community investi-
gates three major paradigms: leader-based protocols with a static leader in the tradition of
PBFT [CL02], leader-based protocols with a rotating leader that follow the streamlined
pattern in the tradition of Chained HotStuff [Yin+19, Section 5], and leaderless protocols.
Leaderless protocols are not necessarily DAG-inspired but the most performant, state-
of-the-art protocols (e.g., Autobahn [Gir+24], Shoal++ [Aru+25], and Raptr [Ton+25])
follow this paradigm. Our goal is to evaluate the performance of NxBFT, which itself
belongs to the category of leaderless, DAG-based protocols, and to clearly identify its
strengths and weaknesses. One could argue that this requires the comparison of NxBFT
with other Byzantine fault-tolerant, DAG-based protocols that do not operate in the hybrid
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fault model. We, however, see no need for such a comparison: The analytical investiga-
tion (see Sections 4.2 and 4.3) and related work (e.g., [Ver+11; DCK16; Liu+19; Dec+22a;
Dec+24]) show that hybrid fault-tolerant approaches always outperform their non-hybrid
counterparts. Thus, we do not provide a general comparison between TEE-based and
non-TEE-based approaches. Instead, we want to investigate

1. in which deployment scenario which TEE-based SMR approach is superior,

2. if the benefits from using a DAG-based approach sustain when operating in the
hybrid fault model, and

3. which paradigm benefits to which extent from the NxB client model.

For a complete picture, whichwewant to achieve, we have to select a reasonable, TEE-based
algorithm from each category. To this end, we choose MinBFT (static leader) [Ver+11],
Chained-Damysus (streamlined) [Dec+22a, Section 7], and NxBFT (leaderless; this work).
While MinBFT is already over 10 years old, it still serves as a reasonable and, in our opinion
important, baseline. Chained-Damysus was the first proposal that transformed Chained
HotStuff to the hybrid fault model using a small TEE.

The contributions of this chapter are as follows:

• We introduce the ABCperf framework that aids the fair comparison of state machine
replication and atomic broadcast algorithms (Section 5.2).

• We describe the implementation of the analyzed algorithms which are MinBFT (static
leader), Chained-Damysus (streamlined), and NxBFT (leaderless) (Section 5.3).

• We investigate the influence of the different NxBFT algorithm phases on NxBFT’s
performance and outline potential optimizations (Section 5.4).

• We conduct extensive experiments to compare the performance of MinBFT, Chained-
Damysus, NxBFT in terms of throughput, latency, and resilience under the BFT client
model, the NxB client model, different payload sizes, different network sizes and
latencies, as well as under crash faults (Section 5.5).

We discuss related work in Section 5.1 and conclude the chapter with a discussion of
results and limitations in Section 5.6.

The ABCperf framework was originally developed in the bachelor’s thesis by Tilo Span-
nagel [Spa22] and later published by Spannagel, Leinweber, Castro, and Hartenstein
[Spa+23]. The MinBFT implementation was created by Tilo Spannagel, Adriano Castro,
Bela Stoyan, Conrad Teichmann, and Marc Leinweber. Tilo Spannagel assisted in the
implementation of Chained-Damysus and NxBFT. The comparison of TEE-based common
coins stems from the master’s thesis by Marius Haller [Hal25]. NxBFT and the comparison
study were previously published by Leinweber and Hartenstein [LH25]. All software used
in this chapter, except the common coin comparison, is available open source as part of
the ABCperf project: https://github.com/abcperf/abcperf.
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5.1 Background and Related Work

We discuss related work in the context of the evaluation of state machine replication
algorithms and the impact of implementation choices.

5.1.1 Comparison and Analysis of BFT SMR Algorithms

The discussion of related work on state machine replication evaluation is further divided
into two parts: the evaluation methodology and the evaluation results.

Evaluation Methodology

Empirical evaluations in distributed systems research typically perform measurements on
either simulated, emulated, or real-world systems [Whi+02; Bou10; Law15]. Informally,
emulation software imitates the behavior of a real system whereas simulation applies a
(statistical) model of the system to predict its behavior under certain conditions [Whi+02;
Col17]. Even when the evaluation is based on real-world systems, it is common to use
simulation or emulation to test the system under different conditions, such as varying
workload, network conditions, or fault scenarios [Gra+23; BTR24; LG24]. When looking
at fault injection and randomized network behavior, the gap to fuzz testing, which is the
randomized testing of software to find implementation flaws and security vulnerabilities
[Sch+24], becomes very small (e.g., [Ban+21; NO25]). The same techniques can be used
to judge on the resilience of a system [Vie+12]. Our experiment framework ABCperf
supports the emulation of omission and crash faults as well as network latency emulation.
Moreover, we use randomized integration tests to ensure the implementation quality of
the algorithms.

In the context of BFT SMR, the systematic comparison of algorithms gained momentum in
recent years. For an overview, we have to distinguish between solutions focusing on BFT
SMR (or atomic broadcast) and those that focus on full blockchain ecosystems. Table 5.1
summarizes the comparison of evaluation frameworks.

To the best of our knowledge, the first systematic comparison of BFT SMR algorithms was
conducted by Singh et al. [Sin+08] using their framework BFTSim. Tool [Wan+22] and the
work by Berger et al. [BTR24] are two recent simulation-based frameworks that focus on the
evaluation of BFT SMR algorithms. While BFTSim [Sin+08] and Tool [Wan+22] only require
a developer to define the algorithm logic to conduct experiments, Berger et al. [BTR24]
require to define a full-fledged replica software. In particular, it is not sufficient to only
supply the state machine replication logic or the atomic broadcast algorithm respectively
as an experiment input. All three use network simulation. Berger et al. [BTR24] find that
for small networks (𝑛 < 32), network simulation does not give a good approximation of the
performance of BFT SMR algorithms while for larger network sizes, network simulation is
sufficient as network latency becomes the dominating factor. We additionally argue that the
assignment of compute resources to simulation processes and the throughput estimation is
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Framework Prototype Network Faults Workloads
BFTSim
[Sin+08]

Logic Simulated Crash Random bytes

Blockbench
[Din+17]

Full Emulated Crash Random bytes, custom

BCTMark
[SLM20]

Full Emulated — Custom

Gromit
[Nas+22]

Full Emulated — Asset transfer

Tool
[Wan+22]

Logic Simulated Byzantine —

Diablo
[Gra+23]

Full Native — Predefined applications, custom

METHODA
[Rez+23]

Full Emulated Custom Custom

Berger et al.
[BTR24]

Full Simulated Crash Random bytes, DoS

ABCperf
(this work)

Logic Emulated Omission Random bytes, custom

Table 5.1: Comparison of evaluation frameworks for BFT SMR algorithms. For each framework, we list
whether it requires a full-fledged replica software or only the algorithm logic, whether it uses network
simulation, emulation or native execution, what type of fault emulation is supported, and what type of
workloads are supported.

less straightforward than for native execution or emulation. Typically, throughput is given
as the number of requests processed per second. If throughput is to be estimated, the actual
computation work of the protocol must be done somewhere. Simulation is used to save
resources, but the simulation processes must be assigned to physical machines such that the
required computation does not suffer from resource contention; otherwise, the throughput
estimation is not representative. We argue that in such cases resource allocation will be
similar to emulation or native execution. The simulation-based frameworks do not support
the definition of custom workloads or replicated applications; their focus is primarily to
investigate the effect of network conditions and faults on the performance of BFT SMR
algorithms. Bedrock [Ami+24] is a generic SMR implementation platform that aids the
implementation of SMR algorithms; while the paper provides a comparison of state-of-the-
art algorithms, Bedrock itself is not an evaluation framework (no network manipulation,
no fault emulation, limited workloads). However, the authors of Bedrock emphasize the
importance of a fair comparison by using identical programming languages, network
stacks, and libraries; we fully agree with this requirement.

Blockbench [Din+17], BCTMark [SLM20], Gromit [Nas+22], and Diablo [Gra+23] focus
on the evaluation of blockchain systems. All four require a full-fledged replica software
making them unsuitable for the evaluation of BFT SMR algorithms in isolation and hinder-
ing fair comparison and fast prototyping. Besides Blockbench, none of the frameworks
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supports the investigation of faults. We observe that the blockchain-focused frameworks
do not use network simulation; they either use emulation or native execution to produce
realistic results. Lebedev and Gramoli [LG24] find that network emulation is capable of
producing realistic results for BFT SMR algorithms and that the use of emulation improves
the reproducibility of the results. METHODA [Rez+23] is a generic framework for the
evaluation of distributed algorithms; its high flexibility, however, comes at the cost of
requiring a full-fledged replica software and the custom specification of workloads and
faults.

Aside from the evaluation frameworks, nearly every recent proposal with a system-oriented
approach to BFT SMR includes a thorough evaluation. In most cases, e.g., [Dec+22a;
Dec+24; Gir+24; Aru+25], the evaluation is conducted on cloud deployments and uses a
randomly generated byte sequences of a fixed size following a targeted request rate as
workload. Especially DAG-based approaches also investigate the impact of faults (e.g.,
[Dan+22; Aru+25; Ton+25]).

ABCperf, our contribution, is the first framework combining the advantages of simulation
frameworks and emulation/native execution frameworks: it only requires the developer
to implement the algorithm logic, it supports network emulation to produce realistic
performance results, and it supports the emulation of omission faults. To maximize the
fairness of the comparison, coordination algorithms and application logic are implemented
in the same programming language; developers are not required to implement more than
the actual algorithm or business logic. Moreover, it ships with the ability to define custom
workloads allowing to investigate the impact of application logic, such as the size of
the payload or the complexity of the business logic, and Byzantine client behavior on
the performance of BFT SMR algorithms. The flexibility for workload and application
definition also allows for prototyping the replicated application itself without the need to
implement a full-fledged replica software. Finally, we offer a web-based live exploration
mode that allows live manipulation of configuration parameters and that supplies real-time
performance metrics.

Evaluation Results

All recent evaluations find that the performance of BFT SMR algorithms is highly de-
pendent on the network size and the network latency: with increasing network size,
throughput decreases and latency increases (see, e.g., [Ami+24; BTR24; Kan+25b]). The
leader bottleneck is also well-documented [Cra+18; Gol+19; Bie+12; SPV22]. The impact
of the leader bottleneck is especially pronounced in the presence of faults, as the leader
must handle all requests and responses [Dan+22; Spi+22; BTR24]. Lawniczak and Dis-
tler [LD24] observe that a fault at the leader can lead to a metastable state. In such cases,
the protocol is not able to recover performance after the fault is resolved (e.g., by a view
change). Leaderless approaches show way better performance in the presence of faults
[Dan+22; BTR24; Gra+24; Bab+25]. Moreover, if not used with a BFT client, DAG-based
algorithms can increase peak throughput when increasing 𝑛 [Dan+22; Spi+22; Wan+24].
Suitable concurrent handling of messages, i.e., parallelized software, can amplify this effect
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[BSA14; BDK17; NMR21; Dan+22; Ein24]. The hybrid fault model is known to improve
performance significantly [Ver+11; DCK16; Dec+22a]. Our experiments (1) confirm these
findings and (2) show that the combination of DAG-based atomic broadcast and the hybrid
fault model is beneficial for even more increased performance and resilience.

5.1.2 Impact of Implementation Level Choices

There are at least four categories of implementation level choices that can have a significant
impact on the performance of BFT SMR: programming language, cryptographic primitives,
network stack, and parallelization strategies. In general, said choices have a positive or
negative impact independently from the deployed SMR algorithm. There are, however,
some choices that are more relevant for certain algorithms than others.

Programming Language The choice of the programming language has a significant
impact on the performance of an implementation. It defines the available libraries, compu-
tation time, memory consumption, type safety, and the ease of implementation. So-called
system programming languages like C, C++, and Rust are typically used for performance-
critical applications, as they allow for low-level memory management and fine-grained
control over the execution flow1. Rust, in particular, is known for its memory safety
guarantees and zero-cost abstractions which can lead to high performance without sacri-
ficing safety [Bal+17; Jun+18; Zha+22]. In contrast, higher-level languages like Python,
JavaScript, or Go are typically slower due to their interpreted nature and garbage collec-
tion mechanisms, but they offer higher productivity and ease of use. Liang et al. [Lia+24]
investigate the impact of programming languages on SMR performance and correctness.
They find that system programming languages are in terms of performance superior to
languages with garbage collection and conclude that, while having a steeper learning
curve, Rust is a perfect choice for “less sloppy and less error-prone” [Lia+24, Section 6]
interfaces when implementing SMR algorithms. Matsakis [Mat25] and Endler [End25b]
argue that Rust is the perfect choice for “foundational” software, emphasizing that Rust is
not limited to classic system-level programming. Endler [End25a] points out that Rust is a
good choice for sustainable prototyping. In this work, we use Rust as the programming
language for the implementation of all algorithms under investigation and our evaluation
framework.

