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Abstract

Robotic manipulation systems benefit from complementary sensing modalities,
where each provides unique environmental information. Point clouds capture
detailed geometric structure, while RGB images provide rich semantic context.
Current point cloud methods struggle to capture fine-grained detail, especially for
complex tasks, which RGB methods lack geometric awareness, which hinders their
precision and generalization. We introduce PointMapPolicy, a novel approach that
conditions diffusion policies on structured grids of points without downsampling.
The resulting data type makes it easier to extract shape and spatial relationships
from observations, and can be transformed between reference frames. Yet due to
their structure in a regular grid, we enable the use of established computer vision
techniques directly to 3D data. Using xXLSTM as a backbone, our model efficiently
fuses the point maps with RGB data for enhanced multi-modal perception. Through
extensive experiments on the RoboCasa, CALVIN benchmarks and real robot
evaluations, we demonstrate that our method achieves state-of-the-art performance
across diverse manipulation tasks. The overview and demos are available on our
project page.

1 Introduction

The advent of diffusion-based Imitation Learning (IL) has allowed robots to carry out complex,
long-horizon tasks from raw image observations [1, 2]. RGB images are a common observation
modality for diffusion policies due to their ubiquitousness and rich semantic information. However,
policies conditioned on only RGB images lack 3D geometric information about the scene. This
3D information is crucial for learning generalizable policies that can act precisely in complex 3D
scenes, especially when using multiple camera views [3—0]. An alternative modality is point clouds,
unstructured sets of 3D points that preserve geometric shape, distances, and spatial relationships. In
addition, points captured from multiple camera views can be transformed into a common reference
frame and concatenated, yielding a natural and powerful way to fuse multiple cameras. Although
numerous works use point clouds as an input modality [7-9], their irregular structure limits the
network architectures that can be used with them. In contrast, RGB images are on a regular grid and
can be processed using convolutional operators, but are susceptible to changes in perspective and
lighting.

Current 3D processing approaches face fundamental limitations that create a critical gap between
3D geometric information and existing 2D vision architectures. Downsampling-based methods [7],
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Figure 1: Different approaches for point cloud processing: (a) Downsampling-based methods use
Furthest Point Sampling (FPS) to reduce dense point clouds to sparse representations, which PointNet
then processes into compact tokens. Some variants employ FPS+KNN to generate structured point
patches. (b) Feature-lifting approaches first extract 2D features from images, then project these
features into 3D space, creating semantically rich 3D points. (¢) Our point map method structures
the point cloud as a 2D grid with the same dimensions as corresponding images, enabling direct
application of efficient visual encoders to each modality independently.

as shown in Figure 1(a), suffer from an inherent information-fidelity tradeoff: they must dramat-
ically reduce point density through techniques like Farthest Point Sampling (FPS)[10] to remain
computationally tractable, inevitably discarding fine-grained geometric details essential for precise
manipulation tasks. Feature-lifting approaches [11], as shown in Figure 1(b), face equally prob-
lematic limitations as they aggregate 2D features through depth averaging and 3D transformations,
introducing information loss while struggling to maintain spatial structure during the lifting process.
In this paper, we take inspiration from recent advances from the computer vision community in stereo
reconstruction [12, 13] to propose using point maps, as shown in Figure 1(c). Point maps encode 3D
information in a regular, 2D grid of Cartesian coordinates. This results in a structured data type that
can be used with standard architectures such as ResNet [14], ViT [15], or ConvNeXt [16]. This obvi-
ates the need for steps like K-Nearest Neighors (KNN) and Farthest Point Sampling (FPS) [10], which
are computationally expensive operations common to point cloud methods [17, 18, 6]. At the same
time, because they are geometrically grounded, point maps from multiple views can be transformed
into the same reference frame, increasing robustness to perturbations in camera perspective.

We integrate point maps into a standard diffusion-based imitation learning framework based on
EDM [19] to demonstrate their effectiveness as a drop-in replacement for RGB images or point
clouds. We validate the effectiveness of point map observations on two challenging benchmarks:
RoboCasa [20] and CALVIN [21]. These benchmarks feature language-conditioned tasks and diverse
scenes, and require spatial reasoning and long-term planning. Across both benchmarks, point map-
based policies outperform baselines using RGB, depth maps, or point clouds, demonstrating superior
learning efficiency and generalization. Our method is computationally efficient in training and
inference, sometimes by an order of magnitude.

Contributions: Our contributions are the following: 1) we propose PointMapPolicy (PMP), a
method for diffusion-based imitation learning on point maps, a powerful observation modality that
has never been used in diffusion imitation learning; 2) we achieve state of the art results among
policies trained from scratch on the CALVIN benchmark [21], and outperform other observation
modalities on RoboCasa [20]; 3) we present systematic ablations of point cloud processing methods,
vision backbones (e.g. ResNet [14], ViT [15], ConvNeXt [16]), and paradigms for fusing color and
geometry information.



2 Related Work

2D Visual Representations for Imitation Learning. Recent imitation learning approaches [1, 22—
25] rely predominantly on 2D visual representations such as RGB images or videos. Such representa-
tions are widely utilized due to their capacity to capture rich textural and semantic information, as
well as their accessibility through low-cost cameras. However, 2D image modalities have inherent
limitations: they contain 3D information only implicitly, are vulnerable to viewpoint and lighting
changes and occlusions, and typically underperform in tasks requiring detailed spatial reasoning and
geometric alignment [3—6].

3D Visual Representations for Imitation Learning. To overcome these limitations, a growing
amount of research incorporates explictly 3D representations such as depth maps, point clouds, or
voxels. Voxel-based methods like C2F-ARM [26] and Perceiver-Actor [27] voxelize point clouds and
use a 3D-convolutional network for action prediction, but require high voxel resolution for precision
tasks, resulting in high memory consumption and slow training. DP3 [7] encodes sparse point clouds
using FPS, followed by a lightweight MLP to produce a compact embedding vector of the observation.
While efficient, this approach discards local geometric structure that can be critical for fine-grained
tasks. In contrast, 3D Diffuser Actor [11] computes tokens by lifting 2D image features into 3D
space by using averaged depth information and camera parameters, and applies FPS after the first
cross-attention layer. FPV-Net [28] fuses RGB and point cloud modalities by injecting global and
local image features into a point cloud encoder using adaptive normalization layers, but is still limited
by the disadvantages of both modalities.

