
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3742873.3756928
.

.

RESEARCH-ARTICLE

Special Sessions - Hardware-Soware Co-Design for Machine Learning
Systems Made Open-Source

MEHDI BARADARAN TAHOORI, Karlsruhe Institute of Technology, Karlsruhe, Baden-
Wuremberg, Germany
.

VINCENT MEYERS, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wuremberg,
Germany
.

MAHBOOBE SADEGHIPOUR ROODSARI, Karlsruhe Institute of Technology, Karlsruhe,
Baden-Wuremberg, Germany
.

HUASHUANGYANG XU, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wuremberg,
Germany
.

JÜRGEN BECKER, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wuremberg,
Germany
.

TANJA HARBAUM, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wuremberg,
Germany
.

View all
.

.

Open Access Support provided by:
.

University of Erlangen-Nuremberg
.

University of Kaiserslautern-Landau
.

Technical University of Munich
.

Karlsruhe Institute of Technology
.

PDF Download
3742873.3756928.pdf
15 January 2026
Total Citations: 0
Total Downloads: 78
.

.

Published: 28 September 2025
.

.

Citation in BibTeX format
.

.

CODES+ISSS '25: International
Conference on Hardware/Soware
Codesign and System Synthesis
September 28 - October 3, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGDA
SIGMICRO
SIGBED

CODES+ISSS '25: Proceedings of the International Conference on Hardware/Soware Codesign and System Synthesis (September 2025)
hps://doi.org/10.1145/3742873.3756928

ISBN: 9798400719929

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3742873.3756928
https://dl.acm.org/doi/10.1145/3742873.3756928
https://dl.acm.org/doi/10.1145/contrib-81758690757
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661532115
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661772731
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661774625
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-81387594217
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99660778156
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/3742873.3756928
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60000765
https://dl.acm.org/doi/10.1145/institution-60280671
https://dl.acm.org/doi/10.1145/institution-60019722
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3742873.3756928&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/esweek
https://dl.acm.org/conference/esweek
https://dl.acm.org/conference/esweek
https://dl.acm.org/sig/sigda
https://dl.acm.org/sig/sigmicro
https://dl.acm.org/sig/sigbed
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3742873.3756928&domain=pdf&date_stamp=2025-12-09

Special Session – Hardware-Software Co-Design for Machine
Learning Systems Made Open-Source

Mehdi Tahoori
1
*, Vincent Meyers

1
, Mahboobe Sadeghipour Roodsari

1
, Huashuangyang Xu

1
,

Juergen Becker
1
, Tanja Harbaum

1
, Felix Frombach

1
, Julian Hoefer

1
, Georgios Sotiropoulos

1
,

Jörg Henkel
1
, Zeynep Demirdag

1
, Heba Khdr

1
, Hassan Nassar

1
, Ulf Schlichtmann

2
, Johannes Geier

2
,

Philipp van Kempen
2
, Georg Sigl

2,5
, Stefan Koegler

2
, Matthias Probst

2
, Jürgen Teich

3
,

Frank Hannig
3
, Muhammad Sabih

3
, Batuhan Sesli

3
, Norbert Wehn

4
, Lukas Steiner

4
,

Wolfgang Kunz
4
, Mohamed Shelkamy Ali

4

mehdi.tahoori@kit.edu

1
Karlsruhe Institute of Technology –

2
Technical University of Munich –

3
Friedrich-Alexander-Universität Erlangen-Nürnberg –

4
University of Kaiserslautern-Landau –

5
Fraunhofer Institute for Applied and Integrated Security (AISEC)

Germany

Abstract
Chip technologies are crucial for the digital transformation of indus-

try and society. Machine Learning (ML) and Artificial Intelligence

(AI) are increasingly shaping both daily life and industrial appli-

cations, with AI hardware playing a vital role in enabling efficient

and scalable ML deployment. However, significant challenges re-

main in bridging the gap between ML algorithm development and

hardware implementation, particularly for edge ML applications

where efficiency, power constraints, and adaptability are critical.

In such resource-constrained environments, hardware-software

co-design becomes essential to achieve the necessary trade-offs be-

tween performance, energy efficiency, and system responsiveness.

One of the key bottlenecks in ML hardware development is the lack

of seamless integration between ML toolchains and electronic de-

sign automation (EDA) tools for hardware synthesis and mapping.

Current solutions often require extensive manual optimization and

costly proprietary software, limiting accessibility and innovation.

Open-source tools can play a transformative role in democratizing

ML hardware design, fostering collaboration, and addressing the

growing shortage of skilled professionals. This paper covers key

aspects of hardware-software co-design for ML systems, such as

ML algorithms, hardware design, compiler technologies and system

security, with a focus on open-source solutions. We highlight the

critical need for open-source toolchains that connect ML model de-

velopment with hardware synthesis and optimization and present

solutions for custom hardware, as well as FPGA accelerators.

ACM ISBN 979-8-4007-1992-9/2025/09

https://doi.org/10.1145/3742873.3756928

CCS Concepts
• Hardware→ Hardware-software codesign; Safety critical
systems; • Security and privacy → Hardware attacks and
countermeasures.

Keywords
Hardware-software co-design, Machine learning

ACM Reference Format:
Mehdi Tahoori, Vincent Meyers, Mahboobe Sadeghipour Roodsari, Huas-

huangyang Xu, Juergen Becker, Tanja Harbaum, Felix Frombach, Julian Hoe-

fer, Georgios Sotiropoulos, Jörg Henkel, Zeynep Demirdag, Heba Khdr, Has-

san Nassar, Ulf Schlichtmann, Johannes Geier, Philipp van Kempen, Georg

Sigl, Stefan Koegler, Matthias Probst, Jürgen Teich, Frank Hannig, Muham-

mad Sabih, Batuhan Sesli, Norbert Wehn, Lukas Steiner, Wolfgang Kunz,

Mohamed Shelkamy Ali . 2025. Special Session – Hardware-Software Co-

Design for Machine Learning Systems Made Open-Source. In Proceedings of
Special Session – Hardware-Software Co-Design for Machine Learning Systems
Made Open-Source (CODES+ISSS ’25). ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3742873.3756928

1 Introduction
The ongoing digital transformation of society and industry is closely

linked to the rapid introduction and use of ML. From smart sen-

sors in industrial automation [1] to personal health monitoring

devices [2], AI systems are becoming ubiquitous across all sectors.

In 2023 alone, the U.S. Food and Drug Administration (FDA) ap-

proved 223 AI-enabled medical devices, up from just six in 2015,

demonstrating the scale of AI use in safety-critical applications [3].

This explosion in adoption is driven by both algorithmic progress

and unprecedented investment: in 2024, global private AI invest-

ment reached USD 252.3 billion, a 26% increase on the previous

year [3]. In parallel, regulatory frameworks such as the European

Union’s AI Act are shaping standards for trustworthy and safe

deployment of AI technologies, especially in high-risk applications.

As the complexity and size of these systems increase, so does

their need for efficient hardware execution. Specialized AI hard-

ware [4] has become essential when it comes to ensuring the energy

*Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.

CODES+ISSS ’25, September 28-October 3, 2025, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

https://doi.org/10.1145/3742873.3756928
https://doi.org/10.1145/3742873.3756928

CODES+ISSS ’25, October, 2025, Taipei, TW Tahoori et al.

efficiency, real-time responsiveness, and cost-effectiveness required

to run ML workloads in both data centers and resource-constrained

environments [5], such as mobile and edge devices. While cloud

infrastructure continues to play a major role in AI processing, the

market share and deployment of edge AI systems is accelerating

rapidly due to latency, privacy, and energy constraints. This trend

complements the overall surge in demand for AI hardware compo-

nents, with recent forecasts projecting that AI will account for over

70% of the global semiconductor market by 2030 [6].

However, the development of ML systems remains highly frag-

mented. On the one hand, ML algorithms are developed with high-

level frameworks such as PyTorch or TensorFlow, which focus on

the expressiveness of the model and training performance. On the

other hand, the hardware design and optimization cycle, which is

usually controlled by EDA (Electronic Design Automation) tools, is

governed by constraints such as latency, power consumption and

area and remains largely decoupled from the algorithm develop-

ment process. This decoupling leads to inefficiencies in mapping

ML workloads to hardware, resulting in oversized designs or un-

met application-level requirements, especially for embedded or

real-time use cases.