Cryptographic Primitives Cryptographic primitives are a crucial part of modern BFT
SMR algorithms, as they ensure the integrity, authenticity, and confidentiality of messages.
Additionally, they are at the core of a Trusted Execution Environment (TEE). In general,
a cryptographic function, regardless of whether it is used for encryption, signing, or
hashing, implies a non-negligible computational cost. Kuznetsov et al. [Kuz+23] conduct a

1 See, e.g., https://github.com/kostya/benchmarks/blob/master/README.md (accessed 2025-08-04) for a
comparison of programming languages in terms of performance.
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benchmark of cryptographic hash functions and find that SHA2 [Nat15a] and BLAKE are
the best choices in terms of performance. After observing performance issues with the
hash function in the NxBFT implementation, we conducted a benchmark comparing SHA2,
SHA3, BLAKE2, and BLAKE3 with different input sizes. We find that the optimal choice of
the hash function depends on the expected input size and, crucially, on the availability of
hardware acceleration. The choice of the signature scheme, especially the elliptic curve
being used, also has a non-negligible performance impact [BL07]. Heß et al. [HHM24]
conduct a microbenchmark of the performance of a threshold signature scheme based on
the BN254 curve pair [BN05] and show that a single signature verification takes 4.5ms
highlighting the cost of threshold cryptography. Seck et al. [SRC24] show that the choice
of the signature implementation can influence the latency of HotStuff significantly. Finally,
the TEE itself has, due to context switching and memory management, a non-negligible
overhead [Mof+18; Mur+25] which can be addressed through enclave-aware programming
[WAK18] and is typically accepted due to the savings caused by the hybrid fault model.

Network Stack As pointed out before, in SMR research we typically assume secure,
reliable point-to-point links. In practice, this is achieved by a combination of routing
and transport layer protocols [CGR11, Section 2.4.7]. Castro discusses the match of TCP
[Edd22] and asynchronous systems and concludes that they do not match well [Cas00,
Sec. 5.2]. Modern implementations, however, typically rely on the TCP implementations
of the operating system2. Seck et al. [Sec+24] confirm that TCP is the best choice for
BFT SMR algorithms in terms of performance and reliability; TLS [Res18] should be used
to implement a secure overlay over TCP. Moreover, they find that packet loss above
0.5% already degrades the overall performance and loss of 2% yields a slowdown of
approximately an order of magnitude. Consequently, ABCperf uses TCP with TLS as
the network stack.

Parallelization Strategies We already mentioned the positive impact of parallelization:
in leaderless and leader-based approaches, it is highly beneficial to handle incoming
messages from peers and clients in parallel. Until those messages reach the “core” of the
SMR framework, i.e., the atomic broadcast and the application logic, this parallelization is
rather straightforward as there are typically no dependencies between the messages (e.g.,
serialization, deserialization, and TLS management). However, once the messages reach
the core, parallelization becomes more complex. For USIG-based approaches, e.g., each
replica maintains a data structure that manages the expected counter values. This can be
solved by a worker thread per peering replica such that each worker can maintain its own
independent data structure. But when it comes to deriving total order, all messages have
to be honored. For DAG-based algorithms, the DAG has to be maintained and interpreted
to derive consensus decisions. Parallelization in a way such that the overhead does not
diminish the performance gain is not trivial. Danezis et al. propose a parallelization strategy

2 See, e.g., the Aptos ledger: https://github.com/aptos-labs/aptos-core/blob/main/network/README.
md (accessed 2025-08-05).
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for Narwhal that allows to processmultiplemessages in parallel. For themanagement of the
DAG, they use a single “primary” thread [Dan+22, Section 4.2]. As cryptographic operations
like hashing, signature creation, and signature verification are a known bottleneck [BSA14;
Hyl+24], such a parallelization strategy has a significant positive impact on the overall
performance (see, e.g., [BSA14, Figure 7], [BDK17, Figure 5], and [Dan+22, Figure 7]).
Chop Chop [Cam+24] is a wrapper for atomic broadcasts that takes validation tasks and
batch creation off the critical path. This tasks are moved to a so-called distillation layer
that can process independently of the main protocol execution. In its core, Chop Chop is a
clever parallelization strategy. Our measurements confirm the observation of the Chop
Chop authors that cryptographic tasks are the main computational bottleneck of modern
atomic broadcast algorithms. ABCperf supports parallelization on the network layer for
serialization, deserialization, and the management of the secure and reliable links. We
deliberately do not parallelize the atomic broadcast logic to enable thorough testing of the
algorithms. During our experiments, we identify where we reach the limits of this single-
thread policy and where parallelization would be beneficial. Suri-Payer et al. [Sur+21]
and Gelashvili et al. [Gel+23] identify sequential execution of the application logic as a
bottleneck in BFT SMR algorithms and propose ways to allow deterministic, conflict-free
parallel execution. This is out of scope for this work as we focus on the differences between
the algorithms and not on the application logic.

5.2 ABCperf: Ensuring Plausible, Fair, and Reproducible
Results

The discussion of related work shows that when designing a distributed system, it is crucial
to consider the performance implications of various architectural and algorithmic choices.
In particular, precise knowledge of the algorithm behavior under various conditions is
necessary and the ability to evaluate differing system designs for a use case is needed. To
this end, we propose and use the ABCperf framework. ABCperf provides a systematic
approach to performance evaluation of prototypical distributed systems. In the following,
we first describe ABCperf’s objectives and design considerations. We then introduce
ABCperf in more detail and also present our laboratory setup.

5.2.1 Objectives and Design Considerations

While ABCperf is not limited to consensus-based SMR, it is designed with a focus on the
specific challenges and requirements of such systems with the following objectives and
design considerations.

Fair and Straightforward Comparison The goal is to compare SMR frameworks fairly
by focusing only on design decisions that affect coordination and consensus between
replicas. In other words, we examine how a given SMR framework implements this core
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logic. To ensure fairness, we exclude the routine tasks that all SMR frameworks and
atomic broadcasts must handle regardless of their paradigm. Examples are serialization,
link management, scheduling, or client handling. To this end, we provide a complete
abstraction of the network stack in form of a peer-to-peer communication middleware
allowing the SMR framework implementation at an abstraction level similar to pseudocode.
The interaction between replicas and clients is handled by ABCperf and, thus, identical
for all algorithms.

Powerful Emulation for Estimation of Real-World Performance Network conditions, such
as latency and packet loss, as well as actual faults have a significant impact on the achiev-
able performance of an SMR framework. To get an estimate for the real-world performance
under differing conditions, ABCperf uses network emulation to enable configurable net-
work latency and packet loss between replicas and clients. The use of network emulation
and the deployment on cloud or cluster infrastructure allows for a more realistic evaluation
environment yielding performance numbers that can be achieved in an actual deploy-
ment as well. Moreover, the peer-to-peer middleware can emulate omission faults. We
deliberately do not support Byzantine fault injection (e.g., invalid messages or message re-
ordering): Correct replicas use authentication mechanisms and maintain state information
to detect and drop invalid messages. Selective omission faults will trigger similar behavior
for the correct replicas (except for validation overhead). The consensus logic ensures that
equivocation faults will be tolerated. Consensus logic is different for every algorithm. In
fact, in TEE-based algorithms, equivocation is prevented in the first place. As a result, it
is hard to implement a generic equivocation fault emulation layer. Moreover, the correct
implementation of the mechanisms allowing to handle Byzantine faults should be ensured
before evaluating the performance of an SMR framework, e.g., by using blackbox and
randomized testing.

Exchangeable Application Layer ABCperf is designed to be agnostic to the specific appli-
cation logic running on top of the SMR framework. Thus, it is possible to evaluate (1) the
effects of different replicated applications on the performance of an SMR framework and (2)
the performance and the impact of different design decisions of the replicated application
itself. As with the SMR/consensus logic, the application can be implemented against a
well-defined interface with ABCperf taking care of the necessary communication.

Flexible and Complex Analysis It often happens that one only knowswhichmeasurements
to collect after having carried out an experiment. For example, one may not want to include
all clients or one may want to exclude a warm-up and cool-down phase. That is why
ABCperf does not just generate statistical key figures. Where possible, the raw data
is stored in a database so that complex evaluations can then be carried out using SQL
queries.

121



5 Performance and Resilience Evaluation of TEE-Based State Machine Replication

OrchestratorDatabase

ReplicaWorker ClientWorker

«interface»
AtomicBroadcast

«interface»
Application

Experiment Plan

algorithm parameters
workload config
link and fault config

n k

Live

View

Figure 5.1: ABCperf architecture. An ABCperf cluster consists of an orchestrator, 𝑛 replica workers, and
𝑘 client workers. The replica workers execute the server side of the SMR framework and the application
logic. The client workers execute the client side of the SMR framework and the application logic and
generate client requests. SMR logic and application have to provide bindings to the AtomicBroadcast and
Application interfaces, respectively. The orchestrator sets up the experiment, defines the experiment
parameters, provides the live view, and optionally stores the experiment results in a database. The live view
provides real-time manipulation of parameters and real-time rendering of metrics.

Live Exploration To allow quick feedback loops and manual sensitivity analysis, ABCperf
provides a web-based live exploration mode. In this mode, load, network, and fault
parameters can be adjusted in real-time. The live view renders real-time performance
metrics of the overall system and each replica.

No SMR Implementation Platform ABCperf is no SMR implementation platform like, e.g.,
Bedrock [Ami+24], and cannot be used to run a replicated application with production
quality. We simplified the implementation of ABCperf where possible without manipulat-
ing the performance of the SMR framework significantly. For example, clients and replicas
are identified with simple integer IDs, there is a fixed number of clients, there is no client
registration process, and all state is permanently stored in main memory.

5.2.2 Architecture Overview

ABCperf is written in Rust, chosen for its performance, type safety, and sustainable
prototyping capabilities. The architecture of ABCperf is shown in Figure 5.1. An ABCperf
cluster consists of an orchestrator, 𝑛 replica workers, and𝑘 client workers. The orchestrator
is a dedicated ABCperf service that reads the configuration, assists in establishing the
peer-to-peer network and schedules experiments. Moreover, it provides a live view, allows
manipulation of an ongoing experiment, and collects metrics from clients and replicas
to store them in the database. The replica workers execute the server side of the SMR
framework and application logic. The client workers execute the client side of the SMR
framework and application logic generating the actual load in form of client requests the
replicas have to handle. ABCperf should be deployed to a cluster (multiple replicas per
physical server are possible), letting it scale with the hardware.
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During an experiment, each replica worker uses ABCperf’s peer-to-peer middleware which
offers two features: First, it offers a message passing interface with eventual delivery,
abstracting the complete communication stack and allowing to send arbitrary messages to
replicas by addressing them with simple integer IDs. Second, it is capable of emulating
both fault and network behavior transparently. The messaging middleware is implemented
using the highly efficient and widely adopted (e.g., by [Dan+22; Spi+22; Gir+24; Aru+25])
tokio framework3. Omission faults are emulated by dropping messages from or to replicas
marked as faulty following an adjustable probability distribution. Latency and packet loss
are emulated using the capabilities of netem4. The configured latency value is added to
the native round trip latency of the experiment cluster. To this end, ABCperf emulates
50% of the configured latency in each direction.

The users of ABCperf are required to implement two interface types that are used by
replica and client workers: AtomicBroadcast and Application. AtomicBroadcast5 is an
interface for the server-side logic of an SMR framework (or, for simpler cases an atomic
broadcast solely) and makes simple replacement of coordination and consensus logic
possible whilst encouraging a clean implementation at an abstraction level similar to
pseudocode. Users of ABCperf are only required to implement algorithm state, message
handling and induced state transition, as well as message generation. In particular, the
transport protocol, serialization, peer discovery, or parallelization do not have to be con-
sidered. The code implementing the Application interface implements the decentralized
end-user application. It implements the server-side of the replicated application as well
as the client-side logic. Moreover, it needs to provide a way to generate client requests.
ABCperf is capable of running full-fledged decentralized applications. Nonetheless, they
are typically simplified to facilitate the emulation of client requests (e.g., allowing simpler
patterns of consecutive requests).

ABCperf has a default application we call the no-op application. In the no-op application,
the client requests have a configurable, fixed payload size. To prevent overhead from
generating random byte patterns, every payload bit is set to 0. ABCperf is configured
to not use compression between replicas. Thus, the configured payload length has a
significant impact on the data that has to be exchanged between replicas. The no-op client
is a synchronous client: as long as it has not received a response for its current request, it
will not send any new requests. After a request is forwarded by the SMR framework to
the server-side application logic, the server-side application logic does not perform any
operation but simply forwards the request to the client as a response.

