
An Automated Approach to Generating
Card-Based Cryptographic Protocols

Bachelor’s Thesis by

Anne Elisabeth Hoff

at the KIT Department of Informatics

Institute of Information Security and Dependability (KASTEL)

Reviewer: Prof. Dr. rer. nat. Bernhard Beckert

Advisor: Dr. rer. nat. Michael Kirsten

24 October 2022 – 24 February 2023

Karlsruher Institut für Technologie

KIT-Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I hereby declare that the work presented in this thesis is entirely my own. I confirm that

I specified all employed auxiliary resources and clearly acknowledged anything taken

verbatim or with changes from other sources. I further declare that I prepared this thesis

in accordance with the rules for safeguarding good scientific practice at Karlsruhe Institute

of Technology (KIT).

Karlsruhe, 24 February 2023

. .

(Anne Elisabeth Hoff)

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 3

2 Foundations 5
2.1 Permutations . 5

2.2 Card-Based Protocols . 6

2.2.1 Runtime of Card-Based Protocols 8

2.2.2 Correctness and Security of Card-Based Protocols 9

2.2.3 KWH-Trees . 10

2.2.4 Card-Based Protocols for Multi-Party Computation 12

2.3 Software Bounded Model Checking . 14

2.4 Using Software Bounded Model Checking to Find Card Protocols 15

3 A Standard Program Representation for Finding Card-based Protocols for Any
Boolean Function 21
3.1 Adjustments to the Standard Program Representation for Boolean Functions 21

3.1.1 Function Behaviour . 22

3.1.2 Domain . 24

3.1.3 Codomain . 25

3.2 Implementing a Concrete Standardized ProgramRepresentation for a Select

Number of Functions . 27

3.2.1 Structure and Execution of the Standardized Program Representation 27

3.2.2 Exploring different SAT solvers 27

3.2.3 Protocols Discovered using the Adapted Standardized Program

Representation . 29

3.2.4 Limits for the Use of the Bounded Model Checker with Our Sym-

bolic Program Representation . 37

4 A Standard Program Representation with Nested Structure for Composite Protocols 39
4.1 Introduction of a Nested Structure and Consideration of its Possible Benifits 39

4.1.1 Defining the Protocol Action and Extending KWH-Trees 39

4.1.2 Reducing the Complexity of the Search Space 41

4.1.3 Calculating any Function While Ensuring Correctness and Security 42

4.2 Integrating the Nested Structure into the Symbolic Program 45

v

Contents

4.3 Implementing Concrete Protocols and Evaluating the Implementation . . 50

5 Evaluating a Data Structure for Efficient Operations 55
5.1 Integrating the Data Structure into the Symbolic Program 55

5.2 Evaluating the Data Structure in an Experiment Setting 58

5.2.1 Description of the Experiment Setup 58

5.2.2 Experiment Execution and Results 58

5.2.3 Discussion of the Experiment Results 60

6 Conclusion 63
6.1 Summary . 63

6.2 Outlook . 64

Bibliography 65

A Appendix 67
A.1 Full Experiment Results . 67

A.1.1 Test Results for the Comparison of the different Data Structures . 67

A.1.2 Test Results for the Comparaison of Different SAT Solvers 68

A.2 Card Protocols from Literature . 69

A.2.1 Five card AND Protocol . 69

A.2.2 Four Card XOR Protocol . 70

A.3 Additional Protocols found through Bounded Model Checking 70

A.3.1 Five Card OR Protocol with input possibilistic security and non-

closed shuffles. 71

A.3.2 Input-possibilistic protocol with closed shuffles for OR using 4

cards and 5 steps . 72

A.4 Code Repository . 72

A.5 Code Excerpts from the Adapted Standardized Program Representations. 72

A.5.1 XOR . 73

A.5.2 OR . 73

A.5.3 COPY . 74

A.5.4 Half Adder . 76

A.6 Implementation of the Nested Structure 79

A.6.1 Additions to the Main C Program 79

A.6.2 Modules.c . 80

A.7 Programs for the Experiments with Data Structures 88

vi

1 Introduction

1.1 Motivation

Card-based protocols provide a method of performing multi-party computation without

computers. Such protocols can be used in a classroom or lecture setting to teach students

about secure multi-party computation in an accessible and easy to understand way. All

that is needed, is a deck of playing cards whose backs are indistinguishable from each

other and whose fronts are showing two different symbols, ♣ and ♥. As an example let us

assume that we have two players 𝑎 and 𝑏 that want to securely compute the logical AND
function of two bits. They can do so, by performing the AND protocol by Mizuki and Sone

(2009). For this the two players input their bits as two face-down cards. They put ♣ ♥ to

if their input bit is 0 and ♥ ♣ if their input bit is 1. These cards are placed in a line with

two additional cards ♣ ♥ behind. Thus the cards that are on the table in the beginning are

♣ ♥ where the first two cards are the input of player 𝑎 and the third and fourth

card are the input of the player 𝑏. We then perform the protocol as follows:

1. We turn over the last two cards so the cards on the table look indistinguishable like

this:

2. Then we rearrange the cards like this:

1 2 3 4 5 6 −→ 1 3 4 2 5 6

3. Afterwards we split the cards into two:

[] []
and randomly swap them with probability exactly 1/2.

The result is either the original card sequence or the sequence in which the cards of

the left side are now on the right side.

4. We rearrange our cards again:

1 2 3 4 5 6 −→ 1 4 2 3 5 6

5. Now we turn over the first two cards:

1

1 Introduction

a) If the cards that were turned over are:

♣ ♥
the result is encoded by the fifth and sixth card

b) If the cards that were turned over are:

♥ ♣
the result is encoded by the third and fourth card

Depending on the cards that were turned over in the last steps, the players 𝑎 and 𝑏 can

now turn over the two cards containing the result. The result is interpreted in the same

way as the input. If the output is ♣ ♥ then the result of the calculation is 0 and if the

output is ♥ ♣ the result is 1. The focus of the research on card-based cryptography is on

finding new protocols, that are increasingly effective. That means, that they require fewer

cards or there are fewer steps needed to perform the protocol. To automate the process

of finding new card-based protocols, Koch et al. (2021) employ the technique of bounded

model checking. They implement the basic actions and states of a protocol in a symbolic

program and then use a bounded model checker to find valid runs through the symbolic

program. If a valid run is found, the protocol is returned by the bounded model checker. If

no valid run can be found, then there exists no protocol for the given parameters. Koch

et al. (2021) provide a standardized program that can be used to find card-based protocols

for the AND function. But computation using playing cards is not just focused on simple

functions like an AND function. Niemi and Renvall (1998) and Nishida et al. (2015) have

shown that we can construct a card-based protocol for any boolean function. And there

are several examples of protocols for practical functions like a COPY function by Mizuki

and Sone (2009) or even a protocol for a half adder by Mizuki et al. (2013) that use more

cards and steps than simple binary boolean operators.

In this thesis we therefore want to take the technique introduced by Koch et al. (2021),

and further develop it. We want to determine whether it is possible to generalize the

technique and make it applicable to find protocols for any function like the COPY or half

adder function. We also want to ascertain if we can increase the efficiency of the technique

to make it applicable to larger problems.

1.2 Contribution

Firstly, we generalize the method of Koch et al. (2021) that uses bounded model checking

to find card protocols, so that we can find protocols for any boolean function. We use this

generalization to apply it to a range of new functions. For the OR as well as the COPY
function, we give new protocols. We also show that there are no protocols for certain

preconditions for the OR and XOR functions as well as the COPY and half adder functions.

Additionally we share our findings about the effectiveness of various SAT solvers for the

use within the bounded model checker.

2

1.3 Outline

Secondly we further universalize the method of Koch et al. (2021) by inserting a nested

structure into the symbolic program. By doing that a protocol that has for example been

found previously with bounded model checking or is a protocol from literature, can be used

as an operation within another protocol. We provide a definition for this new operation.

To be able to graphically represent logs that use this structure, we give an extension to the

definition of KWH trees. We apply this method with a nested structure to the COPY and

half adder function. For the COPY function we give a six card protocol which we found

by this application. We show, that we can construct a protocol for any boolean function

using only two protocols by making use of this six card COPY protocol. We also show that

there are no protocols for certain prerequisites for the COPY and half adder function.

Thirdly we explore an alternative data structure within the implementation of the repre-

sentation of sequences. We exchange the arrays of the original implementations with a

Char datatype on which we can perform bitwise operations. We investigate if there is an

improvement in the performance of the bounded model checker when using the new data

structure.

1.3 Outline

We provide definitions drawn from the literature for card-based protocols in sections 2.1

and 2.2 and give an introduction to how bounded model checking can be used to find card-

based protocols in sections 2.3 and 2.4. We introduce a definition of a new protocol action

and extend the definition of KWH-trees in section 4.1.1 to include the additional action.

This is the only adaption of our definitions given in chapter 2. In section 3.1 we generalize

the method from section 2.4 and show how we can use it to find protocols for any function.

We provide a description and the results of our tests that use an implementation of the

generalizations from section 3.1 in section 3.2. We also experiment with the use of different

SAT solvers in section 3.2.2. We further universalize the method of using bounded model

checking to find card-based protocols in section 4.1 by introducing a nested structure

within the symbolic program. After introducing an implementation in section 4.2 we

present the results of our tests employing the nested structure in section 4.3. In chapter 5

we present an approach how to replace the data structure to represent sequence. In

section 5.1 we provide an implementation of our symbolic program with the new data

structure and how we can use bitwise operations to perform our actions within a protocol.

We present our test setup and give the results and how the new data structure performed

compared to the old one during bounded model checking in section 5.2. Finally, we provide

a summary of the results in section 6.1. A few starting points for future research are listed

in section 6.2.

3

2 Foundations

We specify the definitions of permutations in section 2.1 and give a description of card-

based protocols in section 2.2. Section 2.2.3 explains the construction of KWH trees which

will be used as a way of representing card-based protocols. Sections 2.3 and 2.4 will give

a brief description of C bounded model checking and how it can be used to find card

protocols.

2.1 Permutations

Permutations are central to card-based protocols. As we have seen in section 1.1 shuffles

(which consist of multiple shuffles) and permutations are used as steps in the protocol to

calculate the result Therefore, in the following we define the most important terms such

as permutations, cycles, explain their properties and introduce notations. The subsequent

explanations and definitions are gathered from Koch (2019).

Definition 1 (Permutation). A permutation of a set 𝑋 is the bijective function 𝜋 : 𝑋 → 𝑋 .

The set 𝑆𝑛 (𝑛 ∈ N) is called the symmetric group for a number 𝑛 and contains all possible

permutations of 𝑋 = {1, ..., 𝑛}. Its neutral element is the identity (the permutation of

length 𝑛, that maps every permutation in 𝑆𝑛 onto itself) and it uses composition (◦) as its
group operation. We denote a set of permutations with Π ⊆ 𝑆𝑛 .

A cycle is a tuple (𝑥1𝑥2...𝑥𝑛) where 𝑥1, 𝑥2, ...𝑥𝑛 ∈ 𝑋 are all distinct elements. The cyclic
permutation 𝜋 is a permutation with 𝜋 (𝑥𝑛) = 𝑥1 and 𝜋 (𝑥𝑖) = 𝑥𝑖+1 (1 ≤ 𝑖 ≤ 𝑛) and 𝜋 (𝑥) = 𝑥

for all x that are not occurring in the cycle but are in 𝑋 . A composition of multiple cycles

with disjoint sets can be written next to each other. Every permutation can be written in

such a fashion, which we call cycle decomposition. From now on, we write permutations

as cycle decompositions. For example, (123)(45) is a permutation with the mappings

{1 ↦→ 2, 2 ↦→ 3, 3 ↦→ 1, 4 ↦→ 5, 5 ↦→ 4}.

5

2 Foundations

2.2 Card-Based Protocols

The following definition of card-based protocols are gathered from Koch et al. (2021), Saito

et al. (2020), Koch (2019), and Koch et al. (2015).

Each card-protocol is executed on a deck of cards. These are the cards we use to perform

the protocol.

Definition 2 (Deck). A deck D is a multiset over a symbol set or deck alphabet Σ.

Adeck is represented by [[·]]. In our example in section 1.1we use the deck [[♣, ♣, ♣,♥,♥,♥]].
In this thesis, we focus exclusively on the deck that consists of symbols from Σ = {♣♥}.
We call this the two-color deck. A possible deck with the deck alphabet Σ = {♣♥} could
therefore be [[♣, ♣,♥,♥,♥]]. All cards within a deck have indistinguishable backs. Cards

with the same symbol from the deck alphabet also have a front that is indistinguishable

from each other.

A card within a deck can either be turned face-up (the symbol of the card is showing)

or face-down (the symbol of the card is hidden). To represent a card that is turned face

down, we define the special symbol ’?’, which is not part of Σ. We can therefore depict a

card lying on the table by a fraction
𝑎
𝑏
where 𝑎 and 𝑏 are elements of Σ ∪ {?}. The card

that is face-up is represented by 𝑎, while the card that is face-down is represented by 𝑏.

Thus, a face up card could be
♣
?
while the same card facing down would be written as

?

♣ .
To encode values with cards we need to have two cards. We call two cards that encode a

value (usually 0 or 1) a commitment.

Definition 3 (Commitment). A commitment to 𝑥 is a pair of two face-down cards that
encode the value 𝑥 .

Generally Koch et al. (2021) define the encoding for two bits 𝑐1 and 𝑐2 as follows:

𝑐1𝑐2 =

{
0 if 𝑐1 < 𝑐2

1 if 𝑐1 > 𝑐2
(2.1)

For the two-color deck {♣♥} we set the order as ♣ < ♥. Therefore two cards from the

two-color deck together form an encoding of a bit as follows: ♣♥ encodes a 0 and ♥♣
encodes a 1. Thus the commitment to 0 is the cards ♣♥ and the commitment to 1 is the

cards ♥♣.

Card-based protocols operate on sequences of cards. A sequence consists of all cards in

a deck. These cards have a specific order and orientation. Thus a sequence for the deck

[[♣, ♣, ♣,♥,♥,♥]] could be (?♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,).

Definition 4 (sequence). A sequence Γ = (𝛼1, 𝛼2, ..., 𝛼 |D|) contains all cards from a deck D
in a given order and orientation.

6

2.2 Card-Based Protocols

All possible sequences on the deck D are 𝑆𝑒𝑞D . Koch (2019, Chapter 6) defined the

several different actions on sequences Γ = (𝛼1, 𝛼2, ..., 𝛼 |D|) that a protocol can perform as

follows:

Definition 5 (permutation (perm, 𝜋)). A permutation (perm, 𝜋) with 𝜋 ∈ 𝑆𝑛 permutes Γ
according to 𝜋 . The result of this operation is the sequence. 𝜋 (Γ).

Take the sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣) and the permutation 𝜋 =(perm, (12)(34)). If we apply

the given permutation 𝜋 to the given sequence Γ, we receive the resulting sequence

𝜋 (Γ) = (?♥ ,
?

♣ ,
?

♣ ,
?

♥).

Definition 6 (shuffle (shuffle, Π, F)). A shuffle (shuffle, Π, F) has a permutation set Π ⊆ 𝑆𝑛
and a probability distribution F on Π. The shuffle draws a random permutation 𝜋 ∈ Π
according to the probability distribution F . Then it applies the chosen permutation to the
sequence Γ.

The definition of security will rely on the assumption that nothing about Γ is learned

during the execution of this action which cannot be learned from Π and/or the visible

part of the sequence. Shuffles can further have different properties such as closedness and

uniformness.

Definition 7 (Closedness). A shuffle (shuffle, Π, F) is closed if it is a subgroup of the
symmetric group (Saito et al., 2020).

That means that the set of possible permutations in a closed shuffle is invariant under

repetition (Koch, 2019). We call a protocol closed if it does not contain shuffles, that are

not closed.

Definition 8 (Uniformness). A shuffle (shuffle, Π, F) is uniform if the distribution proba-
bility distribution F is uniform, meaning any 𝜋 ∈ Π is drawn with equal probability. (Saito
et al., 2020).

That means, that within a uniform shuffle action, every possible permutation has the

same probability (Koch, 2019). A uniform shuffle can be written only as (shuffle, Π).
Take as an example the sequence Γ = (?♣ ,

?

♥ ,
?

♥ ,
?

♣) and the shuffle (shuffle, id, (123)))

with an uniform probability distribution F . The possible resulting sequences are either

(?♣ ,
?

♥ ,
?

♥ ,
?

♣), if the randomly chosen permutation 𝜋 was id, or (?♥ ,
?

♣ ,
?

♥ ,
?

♣) if the randomly

chosen permutation 𝜋 was (123). The given shuffle (shuffle, id, (123))) is not closed. We

can prove this, by showing that it is not invariant under repetition. If we apply the

permutation 𝜋 = (123) to the sequence Γ′ = (?♥ ,
?

♣ ,
?

♥ ,
?

♣), we receive the new sequence

Γ′′ = (?♥ ,
?

♥ ,
?

♣ ,
?

♣). This sequence Γ
′′
is not an element of the set of possible sequences that

result from applying (shuffle, id, (123))) to the sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣). Therefore the
set of possible permutations in the shuffle is not invariant under repetition and thus the

shuffle is not uniform.

7

2 Foundations

Definition 9 (turn (turn, T)). A turn (turn, T) with the turn set T ⊆ 1, ..., 𝑛, flips the cards
at the positions specified by T .

With
𝑎
𝑏
being the card where 𝑎 is facing up and 𝑏 is facing down, after flipping the card we

have
𝑏
𝑎
. As an example, executing a turn operation (turn, 1) on the sequence Γ = (?♣ ,

?

♥ ,
?

♥ ,
?

♣)
would result in the sequence Γ = (♣

?
, ?♥ ,

?

♥ ,
?

♣). In our protocols after having turned the

cards in the turn sets, and thus learned their symbol, we immediately turn them back

around. This will not be explicitly written as its own turn operation.

Definition 10 (result (result, 𝑝1, 𝑝2, ..., 𝑝𝑟)). The result (result, 𝑝1, 𝑝2, ..., 𝑝𝑟) is the output of
a protocol. The positions 𝑝1, 𝑝2, ..., 𝑝𝑟 ∈ {1, ..., 𝑙} terminates the protocol and specifies that the
output is 𝑂 = (Γ [𝑝1], Γ [𝑝2], ..., Γ [𝑝𝑟]).

The cards at the positions 𝑝1 to 𝑝𝑟 have to be facing down when this action is performed.

For our purpose the positions 𝑝1, 𝑝2, ..., 𝑝𝑟 ∈ {1, ..., 𝑙} also have to be one or more valid

commitments. Thus for the sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣), (result, 1,2) would be a valid result

𝑂 = (Γ [1], Γ [2]) = (♣,♥), while (result, 2,3) would be an invalid result𝑂′ = (Γ [2], Γ [3]) =
(♥,♥). For our protocols we adapt the definition by Koch et al. (2021) for the case that

we have more than one output commitment. In this separate the output commitments

with brackets to emphasize which cards form a commitment. The result (result, (1,2)(4,3))

would be a valid result𝑂′′ = (♣,♥, ♣,♥), where the first two cards are the cards that belong
to commitment one and the other rwo cards encode commitment two.

2.2.1 Runtime of Card-Based Protocols

The runtime of card-based protocols refers to the amount of steps that have to be performed

until a solution is reached. A step can be either a permutation, a turn, or a shuffle. We

do not count the result action as a step. The protocol by Mizuki and Sone (2009) given

in section 1.1, that executes first two perms and a shuffle and then a turn therefore has

four steps. With card-based protocols we generally distinguish two types of runtime. We

either have a fixed number of steps that it takes for the protocol to compute the result, or

we do not have a fixed number but only an expected number of steps until the protocol

produces a result. The former is called a finite runtime protocol and the latter a Las Vegas

protocol.

Definition 11 (Finite Runtime). Finite runtime protocols have a fixed bound on the number
of steps (Koch et al., 2015).

Therefore the runtime is bounded and can be precisely predicted (Koch, 2019). A KWH-

Tree (section 2.2.3) of a finite runtime protocol is finite (Koch et al., 2021). The AND
protocol from section 1.1 is a finite runtime protocol. It produces a result after four steps

for every possible input.

8

2.2 Card-Based Protocols

Definition 12 (Las Vegas). For Las Vegas protocols the number of steps until termination is
only expectedly finite (Koch, 2019).

Within a KWH-Tree a Las Vegas protocol makes use of restart actions, and/or its states

form a cyclic diagram. (Koch et al., 2015). We distinguish Restart-Free Las Vegas protocols
and restarting Las Vegas protocols (Koch et al., 2015). For Restart-Free Las Vegas there has

to be a constant probability to exit for each cycle. We also cannot end up in a state where

we have to restart the whole protocol from the beginning. A restart would mean, that both

players have to provide their commitment again (Koch, 2019).

2.2.2 Correctness and Security of Card-Based Protocols

The definitions of correctness and security of card-based protocols are the ones Koch

et al. (2021) use. A protocol is correct if it calculates the correct result from the input

commitments for all possible correct inputs. More formally:

Definition 13 (Correctness). A protocol 𝑃 with input 𝐼 computing a function 𝑓 is correct, if
the probability of the output 𝑂 being 𝑂 = 𝑓 (𝐼) is 1.

Generally a protocol is considered secure, if during the protocol execution, the visible

cards do not reveal anything about the input and if the output of the protocol reveals

nothing about the input apart from what can be derived from the result. Koch et al. (2021)

provide a definition of security which we will call probabilsitic security, to distinguish it

from other security definitions, that we will give below.

Definition 14 (Probabilistic Security). A given protocol has probabilistic security, if for
every turn operation the probability 𝑋𝑣 for each observation 𝑣 is a constant 𝑝 between 0 and 1.
For all observations of a turn operation

∑
𝑣∈[0,1]2 𝑋𝑣 = 1 holds. Additionally, every probability

𝑋𝑤 of each output basis𝑤 has to be a constant between 0 and 1 as well. For all observations
of a output basis

∑
𝑤∈[0,1]2 𝑋𝑤 = 1 holds.

For the formalization with bounded model checkers Koch et al. (2021) defined two other

types of security: input-possibilistic security and output-possibilistic security.

Definition 15 (Input-Possibilistic Security). A protocol 𝑃 is input-pssibilistically secure, if
it is correct and for random input 𝐼 (where 𝑃𝑟 [𝐼 = 𝑖] > 0 for all 𝑖 ∈ {0, 1}2) and any visible
sequence trace 𝑣 with 𝑃𝑟 [𝑣] > 0 as well as any input 𝑖 ∈ {0, 1}2 we have 𝑃𝑟 [𝑣 |𝐼 = 𝑖] > 0.

Definition 16 (Output-Possibilistic Security). A protocol 𝑃 is input-pssibilistically secure,
if it is correct and for random input 𝐼 (where 𝑃𝑟 [𝐼 = 𝑖] > 0 for all 𝑖 ∈ {0, 1}2) and any visible
sequence trace 𝑣 with 𝑃𝑟 [𝑣] > 0 as well as any output 𝑜 ∈ {0, 1} we have 𝑃𝑟 [𝑣 |𝑓 (𝐼) = 𝑜] > 0.

9

2 Foundations

Corrolary 1. Every protocol that is input possibilistically secure protocol is also output
possibilistically security.

Proof. Assume that we have a input-possibilistic protocol. Then it is by definition correct.

Also, every output is the result of at least one of the possible inputs. For a protocol with

input possibilistic security, the probability for every input in every visible sequence trace

is greater than 0. Therefore the probability for every output in every visible sequence

trace is also greater than 0. □

Corrolary 2. Not every protocol with output possibilistic security also possesses input-
possibilistic security.

Proof. A protocol calculating the boolean XOR, has two possible inputs that result in the

output 0 and two possible inputs that result in the output 1. Therefore if we have a visible

sequence trace, where the probability for each output is greater than 0, the probability

for the one of the two inputs that have the same output could be 0 without violating the

requirement that the possibility for all outputs has to be grater 0. □

This means the stronger security guarantee is input-possibilistic security and the weaker

security guarantee is output-possibilistic security.

Remark 1. If we want to prove the nonexistence of a protocol, proving that no protocol exists
with output-possibilistic security is the stronger statement. For the existence of a protocol
proving that a protocol has input-possibilistic security is the stronger statement.

2.2.3 KWH-Trees

The descriptions of KWH-trees are taken from Koch et al. (2015) where KWH-trees are first

introduced, as well as from Koch et al. (2021). KWH-Trees describe all possible executions

of a protocol in the form of a tree. The nodes represent the sequences that are possible at

a specific step in the protocol. The vertices have he action that the protocol prescribes

in that situation associated to it. The tree branches when the visible sequence differs i.e.

when a turn operation is performed.

To start, let us look at a single node which we will call a state. Our example is the start state

of the six card AND protocol by Mizuki and Sone (2009). A state contains all sequences

that are possible at a specific point in the protocol. Instead of depicting a sequence as

Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣) we only depict the values of the cards as ♣♥♣♥♣♥.

10

2.2 Card-Based Protocols

♣♥♣♥♣♥ 𝑋00

♣♥♥♣♣♥ 𝑋01

♥♣♣♥♣♥ 𝑋10

♥♣♥♣♣♥ 𝑋11

Apart from the sequence itself, we also track its symbolic probability. For input-possibilistic

security, the symbolic probability describes that the sequence has the probability of 𝑋𝑖 𝑗

that (𝑖, 𝑗) is the input that produced this sequence. For output-possibilistic security, the

symbolic probability describes that the sequence has the probability of 𝑋𝑖 that (𝑖) is the
output that will be reached when executing the remaining protocol on the sequence. In

our example the symbolic probabilities are 𝑋00, 𝑋01, 𝑋10 and 𝑋11. Therefore the first line of

our example (♣♥♣♥♣♥ 𝑋00) can be interpreted as: the sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣) has
the symbolic probability 𝑋00. We have taken a more formal definition of states from Koch

et al., 2021.

