Check for
updates

B DIGITAL —
AL @ LIBRARY Computing Machinery @m °pen>
5 Latest updates: https://dl.acm.org/doi/10.1145/3742873.3756928

RESEARCH-ARTICLE
Special Sessions - Hardware-Software Co-Design for Machine Learning
Systems Made Open-Source

MEHDI BARADARAN TAHOORI, Karlsruhe Institute of Technology, Karlsruhe, Baden-
Wurttemberg, Germany

VINCENT MEYERS, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg,
Germany

MAHBOOBE SADEGHIPOUR ROODSARI, Karlsruhe Institute of Technology, Karlsruhe,
Baden-Wurttemberg, Germany

HUASHUANGYANG XU, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg,
Germany

JURGEN BECKER, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg,
Germany

TANJA HARBAUM, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg,
Germany

View all

Open Access Support provided by:
University of Erlangen-Nuremberg
University of Kaiserslautern-Landau
Technical University of Munich

Karlsruhe Institute of Technology

i PDF Download
j,.g 3742873.3756928.pdf
< 15 January 2026

Total Citations: 0
Total Downloads: 78

Published: 28 September 2025
Citation in BibTeX format

CODES+ISSS '25: International
Conference on Hardware/Software
Codesign and System Synthesis
September 28 - October 3, 2025
Taipei, Taiwan

Conference Sponsors:
SIGDA

SIGMICRO

SIGBED

CODES+ISSS '25: Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis (September 2025)
https://doi.org/10.1145/3742873.3756928
ISBN: 9798400719929

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3742873.3756928
https://dl.acm.org/doi/10.1145/3742873.3756928
https://dl.acm.org/doi/10.1145/contrib-81758690757
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661532115
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661772731
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99661774625
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-81387594217
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/contrib-99660778156
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/doi/10.1145/3742873.3756928
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60000765
https://dl.acm.org/doi/10.1145/institution-60280671
https://dl.acm.org/doi/10.1145/institution-60019722
https://dl.acm.org/doi/10.1145/institution-60102538
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3742873.3756928&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/esweek
https://dl.acm.org/conference/esweek
https://dl.acm.org/conference/esweek
https://dl.acm.org/sig/sigda
https://dl.acm.org/sig/sigmicro
https://dl.acm.org/sig/sigbed
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3742873.3756928&domain=pdf&date_stamp=2025-12-09

Special Session — Hardware-Software Co-Design for Machine
Learning Systems Made Open-Source

Mehdi Tahoori'*, Vincent Meyers!, Mahboobe Sadeghipour Roodsari!, Huashuangyang Xu?,
Juergen Becker!, Tanja Harbaum!, Felix Frombach!, Julian Hoefer!, Georgios Sotiropoulos’,
Jorg Henkel!, Zeynep Demirdag!, Heba Khdr!, Hassan Nassar!, Ulf Schlichtmann?, Johannes Geier?,
Philipp van Kempen?, Georg Sigl®°, Stefan Koegler?, Matthias Probst?, Jiirgen Teich?,
Frank Hannig3, Muhammad Sabih3, Batuhan Sesli3, Norbert Wehn*, Lukas Steiner?,
Wolfgang Kunz*, Mohamed Shelkamy Ali*
mehdi.tahoori@kit.edu
!Karlsruhe Institute of Technology — *Technical University of Munich —
3Friedrich-Alexander-Universitit Erlangen-Niirnberg — *University of Kaiserslautern-Landau —
SFraunhofer Institute for Applied and Integrated Security (AISEC)

Germany

Abstract

Chip technologies are crucial for the digital transformation of indus-
try and society. Machine Learning (ML) and Artificial Intelligence
(AI) are increasingly shaping both daily life and industrial appli-
cations, with Al hardware playing a vital role in enabling efficient
and scalable ML deployment. However, significant challenges re-
main in bridging the gap between ML algorithm development and
hardware implementation, particularly for edge ML applications
where efficiency, power constraints, and adaptability are critical.
In such resource-constrained environments, hardware-software
co-design becomes essential to achieve the necessary trade-offs be-
tween performance, energy efficiency, and system responsiveness.
One of the key bottlenecks in ML hardware development is the lack
of seamless integration between ML toolchains and electronic de-
sign automation (EDA) tools for hardware synthesis and mapping.
Current solutions often require extensive manual optimization and
costly proprietary software, limiting accessibility and innovation.
Open-source tools can play a transformative role in democratizing
ML hardware design, fostering collaboration, and addressing the
growing shortage of skilled professionals. This paper covers key
aspects of hardware-software co-design for ML systems, such as
ML algorithms, hardware design, compiler technologies and system
security, with a focus on open-source solutions. We highlight the
critical need for open-source toolchains that connect ML model de-
velopment with hardware synthesis and optimization and present
solutions for custom hardware, as well as FPGA accelerators.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CODES+ISSS 25, September 28-October 3, 2025, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1992-9/2025/09
https://doi.org/10.1145/3742873.3756928

CCS Concepts

« Hardware — Hardware-software codesign; Safety critical
systems; « Security and privacy — Hardware attacks and
countermeasures.

Keywords

Hardware-software co-design, Machine learning

ACM Reference Format:

Mehdi Tahoori, Vincent Meyers, Mahboobe Sadeghipour Roodsari, Huas-
huangyang Xu, Juergen Becker, Tanja Harbaum, Felix Frombach, Julian Hoe-
fer, Georgios Sotiropoulos, Jérg Henkel, Zeynep Demirdag, Heba Khdr, Has-
san Nassar, Ulf Schlichtmann, Johannes Geier, Philipp van Kempen, Georg
Sigl, Stefan Koegler, Matthias Probst, Jiirgen Teich, Frank Hannig, Muham-
mad Sabih, Batuhan Sesli, Norbert Wehn, Lukas Steiner, Wolfgang Kunz,
Mohamed Shelkamy Ali . 2025. Special Session — Hardware-Software Co-
Design for Machine Learning Systems Made Open-Source. In Proceedings of
Special Session — Hardware-Software Co-Design for Machine Learning Systems
Made Open-Source (CODES+ISSS ’25). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3742873.3756928

1 Introduction

The ongoing digital transformation of society and industry is closely
linked to the rapid introduction and use of ML. From smart sen-
sors in industrial automation [1] to personal health monitoring
devices [2], Al systems are becoming ubiquitous across all sectors.
In 2023 alone, the U.S. Food and Drug Administration (FDA) ap-
proved 223 Al-enabled medical devices, up from just six in 2015,
demonstrating the scale of Al use in safety-critical applications [3].
This explosion in adoption is driven by both algorithmic progress
and unprecedented investment: in 2024, global private Al invest-
ment reached USD 252.3 billion, a 26% increase on the previous
year [3]. In parallel, regulatory frameworks such as the European
Union’s Al Act are shaping standards for trustworthy and safe
deployment of Al technologies, especially in high-risk applications.

As the complexity and size of these systems increase, so does
their need for efficient hardware execution. Specialized Al hard-
ware [4] has become essential when it comes to ensuring the energy

*Corresponding author

https://doi.org/10.1145/3742873.3756928
https://doi.org/10.1145/3742873.3756928

CODES+ISSS ’25, October, 2025, Taipei, TW

efficiency, real-time responsiveness, and cost-effectiveness required
to run ML workloads in both data centers and resource-constrained
environments [5], such as mobile and edge devices. While cloud
infrastructure continues to play a major role in Al processing, the
market share and deployment of edge Al systems is accelerating
rapidly due to latency, privacy, and energy constraints. This trend
complements the overall surge in demand for Al hardware compo-
nents, with recent forecasts projecting that Al will account for over
70% of the global semiconductor market by 2030 [6].

However, the development of ML systems remains highly frag-
mented. On the one hand, ML algorithms are developed with high-
level frameworks such as PyTorch or TensorFlow, which focus on
the expressiveness of the model and training performance. On the
other hand, the hardware design and optimization cycle, which is
usually controlled by EDA (Electronic Design Automation) tools, is
governed by constraints such as latency, power consumption and
area and remains largely decoupled from the algorithm develop-
ment process. This decoupling leads to inefficiencies in mapping
ML workloads to hardware, resulting in oversized designs or un-
met application-level requirements, especially for embedded or
real-time use cases.

