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1 Introduction

1.1 Motivation

Card-based protocols provide a method of performing multi-party computation without
computers. Such protocols can be used in a classroom or lecture setting to teach students
about secure multi-party computation in an accessible and easy to understand way. All
that is needed, is a deck of playing cards whose backs are indistinguishable from each
other and whose fronts are showing two different symbols, & and ©. As an example let us
assume that we have two players a and b that want to securely compute the logical AND
function of two bits. They can do so, by performing the AND protocol by Mizuki and Sone
(2009). For this the two players input their bits as two face-down cards. They put @ @ to
if their input bit is 0 and [] (4] if their input bit is 1. These cards are placed in a line with
two additional cards (4] (¢ behind. Thus the cards that are on the table in the beginning are
@ G @ @ where the first two cards are the input of player a and the third and fourth
card are the input of the player b. We then perform the protocol as follows:

1. We turn over the last two cards so the cards on the table look indistinguishable like
this:

77 7 A (7 (7 7
o b At |- 7

2. Then we rearrange the cards like this:

1RIBE— 1)B4E b

3. Afterwards we split the cards into two:
D00 D0
and randomly swap them with probability exactly 1/2.
The result is either the original card sequence or the sequence in which the cards of

the left side are now on the right side.

4. We rearrange our cards again:

1RBEEl— 14266

5. Now we turn over the first two cards:
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a) If the cards that were turned over are:

£00000

the result is encoded by the fifth and sixth card

b) If the cards that were turned over are:

W&0000

the result is encoded by the third and fourth card

Depending on the cards that were turned over in the last steps, the players a and b can
now turn over the two cards containing the result. The result is interpreted in the same
way as the input. If the output is @ @ then the result of the calculation is 0 and if the
output is @ @ the result is 1. The focus of the research on card-based cryptography is on
finding new protocols, that are increasingly effective. That means, that they require fewer
cards or there are fewer steps needed to perform the protocol. To automate the process
of finding new card-based protocols, Koch et al. (2021) employ the technique of bounded
model checking. They implement the basic actions and states of a protocol in a symbolic
program and then use a bounded model checker to find valid runs through the symbolic
program. If a valid run is found, the protocol is returned by the bounded model checker. If
no valid run can be found, then there exists no protocol for the given parameters. Koch
et al. (2021) provide a standardized program that can be used to find card-based protocols
for the AND function. But computation using playing cards is not just focused on simple
functions like an AND function. Niemi and Renvall (1998) and Nishida et al. (2015) have
shown that we can construct a card-based protocol for any boolean function. And there
are several examples of protocols for practical functions like a COPY function by Mizuki
and Sone (2009) or even a protocol for a half adder by Mizuki et al. (2013) that use more
cards and steps than simple binary boolean operators.

In this thesis we therefore want to take the technique introduced by Koch et al. (2021),
and further develop it. We want to determine whether it is possible to generalize the
technique and make it applicable to find protocols for any function like the COPY or half
adder function. We also want to ascertain if we can increase the efficiency of the technique
to make it applicable to larger problems.

1.2 Contribution

Firstly, we generalize the method of Koch et al. (2021) that uses bounded model checking
to find card protocols, so that we can find protocols for any boolean function. We use this
generalization to apply it to a range of new functions. For the OR as well as the COPY
function, we give new protocols. We also show that there are no protocols for certain
preconditions for the OR and XOR functions as well as the COPY and half adder functions.
Additionally we share our findings about the effectiveness of various SAT solvers for the
use within the bounded model checker.
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Secondly we further universalize the method of Koch et al. (2021) by inserting a nested
structure into the symbolic program. By doing that a protocol that has for example been
found previously with bounded model checking or is a protocol from literature, can be used
as an operation within another protocol. We provide a definition for this new operation.
To be able to graphically represent logs that use this structure, we give an extension to the
definition of KWH trees. We apply this method with a nested structure to the COPY and
half adder function. For the COPY function we give a six card protocol which we found
by this application. We show, that we can construct a protocol for any boolean function
using only two protocols by making use of this six card COPY protocol. We also show that
there are no protocols for certain prerequisites for the COPY and half adder function.

Thirdly we explore an alternative data structure within the implementation of the repre-
sentation of sequences. We exchange the arrays of the original implementations with a
Char datatype on which we can perform bitwise operations. We investigate if there is an
improvement in the performance of the bounded model checker when using the new data
structure.

1.3 Outline

We provide definitions drawn from the literature for card-based protocols in sections 2.1
and 2.2 and give an introduction to how bounded model checking can be used to find card-
based protocols in sections 2.3 and 2.4. We introduce a definition of a new protocol action
and extend the definition of KWH-trees in section 4.1.1 to include the additional action.
This is the only adaption of our definitions given in chapter 2. In section 3.1 we generalize
the method from section 2.4 and show how we can use it to find protocols for any function.
We provide a description and the results of our tests that use an implementation of the
generalizations from section 3.1 in section 3.2. We also experiment with the use of different
SAT solvers in section 3.2.2. We further universalize the method of using bounded model
checking to find card-based protocols in section 4.1 by introducing a nested structure
within the symbolic program. After introducing an implementation in section 4.2 we
present the results of our tests employing the nested structure in section 4.3. In chapter 5
we present an approach how to replace the data structure to represent sequence. In
section 5.1 we provide an implementation of our symbolic program with the new data
structure and how we can use bitwise operations to perform our actions within a protocol.
We present our test setup and give the results and how the new data structure performed
compared to the old one during bounded model checking in section 5.2. Finally, we provide
a summary of the results in section 6.1. A few starting points for future research are listed
in section 6.2.






2 Foundations

We specify the definitions of permutations in section 2.1 and give a description of card-
based protocols in section 2.2. Section 2.2.3 explains the construction of KWH trees which
will be used as a way of representing card-based protocols. Sections 2.3 and 2.4 will give
a brief description of C bounded model checking and how it can be used to find card
protocols.

2.1 Permutations

Permutations are central to card-based protocols. As we have seen in section 1.1 shuffles
(which consist of multiple shuffles) and permutations are used as steps in the protocol to
calculate the result Therefore, in the following we define the most important terms such
as permutations, cycles, explain their properties and introduce notations. The subsequent
explanations and definitions are gathered from Koch (2019).

Definition 1 (Permutation). A permutation of a set X is the bijective function = : X — X.

The set S, (n € N) is called the symmetric group for a number n and contains all possible
permutations of X = {1,...,n}. Its neutral element is the identity (the permutation of
length n, that maps every permutation in S, onto itself) and it uses composition (o) as its
group operation. We denote a set of permutations with IT C S,,.

A cycle is a tuple (x1x3...x,) where x1, x2,...x, € X are all distinct elements. The cyclic
permutation 7 is a permutation with 7 (x,) = x; and 7(x;) = x41 (1 < i < n) and 7(x) = x
for all x that are not occurring in the cycle but are in X. A composition of multiple cycles
with disjoint sets can be written next to each other. Every permutation can be written in
such a fashion, which we call cycle decomposition. From now on, we write permutations
as cycle decompositions. For example, (123)(45) is a permutation with the mappings
{12233 1,455 4}.
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2.2 Card-Based Protocols

The following definition of card-based protocols are gathered from Koch et al. (2021), Saito
et al. (2020), Koch (2019), and Koch et al. (2015).

Each card-protocol is executed on a deck of cards. These are the cards we use to perform
the protocol.

Definition 2 (Deck). A deck D is a multiset over a symbol set or deck alphabet X.

A deck is represented by [[-]]. In our example in section 1.1 we use the deck [[&, %, &, ©, ©, ©]].
In this thesis, we focus exclusively on the deck that consists of symbols from ¥ = {#0}.
We call this the two-color deck. A possible deck with the deck alphabet ¥ = {#9} could

therefore be [[&, %, ©, ©, ©]]. All cards within a deck have indistinguishable backs. Cards

with the same symbol from the deck alphabet also have a front that is indistinguishable

from each other.

A card within a deck can either be turned face-up (the symbol of the card is showing)
or face-down (the symbol of the card is hidden). To represent a card that is turned face
down, we define the special symbol *?’, which is not part of X. We can therefore depict a
card lying on the table by a fraction ; where a and b are elements of £ U {?}. The card
that is face-up is represented by a, while the card that is face-down is represented by b.
Thus, a face up card could be % while the same card facing down would be written as %
To encode values with cards we need to have two cards. We call two cards that encode a
value (usually 0 or 1) a commitment.

Definition 3 (Commitment). A commitment to x is a pair of two face-down cards that
encode the value x.

Generally Koch et al. (2021) define the encoding for two bits c; and c; as follows:

0 ifeg<e
ciey = R (2.1)
1 ife; > e

For the two-color deck {#0} we set the order as & < ©. Therefore two cards from the
two-color deck together form an encoding of a bit as follows: &¥ encodes a 0 and V&
encodes a 1. Thus the commitment to 0 is the cards #¥ and the commitment to 1 is the
cards O%.

Card-based protocols operate on sequences of cards. A sequence consists of all cards in
a deck. These cards have a specific order and orientation. Thus a sequence for the deck
[[% % % 9,9,9]] couldbe (£, 2,2, 2,2 1)

Definition 4 (sequence). A sequenceI’ = (ay, ay, ..., @p|) contains all cards from a deck D
in a given order and orientation.
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All possible sequences on the deck D are Seq”. Koch (2019, Chapter 6) defined the
several different actions on sequences I' = (a1, ay, ..., 2|p|) that a protocol can perform as
follows:

Definition 5 (permutation (perm, x)). A permutation (perm, ) with = € S, permutes T
according to rr. The result of this operation is the sequence. (T').

Take the sequence I' = (%, %, %, %) and the permutation 7 =(perm, (12)(34)). If we apply
the given permutation 7 to the given sequence I', we receive the resulting sequence
(D)= (5o e 3)-

Definition 6 (shuffle (shuffle, I1, F)). A shuffle (shuffle, I1, F ) has a permutation set I1 C S,
and a probability distribution ¥ on I1. The shuffle draws a random permutation = € II
according to the probability distribution ¥ . Then it applies the chosen permutation to the
sequence L.

The definition of security will rely on the assumption that nothing about I' is learned
during the execution of this action which cannot be learned from II and/or the visible
part of the sequence. Shuffles can further have different properties such as closedness and
uniformness.

Definition 7 (Closedness). A shuffle (shuffle, II, ¥ ) is closed if it is a subgroup of the
symmetric group (Saito et al., 2020).

That means that the set of possible permutations in a closed shuflle is invariant under
repetition (Koch, 2019). We call a protocol closed if it does not contain shuffles, that are
not closed.

Definition 8 (Uniformness). A shuffle (shuffle, I1, ) is uniform if the distribution proba-
bility distribution ¥ is uniform, meaning any m € II is drawn with equal probability. (Saito
et al., 2020).

That means, that within a uniform shuffle action, every possible permutation has the
same probability (Koch, 2019). A uniform shuffle can be written only as (shuffle, II).
Take as an example the sequence I' = (£, 2,2 1) and the shuffle (shuffle, id, (123)))

*» 000 8
with an uniform probability distribution . The possible resulting sequences are either

(%, %, %, %), if the randomly chosen permutation 7 was id, or (%, %, %, %) if the randomly

chosen permutation 7 was (123). The given shuffle (shuffle, id, (123))) is not closed. We

can prove this, by showing that it is not invariant under repetition. If we apply the
. , 2 2 2 9 .

permutation 7 = (123) to the sequence I = (3, 4, 5, 3), We receive the new sequence

I = (2,2 2 ) This sequence I'” is not an element of the set of possible sequences that

[SRRCIr
result from applying (shuffle, id, (123))) to the sequence I' = (%, %, %, %). Therefore the
set of possible permutations in the shuffle is not invariant under repetition and thus the

shuffle is not uniform.
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Definition 9 (turn (turn, 7°)). A turn (turn, T ) with the turn set T C 1, ..., n, flips the cards
at the positions specified by T .

With 7 being the card where a is facing up and b is facing down, after flipping the card we

b . . _ (2 222
have ¢. As an example, executing a turn?op?eriltlon (turn, 1) on the sequence I' = (;, 5 5 ;)
& 77

would result in the sequence I' = (?, 50 5 ;). In our protocols after having turned the
cards in the turn sets, and thus learned their symbol, we immediately turn them back

around. This will not be explicitly written as its own turn operation.

Definition 10 (result (result, p1, p2, ..., pr)). The result (result, p1, p2, ..., pr) is the output of
a protocol. The positions p1, pa, ..., pr € {1, ..., 1} terminates the protocol and specifies that the

output is O = (I'[p1], T[p2], ... Tlpr])-

The cards at the positions p; to p, have to be facing down when this action is performed.
For our purpose the positions py, pa, ..., pr € {1, ...,1} also have to be one or more valid
commitments. Thus for the sequence I' = (%, %, %, %), (result, 1,2) would be a valid result
O = (I'[1],T[2]) = (&, ), while (result, 2,3) would be an invalid result O’ = (T'[2],T'[3]) =
(9, Q). For our protocols we adapt the definition by Koch et al. (2021) for the case that
we have more than one output commitment. In this separate the output commitments
with brackets to emphasize which cards form a commitment. The result (result, (1,2)(4,3))
would be a valid result O” = (&, ©, &, V), where the first two cards are the cards that belong

to commitment one and the other rwo cards encode commitment two.

2.2.1 Runtime of Card-Based Protocols

The runtime of card-based protocols refers to the amount of steps that have to be performed
until a solution is reached. A step can be either a permutation, a turn, or a shuffle. We
do not count the result action as a step. The protocol by Mizuki and Sone (2009) given
in section 1.1, that executes first two perms and a shuffle and then a turn therefore has
four steps. With card-based protocols we generally distinguish two types of runtime. We
either have a fixed number of steps that it takes for the protocol to compute the result, or
we do not have a fixed number but only an expected number of steps until the protocol
produces a result. The former is called a finite runtime protocol and the latter a Las Vegas
protocol.

Definition 11 (Finite Runtime). Finite runtime protocols have a fixed bound on the number
of steps (Koch et al., 2015).

Therefore the runtime is bounded and can be precisely predicted (Koch, 2019). A KWH-
Tree (section 2.2.3) of a finite runtime protocol is finite (Koch et al., 2021). The AND
protocol from section 1.1 is a finite runtime protocol. It produces a result after four steps
for every possible input.
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Definition 12 (Las Vegas). For Las Vegas protocols the number of steps until termination is
only expectedly finite (Koch, 2019).

Within a KWH-Tree a Las Vegas protocol makes use of restart actions, and/or its states
form a cyclic diagram. (Koch et al., 2015). We distinguish Restart-Free Las Vegas protocols
and restarting Las Vegas protocols (Koch et al., 2015). For Restart-Free Las Vegas there has
to be a constant probability to exit for each cycle. We also cannot end up in a state where
we have to restart the whole protocol from the beginning. A restart would mean, that both
players have to provide their commitment again (Koch, 2019).

2.2.2 Correctness and Security of Card-Based Protocols

The definitions of correctness and security of card-based protocols are the ones Koch
et al. (2021) use. A protocol is correct if it calculates the correct result from the input
commitments for all possible correct inputs. More formally:

Definition 13 (Correctness). A protocol P with input I computing a function f is correct, if
the probability of the output O being O = f(I) is 1.

Generally a protocol is considered secure, if during the protocol execution, the visible
cards do not reveal anything about the input and if the output of the protocol reveals
nothing about the input apart from what can be derived from the result. Koch et al. (2021)
provide a definition of security which we will call probabilsitic security, to distinguish it
from other security definitions, that we will give below.

Definition 14 (Probabilistic Security). A given protocol has probabilistic security, if for
every turn operation the probability X, for each observation v is a constant p between 0 and 1.
For all observations of a turn operation Y.,c[o 112 Xo = 1 holds. Additionally, every probability
X,y of each output basis w has to be a constant between 0 and 1 as well. For all observations
of a output basis }.,c[0,172 Xw = 1 holds.

For the formalization with bounded model checkers Koch et al. (2021) defined two other
types of security: input-possibilistic security and output-possibilistic security.

Definition 15 (Input-Possibilistic Security). A protocol P is input-pssibilistically secure, if
it is correct and for random input I (where Pr[I = i] > 0 for alli € {0,1}?) and any visible
sequence trace v with Pr[v] > 0 as well as any input i € {0,1}? we have Pr[o|I = i] > 0.

Definition 16 (Output-Possibilistic Security). A protocol P is input-pssibilistically secure,
if it is correct and for random input I (where Pr[I = i] > 0 for all i € {0,1}?) and any visible
sequence trace v with Pr{v] > 0 as well as any output o € {0, 1} we have Pr[v|f(I) = o] > 0.
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Corrolary 1. Every protocol that is input possibilistically secure protocol is also output
possibilistically security.

Proof. Assume that we have a input-possibilistic protocol. Then it is by definition correct.
Also, every output is the result of at least one of the possible inputs. For a protocol with
input possibilistic security, the probability for every input in every visible sequence trace
is greater than 0. Therefore the probability for every output in every visible sequence
trace is also greater than 0. O

Corrolary 2. Not every protocol with output possibilistic security also possesses input-
possibilistic security.

Proof. A protocol calculating the boolean XOR, has two possible inputs that result in the
output 0 and two possible inputs that result in the output 1. Therefore if we have a visible
sequence trace, where the probability for each output is greater than 0, the probability
for the one of the two inputs that have the same output could be 0 without violating the
requirement that the possibility for all outputs has to be grater 0. O

This means the stronger security guarantee is input-possibilistic security and the weaker
security guarantee is output-possibilistic security.

Remark 1. If we want to prove the nonexistence of a protocol, proving that no protocol exists
with output-possibilistic security is the stronger statement. For the existence of a protocol
proving that a protocol has input-possibilistic security is the stronger statement.

2.2.3 KWH-Trees

The descriptions of KWH-trees are taken from Koch et al. (2015) where KWH-trees are first
introduced, as well as from Koch et al. (2021). KWH-Trees describe all possible executions
of a protocol in the form of a tree. The nodes represent the sequences that are possible at
a specific step in the protocol. The vertices have he action that the protocol prescribes
in that situation associated to it. The tree branches when the visible sequence differs i.e.
when a turn operation is performed.

To start, let us look at a single node which we will call a state. Our example is the start state

of the six card AND protocol by Mizuki and Sone (2009). A state contains all sequences

that are possible at a specific point in the protocol. Instead of depicting a sequence as
222222

= (;, S50 3 o ;) we only depict the values of the cards as V&0,

10
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L IVLAVE VD 61
20V X1

VEXIVIIVE ‘e
VIXVEFIVE '

Apart from the sequence itself, we also track its symbolic probability. For input-possibilistic
security, the symbolic probability describes that the sequence has the probability of X;;
that (i, j) is the input that produced this sequence. For output-possibilistic security, the
symbolic probability describes that the sequence has the probability of X; that (i) is the
output that will be reached when executing the remaining protocol on the sequence. In
our example the symbolic probabilities are Xy, Xo1, X190 and Xj;. Therefore the first line of
our example (#40&V# X(0) can be interpreted as: the sequence I' = (£, 2,2 2 2 2) has
the symbolic probability Xy,. We have taken a more formal definition of states from Koch

et al,, 2021.

Definition 17 (State). For a protocol P that has a deck D and computes a boolean function f,
astate i isa map ji : Seq? — X, where X, describes the polynomials over the variables Xy, for
b € {0,1}? of the form 2befo.1)2 BoXp, for By € [0,1] € R. u(s) fors € Seq? is interpreted as
the probability that s is the actual sequence on the table, in terms of the symbolic probabilities
on the inputs.

We can now interpret the nodes as states, that show all sequences with a probability
greater than 0. We can also describe the action defined in section 2.2 in the context of
KWH-Trees. As an illustration we use the six card AND protocol by Mizuki and Sone, 2009
shown in fig. 2.1.

For a permutation (perm, ) (definition 5) a sequence s with probability Pr(s) the resulting
sequence of the permutation with pr 7(s) will be assigned the probability Pr(s). For our
example in fig. 2.1 we have a permutation as the first operation. If we pick out the first
sequence #V&V&0 with probability Xy, we can see that after applying the permutation
7 =(243) the resulting sequence #&0V&% then has the probability Xo.

A shuffle operation (shuffle, I1, ) (definition 6) contains multiple permutations 7 € II.
So a sequence s will be permuted by a 7 € II with the probability designated by #. For
our example we have a shuffle with uniform probability (definition 8) and thus every
permutation 7z € IT has the same probability. If we continue with the sequence $&00&,
either the permutation id or the permutation (14)(25)(36) was applied to it, each with
probability 1.

After a turn (turn, 7°) (definition 9), the visible sequence differs and we thus have a
branching of the tree. In our example the turn at 7 = {1, 2} can produce two possible
visible sequences, either #0???? or ©&????. The probability for observing either of the

11
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LIV VLAV 6
*OVRSQO Xy
(VLY AVE AV €T
(VL IvE 2 AV ¢F)

(perm, (243))

L LIVIVEAVID N
L VAV AV O]
IV AVE Y AV ET
VS0 X1

(shuffle, {id, (14)(25)(36))

40040 1Xo0 + 21X
208080 1X
Qa2 2 X0 + %XIO
OVAREO X,
Va0aVK X
22000 1X,

(perm, (234))

208089 1Xo0 + 1 X710
200840 1X
ORAORY 2 Xo0 + 3X10
Va0 1X,
VaaOVs LX),
208008 1X

(turn,{1,2})

*QO?7?77 Oa???7?
20KV X + X0 Qa0 X1 + Xy
*OVSR X0 QadOV® X1
LIV AVIVE 3 ¢ QaQs&Q X7;

é)(result, 5,6) é)(result, 3,4)

Fig. 2.1: Six card AND protocol by Mizuki and Sone, 2009.

sequences is the same for each possible input, so no information about the rest of the
sequence is leaked.