Multi-View Representation. Complementary work, such as Robot Vision Transformer (RVT) [29],
avoids working directly with raw point clouds by proposing a novel multi-view representation.
This approach re-renders the point cloud from a set of orthographic virtual cameras, deriving a
7-channel point map (RGBD + XYZ) from each view. RVT-2 [30] improves this approach for high-
precision tasks by introducing a multi-stage inference pipeline: it first identifies a region-of-interest,
truncates the observation to this area of interest, and then runs policy inference. However, neither of
these methods use action diffusion, instead relying on key-frame based manipulation with a motion
planner [31]. Furthermore, geometric and color information are fused naively at the channel level,
whereas we investigate more sophisticated techniques for fusion.

Diffusion-Policy Backbones. Due to the non-Markovian nature of human demonstrations, where
successful decision-making often depends on histories of past observations and actions, early work
used RNN-based architectures [32], but struggled with vanishing gradients and limited scalability.
This led to the adoption of Transformer-based architectures, which offer global attention and paral-
lelism, enabling superior performance in tasks requiring long-horizon reasoning [33-35], becoming
the standard backbone for many methods [7, 11, 28, 22]. However, Transformers are computationally
intensive and scale quadratically with the sequence length, which limits the number of tokens that
can be used to encode the observation.

To mitigate these challenges, recent works [36, 37] explore State Space Models (SSMs) like
Mamba [38], achieving linear-time complexity and improved sample efficiency, particularly in
low-data regimes. Additionally, recent recurrent architectures such as XLSTM [39] provide an
appealing balance, maintaining the temporal modeling strengths of traditional RNNs while intro-
ducing architectural innovations that improve gradient flow and expressiveness. Despite being less
expressive than self-attention, xLSTM significantly reduces compute and memory costs, making it
well-suited for real-time or resource-constrained applications. X-IL [37] systematically compares
different architectural parts, and finds that xXLSTM performs competitively with Transformers in
multi-modal imitation learning. Building on these insights, PointMapPolicy adopts XLSTM as its
diffusion backbone, balancing temporal modeling capability with efficient training and inference.

3 Method

3.1 Problem Formulation

Imitation Learning aims to learn a policy from expert demonstrations. Given a dataset of expert trajec-
tories D, = {7;}V,, where each trajectory 7; = ((s1,a1), (s2,a2), ..., (Sk,ax)). The objective is
to learn a policy 7(@|s) that maps observations s to a sequence of actions @ = (ag, ag41,- - -, Akt H)-
Predicting sequences of actions, i.e. action chunking, allows for more temporally consistent action
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Figure 2: Overview of PMP. PMP integrates multiple modalities: language instructions encoded by
a pretrained CLIP model, images processed by pretrained visual encoders, and point maps processed
by visual encoders trained from scratch. Leveraging x-LSTM as its backbone architecture, PMP
efficiently fuses these multi-modal inputs to generate denoised actions.

prediction [40]. Each observation s contains multi-view RGB-D images and language instruction for
the current trajectory.

3.2 Score-based Diffusion Policy

Our approach employs the EDM framework for continuous-time action diffusion [19, 41] to generate
actions. Diffusion models are generative models that learn to generate new samples through learning
to reverse a Gaussian Perturbation process. In PointMapPolicy, we apply a score-based diffusion
model to formulate the policy representation 7y (@|s). This perturbation and its inverse process can
be expressed through a Stochastic Differential Equation (SDE):

a = (Bior — 61)0¢Valog py(@ls)dt + \/2B;0¢dwy, (H

where 3; determines the noise injection rate, dw; represents infinitesimal Gaussian noise, and p;(als)
denotes the score function of the diffusion process. It guides samples away from high-density regions
during the forward process. To learn this score, we train a neural network Dy via score matching [42]:

Lsu = Eoa.e[a(00)|Do(@ + €,5,01) — al3], @)
where Dy (@ + €, s, 0¢) represents our trainable neural architecture.

After training, we can generate new action sequences beginning with Gaussian noise by iteratively
denoising the action sequence with a numerical Ordinary Differential Equation (ODE) solver. Our
approach utilizes the DDIM-solver, a specialized numerical ODE-solver for diffusion models [43]
that enables efficient action denoising in a minimal number of steps. Across all experiments, our
method uses 4 denoising steps.

3.3 Observation Tokenization

We are given an observation s;, in step k as well as a textual language instruction 2j,,. The
language instruction is first tokenized using a pretrained CLIP text encoder [44] to generate language
embeddings. For RGB inputs, we use Film-ResNet [45] with pretrained ImageNet weights to generate
visual embeddings from the observation sy.

We define that a Point Map X € R¥XWx3 j5 a dense 2D field of 3D points that establishes a
one-to-one mapping between image pixels and 3D scene points. For an RGB image I of resolution
H x W, the corresponding Point Map X satisfies I; ; <> X ; for all pixel coordinates (7, j) €
{1...H} x {1...W}, where each pixel intensity /; ; corresponds to a 3D point X; ; € R? in world
coordinates.

We convert each depth map D € R¥*W to a structured point map representation:

M, = (D, K,,

nt )’

Mt c RHXWXC (3)



where Kj, are the camera intrinsic parameters obtained through calibration and ¢ is a depth unpro-
jection operation. The result is a multi-channel point map with the same spatial dimensions as the
input depth map, where the channel dimension C' is typically 3. Points beyond a maximum depth
and below a minimum depth are masked out. Point maps from all cameras are transformed into a
common world reference frame using the extrinsic parameters of the camera Key;.

3.4 PointMapPolicy

PointMapPolicy uses EDM-based action diffusion for decision making and conditions on the multi-
modal observation tokens generated from RGB and point map modalities. We present and explore
multiple paradigms for fusing RGB and geometric data at various stages of processing. We also
describe PMP-xyz, a variant with tokens from only the point map modality, for tasks that do not
condition on color information.