Definition 17 (State). For a protocol P that has a deckD and computes a boolean function 𝑓 ,
a state 𝜇 is a map 𝜇 : SeqD → X2 whereX2 describes the polynomials over the variables𝑋𝑏 for
𝑏 ∈ {0, 1}2 of the form∑

𝑏∈{0,1}2 𝛽𝑏𝑋𝑏 , for 𝛽𝑏 ∈ [0, 1] ⊊ R. 𝜇 (𝑠) for 𝑠 ∈ SeqD is interpreted as
the probability that 𝑠 is the actual sequence on the table, in terms of the symbolic probabilities
on the inputs.

We can now interpret the nodes as states, that show all sequences with a probability

greater than 0. We can also describe the action defined in section 2.2 in the context of

KWH-Trees. As an illustration we use the six card AND protocol by Mizuki and Sone, 2009

shown in fig. 2.1.

For a permutation (perm, 𝜋) (definition 5) a sequence 𝑠 with probability 𝑃𝑟 (𝑠) the resulting
sequence of the permutation with 𝑝𝜋 𝜋 (𝑠) will be assigned the probability 𝑃𝑟 (𝑠). For our
example in fig. 2.1 we have a permutation as the first operation. If we pick out the first

sequence ♣♥♣♥♣♥ with probability 𝑋00, we can see that after applying the permutation

𝜋 =(243) the resulting sequence ♣♣♥♥♣♥ then has the probability 𝑋00.

A shuffle operation (shuffle, Π, F) (definition 6) contains multiple permutations 𝜋 ∈ Π.
So a sequence 𝑠 will be permuted by a 𝜋 ∈ Π with the probability designated by F . For

our example we have a shuffle with uniform probability (definition 8) and thus every

permutation 𝜋 ∈ Π has the same probability. If we continue with the sequence ♣♣♥♥♣♥,
either the permutation id or the permutation (14)(25)(36) was applied to it, each with

probability
1

2
.

After a turn (turn, T) (definition 9), the visible sequence differs and we thus have a

branching of the tree. In our example the turn at T = {1, 2} can produce two possible

visible sequences, either ♣♥???? or ♥♣????. The probability for observing either of the

11

2 Foundations

♣♥♣♥♣♥ 𝑋00

♣♥♥♣♣♥ 𝑋01

♥♣♣♥♣♥ 𝑋10

♥♣♥♣♣♥ 𝑋11

♣♣♥♥♣♥ 𝑋00

♣♥♣♥♣♥ 𝑋01

♥♣♥♣♣♥ 𝑋10

♥♥♣♣♣♥ 𝑋11

(perm, (243))

♣♣♥♥♣♥ 1

2
𝑋00 + 1

2
𝑋10

♣♥♣♥♣♥ 1

2
𝑋01

♥♣♥♣♣♥ 1

2
𝑋00 + 1

2
𝑋10

♥♥♣♣♣♥ 1

2
𝑋11

♥♣♥♣♥♣ 1

2
𝑋01

♣♣♥♥♥♣ 1

2
𝑋11

(shuffle, {id, (14)(25)(36))

♣♥♣♥♣♥ 1

2
𝑋00 + 1

2
𝑋10

♣♥♥♣♣♥ 1

2
𝑋01

♥♣♣♥♣♥ 1

2
𝑋00 + 1

2
𝑋10

♥♣♥♣♣♥ 1

2
𝑋11

♥♣♣♥♥♣ 1

2
𝑋01

♣♥♣♥♥♣ 1

2
𝑋11

(perm, (234))

♣♥♣♥♣♥ 𝑋00 + 𝑋10

♣♥♥♣♣♥ 𝑋01

♣♥♣♥♥♣ 𝑋11

♥♣♣♥♣♥ 𝑋10 + 𝑋00

♥♣♣♥♥♣ 𝑋01

♥♣♥♣♣♥ 𝑋11

(result, 5, 6)
✓

(result, 3, 4)
✓

(turn, {1, 2})

♣♥???? ♥♣????

Fig. 2.1: Six card AND protocol by Mizuki and Sone, 2009.

sequences is the same for each possible input, so no information about the rest of the

sequence is leaked.

The output of the protocol is given as (result, 𝑝1, 𝑝2, ...𝑝𝑛 (definition 10). Within a KWH-

Tree we can easily observe if the given 𝑝1, 𝑝2, ...𝑝𝑛 encode a correct result, because the

state with all its possible sequences is drawn. Thus we can observe in our example that for

(result, 5,6) the sequences ♣♥♣♥♣♥ and ♣♥♥♣♣♥ correctly encode a 0 and the sequence

♣♥♣♥♥♣ correctly encodes a 1.

2.2.4 Card-Based Protocols for Multi-Party Computation

Card-based cryptographic protocols can perform secure multi-party computation. in

general multi-party computation allows multiple parties, that each hold their private data,

to calculate a function without revealing their private data to the others.

12

2.2 Card-Based Protocols

Definition 18 (Multi-Party Computation (MPC)). Stiglic (2001) defines multi-party com-
putation as follows: We assume a group of 𝑛 players 𝐶1,𝐶2, . . . ,𝐶𝑛 with inputs 𝑐1, 𝑐2, . . . , 𝑐𝑛 ,
where the input 𝑐𝑖 is the private input of player 𝐶𝑖 . These players want to correctly and
securely compute 𝑓 (𝑐1, 𝑐2, . . . , 𝑐𝑛), where 𝑓 is a public function. Securely means, that each
player 𝐶𝑖 learns nothing about the input of the other players, than what he can deduce from
his own input 𝑐𝑖 and the result of the function 𝑓 (𝑐1, 𝑐2, . . . , 𝑐𝑛).

Our definition of multi-party computation relies on the assumption, that the players are

"honest but curious" (Rastogi et al., 2019) That means, that they do follow the protocol and

do not try to manipulate it (e.g. by turning cards over that are not supposed to be turned

over), but that they want to gain as much knowledge as they can about the other players

input by observing the protocol.

For our application of card-based protocols, we focus on Boolean functions. A boolean

function is a function whose arguments and results are one or more values out of the set

0,1. We adapt the definition by Koch et al. (2021) to include boolean functions of arbitrary

input and output length.

Definition 19 (Compute a Boolean Function). A protocol P computes a boolean function
𝑓 : [0, 1]𝑖 → [0, 1] 𝑗 where 𝑖, 𝑗 ∈ N if the following holds:

• The possible start sequences corresponding to the players inputs 𝑏 ∈ [0, 1]𝑖 do encode
the inputs as the correct commitments.

• The cards that contain the output commitment(s) after the termination of the protocols,
encode the output value 𝑜 (𝑏) for every possible input 𝑏 ∈ [0, 1] 𝑗 .

There are several explanations in the existing literature on how to construct a protocol for

any boolean function from given boolean operators. Niemi and Renvall (1998) utilize a

AND, OR and NOT operator as well as a COPY protocol. Nishida et al. (2015) also present

an approach that uses XOR, AND and COPY protocols.

Let us take a closer look at the approach by Nishida et al. (2015). They utilize the four

card XOR protocol shown in fig. A.2 as well as the COPY protocol described in this section.

They also employ a variant of the six card AND protocol shown in fig. 2.1, they produces a

commitment to 𝑐1∧𝑐2 and a commitment to 𝑐2 (Nishida et al., 2015). Using those protocols,

they give a protocol for the computation of any boolean function that uses 2𝑛 + 6 cards

to compute a function with 𝑛 input commitments. Their protocol requires the function

to be an AND-XOR expression. In general this can be achieved by expressing the desired

function as a Shannon expansion (Sasao, 1999, Chapter 3):

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥1𝑥2 . . . 𝑥𝑛 𝑓 (0, 0, . . . , 0) ⊕ 𝑥1𝑥2 . . . 𝑥𝑛 𝑓 (1, 0, . . . , 0)
⊕ 𝑥1𝑥2 . . . 𝑥𝑛 𝑓 (0, 1, . . . , 0) ⊕ · · · ⊕ 𝑥1𝑥2 . . . 𝑥𝑛 𝑓 (1, 1, . . . , 1)
= 𝑇1 ⊕ 𝑇2 ⊕ · · · ⊕ 𝑇𝑛

(2.2)

13

2 Foundations

Once we have a function that is an exclusive disjunction of conjunctions, we can use

the AND, COPY protocols to calculate the result of a 𝑇𝑖 = 𝑣1 ∧ 𝑣2 ∧ For that we copy

𝑣1 using the COPY protocol and then apply the AND protocol to 𝑣1 and 𝑣2. We receive

𝑣1 ∧ 𝑣2 as well as 𝑣2. We now repeat these steps, copying 𝑣1 ∧ · · · ∧ 𝑣𝑖−1 and calculating

(𝑣1 ∧ · · · ∧ 𝑣𝑖−1) ∧ 𝑣𝑖 with the AND protocol. Once we have calculated the result of 𝑇𝑖 , we

can calculate the result of (𝑇1 ⊕ 𝑇2 ⊕ · · · ⊕ 𝑇𝑖−1) ⊕ 𝑇𝑖 with our XOR protocol.

Throughout this work we make use of several protocols from the existing literature.

Protocol #Cards #Steps Shuffle Type Runtime

AND by Mizuki

and Sone (2009)

6 4 uniform closed Finite Runtime fig. 2.1

AND by Koch et

al. (2021)

5 4 uniform closed Las Vegas fig. A.1

XOR by Mizuki

and Sone (2009)

4 4 uniform closed Finite Runtime fig. A.2

COPY by Mizuki

and Sone (2009)

2𝑘 + 4 (𝑘 copies) 4 uniform closed Finite Runtime listing 2.1

Table 2.1: Protocols from literature, that are used in this thesis. All protocols are proba-

bilistically secure (definition 14).

For the Finite Runtime COPY protocol of Mizuki and Sone (2009) we consider the case,

that produces 1 copy. Because we need 2𝑘 + 4 cards to produce 𝑘 copies, the protocol

producing 1 copy needs 2 ∗ 1 + 4 = 6 cards. Listing 2.1 describes the actions of the COPY
protocol for one copy and six cards. The input for this protocol is the one commitment

that should be copied. The other four cards are arranged as ♣♥♣♥.

Listing 2.1 The protocol to compute COPY by Mizuki and Sone (2009).

1 (perm, (2453))
2 (shuffle, {id, (14)(25)(36)})
3 (perm, (2354))
4 v = (turn, {1,2})
5 if v == (♣,♥,?,?,?,?) then
6 (result, {(3,4),(5,6)})
7 else if v == (♥,♣,?,?,?,?) then
8 (result, {(4,3),(6,5)})

2.3 Software Bounded Model Checking

The explanations and descriptions of bounded model checking are taken from (Koch et al.,

2021).

14

2.4 Using Software Bounded Model Checking to Find Card Protocols

Software Bounded Model Checking (SBMC) is a fully-automatic static technique from

formal program verification. It analyzes programs given in programming language such

a C, C++ or Java. We will focus on C Bounded Model Checking (CBMC) (Kroening and

Tautschnig, 2014), which is a bounded model checker for C programs.

The main purpose of SBMC is to find violations of assertions in programs, or to prove

that the assertions hold for all inputs within a given bond. The given programs are not

executed by SBMC, but statically analyzed without executing them on specific values.

This is done by transforming the program into a control flow graph. Then the control flow

graph is unwound and a formula is built from it. The resulting formula can then solved

by a SAT or SMT solver. If the SAT formula can be satisfied, then a program run, which

violates an assertion, is found. In this case the bounded model checker returns the faulty

run. In the case that the formula is unsatisfiable, meaning that no faulty run can be found,

there are two possibilities. Either the assertions hold and the property is valid, or the

property is invalid for runs that were not considered because they are out of bounds.

As an input, SBMC is given an imperatively defined function in the form of an imperative

program. This imperative program has a set of possible start values I. An entry 𝑖 ∈ I
contains a list of values, one for each parameter that a run of the imperative program can

depent on. A parameter can be for example a input variable, or nondeterministic values.

Nondetermintistic parameters have arbitrary but fixed value for a concrete evaluation of

the imperative program.

Further we need a software property to be checked. The property has a form of 𝐶𝑎𝑛𝑡 ⇒
𝐶𝑐𝑜𝑛𝑠

, with𝐶𝑎𝑛𝑡
and𝐶𝑐𝑜𝑛𝑠

being boolean statements. This means that for all possible entries

𝑖 ∈ I that if 𝑖 satisfies 𝐶𝑎𝑛𝑡
then 𝑖 also has to satisfy 𝐶𝑐𝑜𝑛𝑠

. The property is only valid if

there is no entry 𝑖 that satisfies 𝐶𝑎𝑛𝑡
but does not satisfy 𝐶𝑐𝑜𝑛𝑠

. An example for a property

could be𝐶𝑎𝑛𝑡 = 𝑣1 is odd and𝐶
𝑐𝑜𝑛𝑠 = 𝑣1 is a prime number. Then 𝑖 = {𝑣1 = 3} satisfies𝐶𝑎𝑛𝑡

and 𝑐𝑐𝑜𝑛𝑠 but 𝑖 = {𝑣1 = 9} does not.

2.4 Using Software Bounded Model Checking to Find Card
Protocols

Koch et al. (2021) apply the method of software bounded model checking described in

section 2.3 to the task of finding card-based protocols. They employ CBMC a bounded

model checker for programs written in C. Their program and the description here focus

on finding protocols for the AND gate.

Koch et al. (2021) implement a representation of the components of KWH trees (see Sec.

2.2.3) within a standardized C program. The specific properties, such as the number

15

2 Foundations

of cards used or the level of security can be specified by setting constants within the

C program. Operations within the protocol such as what operation will be performed

or which cards encode the output are implemented as nondeterministic variables. As

described in section 2.3, CBMC symbolically executes programs to find violations of the

provided assertions, or to prove that the assertions hold for all inputs within a given

bond. The assertion given by Koch et al. (2021) is a simple assert(0) at the end of the

program. Thus if the assertion is reached and therefore violated, there exists a input

and an assignment of the non-deterministic variables so that there is a run through the

standardized program and with that a protocol. The error trace that CBMC returns is the

run through the standardized program that produced the violation. This is the protocol

we are looking for. If the assertion is not violated, that means that it was not reached and

thus there is no run through the standardized program. This means that there exists no

protocol.

The standardized C program contains implementations of the neccesary actions that a

protocol can perform as well as fuctions that ensure the security and correctness of the

program. The program can be structured in three main parts. First all possible input states

as well as the start sequence are created. Afterwards, the shuffles and turns of the protocols

are performed. Here there are checks, that ensure that the chosen shuffle and turns are

allowed and that the security of the protocol is not violated. Finally there are functions

that check if the previously executed shuffles and turns resulted in a valid output.

Certain properties of the program can be adjusted by setting constants within the stan-

dardized program before executing CBMC. The most important constants are the number

of cards used as well as the amount of steps the protocol should have. Furthermore, the

program by Koch et al. (2021) supports two security types: input-possibilistic security

(definition 15) and output possibilistic security (definition 16). The bounded model checker

comes to a result faster if it searches for a protocol with output-possibilistic security and

not input possibilistic security (see table 3.2). As described in section 2.2.2, this is the

stronger condition when it comes to the non-existence of protocols. If we find a protocol

however, we would want it to be input possibilistic as well, because output-possibilistically

secure protocols can in certain cases leak information about the input (see fig. 3.2). By

default, the bounded model checker considers permutation sets of any size. The number

of possible permutations of a sequence of 𝑛 cards is 𝑛!. To calculate the number of possible

permutation sets of n, we determine the size of the power set of the set of possible permu-

tations. The power set is the set of of all subsets of a given set 𝑆 . As the power set also

includes the empty set, which we do not want to pick as a permutation set, we calculate

the number of possible permutation sets of a sequence of 𝑛 cards as 2
𝑛! − 1. As the number

of possible permutation sets grows exponentially with increasing card numbers, we might

want to reduce the complexity and thus keep the running time of the program lower by

reducing the maximum size of the permutation set. Therefore a value for the permutation

set size can be provided, and the bounded model checker will only search for protocols

with a permutation set that is as big or smaller than the limit provided. This reduction can

however, reduce the strength of the results, if there is no protocol found, because there

could be a protocol for a shuffle set that is bigger than the given maximum shuffle set size.

16

2.4 Using Software Bounded Model Checking to Find Card Protocols

The user can also determine whether he only wants to search for protocols with closed

shuffles (definition 7) or not.

In the case that a program for the specified input exists, CBMC will find a run through the

program that violates𝐶𝑐𝑜𝑛𝑠 = assert(0). Thatmeans that the input and the non-deterministic

parameters are chosen in a way that they form a valid protocol. The trace of the run

therefore contains all the necessary information to recreate the protocol. All we have to do

now is obtain the instantiations of the non-deterministic parameters from the trace. These

are for example whether a specific step was a shuffle or turn operation, which shuffles were

chosen for the shuffle set and which cards encode the output commitment. To transfer the

protocol into a step-by step explanation in the form of a KWH-tree for example, we will

also have to complete the missing branches of the protocol. This is because we only look

at one possible post state after every possible turn. Therefore we will only receive one run

from start state to result state through the protocol. We can allow ourselves to only look

at one possible post state, because if we have one valid run from start state to result state,

that is chosen with a probability greater than zero, we can always restart our protocol for

the post states that were not looked at further. With this approach, we can complete every

protocol found by the bounded model checker and receive a protocol that is a restarting

Las Vegas protocol. However, for most of the protocols found by the bounded model

checker, we can complete the protocol manually by exploiting similarities between the

actions and states found by the bounded model checker and the ones we have to complete

manually. With this approach we can construct protocols, that are Restart-Free Las Vegas

or even Finite Runtime protocols.

Implementation of the representation of KWH trees

In order for us to implement a representation of the components of KWH trees (see

Sec. 2.2.3) within a standardized C program, we need to have a data structure for the

representation of the states. We implement states as a single array containing all possible

sequences (see listing 2.2. Unlike in the states in KWH-trees (see section 2.2.3) where only

the sequences with a probability greater than zero are depicted, the states in this program

representation hold all possible sequences regardless of probability.

Listing 2.2 Representation of a state by Koch et al. (2021)

1 /**
2 * All sequences are remembered here, as seen from left to right,

sorted alphabetically.
3 * The states in this program are equal to the states in KWH trees.
4 */
5 struct state {
6 struct sequence seq[NUMBER_POSSIBLE_SEQUENCES];
7 };

17

2 Foundations

A sequence itself contains an array of unsigned integers which holds the cards. For the case

of using only two colours, we represent ♣ as the integer value 1 and the ♥ as the integer

value 2. Thus the card sequence ♣♥♥♣ would be represented by the array [1,2,2,1]. The

sequence also contains a struct that holds the probabilities for the sequence.

Listing 2.3 Representation of a sequence by Koch et al. (2021)

1 struct sequence {
2 unsigned int val[N];
3 struct fractions probs;
4 };

The array that holds the different probabilities has a different number of entries depending

on the chosen probability. For input-possibilistic security (definition 15) it is the number

of possible inputs i.e. 4, and for output-possibilistic security (definition 16) it is the number

of possible outputs i.e. 2.

Listing 2.4 Representation of a fraction by Koch et al. (2021)

1 struct fraction {
2 unsigned int num; // The numerator.
3 unsigned int den; // The denominator.
4 };
5

6 struct fractions {
7 struct fraction frac[NUMBER_PROBABILITIES];
8 };

After the input is generated, the program performs a loop with the amount of iterations

specified at the beginning as the amount of steps. Within each loop, the program nonde-

terministically chooses whether to perform a turn or a shuffle operation. Starting from

the input states it performs the chosen turns and shuffles and computes the resulting

intermediate states until the loop ends.

If we choose a turn, we then nondeterministically choose an index (turnPosition) at

which we turn the card. After that, the calculation of the resulting states consists of

imperative operations that compute the new resulting states and update the probabilities.

The new resulting states are computed as follows. We create a new state for each possible

card colour. For every sequence that is still possible, we determine the card colour at

the index we chose. This is done by reading the value of the array at the specified

turnPosition (see listing 2.5).

Listing 2.5 Turning one card at index "turnPosition" in a sequence during the execution of a turn
operation (Koch et al., 2021)

1 unsigned int turnedCardNumber = seq.val[turnPosition];

18

2.4 Using Software Bounded Model Checking to Find Card Protocols

We then copy the probabilities of the sequence into the new state for the determined card

colour. After we have done so for all sequences, we check whether our security definitions

(see Sec. 2.2.2) still hold. For input- and output-possibilistic security, we need to find one

sequence for every possible in-/output. After every turn operation, there are two possible

states that can be reached from there. The state that occurs, if a ♣ has been turned and the

state that occurs if ♥ has been turned. We calculate both of the possible post states and

check if they are valid, but we only look at one of them for our following operations. The

post state we look at is chosen nondeterministically.

For a shuffle operations we first nondeterministically determine the size of our shuffle set.

If the size of the shuffle set is one i.e. we only choose one permutation from the set of

possible permutations, we have a permutation (perm, 𝜋) instead of a shuffle (shuffle, Π, F)

(see Sec. 2.2). We also choose the permutations nondeterministically. Afterwards we can

check for optional shuffle properties e.g. if the chosen permutations make a closed shuffle.

Then we apply the shuffle we generated to our current state. We do this by iterating over

every permutation j from the shuffle set and every sequence i in the state and applying

the permutatuion j j to the sequence i Both the permutation j and the sequence i are

arrays. For each card k in the sequence we read the value of the sequence at that array

index k. Then we determine the index to write this value to, by determining the value of

the permutation at that array index k- The predetermined value of the sequence, is then

written to a new array resultingSeq at the index taken from the permutation array.

Listing 2.6 Applying permutation j to sequence i during the execution of a shuffle operation
(Koch et al., 2021)

1 for (unsigned int k = 0; k < N; k++) {
2 resultingSeq.arr[permutationSet[j][k]] = s.seq[i].val[k];
3 }

The result of the shuffle is the state after the shuffle operation. We now check for each

sequence in the state, whether it is a bottom sequence.

Definition 20 (Bottom Sequence). A sequence is a bottom sequence if it belongs to more
than one possible output.

If a shuffle results in one sequence being a bottom sequence, the protocol can no longer

produce the correct result. That is because this sequence belongs to more than one possible

output. Thus however the result will be defined, it will be wrong for one of this multiple

possible outputs.

19

3 A Standard Program Representation for
Finding Card-based Protocols for Any
Boolean Function

In section 2.4 we have seen a general description of the implementation of a standardized

program representation by Koch et al. (2021). Their representation was designed to

find protocols for AND. Our aim is, to use bounded model checking (section 2.3) and

the implementation by Koch et al. (2021) (section 2.4) to find protocols for any type

of function. In section 3.1 we give a description of how to implement a standardized

program representation, so that it is able to find a protocol for an arbitrary function.

Using these principles, we implement a standardized program representation for a select

number of functions in section 3.2 and perform a test on the efficiency of different SAT

solvers in section 3.2.2. We present the protocols found using this standardized program

representation in section 3.2.3 and discuss the size constraints for using the bounded model

checker with our implementations in section 3.2.4. .

3.1 Adjustments to the Standard Program Representation for
Boolean Functions

In general, a mathematical function assigns to each element from a set 𝑋 (domain), an

element from a set 𝑌 (co-domain). In these sections we will now take a closer look at how

changes in the domain, co-domain and the function behaviour are represented within our

program to ensure that we obtain a protocol for the desired function. First we will look at

the function behaviour (definition 19). This means, which input maps to which output.

Then we will consider the amount of input commitments for our functions i.e. the domain.

Finally we will take a look at the amount of output commitments for our functions i.e. the

co-domain.

21

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

3.1.1 Function Behaviour

The function behaviour determines the output value for each input value. As an example

for this section, let us look at binary boolean operators. They take the same amount of input

commitments (namely two) and have the same amount of output commitments (namely

one). The program by Koch et al. (2021) is designed to find protocols for AND. However,
there are many other binary boolean operators like XOR and OR. They differentiate

themselves from AND not in their possible inputs and outputs, but in the way inputs are

mapped to outputs. As seen in table 3.1, The input Com1 = 1 and Com2 = 0 would result

in the output 1 for OR but 0 for AND.

Com1 Com2 AND OR XOR
0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 3.1: Truth assignments for AND, OR and XOR

Our task now is to determine how the function behaviour is represented and encoded in the

program. The different function behaviours express themselves within the link between

input and output. Therefore, the function behaviour influences how the possibilities for

output possibilistic security (definition 16) are calculated. For input possibilistic security

(definition 15) and probabilistic security (definition 14), the examination if a sequence is a

bottom sequence and the calculation of the output is impacted, because they both depend

on the output.

Let us start with the calculation of the possibilities. For output possibilistic security, we

determine in the beginning for all possible input sequences which sequence will be mapped

onto the output 0 and which will be mapped onto the output 1. The mapping is recorded

in the possibilities: 𝑋0 if the output is 0 and 𝑋1 if the output is 1. Within the code, the

possibilities are held within the struct fractions where frac[0] contains the fraction for

𝑋0 and frac[1]contains the fraction for 𝑋1 (see listing 3.1). For AND the input sequence

11 (♥♣♥♣) has the output 1 and therefore has a possibility of 𝑋0 = 0 and 𝑋1 = 1. The other

input sequences 00, 01 and 10 (♣♥♣♥, ♣♥♥♣ and ♥♣♣♥) have the output 0 and therefore has
a possibility of 𝑋0 = 1 and 𝑋1 = 0. For OR on the other hand, for the first input sequence

where both commitments are 0 ((♣♥♣♥), 𝑋0 is set to 1 and 𝑋1 is set to 0. For all other

possible input sequences, it is set the other way round. For input possibilistic security and

probabilistic security we instead calculate the possibility from the input not the output.

Thus, it is not different for functions that have the same amount of input commitments.