This paper outlines the main technical challenges and opportuni-

ties in enablingHW-SWco-design for AI systems using open-source

frameworks. Our goal is to develop methods and tools that enable

joint optimization of ML models and hardware architectures across

multiple levels of abstraction. Specifically, we aim to:

• Support application-driven customization of accelerators, includ-

ing error detection mechanisms and confidence-aware inference.

• Enable design space exploration that includes memory subsys-

tem tuning and architectural specialization.

• Leverage open instruction set architectures and modular IP

blocks for configurability and safety extensions.

• Integrate differentiable cost models, ML compiler transforma-

tions, and hardware synthesis into a unified co-design stack.

• Incorporate security mechanisms to protect against model theft,

fault injection, and side-channel leakage through hard-ware-

aware obfuscation, access control, and real-time monitoring.

• Develop toolchains for early-stage simulation and synthesis of se-

cure and robust ML accelerators tailored to deployment contexts

such as edge, cloud, or safety-critical environments.

This paper is organized as follows: Section 2 outlines the motiva-

tion and challenges of HW-SW co-design for modern AI, especially

in edge and embedded systems. Section 3 presents methods for

developing open-source AI accelerators with built-in security en-

hancements. Section 4 explores the hardware design space and

DRAM subsystem optimization for ML workloads. Section 5 fo-

cuses on the co-design of compilers and accelerators for efficient

AI execution. Section 6 addresses the security of ML systems, in-

cluding fault detection and robustness. Finally, Section 7 concludes

the paper with a summary and outlook on open-source HW-SW

co-design for AI.

2 Motivation and Background
This section outlines the technological trends, challenges, and

emerging opportunities that motivate a shift toward integrated

hardware–software co-design for AI systems.

1982 1988 1994 2000 2006 2012 2018 2024
Publication Date

109

1012

1015

1018

1021

1024

1027

Tr
ai

ni
ng

 C
om

pu
te

 (F
LO

P,
 lo

g
sc

al
e)

1.5×/year

4.7
×/ye

ar

2×/2years

VGG19

AlphaGo Zero

DARTS

GPT-4

CHAI-1

Grok 4Model Training Compute
Moore s law (2×/2years)
Deep Learning Era
Model Power Draw

103

104

105

106

107

108

Tr
ai

ni
ng

 P
ow

er
 D

ra
w

(W
, l

og
 sc

al
e)

1.
7×

/y
ea

r

Figure 1: Evolution of training compute (FLOPs) for notable
AI models over time [7]. Points represent published models,
with a distinct inflection point around 2010 marking the
onset of the “Deep Learning Era” (shaded in blue). Dashed
lines illustrate compute growth trends before and after 2010,
computed from the earliest and latest models in each period.

2.1 The Case for Hardware-Software Co-Design
Modern AI systems increasingly demand custom-tailored hardware

solutions to meet their soaring computational requirements and

energy constraints. Since the onset of the deep learning era around

2010, the training cost (in FLOPs) of frontier models has surged by

several orders of magnitude (see Figure 1), far outpacing Moore’s

law and reflecting the exponential growth in model scale and com-

plexity. At the same time, as displayed in Figure 2, the economic

footprint of AI hardware is expanding rapidly: the AI share of the

global semiconductor market is expected to rise from under 10% in

2020 to over 70% by 2030.

These trends underscore the importance of tightly integrating

hardware and software design, ensuring that ML models and their

target hardware are optimized together rather than separately. This

need is even more critical in edge and embedded systems, where

the available compute power, energy budget, and physical form

factor impose hard constraints on AI deployment. Mapping large AI

models to such constrained hardware targets remains a major chal-

lenge. To meet application-level requirements without exceeding

hardware capabilities, co-design must begin early by embedding

hardware constraints directly into model training, architectural

exploration, and optimization workflows.

For edge and embedded AI systems, the co-design must explic-

itly target performance, power consumption, area and cost (PPAC)

while meeting accuracy requirements (PPAAC).

Cross-layer modeling: Achieving effective PPAAC co-design

requires models that bridge both software and hardware domains.

Software-level optimizations must reflect hardware constraints

such as available area, latency, and power consumption. Contrarily,

hardware models must accurately capture how these constraints

impact the accuracy and performance of AI models.

Accuracy under constraints: Deploying large AI models on

constrained edge hardware often involves aggressive quantization,

pruning, and compression techniques to meet tight latency and

energy requirements. Maintaining accuracy under these limita-

tions demands hardware-aware training and optimization methods.

Special Session – Hardware-Software Co-Design for Machine Learning Systems Made Open-Source CODES+ISSS ’25, October, 2025, Taipei, TW

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
0

200

400

600

800

1000

1200

1400

No
n-

AI
 a

nd
 A

I S
em

ico
nd

uc
to

r M
ar

ke
t b

y
Pr

od
uc

t

$446.7B
9.7%

$547.1B
12.3%

$564.3B

15.8%
$526.2B

22.6%

$635.9B

26.0%

$712.4B

33.3%

$797.6B

41.6%

$896.9B

50.7%

$1013.2B

57.2%

$1146.0B

64.1%

$1296.9B

70.9%

AI vs Non-AI Semiconductor Market (2020 2030)

Non-AI
AI

Figure 2: Projected growth of the AI vs. Non-AI semiconduc-
tor market from 2020 to 2030 [6]. The increasing share of
AI-specific semiconductor products, which grows from 9.7%
in 2020 to a projected 70.9% by 2030, based on forecasts.

Specifically, closed-loop approaches are needed where model ac-

curacy is continuously evaluated against realistic hardware con-

straints during the training process.

Hardware-aware software abstractions: Support for fine-
grained optimizations, such as mixed-precision arithmetic and be-

spoke compute structures, must be exposed through software ab-

stractions that enable dynamic control and customization.

Reliability and security: Co-design must embed functional

safety, reliability, and security into the design process from the

outset. These aspects cannot be retrofitted but must be integrated

within the early phases of hardware-software co-optimization.

Trustworthy deployment: Incorporating these dependability
requirements early ensures that edge and embedded AI systems are

not only efficient but also reliable and secure, crucial for deployment

in safety-critical or mission-critical environments.

2.2 Challenges in Today’s Ecosystem
Despite the growing interest in HW-SW co-design for AI, several

systemic barriers remain. ML developers are separated from hard-

ware designers by incompatible toolchains, proprietary interfaces

and divergent optimization goals. Most current frameworks re-

quire manual intervention to map quantized, pruned, or sparsely

structured models into hardware. Moreover, there is no unified

abstraction that can translate ML-centric metrics (e.g., accuracy,

latency under noise, robustness) into hardware constraints in a

differentiable manner.

Unlike conventional applications, AI architectures can be refined

or learned during deployment (e.g., via Neural Architecture Search),

and system-level requirements can change as data sets or tasks

change. This requires a paradigm shift: from late optimization to

a holistic, early co-design that encompasses the algorithm, archi-

tecture, and compiler levels. Differentiable models that capture

hardware costs (e.g., area, energy, memory) must become part of

the training loop itself. Furthermore, the size and complexity of

AI accelerators requires modern approaches for efficient hardware

verification [8]. Likewise, security is often neglected in current

design processes. Protection against threats such as model theft,

fault injection or side-channel leakage is rarely considered during

training or synthesis, but treated as an afterthought. This frag-

mented view hinders the development of trustworthy AI systems,

especially for use in adversarial or mission-critical environments.

Similarly, safety aspects such as fault detection, fault tolerance or

safe evasion mechanisms are not systematically integrated into

today’s ML and EDA toolchains. Without any co-design support

for security-relevant components, developers are faced with a high

manual effort and do not have the tools to make principled trade-

offs between performance, robustness, and trustworthiness.

2.3 Towards an Open-Source Co-Design
Ecosystem

Open-source ecosystems can play a transformative role in overcom-

ing these challenges. Open-source tools serve as a common refer-

ence platform, enabling reproducibility, crowd-sourced innovation,

and continuous improvements from both academia and industry.

These platforms can be easily customized to meet industrial use-

cases, facilitating a wider adoption and specializeddeployments.