This paper outlines the main technical challenges and opportuni-
ties in enabling HW-SW co-design for Al systems using open-source
frameworks. Our goal is to develop methods and tools that enable
joint optimization of ML models and hardware architectures across
multiple levels of abstraction. Specifically, we aim to:

e Support application-driven customization of accelerators, includ-
ing error detection mechanisms and confidence-aware inference.

o Enable design space exploration that includes memory subsys-
tem tuning and architectural specialization.

e Leverage open instruction set architectures and modular IP
blocks for configurability and safety extensions.

o Integrate differentiable cost models, ML compiler transforma-
tions, and hardware synthesis into a unified co-design stack.

o Incorporate security mechanisms to protect against model theft,
fault injection, and side-channel leakage through hard-ware-
aware obfuscation, access control, and real-time monitoring.

o Develop toolchains for early-stage simulation and synthesis of se-
cure and robust ML accelerators tailored to deployment contexts
such as edge, cloud, or safety-critical environments.

This paper is organized as follows: Section 2 outlines the motiva-
tion and challenges of HW-SW co-design for modern Al especially
in edge and embedded systems. Section 3 presents methods for
developing open-source Al accelerators with built-in security en-
hancements. Section 4 explores the hardware design space and
DRAM subsystem optimization for ML workloads. Section 5 fo-
cuses on the co-design of compilers and accelerators for efficient
Al execution. Section 6 addresses the security of ML systems, in-
cluding fault detection and robustness. Finally, Section 7 concludes
the paper with a summary and outlook on open-source HW-SW
co-design for AL

2 Motivation and Background

This section outlines the technological trends, challenges, and
emerging opportunities that motivate a shift toward integrated
hardware-software co-design for Al systems.

Tahoori et al.

10”71 @ Model Training Compute 108
-~ Moore's law (2x/2years) GPT-4
Deep Learning Era R
10 Model Power Draw AlphaGo Zero g

102

10

®

Training Compute (FLOP, log scale)
N
Training Power Draw (W, log scale)

1982 1988 1994 2000 2006 2012 2018 2024
Publication Date

Figure 1: Evolution of training compute (FLOPs) for notable
Al models over time [7]. Points represent published models,
with a distinct inflection point around 2010 marking the
onset of the “Deep Learning Era” (shaded in blue). Dashed
lines illustrate compute growth trends before and after 2010,
computed from the earliest and latest models in each period.

2.1 The Case for Hardware-Software Co-Design

Modern Al systems increasingly demand custom-tailored hardware
solutions to meet their soaring computational requirements and
energy constraints. Since the onset of the deep learning era around
2010, the training cost (in FLOPs) of frontier models has surged by
several orders of magnitude (see Figure 1), far outpacing Moore’s
law and reflecting the exponential growth in model scale and com-
plexity. At the same time, as displayed in Figure 2, the economic
footprint of Al hardware is expanding rapidly: the Al share of the
global semiconductor market is expected to rise from under 10% in
2020 to over 70% by 2030.

These trends underscore the importance of tightly integrating
hardware and software design, ensuring that ML models and their
target hardware are optimized together rather than separately. This
need is even more critical in edge and embedded systems, where
the available compute power, energy budget, and physical form
factor impose hard constraints on Al deployment. Mapping large Al
models to such constrained hardware targets remains a major chal-
lenge. To meet application-level requirements without exceeding
hardware capabilities, co-design must begin early by embedding
hardware constraints directly into model training, architectural
exploration, and optimization workflows.

For edge and embedded Al systems, the co-design must explic-
itly target performance, power consumption, area and cost (PPAC)
while meeting accuracy requirements (PPAAC).

Cross-layer modeling: Achieving effective PPAAC co-design
requires models that bridge both software and hardware domains.
Software-level optimizations must reflect hardware constraints
such as available area, latency, and power consumption. Contrarily,
hardware models must accurately capture how these constraints
impact the accuracy and performance of Al models.

Accuracy under constraints: Deploying large AI models on
constrained edge hardware often involves aggressive quantization,
pruning, and compression techniques to meet tight latency and
energy requirements. Maintaining accuracy under these limita-
tions demands hardware-aware training and optimization methods.

Special Session — Hardware-Software Co-Design for Machine Learning Systems Made Open-Source

1400 Al vs Non-Al Semiconductor Market (2020-2030)

3 Non-Al $1296.98
1200 $1146.08
$1013.2B

. Al
1000
$896.98
800 $797.68
$712.48
$635.98
600 $547.18 $564.38
$446.78
400
200

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Non-Al and Al Semiconductor Market by Product

o

Figure 2: Projected growth of the AI vs. Non-Al semiconduc-
tor market from 2020 to 2030 [6]. The increasing share of
Al-specific semiconductor products, which grows from 9.7%
in 2020 to a projected 70.9% by 2030, based on forecasts.

Specifically, closed-loop approaches are needed where model ac-
curacy is continuously evaluated against realistic hardware con-
straints during the training process.

Hardware-aware software abstractions: Support for fine-
grained optimizations, such as mixed-precision arithmetic and be-
spoke compute structures, must be exposed through software ab-
stractions that enable dynamic control and customization.

Reliability and security: Co-design must embed functional
safety, reliability, and security into the design process from the
outset. These aspects cannot be retrofitted but must be integrated
within the early phases of hardware-software co-optimization.

Trustworthy deployment: Incorporating these dependability
requirements early ensures that edge and embedded Al systems are
not only efficient but also reliable and secure, crucial for deployment
in safety-critical or mission-critical environments.

2.2 Challenges in Today’s Ecosystem

Despite the growing interest in HW-SW co-design for Al, several
systemic barriers remain. ML developers are separated from hard-
ware designers by incompatible toolchains, proprietary interfaces
and divergent optimization goals. Most current frameworks re-
quire manual intervention to map quantized, pruned, or sparsely
structured models into hardware. Moreover, there is no unified
abstraction that can translate ML-centric metrics (e.g., accuracy,
latency under noise, robustness) into hardware constraints in a
differentiable manner.

Unlike conventional applications, Al architectures can be refined
or learned during deployment (e.g., via Neural Architecture Search),
and system-level requirements can change as data sets or tasks
change. This requires a paradigm shift: from late optimization to
a holistic, early co-design that encompasses the algorithm, archi-
tecture, and compiler levels. Differentiable models that capture
hardware costs (e.g., area, energy, memory) must become part of
the training loop itself. Furthermore, the size and complexity of
AT accelerators requires modern approaches for efficient hardware
verification [8]. Likewise, security is often neglected in current
design processes. Protection against threats such as model theft,
fault injection or side-channel leakage is rarely considered during

CODES+ISSS ’25, October, 2025, Taipei, TW

training or synthesis, but treated as an afterthought. This frag-
mented view hinders the development of trustworthy Al systems,
especially for use in adversarial or mission-critical environments.
Similarly, safety aspects such as fault detection, fault tolerance or
safe evasion mechanisms are not systematically integrated into
today’s ML and EDA toolchains. Without any co-design support
for security-relevant components, developers are faced with a high
manual effort and do not have the tools to make principled trade-
offs between performance, robustness, and trustworthiness.

2.3 Towards an Open-Source Co-Design
Ecosystem

Open-source ecosystems can play a transformative role in overcom-
ing these challenges. Open-source tools serve as a common refer-
ence platform, enabling reproducibility, crowd-sourced innovation,
and continuous improvements from both academia and industry.
These platforms can be easily customized to meet industrial use-
cases, facilitating a wider adoption and specializeddeployments.
Traditional closed-source EDA tools are typically application-
agnostic, limiting their effectiveness for Al-specific hardware opti-
mization. In contrast, open-source toolchains enable transparent
exchange of detailed hardware information and accurate abstrac-
tion models, facilitating hardware-aware software optimizations
like quantization-aware training and mixed-precision inference.
A stable open-source ecosystem is particularly important for
sovereign chip design initiatives, educational accessibility, and in-
dustrial innovation [9]. With the environmental impact and cost
of AI decreasing by 40% and 30% annually respectively [3], the
bottleneck is shifting from technical capabilities to accessibility and
openness. Open-source hardware-software co-design toolchains are
poised to become essential for driving this next wave of innovation.