Listing 3.1 The structs for sequences fractions.

1 struct fraction {
2 unsigned int num; // The numerator.

22

3.1 Adjustments to the Standard Program Representation for Boolean Functions

3 unsigned int den; // The denominator.
4 };
5

6 struct fractions {
7 // NUMBER_PROBABILITIES = 2 for output possibilistic security,
8 // and = 4 for the other types of security.
9 struct fraction frac[NUMBER_PROBABILITIES];
10 };
11

12 struct sequence {
13 unsigned int val[N]; // N is the number of cards in a sequence
14 struct fractions probs;
15 };

Now let us take a look at the adaptations for input possibilistic and probabilistic security,

starting with the check for bottom sequences. As described in section 2.4 we check for

bottom sequences (definition 20) every time we perform a shuffle. We also check it while

testing if a state is a final state. We do that, because if we have a bottom sequence, our

program is faulty. A sequence is a bottom sequence if it belongs to more than one possible

input and we cannot give back a correct result for the sequence if it belongs to more than

one output. To illustrate, a sequence would be a bottom sequence for AND if the sequence

had input possibilities of 𝑋11 ≠ 0 and 𝑋01 ≠ 0. The same sequence would not be a bottom

sequence for OR if the sequence had input possibilities of 𝑋11 ≠ 0 and 𝑋01 ≠ 0. This is

because these input commitments both evaluate to 1. For output possibilistic security, the

check for bottom sequences remains the same throughout all different function behaviours

(see listing 3.2). For input possibilistic and probabilistic security on the other hand, we

have to exclude that probabilities that represent inputs which map onto different outputs

are present in the same sequence (see listing 3.3).

Listing 3.2 Extract from isBottom() for WEAK_SECURITY == 2 (output possibilistic security)

1 bottom = probs.frac[0].num && probs.frac[1].num;

Listing 3.3 Extract from isBottom() for WEAK_SECURITY != 2 (input possibilistic and probabilistic
security) for AND(top), OR(middle) and XOR(bottom)

1 bottom = (probs.frac[0].num || probs.frac[1].num || probs.frac[2].
num)

2 && probs.frac[3].num;
3

4 bottom = (probs.frac[1].num || probs.frac[2].num || probs.frac[3].
num)

5 && probs.frac[0].num;
6

7 bottom = (probs.frac[0].num || probs.frac[3].num)
8 && (probs.frac[1].num || probs.frac[2].num);

23

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

Lastly, we have to take a look at the function isFinalStates which checks whether a

state is a final state. The function nondeterministically picks two parameters that are

the column numbers, and then checks for each sequence that the values encode a 1 if

the sequence is evaluating to 1 and a 0 if the sequence is evaluating to 0. The parameter

deciding holds the output. For output possibilistic security, we can infer the value of

deciding from the possibilities directly. Therefore, a sequence is deciding if 𝑋1 > 0. That

means, that value of deciding can be determined as seen for XOR in listing 3.4. For input

possibilistic and probabilistic security the 𝑋𝑖 𝑗 have to be specified that evaluate to one. In

the case of XOR in listing 3.4 it is 𝑋01 and 𝑋10.

Listing 3.4 Deciding for XOR

1 if (WEAK_SECURITY == 2) {
2 deciding = (s.seq[i].probs.frac[1].num); //for output

possibilistic security X_1 is deciding, X_0 is not
3 }
4 else {
5 deciding = (s.seq[i].probs.frac[1].num) //for the other

security types X_01 and X_10 are deciding for XOR
6 || (s.seq[i].probs.frac[2].num);
7 }

3.1.2 Domain

For our example above, we have considered only binary boolean operators with two

input commitments and one output commitment. But there are functions, that take a

different amount of input commitments. One prominent example for this is the COPY
function, that takes one commitment (definition 3) as an input, and duplicates it (listing 2.1).

Another would be a three input majority function as described by Nishida et al., 2013,

which takes three input commitments. Let us take a look at how a different amount of

input commitments influences our protocol. In general, we have to make sure that we

generate the start sequences correctly and have the right amount of probabilities for input

possibilistic and probabilistic security.

To generate the start sequences, we make use of constants (aka. preprocessor variables).

Two of them depend on the amount of input commitments a function has. The number

of cards used for a commitment COMMIT has to match the number of cards that will be

needed to encode all input commitments. In general, we need two cards for every input

commitment. So the value of COMMIT is two times the number of commits. For the binary

boolean operators we use 4 cards for their two input commitments. If we wanted to instead

find protocols COPY, we would have to set COMMIT to 2, because we have only one input

commitment. The number of start sequences NUMBER_START_SEQS usually depends on the

desired protocol as well. For 𝑘 players where both can either commit a 0 or a 1, we have

2
𝑘
start sequences. If we have other scenarios like three different commit options (e.g. -1,

24

3.1 Adjustments to the Standard Program Representation for Boolean Functions

0, 1) we can have a different number of start sequences and a different number of cards for

commitments. The minimum size of the input sequence N depends on the amount of input

and output cards. N has to be big enough so that it can hold the input commitments and

later also the output commitments. For a three input majority function, we would need 3

commitments and thus at least 6 cards. So for the three input majority function N would

have to be greater or equal 6. For COPY we would only need one commitment and two

cards for our input. We do however need two commitments and four cards to encode the

output. Therefore, we need N ≥ 4 for COPY.

The start sequences themselves are generated at the beginning of the program. The

function getStartSequence() nondeterministically constructs a start sequence for the

given commitment length COMMIT. To obtain a valid sequence we need to make sure that

each player uses fully distinguishable cards. We therefore have to check for each input

commitment separately, if the two cards are the same or not. Afterwards, we check, that all

the possible inputs are represented within the start sequences. For a boolean operator this

would be the input commitments 00, 01, 10 and 11, and thus we have to check for those

four different sequences. For the COPY protocols we only have the input commitments

0 and 1. We check for a 0 by testing if the first card is smaller than the second, and we

check for a 1 by testing if the first card is bigger than the second. If we have more than

one input commitment, the first two cards are the first commitment, the third and fourth

card the second commitment and so on. And we check for all the possible combinations of

values for these commitments.

We also assign the input probabilities and possibilities to the start state, by checking if the

given sequence is an input sequence in the start state. This works just as the check for all

the possible inputs.

3.1.3 Codomain

Not only the amount of input commitments, but also the amount of output commitments

can vary from function to function. Some problems can have more than a single bit as an

output. Take for example the half adder (definition 21). It receives two bits as an input -

just like the binary boolean operators. But instead of one output commitment it produces

two. The sum of the two bits and the carry signal, which represents the overflow into the

next bit. The amount of output commitments influences the amount of output possibilities

as well as how we determine a final state.

Let us look at the output possibilities first. If all values are possible for the 𝑘 output

commitments, we have 2
𝑘
different output possibilities. For example, we have the 2

different output possibilities 𝑋0 and 𝑋1 for a binary boolean operator. For the half adder

we would thus have 4 different output possibilities 𝑋00, 𝑋01, 𝑋10 and 𝑋11. However it is

not possible for any sum of two input commitments to be greater than 2. Thus the output

possibility 𝑋11, where sum and carry are both one is impossible. We are therefore left

25

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

with only three output possibilities for the half adder. Another example, where not all

combinations of values are possible for the output commitment is the COPY function. Here

we have two output commitments. But because the function requires, that they are both

the same, we have only two output possibilities 𝑋0 and 𝑋1.

We set the number of possibilities NUMBER_PROBABILITIES as a constant and then have to

set the possibilities for output possibilistic security when we generate the start sequences.

Here we have to match each input sequence to the possibility that belongs to its output

sequence. For the half adder, the input commitment 00 has possibility 𝑋00, the input

commitments 01 and 10 have possibility 𝑋01 and the input 11 has possibility 𝑋10.

Just as in section 3.1.1 with input possibilistic and probabilistic security, we now have to

consider output possibilistic security, when checking for bottom sequences (definition 20).

A bottom sequence, is a sequence that belongs to more than one possible output. Thus we

have to check, that for each sequence there is only one output possibility greater than 0.

The last step when finding a protocol is checking that the result is valid. The function

isFinalState() determines if a state contains columns containing the result bits. There-

fore, we need to find two columns as the result for a binary boolean operator and 4 columns

for the COPY protocol and the half adder protocol. We chose every index of our columns

nondeterministically. Afterwards we also need to match the possibilities to the correct

output. As explained in section 3.1.1, the parameter deciding encodes for a binary boolean

operator whether the sequence evaluates to a 0 or 1. A general approach is to have one

such deciding variable for each output commitment.

Listing 3.5 Extract from isFinalState for the half adder.

1 unsigned int decidingSum = 0;
2 if (WEAK_SECURITY == 2) {
3 decidingSum = (s.seq[i].probs.frac[1].num);
4 } else {
5 decidingSum = (s.seq[i].probs.frac[1].num) || (s.seq[i].probs.

frac[2].num);
6 }
7 //
8 unsigned int decidingCarry = s.seq[i].probs.frac[

NUMBER_PROBABILITIES − 1].num;

In listing 3.5 we see the assignment of the deciding parameter for the two output com-

mitments of the protocol. For the first parameter, the assignment of decidingSum is the

same as for a logical XOR. For the second parameter, the assignment of decidingCarry

is the same as for a logical AND. Because of the function behaviours of AND and XOR,
we can not have them be both 1 for the same input. Thus the output 11 is impossible,

just as stated above. After we have determined whether the sequence is deciding, we can

check whether the cards at the previously chosen index encode the correct result for each

deciding parameter and output commitment.

26

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

3.2 Implementing a Concrete Standardized Program
Representation for a Select Number of Functions

This section takes the principles presented in section 3.1 and applies them to specific

functions. We discuss the experimental setup in section 3.2.1. In section 3.2.2 we describe

our attempt of improving the performance of our boundedmodel checker by using different

SAT solvers. Afterwards we present the protocols we were able to find using the previously

described setup in section 3.2.3. We also discuss the size constraints for using the bounded

model checker with our implementations in section 3.2.4.

3.2.1 Structure and Execution of the Standardized Program Representation

To apply the principles presented in section 3.1, we implemented a standardized program

representation of a range of different functions. The first set of functions we implemented,

were binary boolean operators. As Koch et al. (2021) had already done extensive runs

of their standard program representation for the AND protocol, we did not repeat those

tests. Instead we implemented a standardized program representation for the XOR and OR
operators. We also implemented a COPY function. It receives only one commitment as an

input, and returns a copy of that commitment. Together with a functionally complete set of

boolean operators, for example AND and XOR, we can realize any multivariable function

(Nishida et al., 2015). To add a more practical function, we implemented a standardized

program representation for a half adder as well. Excerpts from the implementation for all

the symbolic programs can be found in appendix A.5. The complete code can be found in

the repository at appendix A.4.

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with

48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the

SAT-solver MiniSat 2.2.1.

3.2.2 Exploring different SAT solvers

Using a standardized program representation has two distinct disadvantages. Firstly, the

process of finding a protocol can take a long time, especially for a protocol that has a

lot of cards and/or a lot of steps. As can be observed in table 3.2, for the built-in SAT

solver MiniSat, finding a XOR protocol with four cards, two steps and input-possibilistic

security took around 10 minutes. Proving that there is no OR protocol with four cards,

two steps and input-possibilistic security it took 20 minutes. But for even bigger protocols

the time until a protocol is found is likely to be even bigger. As an example, finding the

27

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

protocol from fig. 3.5 took more than 23 hours. Another problem is the occurrence of an

"out-of-memory" error for certain protocols with more cards and steps.

We attempted to improve the time it takes to find a protocol as well as the avoidance of

"out of memory"-problems through the use of different SAT solvers within the bounded

model checker. We chose Glucose
1
and CaDiCal

2
to test against the built-in SAT Solver

MiniSat.

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with

48 cores and 256 GB of RAM. We used CBMC 5.57.0 for all the SAT Solvers. Every test was

performed five times for each of the SAT solvers. The number of variables and clauses

stayed the same throughout all five executions of the tests. Therefore the values given in

table 3.2 are the absolute values in each test. For the time spans we measured, we each

excluded the highest and the lowest result. From the remaining three values we calculated

the arithmetic mean. This is also shown in table 3.2 accordingly. We determined the time

span by measuring the time from the start of the execution of the test until the execution

terminated. For the four card XOR protocol the program terminated after a valid protocol

was found. Thus the times given in table 5.1 were measured from the start of the execution

until a valid protocol was found. For the four card OR Protocol, the program terminated

after it had found, that no valid protocol exists for the given inputs. For this protocol the

times given in table 5.1 are the times from the start of the execution until it was proven

that there is no protocol. The five card OR protocol terminated after an out of memory

error. Therefore it did not return the amount of clauses and variables. The times given

in table 5.1 are measured from the start of the execution of the protocol until the out of

memory error occurred and the program terminated.

The test results show clearly, that using CaDiCal or Glucose did not improve the runtime

of our protocols, nor did it result in less "out-of-memory" errors. Out of all SAT solvers

MiniSat performed the best for both the four card XOR as well as the four card OR tests

that were performed. It had a shorter runtime for both input-possibilistic as well as output-

possibilistic security. Glucose was second fastest for both the four card XOR as well as the

four card OR tests. The smallest difference in runtime between MiniSat and Glucose can

be observed for the four card OR protocol with input-possibilistic security. Here the test

for Glucose took only about two minutes longer than the test for MiniSat. The biggest

difference could be observed for the four cardXOR protocol with input-possibilistic security.
Glucose was around 2.5 times slower than MiniSat. For our use case the performance of

CaDiCal was even worse. The smallest difference between MiniSat and CaDiCal could

be observed for the four card OR protocol with input-possibilistic security. Here CaDiCal

was still around 1.8 times slower than MiniSat.

The test results also show, that the use of CaDiCal or Glucose did not result in less out of

memory errors, at least for the program that was tested. For the five card OR, the execution

1
https://www.labri.fr/perso/lsimon/research/glucose/

2
http://fmv.jku.at/cadical/

28

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

#Cards #Steps Security Mini Sat Glucose CaDiCal

XOR 4 2 output- Runtime (s) 367,3 569 725,7

possibilistic Variables 10 829 386 10 829 386 10 829 386

Clauses 39 863 588 39 863 588 39 905 499

XOR 4 2 input- Runtime (s) 618 1 560,3 1 823,7

possibilistic Variables 13 191 171 13 191 171 13 191 171

Clauses 47 693 620 47 693 620 47 736 299

OR 4 2 output- Runtime (s) 481 1 062 3 470,7

possibilistic Variables 10 819 303 10 819 303 10 819 303

Clauses 39 832 637 39 832 637 39 874 504

OR 4 2 input- Runtime (s) 1 218,3 1 335 2 158,7

possibilistic Variables 13 185 883 13 185 883 13 185 883

Clauses 47 673 732 47 673 732 47 716 387

OR 5 2 output- error 3 830,7 1 637,7 2 761,3

possibilistic after (s)

Table 3.2: Experiment results for the SAT-Solvers MiniSat, CaDiCal and Glucose.

terminated with an out of memory error for all three tested SAT solvers. Here the out of

memory error occurred more quickly with Glucose and CaDiCal than with MiniSat.

Based on the results of the experiment, we decide to use only the built-in solver MiniSat

when using CBMC.

3.2.3 Protocols Discovered using the Adapted Standardized Program
Representation

In this section, we present the protocols, that we discovered while symbolically executing

our adapted standardized program representations. First, we will present our results for the

functions XOR (section 3.2.3.1) and OR (section 3.2.3.2). Then we will present the results for

COPY (section 3.2.3.3) and finally the results for the half adder function (section 3.2.3.4).

3.2.3.1 Protocols for XOR

The protocol in fig. 3.1 found by the bounded model checker is the protocol that is card and

step minimal if we consider probabilistic (definition 14) and input-possibilistic security

(definition 15). It takes only the four cards necessary for the two commitments (definition 3)

as input. The protocol has a finite runtime, and performs one shuffle (definition 6) and

one turn (definition 9). This XOR protocol is similar to the four card protocol by Mizuki

and Sone (2009) that is shown in fig. A.2. While Mizuki and Sone (2009) used one random

29

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

#Cards #Steps Closed? Security Protocol Runtime

4 1 yes output-possibilistic ✓ Finite Runtime

4 1 yes input-possibilistic × Finite Runtime

4 2 yes output-possibilistic ✓(see fig. 3.2) Finite Runtime

4 2 yes probabilistic (*) ✓(see fig. 3.1) Finite Runtime

Table 3.3: Protocols that were found through bounded model checking for the XOR boolean

operator.

(*) the protocol that was found by the bounded model checker had output-

possibilistic security, we completed it with the specific fractions of the proba-

bilities, proving that it also satisfies the stronger prerequisites for probabilistic

security

bisection cut and two permutation operations (definition 5), the protocol in fig. 3.1 replaces

these operations with a single shuffle. Mizuki and Sone (2009) also turn two cards instead

of our protocol which turns only one card. They are however both equivalent in regard to

their results.

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♣♥♣ 𝑋11

♣♥♣♥ 1

2
𝑋00 + 1

2
𝑋11

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♣♥♣ 1

2
𝑋00 + 1

2
𝑋11

(shuffle,{id, (12)(34)})

♣♥♣♥ 𝑋00 + 𝑋11

♥♣♣♥ 𝑋01 + 𝑋10

♣♥♥♣ 𝑋01 + 𝑋10

♥♣♥♣ 𝑋00 + 𝑋11

(turn, {3})

??♣? ??♥?

(result, 1, 2)
✓

(result, 2, 1)
✓

Fig. 3.1: A finite runtime protocol for XORwith probabilistic security and closed shuffles. It uses
4 cards and has 2 steps.

Search for an output possibilistic protocol (definition 16) for XOR using 4 cards, two steps

and only closed shuffles, resulted in the protocol in fig. 3.2. Remarkable about this protocol

is, that the first step performed is a turn operation. This reveals the fourth card and thus

the value of the second commitment. This is however not a violation of output-possibilistic

security. By definition, a protocol is possibilistically output-secure, if at every state in

the protocol, every output is still possible (definition 16). Because we have two possible

starting commitments that will result in 1 and two commitments that result in 0, turning

one card and splitting the protocol in two, will not violate output-possibilistic security. As

seen in fig. 3.2, after the turn, in each possible state, both outputs are still possible. This

30

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

highlights the need for checking protocols for stronger security guarantees for protocols

found through bounded model checking.

♣♥♣♥ 𝑋0

♣♥♥♣ 𝑋1

♥♣♣♥ 𝑋1

♥♣♥♣ 𝑋0

♥♣♥♣ 𝑋0

♣♥♥♣ 𝑋1

♣♥♣♥ 𝑋0

♥♣♣♥ 𝑋1

(turn, {4})

???♣ ???♥

♥♣♥♣ 𝑋0

♣♥♥♣ 𝑋1

(perm, {(12)(34)}

♣♥♣♥ 𝑋0

♥♣♣♥ 𝑋1

(perm, {(12)(34)})

(result, 2, 1)
✓

(result, 1, 2)
✓

Fig. 3.2: A finite runtime protocol for XORwith output possibilistic security and closed shuffles.
It uses 4 cards and has 2 steps.

We could also convert this protocol into a protocol with only one step. The permutation

applied to both branches after the turn is unnecessary. Instead of performing the permuta-

tion, the result could be extracted after the turn. For the branch that resulted by turning

♣ the result could then be for example (result, 2, 1) and for the branch that resulted by

turning ♥ a possible result would be (result, 1, 2). This protocol still has output-possibilistic

security and is closed (definition 7), because it does not have any (non-closed) shuffles.

31

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

3.2.3.2 Protocols for OR

#Cards #Steps Closed? Security Protocol Runtime

4 2 no output-possibilistic ×
4 3 no output-possibilistic ×
4 4 no probabilistic (*) ✓(see fig. 3.3) Las Vegas

4 4 yes output-possibilistic ×
4 4 yes input-possibilistic ×
4 5 no probabilistic (*) ✓(see fig. A.4) Las Vegas

4 5 yes input-possibilistic ×
4 6 yes probabilistic (*) ✓(see fig. 3.4) Las Vegas

5 2 no probabilistic (*) ✓(see fig. A.3) Las Vegas

Table 3.4: Protocols that were found through bounded model checking for the OR boolean

operator.

(*) the protocol that was found by the bounded model checker had output-

possibilistic security, we completed it with the specific fractions of the proba-

bilities, proving that it also satisfies the stronger prerequisites for probabilistic

security

There is no explicit protocol for OR in the existing literature. Stiglic (2001) describes the

construction of an OR protocol from AND and NOT gates (𝑥1 ∨ 𝑥2 = ¬(¬𝑥1 ∧ ¬𝑥2)).

We can perform a NOT protocol on an arbitrary number of commitments simultaneously,

by executing one permutation operation. This permutation operation swaps the two

cards of each commitment. As we can execute ¬𝑥1 and ¬𝑥2 simultaneously, we need two

operations to execute the NOT operations in ¬(¬𝑥1 ∧ ¬𝑥2).

Additionally we need an existing AND protocol. The shortest finite runtime AND protocol

in the literature is the protocol of Mizuki and Sone (2009) which uses six cards, two

permutation operations and a random bisection cut. The two permutation operations and

the random bisection cut can be combined into one shuffle operation (definition 6). Thus

the protocol can be modified to have six cards and two steps. Using this AND protocol, we

can construct a protocol for OR, that has six cards and four steps. This OR protocol has

uniform closed shuffles and finite runtime. Using the AND protocol by Koch et al. (2015),

which is a Las Vegas protocol with closed but non-uniform shuffles, we can construct an

OR protocol that uses four cards and six steps.

With the use of bounded model checking, we were able to find protocols for OR, that used
four cards. The protocol in fig. 3.3 has non-closed shuffles and probabilistic security. It

uses four cards and has a best case of four steps. As can be seen in table 3.4 there exists no

protocol with the same properties but closed shuffles. We could also show, that there are

no protocols for four cards and less than four steps for any type of security and type of

32

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

shuffles. The card minimal protocol for OR, that has closed shuffles is the protocol from

fig. 3.4. It uses six steps. This protocol is very similar in structure to the four-card Las

Vegas AND protocol by Koch et al. (2015). Every action up to and including the first turn

action is the same. Afterwards the protocols differ slightly. The left branch that results

from turning a ♣ in our OR protocol is identical operation wise to the right branch that

results from turning a ♥ in the AND protocol by Koch et al. (2015). Our right branch

performs the same action types as the left branch of the protocol by Koch et al., 2015. The

concrete shuffles and turns differ however.

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♣♥♣ 𝑋11

♣♣♥♥ 1

2
𝑋00

♣♥♣♥ 1

2
𝑋00

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♣♥♣ 1

2
𝑋11

♥♥♣♣ 1

2
𝑋11

(shuffle,{(142), (1324)})

♣♣♥♥ 𝑋00

♥♣♣♥ 𝑋01 + 𝑋10

♥♣♥♣ 𝑋11

♣♥♣♥ 2

3
𝑋00

♥♣♥♣ 1

3
𝑋00

♥♣♣♥ 2

3
𝑋01 + 2

3
𝑋10 + 1

3
𝑋11

♥♥♣♣ 1

3
𝑋01 + 1

3
𝑋10 + 1

3
𝑋11

♣♣♥♥ 1

3
𝑋11

(shuffle,{(23), (243), (14)})

♥♣♥♣ 𝑋00

♥♥♣♣ 𝑋01 + 𝑋10 + 𝑋11

♣♥♣♥ 𝑋00

♥♣♣♥ 𝑋01 + 𝑋10 + 1

2
𝑋11

♣♣♥♥ 1

2
𝑋11

♣♥♣♥ 𝑋00

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

♣♣♥♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

(shuffle,{id, (13)})

♥♥♣♣ 2

3
𝑋00

♣♣♥♥ 1

3
𝑋00

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

♥♣♥♣ 1

3
𝑋01 + 1

3
𝑋10 + 1

3
𝑋11

♣♥♣♥ 1

6
𝑋01 + 1

6
𝑋10 + 1

6
𝑋11

(shuffle,{id, (13)})

♥♥♣♣ 𝑋00

♥♣♣♥ 3

4
𝑋01 + 3

4
𝑋10 + 3

4
𝑋11

♣♥♣♥ 1

4
𝑋01 + 1

4
𝑋10 + 1

4
𝑋11

♣♣♥♥ 𝑋00

♥♣♥♣ 𝑋01 + 𝑋10 + 𝑋11

(turn, {3})

??♣???♥?

(result, 1, 4)
✓

(turn, {4})

???♣???♥

(result, 2, 3)
✓

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01 + 𝑋10

♥♥♣♣ 𝑋11

♣♣♥♥ 2

3
𝑋00

♥♥♣♣ 1

3
𝑋00

♣♥♥♣ 2

3
𝑋01 + 2

3
𝑋10 + 1

3
𝑋11

♥♣♥♣ 1

3
𝑋01 + 1

3
𝑋10 + 1

3
𝑋11

♣♥♣♥ 1

3
𝑋11

(shuffle,{(1243), (23), (123)})

♣♣♥♥ 𝑋00

♣♥♥♣ 𝑋01 + 𝑋10 + 1

2
𝑋11

♣♥♣♥ 1

2
𝑋11

♣♣♥♥ 𝑋00

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

♣♥♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

(shuffle,{id, (34)})

♥♣♥♣ 2

3
𝑋00

♣♥♣♥ 1

3
𝑋00

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11

♣♣♥♥ 1

3
𝑋01 + 1

3
𝑋10 + 1

3
𝑋11

♥♥♣♣ 1

6
𝑋01 + 1

6
𝑋10 + 1

6
𝑋11

(shuffle,{(23), (134), (14)})

♣♥♣♥ 𝑋00

♣♣♥♥ 𝑋01 + 𝑋10 + 𝑋11

(result, 3, 2)
✓

♥♣♥♣ 𝑋00

♥♣♣♥ 3

4
𝑋01 + 3

4
𝑋10 + 3

4
𝑋11

♥♥♣♣ 1

4
𝑋01 + 1

4
𝑋10 + 1

4
𝑋11

(turn, {1})

♣???♥???