5.2.3 Experiment Organization and Metrics

After the orchestrator initialized each worker, helped the replicas to form the peer-to-
peer-network, and the setup phase of the SMR framework is completed, the experiment is

3 https://tokio.rs (accessed 2025-08-11)
4 https://man7.org/linux/man-pages/man8/tc-netem.8.html (accessed 2025-08-11)
5 SMRServer would have been a better name but we stuck to AtomicBroadcast for historic reasons.
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abcperf.yml
experiment_label: fault_and_network_latency

experiment_duration: 70 # seconds

n: 10

t: 4

abc:

algorithm: nxbft-tee

config:

vertex_timeout: 0.1 # seconds

min_vertex_size: 100 # requests

client_workers: 5

orchestrator_request_generation:

load:

- ticks_per_second: 1000 # Hertz

requests_per_tick: 25 # 1000 * 25 = 25 kOp/s

invocation_time: 0

maximum_client_instances: 10000

distribution: constant

smr_client: fallback

fallback_timeout: 5 # seconds

application:

name: noop

config:

payload_size: 256 # bytes

fault_emulation:

- replica_id: 0

omission_chance: 1 # = 100%

invocation_time: 60 # seconds

network:

replica_to_replica: []

- latency: 5 # milliseconds

jitter: 0 # milliseconds

packet_loss: 0 # = 0%

invocation_time: 0 # seconds

client_to_replica: []

Figure 5.2: Exemplary ABCperf configuration file in YAML format. The experiment is configured to run
the NxBFT algorithm for 70 s with 10 replicas. NxBFT is configured to create a vertex at least every 0.1 s;
for faster creation the vertex must contain at least 100 requests. The load is generated by 5 client workers
of which each spawns 10000 clients at maximum. The client workers together generate requests with a
constant rate of 25 kOp/s. The “fallback” SMR client indicates that the NxB client model is being used; after
5 s of no answer a client contacts a different replica. The no-op application is used with a payload size of
256 Bytes. After 60 s, the replica with id 0 shows 100% omission faults. The network between replicas is
configured with a constant round trip latency of 5ms. Clients communicate with the default latency of the
experiment cluster.
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(a) Overview and performance metrics

(b) Replica resource utilization

Figure 5.3: Screenshots of the ABCperf live view for the experiment as described by the config file in
Figure 5.2. Figure 5.3a shows the overall performance metrics, i.e., end-to-end-latency and throughput, while
Figure 5.3b shows the replicas’ resource utilization, i.e., CPU usage, RAM usage, and bandwidth usage. It is
possible to to crash randomly selected replicas (omission rate of 100%). Metrics are rendered in real time.

started. The client workers generate requests following the configured load patterns. In
most cases, this will be a fixed request rate (e.g., 50 kOp/s). Each client worker measures
each client request issued (i.e., invocation and processing time). Replica workers record
their resource utilization. An experiment has a predefined experiment duration; once,
the experiment duration is reached, the orchestrator stops all workers and collects the
measurement data. The measurement data is then written to the database. An exemplary
ABCperf configuration file is listed in Figure 5.2.

Themain performance metrics of an SMR algorithm are end-to-end latency and throughput.
The end-to-end-latency (or confirmation latency) is the time it takes for a client request to
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be processed and sufficient responses to be received. The throughput is the number of
successfully answered client requests per time unit (typically seconds). The end-to-end
latency heavily depends on the network conditions and the load on the system. If stressed
with a certain request rate defined in kOp/s, an average end-to-end latency of more than
1 s is a clear sign for system overload: the system handles per second less requests than
generated per second which leads to growing queues and, thus, increasing end-to-end
latency with increasing experiment duration. However, an end-to-end latency of less than
1 s and throughput matching the request rate does not necessarily imply that the system
is in a stable state. Instead, the queues may just grow slowly. Consequently, sustained
throughput can only be determined by observing the system for an extended period of
time and comparing the metrics for different time intervals of the experiment. Figure 5.3
shows screenshots of ABCperf’s live view for the experiment as described by the config
file in Figure 5.2.

To allow for a more (over)load-independent performance analysis, ABCperf also measures
the intermediary decision time (IDT). The IDT is the time between two decisions of the
server-side SMR framework. A decision is made when the server-side SMR framework
forwards one or more requests to the server-side application logic that then produces
responses for the clients. While the IDT obviously is not independent of network conditions
and load, it is more robust against short-term fluctuations as it does not implicitly measure
queue lengths. When generating requests with a constant rate per second, an IDT over
1 s is not a sign of overload. This is in contrast to the end-to-end-latency and caused by
batching effects that allow the system to decide on all requests that have accumulated
since the last decision at once. Such batching effects make it possible that the average
end-to-end latency is below 1 s while the IDT is above 1 s.

5.2.4 Laboratory Setup

The laboratory setup consists of an experiment cluster with multiple nodes assigned to
different roles (orchestrator, replica workers, client workers). Each cluster node runs a
Docker container6 with the ABCperf software stack, allowing for easy deployment and
management of the experiment environment. Our experiment cluster consists of 25 servers
(or cluster nodes) with the following hardware configuration and role assignment:

• Orchestrator: Intel Xeon E-2288G CPU (8 cores), 64 GB main memory, 1 TB NVMe
SSD, 1GBit/s uplink

• Replica workers 00–09: Intel Xeon E-2288G CPU (8 cores), 64GB main memory,
512GB NVMe SSD, 10GBit/s uplink

• Replica workers 10–19: Intel Xeon E-2388G CPU (8 cores), 64GB main memory,
512GB SATA SSD, 10GBit/s uplink

6 https://docs.docker.com/get-started/docker-overview/ (accessed 2025-0812)
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• Client workers 0–3: AMD EPYC 9274F CPU (24 cores), 128GB main memory, 1 TB
NVMe SSD, 10GBit/s uplink

The experiment cluster is distributed over two switches which are interconnected with
an aggregated 60GBit link. Thus, the experiment cluster can communicate with at least
6GBit/s between every cluster node. The base network roundtrip latency of our cluster
is ∼ 0.15ms. The actual number of replicas is equally distributed among the 20 replica
nodes. To speed-up storing and analyzing of experiment data (the experiments conducted
for this dissertation produced about 12 TB of raw data), we store the data in a ClickHouse
database which is optimized for storing and analyzing large amounts of data7.

5.3 Implementation of Algorithms

In this section, we describe the implementation of the three algorithms at investigation:
MinBFT, Chained-Damysus, and NxBFT. Please note that our implementations do not
provide a fault-tolerant setup (we use a trusted setup within ABCperf) and, except for
MinBFT, no garbage collection or state transfer capabilities. We deem this reasonable
as such mechanisms only have a significant impact during recovery procedures and not
during normal operation. Additionally, we argue that the performance of checkpoint, state
transfer, and recovery procedures is only secondarily influenced by the SMR algorithm’s
paradigm which is why we see them as out of scope for the empirical evaluation of
this dissertation. In the following, we briefly describe the TEE being used (Intel SGX),
relevant implementation details for all three algorithms, the test strategy, and the algorithm
parametrization.

5.3.1 TEE: Intel SGX

Intel SGX, which is short for Software Guard Extensions, is a trusted execution environment
developed by Intel [McK+13; CD16]. Intel SGX is an extension to the CPU firmware. The
Skylake microarchitecture, released in August 2015, was the first generation to support
SGX. SGX allows to define enclaves which are isolated from the rest of the system. The
main memory area of an enclave is encrypted and managed by the CPU firmware; data
enters and leaves the CPU only in encrypted form. An enclave depends on the operating
system for I/O operations. Every SGX-capable CPU has a burnt-in hardware secret that
can be used to generate attestations. We refer the reader to Costan and Devadas [CD16]
for a detailed and thorough explanation of Intel SGX.

Although we are aware of the limitations and weaknesses of SGX (e.g., [Bul+18]), in our
experiments SGX serves as a viable way to account for the overhead of enclaved execution.
Moreover, we want to highlight that typically such vulnerabilities are hard to exploit in

7 https://clickhouse.com/docs/intro (accessed 2025-08-12)
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practice and mitigations have been implemented in newer CPU generations [Wik25a].
Please see Section 6.1 for a more detailed discussion.

We use the Rust SGX SDK by the Apache Teaclave project8 to implement the enclaved
functionality. As the remote attestation based on Intel’s attestation infrastructure was
deprecated by Intel and now a self-hosted attestation infrastructure is required, we do not
support attestation features in our prototypes. Because attestation is only required during
setup, the missing attestation has no impact on the evaluation results.

5.3.2 MinBFT

To the best of our knowledge, there exists no feature-complete MinBFT implementation
satisfying our requirements. The implementation governed by the Hyperledger project9
does not support view changes and is not longer maintained. The implementation by Kim
Hammar10 is a Python prototype that was published after we started our research. We,
therefore, implemented MinBFT from scratch in Rust, using the descriptions by Veronese
et al. [Ver+11] as a basis.

Our implementation follows the original message pattern: the incumbent leader broadcasts
a PREPAREmessage whenever it has a batch of requests ready to order. The leader follows
a simple batching strategy: It waits for a defined number of requests it can batch before
sending a PREPARE message. When the minimum batch size is not reached within a
configurable time interval, the PREPARE message is sent anyways. The timeout cannot
trigger a PREPARE message with an empty batch. Receiving replicas echo the leader’s
proposal in a COMMITmessage; the COMMITmessage contains the complete message of
the leader as a payload thus ensuring reliable broadcast of PREPARE messages. The USIG
module signs message hashes; signatures are used to implement a hybrid fault-tolerant
FIFO reliable broadcast (see Section 4.2). The hash function used is SHA2-256 [Nat15a]
provided by the sha2 crate11. The signature is an ECDSA signature with a key size of 256
bits [Nat23a] provided by Intel’s SGX SDK. Replicas start a timer whenever they receive a
client request; if the timer expires before the request was ordered, the replica requests a
view change. The current timeout interval will be doubled whenever a client timeout is
triggered (exponential backoff). MinBFT is the only of the three algorithms for which a
checkpoint mechanism is implemented; we follow the original description in the paper.

The following behavior differs from the original description:

• A replica forwards a valid NEW − VIEW message to all other replicas to ensure that
the message is reliably broadcast. Otherwise, some correct replicas may enter the
view while others will initiate a second view change.

8 https://github.com/apache/incubator-teaclave-sgx-sdk (accessed 2025-08-12)
9 https://github.com/hyperledger-labs/minbft (accessed 2025-08-12)
10 https://github.com/Limmen/minbft (accessed 2025-08-12)
11 https://crates.io/crates/sha2 (accessed 2025-08-13)
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• The incumbent leader does not send a COMMIT message for its own PREPARE.
Instead, the leader’s PREPARE message is treated as a COMMIT message as well.
This does neither harm safety or liveness (see Section 4.2) but saves messages.

• When the leader has a new batch ready, it sends a PREPAREmessage without waiting
for the previous batch to be committed. This is in line with the sliding-window
mechanism of PBFT [CL02, Section 6.1]; we, however, use an unbounded window
size.

5.3.3 Chained-Damysus

Damysus was published in 2022 by Decouchant et al. [Dec+22a]; the authors made their
C++ prototype available open source12. Since the original prototype implementation is
very difficult to understand, some identifiers are named differently in the paper and in
the implementation, and integration into ABCperf would have required several foreign
function interface definitions, we decided to create our own implementation in Rust. We
based our implementation on the descriptions in [Dec+22a, Section 7].

Chained-Damysus proceeds in rounds that are called views. To preserve liveness, a replica
is the view leader for two consecutive views [Dec+22b, Appendix B]. The main message
types of our implementation areNEWBLOCK andCOMMITMENT. The incumbent leader
proposes a batch of requests by broadcasting a NEWBLOCK message. Receiving replicas
will send aCOMMITMENTmessage back to the next leader. Once the next leader collected
sufficient COMMITMENT messages, it is allowed to propose a new block. The original
description requires a correct replica to send two messages per view to the next leader
(a so-called prepare message and a so-called new view message). We omit the new view
message and combine the information carried by the prepare and new view messages
into a single COMMITMENT message. Replicas always send a COMMITMENT; if no
NEWBLOCK message was received within a timeout, the replica will commit the last
valid block received again. Our implementation uses the exponential increase and linear
decrease as described in the original publication [Dec+22a, Section 3].