Traditional closed-source EDA tools are typically application-

agnostic, limiting their effectiveness for AI-specific hardware opti-

mization. In contrast, open-source toolchains enable transparent

exchange of detailed hardware information and accurate abstrac-

tion models, facilitating hardware-aware software optimizations

like quantization-aware training and mixed-precision inference.

A stable open-source ecosystem is particularly important for

sovereign chip design initiatives, educational accessibility, and in-

dustrial innovation [9]. With the environmental impact and cost

of AI decreasing by 40% and 30% annually respectively [3], the

bottleneck is shifting from technical capabilities to accessibility and

openness. Open-source hardware-software co-design toolchains are

poised to become essential for driving this next wave of innovation.

3 Accelerator IP Development and Safety
Extensions in Open-Source AI Hardware

As AI systems scale in complexity and importance, it is becoming

increasingly important to ensure reliable and efficient machine

learning on resource-constrained hardware. While traditional Neu-

ral Networks (NNs) offer promising and exciting solutions for many

relevant computational tasks, they still suffer from several short-

comings for actual applications. These shortcomings include strug-

gles with memory and performance limitations of edge devices, as

well as false predictions when confronted with unexpected situ-

ations[10]. Furthermore, the continuous scaling down of CMOS

technology leads to other issues in terms of reliability, like Single-

event upsets (SEUs). While SEUs do not cause permanent damage

to the circuit, they can still lead to erroneous system behavior.

Therefore, it is crucial to implement effective error detection and

correction mechanisms, to enable safety-critical applications under

deployment in harsh environments.

The gap between computationally demanding AI-models and

limited edge computing hardware is bridged by Hyperdimensional

Computing (HDC) [11], a brain-inspired paradigm that utilizes

high-dimensional binary vectors and bit-wise operations to enable

real-time, low-power classification. In contrast to deep learning,

HDC offers inherent noise tolerance and lightweight computation,

making it well suited for edge cases. However, its application is

CODES+ISSS ’25, October, 2025, Taipei, TW Tahoori et al.

E
n

d
 t

o
 E

n
d

 F
a
rm

w
o
rk

E
d

g
e

d
ev

ic
e

Python software

HDC accelerator

Pipeline architecture

Reliability extensions

...

Memory

free encoder

training

Memory

free encoder

training

Software

analysis for

reliability

modules

Software

analysis for

reliability

modules

Fault correction

Fault detection

Memory free ECC

OOD detectionMonitoring

signals

Feedback

signals

Efficient hardware

HDC Configuration C
o
n

fi
g
u

ra
ti

o
n

Figure 3: Overview of the end-to-end hardware-software co-
design framework for reliable and efficient Hyperdimen-
sional Computing. The system compiles PyTorch-based HDC
models into FPGA-ready bitstreams and integrates memory-
free encoders, pipeline architectures, and software modules
for fault detection, error correction, and out-of-distribution
(OOD) detection.

limited by memory-intensive encoding/classification phases and

susceptibility to hardware errors during voltage scaling as an edge

device. In the following, we present an approach that offers a mod-

ular solution to the aforementioned limitations which hinder the

widerspread deployment of safety-critical HDC-systems.

An overview of this part of the work can be found in Figure 3.

First, we addressed the memory by redesigning the HDC parameter

generator so that the parameters no longer need to be stored, but

are generated dynamically using cyclic logic. This approach reduces

memory requirements without compromising accuracy. Our RTL-

based framework supports pipeline parallelism, dynamic memory

generation and sparse optimization, achieving up to 4× higher

dimensionality on the same FPGA. It compiles PyTorch-trained

models into ready-to-use bitstreams for full HDC implementations.

Our open-source ecosystem includes RCE-HDC [12, 13] for

memory-free encoding, CED-HDC[14] for real-time error detection,

and NUECC-HDC [15] for selective error correction and last but not

least, the lightweight out-of-distrubution detector [16]. Together,

they enable reliable, fault-tolerant, and energy-efficient edge intel-

ligence. Our work lays the foundation for utilization of HDC in

safety-critical edge applications while maintaining a tight power

budget. Ongoing research is exploring memory-less ECC and adap-

tive protection strategies that bring HDC closer to practical, scalable

and robust AI at the edge of the network.

Beyond specific techniques like HDC, we aim to provide fur-

ther solutions to reduce the demand for hardware resources for

safety-critical systems in a more generalizable approach, aiming

to foster collaboration with an open-source solution. In the state

of the art, Triple Modular Redundancy (TMR) remains a widely

used technique to address the aforementioned issue of SEUs. In

this approach, three identical instances of a circuit operate in paral-

lel, and their outputs are compared. Although TMR offers robust

fault tolerance, it comes with significant area and power overhead,

which is problematic in scenarios where fault rates are low but the

application still requires a certain safety level [17]. The drive for

increased productivity by designers demands advanced tools and

methodologies that enable the development of hardware systems

AI System
BayNNgine

AI Model

AI Model

AI Model

AI Pre-
processing

AI Post-
processing

Voting &
Uncertainty

Figure 4: AI System with architectural redundancy patterns
as recommended by ISO 8800 [10]. Integrating the BayNNgine
allows to efficiently perform approximations of Bayesian
Neural Networks (BayNNs) as described in [18].

that meet the fault tolerance requirements of their application en-

vironment while minimizing unnecessary redundancy. The safety

level of a system can be measured by its diagnostic coverage, which

describes the percentage of errors it can detect. This coverage is

generally categorized into low (60 %), medium (90 %), and high (99

%) levels [10]. For a system to reach and provide a certain diagnos-

tic coverage, different safety measures can be taken. Simple safety

mechanisms like the integration of a parity bit into the data, detect

only single-bit errors, but are easy to implement. More complex

methods yield higher coverage but increase implementation costs

and hardware demands. The choice of the appropriate and neces-

sary safety mechanism is a trade-off between hardware efficiency,

desired level of safety, and system robustness.

To simplify and enable the development of hardware for safety-

critical systems, this work enhances RISC-V-based AI processor

extensions and AI accelerators with appropriate safety mechanisms.

By analyzing relevant fault classes and their impact on AI work-

loads, we can provide hardware generators for configurable and

scalable safety extensions for open-source AI-IP-blocks, leverag-

ing the capabilities of modern languages like Chisel. This enables

designers to choose the safety level of a hardware module simply

by adapting a generation parameter. The resulting interchangeable

modules enable designers to easily adapt the safety of a design

at a later stage of development without compatibility issues or

additional development efforts. By targeting fundamental build-

ing blocks, the modular and scalable approach facilitates both the

development of new safe and robust systems, as well as the im-

provement of existing designs to enable new applications in safety-

critical domains. While this is a critical step, ensuring dependable

AI model inference necessitates addressing additional challenges be-

yond hardware fault tolerance. Specifically, AI models struggle with

unexpected data, leading to false classifications in situations that

are new or less optimal in some way. For example, those affected by

detrimental environmental factors such as fog or rain [18]. Classical

Deep Neural Networks (DNNs) tend to be overconfident in their

results in these situations. BayNNs’s propose an improvement to

this problem. Due to their stochastic properties, BayNNs’s and their

approximations can estimate the uncertainty of a model’s output.

Using this information, the system can default to a safe state in

the case of high uncertainty. To enable Bayesian inference through

Special Session – Hardware-Software Co-Design for Machine Learning Systems Made Open-Source CODES+ISSS ’25, October, 2025, Taipei, TW

Monte Carlo sampling, we have successfully integrated custom

Dropout hardware modules into the data path of FleXNNgine, an

open-source and reconfigurable systolic array AI accelerator, which

implements an efficient row-stationary dataflow to reduce costly

memory accesses [19]. The data flow is depicted in Fig. 4. Further

investigation concerns the integration of such safety mechanisms

into further AI accelerators to improve their robustness.

To effectively select a diagnostic coverage level for each instance

of a hardware module, it is important to understand the fault tol-

erance of the whole circuit. This also entails having a clear view

of the the critical points more likely to lead to erroneous behavior.

There exist two main methods for understanding the susceptibility

of digital circuits to faults. Physics tools allow for continuous-time

simulation of the layout’s 3D model, which has significant accuracy

but is very time-consuming. Random fault injection campaigns re-

duce the time and performance overhead since they work at higher

abstraction layers but lack accuracy when it comes to providing

information under specific environmental conditions.