♥♥♣♣ 𝑋00

♥♣♥♣ 𝑋01 + 𝑋10 + 𝑋11

(result, 3, 2)
✓

(turn, {1})

♣???♥???

(turn, {2})

?♣?? ?♥??

(shuffle, {id, (2,4)}), (perm, (1342))

(shuffle, {id, (1,2)}),(perm, (13)(24))

Fig. 3.3: A Las Vegas protocol for ORwith probabilistic security. The shuffles are not closed. It
uses 4 cards and has a best case of 4 steps.

33

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♣♥♣ 𝑋11

♣♥♣♥ 𝑋00

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♣♥♣ 𝑋11

(shuffle,{id, (13)(24)})

♣♣♥♥ 1

2
𝑋00

♣♥♣♥ 1

2
𝑋00

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♣♥♣ 1

2
𝑋11

♥♥♣♣ 1

2
𝑋11

(shuffle,{id, (23)})

♣♣♥♥ 𝑋00

♥♣♣♥ 𝑋01 + 𝑋10

♥♣♥♣ 𝑋11

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01 + 𝑋10

♥♥♣♣ 𝑋11

(turn, {2})
?♣?? ?♥??

♣♣♥♥ 𝑋00 = 𝑋0

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11 =

1

2
𝑋1

♥♣♥♣ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11 =

1

2
𝑋1

(shuffle,{id, (34)})

♣♣♥♥ 1

3
𝑋0

♣♥♣♥ 2

6
𝑋1

♥♣♣♥ 1

2
𝑋1

♥♣♥♣ 1

6
𝑋1

♥♥♣♣ 2

3
𝑋0

(shuffle,{id, (14)(32)}, F ∗
)

♣♣♥♥ 𝑋0

♣♥♣♥ 𝑋1

♥♣♣♥ 1

4
𝑋1

♥♣♥♣ 3

4
𝑋1

♥♥♣♣ 1

2
𝑋0

♥♣♣♥ 𝑋0

♥♣♥♣ 1

2
𝑋1

♥♥♣♣ 1

2
𝑋1

(shuffle,{id, (34)})

(turn, {1})

♥???♣???

(result, 3, 4)
✓

♣♥♣♥ 𝑋00 = 𝑋0

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11 =

1

2
𝑋1

♥♥♣♣ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11 =

1

2
𝑋1

(shuffle,{id, (13)})

♣♥♣♥ 1

3
𝑋0

♥♣♥♣ 2

3
𝑋0

♣♥♥♣ 1

6
𝑋1

♥♣♣♥ 1

3
𝑋1

♥♥♣♣ 1

2
𝑋1

(shuffle,{id, (12)(34)}, F ∗∗
)

♣♥♣♥ 𝑋0

♥♣♣♥ 𝑋1

♥♣♥♣ 𝑋0

♣♥♥♣ 1

4
𝑋1

♥♥♣♣ 3

4
𝑋1

♥♣♥♣ 𝑋0

♣♥♥♣ 1

2
𝑋1

♥♥♣♣ 1

2
𝑋1

(shuffle,{id, (13)})

(perm, (1342))
(perm, (12))

(turn, {2})

???♥???♣

(result, 1, 2)
✓

Fig. 3.4: A Las Vegas protocol for OR with probabilistic security and closed shuffles. It uses 4
cards and has a best case of 6 steps.
F ∗ = 𝑖𝑑 → 1

3
, (14) (32) → 2

3

F ∗∗ = 𝑖𝑑 → 1

3
, (12) (34) → 2

3

34

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

3.2.3.3 Protocols for COPY

#Cards #Steps Closed? Security Protocol Runtime

4 2 no output-possibilistic ×
4 3 no output-possibilistic ×
4 4 no output-possibilistic ×
4 5 no output-possibilistic ×
5 2 no probabilistic (*) ✓(see Fig.3.5) Las Vegas

5 3 yes output-possibilistic × (**)

5 4 yes output-possibilistic × (**)

5 5 yes output-possibilistic × (**)

Table 3.5: Protocols that were found through bounded model checking for the COPY func-

tion.

(*) the protocol that was found by the bounded model checker had output-

possibilistic security, we completed it with the specific fractions of the proba-

bilities, proving that it also satisfies the stronger prerequisites for probabilistic

security

(**) For these results, we reduced the permutation set size to 8, to avoid an "out-

of-memory" error. This reduces the significance of the result, as there might be

protocols for this configuration, that have more than 8 permutations in a shuffle.

For COPY protocols, input-possibilistic security and output-possibilistic security are identi-

cal. This is, because the two possible inputs ♣♥ and ♥♣ and their input-possibility 𝑋00 and

𝑋01 match up with the possible outputs and their output-possibility 𝑋0 and 𝑋1. Therefore

any protocol with output-possibilistic security also has input-possibilistic security. In ta-

ble 3.5, we have given the stronger security definition in each case for illustrative purposes,

even though they are synonymous in this case. For the non-existence of a protocol, this is

output possibilistic security. For an existing protocol, this is input possibilistic security

(remark 1).

We also focused on protocols that produced one copy of the given input commitment the

copy protocol. There are protocols, for example by Mizuki et al. (2006) that can produce

any number of copies 𝑛 (table 2.1). The existing protocol for COPY that uses the least

amount of cards, is the finite runtime protocol by Mizuki and Sone (2009). It uses 2 ∗ 𝑛 + 4

cards to produce 𝑛 copies. To produce one copy, as we did in our experiments, the protocol

by Mizuki et al. (2006) would therefore need six cards (listing 2.1).

With the use of our standardized program representation, we were able to find a protocol

that only uses five cards and two steps (see fig. 3.5) and thus uses one card less than the

protocol with the least amount of cards from literature. It is however a Las Vegas protocol

and the shuffles are not closed but uniform.

35

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

♣♥♥♣♥ 𝑋0

♥♣♥♣♥ 𝑋1

♣♥♥♥♣ 1

1
𝑋0

♥♣♣♥♥ 1

2
𝑋0

♥♣♥♣♥ 1

2
𝑋1

♥♥♣♥♣ 1

2
𝑋1

(shuffle, {(23)(45), (13)(24)})

♥♣♣♥♥ 𝑋0

♥♥♣♥♣ 𝑋1

♣♥♥♥♣ 𝑋0

♥♣♥♣♥ 𝑋1

(turn, {3})

??♣? ??♥?

(result, (1, 2), (5, 4))
✓

(shuffle, {(12)(35), (23)(45)})

Fig. 3.5: A Las Vegas protocol for COPY with probabilistic security and non-closed shuffles. It
uses 5 cards and has a best case of 2 steps.

3.2.3.4 Protocols for the Half Adder

#Cards #Steps Closed? Security Protocol Runtime

4 2 no output-possibilistic ×
4 3 no output-possibilistic ×
4 4 no output-possibilistic ×
4 5 no output-possibilistic ×
5 2 no output-possibilistic ×

Table 3.6: Protocols that were found through bounded model checking for the half adder

function.

A half adder is a boolean function that takes two bits and calculates the sum of those two

inputs as a two bit output.

Definition 21. A half adder function is a boolean function. It takes two inputs 𝑏1, 𝑏2 ∈ {0, 1}
and produces two outputs 𝑠, 𝑐 ∈ {0, 1} where 𝑠 = 𝑏1 ⊕ 𝑏2 is the sum and 𝑐 = 𝑏1 ∧ 𝑏2 is the
carry.

As can be observed in table 3.6, we were not able to find any protocols for the half adder

with our method. We could show, that there are no protocols for the half adder using four

cards and between two and five steps, as well as using five cards and two steps.

36

3.2 Implementing a Concrete Standardized Program Representation for a Select Number of
Functions

3.2.4 Limits for the Use of the Bounded Model Checker with Our Symbolic
Program Representation

When we used the bounded model checker CBMC (section 2.3) with our implementation

to find protocols, it did not produce results for certain runs. In general, we could not find

protocols, or show that no protocol exists for more than five cards and two steps, when

we searched for non-closed protocols (definition 7). For closed protocols we could not

find protocols, or show that no protocol exists for five cards and two steps. The biggest

number of cards and steps for which the bounded model checker returned a result was

five cards and five steps for closed protocols. In the cases where we received no result,

the bounded model checker either returned after an "out-of-memory" error occurred or

because the timeout threshold we set was reached.

The "out-of-memory" error occurred for example when running the program for the half

adder with five cards, two steps and output-possibilistic security. We also limited the

search to only closed shuffles. We also got an "out-of-memory" error for the program for

the COPY function with five cards, two steps output-possibilistic security. We limited the

search to only closed shuffles here as well. We can see the trace for the COPY function

in listing 3.6. Here the last notice was, that CBMC was converting into static single

assignment (SSA) form (Kroening and Tautschnig, 2014). After that it produced the error

message SAT checker ran out of memory. We can not explain the exact cause of this

"out-of-memory" error. However we note that the size of the program expression for this

run is 8219163 steps (listing 3.6, line 2) while for a program that was too big to produce

a result before the set timeout, the size of the program expression was 3596454 steps

(listing 3.7, line 2) and with therefore smaller.

Listing 3.6 Excerpt from the trace of CBMC for the five cards two steps COPY function. The
protocol terminated without a result after the SAT checker ran out of memory.

1 Runtime Symex: 1041.01s
2 size of program expression: 8219163 steps
3 simple slicing removed 5 assignments
4 Generated 1 VCC(s), 1 remaining after simplification
5 Runtime Postprocess Equation: 2.41528s
6 Passing problem to propositional reduction
7 converting SSA
8 SAT checker ran out of memory
9 Out of memory

We also ran protocols, where the bounded model checker did not reach a solution before

it was terminated because of the timeout we set. The timeout threshold for the runs in

this section was set at 5 days. We reached such a timeout threshold for the program for

the half adder with five cards, two steps, output-possibilistic security and non-closed

shuffles. As we can see from the trace in listing 3.7, the built-in solver MiniSat was solving

37

3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean
Function

the formula when the bounded model checker was terminated. The SAT formula had

124330664 variables and 448826210 clauses.

Listing 3.7 Excerpt from the trace of CBMC for the five cards three steps half adder function. The
protocol terminated without a result after the set timeout threshhold of 5 days (432004s) was
reached.

1 Runtime Symex: 735.22s
2 size of program expression: 3596454 steps
3 simple slicing removed 5 assignments
4 Generated 1 VCC(s), 1 remaining after simplification
5 Runtime Postprocess Equation: 1.08506s
6 Passing problem to propositional reduction
7 converting SSA
8 Runtime Convert SSA: 377.169s
9 Running propositional reduction
10 Post−processing
11 Runtime Post−process: 0.000110975s
12 Solving with MiniSAT 2.2.1 with simplifier
13 124330664 variables, 448826210 clauses

Based on our experiments, the bounded model checker has constraints finding protocols

or proving that there are no valid protocols for certain tasks. If the tasks get too complex,

it either returns an "out-of-memory" error or does not terminate within a reasonable

timeout threshold. For our implementations of the standardized program representation,

this threshold was reached for five cards and two steps if we searched for closed protocols

and five cards and three steps if we searched for protocols that were not closed.

38

4 A Standard Program Representation with
Nested Structure for Composite
Protocols

In section 4.1 we introduce a nested structure of the symbolic program. We define a

new action and extend KWH-trees (section 2.2.3) to incorporate protocol operations in

section 4.1.1. In sections 4.1.2 and 4.1.3 we motivate its use within our programs to reduce

the complexity and size of the search space of the bounded model checking program

while ensuring correctness and security of the composited protocols. Then we present

an implementation of the new protocol action, that can apply a given protocol to a state

within a symbolic program, in section 4.2. To evaluate the effectiveness, we perform a

series of experiments and present our findings in section 4.3.

4.1 Introduction of a Nested Structure and Consideration of its
Possible Benifits

Functions that perform more complex computations than for example boolean operators,

tend to use more cards and also require more steps. One example might be the COPY
protocol by Mizuki and Sone (2009) which uses six cards (section 2.2.4). This is more than

required for boolean operators like XOR (fig. A.2), AND (fig. A.1) and OR (fig. 3.4), that all

use five or fewer cards. Another example of a function that uses a lot of cards and steps is

the half adder (definition 21). As can be observed in table 3.6, we were not able to find a

protocol with our method from chapter 3. There were no protocols for small amounts of

cards and steps. For larger numbers of cards and steps the bounded model checker either

terminated with an "out-of-memory" error or could not produce a protocol within our set

timeout of five days (section 3.2.4).

4.1.1 Defining the Protocol Action and Extending KWH-Trees

To try to make our standard program representation and finding protocols with bounded

model checking (sections 2.3 and 2.4) more effective for those protocols with more cards

39

4 A Standard Program Representation with Nested Structure for Composite Protocols

and steps, we propose to integrate another action type, in addition to the already existing

permutation (definition 5), shuffle (definition 6) and turn actions (definition 9). This

new action will apply protocols instead of shuffles and turns, to the current state. These

protocols can for example be from the literature (e.g. table 2.1), or they can be protocols

that have been found by using the bounded model checking program (e.g. section 3.2.3).

Definition 22. We define another action, that applies a protocol as (protocol, P, 𝑝1, 𝑝2,
..., 𝑝𝑟). It has a protocol P and positions 𝑝1, 𝑝2, ..., 𝑝𝑟 ∈ {1, ..., 𝑙}. Given a sequence Γ
we perform (protocol, P, 𝑝1, 𝑝2, ..., 𝑝𝑟) on the sequence by performing P on the sequence
Γ∗ = (Γ [𝑝1], Γ [𝑝2], . . . , Γ [𝑝𝑟]). The result is a sequence Γ∗∗, where at the positions 𝑝1, 𝑝2,
..., 𝑝𝑟 we have the cards Γ∗ [1], Γ∗ [2], . . . , Γ∗ [𝑟] and for all other positions 𝑝𝑖 we have Γ [𝑝𝑖].
If the protocol P has more than one possible end states, one of these end states is chosen by
random.

As an example we take the sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥) and the protocol operation

(protocol, AND𝑀𝑆09, 1,2,3,4,5,6). AND𝑀𝑆09 is the AND protocol by Mizuki and Sone (2009).

As we can see in the KWH-tree in fig. 2.1, the protocol has two possible result states, that are

each reached with probability 1/2. If we now apply the protocol to our chosen sequence

sequence Γ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥) and positions 𝑝 = 1, 2, 3, 4, 5, 6, we have two possible

resulting sequences. If we perform the AND protocol on Γ∗ = (?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥), and the

cards we turn in the last step are ♣♥, we receive the sequence Γ′(?♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥). If the cards
we turn in the last step are ♥♣ however, we receive the sequence Γ′′(?♥ ,

?

♣ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣).

The protocol P in (protocol, P, 𝑝1, 𝑝2, ..., 𝑝𝑟) must meet certain requirements so that

(protocol, P, 𝑝1, 𝑝2, ..., 𝑝𝑟) is a valid action. First of all P must have as many or fewer cards

than the sequences on which it should be applied. It is for example impossible to perform

a six card protocol on only five cards. There also needs to be a start state in P for the

sequence Γ∗ = (Γ [𝑝1], Γ [𝑝2], . . . , Γ [𝑝𝑟]) in order to perform the protocol on a sequence

Γ.

We have introduced the concept of KWH-trees in section 2.2.3 to visualize protocols. In

order for us to visualize protocols using our new action from definition 22, we need to

extend the actions of KWH-trees. After the application of a protocol (protocol, P, 𝑝1, 𝑝2,

..., 𝑝𝑟), the visible sequence differs just as with the turn operation. Thus the tree branches.

Every branch is the result of a possible end state of the applied protocol. This is, because

if the applied protocol produces a visible sequence while, it does so also with the larger

protocol it is embedded in. If we for example apply the AND protocol by Mizuki and Sone

(2009) to the given sequence as shown, we have two possible resulting states:

The probability for observing either of the end states is the same for each possible input.

Therefore no information, about the sequence, that was not revealed by executing the

protocol, is leaked.

40

4.1 Introduction of a Nested Structure and Consideration of its Possible Benifits

♣♥♣♥♥♣ 𝑋00

♣♥♥♣♥♣ 𝑋01

♥♣♣♥♥♣ 𝑋10

♥♣♥♣♥♣ 𝑋11

♣♥♣♥♥♣ 𝑋00 + 𝑋10

♣♥♥♣♥♣ 𝑋01

♣♥♣♥♣♥ 𝑋11

♥♣♣♥♥♣ 𝑋00 + 𝑋10

♥♣♣♥♣♥ 𝑋01

♥♣♥♣♥♣ 𝑋11

(protocol, AND𝑀𝑆09, 1, 2, 3, 4, 6, 5)

To use a protocol P within a protocol action (protocol, P, 𝑝1, 𝑝2, ..., 𝑝𝑟), we do not need

to know the full protocol. All that is necessary is the start state and the end states. Each

state needs to contain the possible sequences and their probabilities (definition 17). We do

not need the actual steps within the protocol, as long as we know that there is a path from

the input state to all the end states.

Remark 2. The protocol P in (protocol, P, 𝑝1, 𝑝2, ..., 𝑝𝑟) must have at least the same or a
stronger level of security than the protocol that should be found using it.

Therefore, if we want to find an input-possibilistic protocol (definition 15), we need to

use a protocol for our protocol action, that has at least input-possibilistic security. We

cannot use a protocol that has output-possibilistic security (definition 16). If we want to

construct a protocol with a finite runtime (definition 11), we can only use protocols that

have finite runtime as well. If a Las Vegas protocol is performed as a protocol action, every

protocol using this action will also be a Las Vegas protocol regardless of what the other

used actions are.

4.1.2 Reducing the Complexity of the Search Space

As shown in section 3.2.3 for more complex functions whose protocols require more

cards, and more steps such as the half adder or the COPY function, we had difficulties

finding protocols with our method presented in section 3.1. We can for example observe,

that there did not exist any protocols for the half adder for a small amount of cards and

steps (section 3.2.3.4), and for bigger numbers of cards and steps the bounded model

checker could not produce a result. Either because it would take too long or because an

"out-of-memory" error occurred (section 3.2.4).

One cause could be the size of the search space. As we have described in chapter 3, while

searching for a protocol, the bounded model checker has to nondeterministically choose

and execute an action for each step. As he exhaustively searches all possible runs to the

program, he must also consider all possible turns and shuffles for each action. There are

not that many possible turns. For 𝑁 cards, there are 𝑁 possible turn positions that have

to be considered. With shuffles however, there are significantly more possibilities. For 𝑁

41

4 A Standard Program Representation with Nested Structure for Composite Protocols

cards, there are 𝑁 ! possible permutations. However, for a shuffle we consider permutation

sets of any size (not just size 1) apart from the empty set. Thus the number of possible

shuffles is 2
𝑁 ! − 1. For 4 cards we would therefore have 2

4! − 1 = 2
24 − 1 possibilities

to choose a permutation set for these 4 cards. This is over 16 million possibilities. For

five cards we already have more than 1.3 ∗ 1036 possibilities (2120 − 1) to choose a single

permutation set. For four cards but two steps instead of one we would have to consider

(2𝑁 ! − 1)2 permutation sets, because each of the two actions can be a shuffle. That would

be more than 2.8 ∗ 1014 possibilities. These examples motivate that having less actions

as well as less cards has a big impact on the amount of possible runs the bounded model

checker has to search.

The assumption with the protocol action is that it makes it possible for us to find protocols

with less cards and steps. As described in definition 18 protocols can be used as parts of a

bigger protocol to calculate boolean functions. These protocols used as an action consist of

multiple turn and shuffle operations. Integrating the protocol action would reduce all the

steps from such a protocol, to just the one in the protocol action. Thus we would reduce

the amount of steps needed to find a protocol.

A protocol action also does not add much complexity to the program, as it is significantly

less complex than a turn operation. To apply a protocol action, we nondeterministically

choose the protocols that we will be using, and then the cards on which we want to

perform the protocol. After applying the protocol to the cards we have to nondeterministi-

cally choose which possible output state we want to look at further. The most complex

component is choosing which cards to perform the protocol on, as there are normally very

few possible output states and the number of protocols used is also limited. For choosing

which cards to perform the protocol on, we have to pick 𝑘 cards that are all different, from

𝑁 cards in our sequence. The order is important, as a protocol performed on cards that

are arranged differently, produces different results. Therefore we have
𝑁 !

(𝑁−𝑘)! possibilities
to choose the cards to perform the protocol on. Let us consider a set of 4 cards again. On

these four cards we now want to perform the 4 card XOR by Mizuki and Sone (2009). We

therefore have
4!

(4−4)! = 24 different possibilities of choosing which cards to perform the

protocol on. Compared with the over 16 million possible permutations for 4 cards, this is

negligible.

4.1.3 Calculating any Function While Ensuring Correctness and Security

In section 2.2.4 we have described that any boolean function can be calculated using two

colour cards, as long as there are enough additional cards. Provided we have protocols for

a functionally complete set of boolean operators like AND, OR and NOT or AND and XOR
and a COPY protocol, we can assemble them to a protocol for an arbitrary function. This

can be done without the use of bounded model checking, however using bounded model

checking offers several advantages.

42

4.1 Introduction of a Nested Structure and Consideration of its Possible Benifits

First of all, the protocols found by assembling boolean operators, might use more cards

than necessary. A naive approach of assembling boolean operators is, to make the needed

copies of the input commitments and then to execute the chosen boolean operators on

these copies. With the use of bounded model checking, boolean operators are taken into

account, but at each step turns and shuffles are also considered. This can allow the bounded

model checking tool to find shorter protocols both in the terms of the amount of cards as

well as the length of protocols, than the naive approach of assembling boolean operators.

Another advantage of using bounded model checking is, that it ensures the correctness

and security of the resulting protocol. A protocol returned by the bounded model checking

program meets all security and correctness requirements that are required by the program.

It also provides a detailed, step-by-step description of all the operations, that have to be

performed in order to execute the protocol.

This is not always the case, when protocols are assembled from boolean operators. One

example is the descripion of a composite half adder protocol by Mizuki et al. (2013).

Example: A Composite Half Adder Protocol

In their paper, Mizuki et al. (2013) describe a ten card protocol that computes a half adder

(definition 21) which uses preexisting protocols. They start with two input commitments

and six cards that were arranged as ♣♥♣♥♣♥. They then copy both input commitments

once and apply the four card XOR protocol from their paper to the first two commitments

and the six card AND to the last two commitments. Then they instruct the users to perform

some rearrangements.

If we take a look at fig. 4.1, we can see an excerpt from the described protocol. The start

state of the tree is the state, that the cards are in after the four card protocol, but before the

AND protocol has been applied. The first four cards have been rearranged in a way, that

the first two cards are now the result of the XOR protocol and the third and fourth cards

are the rearranged helper cards. This is now the exact state that is depicted in Mizuki et al.

(2013).

Now, as instructed, we perform the AND protocol that is given in Mizuki et al. (2013) on

the last six cards. The resulting states of the AND protocol should now be rearranged in a

way that we have the result of the AND and XOR protocol in the front and then afterwards

six cards that are arranged as ♣♥♣♥♣♥. Mizuki et al. (2013) do not specify the explicit

permutations that have to be used.

We provide a possible set of shuffles and permutations in fig. 4.1. First we rearrange the

cards in a way, that the result of the AND is the first commitment, and the result of the

XOR is the second commitment. We can then transfer one of the resulting states into

the other, by swapping the seventh and eighth card. Now we have only one post state

43

4 A Standard Program Representation with Nested Structure for Composite Protocols

♣♥ ♣♥ ♣♥♣♥♣♥ 𝑋00

♥♣ ♣♥ ♣♥♥♣♣♥ 𝑋01

♥♣ ♣♥ ♥♣♣♥♣♥ 𝑋10

♣♥ ♣♥ ♥♣♥♣♣♥ 𝑋11

♣♥ ♣♥ ♣♥♣♥♣♥ 𝑋00

♥♣ ♣♥ ♣♥♥♣♣♥ 𝑋01

♥♣ ♣♥ ♣♥♣♥♣♥ 𝑋10

♣♥ ♣♥ ♣♥♣♥♥♣ 𝑋11

♣♥ ♣♥ ♥♣♣♥♣♥ 𝑋00

♥♣ ♣♥ ♥♣♣♥♥♣ 𝑋01

♥♣ ♣♥ ♥♣♣♥♣♥ 𝑋10

♣♥ ♣♥ ♥♣♥♣♣♥ 𝑋11

(protocol, AND𝑀𝑆09, 5, 6, 7, 8, 9, 10)

♣♥ ♣♥ ♣♥♣♥♣♥ 𝑋00

♣♥ ♥♣ ♣♥♣♥♥♣ 𝑋01

♣♥ ♥♣ ♣♥♣♥♣♥ 𝑋10

♥♣ ♣♥ ♣♥♣♥♣♥ 𝑋11

(perm, (1 3 5 7 9)(2 4 6 8 10))

♣♥ ♣♥ ♣♥♣♥♣♥ 𝑋00

♣♥ ♣♥ ♣♥♣♥♥♣ 𝑋00

♣♥ ♥♣ ♣♥♣♥♣♥ 𝑋01

♣♥ ♥♣ ♣♥♣♥♥♣ 𝑋01

♣♥ ♥♣ ♣♥♣♥♣♥ 𝑋10

♣♥ ♥♣ ♣♥♣♥♥♣ 𝑋10

♥♣ ♣♥ ♣♥♣♥♣♥ 𝑋11

♥♣ ♣♥ ♣♥♣♥♥♣ 𝑋11

(shuffle, id, (9 10))

♣♥ ♣♥ ♣♥♣♥♣♥ 𝑋00

♣♥ ♥♣ ♣♥♣♥♣♥ 𝑋01

♣♥ ♥♣ ♣♥♣♥♣♥ 𝑋10

♥♣ ♣♥ ♣♥♣♥♣♥ 𝑋11

♣♥ ♣♥ ♣♥♣♥♥♣ 𝑋00

♣♥ ♥♣ ♣♥♣♥♥♣ 𝑋01

♣♥ ♥♣ ♣♥♣♥♥♣ 𝑋10

♥♣ ♣♥ ♣♥♣♥♥♣ 𝑋11

(turn, {9, 10})

????????♣♥ ????????♥♣

♣♥ ♣♥ ♣♥♥♣♣♥ 𝑋00

♣♥ ♥♣ ♣♥♥♣♥♣ 𝑋01

♣♥ ♥♣ ♣♥♥♣♣♥ 𝑋10

♥♣ ♣♥ ♣♥♥♣♣♥ 𝑋11

(perm, (1 3 5 7)(2 4 6 8))

(perm, (7 8))

(perm, (9 10))

(result, (1, 2), (3, 4))
✓

Fig. 4.1: The ten card half adder protocol by Mizuki et al. (2013) using preexisting protocols.

where we only have to put the last six cards in the order ♣♥♣♥♣♥. The first four cards
are already correct, but the last two cards are different depending on the input. We thus

cannot turn them around without making the protocol insecure. We therefore have to

perform a shuffle action first, that shuffles the last two cards, so we can retain security.