The output of the protocol is given as (result, py, pa, ...p, (definition 10). Within a KWH-
Tree we can easily observe if the given py, ps, ...pn encode a correct result, because the
state with all its possible sequences is drawn. Thus we can observe in our example that for
(result, 5,6) the sequences #0#0# and #OV&&Y correctly encode a 0 and the sequence
*QO#QOVM correctly encodes a 1.

2.2.4 Card-Based Protocols for Multi-Party Computation

Card-based cryptographic protocols can perform secure multi-party computation. in
general multi-party computation allows multiple parties, that each hold their private data,
to calculate a function without revealing their private data to the others.
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Definition 18 (Multi-Party Computation (MPC)). Stiglic (2001) defines multi-party com-
putation as follows: We assume a group of n players C1,Cs, ..., C, with inputs cy,ca, . .., Cp,
where the input c; is the private input of player C;. These players want to correctly and
securely compute f(cy,c3, ..., cn), where f is a public function. Securely means, that each
player C; learns nothing about the input of the other players, than what he can deduce from
his own input c; and the result of the function f(cy,ca, ..., cp).

Our definition of multi-party computation relies on the assumption, that the players are
"honest but curious" (Rastogi et al., 2019) That means, that they do follow the protocol and
do not try to manipulate it (e.g. by turning cards over that are not supposed to be turned
over), but that they want to gain as much knowledge as they can about the other players
input by observing the protocol.

For our application of card-based protocols, we focus on Boolean functions. A boolean
function is a function whose arguments and results are one or more values out of the set
0,1. We adapt the definition by Koch et al. (2021) to include boolean functions of arbitrary
input and output length.

Definition 19 (Compute a Boolean Function). A protocol P computes a boolean function
f:10,1]" = [0,1]/ wherei, j € N if the following holds:

« The possible start sequences corresponding to the players inputs b € [0,1]" do encode
the inputs as the correct commitments.

o The cards that contain the output commitment(s) after the termination of the protocols,
encode the output value o(b) for every possible input b € [0,1]/.

There are several explanations in the existing literature on how to construct a protocol for
any boolean function from given boolean operators. Niemi and Renvall (1998) utilize a
AND, OR and NOT operator as well as a COPY protocol. Nishida et al. (2015) also present
an approach that uses XOR, AND and COPY protocols.

Let us take a closer look at the approach by Nishida et al. (2015). They utilize the four
card XOR protocol shown in fig. A.2 as well as the COPY protocol described in this section.
They also employ a variant of the six card AND protocol shown in fig. 2.1, they produces a
commitment to ¢; A ¢; and a commitment to c; (Nishida et al., 2015). Using those protocols,
they give a protocol for the computation of any boolean function that uses 2n + 6 cards
to compute a function with n input commitments. Their protocol requires the function
to be an AND-XOR expression. In general this can be achieved by expressing the desired
function as a Shannon expansion (Sasao, 1999, Chapter 3):

f(x1,x2,...,%n) =X1%3 ... X f(0,0,...,0) ®x1%x3...%,f(1,0,...,0)
®x1x2...%,f(0,1,...,0)® - ®x1x2...%,(1,1,...,1) (2.2)
=TToeLd-- 0T,
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Once we have a function that is an exclusive disjunction of conjunctions, we can use
the AND, COPY protocols to calculate the result of a T; = v; A vy A .... For that we copy
v using the COPY protocol and then apply the AND protocol to v; and v,. We receive
v1 A vy as well as v;. We now repeat these steps, copying v; A - -+ A v;_; and calculating
(v1 A -+ Awj_1) A v; with the AND protocol. Once we have calculated the result of T;, we
can calculate the result of (T; @ T, @ - - - @ T;_1) @ T; with our XOR protocol.

Throughout this work we make use of several protocols from the existing literature.

Protocol #Cards #Steps | Shuffle Type | Runtime

AND by Mizuki | 6 4 uniform closed | Finite Runtime | fig. 2.1
and Sone (2009)

AND by Koch et |5 4 uniform closed | Las Vegas fig. A.1
al. (2021)

XOR by Mizuki |4 4 uniform closed | Finite Runtime | fig. A.2
and Sone (2009)

COPY by Mizuki | 2k + 4 (k copies) | 4 uniform closed | Finite Runtime | listing 2.1
and Sone (2009)

Table 2.1: Protocols from literature, that are used in this thesis. All protocols are proba-
bilistically secure (definition 14).

For the Finite Runtime COPY protocol of Mizuki and Sone (2009) we consider the case,
that produces 1 copy. Because we need 2k + 4 cards to produce k copies, the protocol
producing 1 copy needs 2 * 1 + 4 = 6 cards. Listing 2.1 describes the actions of the COPY
protocol for one copy and six cards. The input for this protocol is the one commitment
that should be copied. The other four cards are arranged as 0.

Listing 2.1 The protocol to compute COPY by Mizuki and Sone (2009).

(perm, (2453))

(shuffle, {id, (14) (25) (36)1})

(perm, (2354))

v = (turn, {1,2})

if v == (4,9,7?2,?,?2,?) then
(result, {(3,4),(5,6)1})

else if v == (9, %,7?,7?,7?,?) then
(result, {(4,3),(6,5)1})

O WD -

2.3 Software Bounded Model Checking

The explanations and descriptions of bounded model checking are taken from (Koch et al.,
2021).
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Software Bounded Model Checking (SBMC) is a fully-automatic static technique from
formal program verification. It analyzes programs given in programming language such

a C, C++ or Java. We will focus on C Bounded Model Checking (CBMC) (Kroening and
Tautschnig, 2014), which is a bounded model checker for C programs.

The main purpose of SBMC is to find violations of assertions in programs, or to prove
that the assertions hold for all inputs within a given bond. The given programs are not
executed by SBMC, but statically analyzed without executing them on specific values.

This is done by transforming the program into a control flow graph. Then the control flow
graph is unwound and a formula is built from it. The resulting formula can then solved
by a SAT or SMT solver. If the SAT formula can be satisfied, then a program run, which
violates an assertion, is found. In this case the bounded model checker returns the faulty
run. In the case that the formula is unsatisfiable, meaning that no faulty run can be found,
there are two possibilities. Either the assertions hold and the property is valid, or the
property is invalid for runs that were not considered because they are out of bounds.

As an input, SBMC is given an imperatively defined function in the form of an imperative
program. This imperative program has a set of possible start values 7. An entry i € 1
contains a list of values, one for each parameter that a run of the imperative program can
depent on. A parameter can be for example a input variable, or nondeterministic values.
Nondetermintistic parameters have arbitrary but fixed value for a concrete evaluation of
the imperative program.

Further we need a software property to be checked. The property has a form of C*" =
C"s with C?" and C°™ being boolean statements. This means that for all possible entries
i € I that if i satisfies C*" then i also has to satisfy C®". The property is only valid if
there is no entry i that satisfies C" but does not satisfy C°°". An example for a property
could be C%" = v, is 0odd and C®°™ = v is a prime number. Then i = {v; = 3} satisfies C*™
and c¢“™ but i = {v; = 9} does not.

2.4 Using Software Bounded Model Checking to Find Card
Protocols

Koch et al. (2021) apply the method of software bounded model checking described in
section 2.3 to the task of finding card-based protocols. They employ CBMC a bounded
model checker for programs written in C. Their program and the description here focus
on finding protocols for the AND gate.

Koch et al. (2021) implement a representation of the components of KWH trees (see Sec.
2.2.3) within a standardized C program. The specific properties, such as the number
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of cards used or the level of security can be specified by setting constants within the
C program. Operations within the protocol such as what operation will be performed
or which cards encode the output are implemented as nondeterministic variables. As
described in section 2.3, CBMC symbolically executes programs to find violations of the
provided assertions, or to prove that the assertions hold for all inputs within a given
bond. The assertion given by Koch et al. (2021) is a simple assert(0) at the end of the
program. Thus if the assertion is reached and therefore violated, there exists a input
and an assignment of the non-deterministic variables so that there is a run through the
standardized program and with that a protocol. The error trace that CBMC returns is the
run through the standardized program that produced the violation. This is the protocol
we are looking for. If the assertion is not violated, that means that it was not reached and
thus there is no run through the standardized program. This means that there exists no
protocol.

The standardized C program contains implementations of the neccesary actions that a
protocol can perform as well as fuctions that ensure the security and correctness of the
program. The program can be structured in three main parts. First all possible input states
as well as the start sequence are created. Afterwards, the shuffles and turns of the protocols
are performed. Here there are checks, that ensure that the chosen shuffle and turns are
allowed and that the security of the protocol is not violated. Finally there are functions
that check if the previously executed shuffles and turns resulted in a valid output.

Certain properties of the program can be adjusted by setting constants within the stan-
dardized program before executing CBMC. The most important constants are the number
of cards used as well as the amount of steps the protocol should have. Furthermore, the
program by Koch et al. (2021) supports two security types: input-possibilistic security
(definition 15) and output possibilistic security (definition 16). The bounded model checker
comes to a result faster if it searches for a protocol with output-possibilistic security and
not input possibilistic security (see table 3.2). As described in section 2.2.2, this is the
stronger condition when it comes to the non-existence of protocols. If we find a protocol
however, we would want it to be input possibilistic as well, because output-possibilistically
secure protocols can in certain cases leak information about the input (see fig. 3.2). By
default, the bounded model checker considers permutation sets of any size. The number
of possible permutations of a sequence of n cards is n!. To calculate the number of possible
permutation sets of n, we determine the size of the power set of the set of possible permu-
tations. The power set is the set of of all subsets of a given set S. As the power set also
includes the empty set, which we do not want to pick as a permutation set, we calculate
the number of possible permutation sets of a sequence of n cards as 2™ — 1. As the number
of possible permutation sets grows exponentially with increasing card numbers, we might
want to reduce the complexity and thus keep the running time of the program lower by
reducing the maximum size of the permutation set. Therefore a value for the permutation
set size can be provided, and the bounded model checker will only search for protocols
with a permutation set that is as big or smaller than the limit provided. This reduction can
however, reduce the strength of the results, if there is no protocol found, because there
could be a protocol for a shuflle set that is bigger than the given maximum shuffle set size.
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The user can also determine whether he only wants to search for protocols with closed
shuffles (definition 7) or not.

In the case that a program for the specified input exists, CBMC will find a run through the
program that violates C*°™ = assert(0). That means that the input and the non-deterministic
parameters are chosen in a way that they form a valid protocol. The trace of the run
therefore contains all the necessary information to recreate the protocol. All we have to do
now is obtain the instantiations of the non-deterministic parameters from the trace. These
are for example whether a specific step was a shuffle or turn operation, which shuffles were
chosen for the shuffle set and which cards encode the output commitment. To transfer the
protocol into a step-by step explanation in the form of a KWH-tree for example, we will
also have to complete the missing branches of the protocol. This is because we only look
at one possible post state after every possible turn. Therefore we will only receive one run
from start state to result state through the protocol. We can allow ourselves to only look
at one possible post state, because if we have one valid run from start state to result state,
that is chosen with a probability greater than zero, we can always restart our protocol for
the post states that were not looked at further. With this approach, we can complete every
protocol found by the bounded model checker and receive a protocol that is a restarting
Las Vegas protocol. However, for most of the protocols found by the bounded model
checker, we can complete the protocol manually by exploiting similarities between the
actions and states found by the bounded model checker and the ones we have to complete
manually. With this approach we can construct protocols, that are Restart-Free Las Vegas
or even Finite Runtime protocols.

Implementation of the representation of KWH trees

In order for us to implement a representation of the components of KWH trees (see
Sec. 2.2.3) within a standardized C program, we need to have a data structure for the
representation of the states. We implement states as a single array containing all possible
sequences (see listing 2.2. Unlike in the states in KWH-trees (see section 2.2.3) where only
the sequences with a probability greater than zero are depicted, the states in this program
representation hold all possible sequences regardless of probability.

Listing 2.2 Representation of a state by Koch et al. (2021)

1 VAT
* All sequences are remembered here, as seen from left to right,
sorted alphabetically.
* The states in this program are equal to the states in KWH trees.
*/
struct state {
struct sequence seq[NUMBER_POSSIBLE_SEQUENCES];

[\

NN U W

}i
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A sequence itself contains an array of unsigned integers which holds the cards. For the case
of using only two colours, we represent & as the integer value 1 and the © as the integer
value 2. Thus the card sequence #0V& would be represented by the array 1, 2,2, 11. The
sequence also contains a struct that holds the probabilities for the sequence.

Listing 2.3 Representation of a sequence by Koch et al. (2021)

1 struct sequence {

2 unsigned int val[N];

3 struct fractions probs;
4 };

The array that holds the different probabilities has a different number of entries depending
on the chosen probability. For input-possibilistic security (definition 15) it is the number
of possible inputs i.e. 4, and for output-possibilistic security (definition 16) it is the number
of possible outputs i.e. 2.

Listing 2.4 Representation of a fraction by Koch et al. (2021)

struct fraction {
unsigned int num; // The numerator.
unsigned int den; // The denominator.
}i

struct fractions {
struct fraction frac[NUMBER_PROBABILITIES];
}i

After the input is generated, the program performs a loop with the amount of iterations
specified at the beginning as the amount of steps. Within each loop, the program nonde-
terministically chooses whether to perform a turn or a shuffle operation. Starting from
the input states it performs the chosen turns and shuffles and computes the resulting
intermediate states until the loop ends.

If we choose a turn, we then nondeterministically choose an index (turnPosition) at
which we turn the card. After that, the calculation of the resulting states consists of
imperative operations that compute the new resulting states and update the probabilities.
The new resulting states are computed as follows. We create a new state for each possible
card colour. For every sequence that is still possible, we determine the card colour at
the index we chose. This is done by reading the value of the array at the specified
turnPosition (see listing 2.5).

Listing 2.5 Turning one card at index "turnPosition" in a sequence during the execution of a turn
operation (Koch et al., 2021)

1 wunsigned int turnedCardNumber = seqg.val[turnPosition];
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We then copy the probabilities of the sequence into the new state for the determined card
colour. After we have done so for all sequences, we check whether our security definitions
(see Sec. 2.2.2) still hold. For input- and output-possibilistic security, we need to find one
sequence for every possible in-/output. After every turn operation, there are two possible
states that can be reached from there. The state that occurs, if a & has been turned and the
state that occurs if © has been turned. We calculate both of the possible post states and
check if they are valid, but we only look at one of them for our following operations. The
post state we look at is chosen nondeterministically.

For a shuffle operations we first nondeterministically determine the size of our shuffle set.
If the size of the shuffle set is one i.e. we only choose one permutation from the set of
possible permutations, we have a permutation (perm, r) instead of a shuffle (shuffle, II, F)
(see Sec. 2.2). We also choose the permutations nondeterministically. Afterwards we can
check for optional shuffle properties e.g. if the chosen permutations make a closed shuffle.
Then we apply the shuffle we generated to our current state. We do this by iterating over
every permutation j from the shuffle set and every sequence i in the state and applying
the permutatuion j j to the sequence i Both the permutation 3 and the sequence i are
arrays. For each card k in the sequence we read the value of the sequence at that array
index k. Then we determine the index to write this value to, by determining the value of
the permutation at that array index k- The predetermined value of the sequence, is then
written to a new array resultingSeq at the index taken from the permutation array.

Listing 2.6 Applying permutation j to sequence i during the execution of a shuffle operation
(Koch et al., 2021)

1 for (unsigned int k = 0; k < N; k++) {
2 resultingSeqg.arr[permutationSet[j] [k]] = s.seqgl[i].vallk];
3

The result of the shuffle is the state after the shuffle operation. We now check for each
sequence in the state, whether it is a bottom sequence.

Definition 20 (Bottom Sequence). A sequence is a bottom sequence if it belongs to more
than one possible output.

If a shuffle results in one sequence being a bottom sequence, the protocol can no longer
produce the correct result. That is because this sequence belongs to more than one possible
output. Thus however the result will be defined, it will be wrong for one of this multiple
possible outputs.
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3 A Standard Program Representation for
Finding Card-based Protocols for Any
Boolean Function

In section 2.4 we have seen a general description of the implementation of a standardized
program representation by Koch et al. (2021). Their representation was designed to
find protocols for AND. Our aim is, to use bounded model checking (section 2.3) and
the implementation by Koch et al. (2021) (section 2.4) to find protocols for any type
of function. In section 3.1 we give a description of how to implement a standardized
program representation, so that it is able to find a protocol for an arbitrary function.
Using these principles, we implement a standardized program representation for a select
number of functions in section 3.2 and perform a test on the efficiency of different SAT
solvers in section 3.2.2. We present the protocols found using this standardized program
representation in section 3.2.3 and discuss the size constraints for using the bounded model
checker with our implementations in section 3.2.4. .

3.1 Adjustments to the Standard Program Representation for
Boolean Functions

In general, a mathematical function assigns to each element from a set X (domain), an
element from a set Y (co-domain). In these sections we will now take a closer look at how
changes in the domain, co-domain and the function behaviour are represented within our
program to ensure that we obtain a protocol for the desired function. First we will look at
the function behaviour (definition 19). This means, which input maps to which output.
Then we will consider the amount of input commitments for our functions i.e. the domain.
Finally we will take a look at the amount of output commitments for our functions i.e. the
co-domain.
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3.1.1 Function Behaviour

The function behaviour determines the output value for each input value. As an example
for this section, let us look at binary boolean operators. They take the same amount of input
commitments (namely two) and have the same amount of output commitments (namely
one). The program by Koch et al. (2021) is designed to find protocols for AND. However,
there are many other binary boolean operators like XOR and OR. They differentiate
themselves from AND not in their possible inputs and outputs, but in the way inputs are
mapped to outputs. As seen in table 3.1, The input Com1 = 1 and Com2 = 0 would result
in the output 1 for OR but 0 for AND.

Coml | Com2 | AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 3.1: Truth assignments for AND, OR and XOR

Our task now is to determine how the function behaviour is represented and encoded in the
program. The different function behaviours express themselves within the link between
input and output. Therefore, the function behaviour influences how the possibilities for
output possibilistic security (definition 16) are calculated. For input possibilistic security
(definition 15) and probabilistic security (definition 14), the examination if a sequence is a
bottom sequence and the calculation of the output is impacted, because they both depend
on the output.

Let us start with the calculation of the possibilities. For output possibilistic security, we
determine in the beginning for all possible input sequences which sequence will be mapped
onto the output 0 and which will be mapped onto the output 1. The mapping is recorded
in the possibilities: Xj if the output is 0 and X if the output is 1. Within the code, the
possibilities are held within the struct fractions where frac[0] contains the fraction for
Xo and frac[1]contains the fraction for Xj (see listing 3.1). For AND the input sequence
11 (V&9&) has the output 1 and therefore has a possibility of Xy = 0 and X; = 1. The other
input sequences 00, 01 and 10 (40P, 40V& and V#&) have the output 0 and therefore has
a possibility of Xy = 1 and X; = 0. For OR on the other hand, for the first input sequence
where both commitments are 0 ((#0#&9), X, is set to 1 and X is set to 0. For all other
possible input sequences, it is set the other way round. For input possibilistic security and
probabilistic security we instead calculate the possibility from the input not the output.
Thus, it is not different for functions that have the same amount of input commitments.

Listing 3.1 The structs for sequences fractions.

1 struct fraction {
unsigned int num; // The numerator.
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3 unsigned int den; // The denominator.

4 };

5

6 struct fractions {

7 // NUMBER_PROBABILITIES = 2 for output possibilistic security,
8 // and = 4 for the other types of security.

9 struct fraction frac[NUMBER_PROBABILITIES];

10 };

11

12 struct sequence {

13 unsigned int val[N]; // N is the number of cards in a sequence
14 struct fractions probs;

15 };

Now let us take a look at the adaptations for input possibilistic and probabilistic security,
starting with the check for bottom sequences. As described in section 2.4 we check for
bottom sequences (definition 20) every time we perform a shuffle. We also check it while
testing if a state is a final state. We do that, because if we have a bottom sequence, our
program is faulty. A sequence is a bottom sequence if it belongs to more than one possible
input and we cannot give back a correct result for the sequence if it belongs to more than
one output. To illustrate, a sequence would be a bottom sequence for AND if the sequence
had input possibilities of Xj; # 0 and Xj; # 0. The same sequence would not be a bottom
sequence for OR if the sequence had input possibilities of X;; # 0 and Xy; # 0. This is
because these input commitments both evaluate to 1. For output possibilistic security, the
check for bottom sequences remains the same throughout all different function behaviours
(see listing 3.2). For input possibilistic and probabilistic security on the other hand, we
have to exclude that probabilities that represent inputs which map onto different outputs
are present in the same sequence (see listing 3.3).