Consequently, we propose a hybrid error estimation methodol-

ogy for digital logic circuits. This methodology provides designers

with accurate estimations regarding the fault tolerance of their cir-

cuit under the specific harsh conditions of their use case. Thus, they

can make informed decisions about the trade-off between suscepti-

bility to temporal upsets and efficiency, instead of using techniques

like TMR with low susceptibility but significant efficiency overhead.

At the gate level of the corresponding circuit, we utilize fault prop-

agation algorithms for fast calculations, eliminating the need for

time-consuming simulations. On the layout level, we perform fault

characterization of each gate cell through extensive simulations

to ensure accuracy. These two approaches in combination deliver

fast and accurate insights about the corresponding circuit, enabling

informed decisions in an early design phase. Combined with the

hardware module safety extensions, this approach allows for the

automation of the fault tolerant design process while also ensuring

correct functionality of the corresponding system for the target

application.

4 Design Space Exploration of Hardware
Architectures and DRAM Subsystems for
Optimized AI Systems

Deep neural networks consist of different layers with varying com-

putational and memory requirements. A single hardware configura-

tion for entire inference can not efficiently support all layers due to

this variability. FPGAs provide runtime reconfigurability, enabling

the architecture to adapt to the specific requirements for each layer

or group of layers during execution. Changing the hardware con-

figuration for each layer or group of layers leads to significant

performance improvement and better resource utilization. How-

ever, runtime reconfiguration introduces overhead with latency,

typically ranging from several milliseconds to tens of milliseconds

depending on the FPGA, configuration interface, and bitstream size.

In order to achieve performance improvements from runtime

reconfiguration, we propose grouping layers into clusters that share
a common hardware architecture. Each cluster consists of a group of

consecutive neural network layers, and a clustering scheme defines
how a neural network is divided into clusters. Finding an optimal

clustering scheme and a corresponding hardware configuration

for each cluster is challenging due to a vast design space. Hence,

there is a need for our Design Space Exploration (DSE) framework

that systematically explores design space and identifies the optimal

solution identifying optimal clusters. Results in Figure 5 show that

our DSE framework is able to find the optimal solutionwith dividing

AlexNet into two clusters. Moreover, the clusters are efficient in

utilizing the resources using only 53% of the accelerator slot sized

to fit AlexNet accelerator by a state-of-the-art solution [20].

0 1 2 3 4

1,200

1,300

1,400

1,500

Number of reconfigurations

F
i
t
n
e
s
s

AlexNet

𝐶1 𝐶2

0

20

40

60

80

100

40.28%

52.68%

Clusters

A
r
e
a
U
t
i
l
i
y
a
t
i
o
n
(
%
)

AlexNet

Figure 5: Different reconfiguration points and the final speed
up of AlexNet and utilization of the hardware.

As the reconfiguration is a crucial part for our DSE, we need

an efficient reconfiguration manager to perform it as quickly as

possible. Therefore, we use CoRQ, an open-source reconfiguration

manager [21, 22]. CoRQ removes the burden of the reconfiguration

from any processing system and independently manages the recon-

figuration. If the bitstream is small enough, it can be pre-fetched

to a BRAM on chip to reduce the reconfiguration time and make it

possible to give real-time guarantees.

After optimizing the accelerator using our DSE framework and

using CoRQ to optimize the reconfiguration time, the FPGA can be

used to accelerate Multi-DNNs [23]. In such a case, we would get

different tasks to be run on the accelerators from different DNN

workloads. The tasks can be issued in a certain order but because of

different dependencies, they can be stalled till previous tasks end. To

optimize this, we use task re-ordering to execute the first available

task that has no dependencies. Figure 6 shows the results of using

task re-ordering on aDip-forty board. Compared to a baselinewhere

tasks keep stalling, we achieve an average speed up of 2.1× for an

object detection DNN. Integrating smart mapping and scheduling

could enhance our DSE framework by further optimizing energy

efficiency, as thoroughly studied in non-AI workloads [24].

Our current DSE framework assumes a fixed DRAM interface,

while available FPGA platforms offer a variety of different DRAM

interfaces. They range from single DDR and LPDDR devices over

larger DIMMs up to multiple stacks of High Bandwidth Memory

(HBM). These memories differ greatly in their available bandwidth.

In addition, depending on the platform, different DRAM controller

implementations and interconnect topologies to the remaining sys-

tem are used, which can largely influence the memory access la-

tency. Overlooking all these differences hides bottlenecks after op-

timizing compute and reconfiguration. Moreover, we consider that

CoRQ prefetches small bitstreams into BRAM, but larger bitstreams

CODES+ISSS ’25, October, 2025, Taipei, TW Tahoori et al.

L
a
y
er
1

L
a
y
er
2

L
a
y
er
3

L
a
y
er
4

L
a
y
er
5

A
v
er
a
g
e

0

0.5
1

1.5
2

L
a
t
e
n
c
y
(
m
s
)

Baseline Re-ordering

Figure 6: Performance evaluation of object detection DNN
on a Dip-Forty board. The figure shows speedup achieved by
task reordering compared to the baseline implementation.

DRAM Controller

Channel Controller

P
H
Y

A
X
I
I
n
t
e
r
f
a
c
e

Data Buffers

A
d
d
r
e
s
s

D
e
c
o
d
e
r

S
c
h
e
d
u
l
e
r

Bank

Machines

Refresh

Manager

C
o
m
m
a
n
d

M
u
l
t
i
p
l
e
x
e
r

D
F
I

C
o
n
v
e
r
t
e
r DFI

Figure 7: Architecture of parameterizable DRAM controller.

or BRAM-limited platforms rely on off-chip DRAM. In this case,

an intelligent DRAM controller is crucial to achieve real-time per-

formance. With our multi-DNN scheduler, off-chip memory faces

contention, and without a latency-prioritizing DRAM controller,

speedups diminish under heavy workloads because too many mem-

ory accesses are issued at once. To harness runtime reconfiguration

and multi-DNN acceleration fully, our DSE needs accurate per-

formance models for the DRAM subsystem to co-optimize cluster

partitions, bitstream placement, and memory patterns, ensuring

performance and timing across FPGA/DRAM combinations. There-

fore, as a next step, the DSE framework will be combined with

DRAMSys [25]. DRAMSys is an open-source DRAM simulator. Its

unique feature is a cycle-accurate DRAM protocol modelling at

the speed of an approximately-timed simulation. This allows for

both fast and accurate DSE. DRAMSys offers support for all cur-

rent DRAM standards specified by JEDEC and for various DRAM

controller architectures.

In order to deploy the optimized DRAM controller on differ-

ent FPGA platforms, RTL building blocks for a parameterizable

controller architecture as shown in Figure 7 are developed in par-

allel. Internally, the controller consists of two parts, the channel

controller and the Physical Layer (PHY). The channel controller

translates incoming read and write commands into a standard-

compliant sequence of DRAM commands. It maps system physical

addresses to DRAM addresses (address decoder), reorders requests

for improved performance (scheduler), tracks and changes the inter-

nal state of the DRAM (bank machines) and performs the required

refresh for data retention (refresh manager). The PHY first initial-

izes and calibrates the DRAM and afterwards translates the DRAM

commands into the required signal levels. While the PHY is always

implemented as hard IP on an FPGA, the channel controller can be

constructed from FPGA resources. Therefore, we develop different

version of its internal building blocks (i.e., with different policies

and for different standards) so that an optimized DRAM controller

can be assembled.

5 Co-Design of AI Applications: ML Compiler
and Accelerator Units

AI workloads include matrix multiplications in vision transformers,

convolutions in neural networks, recurrent operations in sequence

models, and attention in large language models. Despite differences,

they share concentrated computational hotspots. Optimizing these

yields major performance and efficiency gains, motivating dedi-

cated accelerators as custom hardware or processor extensions. The

RISC-V Instruction Set Architecture (ISA) supports this via Custom

Functional Units (CFUs), user-defined modules integrated with the

core and invoked through reserved custom opcodes for efficient AI

operations.

Several previous works have proposed custom extensions to

RISC-V, aiming to deploy DNNs efficiently. Additionally, frame-

works such as CFU-Playground have been developed to streamline

the design and integration of these RISC-V CFUs. In [26], we pro-

posed extending RISC-V with CFUs to accelerate weight clustering,

while in [27], RISC-V CFUs were designed to exploit both unstruc-

tured and semi-structured sparsity for acceleration. The broader

objective is to develop a suite of CFUs and custom instructions

tailored to a wide range of ML workloads.