Fusion of image and point maps. A key advantage

of point maps is their ability to provide both geo-
metric and visual embeddings for each camera view, ‘_LJE@ R?? L;—] m
J
Add

enabling straightforward multimodal fusion. We in-
vestigate both early and late fusion approaches. For
early fusion PMP-6ch, we concatenate point maps
with RGB values, creating six-channel inputs (XYZ Figure 3: Fusion methods. From left to right:
+ RGB). For late fusion, we first tokenize image and Add, Cat, and Attn.

point map modalities from each view with separate

encoders. Then we explore three methods to fuse encoded tokens, as illustrated in Figure 3: 1)
Add, element-wise addition of tokens from both modalities, resulting in one token per view; 2) Cat,
concatenation of tokens from all modalities and views; and 3) Attn, using a four-layer transformer
module to process tokens using cross-attention to generate fused class tokens for each view. As
shown in our ablation studies, we find Cat to slightly outperform other late fusion methods, so we
choose this for PMP. An overview of PMP with Cat fusion is illustrated in Figure 2.

Concatenate CLS

Backbones. Given the multi-modal tokens from Section 3.3, a learnable positional embedding is
added to each token. PMP uses a decoder-only backbone from X-IL [37] with x-LSTM as the core
computational unit. All tokens are concatenated as inputs to the X-Block, which is the diffusion score
network Dy. While Transformers dominate most imitation learning policies, X-IL demonstrated
that the recent recurrent architecture xLSTM excels in robot learning tasks. The core computational
element within X-Block is the m-LSTM layer, which serves an analogous function to self-attention
in Transformer architectures. The denoised action tokens produced by the X-Block are then used to
guide the robot’s behavior, resulting in a policy that effectively leverages both the geometric precision
of point maps and the rich semantic understanding from RGB images.

4 Simulation Experiments

We conduct experiments on two simulation benchmarks RoboCasa [20] and CALVIN [21]. We
aim to answer the following questions: Q1) How does PointMapPolicy compare to state-of-the-art
2D and 3D imitation learning policies? Q2) How do the fusion methods perform compared to
other modalities? Q3) How does point map representation compare to other point cloud processing
methods? Q4) Can current vision encoders effectively extract the geometric and semantic information
from point maps required for robust decision-making?

RoboCasa: The RoboCasa benchmark [20] is a large-scale simulation framework designed to
evaluate IL agents across a wide range of household manipulation tasks. Built on a physically
realistic environment with rich visual rendering, RoboCasa supports task diversity, long-horizon
behaviors, and fine-grained physical interactions, making it a compelling testbed for assessing both
generalization and behavior diversity in policy learning. We use the RoboCasa benchmark to assess
whether our proposed point map representation can enable effective learning and generalization
across manipulation tasks of increasing complexity, object count, and behavioral variation.

CALVIN: The CALVIN benchmark [21] provides a large-scale framework for evaluating language-
conditioned IL policies in visually rich, long-horizon manipulation tasks. The benchmark contains 34
distinct manipulation tasks such as button-pressing, drawer-opening, object-picking, and pushing.
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Figure 4: Overview of Simulation and Real World Experiments used to test PointMapPolicy.
From left to right: CALVIN Benchmark [21], RoboCasa [20], and our Real World Setup.

Category Task BC  GROOT-N1 DP3 3DA RGB Depth PMP-6¢ch  PMP-xyz PMP
PnPCounterToMicrowave 2.0 0.0 4.0+1.6 0.0 10.0+4.3 3.3+0.9 9.3+0.9  13.343.4 10.7+3s
. PnPCounterToSink 2.0 1.0 0.7+0.9 0.0 5.3+1.9 4.7+0.9 8.7+0.9 6.7+2.5 6.7+3.4
Pick and Place .
PnPMicrowaveToCounter | 2.0 0.0 4.0+28 0.0 10.7+38 8.0+1.6 12.0+16 16.0+1.6 16.0+6.5
PnPSinkToCounter 8.0 5.9 1.3x0.9 0.0 14.7+0.9 3.3x0.9 9.3+4.7 8.0+1.6 16.7+5.0
OpenDrawer 42.0 42.2 46.0+3.3  18.0 | 44.7x77  56.7+0.9  40.0£3.3 60.0+4.3 56.0+8.2
Open/Close Drawers
CloseDrawer 80.0 96.1 60.0+1.6  80.0 | 84.0+71  92.0+0.0  75.3+34 96.0+1.6 91.3+38
. TurnOnStove 32.0 25.5 24.7+41  18.0 18.7x19  22.7x09  35.3+25 43.3+5.7 41.3+50
Twisting Knobs
TurnOffStove 4.0 15.7 7.3+1.9 8.0 13.3+0.9 14.0+1.6 16.7+25  20.04+3.3  18.0+0.0
TurnOnSinkFaucet 38.0 59.8 42.0+33  26.0 | 64.0x71  T78.T+25 64.7+41  76.7+41  66.7=s1
Turning Levers TurnOffSinkFaucet 50.0 67.7 42.0+40 440 63.3+7.7  76.0+5.9  T73.3+9.6 82.04+1.6 66.7+9.4
TurnSinkSpout 54.0 42.2 58.7+6.s  28.0 | 50.0+4.9 76.0+4.9 69.3+38 76.0t1.6 48.7+7.4
CoffeePressButton 48.0 56.9 14.7+09 8.0 70.7+137  84.0+43 76.7x66  82.7+50 92.0+3.3
Pressing Buttons TurnOnMicrowave 62.0 73.5 39.3+7.4  34.0 48.0+4.9 44.0+0.0  64.7+5.2 49.3+5.0 64.7+3.4
TurnOffMicrowave 70.0 57.8 62.7+5.7  30.0 69.3+9.0  68.0+7.1  75.3+25  70.0+49 84.0+te.5
Insertion CoffeeServeMug 22.0 34.3 21.3+0.9 0.0 60.0+2.8  57.3x6.2  48.7+7.7 69.3+6.6 49.3+3.4
) CoffeeSetupMug 0.0 2.0 4.0+2.8 2.0 16.0+2.8  15.3x0.0  10.7+0.9  16.7+38 26.7+3.4
Average Success Rate 32.25 36.28 27.04 18.50 40.16 44.00 43.12 49.12 47.22

Table 1: Success rate (%) for each task in RoboCasa [20]. The models were trained for 50 epochs
with 50 human demonstrations per task and evaluated with 50 episodes for each task. The bold
numbers highlight the best achieved success rate for that task among all the models.