Listing 3.2 Extract from isBottom() for WEAK_SECURITY == 2 (output possibilistic security)

1 bottom = probs.frac[0].num && probs.frac[l].num;

Listing 3.3 Extract from isBottom() for WEAK_SECURITY != 2 (input possibilistic and probabilistic
security) for AND(top), OR(middle) and XOR(bottom)

1 bottom = (probs.frac[0].num || probs.frac[l].num || probs.fracl[2].
num)

2 && probs.frac[3].num;

3

4 bottom = (probs.frac[l].num || probs.frac[2].num || probs.frac[3].
num)

5 && probs.frac[0].num;

6

7 bottom = (probs.frac[0].num || probs.frac[3].num)

8 && (probs.frac[l].num || probs.frac[2].num);
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Lastly, we have to take a look at the function isFinalstates which checks whether a
state is a final state. The function nondeterministically picks two parameters that are
the column numbers, and then checks for each sequence that the values encode a 1 if
the sequence is evaluating to 1 and a 0 if the sequence is evaluating to 0. The parameter
deciding holds the output. For output possibilistic security, we can infer the value of
deciding from the possibilities directly. Therefore, a sequence is deciding if X; > 0. That
means, that value of deciding can be determined as seen for XOR in listing 3.4. For input
possibilistic and probabilistic security the X;; have to be specified that evaluate to one. In
the case of XOR in listing 3.4 it is Xy; and Xjo.

Listing 3.4 Deciding for XOR

1 if (WEAK_SECURITY == 2) {

2 deciding = (s.seq[i].probs.frac[l].num); //for output
possibilistic security X 1 is deciding, X _0 is not

3 )

4 else {

5 deciding = (s.seq[i] .probs.frac[l].num) //for the other
security types X 01 and X _10 are deciding for XOR

6 || (s.seq[i].probs.frac[2].num);

7 }

3.1.2 Domain

For our example above, we have considered only binary boolean operators with two
input commitments and one output commitment. But there are functions, that take a
different amount of input commitments. One prominent example for this is the COPY
function, that takes one commitment (definition 3) as an input, and duplicates it (listing 2.1).
Another would be a three input majority function as described by Nishida et al., 2013,
which takes three input commitments. Let us take a look at how a different amount of
input commitments influences our protocol. In general, we have to make sure that we
generate the start sequences correctly and have the right amount of probabilities for input
possibilistic and probabilistic security.

To generate the start sequences, we make use of constants (aka. preprocessor variables).
Two of them depend on the amount of input commitments a function has. The number
of cards used for a commitment comMIT has to match the number of cards that will be
needed to encode all input commitments. In general, we need two cards for every input
commitment. So the value of comM1T is two times the number of commits. For the binary
boolean operators we use 4 cards for their two input commitments. If we wanted to instead
find protocols COPY, we would have to set coMMIT to 2, because we have only one input
commitment. The number of start sequences NUMBER_START_SEQS usually depends on the
desired protocol as well. For k players where both can either commit a 0 or a 1, we have
2k start sequences. If we have other scenarios like three different commit options (e.g. -1,
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0, 1) we can have a different number of start sequences and a different number of cards for
commitments. The minimum size of the input sequence N depends on the amount of input
and output cards. N has to be big enough so that it can hold the input commitments and
later also the output commitments. For a three input majority function, we would need 3
commitments and thus at least 6 cards. So for the three input majority function N would
have to be greater or equal 6. For COPY we would only need one commitment and two
cards for our input. We do however need two commitments and four cards to encode the
output. Therefore, we need n > 4 for COPY.

The start sequences themselves are generated at the beginning of the program. The
function getstartSequence () nondeterministically constructs a start sequence for the
given commitment length COMMIT. To obtain a valid sequence we need to make sure that
each player uses fully distinguishable cards. We therefore have to check for each input
commitment separately, if the two cards are the same or not. Afterwards, we check, that all
the possible inputs are represented within the start sequences. For a boolean operator this
would be the input commitments 00, 01, 10 and 11, and thus we have to check for those
four different sequences. For the COPY protocols we only have the input commitments
0 and 1. We check for a 0 by testing if the first card is smaller than the second, and we
check for a 1 by testing if the first card is bigger than the second. If we have more than
one input commitment, the first two cards are the first commitment, the third and fourth
card the second commitment and so on. And we check for all the possible combinations of
values for these commitments.

We also assign the input probabilities and possibilities to the start state, by checking if the
given sequence is an input sequence in the start state. This works just as the check for all
the possible inputs.

3.1.3 Codomain

Not only the amount of input commitments, but also the amount of output commitments
can vary from function to function. Some problems can have more than a single bit as an
output. Take for example the half adder (definition 21). It receives two bits as an input -
just like the binary boolean operators. But instead of one output commitment it produces
two. The sum of the two bits and the carry signal, which represents the overflow into the
next bit. The amount of output commitments influences the amount of output possibilities
as well as how we determine a final state.

Let us look at the output possibilities first. If all values are possible for the k output
commitments, we have 2¢ different output possibilities. For example, we have the 2
different output possibilities X, and X; for a binary boolean operator. For the half adder
we would thus have 4 different output possibilities X, Xo1, X10 and Xj;. However it is
not possible for any sum of two input commitments to be greater than 2. Thus the output
possibility X;;, where sum and carry are both one is impossible. We are therefore left
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with only three output possibilities for the half adder. Another example, where not all
combinations of values are possible for the output commitment is the COPY function. Here
we have two output commitments. But because the function requires, that they are both
the same, we have only two output possibilities X, and Xj.

We set the number of possibilities NUMBER_PROBABILITIES as a constant and then have to
set the possibilities for output possibilistic security when we generate the start sequences.
Here we have to match each input sequence to the possibility that belongs to its output
sequence. For the half adder, the input commitment 00 has possibility Xp, the input
commitments 01 and 10 have possibility Xy; and the input 11 has possibility Xj,.

Just as in section 3.1.1 with input possibilistic and probabilistic security, we now have to
consider output possibilistic security, when checking for bottom sequences (definition 20).
A bottom sequence, is a sequence that belongs to more than one possible output. Thus we
have to check, that for each sequence there is only one output possibility greater than 0.

The last step when finding a protocol is checking that the result is valid. The function
isFinalState () determines if a state contains columns containing the result bits. There-
fore, we need to find two columns as the result for a binary boolean operator and 4 columns
for the COPY protocol and the half adder protocol. We chose every index of our columns
nondeterministically. Afterwards we also need to match the possibilities to the correct
output. As explained in section 3.1.1, the parameter deciding encodes for a binary boolean
operator whether the sequence evaluates to a 0 or 1. A general approach is to have one
such deciding variable for each output commitment.

Listing 3.5 Extract from isFinalState for the half adder.

1 wunsigned int decidingSum = 0;

2 if (WEAK_SECURITY == 2) {

3 decidingSum = (s.seqgl[i].probs.frac[l].num);

4 } else {

5 decidingSum = (s.seq[i].probs.frac[l].num) || (s.seq[i].probs.
frac[2] .num) ;

6 }

7 VY2

8 wunsigned int decidingCarry = s.seq[i].probs.frac|

NUMBER_PROBABILITIES - 1].num;

In listing 3.5 we see the assignment of the deciding parameter for the two output com-
mitments of the protocol. For the first parameter, the assignment of decidingsum is the
same as for a logical XOR. For the second parameter, the assignment of decidingCarry
is the same as for a logical AND. Because of the function behaviours of AND and XOR,
we can not have them be both 1 for the same input. Thus the output 11 is impossible,
just as stated above. After we have determined whether the sequence is deciding, we can
check whether the cards at the previously chosen index encode the correct result for each
deciding parameter and output commitment.
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3.2 Implementing a Concrete Standardized Program
Representation for a Select Number of Functions

This section takes the principles presented in section 3.1 and applies them to specific
functions. We discuss the experimental setup in section 3.2.1. In section 3.2.2 we describe
our attempt of improving the performance of our bounded model checker by using different
SAT solvers. Afterwards we present the protocols we were able to find using the previously
described setup in section 3.2.3. We also discuss the size constraints for using the bounded
model checker with our implementations in section 3.2.4.

3.2.1 Structure and Execution of the Standardized Program Representation

To apply the principles presented in section 3.1, we implemented a standardized program
representation of a range of different functions. The first set of functions we implemented,
were binary boolean operators. As Koch et al. (2021) had already done extensive runs
of their standard program representation for the AND protocol, we did not repeat those
tests. Instead we implemented a standardized program representation for the XOR and OR
operators. We also implemented a COPY function. It receives only one commitment as an
input, and returns a copy of that commitment. Together with a functionally complete set of
boolean operators, for example AND and XOR, we can realize any multivariable function
(Nishida et al., 2015). To add a more practical function, we implemented a standardized
program representation for a half adder as well. Excerpts from the implementation for all
the symbolic programs can be found in appendix A.5. The complete code can be found in
the repository at appendix A.4.

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with
48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the
SAT-solver MiniSat 2.2.1.

3.2.2 Exploring different SAT solvers

Using a standardized program representation has two distinct disadvantages. Firstly, the
process of finding a protocol can take a long time, especially for a protocol that has a
lot of cards and/or a lot of steps. As can be observed in table 3.2, for the built-in SAT
solver MiniSat, finding a XOR protocol with four cards, two steps and input-possibilistic
security took around 10 minutes. Proving that there is no OR protocol with four cards,
two steps and input-possibilistic security it took 20 minutes. But for even bigger protocols
the time until a protocol is found is likely to be even bigger. As an example, finding the
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protocol from fig. 3.5 took more than 23 hours. Another problem is the occurrence of an
"out-of-memory" error for certain protocols with more cards and steps.

We attempted to improve the time it takes to find a protocol as well as the avoidance of
"out of memory"-problems through the use of different SAT solvers within the bounded
model checker. We chose Glucose ! and CaDiCal ? to test against the built-in SAT Solver
MiniSat.

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with
48 cores and 256 GB of RAM. We used CBMC 5.57.0 for all the SAT Solvers. Every test was
performed five times for each of the SAT solvers. The number of variables and clauses
stayed the same throughout all five executions of the tests. Therefore the values given in
table 3.2 are the absolute values in each test. For the time spans we measured, we each
excluded the highest and the lowest result. From the remaining three values we calculated
the arithmetic mean. This is also shown in table 3.2 accordingly. We determined the time
span by measuring the time from the start of the execution of the test until the execution
terminated. For the four card XOR protocol the program terminated after a valid protocol
was found. Thus the times given in table 5.1 were measured from the start of the execution
until a valid protocol was found. For the four card OR Protocol, the program terminated
after it had found, that no valid protocol exists for the given inputs. For this protocol the
times given in table 5.1 are the times from the start of the execution until it was proven
that there is no protocol. The five card OR protocol terminated after an out of memory
error. Therefore it did not return the amount of clauses and variables. The times given
in table 5.1 are measured from the start of the execution of the protocol until the out of
memory error occurred and the program terminated.

The test results show clearly, that using CaDiCal or Glucose did not improve the runtime
of our protocols, nor did it result in less "out-of-memory" errors. Out of all SAT solvers
MiniSat performed the best for both the four card XOR as well as the four card OR tests
that were performed. It had a shorter runtime for both input-possibilistic as well as output-
possibilistic security. Glucose was second fastest for both the four card XOR as well as the
four card OR tests. The smallest difference in runtime between MiniSat and Glucose can
be observed for the four card OR protocol with input-possibilistic security. Here the test
for Glucose took only about two minutes longer than the test for MiniSat. The biggest
difference could be observed for the four card XOR protocol with input-possibilistic security.
Glucose was around 2.5 times slower than MiniSat. For our use case the performance of
CaDiCal was even worse. The smallest difference between MiniSat and CaDiCal could
be observed for the four card OR protocol with input-possibilistic security. Here CaDiCal
was still around 1.8 times slower than MiniSat.

The test results also show, that the use of CaDiCal or Glucose did not result in less out of
memory errors, at least for the program that was tested. For the five card OR, the execution

'https://www.labri.fr/perso/lsimon/research/glucose/
2http://fmv.jku.at/cadical/
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’ \ #Cards \ #Steps \ Security \ Mini Sat \ Glucose \ CaDiCal
XOR | 4 2 output- Runtime (s) 367,3 569 725,7
possibilistic | Variables 10829386 | 10829386 | 10829386
Clauses 39863588 39863588 39905499
XOR | 4 2 input- Runtime (s) 618 1560,3 1823,7
possibilistic | Variables 13191171 13191171 13191171
Clauses 47 693 620 47 693 620 47736 299
OR |4 2 output- Runtime (s) 481 1062 3470,7
possibilistic | Variables 10819303 | 10819303 | 10819303
Clauses 39832637 39832637 39874504
OR |4 2 input- Runtime (s) 1218,3 1335 2158,7
possibilistic | Variables 13185883 | 13185883 | 13185883
Clauses 47673732 47673732 47716 387
OR 5 2 output- error 3830,7 1637,7 27613
possibilistic | after (s)

Table 3.2: Experiment results for the SAT-Solvers MiniSat, CaDiCal and Glucose.

terminated with an out of memory error for all three tested SAT solvers. Here the out of
memory error occurred more quickly with Glucose and CaDiCal than with MiniSat.

Based on the results of the experiment, we decide to use only the built-in solver MiniSat
when using CBMC.

3.2.3 Protocols Discovered using the Adapted Standardized Program
Representation

In this section, we present the protocols, that we discovered while symbolically executing
our adapted standardized program representations. First, we will present our results for the
functions XOR (section 3.2.3.1) and OR (section 3.2.3.2). Then we will present the results for
COPY (section 3.2.3.3) and finally the results for the half adder function (section 3.2.3.4).

3.2.3.1 Protocols for XOR

The protocol in fig. 3.1 found by the bounded model checker is the protocol that is card and
step minimal if we consider probabilistic (definition 14) and input-possibilistic security
(definition 15). It takes only the four cards necessary for the two commitments (definition 3)
as input. The protocol has a finite runtime, and performs one shuffle (definition 6) and
one turn (definition 9). This XOR protocol is similar to the four card protocol by Mizuki
and Sone (2009) that is shown in fig. A.2. While Mizuki and Sone (2009) used one random
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’ #Cards \ #Steps \ Closed? \ Security \ Protocol \ Runtime ‘
4 1 yes output-possibilistic | v/ Finite Runtime
4 1 yes input-possibilistic | X Finite Runtime
4 2 yes output-possibilistic | v/(see fig. 3.2) | Finite Runtime
4 2 yes probabilistic (*) v (see fig. 3.1) | Finite Runtime

Table 3.3: Protocols that were found through bounded model checking for the XOR boolean
operator.
(*) the protocol that was found by the bounded model checker had output-
possibilistic security, we completed it with the specific fractions of the proba-
bilities, proving that it also satisfies the stronger prerequisites for probabilistic
security

bisection cut and two permutation operations (definition 5), the protocol in fig. 3.1 replaces
these operations with a single shuffle. Mizuki and Sone (2009) also turn two cards instead
of our protocol which turns only one card. They are however both equivalent in regard to
their results.

(shuffle{id, (12)(34)})

LIV V) %Xoo + %Xll
&00& %Xo] + %Xlo
Qe&Q %Xo] + %Xl()
2 AV %Xoo + %Xll

(turn, {3})

7747 7?7207
2080 Xoo + X1 *00&% Xo1 + Xio
VeV Xo1 + Xqo Qe Xoo + X11

é)(result, 1,2) é)(result, 2,1)

Fig. 3.1: A finite runtime protocol for XOR with probabilistic security and closed shuffles. It uses
4 cards and has 2 steps.

Search for an output possibilistic protocol (definition 16) for XOR using 4 cards, two steps
and only closed shuffles, resulted in the protocol in fig. 3.2. Remarkable about this protocol
is, that the first step performed is a turn operation. This reveals the fourth card and thus
the value of the second commitment. This is however not a violation of output-possibilistic
security. By definition, a protocol is possibilistically output-secure, if at every state in
the protocol, every output is still possible (definition 16). Because we have two possible
starting commitments that will result in 1 and two commitments that result in 0, turning
one card and splitting the protocol in two, will not violate output-possibilistic security. As
seen in fig. 3.2, after the turn, in each possible state, both outputs are still possible. This
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highlights the need for checking protocols for stronger security guarantees for protocols
found through bounded model checking.

2080 X,

*008 X;

Y IvD'd

Va0 X,

(turn, {4})

7774 7?2?70
Va0V X, *080 X,
2OV X, I¥vD'

(perm, {(12)(34)}) (perm, {(12)(34)}
2080 X, Va0 X,
VI¥IVD' 200 X

¢(result, 1,2) ¢(result, 2,1)

Fig. 3.2: Afinite runtime protocol for XOR with output possibilistic security and closed shuffles.
It uses 4 cards and has 2 steps.

We could also convert this protocol into a protocol with only one step. The permutation
applied to both branches after the turn is unnecessary. Instead of performing the permuta-
tion, the result could be extracted after the turn. For the branch that resulted by turning
& the result could then be for example (result, 2, 1) and for the branch that resulted by
turning © a possible result would be (result, 1, 2). This protocol still has output-possibilistic
security and is closed (definition 7), because it does not have any (non-closed) shuffles.
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3.2.3.2 Protocols for OR

’ #Cards ‘ #Steps ‘ Closed? ‘ Security ‘ Protocol ‘ Runtime ‘
4 2 no output-possibilistic | X
4 3 no output-possibilistic | X
4 4 no probabilistic (*) v (see fig. 3.3) | Las Vegas
4 4 yes output-possibilistic | x
4 4 yes input-possibilistic | X
4 5 no probabilistic (*) V(see fig. A.4) | Las Vegas
4 5 yes input-possibilistic | X
4 6 yes probabilistic (*) v (see fig. 3.4) | Las Vegas
5 2 no probabilistic (*) V'(see fig. A.3) | Las Vegas

Table 3.4: Protocols that were found through bounded model checking for the OR boolean
operator.
(*) the protocol that was found by the bounded model checker had output-
possibilistic security, we completed it with the specific fractions of the proba-
bilities, proving that it also satisfies the stronger prerequisites for probabilistic
security

There is no explicit protocol for OR in the existing literature. Stiglic (2001) describes the
construction of an OR protocol from AND and NOT gates (x; V x; = =(—x1 A —x3)).

We can perform a NOT protocol on an arbitrary number of commitments simultaneously,
by executing one permutation operation. This permutation operation swaps the two
cards of each commitment. As we can execute —x; and —x, simultaneously, we need two
operations to execute the NOT operations in —=(—x; A —x2).

Additionally we need an existing AND protocol. The shortest finite runtime AND protocol
in the literature is the protocol of Mizuki and Sone (2009) which uses six cards, two
permutation operations and a random bisection cut. The two permutation operations and
the random bisection cut can be combined into one shuffle operation (definition 6). Thus
the protocol can be modified to have six cards and two steps. Using this AND protocol, we
can construct a protocol for OR, that has six cards and four steps. This OR protocol has
uniform closed shuffles and finite runtime. Using the AND protocol by Koch et al. (2015),
which is a Las Vegas protocol with closed but non-uniform shuffles, we can construct an
OR protocol that uses four cards and six steps.

With the use of bounded model checking, we were able to find protocols for OR, that used
four cards. The protocol in fig. 3.3 has non-closed shuffles and probabilistic security. It
uses four cards and has a best case of four steps. As can be seen in table 3.4 there exists no
protocol with the same properties but closed shuffles. We could also show, that there are
no protocols for four cards and less than four steps for any type of security and type of
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shuffles. The card minimal protocol for OR, that has closed shuffles is the protocol from
fig. 3.4. It uses six steps. This protocol is very similar in structure to the four-card Las
Vegas AND protocol by Koch et al. (2015). Every action up to and including the first turn
action is the same. Afterwards the protocols differ slightly. The left branch that results
from turning a & in our OR protocol is identical operation wise to the right branch that
results from turning a © in the AND protocol by Koch et al. (2015). Our right branch
performs the same action types as the left branch of the protocol by Koch et al., 2015. The
concrete shuffles and turns differ however.

2089 Xoo
200 X
Vas0 X
Qa0 X

l(shuﬁle,{(uz), (1324)})

*2&00
2040

1
?Xoo
3X00

i

2008 1X0 +1x,
Oak0 X0 +1X10

i(turn, {2})

a8 1X1)
Ovss X1
7877
2200 Xo0
Vaa0 X1 + Xqg
VeV Xy

20?7

2089 Xy
*00% Xo1 + X1o
OVk X))

l(shuﬂle,{(%), (243), (14)})

(shuffle,{(1243), (23), (123)})

l (shuffle{id, (13)})

M1V
2800

2089 Xoo

1Xo1 + 1 X0 + 1X11
3Xo1 + 3X10 + 3 X1t

l (shuffle{id, (13)})

MY 1)
*&00
LV
QaO%
*0%Q

2
5X00
3X00
1 1 1

3Xo01 + 5X10 + 53X11
1 1 1

3Xo01 + 3X10 + 3X11
%Xm + éXw + éxn

(shuffle, {id, (1,2)}),(perm, (13

(shuffle, {id, (2,4)}), (perm, (1342))

#0849 2Xy #4909 2X

Oa0% 3 Xoo OOas X0

Oas0 £Xo; + 2X 0 + 1X11 008 £Xo; + 2X10 + 1X11

OO 1 Xo1 + 1 X10 + $X11 Oa0% 1 Xo1 + 1 X10 + 3X11

*a00 1x;, 2080 1X1y

T Gurn, {4) J (turn, {1})
22 277 77? 722

2089 X Ve0% Xpo VVss Xoo 2809 Xpo
0880 Xop + Xio + 3 X11 Vs Xoi + Xj0 + X Va0s X1 + Xq0 + X1 008 Xo + X10 + X101
2400 1X; | (result, 2,3) J (result, 3,2) 040 1X;

l(shufﬂe,{id, (34)})

2200 X0
#0008 1Xo; + 1X10 + 21Xy
#0489 1X01 + 3X10 + 3X11

l(shufﬂe,{(ZS), (134), (14)})

Qa0O%
2080
Q&
&&00
QVss

2
5Xoo

X

3%00

3Xo1 + 3X10 + 3X11
i i 1
3Xo01 + 3X10 + 3X11
%Xm + %Xlo + %Xn

i(turn, {3}

23 7782
»200 Xg0 QUR& Xoo
Qa0® Xoi + X0 + X1y Oae9 3X0; + 3X1p + 23Xy

| (result, 1,4)

080 1Xo1 + 3 X10 + 1 X1

l(turn,{l})

77 #7922
OaV® Xoo *0&9 Xoo
0849 3X01 + 3X10 + 23Xy A0 Xo1 + X0 + X11
Vs %XOI + %Xw + %Xu i (result, 3,2)

Fig. 3.3: A Las Vegas protocol for OR with probabilistic security. The shuffles are not closed. It
uses 4 cards and has a best case of 4 steps.