However, a major shortcoming is that existing compilers do not

automatically recognize these customized instructions. To address

this gap, Figure 8 illustrates a co-design flow integrating model

training, compiler stages, and hardware specialization. The DNN is

retrained to compensate for accuracy loss from weight clustering or

sparsity, with layers mapped to different CFU configurations at the

simulation level. Compiler steps handle code generation (e.g., TVM

kernels) and optimizations targeting these custom instructions,

which are then deployed on RISC-V cores with integrated CFUs.

Open-source tools are utilized at all levels.

DNN Training

Mapping
Layers to CFUs

Code
Generation

Code
Optimization

RISC-V

CFUs

tight coupling

Figure 8: Proposed compiler-based ML deployment flow for
co-designed accelerators.

Next, we demonstrate the utility of such an approach using the

example of a Weight Clustering Accelerator (WCA). The WCA ex-

tension, as proposed in [26], defines custom RISC-V instructions

for configuring the codebook (mapping between cluster index and

actual int8 weights), pushing packed weights, as well as updating

and reading the internal accumulator register. The accelerator sup-

ports three different cluster sizes (2, 4, and 16 elements) and can

perform 8 MAC operations per cycle.

The default approach to utilizing these instructions is to write

full ML kernels manually. This leads to huge efforts when dealing

with a large number of possible layer configurations. An automated

integration of the WCA instructions is desirable. However, a SW

compiler-level integration based on Directed Acyclic Graph (DAG)

pattern matching, such as proposed in [28], is not feasible either, as

the WCA instructions rely heavily on the processors’ architectural

state elements that cannot be modeled in the compiler. Further,

Special Session – Hardware-Software Co-Design for Machine Learning Systems Made Open-Source CODES+ISSS ’25, October, 2025, Taipei, TW

the existence of side effects causes the SW compiler to skip opti-

mizing the code near the invocation of the custom instructions.

An alternative approach is to integrate the custom instructions

on a higher abstraction level, such as the TensorIR (TIR) inter-

mediate representation used by the TVM ML compiler suite [29].

Using a compiler-based ML deployment flow has further advan-

tages compared to TensorFlow Lite Micro (TFLM) [30], which relies

on hard-coded “reference” kernels:

• Less runtime and memory overhead due to interpreter-less exe-

cution.

• Generates target-optimized (and tuned) kernel code instead of

using generic unoptimized implementations.

• Enables performing transformations of the data layouts, com-

puting, and scheduling (at deployment time).

The first step to use the WCA instructions is to transpose the

layout of the weights in the model, enabling vectorization over the

common input channel axis. Since the weights are constant, this

can be precomputed and does not lead to any runtime overhead.

The TVM MetaScheduler (TVM MS) [31] provides automated

tensorization, which allows replacing some loop nests in a workload

with a call to a “micro-kernel”, i.e., a hand-optimized implemen-

tation of a matrix-multiplication or vector dot-product. This can

be achieved by writing so-called tensor intrinsics, which are com-

posed of two parts: (i) a description of the computation used for loop

pattern matching and (ii) an implementation, which is inserted in

case of a successful match. TVM further automatically rearranges

the loops (tiling and reordering) to increase the likelihood of a

successful match.

Using a micro-kernel has several advantages compared to writ-

ing a full custom kernel (including scheduling) for a given ML layer.

First, it is possible to reuse the same micro-kernel in other layers

(such as FullyConnected operations). On the other hand, we have

full control over the optimization of the innermost loop (loop un-

rolling). The micro-kernel also takes care of resetting and reading

the accumulator, as well as pushing the correct packed weights.

Since the WCA relies on clusters of values in the weight tensors,

it is also important to make the ML compiler flow aware of those

clusters.

Layers that do not conform to the constraints of the CFU ISA

extension (input channels need to be a multiple of 8) can be invali-

dated using a tuning post-process. This post-process also takes care

of detecting the clusters, compressing the weights, and configuring

the codebook, which only has to be done once per layer and there-

fore should not be done in the micro-kernel itself. TVM’s ability to

infer the clusters and codebook automatically at code-generation

time eliminates the need to manually re-pack the weights using

custom modifications of the TensorFlow Lite (TFLite) flatbuffer

used to store the model data.

Figure 9 shows the detailed runtime improvements achieved on

the dominant layers in the ResNet model. The very first convolu-

tion cannot be accelerated because of its input channel count of

3, which is not a multiple of 8 and therefore would under-utilize

the WCA, which is designed to perform 8 Multiply-Accumulates

(MACs) per cycle. Depending on the layer configuration (kernel

size, stride, channel count), the achieved speedups with TFLM +

WCA range from 1.9× (Layer 6) to 8.5× (Layer 9). TVM’s autotuned

0 5 10 15 20 25

Layer 10
conv(64,64,1,1)

4 clusters

Layer 9
conv(64,64,3,3)

4 clusters

Layer 8
conv(64,32,3,3)

4 clusters

Layer 6
conv(32,16,3,3)

16 clusters

Layer 5
conv(32,32,3,3)

4 clusters

Layer 4
conv(32,16,3,3)

16 clusters

Layer 2
conv(16,16,3,3)

16 clusters

Layer 1
conv(16,16,3,3)

16 clusters

Layer 0
conv(16,3,3,3)

no clustering

1.3×

0.9×

1.0×

2.2×

1.0×

1.9×

1.9×

1.9×

3.0×

2.9×

2.2×

2.6×

3.3×

2.7×

1.9×

3.4×

3.0×

3.7×

2.6×

8.5×

5.5×

1.9×

5.0×

3.2×

3.2×

3.2×

1.0×

7.5×

10.7×

5.5×

6.1×

9.1×

9.8×

9.6×

9.7×

3.7×

Execution time [1 · 106 clock cycles]

(𝐶out, 𝐶in, 𝐾ℎ , 𝐾𝑤)

TFLM Ref. [30] baseline
TVM Fallback [29]

TVM MS [31]

TFLM + WCA ours [26]
TVM MS + WCA ours

Figure 9: Layer-wise runtime of different ML deployment
frameworks and WCA integration. Speedups annotated rela-
tive to each layer’s baseline.

Conv2D kernels are consistently outperforming the reference TFLM

implementations by 1.9× (Layer 4) to 3.7× (Layer 0). The automatic

TVM-based integration of the WCA in supported layers yields addi-

tional speedups between 1.8× (Layer 6) and 5.1× (Layer 4) compared

to TVM MS.

Table 1 provides the end-to-end execution time of the whole

model (inference time), consisting of a total of 15 layers of which

eight are accelerated using the CFU.

Table 1: Aggregated non-accelerated layers, accelerated lay-
ers, and total model inference time [1 · 106 clock cycles].

Inference time TFLM TFLM+WCA TVM+WCA

Layers w/o accel. 128.5 13.5 3.9

Layers w/ accel. − 29.2 11.8

Total

∑
128.5 42.6 15.7

Speedup vs. TFLM − 3× 8.2×

6 Security of Machine Learning Systems
The development and deployment of AI accelerators raise signif-

icant security concerns, among which model theft is particularly

critical [32, 33]. Trained AI models often require substantial in-

vestments in data collection, computational resources, and expert

knowledge, making them highly valuable intellectual property.

CODES+ISSS ’25, October, 2025, Taipei, TW Tahoori et al.

Yc2

Xp
2 Neural

Network

Controller
Xr
2

Weights Xw
Biases Xb

Yd
2

Xp
1

Neural
Network

Controller
Xr
1

Weights Xw
Biases Xb

Yd
1

Yc1

Property
Commitment

Property
Assumption =

Figure 10: Computational model for model theft in AI accel-
erators as mentioned in [35].

Unauthorized extraction of these models can result in financial

losses, erosion of competitive advantage, and violation of confi-

dentiality. It is therefore essential to ensure that an accelerator is

not only functionally correct but also resilient against adversarial

attacks that could compromise the model and its associated intellec-

tual property. Although considerable effort is invested in designing

increasingly powerful AI workloads, corresponding investment in

verifying and securing these systems remains limited [34].