3 Accelerator IP Development and Safety
Extensions in Open-Source AI Hardware

As Al systems scale in complexity and importance, it is becoming
increasingly important to ensure reliable and efficient machine
learning on resource-constrained hardware. While traditional Neu-
ral Networks (NNs) offer promising and exciting solutions for many
relevant computational tasks, they still suffer from several short-
comings for actual applications. These shortcomings include strug-
gles with memory and performance limitations of edge devices, as
well as false predictions when confronted with unexpected situ-
ations[10]. Furthermore, the continuous scaling down of CMOS
technology leads to other issues in terms of reliability, like Single-
event upsets (SEUs). While SEUs do not cause permanent damage
to the circuit, they can still lead to erroneous system behavior.
Therefore, it is crucial to implement effective error detection and
correction mechanisms, to enable safety-critical applications under
deployment in harsh environments.

The gap between computationally demanding Al-models and
limited edge computing hardware is bridged by Hyperdimensional
Computing (HDC) [11], a brain-inspired paradigm that utilizes
high-dimensional binary vectors and bit-wise operations to enable
real-time, low-power classification. In contrast to deep learning,
HDC offers inherent noise tolerance and lightweight computation,
making it well suited for edge cases. However, its application is

CODES+ISSS ’25, October, 2025, Taipei, TW

Python software Software = Reliability extensions
S
i . S
5 N Memory ana!ysn§ .for § Fault correction
z free encoder reliability Eo
E training modules B)
S 8 Fault detection
2 'DC Configuration ©
f .g HDC accelerator M ing OOD detect
= < Efficient hardware signals
= IS Memory free ECC
M 8 [p.. n Feedback
< Pipeline architecture «—————
= signals

Figure 3: Overview of the end-to-end hardware-software co-
design framework for reliable and efficient Hyperdimen-
sional Computing. The system compiles PyTorch-based HDC
models into FPGA-ready bitstreams and integrates memory-
free encoders, pipeline architectures, and software modules
for fault detection, error correction, and out-of-distribution
(OOD) detection.

limited by memory-intensive encoding/classification phases and
susceptibility to hardware errors during voltage scaling as an edge
device. In the following, we present an approach that offers a mod-
ular solution to the aforementioned limitations which hinder the
widerspread deployment of safety-critical HDC-systems.

An overview of this part of the work can be found in Figure 3.
First, we addressed the memory by redesigning the HDC parameter
generator so that the parameters no longer need to be stored, but
are generated dynamically using cyclic logic. This approach reduces
memory requirements without compromising accuracy. Our RTL-
based framework supports pipeline parallelism, dynamic memory
generation and sparse optimization, achieving up to 4x higher
dimensionality on the same FPGA. It compiles PyTorch-trained
models into ready-to-use bitstreams for full HDC implementations.

Our open-source ecosystem includes RCE-HDC [12, 13] for
memory-free encoding, CED-HDC[14] for real-time error detection,
and NUECC-HDC [15] for selective error correction and last but not
least, the lightweight out-of-distrubution detector [16]. Together,
they enable reliable, fault-tolerant, and energy-efficient edge intel-
ligence. Our work lays the foundation for utilization of HDC in
safety-critical edge applications while maintaining a tight power
budget. Ongoing research is exploring memory-less ECC and adap-
tive protection strategies that bring HDC closer to practical, scalable
and robust Al at the edge of the network.

Beyond specific techniques like HDC, we aim to provide fur-
ther solutions to reduce the demand for hardware resources for
safety-critical systems in a more generalizable approach, aiming
to foster collaboration with an open-source solution. In the state
of the art, Triple Modular Redundancy (TMR) remains a widely
used technique to address the aforementioned issue of SEUs. In
this approach, three identical instances of a circuit operate in paral-
lel, and their outputs are compared. Although TMR offers robust
fault tolerance, it comes with significant area and power overhead,
which is problematic in scenarios where fault rates are low but the
application still requires a certain safety level [17]. The drive for
increased productivity by designers demands advanced tools and
methodologies that enable the development of hardware systems

Tahoori et al.

00
0555552555555555

'~ Voting &
Uncertainty

P T

I Pre- I Post-
Al Pre AT Model Al Post
processing processing
BayNNgine ﬁ}:
L AT System

Figure 4: Al System with architectural redundancy patterns
as recommended by ISO 8800 [10]. Integrating the BayNNgine
allows to efficiently perform approximations of Bayesian
Neural Networks (BayNNs) as described in [18].

that meet the fault tolerance requirements of their application en-
vironment while minimizing unnecessary redundancy. The safety
level of a system can be measured by its diagnostic coverage, which
describes the percentage of errors it can detect. This coverage is
generally categorized into low (60 %), medium (90 %), and high (99
%) levels [10]. For a system to reach and provide a certain diagnos-
tic coverage, different safety measures can be taken. Simple safety
mechanisms like the integration of a parity bit into the data, detect
only single-bit errors, but are easy to implement. More complex
methods yield higher coverage but increase implementation costs
and hardware demands. The choice of the appropriate and neces-
sary safety mechanism is a trade-off between hardware efficiency,
desired level of safety, and system robustness.

To simplify and enable the development of hardware for safety-
critical systems, this work enhances RISC-V-based AI processor
extensions and Al accelerators with appropriate safety mechanisms.
By analyzing relevant fault classes and their impact on Al work-
loads, we can provide hardware generators for configurable and
scalable safety extensions for open-source AI-IP-blocks, leverag-
ing the capabilities of modern languages like Chisel. This enables
designers to choose the safety level of a hardware module simply
by adapting a generation parameter. The resulting interchangeable
modules enable designers to easily adapt the safety of a design
at a later stage of development without compatibility issues or
additional development efforts. By targeting fundamental build-
ing blocks, the modular and scalable approach facilitates both the
development of new safe and robust systems, as well as the im-
provement of existing designs to enable new applications in safety-
critical domains. While this is a critical step, ensuring dependable
Al'model inference necessitates addressing additional challenges be-
yond hardware fault tolerance. Specifically, Al models struggle with
unexpected data, leading to false classifications in situations that
are new or less optimal in some way. For example, those affected by
detrimental environmental factors such as fog or rain [18]. Classical
Deep Neural Networks (DNNs) tend to be overconfident in their
results in these situations. BayNNs’s propose an improvement to
this problem. Due to their stochastic properties, BayNNs’s and their
approximations can estimate the uncertainty of a model’s output.
Using this information, the system can default to a safe state in
the case of high uncertainty. To enable Bayesian inference through

Special Session — Hardware-Software Co-Design for Machine Learning Systems Made Open-Source

Monte Carlo sampling, we have successfully integrated custom
Dropout hardware modules into the data path of FleXNNgine, an
open-source and reconfigurable systolic array Al accelerator, which
implements an efficient row-stationary dataflow to reduce costly
memory accesses [19]. The data flow is depicted in Fig. 4. Further
investigation concerns the integration of such safety mechanisms
into further Al accelerators to improve their robustness.

To effectively select a diagnostic coverage level for each instance
of a hardware module, it is important to understand the fault tol-
erance of the whole circuit. This also entails having a clear view
of the the critical points more likely to lead to erroneous behavior.
There exist two main methods for understanding the susceptibility
of digital circuits to faults. Physics tools allow for continuous-time
simulation of the layout’s 3D model, which has significant accuracy
but is very time-consuming. Random fault injection campaigns re-
duce the time and performance overhead since they work at higher
abstraction layers but lack accuracy when it comes to providing
information under specific environmental conditions.