33



3 A Standard Program Representation for Finding Card-based Protocols for Any Boolean

Function

2080 Xy
*00% Xoq
QadQ X
QaV® X

2949 X
2008 10, +1X;0
vaa0 1X0, + 1X50
(V2 V2 3 X11

(shuffle fid, (23)})

*&00
LAV V)
&00&%
Q&&©
Q&O%
QOss

%Xoo
2X00
3Xo1 + 3X10
3Xo01 + 3X10
%);11
2Xu1

(shuffle,fid, (13)(24)})

24827 (turn, {2}) ?7077?

2&00 Xoo 20K Xoo
VesQ Xo1 + X10 *00% Xo1 + X1
Va8 Xy OVsS Xiy

(shuffle {id, (34)})

(shuffle {id, (13)})

(perm, (1342))

LX) XOO = XO
Qadk©
Qa0%

1 1 1

Xo1+ 3X10 4+ 3X11 = 3X1
i 1 1

Xo1+ 3X10+ 3X11 = 3X1

LAV V) ng = XO
&00%
QVas

1 1 1
Xo1 + EXIO + §X11 = iXI

1 1 1
Xo1 + 3X10+ 3X11 = 3X1

(perm, (12))

(shufflefid, (14)(32)}, )

&S00
LA V)
Q&&©
Q&O%
Q0%s

(shuffle,fid, (12)(34)}, )

2080 X

-~ (result,3)

1X, FXVEIVIES'S

3 X, VFXVIY 2X0

gXl A0V %Xl

Iy, ORaO 21X

§ Vs 1X
(turn, {2})

Oaa0 1x; Va0% X
Va0% 3X; *008 1X
Vvsk 1X, Vs 32X

(shuffle{id, (34)}) (shuffle,{id,

ORaO X, Va% X,
osv X, 2008 21X
ooas 1X) OOAE 3 X

2087 X,
VO X,

¢(result, 1,2)

M

Fig. 3.4: A Las Vegas protocol for OR with probabilistic security and closed shuffles. It uses 4
cards and has a best case of 6 steps.
F*=id > 3,(14)(32) —> 2
F*=id > 3,(12)(34) — 2
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3.2.3.3 Protocols for COPY
’ #Cards \ #Steps \ Closed? \ Security \ Protocol Runtime

4 2 no output-possibilistic | x

4 3 no output-possibilistic | X

4 4 no output-possibilistic | X

4 5 no output-possibilistic | X

5 2 no probabilistic (*) V'(see Fig.3.5) | Las Vegas
5 3 yes output-possibilistic | X (**)

5 4 yes output-possibilistic | X (**)

5 5 yes output-possibilistic | X (**)

Table 3.5: Protocols that were found through bounded model checking for the COPY func-
tion.
(*) the protocol that was found by the bounded model checker had output-
possibilistic security, we completed it with the specific fractions of the proba-
bilities, proving that it also satisfies the stronger prerequisites for probabilistic
security
(**) For these results, we reduced the permutation set size to 8, to avoid an "out-
of-memory" error. This reduces the significance of the result, as there might be
protocols for this configuration, that have more than 8 permutations in a shuffle.

For COPY protocols, input-possibilistic security and output-possibilistic security are identi-
cal. This is, because the two possible inputs &0 and ©# and their input-possibility Xy and
Xo1 match up with the possible outputs and their output-possibility X, and X;. Therefore
any protocol with output-possibilistic security also has input-possibilistic security. In ta-
ble 3.5, we have given the stronger security definition in each case for illustrative purposes,
even though they are synonymous in this case. For the non-existence of a protocol, this is
output possibilistic security. For an existing protocol, this is input possibilistic security
(remark 1).

We also focused on protocols that produced one copy of the given input commitment the
copy protocol. There are protocols, for example by Mizuki et al. (2006) that can produce
any number of copies n (table 2.1). The existing protocol for COPY that uses the least
amount of cards, is the finite runtime protocol by Mizuki and Sone (2009). It uses 2 * n + 4
cards to produce n copies. To produce one copy, as we did in our experiments, the protocol
by Mizuki et al. (2006) would therefore need six cards (listing 2.1).

With the use of our standardized program representation, we were able to find a protocol
that only uses five cards and two steps (see fig. 3.5) and thus uses one card less than the
protocol with the least amount of cards from literature. It is however a Las Vegas protocol
and the shuflles are not closed but uniform.
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200K X,
VaORO X

(shuffle, {(23)(45), (13)(24)})

#0008 1X,
VROV 21X,
QRO 21X
OV 3 X

(shuffle, {(12)(35), (23)(45)})

Va0 X, 20008 X,
TX TR VRORO X,

é)(result, (1,2),(5,4))

Fig. 3.5: A Las Vegas protocol for COPY with probabilistic security and non-closed shuffles. It
uses 5 cards and has a best case of 2 steps.

3.2.3.4 Protocols for the Half Adder

| #Cards | #Steps | Closed? | Security | Protocol | Runtime
4 2 no output-possibilistic | X
4 3 no output-possibilistic | x
4 4 no output-possibilistic | X
4 5 no output-possibilistic | X
5 2 no output-possibilistic | X

Table 3.6: Protocols that were found through bounded model checking for the half adder
function.

A half adder is a boolean function that takes two bits and calculates the sum of those two
inputs as a two bit output.

Definition 21. A half adder function is a boolean function. It takes two inputs by, b, € {0, 1}
and produces two outputs s,c € {0, 1} wheres = by @ b, is the sum and c = by A b, is the
carry.

As can be observed in table 3.6, we were not able to find any protocols for the half adder
with our method. We could show, that there are no protocols for the half adder using four
cards and between two and five steps, as well as using five cards and two steps.
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3.2.4 Limits for the Use of the Bounded Model Checker with Our Symbolic
Program Representation

When we used the bounded model checker CBMC (section 2.3) with our implementation
to find protocols, it did not produce results for certain runs. In general, we could not find
protocols, or show that no protocol exists for more than five cards and two steps, when
we searched for non-closed protocols (definition 7). For closed protocols we could not
find protocols, or show that no protocol exists for five cards and two steps. The biggest
number of cards and steps for which the bounded model checker returned a result was
five cards and five steps for closed protocols. In the cases where we received no result,
the bounded model checker either returned after an "out-of-memory" error occurred or
because the timeout threshold we set was reached.

The "out-of-memory" error occurred for example when running the program for the half
adder with five cards, two steps and output-possibilistic security. We also limited the
search to only closed shuffles. We also got an "out-of-memory" error for the program for
the COPY function with five cards, two steps output-possibilistic security. We limited the
search to only closed shuffles here as well. We can see the trace for the COPY function
in listing 3.6. Here the last notice was, that CBMC was converting into static single
assignment (SSA) form (Kroening and Tautschnig, 2014). After that it produced the error
message SAT checker ran out of memory. We can not explain the exact cause of this
"out-of-memory" error. However we note that the size of the program expression for this
run is 8219163 steps (listing 3.6, line 2) while for a program that was too big to produce
a result before the set timeout, the size of the program expression was 3596454 steps
(listing 3.7, line 2) and with therefore smaller.

Listing 3.6 Excerpt from the trace of CBMC for the five cards two steps COPY function. The
protocol terminated without a result after the SAT checker ran out of memory.

Runtime Symex: 1041.01s

size of program expression: 8219163 steps

simple slicing removed 5 assignments

Generated 1 VCC(s), 1 remaining after simplification
Runtime Postprocess Equation: 2.41528s

Passing problem to propositional reduction
converting SSA

SAT checker ran out of memory

Out of memory

NO 0 I QN U v W N

We also ran protocols, where the bounded model checker did not reach a solution before
it was terminated because of the timeout we set. The timeout threshold for the runs in
this section was set at 5 days. We reached such a timeout threshold for the program for
the half adder with five cards, two steps, output-possibilistic security and non-closed
shuffles. As we can see from the trace in listing 3.7, the built-in solver MiniSat was solving
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the formula when the bounded model checker was terminated. The SAT formula had
124330664 variables and 448826210 clauses.

Listing 3.7 Excerpt from the trace of CBMC for the five cards three steps half adder function. The
protocol terminated without a result after the set timeout threshhold of 5 days (432004s) was
reached.

Runtime Symex: 735.22s

size of program expression: 3596454 steps
simple slicing removed 5 assignments
Generated 1 VCC(s), 1 remaining after simplification
Runtime Postprocess Equation: 1.08506s
Passing problem to propositional reduction
converting SSA

Runtime Convert SSA: 377.169s

9 Running propositional reduction

10 Post-processing

11 Runtime Post-process: 0.000110975s

12 Solving with MiniSAT 2.2.1 with simplifier
13 124330664 variables, 448826210 clauses

O ON U i W DN

Based on our experiments, the bounded model checker has constraints finding protocols
or proving that there are no valid protocols for certain tasks. If the tasks get too complex,
it either returns an "out-of-memory" error or does not terminate within a reasonable
timeout threshold. For our implementations of the standardized program representation,
this threshold was reached for five cards and two steps if we searched for closed protocols
and five cards and three steps if we searched for protocols that were not closed.
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4 A Standard Program Representation with
Nested Structure for Composite
Protocols

In section 4.1 we introduce a nested structure of the symbolic program. We define a
new action and extend KWH-trees (section 2.2.3) to incorporate protocol operations in
section 4.1.1. In sections 4.1.2 and 4.1.3 we motivate its use within our programs to reduce
the complexity and size of the search space of the bounded model checking program
while ensuring correctness and security of the composited protocols. Then we present
an implementation of the new protocol action, that can apply a given protocol to a state
within a symbolic program, in section 4.2. To evaluate the effectiveness, we perform a
series of experiments and present our findings in section 4.3.

4.1 Introduction of a Nested Structure and Consideration of its
Possible Benifits

Functions that perform more complex computations than for example boolean operators,
tend to use more cards and also require more steps. One example might be the COPY
protocol by Mizuki and Sone (2009) which uses six cards (section 2.2.4). This is more than
required for boolean operators like XOR (fig. A.2), AND (fig. A.1) and OR (fig. 3.4), that all
use five or fewer cards. Another example of a function that uses a lot of cards and steps is
the half adder (definition 21). As can be observed in table 3.6, we were not able to find a
protocol with our method from chapter 3. There were no protocols for small amounts of
cards and steps. For larger numbers of cards and steps the bounded model checker either
terminated with an "out-of-memory" error or could not produce a protocol within our set
timeout of five days (section 3.2.4).

4.1.1 Defining the Protocol Action and Extending KWH-Trees

To try to make our standard program representation and finding protocols with bounded
model checking (sections 2.3 and 2.4) more effective for those protocols with more cards
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and steps, we propose to integrate another action type, in addition to the already existing
permutation (definition 5), shuffle (definition 6) and turn actions (definition 9). This
new action will apply protocols instead of shuffles and turns, to the current state. These
protocols can for example be from the literature (e.g. table 2.1), or they can be protocols
that have been found by using the bounded model checking program (e.g. section 3.2.3).

Definition 22. We define another action, that applies a protocol as (protocol, P, p1, p2,
.y Pr). It has a protocol P and positions py, ps, ..., pr € {1,..,1}. Given a sequence T’
we perform (protocol, P, p1, pa, ..., pr) on the sequence by performing P on the sequence
I' = (T[p1], Tlp2l,. ... Tlpr]). The result is a sequence I'*™*, where at the positions p1, p2,
..., pr we have the cards T*[1],T7[2],...,T*[r] and for all other positions p; we have I'[p;].
If the protocol P has more than one possible end states, one of these end states is chosen by
random.

As an example we take the sequence I' = (%, %, %, % % %) and the protocol operation
(protocol, ANDy;s09, 1,2,3,4,5,6). ANDyso9 is the AND protocol by Mizuki and Sone (2009).
As we can see in the KWH-tree in fig. 2.1, the protocol has two possible result states, that are
each reached with probability 1/2. If we now apply the protocol to our chosen sequence

sequence I' = (Z 2222 2) and positions p = 1,2,3,4,5,6, we have two possible

L AV L LRV

. . 2 2 9 92 92 9
cards we turn in the last step are &9, we receive the sequence I’ (, 5, 5, 3> 3» 5)- If the cards
2 22 2 22

we turn in the last step are & however, we receive the sequence I'’(3, 1. 3. 5. 5> 3)-

The protocol # in (protocol, P, pi, p2, ..., pr) must meet certain requirements so that
(protocol, P, p1, p2, ..., pr) is a valid action. First of all  must have as many or fewer cards
than the sequences on which it should be applied. It is for example impossible to perform
a six card protocol on only five cards. There also needs to be a start state in ¥ for the
sequence I'" = (T'[p1],T[p2],...,T[p,]) in order to perform the protocol on a sequence
I.

We have introduced the concept of KWH-trees in section 2.2.3 to visualize protocols. In
order for us to visualize protocols using our new action from definition 22, we need to
extend the actions of KWH-trees. After the application of a protocol (protocol, P, p1, p2,
.., pr), the visible sequence differs just as with the turn operation. Thus the tree branches.
Every branch is the result of a possible end state of the applied protocol. This is, because
if the applied protocol produces a visible sequence while, it does so also with the larger
protocol it is embedded in. If we for example apply the AND protocol by Mizuki and Sone
(2009) to the given sequence as shown, we have two possible resulting states:

The probability for observing either of the end states is the same for each possible input.
Therefore no information, about the sequence, that was not revealed by executing the
protocol, is leaked.
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FXVIXVIY N5 oM
FVIVIXVIND '

TYXVIVYNDoN
VaVRO® X

(protocol, ANDys09, 1,2,3,4,6,5)
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To use a protocol £ within a protocol action (protocol, P, p1, pa, ..., pr), we do not need
to know the full protocol. All that is necessary is the start state and the end states. Each
state needs to contain the possible sequences and their probabilities (definition 17). We do
not need the actual steps within the protocol, as long as we know that there is a path from
the input state to all the end states.

Remark 2. The protocol P in (protocol, P, p1, p2, ..., pr) must have at least the same or a
stronger level of security than the protocol that should be found using it.

Therefore, if we want to find an input-possibilistic protocol (definition 15), we need to
use a protocol for our protocol action, that has at least input-possibilistic security. We
cannot use a protocol that has output-possibilistic security (definition 16). If we want to
construct a protocol with a finite runtime (definition 11), we can only use protocols that
have finite runtime as well. If a Las Vegas protocol is performed as a protocol action, every
protocol using this action will also be a Las Vegas protocol regardless of what the other
used actions are.

4.1.2 Reducing the Complexity of the Search Space

As shown in section 3.2.3 for more complex functions whose protocols require more
cards, and more steps such as the half adder or the COPY function, we had difficulties
finding protocols with our method presented in section 3.1. We can for example observe,
that there did not exist any protocols for the half adder for a small amount of cards and
steps (section 3.2.3.4), and for bigger numbers of cards and steps the bounded model
checker could not produce a result. Either because it would take too long or because an
"out-of-memory" error occurred (section 3.2.4).

One cause could be the size of the search space. As we have described in chapter 3, while
searching for a protocol, the bounded model checker has to nondeterministically choose
and execute an action for each step. As he exhaustively searches all possible runs to the
program, he must also consider all possible turns and shuffles for each action. There are
not that many possible turns. For N cards, there are N possible turn positions that have
to be considered. With shuffles however, there are significantly more possibilities. For N
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cards, there are N! possible permutations. However, for a shuffle we consider permutation
sets of any size (not just size 1) apart from the empty set. Thus the number of possible
shuffles is 2¥' — 1. For 4 cards we would therefore have 2% — 1 = 2%* — 1 possibilities
to choose a permutation set for these 4 cards. This is over 16 million possibilities. For
five cards we already have more than 1.3 x 10% possibilities (2'2° — 1) to choose a single
permutation set. For four cards but two steps instead of one we would have to consider
(2N' — 1)? permutation sets, because each of the two actions can be a shuffle. That would
be more than 2.8 * 10! possibilities. These examples motivate that having less actions
as well as less cards has a big impact on the amount of possible runs the bounded model
checker has to search.

The assumption with the protocol action is that it makes it possible for us to find protocols
with less cards and steps. As described in definition 18 protocols can be used as parts of a
bigger protocol to calculate boolean functions. These protocols used as an action consist of
multiple turn and shuffle operations. Integrating the protocol action would reduce all the
steps from such a protocol, to just the one in the protocol action. Thus we would reduce
the amount of steps needed to find a protocol.

A protocol action also does not add much complexity to the program, as it is significantly
less complex than a turn operation. To apply a protocol action, we nondeterministically
choose the protocols that we will be using, and then the cards on which we want to
perform the protocol. After applying the protocol to the cards we have to nondeterministi-
cally choose which possible output state we want to look at further. The most complex
component is choosing which cards to perform the protocol on, as there are normally very
few possible output states and the number of protocols used is also limited. For choosing
which cards to perform the protocol on, we have to pick k cards that are all different, from
N cards in our sequence. The order is important, as a protocol performed on cards that
are arranged differently, produces different results. Therefore we have ﬁ possibilities
to choose the cards to perform the protocol on. Let us consider a set of 4 cards again. On
these four cards we now want to perform the 4 card XOR by Mizuki and Sone (2009). We
therefore have (4i_!4)! = 24 different possibilities of choosing which cards to perform the
protocol on. Compared with the over 16 million possible permutations for 4 cards, this is

negligible.

4.1.3 Calculating any Function While Ensuring Correctness and Security

In section 2.2.4 we have described that any boolean function can be calculated using two
colour cards, as long as there are enough additional cards. Provided we have protocols for
a functionally complete set of boolean operators like AND, OR and NOT or AND and XOR
and a COPY protocol, we can assemble them to a protocol for an arbitrary function. This
can be done without the use of bounded model checking, however using bounded model
checking offers several advantages.
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First of all, the protocols found by assembling boolean operators, might use more cards
than necessary. A naive approach of assembling boolean operators is, to make the needed
copies of the input commitments and then to execute the chosen boolean operators on
these copies. With the use of bounded model checking, boolean operators are taken into
account, but at each step turns and shuffles are also considered. This can allow the bounded
model checking tool to find shorter protocols both in the terms of the amount of cards as
well as the length of protocols, than the naive approach of assembling boolean operators.

Another advantage of using bounded model checking is, that it ensures the correctness
and security of the resulting protocol. A protocol returned by the bounded model checking
program meets all security and correctness requirements that are required by the program.
It also provides a detailed, step-by-step description of all the operations, that have to be
performed in order to execute the protocol.

This is not always the case, when protocols are assembled from boolean operators. One
example is the descripion of a composite half adder protocol by Mizuki et al. (2013).

Example: A Composite Half Adder Protocol

In their paper, Mizuki et al. (2013) describe a ten card protocol that computes a half adder
(definition 21) which uses preexisting protocols. They start with two input commitments
and six cards that were arranged as #0#0#&%. They then copy both input commitments
once and apply the four card XOR protocol from their paper to the first two commitments
and the six card AND to the last two commitments. Then they instruct the users to perform
some rearrangements.

If we take a look at fig. 4.1, we can see an excerpt from the described protocol. The start
state of the tree is the state, that the cards are in after the four card protocol, but before the
AND protocol has been applied. The first four cards have been rearranged in a way, that
the first two cards are now the result of the XOR protocol and the third and fourth cards
are the rearranged helper cards. This is now the exact state that is depicted in Mizuki et al.
(2013).

Now, as instructed, we perform the AND protocol that is given in Mizuki et al. (2013) on
the last six cards. The resulting states of the AND protocol should now be rearranged in a
way that we have the result of the AND and XOR protocol in the front and then afterwards
six cards that are arranged as #0#0&0. Mizuki et al. (2013) do not specify the explicit
permutations that have to be used.

We provide a possible set of shuffles and permutations in fig. 4.1. First we rearrange the
cards in a way, that the result of the AND is the first commitment, and the result of the
XOR is the second commitment. We can then transfer one of the resulting states into
the other, by swapping the seventh and eighth card. Now we have only one post state
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Fig. 4.1: The ten card half adder protocol by Mizuki et al. (2013) using preexisting protocols.

where we only have to put the last six cards in the order #0&0&%. The first four cards
are already correct, but the last two cards are different depending on the input. We thus
cannot turn them around without making the protocol insecure. We therefore have to
perform a shuffle action first, that shuffles the last two cards, so we can retain security.
Then we can turn around the last two cards and rearrange them if necessary.

Remark 3. In general we can rearrange cards in a way that we can securely turn them
over in the following case: Given a state with its possible sequences and k cards at positions
Py, po, . .., px Which we want to rearrange. We can securely do so if there are the same number
of & cards and the same number of © cards at the chosen positions throughout all the possible
sequences.
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As can be seen in fig. 4.1 the actual actions that need to be performed to rearrange the cards
are non trivial. Therefore it is useful to specify the operations explicitly. That way there
are no ambiguities regarding the correctness and security of the protocol. This highlights
the advantage of the use of bounded model checking, as a found protocol will not only
mention the need for rearrangements, but also provide the exact turn and shuffle actions
necessary.