Then we can turn around the last two cards and rearrange them if necessary.

Remark 3. In general we can rearrange cards in a way that we can securely turn them
over in the following case: Given a state with its possible sequences and 𝑘 cards at positions
𝑃1, 𝑝2, . . . , 𝑝𝑘 which we want to rearrange. We can securely do so if there are the same number
of ♣ cards and the same number of ♥ cards at the chosen positions throughout all the possible
sequences.

44

4.2 Integrating the Nested Structure into the Symbolic Program

As can be seen in fig. 4.1 the actual actions that need to be performed to rearrange the cards

are non trivial. Therefore it is useful to specify the operations explicitly. That way there

are no ambiguities regarding the correctness and security of the protocol. This highlights

the advantage of the use of bounded model checking, as a found protocol will not only

mention the need for rearrangements, but also provide the exact turn and shuffle actions

necessary.

4.2 Integrating the Nested Structure into the Symbolic
Program

We now turn to the implementation of the integration of previously found protocols into

the scope of possible actions that can be taken within a protocol (section 2.4). For this

integration we design a new possible action in addition to the already existing shuffle and

turn actions. The implementation and integration of the protocol action can be found in

full in appendix A.6.

As described in section 4.1.1 the protocol action (definition 22) is performed on a state

and produces the state, that results from applying a protocol to the input state. For a

implementation of the protocol action we would have a function that recieves a state as a

input and returns the resulting state on which the protocol has been applied. To apply the

protocol, this function executing the protocol action first has to choose a protocol and the

cards it wants to execute the protocol on. Afterwards it applies the chosen protocol to the

chosen cards and calculates the resulting endstates and the resulting possibilities. It also

has to check for the correctness and security of the protocol. Just as with the turn action,

the protocol action only returns one of the possible end states.

A protocol action has a set of predefined protocols that it can execute. These protocols

must meet the prerequisites described in section 4.1.1. The concrete protocol that is used

within the action is picked nondeterministically out of the predefined protocols at the

start of the protocol action.

After the protocol is chosen, the appropriate amount of cards has to be selected. We select

the cards at certain positions, thus the com1A, com1B, com2A etc. in lines 2-5 in listing 4.1

and the help1 and help2 in lines 1-2 in listing 4.2 are all positions of cards that are chosen.

These card positions have to be disjoint. That means there cannot be a card that is used

twice for the protocol. Therefore after choosing the cards, there are checks that ensure

that there is no card, that is used twice for the protocol (lines 7-9 in listing 4.1 and lines 4-5

in listing 4.2). Thus if we want to execute a four card protocol on a state with sequences of

six cards, we have to choose four different cards out of the six to execute our protocol on.

These selected cards have to form a sequence that fulfills the preconditions of the protocol

chosen. Within the input of a protocol, there are generally two types of cards. Cards that

45

4 A Standard Program Representation with Nested Structure for Composite Protocols

are a part of a commitment and cards that are not. Cards that encode a commitment form a

complete commitment as a pair of two. In listing 4.1, lines 2-5, there are four cards chosen

that represent two commitments in total: com1A,com1B and com2A,com2B. They have to be

valid commitments which can be checked like in listing 4.1 lines 10-18. Here we check

that throughout every possible sequence in the state resulting from the cards we have

chosen, we have for our commitments two different symbols.

Listing 4.1 Choosing four cards that represent two commitments and checking if they are valid
commitments.

1 // choosing the indices of the cards that will be used in the
protocol

2 unsigned int com1A = nondet_uint();
3 unsigned int com1B = nondet_uint();
4 unsigned int com2A = nondet_uint();
5 unsigned int com2B = nondet_uint();
6 assume(com1A < N && com1B < N&& com2A < N&& com2B < N);
7 assume(com1A != com1B && com1A != com2A && com1A != com2B);
8 assume(com1B != com2A && com1B != com2B);
9 assume(com2A != com2B);
10 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
11 // if the probability/possibility of this state is not 0
12 if (isStillPossible(s.seq[i].probs)) {
13 // check that throughout every possible sequence in the state

we have chosen two different cards for our commitments
14 assume(s.seq[i].val[com1A] != s.seq[i].val[com1B]);
15 assume(s.seq[i].val[com2A] != s.seq[i].val[com2B]);
16 }
17 }
18 }

Cards that do not encode a commitment are additional cards, that have to have a specific

colour throughout all possible sequences in the start state. For the six card AND protocol

by Mizuki and Sone (2009) the additional cards are a ♣ card and a ♥ card in precisely

that order. For the protocol action, if it chooses a protocol that contains such additional

non-commitment cards, it has to check that the cards are the same throughout all possible

sequences in the state. In listing 4.2 this is done for protocols that use two helper cards ♣♥
such as the six card AND protocol by Mizuki and Sone (2009). In lines 6-12 we check that

the non-commitment cards are help1=♣ and help2=♥ for all sequences in the state.

Listing 4.2 Choosing two additional cards and checking that they are the same all throughout
every possible sequence in the state.

1 help1 = nondet_uint();
2 help2 = nondet_uint();
3 assume(help1 < N && help2 < N);
4 assume(help1 != com1A && help1 != com1B && help1 != com2A && help1

!= com2B);
5 assume(help2 != com1A && help2 != com1B && help2 != com2A && help2

!= com2B && help2 != help1);

46

4.2 Integrating the Nested Structure into the Symbolic Program

6 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
7 // if the probability/possibility of this sequence is not 0
8 if (isStillPossible(s.seq[i].probs)) {
9 // check that helper cards are the same all throughout every

possible sequence in the state
10 assume(isZero((s.seq[i].val[help1]), s.seq[i].val[help2]));
11 }
12 }

The actual application of the protocol to the chosen cards happens in three phases. For

each sequence in the state, we determine what input sequence it encodes in the chosen

protocol. Afterwards we look up and assign the new values that result after applying the

protocol to the cards. Finally we assign the correct probabilities and and calculate the

resulting endstate.

Listing 4.3 Application of the chosen protocol. This is performed for each sequence seq.

1 unsigned int idx = 0;
2 // determine what input sequence is encoded by the chosen cards
3 if (isZero(seq.val[com1A], seq.val[com1B])) {
4 if (isZero(seq.val[com2A], seq.val[com2B])) {
5 // 0101
6 idx = 0;
7 } else if (isOne(seq.val[com2A], seq.val[com2B])) {
8 // 0110
9 idx = 1;
10 }
11 } else if (isOne(seq.val[com1A], seq.val[com1B])) {
12 if (isZero(seq.val[com2A], seq.val[com2B])) {
13 // 1001
14 idx = 2;
15 } else if (isOne(seq.val[com2A], seq.val[com2B])) {
16 // 1010
17 idx = 3;
18 }
19 for (unsigned int i = 0; i < MAX_PROTOCOL_ENDSTATES; i++) {
20 // look up and assign the new values that result after applying

the protocol to the cards
21 seq.val[com1A] = protocolTable[protocolChosen][i][idx][0];
22 seq.val[com1B] = protocolTable[protocolChosen][i][idx][1];
23 seq.val[com2A] = protocolTable[protocolChosen][i][idx][2];
24 seq.val[com2B] = protocolTable[protocolChosen][i][idx][3];
25 // only if we have helper cards:
26 seq.val[help1] = protocolTable[protocolChosen][i][idx][4];
27 seq.val[help2] = protocolTable[protocolChosen][i][idx][5];
28

29 // assign the correct probabilities and and calculate the
resulting endstate

30 result = copyResults(seq, result, i);
31 }}

47

4 A Standard Program Representation with Nested Structure for Composite Protocols

To apply the chosen protocol to the given state, we first have to match the sequences

of the given state to their corresponding input states in the chosen protocols. As the

non-commitment cards are the same throughout all sequences in the input states, we only

have to consider the output states. As can be observed in listing 4.3 lines 4-19, for protocols

with two input commitments we have four different input possibilities. We thus check

which of the four different inputs the chosen cards encode for each sequence.

As a protocol performs turn and shuffle operations in its execution, the arrangement of

cards in the end state of a protocol is different from that in the start state. For example the

six card AND protocol shown in fig. 2.1 has the following start and end states:

♣♥♣♥♣♥ 𝑋00

♣♥♥♣♣♥ 𝑋01

♥♣♣♥♣♥ 𝑋10

♥♣♥♣♣♥ 𝑋11

♣♥♣♥♣♥ 𝑋00 + 𝑋10

♣♥♥♣♣♥ 𝑋01

♣♥♣♥♥♣ 𝑋11

♥♣♣♥♣♥ 𝑋10 + 𝑋00

♥♣♣♥♥♣ 𝑋01

♥♣♥♣♣♥ 𝑋11

Fig. 4.2: The start and end states of the AND protocol by Mizuki and Sone (2009)

If we now pick out the input sequence ♣♥♣♥♣♥ with possibility 𝑋00 we can see that after

the execution of the protocol it will either be rearranged into ♣♥♣♥♣♥, if we find ourselves
in the left end state, or ♥♣♣♥♣♥ if we find ourselves in the right end state. The amount

of ♣ and ♥ cards are still the same, they have just changed places. As this rearrangement

is fixed if we know which input we have, we can assign each input its possible outputs

without having to perform the protocol.

Thus what we would want to do in our protocol is determine the sequence, look up how

this sequence is rearranged in the end state, and copy the rearranged sequence from our

end state. We copy this rearrangement by assigning the correct output values to the card

positions. Because we have determined which input sequence corresponds to our sequence,

we can look up the new values that this input sequence would have after the execution

of the protocol. The new values are stored in a lookup table. An excerpt showing the

entry for the six card Finite Runtime AND protocol with input possibilistic security by

Mizuki and Sone (2009) can be seen in listing 4.4. They contain the representation of the

post states that are depicted in fig. 4.2. The protocol has two possible output states and

therefore the array has two entries. One entry containing the rearrangements for each

one of the output states. Each of these entries contains four entries that are the post states

that result from applying the protocols to the given sequence. We have four post states,

because we have four possible input sequences. These post state entries now assign to

each index, the card that will be located there.

Listing 4.4 Excerpt from the lookup table (protocolTable[FR_AND]) for the six card Finite
Runtime AND protocol with input possibilistic security by Mizuki and Sone (2009).

48

4.2 Integrating the Nested Structure into the Symbolic Program

1 {{{1,2,1,2,1,2}, {1,2,2,1,1,2}, {1,2,1,2,1,2}, {1,2,1,2,2,1}},
2 {{2,1,1,2,1,2}, {2,1,1,2,2,1}, {2,1,1,2,1,2}, {2,1,2,1,1,2}}}

Let us translate our example from above to this representation. There we had the input

sequence ♣♥♣♥ that was rearranged into ♣♥♣♥♣♥ or ♥♣♣♥♣♥. In listing 4.3 lines 4-7 this

input sequence ♣♥♣♥ ({0,1,0,1}) was assigned to the index 0. Therefore we need to take

the first entry of each of the entries for the possible end states. If we for example take the

first entry from the array representing the first states, we get {1,2,1,2,1,2}. This is the

array that represents the sequence ♣♥♣♥♣♥.

As described, all we have to do now is assign the new symbols to the respective card

indices. In listing 4.3 this is done in the lines 22-28. In our example for the six card Finite

Runtime AND protocol lookup table in listing 4.4 and the sequence ({0,1,0,1}), the first

card index com1A will be 1. The second card index com1B will be 2, the third card index

com2A 1 and the fourth card index com2B 2. For the non-commitment cards help1 and

help2 it will be 1 and 2 respectively.

Security and Correctness

To ensure the security of the resulting protocol, we have to use secure protocols within our

protocol action. The protocols that can be used during a protocol action, must generally

have the same or a stronger level of security as the protocol that should be found as was

described in section 4.1.1. The code and explanations that were presented only apply to

protocols that possess input possibilistic security. For output possibilistic security the

code and explanations that were presented above do not apply. This is because in an only

output possibilistically secure protocol, a possible output state can be reached only by a

part of the states. Take the Four-Card XOR protocol from fig. 3.2. Here we can observe,

that if we have the second output state, only the inputs ♣♥♣♥ and ♥♣♣♥ could have led

there. Thus if we want to implement this protocol into our protocol action, the other two

possible input states (♣♥♥♣ and ♥♣♥♣) will not have a result in this second output state

at all. Unlike in listing 4.3 we would therefore have input sequences that are not relevant

for a specific endstate and thus are not assigned new values but ignored.

To ensure correctness of the resulting protocol we have to check whether the protocol

action produces a valid resulting state. To be a valid state, a state cannot contain bottom

sequences. A sequence is a bottom sequence if it belongs to more than one possible output.

A protocol action can produce a bottom sequence, if a resulting sequence from the chosen

protocol can result from input sequences that have different outputs in the protocol, that

we want to find. Thus we have to check for bottom sequences after applying a protocol.

Another prerequisite for a correct protocol as result is that the chosen protocols, that are

used in the protocol action, are correct.

49

4 A Standard Program Representation with Nested Structure for Composite Protocols

4.3 Implementing Concrete Protocols and Evaluating the
Implementation

To evaluate the effectiveness of the proposed introduction of a nested structure, we

performed a series of experiments. The new action was implemented as described in

section 4.2. For the nested protocols we chose to use a set of functionally complete set of

boolean operators that contain only finite runtime protocols and Las Vegas protocols each.

Las Vegas protocols generally require fewer cards, which makes them more attractive

for finding protocols that are as card-minimal as possible. However, if we want to find a

finite runtime protocol, we have to use only finite runtime protocols as nested protocols,

because if a segment of a protocol has only an expectedly finite number of steps, so does

the entire protocol.

For the Las Vegas protocols we chose the functionally complete set of boolean operators

AND, OR and NOT. For AND we included the six card AND protocol by Mizuki and Sone,

2009 which can be seen in fig. 2.1 and for ORwe chose the four card OR protocol discovered

through our experiments in section 3.2.3 which is shown in fig. 3.4. We did not implement

a nested protocol for the boolean operator OR, as it is a simple perm operation, that flips

the two cards in a commitment. It is therefore a protocol that only consists of one step

and thus does not benefit from being implemented as a nested protocol.

For the finite runtime protocols, we chose the functionally complete set of boolean oper-

ators AND and XOR. For AND we chose the five card AND protocol by Koch et al., 2021

which is shown in fig. A.1. For XOR we included the four card XOR protocol by Mizuki

and Sone, 2009 that can be seen in fig. A.2.

We also included one more protocol as a nested protocol, which is the COPY protocol by

Mizuki and Sone, 2009, where it is described as a protocol that can make 𝑘 copies using

2𝑘 + 4 cards. We chose to implement the protocol for a fixed 𝑘 = 1. Thus the protocol that

was implemented is a six card COPY protocol with finite runtime.

For our experiments, we chose to test the implementation of our nested structure, by

trying to find protocols for two functions, with which we had difficulties finding protocols

for with the approach from chapter 3. They are the COPY function and the half adder. All

the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with

48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the

SAT-solver MiniSat 2.2.1.

50

4.3 Implementing Concrete Protocols and Evaluating the Implementation

Test Results for the COPY Function

For the COPY function, we included all nested protocols that were implemented, except

for the six card COPY protocol by Mizuki and Sone (2009). For the runs with five cards

the six card AND by Mizuki and Sone (2009) was not considered, because it has too many

cards. We limited the shuffle set size to 8.

#Cards #Steps Security Protocol Runtime Protocols used

5 1 output-

possibilistic

×

5 2 output-

possibilistic

×

5 3 output-

possibilistic

×

5 4 output-

possibilistic

×

5 5 output-

possibilistic

×

6 1 input-

possibilistic

✓(see fig. 4.3) Finite

Runtime

6 card AND by Mizuki

and Sone, 2009

6 2 input-

possibilistic

✓ Finite

Runtime

4 card XOR, 6 card

AND both by Mizuki

and Sone, 2009

6 2 input-

possibilistic

✓ Las

Vegas

2x 5 Card AND by Koch

et al. (2021), 6 card AND
by Mizuki and Sone,

2009

Table 4.1: Protocols that were found through bounded model checking for the COPY func-

tion. All protocols have closed shuffles only. The permutation set size was

limited to 8 for all runs.

As can be observed in table 4.1 we still were not able to find a protocol with closed shuffles

and five cards for the COPY protocol. For six cards, we already know a protocol for the

COPY function. It is the six cardCOPY byMizuki and Sone, 2009 that uses two permutations

one shuffle and one turn. Therefore the protocol we found during our experiment for six

cards, does not improve on the existing minimal number of cards. As can be seen in fig. 4.3,

we could find a protocol for COPY, that employs the six card AND by Mizuki and Sone,

2009. As the used AND protocol also uses two permutations one shuffle and one turn we

also did not improve on the number of steps within the protocol.

However our results still provide interesting insights about how an AND protocol can

be used to copy a given input. This reduces the amount of protocols needed to perform

51

4 A Standard Program Representation with Nested Structure for Composite Protocols

♣♥♣♣♥♥ 𝑋0

♥♣♣♣♥♥ 𝑋1

♥♣♥♥♣♣ 𝑋0

♥♣♣♣♥♥ 𝑋1

♣♥♣♣♥♥ 𝑋0

♣♥♥♥♣♣ 𝑋1

(protocol, AND𝑀𝑆09, 2, 1, 6, 3, 4, 5)

(result, (6, 3), (5, 4))
✓

(result, (3, 6), (4, 5))
✓

Fig. 4.3: A finite runtime protocol for COPYwith input-possibilistic security and closed shuffles.
It uses 4 cards and an AND protocol.

multi-party computation (definition 18). As described in section 2.2.4 both the approaches

given by Nishida et al. (2015) and Niemi and Renvall (1998) make use of a functionally

complete set of boolean operators and a COPY protocol. We can now perform multi-party

computation on an arbitrary boolean function with only an AND and a XOR protocol,

reducing the amount of protocols needed. To do so we take the protocol by Nishida et al.

(2015) described in section 2.2.4 and replace the COPY protocol they use with the protocol

from fig. 4.3. The protocol has 2𝑛 + 6 cards for 𝑛 input commitments.

Test Results for the Half Adder Function

#Cards #Steps Perm Set Size Security Protocol Closed? Runtime

4 1 8 output-possibilistic × yes

4 2 8 output-possibilistic × yes

4 3 8 output-possibilistic × yes

4 4 8 output-possibilistic × yes

4 5 8 output-possibilistic × yes

5 1 8 output-possibilistic × yes

5 2 8 output-possibilistic × yes

5 3 1 output-possibilistic × no

6 1 8 output-possibilistic × yes

6 2 8 output-possibilistic × yes

Table 4.2: Protocols that were found through bounded model checking for the half adder.

As can be observed in table 4.2, we still were not able to find a protocol for the half adder

function. We know that there is a protocol for the half adder for ten cards. It is the half

adder protocol by Mizuki et al. (2013). However, even when we reduced the permutation

set size, we could not reach the necessary number of cards or steps to produce a protocol

52

4.3 Implementing Concrete Protocols and Evaluating the Implementation

constructed from the given protocols. This does not mean that there are no protocols

for the half adder for the given numbers of cards and steps. Because we limited the

permutation set size for all our searches it is theoretically possible that there is a protocol

with a bigger permutation set and the same amount of shuffles and turns.

53

5 Evaluating a Data Structure for Efficient
Operations

In this chapter we replace the original data structures implemented with arrays by Koch

et al. (2021) described in section 2.4 with an alternative method of implementation, that

uses a sequence of bits on which we can perform bitwise operations such as bit shifts. In

section 5.1 we describe the implementation of the alternative data structure to represent

states and the sequences within. Subsequently we design and execute an experiment

in section 5.2 to compare the effect of the two data structures on the runtime of the

bounded model checking tool. In sections 5.2.2 and 5.2.3 we present and evaluate the

results respectively.

5.1 Integrating the Data Structure into the Symbolic Program

The method of Koch et al. (2021) for finding protocols with the use of bounded model

checking (section 2.3) employs a representation of the components of KWH trees (sec-

tion 2.2.3) within a standardized program. The central aspects of their implementation

is described in section 2.4. Here the central data structure that the symbolic program

operates on is the representation of the states. A state contains all possible sequences and

their probabilities (listing 2.2). Within the implementation by Koch et al. (2021) sequences

are represented using arrays (listing 2.3). The shuffles and turns are then performed on

these arrays containing the sequences using the standard operations provided by C for

arrays (listings 2.5 and 2.6).

In this section we replace the datatype that holds the sequences. Instead of an array

we use a single char variable. This allows us to use bitwise operations like bit shifts to

implement the necessary functionalities of the program, most notably the turn and shuffle

operations.

We can implement a card sequence (definition 4) as a sequence of bits. To do so we need

to choose a representation for our two symbols ♣ and ♥ as bits. We choose to represent ♣
as a 0 bit and ♥ as a 1 bit.

𝑏𝑖𝑡 =

{
0 if the symbol is a ♣
1 if the symbol is a ♥

(5.1)

55

5 Evaluating a Data Structure for Efficient Operations

This way the encoding of two bits to form a commitment specified in eq. (2.1) also hold

for the bit representation of cards.

𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 =

{
0 if we have the bits 01

1 if we have the bits 10
(5.2)

Now one sequence can be represented for example by one char variable. A char usually

has the length of 8 bit. Thus we can represent up to 8 cards in a sequence within one

char variable. For bigger sequences we could use a different data type for example a 32

bit int, but for this work, 8 bit will be sufficient. If we have sequences with less than 8

cards, we set the remaining bits of the char to 0. For example, if we want to represent

the sequence ♣♥♥♣ within a char, we set the char to 0000 0101. The leading four zeroes

are padding. The remaining four bits represent the cards. Thus, the sequence struct will

contain a single char variable, that will hold all cards (see listing 5.1).

Listing 5.1 Representation of a sequence using the datatype Char

1 struct sequence {
2 char val;
3 struct fractions probs;
4 };

Using the representation of sequences as chars, we can use the bitwise operations provided

by C to execute our operations on sequences. These bitwise operations are shifts and

operators like AND, OR, XOR and NOT.

First we focus on how the turn operation can be implemented. The goal of this operation

is to find the value of the card at a certain position turnPosition. Using a right shift, we

first shift a char that has the value 1 to the desired position turnPosition (listing 5.2,

line 3). Then we calculate the bitwise AND of our sequence and the shifted bit (listing 5.2,

line 3). The result is equal to zero if the bit at the given index is 0. In that case the card at

that index in the sequence is a ♣. If the result is not equal to zero then the bit at the given

index is 1. In that case the card at that index in the sequence is a ♥. We can thus set our

turnedCardNumber accordingly (listing 5.2, line 4).

Listing 5.2 Turning one card at index "turnPosition" in a sequence during the execution of a turn
operation using bitwise operations

1 char turnedCardNumber = 0;
2 // "true" if != 0 (red card), false if == 0 (black card)
3 if (sequence.val & (1 << turnPosition)) {
4 turnedCardNumber = 1;
5 }

If we have for example the sequence 00001001 and we want to know the value of the card

at the position 3, we first shift a 1 (0000 0001) by three to the left. This will result in the

56

5.1 Integrating the Data Structure into the Symbolic Program

char 0000 1000. We then calculate the bitwise AND of the sequence (0000 1001) and the

shifted bit (0000 1000). The result of the bitwise AND will be 0000 1000. Because 0000 1000

is not equal to 0, we now know that the value of the card at the position 3 is 1 and thus

that the card is a ♥. If we instead wanted to know the value of the card at the position

1, we would shift our 1 bit by one to the left and obtain the char 0000 0010. If we now

calculate the bitwise AND of the sequence and the shifted bit we will get the char 0000

0000. This char is equal to 0 and we thus know that the value of the card at the position 1

is 0 and thus that the card is a ♣.

We can also apply permutations to sequences using bit shifts and other bitwise operations.

We iteratively calculate our result and store it as the char variable resultingSeq (list-

ing 5.3, line 1). First we determine the value of the card at the current index in the same

way, as we did for the turn operation (listing 5.3, line 5). Afterwards we determine where

we have to shift the card. In order to achieve that, we first determine the value at the right

indices in the permutationSet (listing 5.3, line 6). These values can be between 0 and

𝑁 − 1 with 𝑁 being the amount of cards within a sequence. The value 𝑛 determines that

the card should be shifted to position 𝑛. So the array [0,1,2,3] would be the identity,

because it leaves all cards at their original position. To determine how far we have to

shift our card, we subtract the position at which the card is currently placed (𝑘) from the

permutation value permutationSet[j][k] (listing 5.3, line 6). If the resulting value is

positive, we shift the card to the left (listing 5.3, line 7). If the resulting value is negative,

we shift the card to the right listing 5.3, line 8). After we have performed our shift, we

perform a bitwise XOR of our result with the resulting sequence (listing 5.3, line 12). This

adds the calculated new card onto all the previously calculated cards.