Each rollout consists of a sequence of 5 language instructions, and the agent must complete one task
before proceeding to the next. Policies are evaluated on 1,000 such instruction chains per seed, and
success is measured by the average number of correctly completed tasks in each sequence.

Experimental Setup: For RoboCasa, each model was trained for 50 epochs using three random
seeds, with performance measured at the 30th, 40th, and 50th checkpoints, selecting the best result.
To ensure fair comparison, all models across different modalities use identical backbone parameters.
For the CALVIN benchmark, models were trained for 25 epochs, with the best success rate reported
from the 10th, 15th, 20th, and 25th checkpoints.

Baselines: For RoboCasa, we benchmark against Behavioral Cloning (BC) [20], GROOT-N1 [46], 3D
Diffusion Policy (DP3) [7], and 3D Diffuser Actor (3DA) [! 1]. Note that GROOT-N1 results use 100
demonstrations, while all other methods use 50 human demonstrations. To systematically evaluate
the effectiveness of our representation, we further compare other against image-based baselines using
only RGB data (RGB), and only depth data (Depth). We then compare PMP against multiple variants
introduced in Section 3.4: PMP-6¢h directly uses 6-channel point maps as inputs, and PMP-xyz only
uses xyz coordinates as inputs. All five methods share the same architectures and parameters for fair
comparison. Details can be found in Appendix 6.

For CALVIN, we primarily compare our approach against models without robot-specific pretraining,
though we include all results for reference. DP3, 3DA, and CLOVER [47] are selected as representa-



Train—Test Method PrT | Action Type No. Instructions in a Row (1000 chains) Avg. Len.

1 2 3 4 5
RoboFlamingo [50] v Cont. 82.4% 61.9% 46.6% 33.1% 23.5% 247
SuSIE [51] v Diffusion 87.0% 69.0% 49.0% 38.0% 26.0% 2.69
GR-1[52] v Cont. 854% T12% 59.6% 49.7%  40.1% 3.06
OpenVLA [23] v Discrete 91.3% 778% 62.0% 521% 43.5% 3.27
RoboDual [53] v Diffusion 944% 827% 12.1% 624% 54.4% 3.66
Seer [49] v Cont. 94.4% 812% 799% 122% 64.3% 3.98
MOoDE [24] v Diffusion 96.2% 889% 81.1% 71.8% 63.5% 4.01
Seer-Large [49] v Cont. 96.3% 91.6% 86.1% 803% 74.0% 4.28
ABC—D DP3 [7] X Diffusion 287%  2.7% 0.0% 0.0% 0.0% 0.31
MDT [48] X Diffusion 63.1% 429% 24.7% 151%  9.1% 1.55
3DA[11] X Diffusion 922% 187% 63.9% 512% 41.2% 3.27
MOoDE (scratch) [24] X Diffusion 91.5% 7192% 673% 558% 45.3% 3.39
CLOVER [47] X Diffusion 96.0% 83.5% 70.8% 57.5% 45.4% 3.53
Seer (scratch) [49] X Cont. 93.0% 824% T123% 62.6% 533% 3.64
Seer-Large (scratch) [49] X Cont. 92.7% 84.6% 76.1% 689%  60.3% 3.83
RGB X Diffusion 89.9% 754% 60.8% 49.8% 39.1% 3.15
PMP-xyz (ours) X Diffusion 73.0% 519% 37.0% 245% 16.1% 2.03
PMP (ours) X Diffusion 96.1% 88.6% 80.5% 723% 63.6% 4.01

Table 2: Evaluation results on the CALVIN benchmark under ABC—D. All results report the average
rollout length averaged over 1000 instruction chains.

tive policies using RGB-D inputs. MDT [48], MoDE [24], and Seer [49] are selected as RGB-based
policies. Further details of these baselines can be found in Appendix A.2.

4.1 Main Results

RoboCasa. We present the main results in Table 1. PMP-xyz demonstrates significant advantages
over prior 3D baselines DP3 and 3DA, achieving an average success rate of 49.12%—nearly 20%
higher. It also outperforms 2D baselines BC and GROOT-N1 by approximately 13%. The above results
address Q1. Our cross-modality evaluation using consistent architectures reveals that incorporating
3D information consistently improves performance in RoboCasa. Specifically, PMP-xyz shows a
6% improvement over the Depth-only model, highlighting the value of structured point maps. While
PMP (47.22%) outperforms PMP-6¢ch, demonstrating the benefits of late fusion, it still falls 2% short
of PMP-xyz. This pattern suggests that most RoboCasa tasks favor geometric information, likely due
to the diversity of objects and scenes.

CALVIN. On the CALVIN benchmark, PMP achieves a score of 4.01, outperforming all other
models trained from scratch and many models that leverage pretrained data, as shown in Table 2. Our
method even outperforms Seer-Large (scratch) which scores 3.83 despite using 24 Transformer layers
compared to our smaller model using only 10 x-LSTM blocks. This answers Q1 in the affirmative.

PMP-xyz performs poorly with an average rollout length of only 2.03, while the RGB-only model
achieves a respectable score of 3.15. This performance disparity stems from CALVIN’s heavy reliance
on color information for task execution, with many instructions explicitly referencing colors (e.g., "red
block", "pink block"). This finding highlights a key limitation of purely geometric representations in
color-dependent scenarios.