4.2 Integrating the Nested Structure into the Symbolic
Program

We now turn to the implementation of the integration of previously found protocols into
the scope of possible actions that can be taken within a protocol (section 2.4). For this
integration we design a new possible action in addition to the already existing shuffle and
turn actions. The implementation and integration of the protocol action can be found in
full in appendix A.6.

As described in section 4.1.1 the protocol action (definition 22) is performed on a state
and produces the state, that results from applying a protocol to the input state. For a
implementation of the protocol action we would have a function that recieves a state as a
input and returns the resulting state on which the protocol has been applied. To apply the
protocol, this function executing the protocol action first has to choose a protocol and the
cards it wants to execute the protocol on. Afterwards it applies the chosen protocol to the
chosen cards and calculates the resulting endstates and the resulting possibilities. It also
has to check for the correctness and security of the protocol. Just as with the turn action,
the protocol action only returns one of the possible end states.

A protocol action has a set of predefined protocols that it can execute. These protocols
must meet the prerequisites described in section 4.1.1. The concrete protocol that is used
within the action is picked nondeterministically out of the predefined protocols at the
start of the protocol action.

After the protocol is chosen, the appropriate amount of cards has to be selected. We select
the cards at certain positions, thus the com1a, com1B, com2a etc. in lines 2-5 in listing 4.1
and the he1p1 and help2 in lines 1-2 in listing 4.2 are all positions of cards that are chosen.
These card positions have to be disjoint. That means there cannot be a card that is used
twice for the protocol. Therefore after choosing the cards, there are checks that ensure
that there is no card, that is used twice for the protocol (lines 7-9 in listing 4.1 and lines 4-5
in listing 4.2). Thus if we want to execute a four card protocol on a state with sequences of
six cards, we have to choose four different cards out of the six to execute our protocol on.
These selected cards have to form a sequence that fulfills the preconditions of the protocol
chosen. Within the input of a protocol, there are generally two types of cards. Cards that
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are a part of a commitment and cards that are not. Cards that encode a commitment form a
complete commitment as a pair of two. In listing 4.1, lines 2-5, there are four cards chosen
that represent two commitments in total: com1a,com1B and com2a,com2B. They have to be
valid commitments which can be checked like in listing 4.1 lines 10-18. Here we check
that throughout every possible sequence in the state resulting from the cards we have
chosen, we have for our commitments two different symbols.

Listing 4.1 Choosing four cards that represent two commitments and checking if they are valid
commitments.

1 // choosing the indices of the cards that will be used in the
protocol

2 unsigned int comlA = nondet_uint();

3 unsigned int comlB nondet_uint () ;

4 unsigned int com2A nondet_uint ()
5 unsigned int com2B = nondet_uint () ;
6
7
8

14

assume (comlA < N && comlB < N&& com2A < N&& com2B < N);
assume (comlA != comlB && comlA != com2A && comlA != com2B);
assume (comlB com2A && comlB != com2B);

9 assume (com2A com2B) ;

10 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {

11 // 1f the probability/possibility of this state is not 0

12 if (isStillPossible(s.seq[i].probs)) {

13 // check that throughout every possible sequence in the state
we have chosen two different cards for our commitments

14 assume (s.seq[i] .val[comlA] != s.seq[i].vall[comlB]);

15 assume (s.seq[i] .val[com2A] != s.seq[i].vall[com2B]);

16 }

17 }

18 }

Cards that do not encode a commitment are additional cards, that have to have a specific
colour throughout all possible sequences in the start state. For the six card AND protocol
by Mizuki and Sone (2009) the additional cards are a & card and a © card in precisely
that order. For the protocol action, if it chooses a protocol that contains such additional
non-commitment cards, it has to check that the cards are the same throughout all possible
sequences in the state. In listing 4.2 this is done for protocols that use two helper cards &©
such as the six card AND protocol by Mizuki and Sone (2009). In lines 6-12 we check that
the non-commitment cards are helpl=& and help2=9 for all sequences in the state.

Listing 4.2 Choosing two additional cards and checking that they are the same all throughout
every possible sequence in the state.

1 helpl = nondet_uint () ;

2 help2 = nondet_uint ();

3 assume (helpl < N && help2 < N);

4 assume (helpl != comlA && helpl != comlB && helpl != com2A && helpl
= com2B) ;

5 assume (help2 != comlA && help2 != comlB && help2 != com2A && help?2
= com2B && help2 != helpl);
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6 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {

7 // 1f the probability/possibility of this sequence is not 0

8 if (isStillPossible(s.seq[i].probs)) {

9 // check that helper cards are the same all throughout every
possible sequence in the state

10 assume (isZero((s.seqli].vallhelpl]), s.seqg[i].vallhelp2]));

The actual application of the protocol to the chosen cards happens in three phases. For
each sequence in the state, we determine what input sequence it encodes in the chosen
protocol. Afterwards we look up and assign the new values that result after applying the
protocol to the cards. Finally we assign the correct probabilities and and calculate the
resulting endstate.

Listing 4.3 Application of the chosen protocol. This is performed for each sequence seq.

1 unsigned int idx = 0;

2 // determine what input sequence is encoded by the chosen cards

3 if (isZero(seqg.val[comlA], seqg.val[comlB])) {

4 if (isZero(seqg.val[com2A], seqg.val[com2B])) {

5 // 0101

6 idx = 0;

7 } else if (isOne(seqg.val[com2A], seq.val[com2B])) {

8 // 0110

9 idx = 1;

10 }

11 } else if (isOne(seq.val[comlA], seqg.val[comlB])) {

12 if (isZero(seg.val[com2A], seg.val[com2B])) {

13 // 1001

14 idx = 2;

15 } else if (isOne (seqg.val[com2A], seq.val[com2B])) {

16 // 1010

17 idx = 3;

18 }

19 for (unsigned int i = 0; i < MAX PROTOCOL_ENDSTATES; i++) {

20 // look up and assign the new values that result after applying
the protocol to the cards

21 seq.val[comlA] = protocolTable[protocolChosen] [i] [idx][0];

22 seqg.val[comlB] = protocolTable[protocolChosen] [1] [idx][1];

23 seq.val[com2A] = protocolTable[protocolChosen] [i] [idx][2];

24 seqg.val[com2B] = protocolTable[protocolChosen] [i] [idx][3];

25 // only if we have helper cards:

26 seq.val[helpl] = protocolTable[protocolChosen] [i] [idx][4];

27 seqg.val[help2] = protocolTable[protocolChosen] [1] [idx][5];

28

29 // assign the correct probabilities and and calculate the
resulting endstate

30 result = copyResults(seq, result, 1i);

31 }}
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To apply the chosen protocol to the given state, we first have to match the sequences
of the given state to their corresponding input states in the chosen protocols. As the
non-commitment cards are the same throughout all sequences in the input states, we only
have to consider the output states. As can be observed in listing 4.3 lines 4-19, for protocols
with two input commitments we have four different input possibilities. We thus check
which of the four different inputs the chosen cards encode for each sequence.

As a protocol performs turn and shuffle operations in its execution, the arrangement of
cards in the end state of a protocol is different from that in the start state. For example the
six card AND protocol shown in fig. 2.1 has the following start and end states:

LIV2 AVE VD 61
A0V KV Xy
(VY AVZ AV €T
QaV®V X1

*20X0K0 X0 + X710 QVedV®0 X0 + Xoo
*QVKKQ X1 QadO0® X1
LV AV ¢ (VLAVEY VD ¢F1

Fig. 4.2: The start and end states of the AND protocol by Mizuki and Sone (2009)

If we now pick out the input sequence #0&V&¥ with possibility Xy we can see that after
the execution of the protocol it will either be rearranged into #0&0&9, if we find ourselves
in the left end state, or V#&0&% if we find ourselves in the right end state. The amount
of & and © cards are still the same, they have just changed places. As this rearrangement
is fixed if we know which input we have, we can assign each input its possible outputs
without having to perform the protocol.

Thus what we would want to do in our protocol is determine the sequence, look up how
this sequence is rearranged in the end state, and copy the rearranged sequence from our
end state. We copy this rearrangement by assigning the correct output values to the card
positions. Because we have determined which input sequence corresponds to our sequence,
we can look up the new values that this input sequence would have after the execution
of the protocol. The new values are stored in a lookup table. An excerpt showing the
entry for the six card Finite Runtime AND protocol with input possibilistic security by
Mizuki and Sone (2009) can be seen in listing 4.4. They contain the representation of the
post states that are depicted in fig. 4.2. The protocol has two possible output states and
therefore the array has two entries. One entry containing the rearrangements for each
one of the output states. Each of these entries contains four entries that are the post states
that result from applying the protocols to the given sequence. We have four post states,
because we have four possible input sequences. These post state entries now assign to
each index, the card that will be located there.

Listing 4.4 Excerpt from the lookup table (protocolTable [FR_AND]) for the six card Finite
Runtime AND protocol with input possibilistic security by Mizuki and Sone (2009).
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1 {{{,2,1,2,1,2}, {1,2,2,1,1,2}, {1,2,1,2,1,2}, {1,2,1,2,2,1}},
2 {{2,1,1,2,1,2}, {2,1,1,2,2,1}, {2,1,1,2,1,2}, {2,1,2,1,1,2}}}

Let us translate our example from above to this representation. There we had the input
sequence #V&O that was rearranged into #0&0&0 or V&&V&. In listing 4.3 lines 4-7 this
input sequence #V&% ({0, 1, 0, 1}) was assigned to the index 0. Therefore we need to take
the first entry of each of the entries for the possible end states. If we for example take the
first entry from the array representing the first states, we get {1,2,1,2, 1, 2}. This is the
array that represents the sequence #0&0&9.

As described, all we have to do now is assign the new symbols to the respective card
indices. In listing 4.3 this is done in the lines 22-28. In our example for the six card Finite
Runtime AND protocol lookup table in listing 4.4 and the sequence ({0, 1,0, 1}), the first
card index com1a will be 1. The second card index com1B will be 2, the third card index
com2a 1 and the fourth card index com2B 2. For the non-commitment cards helpl and
help2 it will be 1 and 2 respectively.

Security and Correctness

To ensure the security of the resulting protocol, we have to use secure protocols within our
protocol action. The protocols that can be used during a protocol action, must generally
have the same or a stronger level of security as the protocol that should be found as was
described in section 4.1.1. The code and explanations that were presented only apply to
protocols that possess input possibilistic security. For output possibilistic security the
code and explanations that were presented above do not apply. This is because in an only
output possibilistically secure protocol, a possible output state can be reached only by a
part of the states. Take the Four-Card XOR protocol from fig. 3.2. Here we can observe,
that if we have the second output state, only the inputs #0&% and V&&% could have led
there. Thus if we want to implement this protocol into our protocol action, the other two
possible input states (#00& and V&0V&) will not have a result in this second output state
at all. Unlike in listing 4.3 we would therefore have input sequences that are not relevant
for a specific endstate and thus are not assigned new values but ignored.

To ensure correctness of the resulting protocol we have to check whether the protocol
action produces a valid resulting state. To be a valid state, a state cannot contain bottom
sequences. A sequence is a bottom sequence if it belongs to more than one possible output.
A protocol action can produce a bottom sequence, if a resulting sequence from the chosen
protocol can result from input sequences that have different outputs in the protocol, that
we want to find. Thus we have to check for bottom sequences after applying a protocol.
Another prerequisite for a correct protocol as result is that the chosen protocols, that are
used in the protocol action, are correct.
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4.3 Implementing Concrete Protocols and Evaluating the
Implementation

To evaluate the effectiveness of the proposed introduction of a nested structure, we
performed a series of experiments. The new action was implemented as described in
section 4.2. For the nested protocols we chose to use a set of functionally complete set of
boolean operators that contain only finite runtime protocols and Las Vegas protocols each.
Las Vegas protocols generally require fewer cards, which makes them more attractive
for finding protocols that are as card-minimal as possible. However, if we want to find a
finite runtime protocol, we have to use only finite runtime protocols as nested protocols,
because if a segment of a protocol has only an expectedly finite number of steps, so does
the entire protocol.

For the Las Vegas protocols we chose the functionally complete set of boolean operators
AND, OR and NOT. For AND we included the six card AND protocol by Mizuki and Sone,
2009 which can be seen in fig. 2.1 and for OR we chose the four card OR protocol discovered
through our experiments in section 3.2.3 which is shown in fig. 3.4. We did not implement
a nested protocol for the boolean operator OR, as it is a simple perm operation, that flips
the two cards in a commitment. It is therefore a protocol that only consists of one step
and thus does not benefit from being implemented as a nested protocol.

For the finite runtime protocols, we chose the functionally complete set of boolean oper-
ators AND and XOR. For AND we chose the five card AND protocol by Koch et al., 2021
which is shown in fig. A.1. For XOR we included the four card XOR protocol by Mizuki
and Sone, 2009 that can be seen in fig. A.2.

We also included one more protocol as a nested protocol, which is the COPY protocol by
Mizuki and Sone, 2009, where it is described as a protocol that can make k copies using
2k + 4 cards. We chose to implement the protocol for a fixed k = 1. Thus the protocol that
was implemented is a six card COPY protocol with finite runtime.

For our experiments, we chose to test the implementation of our nested structure, by
trying to find protocols for two functions, with which we had difficulties finding protocols
for with the approach from chapter 3. They are the COPY function and the half adder. All
the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with
48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the
SAT-solver MiniSat 2.2.1.
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Test Results for the COPY Function

For the COPY function, we included all nested protocols that were implemented, except
for the six card COPY protocol by Mizuki and Sone (2009). For the runs with five cards
the six card AND by Mizuki and Sone (2009) was not considered, because it has too many
cards. We limited the shuffle set size to 8.

’ #Cards ‘ #Steps ‘ Security ‘ Protocol ‘ Runtime ‘ Protocols used
5 1 output- X
possibilistic
5 2 output- X
possibilistic
5 3 output- X
possibilistic
5 4 output- X
possibilistic
5 5 output- X
possibilistic
6 1 input- v (see fig. 4.3) | Finite 6 card AND by Mizuki
possibilistic Runtime | and Sone, 2009
6 2 input- v Finite 4 card XOR, 6 card
possibilistic Runtime | AND both by Mizuki
and Sone, 2009
6 2 input- v Las 2x 5 Card AND by Koch
possibilistic Vegas et al. (2021), 6 card AND
by Mizuki and Sone,
2009

Table 4.1: Protocols that were found through bounded model checking for the COPY func-
tion. All protocols have closed shuffles only. The permutation set size was
limited to 8 for all runs.

As can be observed in table 4.1 we still were not able to find a protocol with closed shuffles
and five cards for the COPY protocol. For six cards, we already know a protocol for the
COPY function. It is the six card COPY by Mizuki and Sone, 2009 that uses two permutations
one shuffle and one turn. Therefore the protocol we found during our experiment for six
cards, does not improve on the existing minimal number of cards. As can be seen in fig. 4.3,
we could find a protocol for COPY, that employs the six card AND by Mizuki and Sone,
2009. As the used AND protocol also uses two permutations one shuffle and one turn we
also did not improve on the number of steps within the protocol.

However our results still provide interesting insights about how an AND protocol can
be used to copy a given input. This reduces the amount of protocols needed to perform
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Fig. 4.3: A finite runtime protocol for COPY with input-possibilistic security and closed shuffles.
It uses 4 cards and an AND protocol.

multi-party computation (definition 18). As described in section 2.2.4 both the approaches
given by Nishida et al. (2015) and Niemi and Renvall (1998) make use of a functionally
complete set of boolean operators and a COPY protocol. We can now perform multi-party
computation on an arbitrary boolean function with only an AND and a XOR protocol,
reducing the amount of protocols needed. To do so we take the protocol by Nishida et al.
(2015) described in section 2.2.4 and replace the COPY protocol they use with the protocol
from fig. 4.3. The protocol has 2n + 6 cards for n input commitments.

Test Results for the Half Adder Function

’ #Cards ‘ #Steps ‘ Perm Set Size ‘ Security ‘ Protocol ‘ Closed? ‘ Runtime
4 1 8 output-possibilistic | X yes
4 2 8 output-possibilistic | X yes
4 3 8 output-possibilistic | X yes
4 4 8 output-possibilistic | x yes
4 5 8 output-possibilistic | X yes
5 1 8 output-possibilistic | X yes
5 2 8 output-possibilistic | X yes
5 3 1 output-possibilistic | X no
6 1 8 output-possibilistic | X yes
6 2 8 output-possibilistic | x yes

Table 4.2: Protocols that were found through bounded model checking for the half adder.

As can be observed in table 4.2, we still were not able to find a protocol for the half adder
function. We know that there is a protocol for the half adder for ten cards. It is the half
adder protocol by Mizuki et al. (2013). However, even when we reduced the permutation
set size, we could not reach the necessary number of cards or steps to produce a protocol
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constructed from the given protocols. This does not mean that there are no protocols
for the half adder for the given numbers of cards and steps. Because we limited the
permutation set size for all our searches it is theoretically possible that there is a protocol
with a bigger permutation set and the same amount of shuffles and turns.
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5 Evaluating a Data Structure for Efficient
Operations

In this chapter we replace the original data structures implemented with arrays by Koch
et al. (2021) described in section 2.4 with an alternative method of implementation, that
uses a sequence of bits on which we can perform bitwise operations such as bit shifts. In
section 5.1 we describe the implementation of the alternative data structure to represent
states and the sequences within. Subsequently we design and execute an experiment
in section 5.2 to compare the effect of the two data structures on the runtime of the
bounded model checking tool. In sections 5.2.2 and 5.2.3 we present and evaluate the
results respectively.

5.1 Integrating the Data Structure into the Symbolic Program

The method of Koch et al. (2021) for finding protocols with the use of bounded model
checking (section 2.3) employs a representation of the components of KWH trees (sec-
tion 2.2.3) within a standardized program. The central aspects of their implementation
is described in section 2.4. Here the central data structure that the symbolic program
operates on is the representation of the states. A state contains all possible sequences and
their probabilities (listing 2.2). Within the implementation by Koch et al. (2021) sequences
are represented using arrays (listing 2.3). The shuffles and turns are then performed on
these arrays containing the sequences using the standard operations provided by C for
arrays (listings 2.5 and 2.6).

In this section we replace the datatype that holds the sequences. Instead of an array
we use a single char variable. This allows us to use bitwise operations like bit shifts to
implement the necessary functionalities of the program, most notably the turn and shuffle
operations.

We can implement a card sequence (definition 4) as a sequence of bits. To do so we need
to choose a representation for our two symbols & and © as bits. We choose to represent &
as a 0 bit and © as a 1 bit.

bit = (5.1)

0 ifthe symbolisa &
1 ifthe symbolisa®
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This way the encoding of two bits to form a commitment specified in eq. (2.1) also hold
for the bit representation of cards.

. 0 if we have the bits 01
commitment = ) ) (5.2)
1 if we have the bits 10

Now one sequence can be represented for example by one char variable. A char usually
has the length of 8 bit. Thus we can represent up to 8 cards in a sequence within one
char variable. For bigger sequences we could use a different data type for example a 32
bit int, but for this work, 8 bit will be sufficient. If we have sequences with less than 8
cards, we set the remaining bits of the char to 0. For example, if we want to represent
the sequence #0V& within a char, we set the char to 0000 0101. The leading four zeroes
are padding. The remaining four bits represent the cards. Thus, the sequence struct will
contain a single char variable, that will hold all cards (see listing 5.1).

Listing 5.1 Representation of a sequence using the datatype Char

1 struct sequence {

2 char val;

3 struct fractions probs;
4 };

Using the representation of sequences as chars, we can use the bitwise operations provided
by C to execute our operations on sequences. These bitwise operations are shifts and
operators like AND, OR, XOR and NOT.

First we focus on how the turn operation can be implemented. The goal of this operation
is to find the value of the card at a certain position turnposition. Using a right shift, we
first shift a char that has the value 1 to the desired position turnposition (listing 5.2,
line 3). Then we calculate the bitwise AND of our sequence and the shifted bit (listing 5.2,
line 3). The result is equal to zero if the bit at the given index is 0. In that case the card at
that index in the sequence is a &. If the result is not equal to zero then the bit at the given
index is 1. In that case the card at that index in the sequence is a ©. We can thus set our
turnedCardNumber accordingly (listing 5.2, line 4).

Listing 5.2 Turning one card at index "turnPosition" in a sequence during the execution of a turn
operation using bitwise operations

1 char turnedCardNumber = 0;

2 // "true" if != 0 (red card), false if == 0 (black card)
3 if (sequence.val & (1 << turnPosition)) {

4 turnedCardNumber = 1;

5 1}

If we have for example the sequence 00001001 and we want to know the value of the card
at the position 3, we first shift a 1 (0000 0001) by three to the left. This will result in the
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char 0000 1000. We then calculate the bitwise AND of the sequence (0000 1001) and the
shifted bit (0000 1000). The result of the bitwise AND will be 0000 1000. Because 0000 1000
is not equal to 0, we now know that the value of the card at the position 3 is 1 and thus
that the card is a ©. If we instead wanted to know the value of the card at the position
1, we would shift our 1 bit by one to the left and obtain the char 0000 0010. If we now
calculate the bitwise AND of the sequence and the shifted bit we will get the char 0000
0000. This char is equal to 0 and we thus know that the value of the card at the position 1
is 0 and thus that the card is a &.