Listing 5.3 Applying permutation j to sequence i during the execution of a shuffle operation
using bitwise operations

1 char resultingSeq = 0;
2 for (unsigned int k = 0; k < N; k++) {
3 char temp = 0;
4 // Apply permutation j to sequence i.
5 temp = seq.val & (1 << k);
6 int shift = permutationSet[j][k] − k;
7 if (shift >= 0) {
8 temp = temp << (shift);
9 } else {
10 temp = temp >> (−1 * shift);
11 }
12 resultingSeq = resultingSeq | temp;
13 }

57

5 Evaluating a Data Structure for Efficient Operations

5.2 Evaluating the Data Structure in an Experiment Setting

In section 5.1 we introduced a new representation of states and sequences based on

the encoding of cards as bits. We could then use bitwise operators to perform actions

such as turns and shuffles. We now perform an experiment to determine whether our

implementation from section 5.1 performs better when we use bounded model checking

than the implementation that uses arrays and the standard array operations that we

described in section 2.4.

5.2.1 Description of the Experiment Setup

We wrote two symbolic programs executing the same functions. One uses the imple-

mentation by Koch et al. (2021) that represents sequences as arrays. The other one uses

the implementation proposed in section 5.1 where a sequence is represented by a char.

The symbolic programs of the experiment are a partial implementation of the symbolic

program described in section 2.4. Their purpose is not to find protocols. Instead they

perform a single shuffle on a start state and then check its properties. More precisely, the

two symbolic programs first generate the start state such as the program in section 2.4

would do. Then they nondeterministically choose the size of the permutation set and

the permutations. Afterwards they apply the chosen permutations to the start state and

calculate the resulting sequences and resulting probabilities. Then they call a function that

can check for different properties. For our experiment, we aimed at finding a permutation

set, that results in all probabilities being not equal to zero. That means that we have to

check that for every sequence every probability is greater than zero. This property ensures,

that the permutation sets chosen are not too small. For four cards and input-possibilistic

security we need a permutation set size of at least five. The full experiment implementation

can be found in appendix A.6 and the GitHub repository (appendix A.4).

5.2.2 Experiment Execution and Results

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with

48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the

SAT-solver MiniSat 2.2.1.

For both programs, we ran the same experiments. The programs were run for each input

possibilistic security and output possibilistic security. For each of these security types, we

executed the program for 4 cards, 5 cards and 6 cards respectively. Together this resulted

in six different test cases for each the array test program and the bit shift test program.

Each of these experiments was performed a total of 5 times, except for the experiments

for 5 cards and input possibilistic security, which were only performed 2 times.

58

5.2 Evaluating the Data Structure in an Experiment Setting

#Cards Security Array Operations Bitwise Operations

4 Output Poss. variables 2 525 596 2 333 279

clauses 8 167 087 7 256 704

complete time (s) 382,3 113,3

4 Input Poss. variables 3 623 257 3 432 778

clauses 11 633 860 10 723 999

complete time (s) 1 064,3 521,7

5 Output Poss. variables 34 216 676 27 384 088

clauses 123 856 065 95 341 873

complete time (s) 8 317,7 3 767

5 Input Poss. variables 47 451 857 40 622 131

clauses 170 267 718 141 754 048

complete time 126 316 6 979,5

6 Output Poss. out of memory after (s) 7 448 3 070

6 Input Poss. out of memory after (s) 10 098 4 755,7

Table 5.1: The results of the experiments for both the implementation using arrays and

operations and arrays, as well as the implementation using chars and bitwise

operations.

For the experiments that used 4 or 5 cards, the program ended when the SAT solver found

the formula to be satisfiable and returned the program trace. We measured the number of

clauses and variables that were generated by CBMC and that the SAT solver had to solve.

They were the same for each execution of the same experiment. Therefore the table shows

the exact amount of clauses and variables used in each experiment. Apart from that we

also determined the time that it took the program to execute. Measured from the start of

the execution of runBitShiftTest.sh up to the end of the execution. These times varied

slightly from run to run. For the experiments that we performed five times, we excluded

the highest and lowest runtime. The results in table 5.1 are the arithmetic mean of the

remaining measured times.

For the experiments that used 6 cards, the SAT solver ran out of memory. Therefore

it did not return the amount of clauses and variables. We once again determined the

time that it took the program to execute. Measured from the start of the execution of

runBitShiftTest.sh up to the end of the execution after the programwas terminated due

to an out of memory error. For the experiments that we performed five times, we excluded

the highest and lowest runtime and calculated the arithmetic mean of the remaining values.

Please refer to appendix A.1 for the complete experiment results.

59

5 Evaluating a Data Structure for Efficient Operations

0 0.2 0.4 0.6 0.8 1 1.2

·105

0

0.5

1

·105

Array Operations (in s)

B
i
t
w
i
s
e
O
p
e
r
a
t
i
o
n
s
(
i
n
s
)

Output Poss. Input Poss.

Cards = 4

Cards = 5

Cards = 6

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

Array Operations (in s)

B
i
t
w
i
s
e
O
p
e
r
a
t
i
o
n
s
(
i
n
s
)

Fig. 5.1: Scatter plots with both a linear and a logarithmic scale. It shows the runtimes for the
results from table 5.1 for both the implementation using arrays and operations and
arrays, as well as the implementation using chars and bitwise operations. For the filled
marks, we took the complete time from table 5.1. For the marks that are empty inside
we took the time until the "out-of-memory" error from table 5.1.

5.2.3 Discussion of the Experiment Results

The results from our experiments showed, that the implementation using chars and

bitwise operations was faster than the implementation using arrays. In every experiment

performed the time it takes for the bounded model checking tool to produce a solution was

less for chars and bitwise operations. The highest speedup was observed in the experiment

with 5 cards and input possibilistic security. The implementation using bit shifts proved to

be about 18 times faster than the implementation employing arrays. The experiment with

5 cards and input possibilistic security, is also the experiment that produces the largest

SAT formula and it has the longest running time for both the array implementation as

well as the bit shift implementation out of all the tested inputs.

For the experiment with 6 cards, the bounded model checker did not produce a result but

ran out of memory instead. As with the experiments where the bounded model checker

produced a solution, the implementation employing bit shifts, terminated faster than

the implementation using arrays for finding protocols. The advantage of producing an

"out-of-memory" error more quickly could be that it will allow for a quicker confirmation

that the program is too big and/or complex for the bounded model checker.

If we compare the size of the formula for the implementation with arrays and the imple-

mentations with chars in table 5.1, we can see that there is not a big difference between

60

5.2 Evaluating the Data Structure in an Experiment Setting

them. Both the sets of variables and clauses are slightly smaller for the implementations

using chars throughout all experiments. They are however in the same order of magni-

tude. The largest deviation is 30% which can be observed for the experiment with 5 cards

and output possibilistic security. Generally the deviation is greater for experiments with

output possibilistic security than for experiments with input possibilistic security. The

deviation is also higher for 5 cards, than it is for 4 cards. However, as the difference in

the size of the formula is not proportional to the difference in runtimes when comparing

the two data structures, we believe that the size of the formula is not the cause for the

different runtimes.

We have demonstrated that implementing sequences as chars and performing bitwise

operations such as bit shifts, have the potential of outperforming implementations em-

ploying arrays. We were however not able to obtain results for experiments that run out

of memory for implementations employing arrays, as they ran out of memory as well for

implementations using bitwise operations.

61

6 Conclusion

6.1 Summary

We were able to successfully generalize the symbolic program by Koch et al., 2021 to find

protocols for any boolean function. We applied it to five different functions, to find new

protocols for them. For the OR function we were able to find two four card Las Vegas

protocols with probabilistic security. One of them had uniform but not closed shuffles, the

other one had closed but non-uniform shuffles. For the COPY function we were able to

find a five card Las Vegas protocol with probabilistic security and not closed but uniform

shuffles. However we were not able to find protocols for the half adder function, as the

bounded model checker would either take too long or there would be an "out-of-memory"

error. We tested the use of different SAT solvers for the use within the bounded model

checker. However neither CaDiCal
1
nor Glucose

2
performed better than the built-in SAT

solver MiniSat for our application. We therefore were not able to increase the number

of cards or steps for which we could obtain protocols by changing out the SAT solver. A

remaining problem of the presented method that uses bounded model checking to find

card based protocols is therefore, that it is only effective for small numbers of cards and

steps.

We introduced and defined a new action that applied protocols to a state. We then presented

a method of inserting this new protocol action into the symbolic program. With that we

were able to use protocols as an operation when finding new protocols. Subsequently we

were then able to implement protocols from literature and that were found in section 3.2 as

operations into the symbolic program. With that we were able to apply our implementation

to a COPY protocol and find a protocol. This protocol for the COPY function made use of

an AND protocol. Using this protocol we were able to show, that we could compute any

boolean function by using only two protocols. However we were still not able to find a

protocol for the half adder.

We introduced a new representation of sequences and states where cards are stored as

bits inside a single variable. We were able to show that it is possible to implement the

operations within the symbolic program, most notably the turn and shuffle operation,

by using the new data structure and bitwise operators. We performed an experiment

1
http://fmv.jku.at/cadical/

2
https://www.labri.fr/perso/lsimon/research/glucose/

63

6 Conclusion

comparing our new data structure for the representation of states with the original data

structure. Our experiments indicated that our new representation improved the runtime of

the verification process. However, our tests were too limited to make a concrete statement

on whether different data structures actually allow us to find protocols more effectively.

Additionally our new data structure did not reduce the occurrence of "out-of-memory"

errors.

6.2 Outlook

A pending task is a complete implementation of the standardized program using the

new data structure for sequences to definitely judge whether the runtime improvements

translate to programs that find full protocols. A large part of methods needed are already

implemented in the program from section 5.2.2. However there are still some methods

missing.

Another remaining question is how to reduce the occurrence of the "out-of-memory" error.

As we have analyzed in section 3.2.4 it occurred during or directly after the conversion

into static single assignment (SSA) form. As we have shown neither using CaDiCal
3
nor

Glucose
4
offered any improvements. However there could be a SAT or SMT solver that

performs better for our implementations, so more tests using different solvers could be

performed.

3
http://fmv.jku.at/cadical/

4
https://www.labri.fr/perso/lsimon/research/glucose/

64

Bibliography

Koch, Alexander (2019). “Cryptographic Protocols from Physical Assumptions”. PhD thesis.

Karlsruhe Institute of Technology, Germany.

Koch, Alexander, Michael Schrempp, and Michael Kirsten (2021). “Card-Based Cryp-

tography Meets Formal Verification”. In: New Gener. Comput. 39.1, pp. 115–158. doi:
10.1007/s00354-020-00120-0.

Koch, Alexander, Stefan Walzer, and Kevin Härtel (2015). “Card-Based Cryptographic

Protocols Using a Minimal Number of Cards”. In: Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part I. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9452. Lecture Notes in Computer

Science. Springer, pp. 783–807. doi: 10.1007/978-3-662-48797-6_32.

Kroening, Daniel and Michael Tautschnig (2014). “CBMC - C Bounded Model Checker -

(Competition Contribution)”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 20th International Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes

in Computer Science. Springer, pp. 389–391. doi: 10.1007/978-3-642-54862-8_26.

Mizuki, Takaaki, Isaac Kobina Asiedu, and Hideaki Sone (2013). “Voting with a Logarithmic

Number of Cards”. In: Unconventional Computation and Natural Computation - 12th
International Conference, UCNC 2013, Milan, Italy, July 1-5, 2013. Proceedings. Ed. by
Giancarlo Mauri et al. Vol. 7956. Lecture Notes in Computer Science. Springer, pp. 162–

173. doi: 10.1007/978-3-642-39074-6_16.

Mizuki, Takaaki and Hideaki Sone (2009). “Six-Card Secure AND and Four-Card Secure

XOR”. In: Frontiers in Algorithmics, Third International Workshop, FAW 2009, Hefei, China,
June 20-23, 2009. Proceedings. Ed. by Xiaotie Deng, John E. Hopcroft, and Jinyun Xue.

Vol. 5598. Lecture Notes in Computer Science. Springer, pp. 358–369. doi: 10.1007/978-

3-642-02270-8_36.

Mizuki, Takaaki, Fumishige Uchiike, and Hideaki Sone (2006). “Securely computing XOR

with 10 cards”. In: Australas. J Comb. 36, pp. 279–294.
Niemi, Valtteri and Ari Renvall (Jan. 1998). “Secure multiparty computations without

computers”. en. In: Theoretical Computer Science 191.1, pp. 173–183. issn: 0304-3975. doi:
10.1016/S0304-3975(97)00107-2. url: https://www.sciencedirect.com/science/

article/pii/S0304397597001072 (visited on 09/04/2022).

Nishida, Takuya, Takaaki Mizuki, and Hideaki Sone (2013). “Securely Computing the

Three-Input Majority Function with Eight Cards”. In: Theory and Practice of Natural
Computing - Second International Conference, TPNC 2013, Cáceres, Spain, December 3-5,

65

https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1016/S0304-3975(97)00107-2
https://www.sciencedirect.com/science/article/pii/S0304397597001072
https://www.sciencedirect.com/science/article/pii/S0304397597001072

Bibliography

2013, Proceedings. Ed. by Adrian-Horia Dediu et al. Vol. 8273. Lecture Notes in Computer

Science. Springer, pp. 193–204. doi: 10.1007/978-3-642-45008-2_16.

Nishida, Takuya et al. (2015). “Card-Based Protocols for Any Boolean Function”. In: Theory
and Applications of Models of Computation - 12th Annual Conference, TAMC 2015, Singa-
pore, May 18-20, 2015, Proceedings. Ed. by Rahul Jain, Sanjay Jain, and Frank Stephan.

Vol. 9076. Lecture Notes in Computer Science. Springer, pp. 110–121. doi: 10.1007/978-

3-319-17142-5_11.

Rastogi, Aseem, Nikhil Swamy, and Michael Hicks (2019). “Wys*: A DSL for Verified

Secure Multi-party Computations”. In: Principles of Security and Trust - 8th International
Conference, POST 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings.
Ed. by Flemming Nielson and David Sands. Vol. 11426. Lecture Notes in Computer

Science. Springer, pp. 99–122. doi: 10.1007/978-3-030-17138-4_5.

Saito, Takahiro et al. (2020). “How to Implement a Non-uniform or Non-closed Shuffle”.

In: Theory and Practice of Natural Computing - 9th International Conference, TPNC 2020,
Taoyuan, Taiwan, December 7-9, 2020, Proceedings. Vol. 12494. Lecture Notes in Computer

Science. Springer, pp. 107–118. doi: 10.1007/978-3-030-63000-3_9.

Sasao, Tsutomu (1999). “Logic Functions and Their Representations”. en. In: Switching
Theory for Logic Synthesis. Ed. by Tsutomu Sasao. Boston, MA: Springer US, pp. 35–61.

isbn: 978-1-4615-5139-3. doi: 10.1007/978-1-4615-5139-3_3. (Visited on 02/23/2023).

Stiglic, Anton (2001). “Computations with a deck of cards”. In: Theor. Comput. Sci. 259.1-2,
pp. 671–678. doi: 10.1016/S0304-3975(00)00409-6.

66

https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1007/978-3-030-63000-3_9
https://doi.org/10.1007/978-1-4615-5139-3_3
https://doi.org/10.1016/S0304-3975(00)00409-6

A Appendix

A.1 Full Experiment Results

A.1.1 Test Results for the Comparison of the different Data Structures

Protocol Average

N = 4 SEC = 2 Arrays Date 4.1.2023 15/21/00 11.1.2023 12/31/21 11.1.2023 12/24/35 11.1.2023 12/38/50 11.1.2023 12/16/51

variables 2525596 2525596 2525596 2525596 2525596

clauses 8167087 8167087 8167087 8167087 8167087

complete time 382 381 381 384 384 382.4

BitShifts Date 4.1.2023 12/06/21 11.1.2023 12/51/10 11.1.2023 12/48/75 11.1.2023 12/46/41 11.1.2023 16/23/56

variables 2333279 2333279 2333279 2333279 2333279

clauses 7256704 7256704 7256704 7256704 7256704

complete time 113 114 113 113 114 113.4

N = 4 SEC = 1 Arrays Date 12.1.2023 15/41/43 12.1.2023 16/04/37 12.1.2023 16/57/05 12.1.2023 17/27/29 31.1.2023 119/25/59

variables 3623257 3623257 3623257 3623257 3623257

clauses 11633860 11633860 11633860 11633860 11633860

complete time 1059 1068 1066 1072 215 896

BitShifts Date 12.11.2023 12/07/16 12.11.2023 12/15/59 12.1.2023 12/24/25 12.1.2023 12/38/03 12.1.2023 12/47/11

variables 3432778 3432778 3432778 3432778 3432778

clauses 10723999 10723999 10723999 10723999 10723999

complete time 482 487 589 489 491 507.6

N= 5 SEC = 2 Arrays Date 4.1.2023 15/27/46 12.1.2023 12/59/00 12.1.2023 23/56/39 13.1.2023 10/45/17 13.1.2023 14/05/25

variables 34216676 34216676 34216676 34216676 34216676

clauses 123856065 123856065 123856065 123856065 123856065

complete time 6954 6650 10432 7758 10241 8407

BitShifts Date 4.1.2023 12/10/22 11.1.2023 12/53/18 31.01.2023 12/35/07 31.012023 13/47/06 31.1.2023 14/42/27

variables 27384088 27384088 27384088 27384088 27384088

clauses 95341873 95341873 95341873 95341873 95341873

complete time 3499 3483 4319 3320 4920 3908.2

N = 5 SEC = 1 Arrays Date 26.01.2023 11/06/57 28/01/2023 07/02/17

variables 47451857 47451857

clauses 170267718 170267718

complete time 158120 94512 126316

BitShifts Date 31.01.2023 12/28/10 31.1.2023 14/31/54

variables 40622131 40622131

clauses 141754048 141754048

complete time 7424 6535 6979.5

N = 6 SEC = 2 Arrays Date 05.01.2023 13/15/45 31.1.2023 06/04/08 31.1.2023 04/07/32 31.1.2023 10/31/32 31.1.2023 19/29/34

out of memory after 7158 9138 6996 6906 7042 7448

Bit Shifts Date 04.1.2023 22/48/02 31.1.2023 00/42/09 31.1.2023 01/31/46 31.1.2023 01/17/26 31.01.2023 03/17/26

out of memory after 3028 2977 3296 3043 3006 3070

N = 6 SEC = 1 Arrays Date 30.01.2023 09/47/30 30.1.2023 19/19/49 30,.1.2023 13/36/13 30.1.2023 16/26/34 30.1.2023 22/00/50

out of memory after 13723 9660 10221 10395 9679 26839

BitShifts Date 31.1.2023 21/26/56 31.1.2023 22/46/49 31.1.2023 19/20/28 31.1.2023 20/38/02 31.1.2023 21/58/27

out of memory after 4793 4820 4654 4825 4634 4745.2

67

A Appendix

A.1.2 Test Results for the Comparaison of Different SAT Solvers

Protocol Used SAT Solver Average Test #1 Test #2 Test #3 Test #4 Test #5

XOR, N=4, L=2, SEC = 2 Mini Sat Date 2023_02_02_11_36_29 2023_02_02_11_42_35 2023_02_02_11_48_43 2023_02_02_11_37_17 2023_02_02_11_43_59

Total Time 372.8 366 368 368 402 360

Variables 10829386

Clauses 39863588

Glucose Date 2023_02_01_20_14_02 2023_02_01_20_23_35 2023_02_01_20_33_09 2023_02_01_20_15_35 2023_02_01_20_24_55

Total Time 568.6 573 573 576 560 561

Variables 10829386

Clauses 39863588

Cadical Date 2023_02_03_10_44_28 2023_02_03_10_56_33 2023_02_03_11_08_44 2023_02_03_10_45_15 2023_02_03_10_57_16

Total Time 725.2 725 731 729 721 720

Variables 10829386

Clauses 39905499

XOR, N=4, L=2, SEC = 1 Mini Sat Date 2023_02_02_11_54_51 2023_02_02_12_05_15 2023_02_02_11_49_59 2023_02_02_12_00_16 2023_02_02_12_10_28

Total Time 618.8 623 628 617 612 614

Variables 13191171

Clauses 47693620

Glucose Date 2023_02_01_20_42_45 2023_02_01_21_08_54 2023_02_01_20_34_16 2023_02_01_20_59_54 2023_02_01_21_42_42

Total Time 1757.4 1569 1570 1538 2568 1542

Variables 13191171

Clauses 47693620

Cadical Date 2023_02_03_11_20_53 2023_02_03_11_51_34 2023_02_03_11_09_16 2023_02_03_11_39_10 2023_02_03_12_13_55

Total Time 1867.4 1841 1836 1794 2085 1781

Variables 13191171

Clauses 47736299

XOR, N=4, L=2, SEC = 0 Mini Sat Date 2023_02_02_12_15_43 2023_02_02_12_49_45 2023_02_02_13_23_39 2023_02_02_12_20_42 2023_02_02_13_09_18

Total Time 2203.4 2042 2034 2039 2916 1986

Variables 18192251

Clauses 73827798

Glucose Date 2023_02_01_21_35_04 2023_02_01_23_31_33 2023_02_02_00_58_19 2023_02_01_22_08_24 2023_02_01_23_30_45

Total Time 5417.4 6989 5206 5005 4941 4946

Variables 18192251

Clauses 73827798

Cadical Date 2023_02_03_12_22_10 2023_02_03_14_38_31 2023_02_03_16_35_59 2023_02_03_12_43_36 2023_02_03_14_39_12

Total Time 7731.2 8180 7048 8917 6936 7575

Variables 18192251

Clauses 73870727

OR, N=4, L=2, SEC = 2 Mini Sat Date 2023_02_02_13_57_38 2023_02_02_14_05_44 2023_02_02_13_42_24 2023_02_02_13_50_23 2023_02_02_13_58_23

Total Time 481.6 486 485 479 479 479

Variables 10819303

Clauses 39832637

Glucose Date 2023_02_02_02_21_45 2023_02_02_02_39_26 2023_02_02_00_53_11 2023_02_02_01_10_59 2023_02_02_01_28_35

Total Time 1065 1061 1081 1068 1056 1059

Variables 10819303

Clauses 39832637

Cadical Date 2023_02_03_19_04_37 2023_02_03_20_07_57 2023_02_03_16_45_27 2023_02_03_17_45_44 2023_02_03_18_43_51

Total Time 3444 3800 3308 3617 3487 3008

Variables 10819303

Clauses 39874504

OR, N=4, L=2, SEC = 1 Mini Sat Date 2023_02_02_14_13_49 2023_02_02_14_34_08 2023_02_02_14_54_28 2023_02_02_14_06_22 2023_02_02_14_31_49

Total Time 1277 1218 1219 1218 1527 1203

Variables 13185883

Clauses 47673732

Glucose Date 2023_02_02_02_57_27 2023_02_02_03_19_44 2023_02_02_03_42_11 2023_02_02_01_46_14 2023_02_02_02_08_07

Total Time 1332.8 1347 1347 1345 1313 1312

Variables 13185883

Clauses 47673732

Cadical Date 2023_02_03_21_03_05 2023_02_03_21_43_32 2023_02_03_22_19_42 2023_02_03_19_33_59 2023_02_03_20_09_35

Total Time 2207.8 2427 2170 2169 2136 2137

Variables 13185883

Clauses 47716387

OR, N=4, L=2, SEC = 0 Mini Sat Date 2023_02_02_15_14_46 2023_02_02_15_47_00 2023_02_02_14_51_52 2023_02_02_15_23_32 2023_02_02_15_55_09

Total Time 1919.4 1934 1946 1900 1897 1920

Variables 18186963

Clauses 73807910

Glucose Date 2023_02_02_04_04_36 2023_02_02_05_15_41 2023_02_02_02_29_59 2023_02_02_04_30_10 2023_02_02_05_39_40

Total Time 5398.4 4265 4932 7209 4170 6416

Variables 18186963

Clauses 73807910

Cadical Date 2023_02_03_22_55_51 2023_02_04_00_22_08 2023_02_03_20_45_12 2023_02_03_22_02_3 2023_02_03_23_20_0

Total Time 4754 5177 4728 4647 4644 4574

Variables 18186963

Clauses 73850815

OR N=5, L=2, SEC = 2 Mini Sat Date 2023_02_02_16_19_26 2023_02_02_16_49_26 2023_02_02_17_20_32 2023_02_02_16_27_09 2023_02_02_16_56_51

out of memory 2298.4 1799 1863 4251 1780 1799

Glucose Date 2023_02_02_06_37_53 2023_02_02_07_05_23 2023_02_02_07_32_40 2023_02_02_07_26_36 2023_02_02_07_53_46

out of memory 1638 1648 1636 1650 1629 1627

Cadical Date 2023_02_04_01_40_56 2023_02_04_02_26_37 2023_02_04_03_16_54 2023_02_04_00_36_17 2023_02_04_01_21_12

out of memory 2798.4 2740 3014 2769 2694 2775

68

A.2 Card Protocols from Literature

A.2 Card Protocols from Literature

The KWH trees of the five card AND protocol by Koch et al. (2021) and the four card XOR

protocol by Mizuki and Sone (2009).