Consequently, we propose a hybrid error estimation methodol-
ogy for digital logic circuits. This methodology provides designers
with accurate estimations regarding the fault tolerance of their cir-
cuit under the specific harsh conditions of their use case. Thus, they
can make informed decisions about the trade-off between suscepti-
bility to temporal upsets and efficiency, instead of using techniques
like TMR with low susceptibility but significant efficiency overhead.
At the gate level of the corresponding circuit, we utilize fault prop-
agation algorithms for fast calculations, eliminating the need for
time-consuming simulations. On the layout level, we perform fault
characterization of each gate cell through extensive simulations
to ensure accuracy. These two approaches in combination deliver
fast and accurate insights about the corresponding circuit, enabling
informed decisions in an early design phase. Combined with the
hardware module safety extensions, this approach allows for the
automation of the fault tolerant design process while also ensuring
correct functionality of the corresponding system for the target
application.

4 Design Space Exploration of Hardware
Architectures and DRAM Subsystems for
Optimized Al Systems

Deep neural networks consist of different layers with varying com-
putational and memory requirements. A single hardware configura-
tion for entire inference can not efficiently support all layers due to
this variability. FPGAs provide runtime reconfigurability, enabling
the architecture to adapt to the specific requirements for each layer
or group of layers during execution. Changing the hardware con-
figuration for each layer or group of layers leads to significant
performance improvement and better resource utilization. How-
ever, runtime reconfiguration introduces overhead with latency,
typically ranging from several milliseconds to tens of milliseconds
depending on the FPGA, configuration interface, and bitstream size.

In order to achieve performance improvements from runtime
reconfiguration, we propose grouping layers into clusters that share
a common hardware architecture. Each cluster consists of a group of
consecutive neural network layers, and a clustering scheme defines
how a neural network is divided into clusters. Finding an optimal

CODES+ISSS ’25, October, 2025, Taipei, TW

clustering scheme and a corresponding hardware configuration
for each cluster is challenging due to a vast design space. Hence,
there is a need for our Design Space Exploration (DSE) framework
that systematically explores design space and identifies the optimal
solution identifying optimal clusters. Results in Figure 5 show that
our DSE framework is able to find the optimal solution with dividing
AlexNet into two clusters. Moreover, the clusters are efficient in
utilizing the resources using only 53% of the accelerator slot sized
to fit AlexNet accelerator by a state-of-the-art solution [20].

AlexNet AlexNet
100
1,500 | @ ~
g 80
¢ g
2 1,400 | o © b= 60 | 52.68%
g e © 2 40.28%
= 1,300 | 5 40
g
20
® -
1,200 o ©] <
T T T T T 0 T T
0 1 2 3 4 o) G
Number of reconfigurations Clusters

Figure 5: Different reconfiguration points and the final speed
up of AlexNet and utilization of the hardware.

As the reconfiguration is a crucial part for our DSE, we need
an efficient reconfiguration manager to perform it as quickly as
possible. Therefore, we use CoRQ, an open-source reconfiguration
manager [21, 22]. CoRQ removes the burden of the reconfiguration
from any processing system and independently manages the recon-
figuration. If the bitstream is small enough, it can be pre-fetched
to a BRAM on chip to reduce the reconfiguration time and make it
possible to give real-time guarantees.

After optimizing the accelerator using our DSE framework and
using CoRQ to optimize the reconfiguration time, the FPGA can be
used to accelerate Multi-DNNs [23]. In such a case, we would get
different tasks to be run on the accelerators from different DNN
workloads. The tasks can be issued in a certain order but because of
different dependencies, they can be stalled till previous tasks end. To
optimize this, we use task re-ordering to execute the first available
task that has no dependencies. Figure 6 shows the results of using
task re-ordering on a Dip-forty board. Compared to a baseline where
tasks keep stalling, we achieve an average speed up of 2.1x for an
object detection DNN. Integrating smart mapping and scheduling
could enhance our DSE framework by further optimizing energy
efficiency, as thoroughly studied in non-AI workloads [24].

Our current DSE framework assumes a fixed DRAM interface,
while available FPGA platforms offer a variety of different DRAM
interfaces. They range from single DDR and LPDDR devices over
larger DIMMs up to multiple stacks of High Bandwidth Memory
(HBM). These memories differ greatly in their available bandwidth.
In addition, depending on the platform, different DRAM controller
implementations and interconnect topologies to the remaining sys-
tem are used, which can largely influence the memory access la-
tency. Overlooking all these differences hides bottlenecks after op-
timizing compute and reconfiguration. Moreover, we consider that
CoRQ prefetches small bitstreams into BRAM, but larger bitstreams

CODES+ISSS ’25, October, 2025, Taipei, TW

’ 0 0Baseline BB Re-ordering ‘

?S e»g’bssoe

SUUINY

1
0

Latency (ms)

yﬁé\yﬂémyﬁé%&ﬁé&&ﬁé6

Figure 6: Performance evaluation of object detection DNN
on a Dip-Forty board. The figure shows speedup achieved by
task reordering compared to the baseline implementation.

DRAM Controller

Channel Controller

Bank
Machines
Refresh
Manager
Data Buffers |<—)

DFI

Scheduler

PHY

Command
Multiplexer

DFI
Converter

AXI Interface

Figure 7: Architecture of parameterizable DRAM controller.

or BRAM-limited platforms rely on off-chip DRAM. In this case,
an intelligent DRAM controller is crucial to achieve real-time per-
formance. With our multi-DNN scheduler, off-chip memory faces
contention, and without a latency-prioritizing DRAM controller,
speedups diminish under heavy workloads because too many mem-
ory accesses are issued at once. To harness runtime reconfiguration
and multi-DNN acceleration fully, our DSE needs accurate per-
formance models for the DRAM subsystem to co-optimize cluster
partitions, bitstream placement, and memory patterns, ensuring
performance and timing across FPGA/DRAM combinations. There-
fore, as a next step, the DSE framework will be combined with
DRAMSys [25]. DRAMSys is an open-source DRAM simulator. Its
unique feature is a cycle-accurate DRAM protocol modelling at
the speed of an approximately-timed simulation. This allows for
both fast and accurate DSE. DRAMSys offers support for all cur-
rent DRAM standards specified by JEDEC and for various DRAM
controller architectures.

In order to deploy the optimized DRAM controller on differ-
ent FPGA platforms, RTL building blocks for a parameterizable
controller architecture as shown in Figure 7 are developed in par-
allel. Internally, the controller consists of two parts, the channel
controller and the Physical Layer (PHY). The channel controller
translates incoming read and write commands into a standard-
compliant sequence of DRAM commands. It maps system physical
addresses to DRAM addresses (address decoder), reorders requests
for improved performance (scheduler), tracks and changes the inter-
nal state of the DRAM (bank machines) and performs the required
refresh for data retention (refresh manager). The PHY first initial-
izes and calibrates the DRAM and afterwards translates the DRAM
commands into the required signal levels. While the PHY is always
implemented as hard IP on an FPGA, the channel controller can be
constructed from FPGA resources. Therefore, we develop different
version of its internal building blocks (i.e., with different policies
and for different standards) so that an optimized DRAM controller
can be assembled.

Tahoori et al.

5 Co-Design of Al Applications: ML Compiler
and Accelerator Units

Al workloads include matrix multiplications in vision transformers,
convolutions in neural networks, recurrent operations in sequence
models, and attention in large language models. Despite differences,
they share concentrated computational hotspots. Optimizing these
yields major performance and efficiency gains, motivating dedi-
cated accelerators as custom hardware or processor extensions. The
RISC-V Instruction Set Architecture (ISA) supports this via Custom
Functional Units (CFUs), user-defined modules integrated with the
core and invoked through reserved custom opcodes for efficient Al
operations.

Several previous works have proposed custom extensions to
RISC-V, aiming to deploy DNNs efficiently. Additionally, frame-
works such as CFU-Playground have been developed to streamline
the design and integration of these RISC-V CFUs. In [26], we pro-
posed extending RISC-V with CFUs to accelerate weight clustering,
while in [27], RISC-V CFUs were designed to exploit both unstruc-
tured and semi-structured sparsity for acceleration. The broader
objective is to develop a suite of CFUs and custom instructions
tailored to a wide range of ML workloads.