We can also apply permutations to sequences using bit shifts and other bitwise operations.
We iteratively calculate our result and store it as the char variable resultingseq (list-
ing 5.3, line 1). First we determine the value of the card at the current index in the same
way, as we did for the turn operation (listing 5.3, line 5). Afterwards we determine where
we have to shift the card. In order to achieve that, we first determine the value at the right
indices in the permutationset (listing 5.3, line 6). These values can be between 0 and
N — 1 with N being the amount of cards within a sequence. The value n determines that
the card should be shifted to position n. So the array [0, 1,2, 3] would be the identity,
because it leaves all cards at their original position. To determine how far we have to
shift our card, we subtract the position at which the card is currently placed (k) from the
permutation value permutationset [j] [k] (listing 5.3, line 6). If the resulting value is
positive, we shift the card to the left (listing 5.3, line 7). If the resulting value is negative,
we shift the card to the right listing 5.3, line 8). After we have performed our shift, we
perform a bitwise XOR of our result with the resulting sequence (listing 5.3, line 12). This
adds the calculated new card onto all the previously calculated cards.

Listing 5.3 Applying permutation j to sequence i during the execution of a shuffle operation
using bitwise operations

1 char resultingSeqg = 0;

2 for (unsigned int k = 0; k < N; k++) {

3 char temp = 0;

4 // Apply permutation j to sequence 1i.
5 temp = seq.val & (1 << k);

6 int shift = permutationSet[]][k] - k;
7 if (shift >= 0) {

8 temp = temp << (shift);

9 } else {

10 temp = temp >> (-1 x shift);

11 }

12 resultingSeqg = resultingSeq | temp;
13 }
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5.2 Evaluating the Data Structure in an Experiment Setting

In section 5.1 we introduced a new representation of states and sequences based on
the encoding of cards as bits. We could then use bitwise operators to perform actions
such as turns and shuffles. We now perform an experiment to determine whether our
implementation from section 5.1 performs better when we use bounded model checking
than the implementation that uses arrays and the standard array operations that we
described in section 2.4.

5.2.1 Description of the Experiment Setup

We wrote two symbolic programs executing the same functions. One uses the imple-
mentation by Koch et al. (2021) that represents sequences as arrays. The other one uses
the implementation proposed in section 5.1 where a sequence is represented by a char.
The symbolic programs of the experiment are a partial implementation of the symbolic
program described in section 2.4. Their purpose is not to find protocols. Instead they
perform a single shuffle on a start state and then check its properties. More precisely, the
two symbolic programs first generate the start state such as the program in section 2.4
would do. Then they nondeterministically choose the size of the permutation set and
the permutations. Afterwards they apply the chosen permutations to the start state and
calculate the resulting sequences and resulting probabilities. Then they call a function that
can check for different properties. For our experiment, we aimed at finding a permutation
set, that results in all probabilities being not equal to zero. That means that we have to
check that for every sequence every probability is greater than zero. This property ensures,
that the permutation sets chosen are not too small. For four cards and input-possibilistic
security we need a permutation set size of at least five. The full experiment implementation
can be found in appendix A.6 and the GitHub repository (appendix A.4).

5.2.2 Experiment Execution and Results

All the experiments were performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with
48 cores and 256 GB of RAM. We used CBMC 5.68 with the built-in solver based on the
SAT-solver MiniSat 2.2.1.

For both programs, we ran the same experiments. The programs were run for each input
possibilistic security and output possibilistic security. For each of these security types, we
executed the program for 4 cards, 5 cards and 6 cards respectively. Together this resulted
in six different test cases for each the array test program and the bit shift test program.
Each of these experiments was performed a total of 5 times, except for the experiments
for 5 cards and input possibilistic security, which were only performed 2 times.

58



5.2 Evaluating the Data Structure in an Experiment Setting

’ #Cards \ Security

|

\ Array Operations \ Bitwise Operations

4 Output Poss. | variables 2525596 2333279
clauses 8167087 7256704
complete time (s) 382,3 113,3
4 Input Poss. | variables 3623257 3432778
clauses 11633860 10723999
complete time (s) 1064,3 521,7
5 Output Poss. | variables 34216676 27384088
clauses 123 856 065 95341873
complete time (s) 8317,7 3767
5 Input Poss. | variables 47 451 857 40 622 131
clauses 170267718 141754048
complete time 126 316 6979,5
6 Output Poss. | out of memory after (s) 7448 3070
6 Input Poss. | out of memory after (s) 10 098 4755,7

Table 5.1: The results of the experiments for both the implementation using arrays and
operations and arrays, as well as the implementation using chars and bitwise
operations.

For the experiments that used 4 or 5 cards, the program ended when the SAT solver found
the formula to be satisfiable and returned the program trace. We measured the number of
clauses and variables that were generated by CBMC and that the SAT solver had to solve.
They were the same for each execution of the same experiment. Therefore the table shows
the exact amount of clauses and variables used in each experiment. Apart from that we
also determined the time that it took the program to execute. Measured from the start of
the execution of runBitShiftTest.sh up to the end of the execution. These times varied
slightly from run to run. For the experiments that we performed five times, we excluded
the highest and lowest runtime. The results in table 5.1 are the arithmetic mean of the
remaining measured times.

For the experiments that used 6 cards, the SAT solver ran out of memory. Therefore
it did not return the amount of clauses and variables. We once again determined the
time that it took the program to execute. Measured from the start of the execution of
runBitshiftTest.sh up to the end of the execution after the program was terminated due
to an out of memory error. For the experiments that we performed five times, we excluded
the highest and lowest runtime and calculated the arithmetic mean of the remaining values.
Please refer to appendix A.1 for the complete experiment results.
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Fig. 5.1: Scatter plots with both a linear and a logarithmic scale. It shows the runtimes for the
results from table 5.1 for both the implementation using arrays and operations and
arrays, as well as the implementation using chars and bitwise operations. For the filled
marks, we took the complete time from table 5.1. For the marks that are empty inside
we took the time until the "out-of-memory" error from table 5.1.

5.2.3 Discussion of the Experiment Results

The results from our experiments showed, that the implementation using chars and
bitwise operations was faster than the implementation using arrays. In every experiment
performed the time it takes for the bounded model checking tool to produce a solution was
less for chars and bitwise operations. The highest speedup was observed in the experiment
with 5 cards and input possibilistic security. The implementation using bit shifts proved to
be about 18 times faster than the implementation employing arrays. The experiment with
5 cards and input possibilistic security, is also the experiment that produces the largest
SAT formula and it has the longest running time for both the array implementation as
well as the bit shift implementation out of all the tested inputs.

For the experiment with 6 cards, the bounded model checker did not produce a result but
ran out of memory instead. As with the experiments where the bounded model checker
produced a solution, the implementation employing bit shifts, terminated faster than
the implementation using arrays for finding protocols. The advantage of producing an
"out-of-memory" error more quickly could be that it will allow for a quicker confirmation
that the program is too big and/or complex for the bounded model checker.

If we compare the size of the formula for the implementation with arrays and the imple-
mentations with chars in table 5.1, we can see that there is not a big difference between
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them. Both the sets of variables and clauses are slightly smaller for the implementations
using chars throughout all experiments. They are however in the same order of magni-
tude. The largest deviation is 30% which can be observed for the experiment with 5 cards
and output possibilistic security. Generally the deviation is greater for experiments with
output possibilistic security than for experiments with input possibilistic security. The
deviation is also higher for 5 cards, than it is for 4 cards. However, as the difference in
the size of the formula is not proportional to the difference in runtimes when comparing
the two data structures, we believe that the size of the formula is not the cause for the
different runtimes.

We have demonstrated that implementing sequences as chars and performing bitwise
operations such as bit shifts, have the potential of outperforming implementations em-
ploying arrays. We were however not able to obtain results for experiments that run out
of memory for implementations employing arrays, as they ran out of memory as well for
implementations using bitwise operations.
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6 Conclusion

6.1 Summary

We were able to successfully generalize the symbolic program by Koch et al., 2021 to find
protocols for any boolean function. We applied it to five different functions, to find new
protocols for them. For the OR function we were able to find two four card Las Vegas
protocols with probabilistic security. One of them had uniform but not closed shuffles, the
other one had closed but non-uniform shuffles. For the COPY function we were able to
find a five card Las Vegas protocol with probabilistic security and not closed but uniform
shuffles. However we were not able to find protocols for the half adder function, as the
bounded model checker would either take too long or there would be an "out-of-memory”
error. We tested the use of different SAT solvers for the use within the bounded model
checker. However neither CaDiCal ! nor Glucose 2 performed better than the built-in SAT
solver MiniSat for our application. We therefore were not able to increase the number
of cards or steps for which we could obtain protocols by changing out the SAT solver. A
remaining problem of the presented method that uses bounded model checking to find
card based protocols is therefore, that it is only effective for small numbers of cards and
steps.

We introduced and defined a new action that applied protocols to a state. We then presented
a method of inserting this new protocol action into the symbolic program. With that we
were able to use protocols as an operation when finding new protocols. Subsequently we
were then able to implement protocols from literature and that were found in section 3.2 as
operations into the symbolic program. With that we were able to apply our implementation
to a COPY protocol and find a protocol. This protocol for the COPY function made use of
an AND protocol. Using this protocol we were able to show, that we could compute any
boolean function by using only two protocols. However we were still not able to find a
protocol for the half adder.

We introduced a new representation of sequences and states where cards are stored as
bits inside a single variable. We were able to show that it is possible to implement the
operations within the symbolic program, most notably the turn and shuffle operation,
by using the new data structure and bitwise operators. We performed an experiment

http://fmv.jku.at/cadical/
*https://www.labri.fr/perso/lsimon/research/glucose/
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comparing our new data structure for the representation of states with the original data
structure. Our experiments indicated that our new representation improved the runtime of
the verification process. However, our tests were too limited to make a concrete statement
on whether different data structures actually allow us to find protocols more effectively.
Additionally our new data structure did not reduce the occurrence of "out-of-memory"
eITors.

6.2 Outlook

A pending task is a complete implementation of the standardized program using the
new data structure for sequences to definitely judge whether the runtime improvements
translate to programs that find full protocols. A large part of methods needed are already
implemented in the program from section 5.2.2. However there are still some methods
missing.

Another remaining question is how to reduce the occurrence of the "out-of-memory" error.
As we have analyzed in section 3.2.4 it occurred during or directly after the conversion
into static single assignment (SSA) form. As we have shown neither using CaDiCal ® nor
Glucose * offered any improvements. However there could be a SAT or SMT solver that
performs better for our implementations, so more tests using different solvers could be
performed.

Shttp://fmv.jku.at/cadical/
*https://www.labri.fr/perso/lsimon/research/glucose/
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A Appendix

A.1 Full Experiment Results

A.1.1 Test Results for the Comparison of the different Data Structures

Protocol Average
N =4SEC =2 | Arrays Date 4.1.2023 15/21/00 11.1.2023 12/31/21 11.1.2023 12/24/35 | 11.1.2023 12/38/50 | 11.1.2023 12/16/51
variables 2525596 2525596 2525596 2525596 2525596
clauses 8167087 8167087 8167087 8167087 8167087
complete time 382 381 381 384 384 382.4
BitShifts | Date 4.1.2023 12/06/21 11.1.2023 12/51/10 | 11.1.2023 12/48/75 | 11.1.2023 12/46/41 | 11.1.2023 16/23/56
variables 2333279 2333279 2333279 2333279 2333279
clauses 7256704 7256704 7256704 7256704 7256704
complete time 113 114 113 113 114 1134
N=4SEC=1 | Arrays Date 12.1.2023 15/41/43 12.1.2023 16/04/37 12.1.2023 16/57/05 12.1.2023 17/27/29 | 31.1.2023 119/25/59
variables 3623257 3623257 3623257 3623257 3623257
clauses 11633860 11633860 11633860 11633860 11633860
complete time 1059 1068 1066 1072 215 896
BitShifts | Date 12.11.2023 12/07/16 | 12.11.2023 12/15/59 | 12.1.2023 12/24/25 | 12.1.2023 12/38/03 | 12.1.2023 12/47/11
variables 3432778 3432778 3432778 3432778 3432778
clauses 10723999 10723999 10723999 10723999 10723999
complete time 482 487 589 489 491 507.6
N=5SEC =2 | Arrays Date 4.1.2023 15/27/46 12.1.2023 12/59/00 | 12.1.2023 23/56/39 | 13.1.2023 10/45/17 | 13.1.2023 14/05/25
variables 34216676 34216676 34216676 34216676 34216676
clauses 123856065 123856065 123856065 123856065 123856065
complete time 6954 6650 10432 7758 10241 8407
BitShifts | Date 4.1.2023 12/10/22 11.1.2023 12/53/18 | 31.01.2023 12/35/07 | 31.012023 13/47/06 | 31.1.2023 14/42/27
variables 27384088 27384088 27384088 27384088 27384088
clauses 95341873 95341873 95341873 95341873 95341873
complete time 3499 3483 4319 3320 4920 3908.2
N =5SEC =1 | Arrays Date 26.01.2023 11/06/57 | 28/01/2023 07/02/17
variables 47451857 47451857
clauses 170267718 170267718
complete time 158120 94512 126316
BitShifts | Date 31.01.2023 12/28/10 | 31.1.2023 14/31/54
variables 40622131 40622131
clauses 141754048 141754048
complete time 7424 6535 6979.5
N =6SEC =2 | Arrays Date 05.01.2023 13/15/45 | 31.1.2023 06/04/08 | 31.1.2023 04/07/32 | 31.1.2023 10/31/32 | 31.1.2023 19/29/34
out of memory after | 7158 9138 6996 6906 7042 7448
Bit Shifts | Date 04.1.2023 22/48/02 | 31.1.2023 00/42/09 | 31.1.2023 01/31/46 | 31.1.2023 01/17/26 | 31.01.2023 03/17/26
out of memory after | 3028 2977 3296 3043 3006 3070
N =6SEC =1 | Arrays Date 30.01.2023 09/47/30 | 30.1.2023 19/19/49 | 30,.1.2023 13/36/13 | 30.1.2023 16/26/34 | 30.1.2023 22/00/50
out of memory after | 13723 9660 10221 10395 9679 26839
BitShifts | Date 31.1.2023 21/26/56 | 31.1.2023 22/46/49 | 31.1.2023 19/20/28 | 31.1.2023 20/38/02 | 31.1.2023 21/58/27
out of memory after | 4793 4820 4654 4825 4634 4745.2
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A.1.2 Test Results for the Comparaison of Different SAT Solvers

Protocol Used SAT Solver Average | Test #1 Test #2 Test #3 Test #4 Test #5
XOR, N=4, L=2, SEC = 2 | Mini Sat Date 2023_02_02_11_36_29 | 2023_02_02_11_42_35 | 2023_02_02_11_48_43 | 2023_02_02_11_37_17 | 2023_02_02_11_43_59
Total Time 372.8 366 368 368 402 360
Variables 10829386
Clauses 39863588
Glucose Date 2023_02_01_20_14_02 | 2023_02_01_20_23_35 | 2023_02_01_20_33_09 | 2023_02_01_20_15_35 | 2023_02_01_20_24_55
Total Time 568.6 573 573 576 560 561
Variables 10829386
Clauses 39863588
Cadical Date 2023_02_03_10_44_28 | 2023_02_03_10_56_33 | 2023_02_03_11_08_44 | 2023_02_03_10_45_15 | 2023_02_03_10_57_16
Total Time 725.2 725 731 729 721 720
Variables 10829386
Clauses 39905499
XOR, N=4, L=2, SEC = 1 | Mini Sat Date 2023_02_02_11_54_51 | 2023_02_02_12_05_15 | 2023_02_02_11_49_59 | 2023_02_02_12_00_16 | 2023_02_02_12_10_28
Total Time 618.8 623 628 617 612 614
Variables 13191171
Clauses 47693620
Glucose Date 2023_02_01_20_42_45 | 2023_02_01_21_08_54 | 2023_02_01_20_34_16 | 2023_02_01_20_59_54 | 2023_02_01_21_42_42
Total Time 1757.4 1569 1570 1538 2568 1542
Variables 13191171
Clauses 47693620
Cadical Date 2023_02_03_11_20_53 | 2023_02_03_11_51_34 | 2023_02_03_11_09_16 | 2023_02_03_11_39_10 | 2023_02_03_12_13_55
Total Time 1867.4 1841 1836 1794 2085 1781
Variables 13191171
Clauses 47736299
XOR, N=4, L=2, SEC = 0 | Mini Sat Date 2023_02_02_12_15_43 | 2023_02_02_12_49_45 | 2023_02_02_13_23_39 | 2023_02_02_12_20_42 | 2023_02_02_13_09_18
Total Time 2203.4 2042 2034 2039 2916 1986
Variables 18192251
Clauses 73827798
Glucose Date 2023_02_01_21_35_04 | 2023_02_01_23_31_33 | 2023_02_02_00_58_19 | 2023_02_01_22_08_24 | 2023_02_01_23_30_45
Total Time 5417.4 6989 5206 5005 4941 4946
Variables 18192251
Clauses 73827798
Cadical Date 2023_02_03_12_22_10 | 2023_02_03_14_38_31 | 2023_02_03_16_35_59 | 2023_02_03_12_43_36 | 2023_02_03_14_39_12
Total Time 7731.2 8180 7048 8917 6936 7575
Variables 18192251
Clauses 73870727
OR, N=4, L=2, SEC = 2 | Mini Sat Date 2023_02_02_13_57_38 | 2023_02_02_14_05_44 | 2023_02_02_13_42_24 | 2023_02_02_13_50_23 | 2023_02_02_13_58_23
Total Time 481.6 486 485 479 479 479
Variables 10819303
Clauses 39832637
Glucose Date 2023_02_02_02_21_45 | 2023_02_02_02_39_26 | 2023_02_02_00_53_11 | 2023_02_02_01_10_59 | 2023_02_02_01_28_35
Total Time 1065 1061 1081 1068 1056 1059
Variables 10819303
Clauses 39832637
Cadical Date 2023_02_03_19_04_37 | 2023_02_03_20_07_57 | 2023_02_03_16_45_27 | 2023_02_03_17_45_44 | 2023_02_03_18_43_51
Total Time 3444 3800 3308 3617 3487 3008
Variables 10819303
Clauses 39874504
OR, N=4,L=2,SEC = 1 Mini Sat Date 2023_02_02_14_13_49 | 2023_02_02_14_34_08 | 2023_02_02_14_54_28 | 2023_02_02_14_06_22 | 2023_02_02_14_31_49
Total Time 1277 1218 1219 1218 1527 1203
Variables 13185883
Clauses 47673732
Glucose Date 2023_02_02_02_57_27 | 2023_02_02_03_19_44 | 2023_02_02_03_42_11 | 2023_02_02_01_46_14 | 2023_02_02_02_08_07
Total Time 1332.8 1347 1347 1345 1313 1312
Variables 13185883
Clauses 47673732
Cadical Date 2023_02_03_21_03_05 | 2023_02_03_21_43_32 | 2023_02_03_22_19_42 | 2023_02_03_19_33_59 | 2023_02_03_20_09_35
Total Time 2207.8 2427 2170 2169 2136 2137
Variables 13185883
Clauses 47716387
OR,N=4,L=2,SEC=0 | Mini Sat Date 2023_02_02_15_14_46 | 2023_02_02_15_47_00 | 2023_02_02_14 51 52 | 2023_02_02_15_23_32 | 2023_02_02_15_55_09
Total Time 1919.4 1934 1946 1900 1897 1920
Variables 18186963
Clauses 73807910
Glucose Date 2023_02_02_04_04_36 | 2023_02_02_05_15_41 | 2023_02_02_02_29_59 | 2023_02_02_04_30_10 | 2023_02_02_05_39_40
Total Time 5398.4 4265 4932 7209 4170 6416
Variables 18186963
Clauses 73807910
Cadical Date 2023_02_03_22_55_51 | 2023_02_04_00_22_08 | 2023_02_03_20_45_12 | 2023_02_03_22 02_3 | 2023_02_03_23_20_0
Total Time 4754 5177 4728 4647 4644 4574
Variables 18186963
Clauses 73850815
OR N=5, L=2, SEC = 2 Mini Sat Date 2023_02_02_16_19_26 | 2023_02_02_16_49_26 | 2023_02_02_17_20_32 | 2023_02_02_16_27_09 | 2023_02_02_16_56_51
out of memory | 2298.4 1799 1863 4251 1780 1799
Glucose Date 2023_02_02_06_37_53 | 2023_02_02_07_05_23 | 2023_02_02_07_32_40 | 2023_02_02_07_26_36 | 2023_02_02_07_53_46
out of memory | 1638 1648 1636 1650 1629 1627
Cadical Date 2023_02_04_01_40_56 | 2023_02_04_02_26_37 | 2023_02_04_03_16_54 | 2023_02_04_00_36_17 | 2023_02_04_01_21_12
out of memory | 2798.4 2740 3014 2769 2694 2775
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A.2 Card Protocols from Literature

The KWH trees of the five card AND protocol by Koch et al. (2021) and the four card XOR

protocol by Mizuki and Sone (2009).