COMMITMENT messages are signed with a USIG-like module called checker which is
used to implement a hybrid fault-tolerant FIFO reliable broadcast (see Section 4.2). The
checker module does not only assign a unique counter value to a message; this would
not suffice to ensure safety [Dec+22a, Section 4.1]. To ensure safety, the checker module
also ensures that a replica cannot lie about blocks it committed in the past [Dec+22a,
Section 4.2.1]. Additionally, the Chained-Damysus enclave provides an accumulator
function that aggregates the received commitments for a view into a single commitment
(a quorum certificate). The accumulator implements a TEE-based threshold signature
scheme and prevents that a NEWBLOCK message has to contain all commitments. Thus,
the NEWBLOCK message has a constant size instead of a size linear in 𝑛. Hashes that
are computed outside the enclave are computed using SHA2-256 (see MinBFT description

12 https://github.com/vrahli/damysus (accessed 2025-08-12)
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above). The hashes of commitments have to be computed inside the enclave. As the sha2
crate does not work inside SGX13, we use the BLAKE2b hash function [Aum+13] provided
by the blake2 crate14 inside the enclave. The signature is an ECDSA signature with a key
size of 256 bits [Nat23a] provided by Intel’s SGX SDK.

A replica in Chained-Damysus is allowed to decide a block when it was followed by two
valid and consecutive blocks. To increase throughput, we add a batching mechanism
similar to the one in MinBFT: After having a quorum of commitments, the leader waits
for a configurable time interval. e.g., 0.1 s, to collect a configurable amount of requests,
e.g., 100, before sending the NEWBLOCK message.

During the implementation, we found that the original description of Chained-Damysus
lacks relevant details concerning the ordered and guaranteed delivery of messages. A
faulty leader may fail in broadcasting its NEWBLOCK message proposing a block 𝑏. But
when a quorum of replicas, i.e., 𝑡 + 1 replicas, receive the message and the block is valid,
they will commit it. Consequently, consecutive blocks will be built on top of block 𝑏.
Blocks, however, are not reliably broadcast. Hence, a correct replica 𝑝𝑖 may observe a
timeout for a view where a quorum of replicas did not. In summary, there is no guarantee
that all correct replicas will receive block 𝑏 making it impossible for them to deliver any
block that followed 𝑏15. To mitigate this problem, we introduce a backfilling mechanism
that allows replicas to request missing blocks from other replicas. The HotStuff paper
describes the necessity for such a procedure as well [Yin+19, Section 4.2]. When a replica
receives a block for which it does not know the linked parent block or the block linked
by the quorum certificate, it broadcasts a block request. To avoid that faulty replicas can
inject arbitrary blocks in their responses, the requesting replica compares the hash value
of a received block with the hash value received with the link information. A replica only
accepts a block response if the hash values match. If a replica 𝑝𝑖 receives a block for view 𝑣

after 𝑣 timed out for 𝑝𝑖 , 𝑝𝑖 must not create a COMMIT message for this block as it already
created one after the timeout. If 𝑝𝑖 would create a second COMMIT message, its USIG
counter would become out of sync with the other replicas which, in turn, would drop any
future message of 𝑝𝑖 . Moreover, the implementation has to be able to handle messages
for views that the replica did not reach yet. Such messages have to be held back until the
replica reaches the corresponding view. We use a heap-based priority queue to manage
such messages; after each view transition we check if we have stored messages for the
new view.

13 The sha2 crate uses automated CPU feature detection to use hardware acceleration if possible. Although
all CPU features are also available within the enclave, the detection mechanism does not work within SGX
and renders the entire library unusable. The only knownworkarounds are to change the entire compilation
process or to manually set CPU feature flags (see https://github.com/RustCrypto/hashes/issues/321,
accessed 2025-08-14). We see both as too cumbersome for our research project.

14 https://crates.io/crates/blake2 (accessed 2025-08-13)
15 Whenever a replica observes a gap in the chain of blocks defined by following the quorum certificates’

hash links, it cannot deliver any block from a view higher than the gap.
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5.3.4 NXBFT

The core of NxBFT is the TEE-Rider atomic broadcast. TEE-Rider defines the communi-
cation protocol for the replicas in the system, ensuring that messages are delivered reliably
and in the correct order. NxBFT adds the NxB client model, request deduplication, and ver-
tex scheduling logic as well as methods for setup, garbage collection, and reconfiguration.
As we are interested in the common case performance, we restrict the implementation
on the server side to the TEE-Rider atomic broadcast (Algorithms 6 to 8), the request
deduplication, and the vertex scheduling logic (essentially as described in Section 4.6.3
and Figure 4.10)16.

The USIG-like enclaved signing service is identical to MinBFT. At the time of writing,
the TEE-based Cachin common coin exists only as a prototype. Thus, we stick with the
naive TEE-based common coin and cannot investigate if the performance gain of the TEE-
based Cachin coin has an impact on NxBFT’s performance. We will, however, empirically
compare the naive TEE-based common coin with the prototype of the TEE-based Cachin
coin in Section 5.4.3. The naive common coin is implemented using a cryptographically
secure pseudorandom number generator based on the ChaCha stream cipher [NL18]
provided by the rand_chacha crate17. The naive common coin uses validly signed vertices
as coin shares. This requires that the enclave can interpret vertex data and verify their
signatures. For the latter, the enclave must compute hashes on its own for which we use
BLAKE2b (see the Damysus description above).

NxBFT’s vertex buffer is organized as a heap-based priority queue. The DAG is stored in a
vector data type. Graph traversals for vertex ordering are implemented using a depth-first
search. Graph traversals for validating the retrospective commit rule are implemented
using a best-first search. The best-first search first explores the breadth of the DAG and
changes to a depth-first search when the branch is found that is maintained by the replica
that created the searched vertex.

5.3.5 Test Strategy and Implementation Quality

To ensure a correct implementation, we employ the following test strategy for the Damysus
and the NxBFT implementation. Specialized or optimized data structures, e.g., vertex buffer
or DAG, are unit tested. The algorithm logic is then tested in two types of integration tests
as a black box. First, we use deterministic tests that run the protocol for all 𝑛 ∈ [3, 35] ⊂ N
and up to 49 rounds18. After each run, it is ensured that all replicas ended in the same

16 Strictly speaking, this is not correct. At the time of writing, the codebase contains the setup procedure
described in Section 4.6.4 and a prototype for the recovery procedure described in [LH25, Section IV-C2].
However, these will not be considered further in the following.

17 https://crates.io/crates/rand_chacha (accessed 2025-08-13)
18 In the remainder of this chapter, we use this notation to define an interval of natural numbers. We conduct
experiments or tests for all numbers that lie in the interval. For example, 𝑛 ∈ [3, 6] ⊂ N means that we
consider the cases 𝑛 = 3, 𝑛 = 4, 𝑛 = 5, and 𝑛 = 6.
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state. Second, we use randomized tests that run the protocol for all 𝑛 ∈ [3, 25] ⊂ N and 25
rounds. In each randomized run, 𝑛 − (⌊𝑛2 ⌋ + 1) random replicas are selected to be faulty.
Faulty replicas drop received and sent messages with chances {0, 13 ,

2
3 , 1}. Every time a

message is to be added to a receive buffer, no matter if by or to a faulty replica, there is a
chance ∈ {0, 13 ,

2
3 } that it is delayed. However, all messages sent by a correct replica will

eventually be delivered at all correct replicas. In the case of Damysus, there is a chance
of 0.25 or 0.5 that a timeout is triggered. After each run, it is ensured that all correct
replicas delivered the same requests in the same order and that liveness for client requests
is preserved. Each combination of 𝑛, drop chance, and delay chance (and timeout chance)
is repeated 15 times. The randomized test strategy revealed a significant number of bugs
that, in most cases, stem from message reordering, i.e., asynchrony. We are confident that
the implementations are robust and do neither break safety nor liveness.

At the time of writing, theMinBFT implementation has only limited support for randomized
testing. Moreover, we are aware of an unresolved bug that can occur when multiple
consecutive view changes are performed. Due to the significant complexity of the view
change logic and the fact that available descriptions lack significant implementation
information, we were not able yet to track down the root cause of the bug. Please see
Section 5.6 for a discussion.

5.3.6 Algorithm Parametrization

All three algorithm implementations have parameters that can be adapted to the needs of
the deployment scenario. These are minimum (and maximum) batch sizes, timeout values
for sending batches anyways, timeouts for view changes, and, for MinBFT, a checkpoint
interval. Moreover, the NxB client model has a fallback timeout to contact a different
replica if no response is received in time.

The algorithm parameters – that are fixed for all experiments – are as follows and brought
the best performance in a manual sensitivity analysis. MinBFT requires a batch to contain
at least 10k requests, Chained-Damysus and NxBFT require 100 requests. All algorithms
propose at least every 0.1 s a new block. We do not limit the maximum batch size. MinBFT
and Chained-Damysus have an initial view timeout value of 3 s. MinBFT has a checkpoint
interval of 1000 committed batches. The fallback timeout of an NxB client is 5 s.

5.4 Impact of Implementation Design Choices on NXBFT

Before we dive into the comparison of the protocols, we investigate the performance
profile of NxBFT. This analysis gives an understanding on the resource consumption
and helps to explain the performance results in Section 5.5. As cryptographic operations
dominate computation time, we analyze possible optimizations regarding their choice.
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5.4.1 NXBFT Computation Time Breakdown

First, we analyze which protocol steps of NxBFT account for what proportion of the total
computation time. To this end, we divide the NxBFT code in the following steps:

• Client request handling: Time spent for queuing new client requests in the request
buffer (messageBuffer in Algorithm 6).

• Vertex request handling: Time spent for answering incoming vertex requests as
part of the backfilling logic.

• Vertex validation: Time spent for verifying the validity of received vertices. This
includes checking the number of edges, whether a vertex for the round by the creating
replica was already received, and if it carries a valid enclave signature. For signature
verification, a hash of the vertex has to be computed.

• Graph construction: Time spent for constructing the graph. This includes the
search for and request of missing predecessors, the vertex buffer walk, and the check
if a round can be completed.

• Vertex construction: Time spent for creating a new vertex whenever a round could
be completed. This includes the creation of the vertex data structure and the signing
of the vertex using the enclave.

• Coin toss: Time spent for performing the COMPUTECOIN(vs) function (Algorithm 8)
whenever a wave is ready. This includes the context switch to the enclave, the
validation of coin shares (i.e., vertices) in the enclave, and the PRNG logic.

• Wave logic: Time spent for executing the wave logic and reaching consensus, i.e.,
the WAVEREADY(𝑤 ) function in Algorithm 6 without the coin computation for𝑤 .

Please note that we only measure the time spent “inside” of the NxBFT module. Computa-
tions outside of the module which are performed by ABCperf, e.g., serialization and link
management, are not measured.

We then conduct the following experiment: We set up a network of 𝑛 replicas, where
𝑛 ∈ {3, 10, 20, 40}, and 2M clients. The clients generate requests using ABCperf’s no-op
application with a rate of either 50 kOp/s or 100 kOp/s and requests have a size of either
256 Byte or 512 Byte. The experiment runs for 60 s and is repeated 5 times. For each
run, configuration, and algorithm step, we determine the median time of all 𝑛 replicas.
The median times of all runs are then averaged to get the average computation time per
algorithm step and configuration. Figure 5.4 shows the average computation times for all
configurations. Client request handling, vertex request handling, and graph construction
have a added up time of less than 0.5 s and are summarized as “Other”.

We can see that vertex creation and vertex validation – which include the most crypto-
graphic operations of NxBFT – take the most time in all configurations. With increasing
𝑛, the vertex creation time decreases, while the vertex validation time remains relatively
stable. Independent from the request rate and the payload size, the vertex validation time
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Figure 5.4: NxBFT computation time breakdown for 𝑛 ∈ {3, 10, 20, 40}, request rates of 50 kOp/s and
100 kOp/s, payload sizes of 256 Byte and 512 Byte, and an experiment duration of 60 s. Average of 5 repetitions
per configuration. In all cases, the validation of received vertices is the most time-consuming operation;
the required time is primarily determined by number and size of requests. The vertex construction time
decreases when 𝑛 is increasing. The time spent on coin computation and wave logic/consensus is more or
less independent from the system load. In particular, the impact of the graph operations required for the
wave logic is negligible.

is roughly 𝑛 times the vertex creation time. When doubling the payload size, the vertex
validation time increases by a factor of ∼ 1.5. The observed slowdown allows to conclude
that the signature verification accounts for approximately 50% and hash calculation ac-
counts for the other 50% of vertex validation time when the payload size is 256 Byte. When
the system load increases, either by increasing the number of requests or the payload size,
the total computation time of NxBFT increases from ∼ 11 s (𝑛 = 3, request rate 50 kOp/s,
payload size 256 Byte, Figure 5.4a) to ∼ 32 s (𝑛 = 3, request rate 100 kOp/s, payload size
512 Byte, Figure 5.4d). The time spent on coin computation and wave logic/consensus
is more or less independent from the system load. In particular, the impact of the graph
operations required for the wave logic is negligible.