However, a major shortcoming is that existing compilers do not
automatically recognize these customized instructions. To address
this gap, Figure 8 illustrates a co-design flow integrating model
training, compiler stages, and hardware specialization. The DNN is
retrained to compensate for accuracy loss from weight clustering or
sparsity, with layers mapped to different CFU configurations at the
simulation level. Compiler steps handle code generation (e.g., TVM
kernels) and optimizations targeting these custom instructions,
which are then deployed on RISC-V cores with integrated CFUs.
Open-source tools are utilized at all levels.

Code RISC-V
Generation
b tight coupling
Code CFU
Optimization s

Figure 8: Proposed compiler-based ML deployment flow for
co-designed accelerators.

DNN Training

<>

Mapping
Layers to CFUs

II
II

Next, we demonstrate the utility of such an approach using the
example of a Weight Clustering Accelerator (WCA). The WCA ex-
tension, as proposed in [26], defines custom RISC-V instructions
for configuring the codebook (mapping between cluster index and
actual int8 weights), pushing packed weights, as well as updating
and reading the internal accumulator register. The accelerator sup-
ports three different cluster sizes (2, 4, and 16 elements) and can
perform 8 MAC operations per cycle.

The default approach to utilizing these instructions is to write
full ML kernels manually. This leads to huge efforts when dealing
with a large number of possible layer configurations. An automated
integration of the WCA instructions is desirable. However, a SW
compiler-level integration based on Directed Acyclic Graph (DAG)
pattern matching, such as proposed in [28], is not feasible either, as
the WCA instructions rely heavily on the processors’ architectural
state elements that cannot be modeled in the compiler. Further,

Special Session — Hardware-Software Co-Design for Machine Learning Systems Made Open-Source

the existence of side effects causes the SW compiler to skip opti-
mizing the code near the invocation of the custom instructions.
An alternative approach is to integrate the custom instructions
on a higher abstraction level, such as the TensorIR (TIR) inter-
mediate representation used by the TVM ML compiler suite [29].
Using a compiler-based ML deployment flow has further advan-
tages compared to TensorFlow Lite Micro (TFLM) [30], which relies
on hard-coded “reference” kernels:

e Less runtime and memory overhead due to interpreter-less exe-
cution.

o Generates target-optimized (and tuned) kernel code instead of
using generic unoptimized implementations.

e Enables performing transformations of the data layouts, com-
puting, and scheduling (at deployment time).

The first step to use the WCA instructions is to transpose the
layout of the weights in the model, enabling vectorization over the
common input channel axis. Since the weights are constant, this
can be precomputed and does not lead to any runtime overhead.

The TVM MetaScheduler (TVM MS) [31] provides automated
tensorization, which allows replacing some loop nests in a workload
with a call to a “micro-kernel”, i.e., a hand-optimized implemen-
tation of a matrix-multiplication or vector dot-product. This can
be achieved by writing so-called tensor intrinsics, which are com-
posed of two parts: (i) a description of the computation used for loop
pattern matching and (ii) an implementation, which is inserted in
case of a successful match. TVM further automatically rearranges
the loops (tiling and reordering) to increase the likelihood of a
successful match.

Using a micro-kernel has several advantages compared to writ-
ing a full custom kernel (including scheduling) for a given ML layer.
First, it is possible to reuse the same micro-kernel in other layers
(such as FullyConnected operations). On the other hand, we have
full control over the optimization of the innermost loop (loop un-
rolling). The micro-kernel also takes care of resetting and reading
the accumulator, as well as pushing the correct packed weights.

Since the WCA relies on clusters of values in the weight tensors,
it is also important to make the ML compiler flow aware of those
clusters.

Layers that do not conform to the constraints of the CFU ISA
extension (input channels need to be a multiple of 8) can be invali-
dated using a tuning post-process. This post-process also takes care
of detecting the clusters, compressing the weights, and configuring
the codebook, which only has to be done once per layer and there-
fore should not be done in the micro-kernel itself. TVM’s ability to
infer the clusters and codebook automatically at code-generation
time eliminates the need to manually re-pack the weights using
custom modifications of the TensorFlow Lite (TFLite) flatbuffer
used to store the model data.

Figure 9 shows the detailed runtime improvements achieved on
the dominant layers in the ResNet model. The very first convolu-
tion cannot be accelerated because of its input channel count of
3, which is not a multiple of 8 and therefore would under-utilize
the WCA, which is designed to perform 8 Multiply-Accumulates
(MAC:s) per cycle. Depending on the layer configuration (kernel
size, stride, channel count), the achieved speedups with TFLM +
WCA range from 1.9 (Layer 6) to 8.5 (Layer 9). TVM’s autotuned

CODES+ISSS ’25, October, 2025, Taipei, TW

Layer 0 e
conv(16,3,3,3) 375 |
no clustering 1.0x

Layer 1] 1.9%
conv(16,16,3,3) 1 3.0x [
16 clusters 0.7%

Layer 2 19K
conv(16,16,33) 1 3.4x L
16 clusters 9.6

Layer 4 1 19x
conv(32,16,3,3) - 1.9% L

16 clusters m

Layer 5

] 1.0x
conv(32,3233) {1 27 [

4 clusters :x p0%
conv(32,16,3,3) 0 3.3 L
16 clusters .-6_11;()/
Layer 8 L0x
conv(64,32,3,3) {—1 26 [
5.5%
4 clusters 55
Layer 9] 0.9x
conv(64,64,3,3) | - 2.2 L
dclusters g oo (=3 TFLM Ref. [30] baseline

= TVM Fallback [29]
Layer 10 | — = TVMMS [31]

/3 13x
conv(64,64,1,1) -1 2.9 == TFLM + WCA ours [26] |-
dclusters P oav ‘ || mm TVMMS 4 WCA ours

C, Cin, Kp, K.
(Cout, Cin, Kp, W)O 5 10 15 20 25

Execution time [1 - 10° clock cycles]

Figure 9: Layer-wise runtime of different ML deployment
frameworks and WCA integration. Speedups annotated rela-
tive to each layer’s baseline.

Conv2D kernels are consistently outperforming the reference TFLM
implementations by 1.9x (Layer 4) to 3.7x (Layer 0). The automatic
TVM-based integration of the WCA in supported layers yields addi-
tional speedups between 1.8% (Layer 6) and 5.1x (Layer 4) compared
to TVM MS.

Table 1 provides the end-to-end execution time of the whole
model (inference time), consisting of a total of 15 layers of which
eight are accelerated using the CFU.

Table 1: Aggregated non-accelerated layers, accelerated lay-
ers, and total model inference time [1 - 10® clock cycles].

Inference time TFLM TFLM+WCA TVM+WCA

Layers w/o accel. 128.5 13.5 3.9
Layers w/ accel. - 29.2 11.8
Total), 128.5 42.6 15.7
Speedup vs. TFLM - 3% 8.2X

6 Security of Machine Learning Systems

The development and deployment of Al accelerators raise signif-
icant security concerns, among which model theft is particularly
critical [32, 33]. Trained Al models often require substantial in-
vestments in data collection, computational resources, and expert
knowledge, making them highly valuable intellectual property.

CODES+ISSS °25. October. 2025. Tainei. TW

4 —

Yt
P> —>
Neural
1 Network 1
X; etworl Y
\ Property
2 5 Commitment
x? N Y.
Neural
Network de
> —>
L S

Figure 10: Computational model for model theft in AT accel-
erators as mentioned in [35].

Unauthorized extraction of these models can result in financial
losses, erosion of competitive advantage, and violation of confi-
dentiality. It is therefore essential to ensure that an accelerator is
not only functionally correct but also resilient against adversarial
attacks that could compromise the model and its associated intellec-
tual property. Although considerable effort is invested in designing
increasingly powerful Al workloads, corresponding investment in
verifying and securing these systems remains limited [34].

Our work [35] addresses this gap by proposing a formal verifica-
tion methodology to assess at the microarchitectural level whether
an Al accelerator leaks model parameters through timing side-
channel attacks. We consider a threat model where an attacker
aims to steal model parameters without direct access, instead sup-
plying inputs and observing execution times. If the accelerator’s
timing behavior depends on sensitive parameters, the attacker can
reverse-engineer the model, compromising intellectual property.