These contrasting results between RoboCasa and CALVIN benchmarks underscore the complemen-
tary nature of geometric and visual information. While PMP-xyz excels in geometry-heavy tasks
(RoboCasa), it struggles with color-dependent tasks (CALVIN). This demonstrates that multimodal
fusion approaches like PMP provide the most robust and versatile performance across diverse task
domains by adaptively leveraging the most relevant modality for each scenario, addressing Q2.

4.2 Point Cloud Encoding

While our main results demonstrate the effectiveness of PMP compared to other methods, these
comparisons involve different policy backbone architectures. To isolate the contribution of our point
cloud encoding approach, we conduct a controlled ablation study where we fix the policy backbone
(X-Block) and systematically vary only the point cloud encoder.
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Figure 5: Ablation study comparing point cloud encoders with fixed X-Block policy backbone.
Our PMP-xyz method substantially outperforms baseline encoders across all manipulation tasks,
demonstrating that our improvements arise from the point cloud encoding approach.
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Figure 6: Left: Performance comparison of various fusion methods between point maps and images.
Right: Performance comparison of different visual encoders for point map processing.

We conducted controlled experiments on RoboCasa using identical XLSTM backbones with different
point cloud processing encoders: 1) PointNet-xyz: Following DP3 [7], we gather point clouds from 3
camera views and use Furthest Point Sampling (FPS) to downsample to 1024 points, then apply MLP
with maxpooling to create a compact 3D token. 2) PointNet-color: Same process as PointNet-xyz but
using colored points with XYZRGB information. 3) PointPatch: We use FPS to sample 256 center
points, apply k-Nearest Neighbors to create 256 point patches with 32 points each, tokenize each
patch using MLP with maxpooling, then process the resulting tokens with a transformer to generate
compact 3D representations. 4) 3D-Lifting: We extract CLIP features (frozen) from each camera
view and lift the 2D features into 3D space, then use a transformer to process the lifted tokens. The
3D tokens are then passed to the diffusion policy with an identical X-Block backbone.

Figure 5 presents the success rates over 16 RoboCasa tasks. Our PMP-xyz achieves an average
success rate of 49.12%, substantially outperforming all baselines. The consistent improvements
demonstrate that the point maps approach effectively captures the spatial understanding necessary for
robotic manipulation, independent of the downstream policy architecture, addressing Q3.

4.3 Ablation Study

We additionally conduct three ablations across the 6 categories of RoboCasa:

Fusion of Images and Point Maps. One key advantage of point maps over traditional point cloud
processing methods is their structural similarity to RGB images from corresponding views. This
alignment enables direct fusion of visual representations with point cloud data on a per-view basis.
We evaluate three fusion strategies—Add, Cat, and Attn—which are described in Figure 3. The
comparative performance of these fusion strategies is presented in Figure 6. Although the performance
differences are modest, Cat consistently emerges as the most effective fusion approach.



Vision Encoders for Point Maps. To assess how well existing visual architectures process Point
Map representations, we conduct a comparative analysis of three prominent visual encoders: FiILM-
ResNet50, ConvNeXt-v2, and DaViT. The results in Figure 6 demonstrate that while all encoders can
effectively process point maps, ConvNeXtv2 consistently outperforms the others across all RoboCasa
tasks, addressing Q4.

Understanding Model Attention Patterns. To uncover where the model attends during action
prediction, we apply Grad-CAM++ [54] to highlight the regions most influential for action decisions
across different modalities. For detailed visualizations, see Appendix D.

4.4 Computation Resources and Inference Time

For the CALVIN experiments, PMP employs Film-ResNet50 as encoders for both images and point
maps, with 8 x-Blocks as backbones (512 latent dimensions), totaling 147M trainable parameters.
Training utilizes 4 Nvidia RTX 6000 Ada GPUs with 128 samples per GPU (512 total batch size).
Each epoch completes in approximately 13 minutes, allowing full training (25 epochs) in under 6
hours, excluding evaluation time. More details can be found in Appendix E.

Regarding computational efficiency, we conducted inference latency benchmarks for our models using
ConvNeXt-v2 encoders on a single Nnidia RTX 5080 GPU (batch size 1). Across 1000 prediction
cycles, PMP-xyz demonstrates remarkable efficiency with an average inference time of 2.9 ms, while
PMP requires only 3.9 ms, maintaining real-time performance.

5 Real-World Experiments

We evaluate PMP on six challenging real-world robot manipulation tasks: Arranging, Folding, Cup-
Stacking, Drawer, Pouring, and Sweeping. An overview of our robot setup is shown in Figure 7. The
robot’s perception system consists of two RGB-D cameras mounted on the left and right sides of the
workspace.

5.1 Real-World Benchmark

Real-world Setup. We evaluate our policies on a 7-DOF Franka Panda robot in six challenging
tasks. Visual information is captured by two Orbbec Femto Bolt cameras, positioned to provide left
and right views. These sensors provide both RGB and depth images, which are used to generate
calibrated 3D point clouds. All RGB and depth images are resized to 180x320 resolution. The robot
operates in an §-dimensional action space, including joint positions and gripper state.

Datasets. For collecting demonstrations, we use a teleoperation system consisting of a leader robot
and a follower robot. For each task, we collect varying numbers of language-conditioned trajectories
as detailed in Table 3. To ensure robust evaluation, we randomly initialize the object and goal states,
introducing significant variation in the objects used. For instance, in the sweep task, the broom can
appear in 10 different areas, and the garbage in 4 different areas. In addition, the number, positions,
and even categories of trash items are varied in the collection and evaluation.

5.2 Baselines and Metrics

Baseline. To evaluate the effectiveness of the point-map representation, we benchmark our methods
against RGB-only policy, sharing with the same backbone. Each method is evaluated over 20 trials
per task at training checkpoints 70,000, 80,000, and 90,000, using randomized initial object states to
ensure robustness. We report results from the best-performing checkpoint for each method.

Metrics. Given the long-horizon nature and complexity of the tasks, we introduce a structured scoring
metric to enable fair and detailed comparisons. Each task is decomposed into multiple stages, with
each successfully completed stage contributing 1 point to the overall score. The final task score is the
sum of the completed intermediate stages, providing a more granular measure of progress and policy
effectiveness. The details of our scoring metrics can be found in Table 5.