A.2.1 Five card AND Protocol

*20&0Q Xoo
2000 X1
(LT VIV e
VeOKQ X1

20800 1X) VaOKO
(perm, (23); (shuffle, [T) | V4490 2X; O0V&4Y
20040 21Xy OVRON
QOVRA Xy #OVOH
QROVR 1Xy SOV

1 X,
i
i
i
5X1

77747

#0080 1X,
VOV X,
aOR0 1X
Y ¢

(shuffle, ((12)(34)))

*0080 1X,
OVVss 1X;
ovava 1x;
VROV 1 X,
VIV 1 X
ovsa0 1X;
20800 1x;

1Xo FXVIVIV]
3Xo FXVIRvV]

1
o
X

i
(turn, {2})

OOVse 1X, VROV X,
OV 1X, VRV X,

VIVI¥IV' é)(result, 3,4)

Fig. A.1: Five card AND protocol by Koch et al. (2021)

(turn, {4})

3Xo (result, 4,3)
X

(shuffle, IT = ((12453)))

(shuffle, IT)

OVROR 1 X
20008 21X
#2000 1X;
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A.2.2 Four Card XOR Protocol

L V) XOO
&00& Xgl
VX IV ¢h
VaVs X1

(perm, (23))

L LIV XOO
&00& Xgl
VIX IV ¢h
OV X1

(shuffle{id, (13)(24)})

200 =X + X711
&O0VS 5 X01 + X190
QasQ X1 + 5X70
QU =X + 5 X711

(perm, (23))

2080 =X + X711
LIV - X01 + X190
QaeQ X1 + 5X70
Qa0® =X + 5 X711

(turn, {1, 2})

*Q07?7 Oa??
2080 X0 + X11 Qa0 Xo1 + X10
2008 Xy + Xqo QaV® Xoo + X11

é)(result, 3,4) é)(result, 4,3)

Fig. A.2: Four card XOR protocol by Mizuki and Sone (2009)

A.3 Additional Protocols found through Bounded Model
Checking

In section 3.2.3 we found two protocols that are shown in figs. A.3 and A.4. We completed
them with restart operations making their runtime restarting las Vegas. However we do
not rule out that there is a way of completing the them to be a restart-free Las Vegas
protocol or even a Finite Runtime protocol.
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A.3 Additional Protocols found through Bounded Model Checking

A.3.1 Five Card OR Protocol with input possibilistic security and non-closed
shuffles.

2040& X
FAVVIN S
VeV X1
VaO®E X1y

restart

(shuffle, {(1543), (13524)})

*2200 1X
LAV V] %XlO + %Xll
*O0RE 2 X00
Oaas0 1x;
ORaO% X4,
Vavss 1X,
(VAVZ T ¥ §X01

i(turn, {1})

7777 *7722
VaaV® X0 *RAO0 Xy
VIVEX ¥ 35 6% 220K X0 + X1
QaOR® X0 *OVRS X0
Vaed Xy } (result, 5,2)

Fig. A.3: A restarting Las Vegas protocol for OR with input-possibilistic security. The shuffles are
not closed. It uses 5 cards and has a best case of 2 steps.
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A.3.2 Input-possibilistic protocol with closed shuffles for OR using 4 cards
and 5 steps

2089 X,
restart &@wt (1;?
Vea X1
Va0 X1y

i(shufﬂe,{(24), (1432)))

2200 %Xoo

2080 3 X01 + 3 X10

#0904 3 X

ZE e

Va0 3 Xo1 + 3 X10

OO 1X1

2427 [um 2) 500
2600 Xgo #9049 Xo1 + X109
VaaO Xy 2008 Xoo
V8Os X1 + X OVss X
l(perm,(lZ)(%))

2409 X0
2049 Xo1 + X
2008 X))

l(shuﬂle,{id, (13)(24), (34), (1324)})

409 1Xo0 = 3%
VT %Xoo

#0489 IX01 + 3 X150 + 1X11 = 31X
2008 £Xo1 + £ X10 + ¢ X1 = £X4
Oaa0 $Xo1 + 3X10 + 3X11 = 3X1

2022 i(turn,{Z% 29

#0490 31X, 2200 Xoo
008 12X VaaO Xo1 + Xj0 + X1y
Vs X, | (result, 1,3)

Fig. A.4: A restarting Las Vegas protocol for OR with input-possibilistic security. The shuffles are
not closed. It uses 4 cards and has a best case of 5 steps.

A.4 Code Repository

All code written and used for this thesis can be found in the GitHub repository.

A.5 Code Excerpts from the Adapted Standardized Program
Representations.

The full implementation of the subsequent programs can be found in the GitHub repository
(appendix A.4
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A.5 Code Excerpts from the Adapted Standardized Program Representations.

A.5.1 XOR

Listing A.1 Excerpt from the preprocessor variables

#ifndef COMMIT
#define COMMIT 4
#endif

#ifndef NUMBER_START_SEQS
#define NUMBER_START_SEQS 4
#endif

OV WD

=}

#if WEAK_SECURITY ==

10 #define NUMBER_PROBABILITIES 2
11 #else

12 #define NUMBER_PROBABILITIES 4
13 #endif

Listing A.2 Test for bottom sequence.

1 unsigned int isBottom(struct fractions probs) {

2 unsigned int bottom = 0;

3

4 if (WEAK_SECURITY == 2) {

5 bottom = probs.frac[0].num && probs.frac[l].num;

6 } else {

7 bottom = (probs.frac[0].num || probs.frac[3].num) && (probs.
frac[l].num || probs.frac[2].num);

3 }

9 return bottom;

10 }

Listing A.3 Excerpt from the function isFinalState(). It checks whether a given state can be an
end state. We only look at the assignment of deciding here, because it is the only thing that is
changed from the original Implementation for AND

1 wunsigned int isFinalState (struct state s) {

2 if (WEAK_SECURITY == 2) {

3 deciding = (s.seq[i].probs.frac[l].num);

4 } else {

5 deciding = (s.seq[i].probs.frac[l].num) || (s.seql[l].probs.frac
[2] .num) ;

6 }

A.5.2 OR

Preprocessor variable same as for appendix A.5.1.
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Listing A.4 Test for bottom sequence

1 unsigned int isBottom(struct fractions probs) {

2 unsigned int bottom = 0;

3

4 if (WEAK_SECURITY == 2) {

5 bottom = probs.frac[0].num && probs.frac[l].num;

6 } else {

7 bottom = (probs.frac[l].num || probs.frac[2].num || probs.
frac[3] .num) && probs.frac[0].num;

3 }

9 return bottom;

10 '}

Listing A.5 Excerpt from the function isFinalState(). It checks whether a given state can be an
end state. We only look at the assignment of deciding here, because it is the only thing that is
changed from the original Implementation for AND

1 unsigned int isFinalState (struct state s) {
2 unsigned int deciding = ! (s.seq[i].probs.frac[0].num);

A.5.3 COPY

Listing A.6 Excerpt from the preprocessor variables

1 *x COPY:

2 + for COPY we need a 2 cards commitment not 4
3 %/

4 #ifndef COMMIT

5 #define COMMIT 2

6 #endif

7

8

VL
9 % COPY:
10 x for COPY we have 2 start sequences 1 and 0
11 +/
12 #ifndef NUMBER_START_SEQS
13 #define NUMBER_START_SEQS 2
14 #endif
15
16 #if WEAK SECURITY ==
17 #define NUMBER_PROBABILITIES 2
18 #else
19 #define NUMBER_PROBABILITIES 4
20 #endif

Listing A.7 Test for bottom sequence
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1 unsigned int bottom = 0;

2 J ok x

3 * COPY:

4 * we only have the probabilities/possibilities:

5 * X 0 if the input was a 0 (the output will also be a 0)
6 * X_1 1f the input was a 1

7 * 1f both are != 0 then we have a bottom sequence
8 */

9 bottom = probs.frac[0].num && probs.frac[l].num;
10 return bottom;

11 }

Listing A.8 The function isFinalState() checks whether a given state can be an end state.

1 wunsigned int isFinalState (struct state s) {

2 unsigned int res = 0;

3

4 if (isValid(s)) { // Non-valid states cannot be final.

5 unsigned int a = nondet_uint(); // Index of the first card.

6 unsigned int b = nondet_uint(); // Index of the second card.

7

8 assume (a < N && b < N && a !'= b);

9 unsigned int lowerCard = 0;

10 unsigned int higherCard = 0;

11

12 unsigned int c¢ = nondet_uint(); // Index of the first card.

13 unsigned int d = nondet_uint(); // Index of the second card.

14

15 assume (¢ < N&& d < N&& ¢ !'= d);

16 assume(a != ¢ && a != d);

17 assume (b !'= ¢ && b !'= d);

18

19 unsigned int done = 0;

20 for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)
{

21 if (!done && isStillPossible(s.seq[i].probs)) {

22 unsigned int deciding = s.seq[i].probs.frac]|

NUMBER_PROBABILITIES - 1].num;

23 unsigned int first = s.seq[i].vallal;

24 unsigned int second = s.seqg[i].vallbl;

25 unsigned int third = s.seq[i].vallc];

26 unsigned int fourth = s.seq[i].valld];

27 assume (first != second && third != fourth);

28 assume (first == third);

29 assume (second == fourth);

30 if ('higherCard && !lowerCard) {

31 higherCard = deciding ? first : second;

32 lowerCard = deciding ? second : first;

33 } else ({

34 if ( (deciding

35 && ! ( first == higherCard

36 && second == lowerCard))

37 |l (!deciding
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38 && ! ( second == higherCard
39 && first == lowerCard))) {
40 done = 1;

41 res = 0;

42 }

43 }

44 }

45 }

46 }

47 return res;

48 }

A.5.4 Half Adder

Listing A.9 Excerpt from the preprocessor variables

#ifndef COMMIT
#define COMMIT 4
#tendif

#ifndef NUMBER_START_SEQS
##define NUMBER_START_SEQS 4
#tendif

VL
* ADDER: IMPORTANT, we have three possible outputs we need to
distinguish

O O 0TI QNU WD =

11 =/

12 #if WEAK_SECURITY ==

13 #define NUMBER_PROBABILITIES 3
14 #else

15 #define NUMBER_PROBABILITIES 4
16 #endif

Listing A.10 Test for bottom sequence

1 unsigned int isBottom(struct fractions probs) {

2 unsigned int bottom = 0;

3

4 if (WEAK_SECURITY == 2) {

5 bottom = (probs.frac[0].num && probs.frac[l].num) ||
frac[l].num && probs.frac[2].num) || (probs.frac[2].num
&& probs.frac[0].num);

6 }

7 else {

8 bottom = ((probs.frac[l].num || probs.frac[2].num) &&
.frac[0O] .num || probs.frac[3].num)) || (probs.frac[0].num
&& probs.frac[3].num);

9 }

10 return bottom;
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11

}

Listing A.11 The function isFinalState() checks whether a given state can be an end state.

1
2
3
4
5
6
7

11

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29

30
31
32
33
34
35

36
37
38

39
40

unsigned int isFinalState (struct state s) {

unsigned int res = 0;

if (isvValid(s)) { // Non-valid states cannot be final.
res = 1;
//SUM

unsigned int

—> sum

unsigned int

a = nondet_uint(); // Index of the first card

b = nondet_uint (); // Index of the second card

—> sum

//Carry

unsigned int c¢ = nondet_uint(); // Index of the third card
—-> carry

unsigned int d = nondet_uint(); // Index of the fourth card
-> carry

assume (a < N&& b < N&& a !'= b);

assume (¢ < N&& d < N&& ¢ !'= d);

assume(a !'= c && a !'=d && b != ¢ && b !'= d);

//SUM (XOR)
unsigned int lowerCardSum = O;
unsigned int higherCardSum = 0;

unsigned int doneSum = 0;
for (unsigned int i = 0; 1 < NUMBER_POSSIBLE_SEQUENCES; i++)

{
if

(!doneSum && isStillPossible(s.seq[i].probs)) {
unsigned int decidingSum = 0;

if (WEAK_SECURITY == 2) {
decidingSum = (s.seq[i].probs.frac[l].num);
}
else {
decidingSum = (s.seq[i].probs.frac[l].num) ||

.seq[i] .probs.frac[2] .num);
}
unsigned int firstSum = s.seqg[i].valla
unsigned int secondSum = s.seqg[i].vall
assume (firstSum != secondSum) ;
if ('higherCardSum && !lowerCardSum) {
// In a l-sequence, the first card is higher,
otherwise the second one.

1i
b];

higherCardSum = decidingSum ? firstSum
secondSum;
lowerCardSum = decidingSum ? secondSum
firstSum;
}
else {

if ((decidingSum
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&& ! (firstSum == higherCardSum
&& secondSum == lowerCardSum))
|| (!decidingSum
&& ! (secondSum == higherCardSum
&& firstSum == lowerCardSum))) {
doneSum = 1;
res = 0;
}
}
}
}
//CARRY (AND)
unsigned int lowerCardCarry = 0;
unsigned int higherCardCarry = 0;
unsigned int done = 0;

for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++)

{
if

}

return res;

(!done && isStillPossible(s.seq[i].probs)) {

unsigned int decidingCarry = s.seq[i].probs.frac|
NUMBER_PROBABILITIES - 1] .num;
unsigned int firstCarry = s.seqg[i].vallc
unsigned int secondCarry = s.seq[i].vall
assume (firstCarry != secondCarry);
if ('higherCardCarry && !lowerCardCarry) {
// In a l-sequence, the first card is higher,
otherwise the second one.
higherCardCarry = decidingCarry ? firstCarry

1;
dl;

secondCarry;
lowerCardCarry = decidingCarry ? secondCarry
firstCarry;
}
else {
if ((decidingCarry
&& ! (firstCarry == higherCardCarry
&& secondCarry == lowerCardCarry))
|| (!decidingCarry
&& ! (secondCarry == higherCardCarry
&& firstCarry == lowerCardCarry)))
done = 1;
res = 0;

{



A.6 Implementation of the Nested Structure

A.6 Implementation of the Nested Structure

A.6.1 Additions to the Main C Program

We add and edit some parameters of the main symbolic programs that are dependant on
the actions that can be performed.

_ O 0 0 ONUT WD =

—_

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

J x*

* determines whether the Modules are used or not
* 0: no modules only turns and shuffles

* 1: modules are used

*/

#ifndef MODULES

#define MODULES 1

#endif

/o x

* Amount of different action types allowed in protocol, excluding
result action.

*/

#if MODULES == 0

#define A 2

f#felse

#define A 3

#endif

/o k

* Number assigned to turn and shuffle action.
*/

#ifndef TURN

#define TURN O

#tendif

#ifndef SHUFFLE
#define SHUFFLE 1
#endif

/o k

* Number assigned to protocol execution action.
*/

#ifndef PROTOCOL

#define PROTOCOL 2

#endif

We also have to include modules.c (appendix A.6.2 with #include"modules.c".

Additionally we add the ptotocol action to the function performactions. It chooses an
action (turn, shuffle or protocol) and performs it.

1

unsigned int performActions (struct state s) {
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for

}
for
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15
16
17
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20
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31
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36

37

38

39

40

41

42 }
43
44 3

unsigned int result = 0;
// All reachable states are stored here.
struct state reachableStates[MAX_ _REACHABLE_STATES];

(unsigned int i1 = 0; i < MAX_ REACHABLE_STATES; i++) {
// Begin calculation from start state.

reachableStates[i] = s;

(unsigned int 1 = 0; 1 < L; i++) {

// Choose the action nondeterministically.

unsigned int action = nondet_uint ();

assume (action < A);

// If A is greater than 2,
actions below.

we must add cases for additional

if (MODULES == 0) {
assume (A == 2);

}

else {

assume (A

)
}

unsigned int next = i + 1;
if (action == TURN) {
//perform shuffle action
}
else if (action == SHUFFLE) {
//perform shuffle
}
}
else if (action == PROTOCOL) {
reachableStates|[next] = applyProtocols (reachableStates]|[i
1)
// only for not Final Runtime
if (isFinalState(reachableStates[next])) {
assume (next == L);
result = 1;
}
}
else {

// No valid action was chosen. This must not happen.

assume (next ) ;

return result;

A.6.2 Modules.c

This is the complete modules. ¢ program. It contains all necessary implementations for
the protocol action
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CO I O\ Ul v W DN =

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47
48

#include <stdlib.h>
#include <stdint.h>
#include <assert.h>

VAT

* MODULES :

* The maximum number of possible result states a protocol can have.

* This is defined for all possibly used protocols because
protocolStates needs to have a fixed size

* it 1s currently defined as 2, because the protocol with the most
endstates has 2 endstates

*/

#ifndef MAX_PROTOCOL_ENDSTATES

#define MAX_PROTOCOL_ENDSTATES 2

f#tendif

VAT

* whether the protcol

* AND by Takaaki Mizuki and Hideaki Sone (2009) -> Finite Runtime, 6
cards, 2 steps

* (https://doi.org/10.1007/978-3-642-02270-8_36)

* 1s used (0: not used, 1: used)

*/

#ifndef USE_FR_AND

#define USE_FR_AND 0

#endif

J x*

* AND by Takaaki Mizuki and Hideaki Sone (2009) -> Finite Runtime, 6
cards, 2 steps

* (https://doi.org/10.1007/978-3-642-02270-8_36)

*/

#ifndef FR_AND

#define FR_AND 0

#endif

VAT

* whether the protcol

* XOR by Takaaki Mizuki and Hideaki Sone (2009) —-> Finite Runtime, 4
cards, 2 steps

* (https://doi.org/10.1007/978-3-642-02270-8_36)

* 1s used (0: not used, 1: used)

*/

#ifndef USE_FR_XOR

#define USE_FR_XOR 0

#endif

VS

* XOR by Takaaki Mizuki and Hideaki Sone (2009) —-> Finite Runtime, 4
cards, 2 steps

* (https://doi.org/10.1007/978-3-642-02270-8_36)

*/

#ifndef FR_XOR

#define FR_XOR 1
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49 #endif

50

51 /*%

52 * whether the protcol

53 * AND by Alexander Koch, Michael Schrempp and Michael Kirsten (2021)

—-> Las Vegas, 5 cards, 5 steps

54 + (https://doi.org/10.1007/s500354-020-00120-0)

55 « is used (0: not used, 1: used)

56 +/

57 #ifndef USE_LV_AND

58 #define USE_LV_AND 0

59 #endif

60

61 /xx*

62 * AND by Alexander Koch, Michael Schrempp and Michael Kirsten (2021)

-> Las Vegas, 5 cards, 5 steps

63 x (https://doi.org/10.1007/s00354-020-00120-0)

64 */

65 #ifndef LV_AND

66 #define LV_AND 2

67 #endif

68

69 /xx*

70 # whether the protcol

71 % OR by Anne Hoff —-> Las Vegas, 4 cards, 6 steps

72 % (https://github.com/a-nne-h/
automatedApproachToGeneratingCardProtocols)

73 *+ 1is used (0: not used, 1: used)

74 */

75 #ifndef USE_LV_OR

76 #define USE_LV_OR 0

77 #endif

78

79 /%

80 # OR by Anne Hoff -> Las Vegas, 4 cards, 6 steps

81 =+ (https://github.com/a-nne-h/
automatedApproachToGeneratingCardProtocols)

82 */

83 #ifndef LV_OR

84 #define LV_OR 3

85 #endif

86

87 /xx

88 * whether the protcol

89 * COPY by Takaaki Mizuki and Hideaki Sone (2009) with fixed amount

of copies = 1 -> Finite Runtime, 6 cards, 2 steps
90 = (https://doi.org/10.1007/978-3-642-02270-8_36)
91 * is used(0: not used, 1 : used)

92 x/

93 #ifndef USE_FR_COPY
94 #define USE_FR_COPY 0
95 #endif

96

97 /%
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98 =+ COPY by Takaaki Mizuki and Hideaki Sone (2009) with fixed amount
of copies = 1 -> Finite Runtime, 6 cards, 2 steps

99 + (https://doi.org/10.1007/978-3-642-02270-8_36)

100 «+/

101 #ifndef FR_COPY

102 #define FR_COPY 4

103 #endif
104
105 /#x*

106 + NOT does not have to be a protocol, becaue it 1is nothing else than
a perm operation which is already included
107  Whether NOT is used —> Finite Runtime, 2 cards, 1 steps
108 «/
109
110 //unsigned int protocolTable[5][2][4][6] = { FR_AND_TABLE,
FR_XOR_TABLE, LV_AND TABLE, LV_OR _TABLE, FR_COPY TABLE };

111 wunsigned int protocolTable[5][2][4]1[6]1 = { { { { 1,2,1,2,1,2 }, {
1,2,2,1,1,2 3,{ 1,2,1,2,1,2 %}y, { 1,2,1,2,2,2 } }y, { { 2,1,1,2,1,2
},{ 2,1,1,2,2,1 %}, { 2,1,1,2,1,2 }, {2,1,2,1,1,2 } } 1},
112 ¢ { {1,2,1,2,0,0 3}, { 2,1,1,2,0,0 }, { 2,1,1,2,0,0 }, { 1,2,1,2,0,0
y ¥y, {{ 2,1,2,1,0,0 }, { 1,2,2,1,0,0 }, {1,2,2,1,0,0 }, {
2,1,2,1,0,0 }} 1},

113 { { { 112’2111210 }I { 1121211’210 }I { 1’212111
2,1,1

114 ( { { 1,1,2,2, } 2 0}

1 12,0,0 3}, {2,1,1,2,0,0 }, {
115 { { { 11271121112 }’ OIOIOIO’OIO }I { 1’212111211 }l { OIOIO’OIO’O
l }’ { OIO’O’OIOIO }’ { 21111127112 }I {

116

117 /##*

118 % MODULES:

119 « Analog to turn states, this struct is used to retun arrays of
states after a protocol operation.

120 + There is one state for each possible end state (resut state) of
the protocol

121 x In each usage of a protocol, for each sequence the resulting
sequences 1in each end state are calculated and stored in states.