We systematically detect parameter-dependent timing variations
by employing a computational model (Fig. 10) that instantiates the
device under verification twice (“two-safety model”). Each instance
receives the same inputs, x,, but different parameters, Xp, in order
to determine whether variations in the parameters result in mea-
surable deviations in execution time. A control output signal y,
indicates the completion of computation. We verify whether there
exists a set of inputs where the two instances activate the control
output y. at different time points. If this is possible then the exe-
cution time depends on the model parameters, thereby exposing a
potential risk of model theft.

We provide different versions of the proof to address scalability
challenges and to ensure applicability to larger accelerators while
keeping soundness of the proof. The first approach fully unrolls
the computation in an end-to-end proof, but as expected, struggles
with scalability due to the exponential growth of the state space
for the solver. The second, more optimized approach, exploits the
modularity of the layer computations by applying the proof in a
layer-wise manner, which reduces unrolling to only the largest layer
within the accelerator. The third version is a single-cycle proof that
can achieve the same results as the fully unrolled and layer-wise
proofs but allows us to restrict the considered verification time
window to a single clock cycle to determine whether the execution
time depends on the model parameters.

We successfully applied our methodology to two types of accel-
erators: systolic arrays [36] and dataflow-based designs, available
in public domain [37, 38]. The proof method is currently being
finalized and will be published open-source. Table 2 reports on the
proof times and the corresponding results [35]. As shown, the fully-
unrolled proof version fails to converge due to the large state space

Tahoori et al.

Table 2: Experimental results for the different methodologi-
cal approaches and their runtimes.

Fully Unrolled

Runtime
Design Leak? (hh:mm)

Layer-Wise Single-Cycle
Runtime Runtime
Leak? (hh:mm) Leak? (hh:mm)

Syst. Array - time-out yes 01:30 yes 00:03
FINN-6 no 01:30 no 00:11 no 00:01
FINN-9 - mem-out no 00:16 no 00:01
FINN-12 - mem-out no 00:24 no 00:01
FINN-15 - mem-out no 00:31 no 00:02
FINN-18 - mem-out no 00:40 no 00:02

encountered by the solver. In contrast, the layer-wise approach
successfully converges within reasonable time, with runtime in-
creasing proportionally to the size of the accelerator design. The
single-cycle proof demonstrates the fastest verification times in all
cases.

In the case of the systolic array, a dependence of execution time
on model parameters was detected. This can be attributed to an
optimization feature known as exit branches [39], where the ex-
ecution time varies depending on branch decisions that involve
the model parameters, thereby violating the threat model. This
behavior was flagged and reported to the developers. For the case
of dataflow architectures, the FINN accelerators proved to be secure
with respect to our threat model.

Other attack vectors to consider are Power and Electro-Magnetic
(EM) Side-Channel Analysiss (SCAs). Several successful attacks
utilizing Power or EM SCA against NN implementations both in
software [40] and hardware [41, 42] have been published. This
demonstrates the threat posed to the intellectual property and
private data associated with the deployment of NNs to edge devices
and highlights the need for effective countermeasures.

While such countermeasures have been extensively investigated
in the context of cryptographic circuits, they generally fall into two
categories: hiding and masking. Hiding techniques aim to obfuscate
side-channel leakage by introducing additional noise or misalign-
ing trace recordings in the time domain. One prominent hiding
method is shuffling, which leverages the large number of opera-
tions in NNs with interchangeable execution order to drastically
increase the number of side-channel traces an attacker must col-
lect to succeed [43]. Although shuffling’s effectiveness can only be
confirmed experimentally, it is lightweight to implement and offers
strong protection when many parameters are shuffled, as is typical
in NNs. However, this means shuffling cannot be integrated early in
the design process. In contrast, masking is a provably information-
theoretically secure countermeasure designed to ensure that power
consumption or EM traces are statistically independent of secret
data being processed. Several works demonstrate the effective im-
plementation of several masking schemes in NN hardware acceler-
ators [44-47]. Due to its theoretical security guarantees, masking
allows early-stage verification of its effectiveness within the design
process by verification of a circuit’s side-channel resistance based
on its hardware description language definition.

We investigate the suitability of open-source formal verification
tools for the application to hardware accelerators of NNis:

CocoALma [48] involves a multi step process starting with group-
ing linear combinations that a gate correlates to into correlation

Special Session — Hardware-Software Co-Design for Machine Learning Systems Made Open-Source

vectorp—|

weighty
weight refresh

weight;

vector,

Figure 11: Schematic of an arithmetically masked Multiply
Gadget utilizing a domain-oriented masking scheme. As the
weight value itself does not change, the *weight refresh’ mask
is applied before every multiplication. A multiply refresh’
mask enables the secure addition of two shares in the upper
and lower domains, respectively. Registers are utilized to
prevent the propagation of glitches.

sets. These correlation sets are implicitly encoded and formulated as
a boolean satisfiability problem. This problem is then solved using
a SAT solver. However, the correlation set of the output of a logical
operation cannot be directly computed from the correlation sets of
its inputs. Therefore, an approximate approach is used, which is
prone to false positives.

SILVER [49] is based on evaluating the probability distribution
of probed wires to determine the statistical independence of the
joint distribution of probes from the joint distribution of sensitive
inputs. The gate-level netlist is represented as Reduced Ordered
Binary Decision Diagrams (ROBDDs) to model the physical circuit.
This approach allows verification of formal security definitions
such as t-Non-Interference (NI), t-Strong Non-Interference (SNI),
or t-Probe-Isolating Non-Inference (PINI), as well as uniformity.
While the method offers greater accuracy, it comes at the cost of
reduced scalability. As a result, larger designs drastically increase
verification times.

PRrROVER [50] is a recently developed method and builds upon
SILVER by reducing the size of observation and secret sets. It also
reorders ROBDDs to increase performance while maintaining ac-
curacy. This method can verify standard probing security, glitch-
extended probing security, and uniformity.

As CocoALMA is error-prone and prone to false positives, we
generally find it unsuitable for verification of NN accelerators. For
example, it falsely classifies the arithmetically masked domain-
oriented multiply gadget in Figure 11 as insecure. In contrast, SILVER
and PROVER correctly verify this gadget, indicating that CocoALmMA
is unsuitable for this task.

Both S1LvER and PROVER face challenges due to a lack of aware-
ness of state and control signals. Additionally, their graph-based
models cannot process combinatorial loops. These limitations are
particularly problematic when verifying Multiply and Accumulate
(MAC) Processing Elements (PEs), which are commonly found in
accelerators for fully connected and convolution layers. However,
we manage to overcome these limitations by unrolling MAC-PE
accelerators into side-channel equivalent feed-forward circuits for
verification. Furthermore, SILVER scales exponentially with the num-
ber of probing positions [49] and is only usable for small gadgets.

CODES+ISSS ’25, October, 2025, Taipei, TW

In the verification of a complete NN accelerator, it may be nec-
essary to replace the MAC-PEs with its multiply gadget in order
to avoid combinatorial loops, which cannot be processed with the
verification tools. This replacement is equivalent to adding a sin-
gle MAC operation and ensures the feed-forward characteristic
of the accelerator. Additionally, adding multiple random uniform
numbers in the residue-class ring Z3 is equivalent, with regard to
side-channel leakage, to adding a single random uniform number.

Furthermore, while individual gadgets or layers might be proven
to be side-channel secure, it is important to ensure that no leakage
occurs when using layers with different masking schemes, such as
arithmetic and boolean masking. We choose PROVER for verification
of multiple layers, due to its improved performance over SILVER.

7 Conclusion

The development of efficient, safe, and secure machine learning sys-
tems is increasingly reliant on tight hardware-software co-design.
As Al continues to shape critical applications across industry and
society, the need for customizable, trustworthy, and resource-aware
ML accelerators becomes more urgent—especially in edge and em-
bedded environments.