The results show that the overall computation time is primarily determined by the vertex
creation and validation times. Because request rate and payload size independently increase
the time of said protocol steps significantly, we can safely deduce that the time is primarily
determined by the number of vertices and the number of bytes to process. From this
observation, it can be concluded that hash and elliptic curve operations determine the
operating costs of NxBFT. The decreasing vertex creation time for increasing 𝑛 shows the
positive load-balancing impact of the NxB client model: a single replica receives fewer
client requests making the vertices smaller. The stable vertex validation time shows that
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the overall “hash work” is not influenced by the load balancing effect of the NxB client
model.

5.4.2 Hash Function

Since hashing lies on the performance-critical path, we investigate how common hash
functions perform on the CPUs of the replica nodes of our experiment cluster (Intel Xeon
E-2288G, released 2019; Intel Xeon E-2388G, released 2021) and on a recent AMD work-
station and server CPU (AMD EPYC 4564P, released 2024). Those hash functions are
SHA2-256 [Nat15a] (crate sha219), SHA3-256 [Nat15b] (crate sha320), BLAKE2b [Aum+13]
(crate blake221), and BLAKE3 [OCo+21] (crate blake322). Except for BLAKE2b, all func-
tions produce a hash value of 256 bit length. BLAKE2b is chosen as it is optimized for
64 bit infrastructures and outperforms BLAKE2s on such infrastructures. We conduct
the following experiment: We create an array of 1000 random byte strings with sizes of
2𝑖 Byte, 𝑖 ∈ [0, 20] ⊂ N. For each size, we measure the time it takes to hash all 1000 values.
The experiment is repeated 10 times. Figure 5.5 shows the average hash time for each hash
function and CPU.

The CPUs Intel Xeon E-2388G and AMD EPYC 4565P support hardware acceleration for
SHA2-256 making SHA2 the fastest hash function on these CPUs for input sizes up to
1 KiB. The experiment for the AMD CPU shows that recent hardware does not change the
relative speed-up of the SHA2-256 hardware acceleration. Without hardware acceleration,
however, SHA2-256 is surprisingly the slowest hash function (Figure 5.5a). BLAKE3 is
for small input sizes significantly slower than BLAKE2b (slowdown ∼ 3×). For data sizes
starting from 2KiB, BLAKE3 outperforms all other hash functions (speedup ∼ 3×).

We implemented hashing in NxBFT rather naively. Whenever a hash of a data structure,
e.g., of a vertex has to be computed, the hash function is invoked for every data structure
field. If fields are heap containers, e.g., a vector, the hash function is invoked for every
element, e.g., a client request, of the container. Memory operations are typically very
fast, but hashing is a CPU-intensive operation. Thus, hashing approaches that minimize
the number of hash function invocations and hash larger byte slices at once may be
beneficial. For the following example, we look at the CPU Intel Xeon E-2388G. For a
vertex payload size of 8 requests with a size of 256 Byte each, BLAKE3 would require
660 ns to compute the hash. Eight invocations of the hardware-accelerated SHA2-256
would require 8 · 126 ns = 1008 ns. This is a slowdown of ∼ 1.53× which increases for
bigger vertices. Moreover, as described in Section 5.3.4, NxBFT uses two different hash
functions: SHA2-256 and BLAKE2b. When the enclave has to be able to compute a hash
value, BLAKE2b is used because the sha2 crate does not work inside SGX. We see that,
except for the CPU Intel E-2288G, BLAKE2b is always slower than SHA2-256 and, for all

19 https://crates.io/crates/sha2, accessed 2025-08-14
20 https://crates.io/crates/sha3, accessed 2025-08-14
21 https://crates.io/crates/blake2, accessed 2025-08-14
22 https://crates.io/crates/blake3, accessed 2025-08-14

135

https://crates.io/crates/sha2
https://crates.io/crates/sha3
https://crates.io/crates/blake2
https://crates.io/crates/blake3


5 Performance and Resilience Evaluation of TEE-Based State Machine Replication

1 B 32 B 1 KiB 32 KiB 1 MiB
Data size

10 ns

100 ns

1 µs

10 µs

100 µs

1 ms

Co
m

pu
ta

tio
n 

tim
e

BLAKE2b
BLAKE3
SHA-2 256
SHA-3 256

(a) Intel Xeon E-2288G

1 B 32 B 1 KiB 32 KiB 1 MiB
Data size

10 ns

100 ns

1 µs

10 µs

100 µs

1 ms

Co
m

pu
ta

tio
n 

tim
e

BLAKE2b
BLAKE3
SHA-2 256
SHA-3 256

(b) Intel Xeon E-2388G

1 B 32 B 1 KiB 32 KiB 1 MiB
Data size

10 ns

100 ns

1 µs

10 µs

100 µs

1 ms

Co
m

pu
ta

tio
n 

tim
e

BLAKE2b
BLAKE3
SHA-2 256
SHA-3 256

(c) AMD EPYC 4564P

Figure 5.5: Hash function benchmark for BLAKE2b, BLAKE3, SHA-2 256, and SHA-3 256 on CPUs Intel
Xeon E-2288G, Intel Xeon E-2388G, and AMD EPYC 4564P. Average of 10 runs, each run consists of 1000
hash operations. Error bars indicate the 95% confidence interval. When hardware acceleration for SHA2 is
available (Intel Xeon E-2388G, AMD EPYC 4564P), SHA2 outperforms all functions up to a data size of 1 KiB.
Starting from 2KiB, BLAKE3’s parallelization is in clear advantage.
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CPUs, significantly slower than BLAKE3. In conclusion, if the overhead of creating larger
byte slices is acceptable, the switch to BLAKE3 must be considered.

5.4.3 Common Coin

In its current implementation, NxBFT uses the naive TEE-based coin. The NxBFT compu-
tation time analysis above showed that the common coin’s COMPUTECOIN(·) phase takes
between 10% and 12% of the total computation time. The analysis in Section 4.3.3 (see
Table 4.1 in particular) showed that the TEE-based Cachin coin requires ∼ 2× less elliptic
curve operations for computing the coin value than the naive TEE-based coin. Thus, we
can expect a speedup of 2× for this phase when using the TEE-based Cachin coin instead
of the naive TEE-based coin. When ignoring context switches to the enclave and consid-
ering coin share generation and validation as well, the speedup of the coin computation
phase enables an overall expected speedup of 1.33× for the common case and 1.2× for the
worst case: In the common case, the first 𝑡 + 1 received coin shares are valid, leading to
a total of 1 + 2(𝑡 + 1) + 2𝑡 + 2 = 5 + 4𝑡 multiplications for the naive TEE-based coin and
2 + 2(𝑡 + 1) + 𝑡 + 1 = 5 + 3𝑡 multiplications for the TEE-based Cachin coin (see Table 4.1).
For 𝑡 →∞, this results in speedup of 1.33×. In the worst case, all 𝑛 coin shares have to be
verified, leading to a total of 1 + 2(2𝑡 + 1) + 2𝑡 + 2 = 5 + 6𝑡 multiplications for the naive
TEE-based coin and 2 + 2(2𝑡 + 1) + 𝑡 + 1 = 5 + 5𝑡 multiplications for the TEE-based Cachin
coin. For 𝑡 →∞, this results in speedup of 1.2×.

We conduct an empirical comparison of the native Cachin coin, the naive TEE-based
coin and the TEE-based Cachin coin to determine if the expected performance gain in
the common case is worth the way more complex implementation. The experiment
was conducted as part of the master’s thesis by Marius Haller [Hal25]. All coins are
implemented in C++; the Intel SGX SDK23 including its variant of the Intel Cryptography
Primitives Library is used to implement the enclave logic and the cryptographic operations
(this includes those operations outside the enclave as well). The elliptic curve used is
NIST P-256 [Che+23]. We set up a peer-to-peer network of 𝑛 = 2𝑡 + 1, 𝑡 = 2𝑖, 𝑖 ∈ [0, 6] ⊂
N, processes. The processes are equally distributed among the 20 replica nodes of our
experiment cluster; the network round trip latency is 0.15ms. Each network performs
600 coin tosses for each coin implementation. The experiment ensures that all processes
simultaneously start the coin share generation and distribution. We measure the time it
takes at each process to generate the coin share, distribute the shares over the network,
validate the first 𝑡 + 1 coin shares, and compute the coin value.

Figure 5.6 shows the average time of all 600 runs for each configuration. First, we see
a clear order: In all configurations, the naive TEE-based coin is faster than the native
Cachin coin and the TEE-based Cachin coin is faster than the naive TEE-based coin. The
naive TEE-based coin shows a median speedup of 1.42× over the native Cachin coin. The
TEE-based Cachin coin shows a median speedup of 1.22× over the naive TEE-based coin

23 https://github.com/intel/linux-sgx (accessed 2025-08-14)
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Figure 5.6: Comparison of the total time of the native Cachin coin, the naive TEE-based coin, and the TEE-
based Cachin coin for 𝑡 = 2𝑖 , 𝑖 ∈ [0, 6] ⊂ N, 𝑛 = 2𝑡 + 1 [Hal25]. Average of 600 repetitions per configuration.
Error bars indicate the 95% confidence interval. The native Cachin coin is the slowest in all cases. The
TEE-based Cachin coin outperforms the two other implementations in all cases. The median speedup of the
TEE-based Cachin coin in comparison to the naive TEE-based coin is 1.22×.
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Figure 5.7: Comparison of the coin computation phase time of the native Cachin coin, the naive TEE-based
coin, and the TEE-based Cachin coin for 𝑡 = 2𝑖 , 𝑖 ∈ [0, 6] ⊂ N, 𝑛 = 2𝑡 + 1 [Hal25]. Average of 600 repetitions
per configuration. Error bars indicate the 95% confidence interval. The native Cachin coin and the TEE-based
Cachin have the identical algorithm in their coin computation phases. The naive TEE-based coin computes
the coin value inside the TEE which requires to validate every coin share inside the TEE again making it
roughly 2× slower than the other two implementations.

and a median speedup of 1.67× over the native Cachin coin. Moreover, we can see that the
network communication overhead of our setup is negligible. The fastest implementation,
the TEE-based Cachin coin, takes ∼ 0.733ms for 𝑡 = 1. Even if it would take significantly
longer than half a network round trip time (∼ 0.075ms) to distribute the coin shares
(which is not the case), the overall time would still be dominated by coin share generation,
validation, and coin computation.

Figure 5.7 shows the average time of the coin computation phase for each configuration
and implementation. We can observe that the speedup of the TEE-based Cachin coin over
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the naive TEE-based coin described above primarily stems from the way more efficient
coin computation phase. The median speedup for this phase is 2×. Since the TEE-based
Cachin coin and the native Cachin coin have the exact same coin computation algorithm,
they take the same time. In this analysis, it appears that the cost of the context switch
required by the naive TEE-based coin is negligible in comparison to the elliptic curve
multiplications. This observation, however, does not generalize. We observe, in line with
related work [WAK18], that the cost of the context switch depends on the amount of
computation done before and after the context switch to and from the enclave and on the
amount of data managed by the enclave. For the coin share generation phase, for example,
the cost of the context switch is roughly 1.5× the cost of an elliptic curve multiplication.

The overall speedup of 1.22× lies within the expectation based on the analytical assessment
above. In the computation time breakdown above, the coin computation phase took
between 10.9% and 12.6% of the total computation time. We showed in Section 4.3.3 how to
combine the USIG and the TEE-based Cachin coin without additional overhead. If we now
simplify the share of the coin computation to 10% and follow Amdahl’s law, a speedup of
COMPUTECOIN(·) of 2× would lead to an overall speedup of 1.05× for NxBFT.

5.4.4 Concluding Remarks

The analysis of the NxBFT implementation shows that the overall computation time is
primarily determined by the different cryptographic operations: hashing, elliptic curve
computations, and the common coin which is, again, primarily determined by elliptic curve
computations. While we will see below that the current NxBFT implementation performs
very well, the analysis in this section shows that there is still room for improvement. For
real-world deployments, (1) the hash computation logic has to be optimized to reduce the
number of hash function invocations and (2) the common coin should be based on the
TEE-based Cachin coin. Moreover, switching to an Edwards-based curve may improve
the performance of the elliptic curve operations [BL07]. While these changes may have
no impact on observed end-to-end latencies for low and mid-range throughput scenarios,
every saved millisecond of computation certainly increases the resilience of the system as
the impact of load fluctuations and short overload scenarios is lowered.