Table 3: The table shows average completed stages. The Max.
indicates the total number of stages per task.

Demos Methods with Scores
Tasks Per Task
RGB ‘ PMP-xyz ‘ PMP ‘ Max
Arranging 80 2.05 2.10 2.25 3
et A i Folding 45 2.1 0.80 2.50 | 3
Camera - ST | Cup-Stacking 75 1.40 045 | 2.10 | 3
Drawer 120 | 2.00 215 | 240 | 4
Pouring 80 1.55 1.60 1.80 | 4
- Sweeping 90 1.80 0.80 2,15 | 4

Figure 7: Real world experiments consisting of six tasks. The left figure shows our setup and the
Drawer task. The Table shows the average completed stages out of 20 evaluations.

5.3 Real-World Main Results

We evaluate all the methods with 20 rollouts per task. As can be seen in Table 3, our proposed
PMP policy consistently outperforms all baselines across all evaluated real-world tasks. Compared
to the RGB-only policy, PMP achieves at least a 0.2-point improvement in accumulated scores,
demonstrating the effectiveness of fusing both point-map and RGB modalities. Notably, on the
Folding task, PMP increases the score from 2.1 to 2.5 using only 45 demonstrations, showcasing
strong sample efficiency.

Interestingly, the PMP-xyz also outperforms the RGB-only baseline on several tasks, underscoring the
value of spatial structure in guiding action prediction. However, its performance drops significantly
in tasks involving deformable objects, such as Folding and Sweeping, where object geometry would
change over actions. In these scenarios, the lack of appearance cues leads to coarse and less reliable
action predictions. This is especially evident in Cup-Stacking, a task that explicitly requires reasoning
about object color, further highlighting the importance of RGB input. Overall, these results validate
the effectiveness and generalizability of PMP in handling diverse and challenging manipulation tasks
in the real world.

6 Limitation and Future Work

Our current approach has two main limitations. First, simply concatenating the point map and
RGB tokens may not optimally leverage the complementary information in each modality. More
sophisticated fusion mechanisms could potentially extract richer cross-modal relationships and further
improve performance. Second, our point map visual encoders are trained entirely from scratch, which
constrains their performance compared to the RGB modality that benefits from ImageNet pretraining.
For future work, developing pretraining objectives specifically designed for point map encoders
represents a promising direction. Just as vision models benefit substantially from pretraining on
large image datasets, establishing similar paradigms for point map representations could dramatically
improve performance, enabling more robust geometric feature learning before fine-tuning on specific
robotic tasks.

7 Conclusion

We present PointMapPolicy (PMP), a novel diffusion-based imitation learning framework that
effectively integrates 3D geometric reasoning with standard vision techniques. By projecting depth
pixels into a multi-channel image of XYZ coordinates, PMP leverages existing visual encoders,
while an efficient xLSTM-based diffusion network denoises action tokens to generate precise control
sequences. Empirical results on RoboCasa and CALVIN demonstrate that PMP not only achieves
state-of-the-art performance but also offers significantly faster training and inference. Comprehensive
ablations on observation modalities and fusion strategies further highlight the clear advantages of
structured point-map representations. Looking forward, we plan to explore large-scale pretraining of
point-map models to extend generalization across diverse robotic tasks.
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A Simulation Experiment Details

A.1 RoboCasa Benchmark

RoboCasa [20] is a large-scale simulation framework developed to train generalist robots in realistic
and diverse home environments, with a particular focus on kitchen scenarios. The benchmark
comprises 100 tasks, including 25 atomic tasks with 50 human demonstrations and 75 composite
tasks with auto-generated demonstrations. These tasks are centered around eight fundamental robotic
skills relevant to real-world home environments: (1) pick-and-place, (2) opening and closing doors,
(3) opening and closing drawers, (4) twisting knobs, (5) turning levers, (6) pressing buttons, (7)
insertion, and (8) navigation.

To comprehensively evaluate our method, we selected five tasks from the atomic tasks described in
Table 4, each representing a distinct skill.

Task Name

Pick-and-Place Tasks
PickPlace_Counter_To_Microwave
PickPlace_Counter_To_Sink
PickPlace_Microwave_To_Counter
PickPlace_Sink_To_Counter

Drawer Tasks
Open_Drawer
Close_Drawer

Description

Pick an object from the counter and place it inside the microwave (door is open).
Pick an object from the counter and place it in the sink.

Pick an object from the microwave and place it on the counter (door is open).
Pick an object from the sink and place it on the counter next to the sink.

Open a drawer.
Close a drawer.

Stove Tasks

Stove_On Turn on a specific stove burner by twisting its knob.
Stove_Off Turn off a specific stove burner by twisting its knob.
Sink Tasks

SinkFaucet_On
SinkFaucet_Off
Turn_Sink_Spout

Coffee Machine Tasks

Turn on the sink faucet to start water flow.
Turn off the sink faucet to stop water flow.
Rotate the sink spout.

Coffee_Press_Button
Coffee_Setup_Mug
Coffee_Serve_Mug

Press the button to pour coffee into the mug.
Place the mug into the coffee machine’s mug holder.
Remove the mug from the holder and place it on the counter.

Microwave Tasks
Microwave_On
Microwave_Off

Start the microwave by pressing the start button.
Stop the microwave by pressing the stop button.

Table 4: RoboCasa task set.

A.2 CALVIN Benchmark

Benchmark Setup. The CALVIN benchmark [21] is a long-horizon manipulation benchmark
featuring four visually distinct tabletop environments (A-D), each containing a common set of objects
and 34 manipulation tasks. Agents are given natural language instructions describing sequences of up
to 5 tasks to be executed in order. The primary evaluation involves completing 1000 such instruction
chains in environment D. Agents are scored by the number of tasks successfully completed per chain,
with a maximum rollout length of 5.

Evaluation Protocol. We evaluate PointMapPolicy on one standard CALVIN settings: ABC—D,
where the policy is trained on environments A, B, and C, and evaluated zero-shot on D. Only 1% of
the play data is paired with language, requiring models to learn from primarily unlabeled data. The
ABC—D setup tests visual and environmental generalization, while D—D emphasizes efficiency in
low-resource, language-scarce settings.