A.2.1 Five card AND Protocol

♣♥♣♥♥ 𝑋00

♣♥♥♣♥ 𝑋01

♥♣♣♥♥ 𝑋10

♥♣♥♣♥ 𝑋11

♣♥♣♥♥ 1

5
𝑋0 ♥♣♥♣♥ 1

5
𝑋1

♥♣♣♥♥ 1

5
𝑋0 ♥♥♣♣♥ 1

5
𝑋1

♣♥♥♣♥ 1

5
𝑋0 ♥♥♣♥♣ 1

5
𝑋1

♥♥♥♣♣ 1

5
𝑋0 ♣♥♥♥♣ 1

5
𝑋1

♥♣♥♥♣ 1

5
𝑋0 ♣♣♥♥♥ 1

5
𝑋1

(shuffle, Π = ⟨(12453)⟩)

♣♥♥♣♥ 1

2
𝑋0

♥♥♥♣♣ 1

2
𝑋0

♥♣♥♣♥ 1

2
𝑋1

♥♥♣♣♥ 1

2
𝑋1

♣♥♣♥♥ 1

3
𝑋0

♥♣♣♥♥ 1

3
𝑋0

♥♣♥♥♣ 1

3
𝑋0

♥♥♣♥♣ 1

3
𝑋1

♣♥♥♥♣ 1

3
𝑋1

♣♣♥♥♥ 1

3
𝑋1

(turn, {4})

???♣? ???♥?

♣♥♥♣♥ 1

4
𝑋0

♥♥♥♣♣ 1

4
𝑋0

♥♥♣♥♣ 1

4
𝑋0

♥♣♣♥♥ 1

4
𝑋0

♥♣♥♣♥ 1

4
𝑋1

♥♥♣♣♥ 1

2
𝑋1

♣♥♣♥♥ 1

4
𝑋1

(shuffle, ⟨(12) (34)⟩)

♣♥♥♣♥ 1

4
𝑋0

♣♥♣♥♥ 1

4
𝑋1

♥♥♥♣♣ 1

3
𝑋0

♥♥♣♥♣ 1

3
𝑋0

♥♣♣♥♥ 1

3
𝑋0

♥♣♥♣♥ 1

3
𝑋1

♥♥♣♣♥ 2

3
𝑋1

(turn, {1})

♣????♥????

♥♣♣♥♥ 𝑋0

♥♣♥♣♥ 𝑋1

♥♥♥♣♣ 1

2
𝑋0

♥♥♣♥♣ 1

2
𝑋0

♥♥♣♣♥ 𝑋1

(turn, {2})

?♣????♥???

(perm, (23); (shuffle, Π) (shuffle, Π)

(result, 4, 3)
✓

(result, 3, 4)
✓

Fig. A.1: Five card AND protocol by Koch et al. (2021)

69

A Appendix

A.2.2 Four Card XOR Protocol

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♣♥♣ 𝑋11

♣♣♥♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♥♣♣ 𝑋11

(perm, (23))

♣♣♥♥ 1

2
𝑋00 + 1

2
𝑋11

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♥♣♣ 1

2
𝑋00 + 1

2
𝑋11

(shuffle,{id, (13)(24)})

♣♥♣♥ 1

2
𝑋00 + 1

2
𝑋11

♣♥♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♣♣♥ 1

2
𝑋01 + 1

2
𝑋10

♥♣♥♣ 1

2
𝑋00 + 1

2
𝑋11

(perm, (23))

♣♥♣♥ 𝑋00 + 𝑋11

♣♥♥♣ 𝑋01 + 𝑋10

♥♣♣♥ 𝑋01 + 𝑋10

♥♣♥♣ 𝑋00 + 𝑋11

(turn, {1, 2})

♣♥?? ♥♣??

(result, 3, 4)
✓

(result, 4, 3)
✓

Fig. A.2: Four card XOR protocol by Mizuki and Sone (2009)

A.3 Additional Protocols found through Bounded Model
Checking

In section 3.2.3 we found two protocols that are shown in figs. A.3 and A.4. We completed

them with restart operations making their runtime restarting las Vegas. However we do

not rule out that there is a way of completing the them to be a restart-free Las Vegas

protocol or even a Finite Runtime protocol.

70

A.3 Additional Protocols found through Bounded Model Checking

A.3.1 Five Card OR Protocol with input possibilistic security and non-closed
shuffles.

♣♥♣♥♣ 𝑋00

♣♥♥♣♣ 𝑋01

♥♣♣♥♣ 𝑋10

♥♣♥♣♣ 𝑋11

♣♣♣♥♥ 1

2
𝑋01

♣♣♥♣♥ 1

2
𝑋10 + 1

2
𝑋11

♣♥♥♣♣ 1

2
𝑋00

♥♣♣♣♥ 1

2
𝑋11

♥♣♣♥♣ 1

2
𝑋00

♥♣♥♣♣ 1

2
𝑋10

♥♥♣♣♣ 1

2
𝑋01

(shuffle, {(1543), (13524)})

♥♣♣♥♣ 𝑋00

♥♥♣♣♣ 𝑋01

♥♣♥♣♣ 𝑋10

♥♣♣♣♥ 𝑋11

♣♣♣♥♥ 𝑋01

♣♣♥♣♥ 𝑋10 + 𝑋11

♣♥♥♣♣ 𝑋00

(result, 5, 2)
✓

(turn, {1})

♣????♥????

restart

Fig. A.3: A restarting Las Vegas protocol for OR with input-possibilistic security. The shuffles are
not closed. It uses 5 cards and has a best case of 2 steps.

71

A Appendix

A.3.2 Input-possibilistic protocol with closed shuffles for OR using 4 cards
and 5 steps

♣♥♣♥ 𝑋00

♣♥♥♣ 𝑋01

♥♣♣♥ 𝑋10

♥♣♥♣ 𝑋11

♣♣♥♥ 1

2
𝑋00

♣♥♣♥ 1

2
𝑋01 + 1

2
𝑋10

♣♥♥♣ 1

2
𝑋00

♥♣♣♥ 1

2
𝑋11

♥♣♥♣ 1

2
𝑋01 + 1

2
𝑋10

♥♥♣♣ 1

2
𝑋11

(shuffle,{(24), (1432)})

♣♣♥♥ 𝑋00

♥♣♣♥ 𝑋11

♥♣♥♣ 𝑋01 + 𝑋10

♣♥♣♥ 𝑋01 + 𝑋10

♣♥♥♣ 𝑋00

♥♥♣♣ 𝑋11

(turn, {2})
?♣?? ?♥??

♣♣♥♥ 𝑋00

♣♥♣♥ 𝑋01 + 𝑋10

♣♥♥♣ 𝑋11

(perm,(12)(34))

♣♣♥♥ 1

3
𝑋00 =

1

3
𝑋0

♥♥♣♣ 2

3
𝑋00

♣♥♣♥ 1

2
𝑋01 + 1

2
𝑋10 + 1

2
𝑋11 =

1

2
𝑋1

♣♥♥♣ 1

6
𝑋01 + 1

6
𝑋10 + 1

6
𝑋11 =

1

6
𝑋1

♥♣♣♥ 1

3
𝑋01 + 1

3
𝑋10 + 1

3
𝑋11 =

1

3
𝑋1

(shuffle,{id, (13)(24), (34), (1324)})

♣♥♣♥ 3

4
𝑋1

♣♥♥♣ 1

4
𝑋1

♥♥♣♣ 𝑋0

♣♣♥♥ 𝑋00

♥♣♣♥ 𝑋01 + 𝑋10 + 𝑋11

(turn, {2})
?♣???♥??

(result, 1, 3)
✓

restart restart

Fig. A.4: A restarting Las Vegas protocol for OR with input-possibilistic security. The shuffles are
not closed. It uses 4 cards and has a best case of 5 steps.

A.4 Code Repository

All code written and used for this thesis can be found in the GitHub repository.

A.5 Code Excerpts from the Adapted Standardized Program
Representations.

The full implementation of the subsequent programs can be found in the GitHub repository

(appendix A.4

72

A.5 Code Excerpts from the Adapted Standardized Program Representations.

A.5.1 XOR

Listing A.1 Excerpt from the preprocessor variables

1 #ifndef COMMIT
2 #define COMMIT 4
3 #endif
4

5 #ifndef NUMBER_START_SEQS
6 #define NUMBER_START_SEQS 4
7 #endif
8

9 #if WEAK_SECURITY == 2
10 #define NUMBER_PROBABILITIES 2
11 #else
12 #define NUMBER_PROBABILITIES 4
13 #endif

Listing A.2 Test for bottom sequence.

1 unsigned int isBottom(struct fractions probs) {
2 unsigned int bottom = 0;
3

4 if (WEAK_SECURITY == 2) {
5 bottom = probs.frac[0].num && probs.frac[1].num;
6 } else {
7 bottom = (probs.frac[0].num || probs.frac[3].num) && (probs.

frac[1].num || probs.frac[2].num);
8 }
9 return bottom;
10 }

Listing A.3 Excerpt from the function isFinalState(). It checks whether a given state can be an
end state. We only look at the assignment of deciding here, because it is the only thing that is
changed from the original Implementation for AND

1 unsigned int isFinalState(struct state s) {
2 if (WEAK_SECURITY == 2) {
3 deciding = (s.seq[i].probs.frac[1].num);
4 } else {
5 deciding = (s.seq[i].probs.frac[1].num) || (s.seq[i].probs.frac

[2].num);
6 }

A.5.2 OR

Preprocessor variable same as for appendix A.5.1.

73

A Appendix

Listing A.4 Test for bottom sequence

1 unsigned int isBottom(struct fractions probs) {
2 unsigned int bottom = 0;
3

4 if (WEAK_SECURITY == 2) {
5 bottom = probs.frac[0].num && probs.frac[1].num;
6 } else {
7 bottom = (probs.frac[1].num || probs.frac[2].num || probs.

frac[3].num) && probs.frac[0].num;
8 }
9 return bottom;
10 }

Listing A.5 Excerpt from the function isFinalState(). It checks whether a given state can be an
end state. We only look at the assignment of deciding here, because it is the only thing that is
changed from the original Implementation for AND

1 unsigned int isFinalState(struct state s) {
2 unsigned int deciding = !(s.seq[i].probs.frac[0].num);

A.5.3 COPY

Listing A.6 Excerpt from the preprocessor variables

1 * COPY:
2 * for COPY we need a 2 cards commitment not 4
3 */
4 #ifndef COMMIT
5 #define COMMIT 2
6 #endif
7

8 /**
9 * COPY:
10 * for COPY we have 2 start sequences 1 and 0
11 */
12 #ifndef NUMBER_START_SEQS
13 #define NUMBER_START_SEQS 2
14 #endif
15

16 #if WEAK_SECURITY == 2
17 #define NUMBER_PROBABILITIES 2
18 #else
19 #define NUMBER_PROBABILITIES 4
20 #endif

Listing A.7 Test for bottom sequence

74

A.5 Code Excerpts from the Adapted Standardized Program Representations.

1 unsigned int bottom = 0;
2 /**
3 * COPY:
4 * we only have the probabilities/possibilities:
5 * X_0 if the input was a 0 (the output will also be a 0)
6 * X_1 if the input was a 1
7 * if both are != 0 then we have a bottom sequence
8 */
9 bottom = probs.frac[0].num && probs.frac[1].num;
10 return bottom;
11 }

Listing A.8 The function isFinalState() checks whether a given state can be an end state.

1 unsigned int isFinalState(struct state s) {
2 unsigned int res = 0;
3

4 if (isValid(s)) { // Non−valid states cannot be final.
5 unsigned int a = nondet_uint(); // Index of the first card.
6 unsigned int b = nondet_uint(); // Index of the second card.
7

8 assume (a < N && b < N && a != b);
9 unsigned int lowerCard = 0;
10 unsigned int higherCard = 0;
11

12 unsigned int c = nondet_uint(); // Index of the first card.
13 unsigned int d = nondet_uint(); // Index of the second card.
14

15 assume(c < N&& d < N&& c != d);
16 assume(a != c && a != d);
17 assume(b != c && b != d);
18

19 unsigned int done = 0;
20 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
21 if (!done && isStillPossible(s.seq[i].probs)) {
22 unsigned int deciding = s.seq[i].probs.frac[

NUMBER_PROBABILITIES − 1].num;
23 unsigned int first = s.seq[i].val[a];
24 unsigned int second = s.seq[i].val[b];
25 unsigned int third = s.seq[i].val[c];
26 unsigned int fourth = s.seq[i].val[d];
27 assume (first != second && third != fourth);
28 assume(first == third);
29 assume(second == fourth);
30 if (!higherCard && !lowerCard) {
31 higherCard = deciding ? first : second;
32 lowerCard = deciding ? second : first;
33 } else {
34 if ((deciding
35 && !(first == higherCard
36 && second == lowerCard))
37 || (!deciding

75

A Appendix

38 && !(second == higherCard
39 && first == lowerCard))) {
40 done = 1;
41 res = 0;
42 }
43 }
44 }
45 }
46 }
47 return res;
48 }

A.5.4 Half Adder

Listing A.9 Excerpt from the preprocessor variables

1 #ifndef COMMIT
2 #define COMMIT 4
3 #endif
4

5 #ifndef NUMBER_START_SEQS
6 #define NUMBER_START_SEQS 4
7 #endif
8

9 /**
10 * ADDER: IMPORTANT, we have three possible outputs we need to

distinguish
11 */
12 #if WEAK_SECURITY == 2
13 #define NUMBER_PROBABILITIES 3
14 #else
15 #define NUMBER_PROBABILITIES 4
16 #endif

Listing A.10 Test for bottom sequence

1 unsigned int isBottom(struct fractions probs) {
2 unsigned int bottom = 0;
3

4 if (WEAK_SECURITY == 2) {
5 bottom = (probs.frac[0].num && probs.frac[1].num) || (probs.

frac[1].num && probs.frac[2].num) || (probs.frac[2].num
&& probs.frac[0].num);

6 }
7 else {
8 bottom = ((probs.frac[1].num || probs.frac[2].num) && (probs

.frac[0].num || probs.frac[3].num)) || (probs.frac[0].num
&& probs.frac[3].num);

9 }
10 return bottom;

76

A.5 Code Excerpts from the Adapted Standardized Program Representations.

11 }

Listing A.11 The function isFinalState() checks whether a given state can be an end state.

1 unsigned int isFinalState(struct state s) {
2 unsigned int res = 0;
3

4 if (isValid(s)) { // Non−valid states cannot be final.
5 res = 1;
6 //SUM
7 unsigned int a = nondet_uint(); // Index of the first card

−> sum
8 unsigned int b = nondet_uint(); // Index of the second card

−> sum
9 //Carry
10 unsigned int c = nondet_uint(); // Index of the third card

−> carry
11 unsigned int d = nondet_uint(); // Index of the fourth card

−> carry
12

13 assume(a < N&& b < N&& a != b);
14 assume(c < N&& d < N&& c != d);
15 assume(a != c && a != d && b != c && b != d);
16

17 //SUM (XOR)
18 unsigned int lowerCardSum = 0;
19 unsigned int higherCardSum = 0;
20

21 unsigned int doneSum = 0;
22 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
23 if (!doneSum && isStillPossible(s.seq[i].probs)) {
24 unsigned int decidingSum = 0;
25 if (WEAK_SECURITY == 2) {
26 decidingSum = (s.seq[i].probs.frac[1].num);
27 }
28 else {
29 decidingSum = (s.seq[i].probs.frac[1].num) || (s

.seq[i].probs.frac[2].num);
30 }
31 unsigned int firstSum = s.seq[i].val[a];
32 unsigned int secondSum = s.seq[i].val[b];
33 assume(firstSum != secondSum);
34 if (!higherCardSum && !lowerCardSum) {
35 // In a 1−sequence, the first card is higher,

otherwise the second one.
36 higherCardSum = decidingSum ? firstSum :

secondSum;
37 lowerCardSum = decidingSum ? secondSum :

firstSum;
38 }
39 else {
40 if ((decidingSum

77

A Appendix

41 && !(firstSum == higherCardSum
42 && secondSum == lowerCardSum))
43 || (!decidingSum
44 && !(secondSum == higherCardSum
45 && firstSum == lowerCardSum))) {
46 doneSum = 1;
47 res = 0;
48 }
49 }
50 }
51 }
52

53 //CARRY (AND)
54 unsigned int lowerCardCarry = 0;
55 unsigned int higherCardCarry = 0;
56

57 unsigned int done = 0;
58 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
59 if (!done && isStillPossible(s.seq[i].probs)) {
60 unsigned int decidingCarry = s.seq[i].probs.frac[

NUMBER_PROBABILITIES − 1].num;
61 unsigned int firstCarry = s.seq[i].val[c];
62 unsigned int secondCarry = s.seq[i].val[d];
63 assume(firstCarry != secondCarry);
64 if (!higherCardCarry && !lowerCardCarry) {
65 // In a 1−sequence, the first card is higher,

otherwise the second one.
66 higherCardCarry = decidingCarry ? firstCarry :

secondCarry;
67 lowerCardCarry = decidingCarry ? secondCarry :

firstCarry;
68 }
69 else {
70 if ((decidingCarry
71 && !(firstCarry == higherCardCarry
72 && secondCarry == lowerCardCarry))
73 || (!decidingCarry
74 && !(secondCarry == higherCardCarry
75 && firstCarry == lowerCardCarry))) {
76 done = 1;
77 res = 0;
78 }
79 }
80 }
81 }
82 }
83 return res;
84 }

78

A.6 Implementation of the Nested Structure

A.6 Implementation of the Nested Structure

A.6.1 Additions to the Main C Program

We add and edit some parameters of the main symbolic programs that are dependant on

the actions that can be performed.

1 /**
2 * determines whether the Modules are used or not
3 * 0: no modules only turns and shuffles
4 * 1: modules are used
5 */
6 #ifndef MODULES
7 #define MODULES 1
8 #endif
9

10 /**
11 * Amount of different action types allowed in protocol, excluding

result action.
12 */
13 #if MODULES == 0
14 #define A 2
15 #else
16 #define A 3
17 #endif
18

19 /**
20 * Number assigned to turn and shuffle action.
21 */
22 #ifndef TURN
23 #define TURN 0
24 #endif
25

26 #ifndef SHUFFLE
27 #define SHUFFLE 1
28 #endif
29

30 /**
31 * Number assigned to protocol execution action.
32 */
33 #ifndef PROTOCOL
34 #define PROTOCOL 2
35 #endif

We also have to include modules.c (appendix A.6.2 with #include"modules.c".

Additionally we add the ptotocol action to the function performActions. It chooses an

action (turn, shuffle or protocol) and performs it.

1 unsigned int performActions(struct state s) {

79

A Appendix

2 unsigned int result = 0;
3 // All reachable states are stored here.
4 struct state reachableStates[MAX_REACHABLE_STATES];
5 for (unsigned int i = 0; i < MAX_REACHABLE_STATES; i++) {
6 // Begin calculation from start state.
7 reachableStates[i] = s;
8 }
9 for (unsigned int i = 0; i < L; i++) {
10 // Choose the action nondeterministically.
11 unsigned int action = nondet_uint();
12 assume(action < A);
13 // If A is greater than 2, we must add cases for additional

actions below.
14 if (MODULES == 0) {
15 assume(A == 2);
16 }
17 else {
18 assume(A == 3);
19 }
20 unsigned int next = i + 1;
21

22 if (action == TURN) {
23 //perform shuffle action
24 }
25 else if (action == SHUFFLE) {
26 //perform shuffle
27 }
28 }
29 else if (action == PROTOCOL) {
30 reachableStates[next] = applyProtocols(reachableStates[i

]);
31

32 // only for not Final Runtime
33 if (isFinalState(reachableStates[next])) {
34 assume(next == L);
35 result = 1;
36 }
37 }
38 else {
39 // No valid action was chosen. This must not happen.
40 assume(next == L);
41 }
42 }
43 return result;
44 }

A.6.2 Modules.c

This is the complete modules. c program. It contains all necessary implementations for

the protocol action

80

A.6 Implementation of the Nested Structure

1 #include <stdlib.h>
2 #include <stdint.h>
3 #include <assert.h>
4

5 /**
6 * MODULES:
7 * The maximum number of possible result states a protocol can have.
8 * This is defined for all possibly used protocols because

protocolStates needs to have a fixed size
9 * it is currently defined as 2, because the protocol with the most

endstates has 2 endstates
10 */
11 #ifndef MAX_PROTOCOL_ENDSTATES
12 #define MAX_PROTOCOL_ENDSTATES 2
13 #endif
14

15 /**
16 * whether the protcol
17 * AND by Takaaki Mizuki and Hideaki Sone (2009) −> Finite Runtime, 6

cards, 2 steps
18 * (https://doi.org/10.1007/978−3−642−02270−8_36)
19 * is used (0: not used, 1: used)
20 */
21 #ifndef USE_FR_AND
22 #define USE_FR_AND 0
23 #endif
24

25 /**
26 * AND by Takaaki Mizuki and Hideaki Sone (2009) −> Finite Runtime, 6

cards, 2 steps
27 * (https://doi.org/10.1007/978−3−642−02270−8_36)
28 */
29 #ifndef FR_AND
30 #define FR_AND 0
31 #endif
32

33 /**
34 * whether the protcol
35 * XOR by Takaaki Mizuki and Hideaki Sone(2009) −> Finite Runtime, 4

cards, 2 steps
36 * (https://doi.org/10.1007/978−3−642−02270−8_36)
37 * is used (0: not used, 1: used)
38 */
39 #ifndef USE_FR_XOR
40 #define USE_FR_XOR 0
41 #endif
42

43 /**
44 * XOR by Takaaki Mizuki and Hideaki Sone(2009) −> Finite Runtime, 4

cards, 2 steps
45 * (https://doi.org/10.1007/978−3−642−02270−8_36)
46 */
47 #ifndef FR_XOR
48 #define FR_XOR 1

81

A Appendix

49 #endif
50

51 /**
52 * whether the protcol
53 * AND by Alexander Koch, Michael Schrempp and Michael Kirsten (2021)

−> Las Vegas, 5 cards, 5 steps
54 * (https://doi.org/10.1007/s00354−020−00120−0)
55 * is used (0: not used, 1: used)
56 */
57 #ifndef USE_LV_AND
58 #define USE_LV_AND 0
59 #endif
60

61 /**
62 * AND by Alexander Koch, Michael Schrempp and Michael Kirsten (2021)

−> Las Vegas, 5 cards, 5 steps
63 * (https://doi.org/10.1007/s00354−020−00120−0)
64 */
65 #ifndef LV_AND
66 #define LV_AND 2
67 #endif
68

69 /**
70 * whether the protcol
71 * OR by Anne Hoff −> Las Vegas, 4 cards, 6 steps
72 * (https://github.com/a−nne−h/

automatedApproachToGeneratingCardProtocols)
73 * is used (0: not used, 1: used)
74 */
75 #ifndef USE_LV_OR
76 #define USE_LV_OR 0
77 #endif
78

79 /**
80 * OR by Anne Hoff −> Las Vegas, 4 cards, 6 steps
81 * (https://github.com/a−nne−h/

automatedApproachToGeneratingCardProtocols)
82 */
83 #ifndef LV_OR
84 #define LV_OR 3
85 #endif
86

87 /**
88 * whether the protcol
89 * COPY by Takaaki Mizuki and Hideaki Sone (2009) with fixed amount

of copies = 1 −> Finite Runtime, 6 cards, 2 steps
90 * (https://doi.org/10.1007/978−3−642−02270−8_36)
91 * is used(0: not used, 1 : used)
92 */
93 #ifndef USE_FR_COPY
94 #define USE_FR_COPY 0
95 #endif
96

97 /**

82

A.6 Implementation of the Nested Structure

98 * COPY by Takaaki Mizuki and Hideaki Sone (2009) with fixed amount
of copies = 1 −> Finite Runtime, 6 cards, 2 steps

99 * (https://doi.org/10.1007/978−3−642−02270−8_36)
100 */
101 #ifndef FR_COPY
102 #define FR_COPY 4
103 #endif
104

105 /**
106 * NOT does not have to be a protocol, becaue it is nothing else than

a perm operation which is already included
107 * Whether NOT is used −> Finite Runtime, 2 cards, 1 steps
108 */
109

110 //unsigned int protocolTable[5][2][4][6] = { FR_AND_TABLE,
FR_XOR_TABLE, LV_AND_TABLE, LV_OR_TABLE, FR_COPY_TABLE };

111 unsigned int protocolTable[5][2][4][6] = { { { { 1,2,1,2,1,2 }, {
1,2,2,1,1,2 },{ 1,2,1,2,1,2 }, { 1,2,1,2,2,1 } }, { { 2,1,1,2,1,2
},{ 2,1,1,2,2,1 }, { 2,1,1,2,1,2 }, { 2,1,2,1,1,2 } } },

112 { { { 1,2,1,2,0,0 }, { 2,1,1,2,0,0 }, { 2,1,1,2,0,0 }, { 1,2,1,2,0,0
} }, {{ 2,1,2,1,0,0 }, { 1,2,2,1,0,0 }, { 1,2,2,1,0,0 }, {

2,1,2,1,0,0 }} },
113 { { { 1,2,2,1,2,0 }, { 1,2,2,1,2,0 }, { 1,2,2,1,2,0 }, {

1,2,1,2,2,0 } }, { { 2,1,1,2,2,0 }, { 2,1,1,2,2,0 }, {
2,1,1,2,2,0 }, { 2,1,2,1,2,0 }} },

114 { { { 1,1,2,2,0,0 }, { 1,2,1,2,0,0 }, { 1,2,1,2,0,0 }, { 1,2,1,2,0,0
} }, {{ 1,2,1,2,0,0 }, { 2,1,1,2,0,0 }, { 2,1,1,2,0,0 }, {

2,1,1,2,0,0 }} },
115 { { { 1,2,1,2,1,2 }, { 0,0,0,0,0,0 }, { 1,2,2,1,2,1 }, { 0,0,0,0,0,0

} }, { { 2,1,2,1,2,1 }, { 0,0,0,0,0,0 }, { 2,1,1,2,1,2 }, {
0,0,0,0,0,0 }} } };

