KIT | KIT-Bibliothek | Impressum | Datenschutz

Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception

Sielemann, Anne ; Barner, Valentin ; Wolf, Stefan ORCID iD icon 1; Roschani, Masoud ; Ziehn, Jens ; Beyerer, Juergen 2
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)

Abstract (englisch):

Common approaches to explainable AI (XAI) for deep learning focus on analyzing the importance of input features on the classification task in a given model: saliency methods like SHAP and GradCAM are used to measure the impact of spatial regions of the input image on the classification result. Combined with ground truth information about the location of the object in the input image (e.g., a binary mask), it is determined whether object pixels had a high impact on the classification result, or whether the classification focused on background pixels. The former is considered to be a sign of a healthy classifier, whereas the latter is assumed to suggest overfitting on spurious correlations. A major challenge, however, is that these intuitive interpretations are difficult to test quantitatively, and hence the output of such explanations lacks an explanation itself. One particular reason is that correlations in real-world data are difficult to avoid, and whether they are spurious or legitimate is debatable. Synthetic data in turn can facilitate to actively enable or disable correlations where desired but often lack a sufficient quantification of realism and stochastic properties. ... mehr


Download
Originalveröffentlichung
DOI: 10.1109/IAVVC61942.2025.11219547
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 30.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2526-2
KITopen-ID: 1000189686
Erschienen in 2025 IEEE International Automated Vehicle Validation Conference (IAVVC); Baden-Baden, 30.09.-02.10.2025
Veranstaltung IEEE International Automated Vehicle Validation Conference (IAVVC 2025), Baden-Baden, Deutschland, 30.09.2025 – 02.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–8
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page