Most importantly, the analysis shows (3) that parallelization is indispensable when aiming
for high throughput and low latency: Between 60% and 80% percent of computation time
is spent for vertex validation. A parallelization using 𝑛 worker threads that perform the
vertex validation, which primarily is hash computation and elliptic curve operations, may
show a speedup for the vertex validation phase of up to 𝑛×. According to Amdahl’s
law, such a speedup already leads to an overall speedup between 2.17× and 3.57× at
𝑛 = 10. Combined with the TEE-based Cachin coin, we could achieve a theoretical speedup
between 2.43× and 4.35× for 𝑛 = 10.
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MinBFT Chained-Damysus NxBFT

BFT NxB BFT NxB BFT NxB

𝑛 = 3 125
104 ± 3

100
169 ± 0

200
24 ± 0

600
77 ± 2

200
14 ± 0

800
39 ± 1

𝑛 = 10 50
97 ± 0

75
144 ± 0

50
12 ± 0

800
469 ± 2

50
185 ± 0

1000
42 ± 5

𝑛 = 20 — 75
148 ± 0 — 600

587 ± 38 — 1000
55 ± 2

𝑛 = 40 — 50
161 ± 46 — 200

348 ± 3 — 1000
146 ± 8

Table 5.2:Maximum sustained throughput (in kOp/s, bold font) and corresponding end-to-end latency (inms,
normal font, average of 5 runs with 95% confidence interval) in dependence on the client model (BFT or NxB)
for request rates ∈ {25, 50, 75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s, 0 B payload, and 0.15ms
network round trip latency. For 𝑛 ≥ 20 and the BFT client model, none of the algorithms was capable to
show a stable system state for the request rates tested which is caused by the single thread handling client
requests instead of generating protocol messages. All algorithms benefit from the load reduction of the NxB
client model. NxBFT shows the strength of the DAG-based approach that processes 𝑛 proposals in parallel.
Figure 5.8 shows the detailed end-to-end latencies of the NxB model; Figure 5.9 compares the end-to-end
latencies for the two client models for 𝑛 = 10.

5.5 Comparison of MinBFT, Damysus, and NXBFT

In this section, we analyze and compare the performance of MinBFT, Chained-Damysus,
and NxBFT in a set of experiments with different foci: impact of the client model (BFT
vs. NxB), impact of the payload size, impact of network size and network latency, and
impact of faults. In all experiments, the algorithms are parametrized as described above
(see Section 5.3.6). We use the no-op application of ABCperf. The maximum number of
clients is set to 2M.

5.5.1 Impact of the Client Model: BFT vs. NXB

To evaluate the impact of the client model and the algorithms’ scaling behavior, we run
NxBFT, Chained-Damysus, and MinBFT for request rates ∈ {25, 50, 75, 100, 125, 150, 175,
200, 400, 600, 800, 1000} kOp/s and for 𝑛 ∈ {3, 10, 20, 40} replicas with the BFT and the
NxB client model. We run each configuration five times for 60 s. To prevent measuring
the effects of network speed and cryptographic operations and, instead, investigate the
protocols’ overhead, the requests have a zero byte payload and no additional network
latency is emulated.

Table 5.2 shows the maximum request rates for which a stable system state was observed.
Using the NxB client model, MinBFT achieves its peak performance for 𝑛 = 3. Chained-
Damysus’ and NxBFT’s throughput peaks at 𝑛 = 10. When increasing 𝑛 to 20, the
throughput of Chained-Damysus decreases by 25%. NxBFT can sustain a throughput of
1000 kOp/s for 𝑛 ∈ {10, 20, 40}. The table shows the maximum request rates for the BFT
client as well: None of the algorithms can sustain a throughput of 25 kOp/s for 𝑛 ≥ 20. In
comparison to the NxB client model, MinBFT achieves a slightly higher throughput for
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Figure 5.8: End-to-end-latency of Chained-Damysus and NxBFT for 𝑛 ∈ {3, 10, 20, 40}, request rates ∈ {25, 50,
75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s, 0 Byte payload, and 0.15ms network round trip latency.
Both algorithms use the NxB client model. To increase readability, confidence intervals are not plotted
and the y-axis is limited. For 𝑛 < 40, Damysus shows the benefit of the linear communication complexity.
NxBFT’s latency benefits from increased request rates. Maximum sustained throughput is summarized in
Table 5.2.

𝑛 = 3 and a slightly lower throughput for 𝑛 = 10. Chained-Damysus achieves a third of
the NxB client model throughput for 𝑛 = 3 and only 6.25% for 𝑛 = 10. NxBFT achieves the
same throughput as Damysus when using a BFT client model. These are, however, only
25% and 5% respectively of the NxB client model throughput.

Table 5.2 also shows the corresponding end-to-end latencies if one of the tested request
rates stabilized. It is noticeable that in four of the six columns, lower end-to-end latencies
can be observed in some cases as the number of replicas increases. Moreover, we can
see that Chained-Damysus achieves significant higher end-to-end latencies when using
the NxB client model. To get more insight, we also plot the end-to-end latencies for the
NxB client model runs of Chained-Damysus and NxBFT in Figure 5.8 and we compare the
latencies of the NxB client model and the BFT client model in Figure 5.9.

Figure 5.8 clearly shows for NxBFT and Chained-Damysus, that the latency increases when
increasing the number of replicas. NxBFT achieves the best latency for 𝑛 = 3 and a request
rate of 600 kOp/s with ∼ 0.03 s and stays for all configurations, before saturating, below
0.6 s. Chained-Damysus achieves the best latency for 𝑛 = 3 and a request rate of 50 kOp/s
with ∼ 0.01 s. The zig-zag pattern of Chained-Damysus for request rates < 200 kOp/s is
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Figure 5.9: End-to-end-latency of MinBFT, Chained-Damysus, and NxBFT for the BFT and the NxB client
model, 𝑛 = 3, request rates ∈ {25, 50, 75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s, 0 Byte payload
size, and 0.15ms network round trip latency. To increase readability, confidence intervals are not plotted
and the y-axis is limited. All algorithms achieve lower latencies with the BFT client model. For request rates
≤ 400 kOp/s, Damysus outperforms MinBFT and NxBFT. While the NxB client model allows the algorithms
to scale throughput, it has a clear latency penalty.

not caused by the number of five runs being not sufficient; the median confidence interval
in this area has a relative size of 2%. Instead, we assume synchronization effects between
batching logic and request rate to be the cause.

All algorithms achieve a significant speedup when using the BFT client model. MinBFT
achieves the best latency for 𝑛 = 3 and 25 kOp/s with ∼ 0.07 s. Chained-Damysus achieves
the best latency for 𝑛 = 3 and 25 kOp/s with ∼ 0.007 s. NxBFT achieves the best latency
for 𝑛 = 3 and 125 kOp/s with ∼ 0.009 s. Figure 5.9 exemplarily compares the achieved
end-to-end latencies of the two client models under investigation for 𝑛 = 3.

In summary, we can observe that the NxB client model allows for load balancing when
having a rotating leader or no leader at all but has a latency penalty. While in MinBFT the
current leader has to handle every client connection, Chained-Damysus and NxBFT replicas
handle, in expectation, 1

𝑛
th of all client connections. Nonetheless, the NxB client model

allows MinBFT to achieve higher throughput for 𝑛 ≥ 20 and, for the BFT client and 𝑛 ≥ 20,
no algorithm was able to achieve a stable system state. This is caused by the fact that
the BFT client model requires all replicas to process client requests, leading to increased
contention and reduced throughput at the single thread that executes the SMR logic. In all
algorithms, this leads the replicas to produce protocol messages, i.e., commit messages in
MinBFT and Chained-Damysus, and vertices in NxBFT, at significantly reduced rates. A
different scheduling strategy, e.g., prioritizing incoming protocol messages over incoming
client requests, may mitigate this effect. We assume that the latency for the combination of
NxB client model and MinBFT is increased because in the NxB client model the response
must always come from the leader. In the BFT client model, other replicas – that have
significantly less load than the leader – can also respond. Furthermore, we suspect that
the BFT client model provides synchronization effects that enable higher throughput,
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especially for 𝑛 = 3. The latter statement in particular is a hypothesis that was not the
focus of further investigation in this dissertation.

Commit messages in MinBFT and Chained-Damysus are sent by the replica to the leader
and only contain the sending replica’s approval as information of value. In NxBFT, however,
every message, i.e., vertex, exchanged carries client requests and votes on previous vertices.
Thus, while the workload in terms of messages exchanged and, thus, cryptographic opera-
tions performed increases when increasing 𝑛, NxBFT outperforms Chained-Damysus in
terms of throughput significantly. The reduced connection load allows Chained-Damysus
to scale as well, but for 𝑛 > 10 the increasing work to be done by the atomic broadcast
eliminates those benefits without producing as much value as it is the case for NxBFT.
However, due to the random selection of a replica by a NxB client, requests have to wait
longer for block inclusion. Especially Chained-Damysus suffers significantly, as, in the
worst case, a request has to wait 2𝑛 blocks for inclusion since Chained-Damysus requires
a replica to be in charge for two blocks [Dec+22b, App. B]. This maximum waiting time is
reached when the client selected the replica which just proposed its second block.

For NxBFT, we observe that the replica workers have on average∼ 25% total CPU usage but
the process executing the SMR logic utilizes one CPU core permanently to the maximum.
This is another indication that for high load the single-threaded SMR logic is a bottleneck.
As discussed above, suitable parallelization at each replica may improve scaling behavior
even further.

The positive correlation between the number of replicas and end-to-end latency clearly
shows that the decreasing end-to-end latencies in Table 5.2 give a misleading impression.
Rather, it is that the request rates we chose are not fine-grained enough to determine the
true maximum sustained throughput. While not being suited as an estimate for real-world
performance, the identified maximum throughput and corresponding latencies are still a
valuable metric for understanding the algorithms’ performance characteristics with regard
to the choice of client model.

5.5.2 Impact of Payload Size

The analysis of the NxBFT computation time revealed that cryptographic operations
have a significant impact on the performance. Thus, the payload size of a request will
increase the computation time. Moreover, increased payload will increase the network
transmission time as well. As a result, the maximum sustained throughput will decrease
with increasing payload sizes. To estimate the impact of payload size, we conducted
experiments with varying payload sizes and measured the corresponding throughput and
end-to-end-latencies. We run MinBFT, Chained-Damysus, and NxBFT for request rates ∈
{25, 50, 75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s and 𝑛 = 10 replicas with the
NxB client model. We use payload sizes of 0 Byte, 256 Byte as, e.g., in [Dec+22a; Dec+24],
and 512 Byte as, e.g., in [Dan+22; Spi+22; BTR24; Gir+24]. We estimate that the size of
a check-in request in the MaaS application (see Chapter 3) is no larger than 150 Byte,
which is why we consider the payload sizes used in the experiments to be reasonable for
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MinBFT

Chained-

Damysus

NxBFT

0 Byte 75
144 ± 0

800
469 ± 2

1000
42 ± 5

256 Byte 25
299 ± 0

150
643 ± 15

600
214 ± 4

512 Byte — 75
285 ± 3

200
92 ± 3

Table 5.3:Maximum sustained throughput (in kOp/s, bold font) and corresponding end-to-end latency (inms,
normal font, average of 5 runs with 95% confidence interval) for 𝑛 = 10 replicas in dependence on payload
size (0 Byte, 256 Byte, 512 Byte) for request rates ∈ {25, 50, 75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s,
0.15ms network round trip latency, and the NxB client model. For 512 Byte, the throughput of all algorithms
drops significantly; MinBFT does not show a stable system state. NxBFT outperforms Damysus in terms of
throughput and end-to-end latency. Figure 5.10 shows the detailed end-to-end latencies of the experiment.

the application categories we are interested in. We run each configuration five times for
60 s.

Table 5.3 shows the maximum sustained throughput rates with the corresponding end-to-
end-latencies for the different payload sizes. In the experiments with 256 Byte, MinBFT’s
throughput drops to a third, i.e., 25 kOp/s. Chained-Damysus’ throughput drops to
150 kOp/s (18.75% of the 0 Byte throughput) and NxBFT’s throughput drops to 600 kOp/s
(60% of the 0 Byte throughput). In the experiments with 512 Byte, MinBFT does not show
a stable system state for the request rates tested. Chained-Damysus’ throughput drops to
75 kOp/s (50% of the 256 Byte throughput) and NxBFT’s throughput drops to 200 kOp/s (a
third of the 256 Byte throughput).

Figure 5.10 shows the detailed results. MinBFT’s and Chained-Damysus’ end-to-end
latencies increase significantly with increasing payload size. NxBFT’s end-to-end latency,
however, remains relatively stable. In Section 5.4.1, we already saw that the latency
of NxBFT is dominated by signature creation and verification. For the payload sizes
investigated, hashing is relevant but not dominating. Moreover, NxBFT’s wave structure
increases the latency even more as only every four rounds a decision can be made. This
decision, however, can only address proposals from vertices that are at least four rounds
old. Hence, NxBFT has a significantly increased base latency. We can see that the increased
base latency of NxBFT hides the latency impact of the additional hashing required because
of the increased payload size.