This paper has presented a comprehensive perspective on open-
source HW-SW co-design for ML systems. We highlighted the inef-
ficiencies of current design flows due to fragmented toolchains and
the lack of integration between ML training frameworks and EDA
tools. In response, we introduced a modular co-design approach that
spans multiple levels of abstraction, enabling application-driven
customization of Al hardware.

We explored four key areas: (1) the development of Al accel-
erators with integrated safety extensions using open hardware;
(2) design-space exploration of hardware and memory architec-
tures with DRAM subsystem awareness; (3) compiler-accelerator
co-design for optimizing ML execution pipelines; and (4) robust
and secure ML hardware systems that incorporate fault detection,
OOD detection, and protection against model theft.

Our results demonstrate that safety and security are no longer
optional add-ons but must be integral to the co-design process
from the earliest stages. By embedding uncertainty-aware inference,
error correction mechanisms, and security features like obfuscation
and logic locking into the co-design flow, we provide a foundation
for building dependable AI systems.

We argue that open-source ecosystems are essential to realize
this vision. They democratize access to design tools, facilitate re-
producibility, and accelerate innovation across research, education,
and industry. The methods and frameworks described in this work
are stepping stones toward such an ecosystem. In the long term, our
goal is to make hardware-software co-design of efficient, safe, and
secure ML systems accessible to a broad community of designers,
from academic researchers to industrial practitioners, in order to
foster the next generation of trustworthy and adaptive Al platforms.

Acknowledgments

This work is funded by the German Federal Ministry of Research,
Technology and Space (BMFTR) in the framework of design tools for
sovereign chip development with open source (DE:Sign DI-EDAI,
grant numbers 16ME0990K, 16ME0991, 16ME0992, and 16ME0993).

CODES+ISSS ’25, October, 2025, Taipei, TW

References

(1]

[13]

[14]

[15]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. A. Singh and K. A. Desai. 2023. Automated surface defect detection framework
using machine vision and convolutional neural networks. Journal of Intelligent
Manufacturing, 34, 4, 1995-2011. doi:10.1007/s10845-021-01878-w.

R. Begg, J. Kamruzzaman, and R. Sarker. 2006. Neural networks in healthcare:
Potential and challenges. Igi Global. doi:10.4018/978-1-59140-848-2.

N. Maslej et al. 2025. Artificial intelligence index report 2025. The Computing
Research Repository (CoRR). arXiv: 2504.07139 [cs.AL].

Y. Chen et al. 2020. A survey of accelerator architectures for deep neural networks.
Engineering, 6, 3, 264-274. d0i:10.1016/j.eng.2020.01.007.

X. Xu et al. 2018. Scaling for edge inference of deep neural networks. Nature
Electronics, 1, 4, 216-222. d0i:10.1038/s41928-018-0059-3.

International Business Strategies. 2024. Why Al will propel Semiconductor Market
to $1 Trillion and Achieve 1.0nm by 2030. Tech. rep. SEMI, (Nov. 2024). https://w
ww.semi.org/sites/semi.org/files/2024- 11/MS-SEMIWEB11.2024.pdf.

Epoch Al 2024. Data on notable Al models. (June 2024). Retrieved 07/20/2025
from https://epoch.ai/data/notable-ai-models.

K. Vittal. 2024. Advanced SoC verification enables a new era of Al chips. https:
//www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-ne
w-era-ai-chips.html.

F. Hannig and J. Teich. 2021. Open source hardware. IEEE Computer, 54, 10, 111-
115. doi:10.1109/MC.2021.3099046.

2024. ISO/PAS 8800:2024 Road vehicles — Safety and artificial intelligence. Stan-
dard. International Organization for Standardization, CH.

P. Kanerva. 2009. Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1. doi:10.1007/512559-009-9009-8.

M. S. Roodsari, J. Krautter, V. Meyers, and M. Tahoori. 2024. E3HDC: Energy
efficient encoding for hyper-dimensional computing on edge devices. In Proc. of
the 34th Int’l Conference on on Field-Programmable Logic and Applications (FPL).
IEEE, 274-280. doi:10.1109/FPL64840.2024.00045.

M. S. Roodsari, J. Krautter, and M. Tahoori. 2024. OTFGEncoder-HDC: Hardware-
efficient encoding techniques for hyperdimensional computing. In Proc. of the
Conference on Design, Automation and Test in Europe (DATE). IEEE, 1-2.

M. S. Roodsari, V. Meyers, and M. Tahoori. 2025. CED-HDC: Lightweight concur-
rent error detection for reliable hyperdimensional computing. In Proc. of the 43th
IEEE VLSI Test Symposium (VTS). IEEE, 1-7. doi:10.1109/VTS65138.2025.11022900.
M. S. Roodsari, S. Hemaram, and M. Tahoori. 2025. Non-uniform error correc-
tion for hyperdimensional computing edge accelerators. In Proc. of the 30th IEEE
European Test Symposium (ETS). IEEE, 1-6. doi:10.1109/ETS63895.2025.11049622.
M. S. Roodsari, V. Meyers, and M. Tahoori. 2025. Lightweight concurrent out-of-
distribution detection in hyperdimensional computing hardware. In Proc. of the
31th IEEE Int’l Symposium on On-Line Testing and Robust System Design. IEEE.

F. Mireshghallah, M. Bakhshalipour, M. Sadrosadati, and H. Sarbazi-Azad. 2019.
Energy-eflicient permanent fault tolerance in hard real-time systems. IEEE Trans.
on Computers, 68, 10, 1539-1545. doi:10.1109/TC.2019.2912164.

J. Hofer et al. BayNNgine: Hardware-enabled bayesian neural network support for
dependable Al inference. To appear in Proc. of the IEEE 38th Int’l System-on-Chip
Conference (SOCC), (2025).

F. Lesniak, A. Gutermann, T. Harbaum, and J. Becker. 2024. Enhanced accelerator
design for efficient CNN processing with improved row-stationary dataflow. In
Proc. of the Great Lakes Symposium on VLSI. ACM. doi:10.1145/3649476.3658737.
Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits, 52, 1, 127-138. doi:10.1109/JSSC.2016.2616357.

M. Damschen, L. Bauer, and]J. Henkel. 2017. CoRQ: Enabling runtime reconfig-
uration under WCET guarantees for real-time systems. IEEE Embedded Systems
Letters, 9, 3, 77-80.

L. Kadel, H. Nassar, L. Bauer, and J. Henkel. 2025. Secure runtime reconfiguration
of FPGAs via lightweight authenticated encryption for IoT systems. In Proc. of the
10th Int’l Conference on Smart and Sustainable Technologies (SpliTech).

K. Balaskas et al. 2024. Heterogeneous accelerator design for multi-DNN workloads
via heuristic optimization. IEEE Embedded Systems Letters, 16, 4, 317-320.

H. Khdr, M. Bakr Sikal, B. Dietrich, and J. Henkel. 2025. Towards the optimization
of hardware efficiency through machine learning. In Proc. of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI).

L. Steiner et al. 2020. DRAMSys4.0: A fast and cycle-accurate SystemC/TLM-based
DRAM simulator. In Proc. of the Int’l Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). Springer, 110-126.

M. Sabih, B. Sesli, F. Hannig, and J. Teich. 2024. Accelerating DNNs using weight
clustering on RISC-V custom functional units. In Proc. of the Conference on Design,
Automation and Test in Europe. IEEE. doi:10.23919/DATE58400.2024.10546844.
M. Sabih et al. 2024. Hardware/software co-design of RISC-V extensions for acceler-
ating sparse DNNs on FPGAs. In Proc. of the Int’l Conference on Field Programmable
Technology (FPT). IEEE.

(28]

[29]

(30]

[31]

[33]

(34]

[35]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[47]

(48]

[49]

Tahoori et al.

P. van Kempen, M. Salmen, D. Mueller-Gritschneder, and U. Schlichtmann. 2024.
Seal5: Semi-automated LLVM support for RISC-V ISA extensions including au-
tovectorization. In Proc. of the 27th Euromicro Conference on Digital System Design
(DSD). IEEE, 335-342. d0i:10.1109/DSD64264.2024.00052.