Our work [35] addresses this gap by proposing a formal verifica-

tion methodology to assess at the microarchitectural level whether

an AI accelerator leaks model parameters through timing side-

channel attacks. We consider a threat model where an attacker

aims to steal model parameters without direct access, instead sup-

plying inputs and observing execution times. If the accelerator’s

timing behavior depends on sensitive parameters, the attacker can

reverse-engineer the model, compromising intellectual property.

We systematically detect parameter-dependent timing variations

by employing a computational model (Fig. 10) that instantiates the

device under verification twice (“two-safety model”). Each instance

receives the same inputs, 𝑥𝑟 , but different parameters, 𝑥𝑝 , in order

to determine whether variations in the parameters result in mea-

surable deviations in execution time. A control output signal 𝑦𝑐
indicates the completion of computation. We verify whether there

exists a set of inputs where the two instances activate the control

output 𝑦𝑐 at different time points. If this is possible then the exe-

cution time depends on the model parameters, thereby exposing a

potential risk of model theft.

We provide different versions of the proof to address scalability

challenges and to ensure applicability to larger accelerators while

keeping soundness of the proof. The first approach fully unrolls
the computation in an end-to-end proof, but as expected, struggles

with scalability due to the exponential growth of the state space

for the solver. The second, more optimized approach, exploits the

modularity of the layer computations by applying the proof in a

layer-wisemanner, which reduces unrolling to only the largest layer

within the accelerator. The third version is a single-cycle proof that
can achieve the same results as the fully unrolled and layer-wise

proofs but allows us to restrict the considered verification time

window to a single clock cycle to determine whether the execution

time depends on the model parameters.

We successfully applied our methodology to two types of accel-

erators: systolic arrays [36] and dataflow-based designs, available

in public domain [37, 38]. The proof method is currently being

finalized and will be published open-source. Table 2 reports on the

proof times and the corresponding results [35]. As shown, the fully-

unrolled proof version fails to converge due to the large state space

Table 2: Experimental results for the different methodologi-
cal approaches and their runtimes.

Fully Unrolled Layer-Wise Single-Cycle
Runtime Runtime Runtime

Design Leak? (hh:mm) Leak? (hh:mm) Leak? (hh:mm)

Syst. Array – time-out yes 01:30 yes 00:03

FINN-6 no 01:30 no 00:11 no 00:01

FINN-9 – mem-out no 00:16 no 00:01

FINN-12 – mem-out no 00:24 no 00:01

FINN-15 – mem-out no 00:31 no 00:02

FINN-18 – mem-out no 00:40 no 00:02

encountered by the solver. In contrast, the layer-wise approach

successfully converges within reasonable time, with runtime in-

creasing proportionally to the size of the accelerator design. The

single-cycle proof demonstrates the fastest verification times in all

cases.

In the case of the systolic array, a dependence of execution time

on model parameters was detected. This can be attributed to an

optimization feature known as exit branches [39], where the ex-

ecution time varies depending on branch decisions that involve

the model parameters, thereby violating the threat model. This

behavior was flagged and reported to the developers. For the case

of dataflow architectures, the FINN accelerators proved to be secure

with respect to our threat model.

Other attack vectors to consider are Power and Electro-Magnetic

(EM) Side-Channel Analysiss (SCAs). Several successful attacks

utilizing Power or EM SCA against NN implementations both in

software [40] and hardware [41, 42] have been published. This

demonstrates the threat posed to the intellectual property and

private data associated with the deployment of NNs to edge devices

and highlights the need for effective countermeasures.

While such countermeasures have been extensively investigated

in the context of cryptographic circuits, they generally fall into two

categories: hiding and masking. Hiding techniques aim to obfuscate

side-channel leakage by introducing additional noise or misalign-

ing trace recordings in the time domain. One prominent hiding

method is shuffling, which leverages the large number of opera-

tions in NNs with interchangeable execution order to drastically

increase the number of side-channel traces an attacker must col-

lect to succeed [43]. Although shuffling’s effectiveness can only be

confirmed experimentally, it is lightweight to implement and offers

strong protection when many parameters are shuffled, as is typical

in NNs. However, this means shuffling cannot be integrated early in

the design process. In contrast, masking is a provably information-

theoretically secure countermeasure designed to ensure that power

consumption or EM traces are statistically independent of secret

data being processed. Several works demonstrate the effective im-

plementation of several masking schemes in NN hardware acceler-

ators [44–47]. Due to its theoretical security guarantees, masking

allows early-stage verification of its effectiveness within the design

process by verification of a circuit’s side-channel resistance based

on its hardware description language definition.

We investigate the suitability of open-source formal verification

tools for the application to hardware accelerators of NNs:

CocoAlma [48] involves amulti step process startingwith group-

ing linear combinations that a gate correlates to into correlation

Special Session – Hardware-Software Co-Design for Machine Learning Systems Made Open-Source CODES+ISSS ’25, October, 2025, Taipei, TW

+

X

X

X

X-

+ +

+-

vector0

weight0

weight1

weight refresh multiply refresh

vector1

Figure 11: Schematic of an arithmetically masked Multiply
Gadget utilizing a domain-oriented masking scheme. As the
weight value itself does not change, the ’weight refresh’ mask
is applied before every multiplication. A ’multiply refresh’
mask enables the secure addition of two shares in the upper
and lower domains, respectively. Registers are utilized to
prevent the propagation of glitches.

sets. These correlation sets are implicitly encoded and formulated as

a boolean satisfiability problem. This problem is then solved using

a SAT solver. However, the correlation set of the output of a logical

operation cannot be directly computed from the correlation sets of

its inputs. Therefore, an approximate approach is used, which is

prone to false positives.

Silver [49] is based on evaluating the probability distribution

of probed wires to determine the statistical independence of the

joint distribution of probes from the joint distribution of sensitive

inputs. The gate-level netlist is represented as Reduced Ordered

Binary Decision Diagrams (ROBDDs) to model the physical circuit.

This approach allows verification of formal security definitions

such as 𝑡-Non-Interference (NI), 𝑡-Strong Non-Interference (SNI),

or 𝑡-Probe-Isolating Non-Inference (PINI), as well as uniformity.

While the method offers greater accuracy, it comes at the cost of

reduced scalability. As a result, larger designs drastically increase

verification times.

Prover [50] is a recently developed method and builds upon

Silver by reducing the size of observation and secret sets. It also

reorders ROBDDs to increase performance while maintaining ac-

curacy. This method can verify standard probing security, glitch-

extended probing security, and uniformity.

As CocoAlma is error-prone and prone to false positives, we

generally find it unsuitable for verification of NN accelerators. For

example, it falsely classifies the arithmetically masked domain-

orientedmultiply gadget in Figure 11 as insecure. In contrast, Silver

and Prover correctly verify this gadget, indicating that CocoAlma

is unsuitable for this task.

Both Silver and Prover face challenges due to a lack of aware-

ness of state and control signals. Additionally, their graph-based

models cannot process combinatorial loops. These limitations are

particularly problematic when verifying Multiply and Accumulate

(MAC) Processing Elements (PEs), which are commonly found in

accelerators for fully connected and convolution layers. However,

we manage to overcome these limitations by unrolling MAC-PE

accelerators into side-channel equivalent feed-forward circuits for

verification. Furthermore, Silver scales exponentially with the num-

ber of probing positions [49] and is only usable for small gadgets.

In the verification of a complete NN accelerator, it may be nec-

essary to replace the MAC-PEs with its multiply gadget in order

to avoid combinatorial loops, which cannot be processed with the

verification tools. This replacement is equivalent to adding a sin-

gle MAC operation and ensures the feed-forward characteristic

of the accelerator. Additionally, adding multiple random uniform

numbers in the residue-class ring Z32 is equivalent, with regard to

side-channel leakage, to adding a single random uniform number.

Furthermore, while individual gadgets or layers might be proven

to be side-channel secure, it is important to ensure that no leakage

occurs when using layers with different masking schemes, such as

arithmetic and boolean masking. We choose Prover for verification

of multiple layers, due to its improved performance over SILVER.

7 Conclusion
The development of efficient, safe, and secure machine learning sys-

tems is increasingly reliant on tight hardware-software co-design.