5.5.3 Impact of Network Size and Network Latency

Graph-based and leader-rotating protocols are known for being highly dependent on the
network latency between replicas. We investigate the impact of deployment properties by
using random byte payloads of size 256 B and adding emulated network round trip latencies
of 0ms (same datacenter), 5ms (same country), 35ms (Europe), and 150ms (World) to
the physical datacenter round trip latency (∼ 0.15ms). We use the NxB client model. For
each configuration and in a total of ∼ 2.5k experiment runs, we identify the maximum
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Figure 5.10: End-to-end-latency of MinBFT, Chained-Damysus, and NxBFT for 0 Byte, 256 Byte, and 512 Byte
payload size, 𝑛 = 10 replicas, request rates ∈ {25, 50, 75, 100, 125, 150, 175, 200, 400, 600, 800, 1000} kOp/s,
0.15ms network round trip latency, and the NxB client model. To increase readability, confidence intervals
are not plotted and the y-axis is limited. MinBFT’s and Damysus’ latencies increase and the maximum
throughput decreases when the payload size increases. NxBFT’s latency is roughly the same but the
throughput drops to a fifth.

request rate that saturates the system but does not cause overload: After experiment
start, the latency emulation is started and the system is stressed with a fixed request
rate. We measure the achieved throughput for 240 s. We follow a rather conservative
rejection strategy: If request rate and throughput do not match or the system shows any
burst or backlog patterns, the request rate is not accepted. Please note that except for
Chained-Damysus, a latency of 150ms, and 𝑛 ≥ 20, we identify the maximum request
rate with a granularity of at most 1 kOp/s. Additionally, we measure the intermediate
decision time (IDT, see Section 5.2.3). We measure the IDT instead of the end-to-end
latency because the IDT is more independent from the client model being used; it does not
reflect the time a client has spent waiting. In MinBFT, a replica is able to decide whenever
it collects 𝑡 + 1 commits for a block (w/o faults one network round trip in expectation).
In Chained-Damysus, a replica is able to decide a block when it is followed by two valid
and consecutive blocks (w/o faults one network round trip in expectation). In NxBFT, a
replica is able to decide when it finished a wave, i.e., it finished four consecutive broadcast
rounds and the wave root selected by the common coin is part of the local DAG (w/o faults
two network round trips in expectation). Table 5.4 lists the maximum request rates in
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Round
Trip

Latency

MinBFT Chained-Damysus NxBFT

𝑛 =

3
𝑛 =

10
𝑛 =

20
𝑛 =

40
𝑛 =

3
𝑛 =

10
𝑛 =

20
𝑛 =

40
𝑛 =

3
𝑛 =

10
𝑛 =

20
𝑛 =

40

0.15ms 69
124

28
253

18
129

11
137

223
7

132
41

64
65

36
46

335
21

503
69

276
81

153
279

5ms 63
121

25
184

17
143

11
149

120
28

64
69

56
177

31
123

304
69

234
247

191
269

99
486

35ms 49
120

20
121

13
126

11
153

29
150

20
791

14
539

3
323

91
352

55
680

45
1180

28
1404

150ms 33
111

15
117

12
123

9
137

6
1641

4
1580

1.2
1218

0.2
766

45
1299

26
1924

24
1625

20
1680

Table 5.4: Maximum sustained throughput (in kOp/s, bold font) and corresponding intermediate decision
times (inms, normal font, average of 30 runs, confidence intervals left out to increase readability) depending
on network size and network latency with 256 B payload size and the NxB client model. MinBFT shows the
best latencies and reasonable throughput for big networks with high latencies. Damysus shows the best
latencies for small networks that are operated with datacenter network latencies. NxBFT shows the most
throughput in all configurations investigated.

bold font and kOp/s and the average IDT of 30 runs in normal font and milliseconds. IDT
confidence intervals are all below 9% and left out.

MinBFT’s throughput peaks for𝑛 = 3 and no emulated latency with 69 kOp/s and an IDT of
124ms. MinBFT achieves the lowest throughput for𝑛 = 40 and a network latency of 150ms.
Chained-Damysus peaks for 𝑛 = 3 and no latency with 223 kOp/s and an impressive IDT
as small as 7ms. For 𝑛 = 40 and a network latency of 150ms, the throughput drops to
0.2 kOp/s. The IDT increases with network latency and𝑛. NxBFT shows peak performance
for 𝑛 = 10 and no latency with 503 kOp/s and 69ms IDT. For network round trip latencies
≥ 5ms, the throughput peaks for 𝑛 = 3. For 𝑛 = 40 and 150ms network round trip latency,
the throughput drops to 20 kOp/s. The IDT increases with network latency and 𝑛.

Although MinBFT requires at least one network round trip time between two decisions
(two all-to-all broadcasts), MinBFT can stay below 150ms IDT for 150ms network round
trip latency. This is due to MinBFT’s sliding-window mechanism: the leader proposes a
new block whenever it has sufficient requests. Thus, as long as the system is not overloaded,
MinBFT can benefit from ABCperf’s parallelized network stack. Chained-Damysus and
NxBFT, however, need quorums – which act as synchronization barriers – before being
able to continue. The throughput of MinBFT, however, cannot benefit: The network
latency determines the minimum time a request has to wait for decision as the leader
is required to collect a commit quorum. Put differently, average IDTs can be below the
network latency because due to the sliding window blocks are decided in batches. The
end-to-end latency, however, cannot be below the network latency.

For network round trip latencies ≤ 5ms, Chained-Damysus can take full advantage of the
streamlined design, achieving IDTs clearly faster than MinBFT and NxBFT. As observed
before (see Section 5.5.1 and Figure 5.9), Chained-Damysus severely suffers from the NxB
client model when having big 𝑛. Increasing the block creation rate, e.g., by lowering the
minimum block size, may improve throughput in such cases. NxBFT shows the benefit of
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the NxB client model in terms of load balancing, significantly outperforming throughput
in all configurations. While, for experiments with no payload, the load balancing allowed
for higher throughput with increased 𝑛, both Chained-Damysus and NxBFT loose this
ability. NxBFT, however, keeps the ability for no added latency. In fact, the load balancing
increases the throughput but the increased cryptographic work (see Section 5.5.2 above)
masks the observed effect.

It is noticeable that, compared to Table 5.3, MinBFT achieves a slightly higher throughput,
while both Chained-Damysus and NxBFT achieve a significantly lower throughput for
𝑛 = 10 replicas and 0.15ms network round trip latency. It can be assumed that the
60 seconds of observation time in the experiment in Section 5.5.2 are not sufficient to
stabilize the system near the load limit, and that five repetitions of the experiment are not
sufficient to account for the variance in the system, even though the confidence intervals
are convincing. However, since only the effect of different payload sizes on the algorithm
behavior was to be investigated, and no estimate of throughput under real conditions was
sought (which is the focus of this section), and since the algorithms differ significantly in
the values determined, the choice of parameters in Section 5.5.2 is justified. Moreover, for
Chained-Damysus and NxBFT, we observe that the IDT may decrease when increasing 𝑛,
which indicates that the true maximum throughput may be higher (see also Section 5.5.1
above). First, our step size may be too big. Second, larger networks may be more sensitive
to scheduling and transmission variance when operating close to maximum performance.
Third, our rejection strategy may be too conservative or the experiment duration may not
be sufficient: While sometimes an overload was only detected within the fourth minute
of the experiment, it could be that the system would have stabilized again after a few
more minutes. Nonetheless, the maximum throughput rates listed in Table 5.4 are a good
estimate of the maximum sustained throughput for the configurations tested.

5.5.4 Impact of Crash Faults

We investigate the algorithms’ performance under faults for 𝑛 = 10, a request rate of
50 kOp/s 0 Byte payloads using the NxB client model, and no emulated latency. After
20 s, replica 0 crashes, after 80 s, replica 3 crashes, and after 140 s, replica 9 crashes. We
selected those replicas to crash as this pattern allows Chained-Damysus to make the most
progress. To prevent unlimited increase of Damysus’ timeouts caused by the exponential
increase and linear decrease mechanism, we do not crash four replicas. Figure 5.11 shows
the average end-to-end latency of the experiment for ten repetitions.

In case of MinBFT, replica 0 is the current leader and MinBFT is forced to perform a
view-change. The throughput of MinBFT stalls until the inactivity of the leader is detected
and the view-change was successful. The new leader is not capable to cut the backlog
down, yielding increased latencies for the remainder of the experiment (a metastable
failure state [Hua+22; LD24]). The crash of non-leader replicas (3 and 9) has no effect. For
lower request rates, MinBFT would be capable of recovering fast response times within
the experiment time window.
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Figure 5.11: End-to-end-latency of MinBFT, Chained-Damysus, and NxBFT with crash faults for 𝑛 = 10, a
request rate of 50 kOp/s, 0 Byte payload size, 0.15ms network round trip latency and the NxB client model.
After 20 s, 80 s, and 140 s replicas 0, 3, and 9 respectively crash. After a single crash, MinBFT and Damysus
are not capable to handle the incoming request rate. In case of MinBFT, this is caused by the view change
after the incumbent leader (replica 0) crashed. In case of Damysus, the rotating leader paradigm periodically
selects a crashed replica. NxBFT’s small latency spikes stem from the time it takes for ∼ 1

𝑛
th of the clients to

select a different replica.

Without a recovery procedure, Chained-Damysus cannot recover the response times and
each crashed replica increases the end-to-end latency clearly. Consequently, throughput is
significantly reduced. Since Chained-Damysus requires a replica to be in charge for two
views [Dec+22b, Appendix B], the streamlined version of Damysus worsens this pattern.

As all client requests are uniformly distributed across all replicas, NxBFT’s maximum
achievable throughput degrades at most by 𝑐

𝑛
for 𝑐 crashed replicas. For the request rate

of 50 kOp/s, the experiments show that the 7 remaining replicas can handle the additional
load: As soon as all clients identified a failed replica, the end-to-end latency recovers.

5.6 Discussion of Results and Limitations

First, and foremost, the empirical analysis confirms (1) the leader bottleneck, (2) the
scaling capabilities of DAG-based algorithms, and (3) the significant positive impact of the
NxB client model. Based on the comparison, we can conclude that hybrid fault-tolerant
leaderless approaches outperform classic BFT leaderless approaches. Moreover, we found
clear evidence that the scaling capabilities of DAG-based algorithms are hindered when
used as the coordination mechanism in classic BFT SMR. In fact, the results indicate that
streamlined protocols achieve faster latencies while maintaining the same throughput
when operating with a BFT client model (see Table 5.2). The experiments with network
latency (Table 5.4) show that the positive impact of the NxB client model sustains for
higher network latencies as well. However, the NxB model comes with a latency penalty
as less replicas know of a request and can propose it for decision or will answer after a
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decision was made. NxBFT achieves the highest throughput in all configurations, while
Chained-Damysus achieves the lowest latencies for small networks with low network
latencies. MinBFT achieves the most stable latencies and outperforms Chained-Damysus
for latencies ≥ 35ms. The asynchronous and leaderless core of NxBFT allows it to be
more resilient to network partitions and replica failures.

We identified the cryptographic work as the main computational bottleneck for all algo-
rithms; the choice of the payload size has a significant impact on the achievable throughput.
We can say with a high degree of certainty that parallelization will have a significant
positive effect on throughput and latency, especially for NxBFT. However, we were also
able to show that NxBFT can hide latencies to a certain extent due to the increased base
latency. A bug in an earlier version of the NxBFT implementation caused the hash com-
putation to be taken over by the deserialization logic, which is executed in parallel by
ABCperf, reducing the total calculation time of NxBFT. Measurements taken after this
bug was discovered and corrected showed that only the throughput values for 0.15ms
network round trip latency in Table 5.4 were incorrectly increased. From this, it can
be concluded that the speedup that can be achieved by parallelizing the hashing is not
sufficient to make a noticeable difference at a latency of ≥ 5ms. In summary, since a
higher network latency only amplifies the latency hiding effect, it remains unclear whether
parallelization can improve throughput for large network latencies ≥ 35ms. Nonetheless,
suitable parallelization strategies are required to increase performance and resilience even
further.

We decided to use constant, homogeneous network conditions without loss in the experi-
ments in Section 5.5.3. We omit loss emulation as packet loss only increases the latency
observed above the reliable transport layer protocol. In real-world deployments, however,
the network latency is not the same for every pairwise communication link. Moreover,
it is impossible to distribute 20 replicas around the world in a way that they all have a
pairwise latency of ≥ 35ms. For small latencies, we are confident that our results are
a valuable estimate of real-world performance. For higher latencies, we argue that the
insights gained are a lower bound for the achievable throughput. Future work should
emulate geo distribution latencies as proposed by Berger et al. [BTR24].