T. Chen et al. 2018. TVM: An automated end-to-end optimizing compiler for deep
learning. In Proc. of 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, 578-594. https://www.usenix.org/co
nference/osdi18/presentation/chen.

R. David et al. 2021. TensorFlow Lite Micro: Embedded machine learning for
TinyML systems. In Proc. of the Conference on Machine Learning and Systems
(MLSys). mlsys.org, 800-811.

J. Shao et al. 2022. Tensor program optimization with probabilistic programs.
In Proc. of the Int’l Conference on Neural Information Processing Systems (NIPS).
Curran Associates, Inc., 35783-35796.

G. Dong et al. 2019. Floating-point multiplication timing attack on deep neural
network. In Proc. of the IEEE Int’l Conference on Smart Internet of Things (SmartIoT).
IEEE, 155-161. doi:10.1109/SmartloT.2019.00032.

C. Gongye, Y. Fei, and T. Wahl. 2020. Reverse-engineering deep neural networks
using floating-point timing side-channels. In Proc. of the 57th ACM/IEEE Design
Automation Conference (DAC), 1-6. doi:10.1109/18072.2020.9218707.

Q. Xu, M. Tanvir Arafin, and G. Qu. 2021. Security of neural networks from
hardware perspective: A survey and beyond. In Proc. of the 26th Asia and South
Pacific Design Automation Conference. ACM. doi:10.1145/3394885.3431639.

M. S. Ali et al. 2025. Security risks in Al accelerators: Detecting RTL vulnerabil-
ities to model theft with formal verification. In Proc. of the IEEE European Test
Symposium (ETS), 1-6. doi:10.1109/ETS63895.2025.11049644.

P. P. Bernardo et al. 2020. Ultratrail: A configurable ultralow-power TC-ResNet Al
accelerator for efficient keyword spotting. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 39, 11. doi:10.1109/TCAD.2020.3012320.

M. Blott et al. 2018. FINN-R: An end-to-end deep-learning framework for fast ex-
ploration of quantized neural networks. ACM Trans. on Reconfigurable Technology
and Systems, 11, 3, 16:1-16:23. doi:10.1145/3242897.

FINN Team at AMD Research. 2016. FINN: dataflow compiler for QNN inference
on FPGAs. Retrieved 07/20/2025 from https://xilinx.github.io/finn/.

S. Teerapittayanon, B. McDanel, and H. T. Kung. 2016. BranchyNet: Fast inference
via early exiting from deep neural networks. In Proc. of the 23rd Int’l Conference
on Pattern Recognition (ICPR). IEEE, 2464-2469. doi:10.1109/ICPR.2016.7900006.
L. Batina, S. Bhasin, D. Jap, and S. Picek. 2019. CSI NN: Reverse engineering of
neural network architectures through electromagnetic side channel. In Proc. of the
28th USENIX Security Symposium (USENIX Security). USENIX Association, 515-532.
https://www.usenix.org/conference/usenixsecurity19/presentation/batina.

A. Dubey, R. Cammarota, and A. Aysu. 2020. MaskedNet: The first hardware
inference engine aiming power side-channel protection. In Proc. of the IEEE Int’l
Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 197-208. doi:1
0.1109/HOST45689.2020.9300276.

K. Yoshida et al. 2020. Model reverse-engineering attack using correlation power
analysis against systolic array based neural network accelerator. In Proc. of the
IEEE Int’l Symposium on Circuits and Systems (ISCAS). IEEE, 1-5. doi:10.1109
/ISCAS45731.2020.9180580.

M. Brosch, M. Probst, and G. Sigl. 2022. Counteract side-channel analysis of neural
networks by shuffling. In Proc. of the Conference on Design, Automation and Test
in Europe (DATE), 1305-1310. doi:10.23919/DATE54114.2022.9774710.

M. Brosch, M. Probst, M. Glaser, and G. Sigl. 2024. A masked hardware accelerator
for feed-forward neural networks with fixed-point arithmetic. IEEE Trans. on Very
Large Scale Integration Systems, 32, 2, 231-244. doi:10.1109/TVLSI.2023.3340553.
A. Dubey, R. Cammarota, and A. Aysu. 2020. BoMaNet: Boolean masking of an
entire neural network. In Proc. of the 39th Int’l Conference on Computer-Aided
Design (ICCAD). ACM, 51:1-51:9. doi:10.1145/3400302.3415649.

S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan. 2023. A threshold
implementation-based neural network accelerator with power and electromag-
netic side-channel countermeasures. IEEE Journal of Solid-State Circuits, 58, 1,
141-154. doi:10.1109/JSSC.2022.3215670.

A. Dubey et al. 2023. Hardware-software co-design for side-channel protected
neural network inference. In Proc. of the IEEE Int’l Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 155-166. doi:10.1109/HOST55118.2023.10133716.
V. Hadzi¢ and R. Bloem. 2021. COCOALMA: A versatile masking verifier. In Proc.
of the Conference on Formal Methods in Computer Aided Design (FMCAD), 14-23.
doi:10.34727/2021/isbn.978-3-85448-046-4_9.

D. Knichel, P. Sasdrich, and A. Moradi. 2020. SILVER - Statistical independence
and leakage verification. In Proc. of the 26th Int’l Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT). Springer, 787—
816. doi:10.1007/978-3-030-64837-4_26.

F. Zhou, H. Chen, and L. Fan. 2024. Prover — Toward more efficient formal verifi-
cation of masking in probing model. Cryptology ePrint Archive, Paper 2024/1202.
(2024). https://eprint.iacr.org/2024/1202.

https://doi.org/10.1007/s10845-021-01878-w
https://doi.org/10.4018/978-1-59140-848-2
https://arxiv.org/abs/2504.07139
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1038/s41928-018-0059-3
https://www.semi.org/sites/semi.org/files/2024-11/MS-SEMIWEB11.2024.pdf
https://www.semi.org/sites/semi.org/files/2024-11/MS-SEMIWEB11.2024.pdf
https://epoch.ai/data/notable-ai-models
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://www.synopsys.com/blogs/chip-design/advanced-soc-verification-enables-new-era-ai-chips.html
https://doi.org/10.1109/MC.2021.3099046
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1109/FPL64840.2024.00045
https://doi.org/10.1109/VTS65138.2025.11022900
https://doi.org/10.1109/ETS63895.2025.11049622
https://doi.org/10.1109/TC.2019.2912164
https://doi.org/10.1145/3649476.3658737
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.23919/DATE58400.2024.10546844
https://doi.org/10.1109/DSD64264.2024.00052
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/SmartIoT.2019.00032
https://doi.org/10.1109/18072.2020.9218707
https://doi.org/10.1145/3394885.3431639
https://doi.org/10.1109/ETS63895.2025.11049644
https://doi.org/10.1109/TCAD.2020.3012320
https://doi.org/10.1145/3242897
https://xilinx.github.io/finn/
https://doi.org/10.1109/ICPR.2016.7900006
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1109/HOST45689.2020.9300276
https://doi.org/10.1109/HOST45689.2020.9300276
https://doi.org/10.1109/ISCAS45731.2020.9180580
https://doi.org/10.1109/ISCAS45731.2020.9180580
https://doi.org/10.23919/DATE54114.2022.9774710
https://doi.org/10.1109/TVLSI.2023.3340553
https://doi.org/10.1145/3400302.3415649
https://doi.org/10.1109/JSSC.2022.3215670
https://doi.org/10.1109/HOST55118.2023.10133716
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.1007/978-3-030-64837-4_26
https://eprint.iacr.org/2024/1202

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 The Case for Hardware-Software Co-Design
	2.2 Challenges in Today's Ecosystem
	2.3 Towards an Open-Source Co-Design Ecosystem

	3 Accelerator IP Development and Safety Extensions in Open-Source AI Hardware
	4 Design Space Exploration of Hardware Architectures and DRAM Subsystems for Optimized AI Systems
	5 Co-Design of AI Applications: ML Compiler and Accelerator Units
	6 Security of Machine Learning Systems
	7 Conclusion
	Acknowledgments