Baselines. We compare against a broad set of state-of-the-art language-conditioned policies span-
ning imitation, diffusion, and foundation-model-based architectures:

* HULC [55]: a hierarchical imitation learning framework that combines a discrete skill
planner (learned via VAE) with a low-level controller trained on dense teleoperation data. It
does not use language pretraining or frozen encoders.
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* LAD [56]: extends HULC by replacing the planner with a high-level diffusion model that
learns to generate latent skills conditioned on goals. The policy uses a U-Net-based diffusion
process and CLIP-encoded language inputs.

* Distill-D [57]: a CLIP-conditioned continuous-time diffusion policy. It distills robot
behaviors from demonstrations using dense supervision and large batch sizes, incorporating
CLIP goals and continuous action prediction.

* MT-ACT [58]: a transformer-based policy that predicts temporally extended action chunks.
It encodes entire trajectories using VAE-style representation learning and uses a transformer
encoder-decoder for action generation.

* RoboFlamingo [50]: based on OpenFlamingo, this model integrates a frozen VLM with a
lightweight policy head. It is pretrained on large-scale vision-language data and finetuned
on CALVIN using supervised behavior cloning.

* SuSIE [59]: a scalable instruction-following diffusion policy. It is pre-trained on curated
robot demonstrations and uses an instruction-conditioned denoising process with significant
offline finetuning.

* GR-1 [52]: a powerful decoder-only transformer trained on large-scale synthetic video data.
The model is capable of generating long sequences of actions and is finetuned on CALVIN
for grounding.

* CLOVER [47]: a video diffusion planner that predicts intermediate visual goals via video
generation and closes the loop using low-level policy feedback. It does not require internet-
scale pretraining and achieves strong multi-step rollout success.

* MoDE [60]: Mixture-of-Diffusion-Experts model with sparse routing. It supports both
small (non-pretrained) and large (pretrained) variants. The pretrained variant achieves top
performance while maintaining low inference cost.

* Seer / Seer-Large [49]: large-scale transformer models pretrained on 1000+ hours of robot
play data. Seer incorporates language, vision, and action streams into a unified transformer
and achieves strong generalization, particularly when scaled up.

Results. Table 2 presents results on ABC—D settings. In the challenging ABC—D generaliza-
tion setting, PointMapPolicy surpasses earlier methods such as HULC and Distill-D and performs
competitively with MoDE and Seer. Unlike these baselines, our method uses no pretraining, no
frozen vision-language encoders, and no large-scale robot datasets. These results demonstrate the
effectiveness of using grounded spatial goal representations and point-based reactive policies for
generalizable, long-horizon language-conditioned control.

A.3 CALVIN Evaluation Details

CALVIN Task Suite. The CALVIN benchmark [21] consists of four environments (A-D) with
identical object sets and tasks but differing in visual appearance and lighting. Each episode comprises
natural language instructions describing a chain of 5 atomic manipulation goals selected from 34 total
tasks. These include pushing, pulling, opening drawers, pressing buttons, etc. The robot receives
RGB-D observations from multiple camera views and proprioceptive information. The action space
is 7-dimensional, including end-effector translation, rotation, and gripper control.

Language-Conditioned Evaluation. Agents are evaluated on their ability to execute long-horizon
natural language commands consisting of 5 consecutive tasks. The evaluation split uses 1000 unique
instruction chains in environment D. The model receives a reward of 1 upon successful completion
of each task in the chain, and evaluation metrics report the average number of tasks completed per
rollout over 3 random seeds.

ABC—D Setup. To evaluate generalization, the model is trained on environments A, B, and C, and
tested zero-shot on environment D. No data from environment D is used during training. This split
emphasizes robustness to domain shifts and visual changes.
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Drawer | Stack | Fold | Score
Open the upper/lower drawer | Pick the correct cup | Pick the towel | 1
Pick the object and place it into drawer | Stack failed | Fold the towel | 2
Close the Drawer | Stack the cups | Fold the towel perfectly | 3
- | - | - I

Pour | Sweep | Arrange | Score
Pick the cup | Pick the broom | Open the mixer machine | 1
Pour the contents | Sweep 20% of garbage | Pick the container and place on pad | 2
Pour all contents into container | Sweep 50% of garbage | Close the mixer machine | 3
Put the cup back |  Sweep all garbage | - | 4

Table 5: Task score metric details of real robot and evaluation standards.

B Real World Experiment Details

We conducted six real-world experiments on a Franka Panda Robot: Drawer, Stack, Pour, Sweep,
Fold, and Arrange.

B.1 Task Metric

Given the complexity and long-horizon nature of the tasks, we decompose each task into several
discrete stages. The final score is computed as the total number of successfully completed stages.
Details of the scoring metric design are provided in Table 5.

B.2 Task Description

Drawer: In the Drawer task, there is a cabinet with two drawers and two different objects, a cube and
a cylinder. The robot must follow a language-specified instruction to open the designated drawer,
pick up the target object, place it inside the drawer, and then close the drawer. The key challenges
involve handling the random initialization of both the cabinet’s position and the objects’ locations.

Stack: In the Stack task, four cups of different colors and sizes are provided. The robot must stack
the cups in a specific order based on their colors. The main challenges lie in accurately recalling
the stacking sequence and executing precise placement, as the cups are closely sized and must fit
together properly.

Pour: In the Pour task, three distinct cups and three different containers are placed in randomized
initial positions. The robot must generalize to novel object configurations while maintaining the
precision necessary to pour the contents from the cups into the containers without spilling. The
primary challenge lies in adapting to varying spatial arrangements while executing controlled and
accurate pouring motions.

Sweep: Unlike standard Pick-and-Place tasks, this task requires the robot to acquire a novel sweeping
skill. In the Sweep task, the positions of the broom, dustpan, and trash vary across trials, and even the
number of trash items changes. The key challenge is manipulating deformable trash materials that
differ from those encountered during training, requiring the policy to exhibit strong generalization
and adaptability.

