KIT | KIT-Bibliothek | Impressum | Datenschutz

Integrating RAG and Reasoning for the Realization of a Concrete Driving Scenario within an LLM-Based Framework

Jegarian, Majid ORCID iD icon 1; Hanifehbakkheyrabadi, Shahrzad 1; Freyer, Jonas ORCID iD icon 1; Bause, Katharina 1; Düser, Tobias 1
1 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper presents an end-to-end framework that leverages Large Language Models (LLMs) to generate simulation-ready driving scenarios from natural language input, addressing key limitations in automated vehicle (AV) validation processes. Existing tools for scenario generation often lack scalability, semantic rigor, and the capacity for hierarchical, multi-step reasoning required for scenario concretization. The proposed approach translates high-level natural language prompts into fully specified, executable scenarios through a reasoning-enhanced LLM pipeline that integrates Retrieval-Augmented Generation (RAG), Chain-of-Thought (CoT) prompting, and structured selfevaluation. Abstract scenarios are systematically refined into parameter-complete, logically coherent representations suitable for direct execution in industry-standard simulators. The framework generalizes across scenario specification formats by dynamically extracting and applying structural constraints from formal documentation. Experimental results demonstrate that the system produces syntactically valid and semantically consistent scenarios without manual intervention. ... mehr


Originalveröffentlichung
DOI: 10.1109/IAVVC61942.2025.11219551
Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 30.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2526-2
KITopen-ID: 1000189680
Erschienen in 2025 IEEE International Automated Vehicle Validation Conference (IAVVC): Baden-Baden, 30.09.-02.10.2025
Veranstaltung IEEE International Automated Vehicle Validation Conference (IAVVC 2025), Baden-Baden, Deutschland, 30.09.2025 – 02.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–8
Schlagwörter Scenario Generation, Large Language Model, Retrieval-Augmented Generation, Automated Vehicle Validation
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page