The MinBFT implementation has an unresolved bug in its view change logic that may
lead view changes to fail when more than two view changes are triggered in a row. To
date, we were not able to identify the root cause of the bug. While this illustrates that
research software is not production ready, we argue that this bug has no impact on the
results of the experiments conducted as we did not trigger multiple view changes. The
implementations of Chained-Damysus and NxBFT do not support garbage collection. We
argue that the required checkpoint logic only has negligible impact on the performance
measurements we conducted. Finally, we decided to implement Chained-Damysus with
an exponential backoff mechanism as described in the original paper. The experiments
showed that this has a significant negative impact in the case of faults. A pacemaker
protocol, e.g., as proposed by Lewis-Pye [Lew22], mitigates the impact by ensuring that
correct replicas stay in sync without relying on exponential backoff.
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6 Conclusions and Outlook

The aim of this dissertation is to research resilient systems. Since the early days of research
into distributed systems in the 1970s, replication has been seen as the way to increase
the fault tolerance of an application. Even though there has been increasing research
into consensus-free replication systems in recent years (e.g., local-first software [Kle+19]),
consensus-based replication can still be considered the standard approach. However,
replication-based systems used in production are typically such that can only tolerate
benign faults. Although research and industry are working on abstracting replication and
making it usable “out of the box”, e.g., the Hyperledger project of the linux foundation1
or the Microsoft Azure Confidential Consortium Framework2, Byzantine fault-tolerant
replication is not widely used, except in cryptocurrencies, because it significantly increases
the complexity of a system. This increase in complexity (1) significantly reduces perfor-
mance metrics and (2), contrary to expectations, can even reduce the resilience of the
system. Nevertheless Byzantine fault-tolerant, confidential replication is a promising
approach to address the requirements of consortium-operated applications. With the
Mobility-as-a-Service ticketing platform, we provided an exemplary analysis for which we
are convinced that our observations generalize. Current research supports this conviction
(see, e.g., [How+23; Fau+25; Vit+25]).

Consequently, we investigated ways to reduce overhead and increase resilience. To this end,
we rely on asynchronous, leaderless atomic broadcast based on a directed acyclic graph
(DAG) data structure, which has demonstrated impressive performance and resilience,
and Trusted Execution Environments (TEEs), whose use in the hybrid fault model can
significantly simplify coordination processes. With the TEE-Rider atomic broadcast based
on DAG-Rider [Kei+21], we were able to prove that DAG-based atomic broadcast can
tolerate Byzantine faults with a fault tolerance of 𝑛 > 2𝑡 replicas using a small TEE-
based signature service. With NxBFT, we have extended TEE-Rider to a full-fledged
state machine replication (SMR) algorithm that also supports garbage collection and
reconfiguration. We proposed the NxB client model, which allows the inherent parallelism
of TEE-Rider (and thus also of NxBFT) to be fully exploited. The extensive measurement
studies have shown that NxBFT achieves the highest throughput among all examined
scenarios. In contrast to leader-based approaches, NxBFT’s performance is almost not
impacted when actual crash faults occur. However, the asynchronous approach results in
increased latency. If minimal latency is required, classic leader-based approaches should be
used. For the Mobility-as-a-Service use case, NxBFT is an important step to a Europe-wide

1 https://www.lfdecentralizedtrust.org/ (accessed 2025-08-19)
2 https://azure.microsoft.com/de-de/products/managed-ccf (accessed 2025-08-19)
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deployment (e.g., with the nation states as replica operators). In the following, we discuss
the implications of limitations of our approach and future work grouped by the three
building blocks TEEs, SMR, and atomic broadcast.

6.1 Trusted Execution Environments

TEEs are a central pillar of this dissertation. We used them to simplify coordination
processes and to guarantee confidentiality. In doing so, we rely on the integrity of the TEE
itself. For virtually every known TEE, there are attacks that break the integrity of the TEE
(e.g., [Bul+18; Buh+21; Sri+24]). As a result, there are voices arguing against the use of TEEs
and, instead, promoting the use of secure multiparty computation (MPC). As discussed
in Chapter 3, MPC can be considered the better choice in terms of achieved security
guarantees. However, it must be countered that (1) MPC has a significant performance
overhead [Has+19; Kel20; Kil+24] and (2) there is probably no such thing as bug-free
software, including cryptographic libraries. In fact, the more complex the cryptographic
concept, the higher the likelihood of vulnerabilities [Wei+20; BSW24]. Just as one must
trust that the manufacturer of a TEE has developed it with the necessary care and, if
necessary, provides updates and bug fixes, one must also trust that the developers of
cryptographic libraries have exercised the necessary care.

TEEs offer the opportunity to reduce system complexity. Consequently, if used correctly,
they can not only increase the performance of a system but also reduce the size of the
trusted computing base and, thus, the attack surface. This leads to a significant demand
for resilient and trustworthy TEEs [Kil+24; Rez+25]. There are approaches to harden
the security of TEEs [Van+25] and such that define a TEE on openly specified hardware
[Lee+20; Cer+25; KVS25] or on FPGAs [Wan+24]. The latter two directions decrease
the reliance on proprietary hardware and can potentially offer more transparency and
security. In the context of Byzantine fault tolerant SMR, compartmentalization and selective
hybridization may further harden the architecture by executing different phases of the
protocol on different machines allowing to isolate and protect critical components (e.g.,
by denying internet access) [Mes+22; LD25]. Another way for hardening TEE-based
distributed systems is through hybridization with MPC. By combining the strengths of
both approaches, it may be possible to achieve better security guarantees without incurring
the full performance overhead of MPC. Recent research [Vit+25] has shown that such
hybrid approaches can effectively mitigate the weaknesses of each individual method. For
the Mobility-as-a-Service use case, for example, a hybrid approach could theoretically be
designed such that agreement properties and metadata confidentiality are lost when the
TEE is compromised, but the actual movement data remains confidential and integrity-
protected, i.e., a form of graceful degradation. We conclude that, as long as MPC is not
competitive in terms of performance, TEEs will remain an important building block for
secure distributed systems. Future work should explore MPC-TEE hybrid approaches to
further improve the security guarantees achieved.
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6.2 State Machine Replication and Distributed Ledgers

Recent consensus research was primarily driven by the massive increase in popularity of
distributed ledgers. Distributed ledgers typically deploy mechanisms to define a total order
of requests. This total order is derived by using an atomic broadcast abstraction. However,
atomic broadcast alone does not define a usable system with which clients can interact.
To this end, public distributed ledgers like cryptocurrencies use a mempool: Clients tell
some replica about their request which will then, if it is no malicious replica, distribute the
request to all replicas such that the request is eventually added to the ledger. Formally, this
is no SMR as there are no liveness guarantees for the clients. Most (academic) proposals,
however, solely focus on the coordination layer between replicas and, to some extent,
ignore the implications that would be caused when aiming to provide guarantees to the
clients.

By providing true SMR, we were able to address fundamental issues associated with the
use of TEEs in partial synchrony: For TEE-based reliable broadcast, we showed that the
reinitializing a TEE, e.g., after a crash, is impossible without sacrificing fault tolerance
or reliable broadcast properties. While SMR is agnostic of the replicated application, we
can use SMR to define a state transfer logic. During state transfer, the current application
state is transferred to a replica without requiring the receiving replica to verify the full
request history that led to that state. In summary, the NxBFT SMR framework allows
to implement (1) efficient garbage collection and (2) reconfiguration including recovery
for TEE-Rider. The proposed garbage collection and reconfiguration protocols should
also be applicable for classic leader-based approaches like MinBFT [Ver+11] and Damysus
[Dec+22a]. As the demand for highly efficient permissionless ledgers grows as well, an
interesting future research direction is to investigate if permissioned-to-permissionless
compilers (e.g., by Komatovic et al. [Kom+25]) work with TEE-based protocols and if they
can preserve the properties we achieved.

Based on related work and our experience with MinBFT, which has a checkpoint-based
garbage collection, we assumed but did not verify that the performance of the checkpoint
protocol itself is independent of the actual consensus protocol and that the checkpoint
protocol has a negligible impact on the performance of the actual consensus protocol.
This means that although NxBFT is a completely specified SMR framework, the current
implementation does not contain a checkpoint protocol and therefore neither garbage
collection nor reconfiguration are implemented. Moreover, the checkpoint, state transfer,
garbage collection, and reconfiguration protocols are only informally specified and proven.
Future work should investigate the impact of these missing protocols on the overall
performance and resilience. In any case – and we can say this with complete confidence
based on our experience during implementation – the complexity of SMR systems requires
a formal treatment of algorithms [Gao+24; Ber+25] and implementations [Lat+24; Bas+25;
LeB+25] to rule out bugs and misconceptions.

As discussed in Chapter 4, providing guarantees to the clients comes at a cost. We
were able to show that the choice of guarantees one wants to provide to clients has a
significant impact on the performance of the system. We propose the NxB client model
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that minimizes the performance overhead of an SMR client while still providing strong
guarantees. The NxB client model relies on the application to provide auditability: If the
state of a client changes, the client must have triggered the state change itself or, at least,
possess the necessary information to prove that it behaved correctly. One may argue that
the combination of TEEs and the NxB client model eliminates any Byzantine behavior from
the system. However, replicas can still exhibit Byzantine behavior, e.g., by manipulating
the application layer, by not executing a client request (censorship), or by denial-of-
service attacks. If auditability guarantees cannot be made, we either require replica-side
enclaved proxy execution or threshold cryptography to maintain safety guarantees. The
performance impact of both approaches should be evaluated in future work. It remains an
open question if forensic mechanisms, e.g., as proposed in [She+21; Sha+22; Ber+24], can
be integrated into NxBFT to improve the auditability property of a replicated application.

Like most replicated systems, NxBFT establishes a total order on received requests. For-
mally, SMR can be implemented with a partial order and a total order is only required for
requests that depend on each other [ALO00; Gel+23; HH24]. Deriving a total order could
thus be considered unnecessary overhead. Without knowledge of the application, however,
it is impossible to identify potentially conflicting requests. Additionally, working on top of
a total order reduces the implementation complexity of the application layer; application
developers can assume a linear, non-concurrent stream of requests. Based on the analysis
of the NxBFT computation time, we know that non-cryptographic operations have a
negligible performance impact. Thus, when either parallelizing the cryptographic work
on the application layer or offloading authentication and verification tasks to the atomic
broadcast layer, it remains unclear what performance gains application-layer parallelism
offers and what application characteristics are required for the application layer to become
a bottleneck, i.e., slower than the atomic broadcast layer. The authors of Chop Chop
[Cam+24] make a similar observation.

6.3 Atomic Broadcast Algorithm and Implementation Design

The TEE-Rider atomic broadcast provides the necessary foundation for building resilient
and efficient SMR. The DAG-based approach provides the advantage of inherent parallelism
and avoids a leader bottleneck. The DAG allows to order multiple proposals in parallel,
thereby increasing efficiency and enabling scaling effects. The efficiency gained, however,
merely shifts the “overload point”. If NxBFT is burdened with excessively high request
rates, metastable failures can still occur. Therefore, proactive rejection mechanisms must
also be investigated for Byzantine and hybrid fault-tolerant SMR in order to be able to
adequately resolve overload situations without human intervention. Idem [LD24] lays the
foundation for this with a proposal for benign fault-tolerant SMR.

Although NxBFT formally assumes partial synchrony, this assumption is only required for
state transfer. State transfer, in turn, is only required for reconfiguration and, when using
garbage collection, ensuring liveness in the case of faults. The common case operation
of NxBFT is equivalent to TEE-Rider and is therefore fully asynchronous. We were
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able to show that the asynchronous nature of TEE-Rider achieves significant resilience
improvements over established hybrid fault-tolerant protocols. But the asynchrony also
introduces challenges, particularly with respect to achievable latencies. When relying on
partial synchrony instead, the observed latencies decrease significantly while throughput
gains are only slightly reduced [Spi+22]. Typically, this comes at the cost of resilience.
Concurrent work has shown that the resilience gap between asynchronous and partially
synchronous graph-based approaches can be lowered [Aru+25; Bab+25; Ton+25]. Reputa-
tion systems and forensics can further improve the latency by selecting the most suitable
replicas for certain tasks [Spi+24; Zha+24b; Gog+25]. Consequently, future work should
investigate whether the latency of TEE-Rider and NxBFT can be improved by using a
partially synchronous model and reputation systems without sacrificing resilience.

In its current design, NxBFT relies on a fully connected mesh topology for communication
and does not use any parallelization within the atomic broadcast logic. As discussed in
Chapter 4, the communication topology has a significant impact on the performance and
is closely related to parallelization strategies. In Chapter 5, we demonstrated that the
cryptographic overhead can be a limiting factor in the performance of NxBFT. Thus, future
work should investigate compatible parallelization strategies, e.g., as proposed by Narwhal
[Dan+22], that allow to hide latency caused by cryptographic operations and to further
increase NxBFT’s throughput gains. Moreover, the compatibility of offloading techniques
as proposed by Chop Chop [Cam+24] and tree topologies as proposed by Kauri [NMR21]
with DAG-based atomic broadcast in general and the hybrid fault model in particular
should be explored.
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