116

117 /**
118 * MODULES:
119 * Analog to turn states, this struct is used to retun arrays of

states after a protocol operation.
120 * There is one state for each possible end state (resut state) of

the protocol
121 * In each usage of a protocol, for each sequence the resulting

sequences in each end state are calculated and stored in states.
122 * isUsed[i] contains if the corresponding state[i] holds a end state

or isn't used
123 *
124 */
125 struct protocolStates {
126 struct state states[2];
127 unsigned int isUsed[MAX_PROTOCOL_ENDSTATES];
128 };
129

130 /**
131 * MODULES:
132 * finds the index of a given sequence (as an array) within a state.
133 */
134 unsigned int findIndex(struct sequence seq) {

83

A Appendix

135

136 unsigned int index = nondet_uint();
137

138 assume(index < NUMBER_POSSIBLE_SEQUENCES);
139 for (int j = 0; j < N; j++) {
140 assume(seq.val[j] == emptyState.seq[index].val[j]);
141 }
142 return index;
143 }
144

145 /**
146 * MODULES:
147 * searches for the endSequence in result.states[resultIdx]
148 * if found, copy the probabilities/possibilities from seq to result.

states[resultIdx] and return new result
149 */
150 struct protocolStates copyResults(struct sequence seq, struct

protocolStates result, unsigned int resultIdx) {
151 //find index of sequence within state that matches endSequence
152 unsigned int index = findIndex(seq);
153

154 // copy the probabilities/possibilities from seq to result.
states[resultIdx] (! add the values −> cr shuffle)

155 for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
156 struct fraction prob = seq.probs.frac[j];
157 // Copy numerator.
158 result.states[resultIdx].seq[index].probs.frac[j].num +=

prob.num;
159

160 if (!WEAK_SECURITY) { // Probabilistic security
161 // Copy denominator.
162 result.states[resultIdx].seq[index].probs.frac[j].den +=

prob.den;
163 }
164 }
165 return result;
166 }
167

168 struct protocolStates doProtocols(unsigned int protocolChosen,
struct state s, unsigned int com1A, unsigned int com1B, unsigned
int com2A, unsigned int com2B, unsigned int help1, unsigned int
help2) {

169 struct protocolStates result;
170 // Initialise N empty states.
171 for (unsigned int i = 0; i < MAX_PROTOCOL_ENDSTATES; i++) {
172 result.states[i] = emptyState;
173 result.isUsed[i] = 0;
174 }
175 for (unsigned int i = 0; i < MAX_PROTOCOL_ENDSTATES; i++) {
176 for (unsigned int j = 0; j < NUMBER_POSSIBLE_SEQUENCES; j++)

{
177 struct sequence seq = s.seq[j];
178 if (isStillPossible(seq.probs)) {
179 unsigned int idx = 0;

84

A.6 Implementation of the Nested Structure

180 if (isZero(seq.val[com1A], seq.val[com1B])) {
181 if (isZero(seq.val[com2A], seq.val[com2B])) {
182 // 0101
183 idx = 0;
184 }
185 else if (isOne(seq.val[com2A], seq.val[com2B]))

{
186 // 0110
187 idx = 1;
188 }
189 }
190 else if (isOne(seq.val[com1A], seq.val[com1B])) {
191 if (isZero(seq.val[com2A], seq.val[com2B])) {
192 // 1001
193 idx = 2;
194 }
195 else if (isOne(seq.val[com2A], seq.val[com2B]))

{
196 // 1010
197 idx = 3;
198 }
199 }
200 seq.val[com1A] = protocolTable[protocolChosen][i][

idx][0];
201 seq.val[com1B] = protocolTable[protocolChosen][i][

idx][1];
202 seq.val[com2A] = protocolTable[protocolChosen][i][

idx][2];
203 seq.val[com2B] = protocolTable[protocolChosen][i][

idx][3];
204

205 // if we have one (or more) helper card
206 if (protocolChosen == FR_AND || protocolChosen ==

FR_COPY
207 || protocolChosen == LV_AND) {
208 seq.val[help1] = protocolTable[protocolChosen][i

][idx][4];
209 // if we have two helper cards
210 if (protocolChosen == FR_AND || protocolChosen

== FR_COPY) {
211 seq.val[help2] = protocolTable[

protocolChosen][i][idx][5];
212 }
213 }
214 result = copyResults(seq, result, i);
215 result.isUsed[i] = 1;
216 }
217 }
218 }
219 for (unsigned int l = 0; l < MAX_PROTOCOL_ENDSTATES; l++) {
220 assume(isBottomFree(result.states[l]));
221 }
222 return result;
223 }

85

A Appendix

224

225 struct state applyProtocols(struct state s) {
226 // check that the chosen protocol is actually 'allowed'
227 unsigned int protocolChosen = nondet_uint();
228 assume(protocolChosen >= 0 && protocolChosen < 5);
229 if (USE_FR_AND == 0) {
230 assume(protocolChosen != FR_AND);
231 }
232 if (USE_FR_XOR == 0) {
233 assume(protocolChosen != FR_XOR);
234 }
235 if (USE_LV_AND == 0) {
236 assume(protocolChosen != LV_AND);
237 }
238 if (USE_LV_OR == 0) {
239 assume(protocolChosen != LV_OR);
240 }
241 if (USE_FR_COPY == 0) {
242 assume(protocolChosen != FR_COPY);
243 }
244 // create resulting states
245 struct protocolStates resultingStates;
246 for (unsigned int i = 0; i < MAX_PROTOCOL_ENDSTATES; i++) {
247 resultingStates.states[i] = emptyState;
248 resultingStates.isUsed[i] = 0;
249 }
250 // pick 4 cards that represent the two commitments
251 unsigned int com1A = nondet_uint();
252 unsigned int com1B = nondet_uint();
253 unsigned int com2A = nondet_uint();
254 unsigned int com2B = nondet_uint();
255 assume(com1A < N&& com1B < N&& com2A < N&& com2B < N);
256 assume(com1A != com1B && com1A != com2A && com1A != com2B);
257 assume(com1B != com2A && com1B != com2B);
258 assume(com2A != com2B);
259 unsigned int help1 = 0;
260 unsigned int help2 = 0;
261 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
262 // if the probability/possibility of this state is not 0
263 if (isStillPossible(s.seq[i].probs)) {
264 // check that througout every possible sequence in the

state we have chosen two different cards for our
commitments

265 assume(s.seq[i].val[com1A] != s.seq[i].val[com1B]);
266 assume(s.seq[i].val[com2A] != s.seq[i].val[com2B]);
267 }
268 }
269 // for copy we only have two commitments and four help cards
270 if (protocolChosen == FR_COPY) {
271 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
272 // if the probability/possibility of this state is not 0
273 if (isStillPossible(s.seq[i].probs)) {

86

A.6 Implementation of the Nested Structure

274 // check that helper cards are the same all
throughout every possible sequence in the state

275 assume(isZero((s.seq[i].val[com2A]), s.seq[i].val[
com2B]));

276 }
277 }
278 }
279 //protocols with five cards
280 if (protocolChosen == LV_AND) {
281 help1 = nondet_uint();
282 assume(help1 < N);
283 assume(help1 != com1A && help1 != com1B && help1 != com2A &&

help1 != com2B);
284 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
285 // if the probability/possibility of this state is not 0
286 if (isStillPossible(s.seq[i].probs)) {
287 // check that helper cards are the same all

throughout every possible sequence in the state
288 if (protocolChosen == LV_AND) {
289 // for LV_AND the helper card is 2
290 assume(s.seq[i].val[help1] == 2);
291 }
292 }
293 }
294 }
295 if (protocolChosen == FR_AND || protocolChosen == FR_COPY) {
296 help1 = nondet_uint();
297 help2 = nondet_uint();
298 assume(help1 < N&& help2 < N);
299 assume(help1 != com1A && help1 != com1B && help1 != com2A &&

help1 != com2B);
300 assume(help2 != com1A && help2 != com1B && help2 != com2A &&

help2 != com2B && help2 != help1);
301 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
302 // if the probability/possibility of this state is not 0
303 if (isStillPossible(s.seq[i].probs)) {
304 // check that helper cards are the same all

throughout every possible sequence in the state
305 assume(isZero((s.seq[i].val[help1]), s.seq[i].val[

help2]));
306 }
307 }
308 }
309 resultingStates = doProtocols(protocolChosen, s, com1A, com1B,

com2A, com2B, help1, help2);
310 //as with TURN, choose one output nondeterministically to look

at further
311 unsigned int stateIdx = nondet_uint();
312 assume(stateIdx < MAX_PROTOCOL_ENDSTATES);
313 assume(resultingStates.isUsed[stateIdx]);
314 return resultingStates.states[stateIdx];
315 }

87

A Appendix

A.7 Programs for the Experiments with Data Structures

The following code excerpt is the full test program bitShifts.c for the data structure

implemented with chars and bitwise operations in chapter 5. This code snippet can be used

to reproduce the experimental setup from section 5.2.2. It also shows how we implemented

the different operations with bitwise operations. The implementation for the experiment

with arrays is analogous to the implementation here. We only use arrays instead of a char

and operations on arrays instead of array operations. The full implementation of both

programs can be found in the GitHub repository (appendix A.4

1 /*
2 * definitions of the used static variables
3 * NUM_SYM, N, COMMIT, NUMBER_POSSIBLE_SEQUENCES, NUMBER_START_SEQS,

NUMBER_POSSIBLE_PERMUTATIONS, WEAK_SECURITY,
NUMBER_PROBABILITIES, MAX_PERM_SET_SIZE

4 */
5

6 struct fraction {
7 unsigned int num; // The numerator.
8 unsigned int den; // The denominator.
9 };
10

11 struct fractions {
12 struct fraction frac[NUMBER_PROBABILITIES];
13 };
14

15 struct sequence {
16 char val;
17 struct fractions probs;
18 };
19

20 struct state {
21 struct sequence seq[NUMBER_POSSIBLE_SEQUENCES];
22 };
23

24 struct permSequence {
25 unsigned int val[N];
26 struct fractions probs;
27 };
28

29 // All permutations are remembered here, as seen from left to right
, sorted alphabetically.

30 struct permutationState {
31 struct permSequence permSeq[NUMBER_POSSIBLE_PERMUTATIONS];
32 };
33

34 // We store all possible permutations into a seperate state to save
resources.

35 struct permutationState stateWithAllPermutations;
36

37 struct state emptyState;
38

88

A.7 Programs for the Experiments with Data Structures

39 struct narray {
40 unsigned int arr[N];
41 };
42 struct numsymarray {
43 unsigned int arr[NUM_SYM];
44 };
45

46 struct permutationState getStateWithAllPermutations() {
47 struct permutationState s;
48 for (unsigned int i = 0; i < NUMBER_POSSIBLE_PERMUTATIONS; i++)

{
49 struct narray taken;
50 for (unsigned int j = 0; j < N; j++) {
51 taken.arr[j] = 0;
52 }
53 for (unsigned int j = 0; j < N; j++) {
54 s.permSeq[i].val[j] = nondet_uint();
55 unsigned int val = s.permSeq[i].val[j];
56 assume(0 < val && val <= N);
57 unsigned int idx = val − 1;
58 assume(!taken.arr[idx]);
59 taken.arr[idx]++;
60 }
61 }
62 // Not needed, but to avoid state space explosion
63 for (unsigned int i = 0; i < NUMBER_POSSIBLE_PERMUTATIONS; i++)

{
64 for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
65 s.permSeq[i].probs.frac[j].num = 0;
66 s.permSeq[i].probs.frac[j].den = 1;
67 }
68 }
69 for (unsigned int i = 1; i < NUMBER_POSSIBLE_PERMUTATIONS; i++)

{
70 unsigned int checked = 0;
71 unsigned int last = i − 1;
72 for (unsigned int j = 0; j < N; j++) {
73 // Check lexicographic order
74 unsigned int a = s.permSeq[last].val[j];
75 unsigned int f = s.permSeq[i].val[j];
76 checked |= (a < f);
77 assume(checked || a == f);
78 }
79 assume(checked);
80 }
81 return s;
82 }
83 /**
84 * Given an char containing a sequence, we return the index of the

given sequence in a state.
85 */
86 unsigned int getSequenceIndexFromArray(char compare, struct state

compareState) {
87 unsigned int seqIdx = nondet_uint();

89

A Appendix

88 assume(seqIdx < NUMBER_POSSIBLE_SEQUENCES);
89 struct sequence seq = compareState.seq[seqIdx];
90 assume(!(seq.val ^ compare)); // the chars are equal if XOR is 0
91 return seqIdx;
92 }
93

94 /**
95 * Update the possibilities of a sequence after a shuffle.
96 */
97 struct fractions recalculatePossibilities(struct fractions probs,
98 struct fractions resProbs,
99 unsigned int permSetSize) {
100 for (unsigned int k = 0; k < NUMBER_PROBABILITIES; k++) {
101 struct fraction prob = probs.frac[k];
102 unsigned int num = prob.num;
103 unsigned int denom = prob.den;
104 if (num && WEAK_SECURITY) {
105 resProbs.frac[k].num |= num;
106 }
107 else if (num) {
108 /**
109 * Only update fractions in case we are in the
110 * strong security setup.
111 */
112 // Update denominator.
113 resProbs.frac[k].den = denom * permSetSize;
114 // Update numerator.
115 resProbs.frac[k].num = (num * permSetSize) + denom;
116 }
117 }
118 return resProbs;
119 }
120

121 /**
122 * Calculate the state after a shuffle operation starting from s

with the given permutation set.
123 * Deleted isStillPossible
124 * changed content in 2nd for loop, especially the application of

the permutatuin to the sequence
125 */
126 struct state doShuffle(struct state s,
127 unsigned int permutationSet[MAX_PERM_SET_SIZE][N],
128 unsigned int permSetSize) {
129 struct state res = emptyState;
130 // For every sequence in the input state.
131 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
132 struct sequence seq = s.seq[i];
133 // For every permutation in the permutation set.
134 for (unsigned int j = 0; j < MAX_PERM_SET_SIZE; j++) {
135 if (j < permSetSize) {
136 char resultingSeq = 0;
137 for (unsigned int k = 0; k < N; k++) {
138 char temp = 0;
139 // Apply permutation j to sequence i.

90

A.7 Programs for the Experiments with Data Structures

140 temp = seq.val & (1 << k);
141 int index = permutationSet[j][k] − k;
142 if (index >= 0) {
143 temp = temp << (index);
144 }
145 else {
146 temp = temp >> (−1 * index);
147 }
148 resultingSeq = resultingSeq | temp;
149 }
150 unsigned int resultSeqIndex = // Get the index of

the resulting sequence.
151 getSequenceIndexFromArray(resultingSeq, res);
152 //Recalculate possibilities.
153 res.seq[resultSeqIndex].probs =
154 recalculatePossibilities(seq.probs,
155 res.seq[resultSeqIndex].probs,
156 permSetSize);
157 }
158 }
159 }
160 return res;
161 }
162

163 struct state applyShuffle(struct state s) {
164 // Generate permutation set (shuffles are assumed to be

uniformly distributed).
165 unsigned int permSetSize = nondet_uint();
166 assume(0 < permSetSize && permSetSize <= MAX_PERM_SET_SIZE);
167

168 unsigned int permutationSet[MAX_PERM_SET_SIZE][N] = { 0 };
169 unsigned int takenPermutations[NUMBER_POSSIBLE_PERMUTATIONS] = {

0 };
170 /**
171 * Choose permSetSize permutations nondeterministically. To

achieve this,
172 * generate a nondeterministic permutation index and get the

permutation from this index.
173 * No permutation can be chosen multiple times.
174 */
175 unsigned int lastChosenPermutationIndex = 0;
176 for (unsigned int i = 0; i < MAX_PERM_SET_SIZE; i++) {
177 if (i < permSetSize) { // Only generate permutations up to

permSetSize.
178 unsigned int permIndex = nondet_uint();
179 // This ensures that the permutation sets are sorted

lexicographically.
180 assume(lastChosenPermutationIndex <= permIndex);
181 assume(permIndex < NUMBER_POSSIBLE_PERMUTATIONS);
182 assume(!takenPermutations[permIndex]);
183 assume(permSetSize != 10);
184

185 takenPermutations[permIndex] = 1;
186 lastChosenPermutationIndex = permIndex;

91

A Appendix

187

188 for (unsigned int j = 0; j < N; j++) {
189 permutationSet[i][j] = stateWithAllPermutations.

permSeq[permIndex].val[j] − 1;
190 /**
191 * The '−1' is important. Later, we convert to array

indices such as
192 * array[permutationSet[x][y]]. Without the '−1', we

would get out−
193 * of−bound errors there.
194 */
195 }
196 }
197 }
198 struct state res = doShuffle(s, permutationSet, permSetSize);
199 return res;
200 }
201

202 /**
203 * Constructor for states. Only use this to create new states.
204 */
205 struct state getEmptyState() {
206 struct state s;
207 struct numsymarray symbolCount;
208 for (unsigned int i = 0; i < NUM_SYM; i++) {
209 symbolCount.arr[i] = 0;
210 }
211

212 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
213 struct numsymarray taken;
214 for (unsigned int j = 0; j < NUM_SYM; j++) {
215 taken.arr[j] = 0;
216 }
217 char value = 0;
218 for (unsigned int j = 0; j < N; j++) {
219 char val = nondet_uint();
220 assume(0 <= val && val <= 1);
221 taken.arr[val]++;
222 assume(taken.arr[val] <= N − 2); // At least two symbols

have to be different. Players cannot commit
otherwise.

223 value = value | (val << (N − 1 − j));
224 }
225 s.seq[i].val = value;
226 for (unsigned int j = 0; j < NUM_SYM; j++) {
227 if (i == 0) {
228 symbolCount.arr[j] = taken.arr[j];
229 }
230 else { // We ensure that every sequence consists of the

same symbols
231 assume(taken.arr[j] == symbolCount.arr[j]);
232 }
233 }
234 // Here we store the numerators and denominators

92

A.7 Programs for the Experiments with Data Structures

235 for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
236 s.seq[i].probs.frac[j].num = 0;
237 s.seq[i].probs.frac[j].den = 1;
238 }
239 }
240 for (unsigned int i = 1; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
241 unsigned int checked = 0;
242 unsigned int last = i − 1;
243 for (unsigned int j = 1; j <= N; j++) {
244 // Check lexicographic order
245 char a = (s.seq[last].val & (1 << N − j));
246 char f = (s.seq[i].val & (1 << N − j));
247 checked |= (a < f);
248 assume(checked || a == f);
249 }
250 assume(checked);
251 }
252 return s;
253 }
254

255 /**
256 * Determine if a sequence in the start state belongs to the input

possibility (0 0).
257 */
258 unsigned int isZeroZero(char sequence) {
259 if(sequence & (1 << (N − 1))) {
260 return 0;
261 }
262 if (!(sequence & (1 << (N − 2)))) {
263 return 0;
264 }
265 if (sequence & (1 << (N − 3))) {
266 return 0;
267 }
268 if (!(sequence & (1 << (N − 4)))) {
269 return 0;
270 }
271 return 1;
272 }
273

274 /**
275 * Determine if a sequence in the start state belongs to the input

possibility (1 1).
276 */
277 unsigned int isOneOne(char sequence) {
278 if (!(sequence & (1 << (N − 1)))) {
279 return 0;
280 }
281 if (sequence & (1 << (N − 2))) {
282 return 0;
283 }
284 if (!(sequence & (1 << (N − 3)))) {
285 return 0;
286 }

93

A Appendix

287 if (sequence & (1 << (N − 4))) {
288 return 0;
289 }
290 return 1;
291 }
292

293 /**
294 * This method constructs the start sequence for a given commitment

length COMMIT
295 * using nodeterministic assignments. We only consider the case

where Alice uses
296 * the cards "1" and "2", and Bob uses the cards "3" and "4".
297 */
298 char getStartSequence() {
299 assume(N >= COMMIT); // We assume at least as many cards as

needed for the commitments.
300 struct numsymarray taken;
301 for (unsigned int i = 0; i < NUM_SYM; i++) {
302 taken.arr[i] = 0;
303 }
304 char res = 0;
305 for (unsigned int i = 0; i < COMMIT; i++) {
306 char card = nondet_uint();
307 assume(0 <= card && card < COMMIT && card < NUM_SYM);
308 assume(taken.arr[card] < COMMIT / NUM_SYM);
309 taken.arr[card]++;
310 res = res | (card << (N − 1 − i));
311 }
312 // Here we assume that each player only uses fully

distinguishable cards
313 assume((res & 1 << (N − 1)) != ((res & 1 << (N − 2))<<1));
314 assume((res & 1 << (N − 3)) != ((res & 1 << (N − 4)) << 1));
315 // rest of cards
316 for (unsigned int i = COMMIT; i < N; i++) {
317 char card = nondet_uint();
318 assume(0 <= card);
319 assume(card < NUM_SYM);
320 res = res | (card << (N − 1 − i));
321 }
322 return res;
323 }
324

325 /**
326 * This function performs a shuffle and afterwards checks for a

specific property of the probabilities
327 * in this test it is, whether all probabilities in all possible

sequences have a value that is not equal to 0
328 * a correct result needs at least 6 permutations
329 * therefore the problem is complicated enough to ensure some level

of complexity while keeping the code simple
330 * For other tests, this function can be easiy altered
331 */
332 struct state tryPermutation(struct state s) {
333 struct state res = applyShuffle(s);

94

A.7 Programs for the Experiments with Data Structures

334 // check if every possibility is 1 after shuffle
335 for (int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
336 for (int j = 0; j < NUMBER_PROBABILITIES; j++) {
337 assume(res.seq[i].probs.frac[j].num != 0);
338 }
339 }
340 return s;
341 }
342

343 int main() {
344 emptyState = getEmptyState();
345 struct state startState = emptyState;
346 char start[NUMBER_START_SEQS];
347 for (unsigned int i = 0; i < NUMBER_START_SEQS; i++) {
348 start[i] = getStartSequence();
349 }
350 assume(isZeroZero(start[0]));
351 assume(!((start[0] & (1 << N − 1)) ^ (start[1] & (1 << N − 1))))

;
352 assume((start[1] & (1 << N − 1)) ^ (start[2] & (1 << N − 1)));
353 assume(!((start[2] & (1 << N − 1)) ^ (start[3] & (1 << N − 1))))

;
354 assume(!((start[0] & (1 << N − 3)) ^ (start[2] & (1 << N − 3))))

;
355 assume((start[0] & (1 << N − 3)) ^ (start[1] & (1 << N − 3)));
356 assume(!((start[1] & (1 << N − 3)) ^ (start[3] & (1 << N − 3))))

;
357

358 unsigned int arrSeqIdx[NUMBER_START_SEQS];
359 for (unsigned int i = 0; i < NUMBER_START_SEQS; i++) {
360 arrSeqIdx[i] = getSequenceIndexFromArray(start[i],

startState);
361 }
362 if (WEAK_SECURITY == 2) {
363 for (unsigned int i = 0; i < (NUMBER_START_SEQS − 1); i++) {
364 startState.seq[arrSeqIdx[i]].probs.frac[0].num = 1;
365 }
366 unsigned int lastStartSeq = NUMBER_START_SEQS − 1;
367 unsigned int arrIdx = arrSeqIdx[lastStartSeq];
368 unsigned int lastProbIdx = NUMBER_PROBABILITIES − 1;
369 startState.seq[arrIdx].probs.frac[lastProbIdx].num =

isOneOne(start[lastStartSeq]);
370 } else {
371 for (unsigned int i = 0; i < (NUMBER_START_SEQS); i++) {
372 startState.seq[arrSeqIdx[i]].probs.frac[i].num = 1;
373 }
374 }
375 stateWithAllPermutations = getStateWithAllPermutations();
376 tryPermutation(startState);
377 assert(0);
378 return 0;
379 }

95

	Introduction
	Motivation
	Contribution
	Outline

	Foundations
	Permutations
	Card-Based Protocols
	Runtime of Card-Based Protocols
	Correctness and Security of Card-Based Protocols
	KWH-Trees
	Card-Based Protocols for Multi-Party Computation

	Software Bounded Model Checking
	Using Software Bounded Model Checking to Find Card Protocols

	A Standard Program Representation for Finding Card-based Protocols for Any Boolean Function
	Adjustments to the Standard Program Representation for Boolean Functions
	Function Behaviour
	Domain
	Codomain

	Implementing a Concrete Standardized Program Representation for a Select Number of Functions
	Structure and Execution of the Standardized Program Representation
	Exploring different SAT solvers
	Protocols Discovered using the Adapted Standardized Program Representation
	Limits for the Use of the Bounded Model Checker with Our Symbolic Program Representation

	A Standard Program Representation with Nested Structure for Composite Protocols
	Introduction of a Nested Structure and Consideration of its Possible Benifits
	Defining the Protocol Action and Extending KWH-Trees
	Reducing the Complexity of the Search Space
	Calculating any Function While Ensuring Correctness and Security

	Integrating the Nested Structure into the Symbolic Program
	Implementing Concrete Protocols and Evaluating the Implementation

	Evaluating a Data Structure for Efficient Operations
	Integrating the Data Structure into the Symbolic Program
	Evaluating the Data Structure in an Experiment Setting
	Description of the Experiment Setup
	Experiment Execution and Results
	Discussion of the Experiment Results

	Conclusion
	Summary
	Outlook

	Bibliography
	Appendix
	Full Experiment Results
	Test Results for the Comparison of the different Data Structures
	Test Results for the Comparaison of Different SAT Solvers

	Card Protocols from Literature
	Five card AND Protocol
	Four Card XOR Protocol

	Additional Protocols found through Bounded Model Checking
	Five Card OR Protocol with input possibilistic security and non-closed shuffles.
	Input-possibilistic protocol with closed shuffles for OR using 4 cards and 5 steps

	Code Repository
	Code Excerpts from the Adapted Standardized Program Representations.
	XOR
	OR
	COPY
	Half Adder

	Implementation of the Nested Structure
	Additions to the Main C Program
	Modules.c

	Programs for the Experiments with Data Structures