Fold: The Fold task requires precise manipulation skills. The goal is to neatly fold a towel that is
randomly oriented at the start of each trial. The primary challenge lies in accurately handling the soft,
deformable material to achieve a clean and consistent fold despite varying initial conditions.

Arrange: In the Arrange task, the setup includes a mixing machine and a container. The robot must
follow a specific sequence: first, open the mixing machine; next, place the container on the designated
pad; and finally, close the machine. This task primarily emphasizes long-horizon planning, requiring
the robot to execute a multi-step procedure in the correct order.
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C Hyper Parameters

Hyperparameter CALVIN ABC RoboCasa Real World
Number of x-Blocks 10 8 6
Attention Heads 8 8 8
Action Chunk Size 10 10 10
History Length 1 1 1
Embedding Dimension 2048 768 2048
Image Encoder FiLM-ResNet50 ConvNextV2 FiLM-ResNet50
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32 CLIP ViT-B/32
Attention Dropout 0.3 0.3 0.3
Residual Dropout 0.1 0.1 0.1
MLP Dropout 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW
Betas [0.9, 0.95] [0.9, 0.95] [0.9, 0.95]
Learning Rate le-4 le-4 le-4
Transformer Weight Decay 0.05 0.05 0.05
Other weight decay 0.05 0.05 0.05
Batch Size 128 128 128
Train Steps in Thousands 25 15 30
Omax 80 80 80
Omin 0.001 0.001 0.001

ot 0.5 0.5 0.5
EMA True True True
Time steps Exponential Exponential Exponential
Sampler DDIM DDIM DDIM
Trainable Parameters (Millions) 147 111 96

Table 6: Summary of all the Hyperparameters for our experiments.

We export all the hyper parameters across three benchmarks for reproduction.

D Activation Map Analysis

To gain qualitative insights into what regions the visual encoders attend to during action inference, we
visualize activation maps using Grad-CAM++ [54]. Unlike classification tasks, our diffusion-based
policy does not predict discrete categories, therefore, we apply Grad-CAM++ using the diffusion
loss as the target signal, following the approach of highlighting input regions that most influence the
denoised trajectory prediction. We generate the heatmaps using the Grad-CAM++ implementation?,
and compute activations for each camera view across three RoboCasa tasks: OpenDrawer, Turn
On Sink Faucet, and Coffee Serve Mug. In all figures, we use a ConvNeXtv2 encoder and extract
Grad-CAM-++ heatmaps from the final convolutional block before normalization. Each visualization
consists of six images arranged in two rows. The top row shows the raw visual input (RGB or XYZ
visualized in color), and the bottom row displays the corresponding Grad-CAM++ heatmaps for each
of the three camera views: static left, static right, and wrist-mounted. These maps highlight spatial
regions with the greatest impact on predicted actions.

Overall, the attention patterns are consistent with task-relevant visual cues. For example, activations
commonly focus on the robot gripper, the manipulated object, or the goal location, depending on the
modality and perspective.

Figures 8, 9 and 10 show results for the RoboCasa tasks Coffee Serve Mug, Open Drawer and Turn
On Sink Faucet, respectively.

*https://github.com/jacobgil/pytorch-grad-cam
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left camera right camera gripper camera

(a) RGB-only ConvNeXtv2 encoder. Top: raw 128x128 RGB input frames provided to the agent.
Bottom: Grad-CAM++ heatmaps from the final convolutional layer.
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(b) PMP-xyz ConvNeXtv2 encoder. Top: 128x128 XYZ input visualized as RGB. Bottom: Grad-
CAM-++ heatmaps from the final convolutional layer.

Figure 8: Raw RGB, XYZ input frames and Grad-CAM++ activations on the Coffee Serve Mug
RoboCasa task for RGB-only and Point-map-only ConvNeXtv2 visual encoders.
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(a) RGB-only ConvNeXtv2 encoder. Top: raw 128x128 RGB input frames provided to the agent.
Bottom: Grad-CAM-++ heatmaps from the final convolutional layer.
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(b) PMP-xyz ConvNeXtv2 encoder. Top: XYZ input visualized as RGB. Bottom: Grad-CAM++
heatmaps from the final convolutional layer.

gripper camera

Figure 9: Raw RGB, XYZ input frames and Grad-CAM++ activations on the Open Drawer RoboCasa
task for RGB-only and Point-map-only ConvNeXtv2 visual encoders.



left camera right camera gripper camera

IGE

0.4

Iﬂ2
a

(a) RGB-only ConvNeXtv2 encoder. Top: raw 128x128 RGB input frames provided to the agent.
Bottom: Grad-CAM++ heatmaps from the final convolutional layer.

left camera right camera gripper camera

(b) PMP-xyz ConvNeXtv2 encoder. Top: XYZ input visualized as RGB. Bottom: Grad-CAM++
heatmaps from the final convolutional layer.

Figure 10: Raw RGB, XYZ input frames and Grad-CAM++ activations on the Turn On Sink Faucet
RoboCasa task for RGB-only and Point-map-only ConvNeXtv2 visual encoders.
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E Compute Resources

For the CALVIN experiments, PMP-Cat employs Film-ResNet50 as encoders for both RGB images
and point maps, with 10 x-Blocks as backbones (512 latent dimensions), totaling 147M trainable
parameters. Training utilizes 4 Nvidia RTX 6000 Ada GPUs with 128 samples per GPU (512 total
batch size). Each epoch completes in approximately 13 minutes, allowing full training (25 epochs) in
under 6 hours, excluding evaluation time.

For the RoboCasa experiments, PMP-Cat employs ConvNeXtv2 as encoders with 8 x-Blocks using
512 latent dimensions. Training utilizes 1 NVIDIA A100-SXM4-40GB with a 128 batch size.

For the real-robot experiments, PMP-Cat employs Film-ResNet50 as encoders for both images and
point maps, with 6 x-Blocks using 256 latent dimensions. Training utilizes 1 Nvidia RTX 6000 Ada
GPUs with 128 batch size.
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