As AI continues to shape critical applications across industry and

society, the need for customizable, trustworthy, and resource-aware

ML accelerators becomes more urgent—especially in edge and em-

bedded environments.

This paper has presented a comprehensive perspective on open-

source HW-SW co-design for ML systems. We highlighted the inef-

ficiencies of current design flows due to fragmented toolchains and

the lack of integration between ML training frameworks and EDA

tools. In response, we introduced amodular co-design approach that

spans multiple levels of abstraction, enabling application-driven

customization of AI hardware.

We explored four key areas: (1) the development of AI accel-

erators with integrated safety extensions using open hardware;

(2) design-space exploration of hardware and memory architec-

tures with DRAM subsystem awareness; (3) compiler-accelerator

co-design for optimizing ML execution pipelines; and (4) robust

and secure ML hardware systems that incorporate fault detection,

OOD detection, and protection against model theft.

Our results demonstrate that safety and security are no longer

optional add-ons but must be integral to the co-design process

from the earliest stages. By embedding uncertainty-aware inference,

error correction mechanisms, and security features like obfuscation

and logic locking into the co-design flow, we provide a foundation

for building dependable AI systems.

We argue that open-source ecosystems are essential to realize

this vision. They democratize access to design tools, facilitate re-

producibility, and accelerate innovation across research, education,

and industry. The methods and frameworks described in this work

are stepping stones toward such an ecosystem. In the long term, our

goal is to make hardware-software co-design of efficient, safe, and

secure ML systems accessible to a broad community of designers,

from academic researchers to industrial practitioners, in order to

foster the next generation of trustworthy and adaptive AI platforms.

Acknowledgments
This work is funded by the German Federal Ministry of Research,

Technology and Space (BMFTR) in the framework of design tools for

sovereign chip development with open source (DE:Sign DI-EDAI,

grant numbers 16ME0990K, 16ME0991, 16ME0992, and 16ME0993).

CODES+ISSS ’25, October, 2025, Taipei, TW Tahoori et al.

References
[1] S. A. Singh and K. A. Desai. 2023. Automated surface defect detection framework

using machine vision and convolutional neural networks. Journal of Intelligent
Manufacturing, 34, 4, 1995–2011. doi:10.1007/s10845-021-01878-w.

[2] R. Begg, J. Kamruzzaman, and R. Sarker. 2006. Neural networks in healthcare:
Potential and challenges. Igi Global. doi:10.4018/978-1-59140-848-2.

[3] N. Maslej et al. 2025. Artificial intelligence index report 2025. The Computing
Research Repository (CoRR). arXiv: 2504.07139 [cs.AI].

[4] Y. Chen et al. 2020. A survey of accelerator architectures for deep neural networks.

Engineering, 6, 3, 264–274. doi:10.1016/j.eng.2020.01.007.
[5] X. Xu et al. 2018. Scaling for edge inference of deep neural networks. Nature

Electronics, 1, 4, 216–222. doi:10.1038/s41928-018-0059-3.
[6] International Business Strategies. 2024. Why AI will propel Semiconductor Market

to $1 Trillion and Achieve 1.0nm by 2030. Tech. rep. SEMI, (Nov. 2024). https://w

ww.semi.org/sites/semi.org/files/2024-11/MS-SEMIWEB11.2024.pdf.

[7] Epoch AI. 2024. Data on notable AI models. (June 2024). Retrieved 07/20/2025

from https://epoch.ai/data/notable-ai-models.

[8] K. Vittal. 2024. Advanced SoC verification enables a new era of AI chips. https:

//www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-ne

w-era-ai-chips.html.

[9] F. Hannig and J. Teich. 2021. Open source hardware. IEEE Computer, 54, 10, 111–
115. doi:10.1109/MC.2021.3099046.

[10] 2024. ISO/PAS 8800:2024 Road vehicles — Safety and artificial intelligence. Stan-

dard. International Organization for Standardization, CH.

[11] P. Kanerva. 2009. Hyperdimensional computing: An introduction to computing

in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1. doi:10.1007/s12559-009-9009-8.

[12] M. S. Roodsari, J. Krautter, V. Meyers, and M. Tahoori. 2024. E
3
HDC: Energy

efficient encoding for hyper-dimensional computing on edge devices. In Proc. of
the 34th Int’l Conference on on Field-Programmable Logic and Applications (FPL).
IEEE, 274–280. doi:10.1109/FPL64840.2024.00045.

[13] M. S. Roodsari, J. Krautter, and M. Tahoori. 2024. OTFGEncoder-HDC: Hardware-

efficient encoding techniques for hyperdimensional computing. In Proc. of the
Conference on Design, Automation and Test in Europe (DATE). IEEE, 1–2.

[14] M. S. Roodsari, V. Meyers, and M. Tahoori. 2025. CED-HDC: Lightweight concur-

rent error detection for reliable hyperdimensional computing. In Proc. of the 43th
IEEE VLSI Test Symposium (VTS). IEEE, 1–7. doi:10.1109/VTS65138.2025.11022900.

[15] M. S. Roodsari, S. Hemaram, and M. Tahoori. 2025. Non-uniform error correc-

tion for hyperdimensional computing edge accelerators. In Proc. of the 30th IEEE
European Test Symposium (ETS). IEEE, 1–6. doi:10.1109/ETS63895.2025.11049622.

[16] M. S. Roodsari, V. Meyers, and M. Tahoori. 2025. Lightweight concurrent out-of-

distribution detection in hyperdimensional computing hardware. In Proc. of the
31th IEEE Int’l Symposium on On-Line Testing and Robust System Design. IEEE.

[17] F. Mireshghallah, M. Bakhshalipour, M. Sadrosadati, and H. Sarbazi-Azad. 2019.

Energy-efficient permanent fault tolerance in hard real-time systems. IEEE Trans.
on Computers, 68, 10, 1539–1545. doi:10.1109/TC.2019.2912164.

[18] J. Höfer et al. BayNNgine: Hardware-enabled bayesian neural network support for

dependable AI inference. To appear in Proc. of the IEEE 38th Int’l System-on-Chip

Conference (SOCC), (2025).

[19] F. Lesniak, A. Gutermann, T. Harbaum, and J. Becker. 2024. Enhanced accelerator

design for efficient CNN processing with improved row-stationary dataflow. In

Proc. of the Great Lakes Symposium on VLSI. ACM. doi:10.1145/3649476.3658737.

[20] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits, 52, 1, 127–138. doi:10.1109/JSSC.2016.2616357.

[21] M. Damschen, L. Bauer, and J. Henkel. 2017. CoRQ: Enabling runtime reconfig-

uration under WCET guarantees for real-time systems. IEEE Embedded Systems
Letters, 9, 3, 77–80.

[22] L. Kadel, H. Nassar, L. Bauer, and J. Henkel. 2025. Secure runtime reconfiguration

of FPGAs via lightweight authenticated encryption for IoT systems. In Proc. of the
10th Int’l Conference on Smart and Sustainable Technologies (SpliTech).

[23] K. Balaskas et al. 2024. Heterogeneous accelerator design formulti-DNNworkloads

via heuristic optimization. IEEE Embedded Systems Letters, 16, 4, 317–320.
[24] H. Khdr, M. Bakr Sikal, B. Dietrich, and J. Henkel. 2025. Towards the optimization

of hardware efficiency through machine learning. In Proc. of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI).

[25] L. Steiner et al. 2020. DRAMSys4.0: A fast and cycle-accurate SystemC/TLM-based

DRAM simulator. In Proc. of the Int’l Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). Springer, 110–126.

[26] M. Sabih, B. Sesli, F. Hannig, and J. Teich. 2024. Accelerating DNNs using weight

clustering on RISC-V custom functional units. In Proc. of the Conference on Design,
Automation and Test in Europe. IEEE. doi:10.23919/DATE58400.2024.10546844.

[27] M. Sabih et al. 2024. Hardware/software co-design of RISC-V extensions for acceler-

ating sparse DNNs on FPGAs. In Proc. of the Int’l Conference on Field Programmable
Technology (FPT). IEEE.

[28] P. van Kempen, M. Salmen, D. Mueller-Gritschneder, and U. Schlichtmann. 2024.

Seal5: Semi-automated LLVM support for RISC-V ISA extensions including au-

tovectorization. In Proc. of the 27th Euromicro Conference on Digital System Design
(DSD). IEEE, 335–342. doi:10.1109/DSD64264.2024.00052.

