KIT | KIT-Bibliothek | Impressum | Datenschutz

Li-ViP3D: Enhancing End-to-End Perception and Prediction with Camera-LiDAR Fusion

Halinkovic, Matej; Vinel, Alexey 1; Benesova, Wanda
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Solving the problem of perception and subsequent trajectory prediction of various agents in a scene is crucial for self-driving vehicles and other autonomous systems. Traditionally, this process has been simplified by splitting perception and prediction into separate steps, leading to limited information flow and error propagation between modules. While such modular approaches have their benefits, many modern approaches instead focus on unified, end-to-end, perception and prediction (PnP) aiming to prevent the propagation of errors and decisions made based on limited context. In this work, we focus on addressing one of the main limitations of current PnP solutions, the insufficient exploitation of the complementarity between camera and LiDAR data. While modern approaches extract a vast amount of information from standard camera data, they often overlook the benefits of integrating it with LiDAR data for improved robustness and accuracy. In this work, we extend ViP3D, a query-based vision model for trajectory prediction, by incorporating LiDAR data to enhance scene understanding and prediction quality. Our approach, LiViP3D, fuses visual and LiDAR modalities in an end-to-end differentiable framework, leveraging their combined strengths to detect, track, and predict agent trajectories with greater precision. ... mehr


Originalveröffentlichung
DOI: 10.1109/IAVVC61942.2025.11219625
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 30.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2526-2
KITopen-ID: 1000189683
Erschienen in 2025 IEEE International Automated Vehicle Validation Conference (IAVVC); Baden-Baden, 30.09.-02.10.2025
Veranstaltung IEEE International Automated Vehicle Validation Conference (IAVVC 2025), Baden-Baden, Deutschland, 30.09.2025 – 02.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Schlagwörter perception, perception and prediction, machine learning, multimodality, trajectory prediction
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page