[29] T. Chen et al. 2018. TVM: An automated end-to-end optimizing compiler for deep

learning. In Proc. of 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, 578–594. https://www.usenix.org/co

nference/osdi18/presentation/chen.

[30] R. David et al. 2021. TensorFlow Lite Micro: Embedded machine learning for

TinyML systems. In Proc. of the Conference on Machine Learning and Systems
(MLSys). mlsys.org, 800–811.

[31] J. Shao et al. 2022. Tensor program optimization with probabilistic programs.

In Proc. of the Int’l Conference on Neural Information Processing Systems (NIPS).
Curran Associates, Inc., 35783–35796.

[32] G. Dong et al. 2019. Floating-point multiplication timing attack on deep neural

network. In Proc. of the IEEE Int’l Conference on Smart Internet of Things (SmartIoT).
IEEE, 155–161. doi:10.1109/SmartIoT.2019.00032.

[33] C. Gongye, Y. Fei, and T. Wahl. 2020. Reverse-engineering deep neural networks

using floating-point timing side-channels. In Proc. of the 57th ACM/IEEE Design
Automation Conference (DAC), 1–6. doi:10.1109/18072.2020.9218707.

[34] Q. Xu, M. Tanvir Arafin, and G. Qu. 2021. Security of neural networks from

hardware perspective: A survey and beyond. In Proc. of the 26th Asia and South
Pacific Design Automation Conference. ACM. doi:10.1145/3394885.3431639.

[35] M. S. Ali et al. 2025. Security risks in AI accelerators: Detecting RTL vulnerabil-

ities to model theft with formal verification. In Proc. of the IEEE European Test
Symposium (ETS), 1–6. doi:10.1109/ETS63895.2025.11049644.

[36] P. P. Bernardo et al. 2020. Ultratrail: A configurable ultralow-power TC-ResNet AI

accelerator for efficient keyword spotting. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 39, 11. doi:10.1109/TCAD.2020.3012320.

[37] M. Blott et al. 2018. FINN-R: An end-to-end deep-learning framework for fast ex-

ploration of quantized neural networks. ACM Trans. on Reconfigurable Technology
and Systems, 11, 3, 16:1–16:23. doi:10.1145/3242897.

[38] FINN Team at AMD Research. 2016. FINN: dataflow compiler for QNN inference

on FPGAs. Retrieved 07/20/2025 from https://xilinx.github.io/finn/.

[39] S. Teerapittayanon, B. McDanel, and H. T. Kung. 2016. BranchyNet: Fast inference

via early exiting from deep neural networks. In Proc. of the 23rd Int’l Conference
on Pattern Recognition (ICPR). IEEE, 2464–2469. doi:10.1109/ICPR.2016.7900006.

[40] L. Batina, S. Bhasin, D. Jap, and S. Picek. 2019. CSI NN: Reverse engineering of

neural network architectures through electromagnetic side channel. In Proc. of the
28th USENIX Security Symposium (USENIX Security). USENIX Association, 515–532.

https://www.usenix.org/conference/usenixsecurity19/presentation/batina.

[41] A. Dubey, R. Cammarota, and A. Aysu. 2020. MaskedNet: The first hardware

inference engine aiming power side-channel protection. In Proc. of the IEEE Int’l
Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 197–208. doi:1
0.1109/HOST45689.2020.9300276.

[42] K. Yoshida et al. 2020. Model reverse-engineering attack using correlation power

analysis against systolic array based neural network accelerator. In Proc. of the
IEEE Int’l Symposium on Circuits and Systems (ISCAS). IEEE, 1–5. doi:10 .1109
/ISCAS45731.2020.9180580.

[43] M. Brosch, M. Probst, and G. Sigl. 2022. Counteract side-channel analysis of neural

networks by shuffling. In Proc. of the Conference on Design, Automation and Test
in Europe (DATE), 1305–1310. doi:10.23919/DATE54114.2022.9774710.

[44] M. Brosch, M. Probst, M. Glaser, and G. Sigl. 2024. A masked hardware accelerator

for feed-forward neural networks with fixed-point arithmetic. IEEE Trans. on Very
Large Scale Integration Systems, 32, 2, 231–244. doi:10.1109/TVLSI.2023.3340553.

[45] A. Dubey, R. Cammarota, and A. Aysu. 2020. BoMaNet: Boolean masking of an

entire neural network. In Proc. of the 39th Int’l Conference on Computer-Aided
Design (ICCAD). ACM, 51:1–51:9. doi:10.1145/3400302.3415649.

[46] S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan. 2023. A threshold

implementation-based neural network accelerator with power and electromag-

netic side-channel countermeasures. IEEE Journal of Solid-State Circuits, 58, 1,
141–154. doi:10.1109/JSSC.2022.3215670.

[47] A. Dubey et al. 2023. Hardware-software co-design for side-channel protected

neural network inference. In Proc. of the IEEE Int’l Symposium onHardware Oriented
Security and Trust (HOST). IEEE, 155–166. doi:10.1109/HOST55118.2023.10133716.

[48] V. Hadžić and R. Bloem. 2021. COCOALMA: A versatile masking verifier. In Proc.
of the Conference on Formal Methods in Computer Aided Design (FMCAD), 14–23.
doi:10.34727/2021/isbn.978-3-85448-046-4_9.

[49] D. Knichel, P. Sasdrich, and A. Moradi. 2020. SILVER – Statistical independence

and leakage verification. In Proc. of the 26th Int’l Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT). Springer, 787–
816. doi:10.1007/978-3-030-64837-4_26.

[50] F. Zhou, H. Chen, and L. Fan. 2024. Prover – Toward more efficient formal verifi-

cation of masking in probing model. Cryptology ePrint Archive, Paper 2024/1202.

(2024). https://eprint.iacr.org/2024/1202.

https://doi.org/10.1007/s10845-021-01878-w
https://doi.org/10.4018/978-1-59140-848-2
https://arxiv.org/abs/2504.07139
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1038/s41928-018-0059-3
https://www.semi.org/sites/semi.org/files/2024-11/MS-SEMIWEB11.2024.pdf
https://www.semi.org/sites/semi.org/files/2024-11/MS-SEMIWEB11.2024.pdf
https://epoch.ai/data/notable-ai-models
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://doi.org/10.1109/MC.2021.3099046
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1109/FPL64840.2024.00045
https://doi.org/10.1109/VTS65138.2025.11022900
https://doi.org/10.1109/ETS63895.2025.11049622
https://doi.org/10.1109/TC.2019.2912164
https://doi.org/10.1145/3649476.3658737
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.23919/DATE58400.2024.10546844
https://doi.org/10.1109/DSD64264.2024.00052
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/SmartIoT.2019.00032
https://doi.org/10.1109/18072.2020.9218707
https://doi.org/10.1145/3394885.3431639
https://doi.org/10.1109/ETS63895.2025.11049644
https://doi.org/10.1109/TCAD.2020.3012320
https://doi.org/10.1145/3242897
https://xilinx.github.io/finn/
https://doi.org/10.1109/ICPR.2016.7900006
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1109/HOST45689.2020.9300276
https://doi.org/10.1109/HOST45689.2020.9300276
https://doi.org/10.1109/ISCAS45731.2020.9180580
https://doi.org/10.1109/ISCAS45731.2020.9180580
https://doi.org/10.23919/DATE54114.2022.9774710
https://doi.org/10.1109/TVLSI.2023.3340553
https://doi.org/10.1145/3400302.3415649
https://doi.org/10.1109/JSSC.2022.3215670
https://doi.org/10.1109/HOST55118.2023.10133716
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.1007/978-3-030-64837-4_26
https://eprint.iacr.org/2024/1202

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 The Case for Hardware-Software Co-Design
	2.2 Challenges in Today's Ecosystem
	2.3 Towards an Open-Source Co-Design Ecosystem

	3 Accelerator IP Development and Safety Extensions in Open-Source AI Hardware
	4 Design Space Exploration of Hardware Architectures and DRAM Subsystems for Optimized AI Systems
	5 Co-Design of AI Applications: ML Compiler and Accelerator Units
	6 Security of Machine Learning Systems
	7 Conclusion
	Acknowledgments