122 « isUsed[i] contains if the corresponding state[i] holds a end state
or isn't used

123 #

124 */

125 struct protocolStates {

126 struct state states[2];

127 unsigned int isUsed[MAX_ PROTOCOL_ENDSTATES];
128 };

129

130 /%

131 * MODULES:

132 + finds the index of a given sequence (as an array) within a state.
133 x/

134 unsigned int findIndex (struct sequence seq) {
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unsigned int index = nondet_uint ();

assume (index < NUMBER_POSSIBLE_SEQUENCES) ;
for (int j = 0; J < N; J++) {

assume (seqg.val[j] == emptyState.seqg[index].vall[j]);
}

return index;

J *k

* MODULES :

* searches for the endSequence in result.states[resultIdx]

* 1f found, copy the probabilities/possibilities from seq to result.
states[resultIdx] and return new result

*/

struct protocolStates copyResults (struct sequence seq, struct
protocolStates result, unsigned int resultIdx) {
//find index of sequence within state that matches endSequence
unsigned int index = findIndex(seq);

// copy the probabilities/possibilities from seq to result.
states[resultIdx] (! add the values —-> cr shuffle)
for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
struct fraction prob = seqg.probs.fracl[]j];
// Copy numerator.
result.states[resultIdx].seq[index] .probs.frac[]j].num +=
prob.num;

if (!WEAK_SECURITY) { // Probabilistic security
// Copy denominator.
result.states[resultIdx].seq[index] .probs.frac[]j].den +=
prob.den;

}

return result;

struct protocolStates doProtocols (unsigned int protocolChosen,
struct state s, unsigned int comlA, unsigned int comlB, unsigned
int com2A, unsigned int com2B, unsigned int helpl, unsigned int
help2) {
struct protocolStates result;
// Initialise N empty states.
for (unsigned int i = 0; i < MAX PROTOCOL_ENDSTATES; i++) {
result.states[1i] = emptyState;
result.isUsed[1] 0;

}
for (unsigned int i = 0; i < MAX_ PROTOCOL_ENDSTATES; i++) {
for (unsigned int j = 0; j < NUMBER_POSSIBLE_SEQUENCES; Jj++)
{
struct sequence seq = s.seql]jl;
if (isStillPossible(seqg.probs)) {
unsigned int idx = 0;
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if (isZero(seg.val[comlA], seg.val[comlB])) {
if (isZero(seg.val[com2A], seqg.val[com2B])) {
// 0101
idx = 0;

}
else if (isOne(seg.val[com2A], seqg.val[com2B]))
{
// 0110
idx = 1;
}
}
else if (isOne(seg.val[comlA], seqg.val[comlB])) {
if (isZero(seg.val[com2A], seqg.val[com2B])) {
// 1001
idx = 2;
}
else if (isOne(seg.val[com2A], seqg.val[com2B]))
{

// 1010
idx = 3;
}
}
seq.val[comlA] = protocolTable[protocolChosen] [i] [
idx] [0];
seqg.val[comlB] = protocolTable[protocolChosen] [i] [
idx][1];
seq.val [com2A] = protocolTable[protocolChosen] [i] [
idx][2];
seq.val[com2B] = protocolTable[protocolChosen] [i] [
idx] [3];

// 1f we have one (or more) helper card

if (protocolChosen == FR_AND || protocolChosen ==
FR_COPY
| | protocolChosen == LV_AND) {
seqg.val[helpl] = protocolTable[protocolChosen] [i
1[idx][4];
// 1f we have two helper cards
if (protocolChosen == FR_AND || protocolChosen
== FR_COPY) {
seq.val [help2] = protocolTable]|

protocolChosen] [i] [1dx] [5];
}
}
result = copyResults(seq, result, 1i);
result.isUsed[i] = 1;

}

}

for (unsigned int 1 = 0; 1 < MAX_ PROTOCOL_ENDSTATES; 1l++) {
assume (isBottomFree (result.states[1]));

}

return result;
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struct state applyProtocols (struct state s) {

// check that the chosen protocol is actually
unsigned int protocolChosen =

'allowed'
nondet_uint ();

assume (protocolChosen >= 0 && protocolChosen < 5);

if (USE_FR_AND == 0)

assume (protocolChosen

}
if (USE_FR_XOR == 0)

assume (protocolChosen !=

}
if (USE_LV_AND == 0)

assume (protocolChosen !=

}
if (USE_LV_OR == 0) {

assume (protocolChosen !=

}
if (USE_FR_COPY == 0)

assume (protocolChosen !=

}

{
!= FR_AND) ;

{
FR_XOR) ;

{

LV_AND) ;

LV_OR) ;

{
FR_COPY) ;

// create resulting states
struct protocolStates resultingStates;

for (unsigned int i = 0; i < MAX PROTOCOL_ENDSTATES; i++) {
resultingStates.states[1i] = emptyState;
resultingStates.isUsed[i] = 0;

}
// pick 4 cards that
unsigned int comlA =
unsigned int comlB =
unsigned int com2A =
unsigned int
assume (comlA
assume (comlA !=
assume (comlB !=
assume (com2A
unsigned int
unsigned int
for

com2B =

helpl
help2 =

(unsigned int i =

represent the two commitments
nondet_uint () ;
nondet_uint () ;
nondet_uint () ;
nondet_uint () ;

< N&& comlB < N&& com2A < N&& com2B < N);
comlB && comlA
com2A && comlB
= com2B) ;
= 0;

0;

= com2A && comlA
= com2B) ;

= com2B) ;

0; 1 < NUMBER_POSSIBLE_SEQUENCES; i++) {

// 1f the probability/possibility of this state is not 0

if (isStillPossible(s.seq[i].probs)) {

}

// check that througout every possible sequence in the
state we have chosen two different cards for our
commitments

assume (s.seq[i] .val[comlA]

assume (s.seq[i] .val[com2A]

!= s.seq[i].val[comlB]);
!= s.seq[i].val[com2B]);

// for copy we only have two commitments and four help cards

if

(protocolChosen ==

FR_COPY) {

(unsigned int i = 0; i1 < NUMBER_POSSIBLE_SEQUENCES;
{

// 1f the probability/possibility of this state is not 0
if (isStillPossible(s.seq[i] .probs)) {

it++)
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// check that helper cards are the same all
throughout every possible sequence in the state

assume (isZero((s.seg[i].val[com2A]), s.seq[i].vall
com2B]1));

}

//protocols with five cards

if (protocolChosen == LV_AND) {
helpl = nondet_uint () ;
assume (helpl < N);
assume (helpl != comlA && helpl != comlB && helpl != com2A &&
helpl !'= com2B);

for (unsigned int i = 0; 1 < NUMBER_POSSIBLE_SEQUENCES; i++)
{
// 1f the probability/possibility of this state is not 0
if (isStillPossible(s.seqg[i].probs)) {
// check that helper cards are the same all
throughout every possible sequence in the state

if (protocolChosen == LV_AND) {
// for LV_AND the helper card is 2
assume (s.seq[i] .val[helpl] == 2);
}
}
}
}
if (protocolChosen == FR_AND || protocolChosen == FR_COPY) {

helpl = nondet_uint ();

help2 = nondet_uint ();

assume (helpl < N&& help2 < N);

assume (helpl !'= comlA && helpl !'= comlB && helpl != com2A &&
helpl !'= com2B);

assume (help2 != comlA && help2 !'= comlB && help2 != com2A &&
help2 != com2B && help2 != helpl);

for (unsigned int i = 0; 1 < NUMBER_POSSIBLE_SEQUENCES; i++)
{
// 1f the probability/possibility of this state is not 0
if (isStillPossible(s.seq[i].probs)) {
// check that helper cards are the same all
throughout every possible sequence in the state
assume (isZero((s.seq[i] .val[helpl]), s.seqli].vall
help2]));

}

resultingStates = doProtocols (protocolChosen, s, comlA, comlB,
com2A, com2B, helpl, help2);

//as with TURN, choose one output nondeterministically to look
at further

unsigned int stateIdx = nondet_uint ();

assume (stateIdx < MAX_PROTOCOL_ENDSTATES) ;

assume (resultingStates.isUsed|[statelIdx]);

return resultingStates.states([stateldx];

87



A Appendix

A.7 Programs for the Experiments with Data Structures

The following code excerpt is the full test program bitshifts.c for the data structure
implemented with chars and bitwise operations in chapter 5. This code snippet can be used
to reproduce the experimental setup from section 5.2.2. It also shows how we implemented
the different operations with bitwise operations. The implementation for the experiment
with arrays is analogous to the implementation here. We only use arrays instead of a char
and operations on arrays instead of array operations. The full implementation of both
programs can be found in the GitHub repository (appendix A.4

1 /=

2 * definitions of the used static variables
* NUM_SYM, N, COMMIT, NUMBER_POSSIBLE_SEQUENCES, NUMBER_START_SEQS,

NUMBER_POSSIBLE_PERMUTATIONS, WEAK_SECURITY,

NUMBER_PROBABILITIES, MAX PERM SET SIZE
*/

w

unsigned int num; // The numerator.

4

5

6 struct fraction {

7

8 unsigned int den; // The denominator.

9 ¥

10

11 struct fractions {

12 struct fraction frac[NUMBER_PROBABILITIES];
13 };

14

15 struct sequence {

16 char val;

17 struct fractions probs;

18 };

19

20 struct state {

21 struct sequence seg[NUMBER_POSSIBLE_SEQUENCES];
22 };

23

24 struct permSequence {

25 unsigned int val[N];

26 struct fractions probs;

27 };

28

29 // All permutations are remembered here, as seen from left to right
, sorted alphabetically.
30 struct permutationState {

31 struct permSequence permSeq[NUMBER_POSSIBLE_PERMUTATIONS];

32 };

33

34 // We store all possible permutations into a seperate state to save
resources.

35 struct permutationState stateWithAllPermutations;

36

37 struct state emptyState;

38
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struct narray {
unsigned int arr[N];
}i
struct numsymarray {
unsigned int arr[NUM_SYM];
}i

struct permutationState getStateWithAllPermutations() {

struct permutationState s;
for (unsigned int i = 0; i1 < NUMBER_POSSIBLE_PERMUTATIONS; i++)
{
struct narray taken;
for (unsigned int j = 0; j < N; Jj++) {
taken.arr[]j] = 0O;
}
for (unsigned int j = 0; j < N; J++) {
s.permSeqg[i].val[j] = nondet_uint ();
unsigned int val = s.permSeq[i].vallj];
assume (0 < val && val <= N);
unsigned int idx = val - 1;
assume (!taken.arr[idx]);
taken.arr[idx]++;
}
}
// Not needed, but to avoid state space explosion
for (unsigned int i = 0; i1 < NUMBER_POSSIBLE_PERMUTATIONS; i++)
{
for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
s.permSeq[i] .probs.frac[]j].num = 0;
s.permSeq[i] .probs.frac[]j].den = 1;
}
}
for (unsigned int i = 1; i < NUMBER_POSSIBLE_PERMUTATIONS; i++)
{
unsigned int checked = 0;
unsigned int last = 1 - 1;
for (unsigned int j = 0; j < N; j++) {
// Check lexicographic order
unsigned int a = s.permSeqg[last].vallj];
unsigned int f = s.permSeq[i].valljl;
checked |= (a < f);
assume (checked || a == f);
}
assume (checked) ;
}
return s;
}
VAT
* Given an char containing a sequence, we return the index of the
given sequence in a state.
*/
unsigned int getSequencelndexFromArray (char compare, struct state

compareState) {
unsigned int seqgIdx = nondet_uint();
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88 assume (seqldx < NUMBER_POSSIBLE_SEQUENCES) ;

89 struct sequence seq = compareState.seq[seqgldx];

90 assume (! (seq.val ~ compare)); // the chars are equal if XOR is 0
91 return seqldx;

92 }

93

94 /%

95 * Update the possibilities of a sequence after a shuffle.

96 */

97 struct fractions recalculatePossibilities (struct fractions probs,
98 struct fractions resProbs,

99 unsigned int permSetSize) {

100 for (unsigned int k = 0; k < NUMBER_PROBABILITIES; k++) {
101 struct fraction prob = probs.fraclk];

102 unsigned int num = prob.num;

103 unsigned int denom = prob.den;

104 if (num && WEAK_SECURITY) {

105 resProbs.frac[k] .num |= num;

106 }

107 else if (num) {

108 VER:

109 * Only update fractions in case we are 1in the
110 * strong security setup.

111 */

112 // Update denominator.

113 resProbs.frac[k].den = denom * permSetSize;

114 // Update numerator.

115 resProbs.fracl[k].num = (num x permSetSize) + denom;
116 }

117 }

118 return resProbs;

119

120

121 /%%

122 * Calculate the state after a shuffle operation starting from s
with the given permutation set.

123 * Deleted isStillPossible

124 * changed content in 2nd for loop, especially the application of
the permutatuin to the sequence

125 x/

126 struct state doShuffle(struct state s,

127 unsigned int permutationSet [MAX_PERM_SET_SIZE] [N],

128 unsigned int permSetSize) {

129 struct state res = emptyState;

130 // For every sequence in the input state.

131 for (unsigned int i = 0; 1 < NUMBER_POSSIBLE_SEQUENCES; i++) {
132 struct sequence seq = s.seqli];

133 // For every permutation in the permutation set.

134 for (unsigned int j = 0; j < MAX_PERM_SET_SIZE; j++) {
135 if (j < permSetSize) {

136 char resultingSeqg = 0;

137 for (unsigned int k = 0; k < N; k++) {

138 char temp = 0;

139 // Apply permutation j to sequence 1.
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140 temp = seq.val & (1 << k);

141 int index = permutationSet[j][k] - k;

142 if (index >= 0) {

143 temp = temp << (index);

144 }

145 else {

146 temp = temp >> (-1 * index);

147 }

148 resultingSeq = resultingSeq | temp;

149 }

150 unsigned int resultSeglndex = // Get the index of

the resulting sequence.

151 getSequencelIndexFromArray (resultingSeq, res);

152 //Recalculate possibilities.

153 res.seqg[resultSeqIndex] .probs =

154 recalculatePossibilities (seq.probs,

155 res.seq[resultSegIndex] .probs,

156 permSetSize) ;

157 }

158 }

159 }

160 return res;

161 }

162

163 struct state applyShuffle (struct state s) {

164 // Generate permutation set (shuffles are assumed to be
uniformly distributed).

165 unsigned int permSetSize = nondet_uint () ;

166 assume (0 < permSetSize && permSetSize <= MAX_PERM_SET_SIZE);

167

168 unsigned int permutationSet [MAX_PERM_SET_SIZE][N] = { 0 };

169 unsigned int takenPermutations[NUMBER_POSSIBLE_PERMUTATIONS] = {
0 };

170 Es:

171 * Choose permSetSize permutations nondeterministically. To
achieve this,

172 * generate a nondeterministic permutation index and get the
permutation from this index.

173 * No permutation can be chosen multiple times.

174 */

175 unsigned int lastChosenPermutationIndex = 0;

176 for (unsigned int i = 0; i < MAX_PERM_SET_SIZE; i++) {

177 if (i < permSetSize) { // Only generate permutations up to

permSetSize.
178 unsigned int permIndex = nondet_uint ();
179 // This ensures that the permutation sets are sorted
lexicographically.

180 assume (lastChosenPermutationIndex <= permIndex) ;

181 assume (permIndex < NUMBER_POSSIBLE_PERMUTATIONS) ;

182 assume (!takenPermutations [permIndex]) ;

183 assume (permSetSize != 10);

184

185 takenPermutations [permIndex] = 1;

186 lastChosenPermutationIndex = permIndex;
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187
188
189

190
191

192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228
229
230

231
232
233
234
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for (unsigned int j = 0; j < N; Jj++) {
permutationSet[i][]j] = stateWithAllPermutations.
permSeq[permIndex] .val[]j] - 1;
VET:
* The '-1' is important. Later, we convert to array
indices such as
* array[permutationSet [x][y]]. Without the '-1', we
would get out-
* of-bound errors there.

*/

}
struct state res = doShuffle(s, permutationSet, permSetSize);
return res;

* Constructor for states. Only use this to create new states.

struct state getEmptyState () {

struct state s;

struct numsymarray symbolCount;

for (unsigned int i = 0; 1 < NUM_SYM; i++) {
symbolCount.arr[i] = 0;

for (unsigned int i = 0; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
struct numsymarray taken;
for (unsigned int j = 0; j < NUM_SYM; J++) {

taken.arr[j] = 0;

}

char value = 0;

for (unsigned int j = 0; j < N; J++) {
char val = nondet_uint ();

assume (0 <= val && val <= 1);

taken.arr[val]++;

assume (taken.arr([val] <= N - 2); // At least two symbols
have to be different. Players cannot commit

otherwise.
value = value | (val << (N - 1 - 7)),
}
s.seq[i].val = value;
for (unsigned int j = 0; j < NUM_SYM; j++) {
if (1 == 0) {
symbolCount.arr[j] = taken.arr[j];

}

else { // We ensure that every sequence consists of the
same symbols
assume (taken.arr[j] == symbolCount.arr[]j]);

}

// Here we store the numerators and denominators
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235 for (unsigned int j = 0; j < NUMBER_PROBABILITIES; j++) {
236 s.seq[i] .probs.frac[]j].num = 0;

237 s.seq[i] .probs.frac[j].den = 1;

238 }

239 }

240 for (unsigned int i = 1; i < NUMBER_POSSIBLE_SEQUENCES; i++) {
241 unsigned int checked = 0;

242 unsigned int last = i - 1;

243 for (unsigned int j = 1; j <= N; Jj++) {

244 // Check lexicographic order

245 char a = (s.seqg[last].val & (1 << N - 3j));
246 char f = (s.seqg[i]l.val & (1 << N - 7J));
247 checked |= (a < f);

248 assume (checked || a == f);

249 }

250 assume (checked) ;

251 }

252 return s;

253 1}

254

255 /%

256 * Determine i1f a sequence 1in the start state belongs to the input
possibility (0 0).

257 */

258 unsigned int isZeroZero (char sequence) {

259 if (sequence & (1 << (N - 1))) {

260 return O;

261 }

262 if (! (sequence & (1 << (N - 2)))) {

263 return 0;

264 }

265 if (sequence & (1 << (N - 3))) {

266 return 0;

267 }

268 if (! (sequence & (1 << (N - 4)))) {

269 return 0;

270 }

271 return 1;

272 1}

273

274/ x#

275 * Determine if a sequence in the start state belongs to the input
possibility (1 1).

276 */

277 wunsigned int isOneOne (char sequence) {

278 if (! (sequence & (1 << (N - 1)))) |

279 return 0;

280 }

281 if (sequence & (1 << (N - 2))) {

282 return 0;

283 }

284 if (! (sequence & (1 << (N - 3)))) {

285 return 0;

286 }

93



A Appendix

287 if (sequence & (1 << (N - 4))) {

288 return 0;

289 }

290 return 1;

291 1}

292

293 /xx

294 * This method constructs the start sequence for a given commitment
length COMMIT

295 * using nodeterministic assignments. We only consider the case
where Alice uses

296 * the cards "1" and "2", and Bob uses the cards "3" and "4".

297 */

298 char getStartSequence () {

299 assume (N >= COMMIT); // We assume at least as many cards as
needed for the commitments.

300 struct numsymarray taken;

301 for (unsigned int i = 0; 1 < NUM_SYM; i++) {

302 taken.arr[i] = 0;

303 }

304 char res = 0;

305 for (unsigned int i = 0; i < COMMIT; i++) {

306 char card = nondet_uint ();

307 assume (0 <= card && card < COMMIT && card < NUM_SYM) ;

308 assume (taken.arr[card] < COMMIT / NUM_SYM);

309 taken.arr[card] ++;

310 res = res | (card << (N - 1 - 1));

311 }

312 // Here we assume that each player only uses fully
distinguishable cards

313 assume ((res & 1 << (N — 1)) !'= ((res & 1 << (N - 2))<<1));

314 assume ((res & 1 << (N - 3)) != ((res & 1 << (N - 4)) << 1));

315 // rest of cards

316 for (unsigned int i = COMMIT; i < N; i++) {

317 char card = nondet_uint();

318 assume (0 <= card) ;

319 assume (card < NUM_SYM) ;

320 res = res | (card << (N - 1 - 1));

321 }

322 return res;

323 1}

324

325 /x#*

326 + This function performs a shuffle and afterwards checks for a
specific property of the probabilities

327 + in this test it is, whether all probabilities in all possible
sequences have a value that is not equal to 0

328 #* a correct result needs at least 6 permutations

329 + therefore the problem is complicated enough to ensure some level
of complexity while keeping the code simple

330 * For other tests, this function can be easiy altered

331 «/

332 struct state tryPermutation (struct state s) {

333 struct state res = applyShuffle(s);
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334 // check if every possibility is 1 after shuffle

335 for (int i = 0; i1 < NUMBER_POSSIBLE_SEQUENCES; i++) {

336 for (int j = 0; j < NUMBER_PROBABILITIES; j++) {

337 assume (res.seq[i] .probs.frac[j].num != 0);

338 }

339 }

340 return s;

341 1}

342

343 int main () {

344 emptyState = getEmptyState();

345 struct state startState = emptyState;

346 char start [NUMBER_START_SEQS];

347 for (unsigned int i = 0; i < NUMBER_START_SEQS; i++) {

348 start[i] = getStartSequence () ;

349 }

350 assume (isZeroZero (start[0]));

351 assume (! ((start[0] & (1 << N - 1)) ~ (start[l] & (1 << N - 1))))

352 assume ( (start[1] & (1 << N - 1)) » (start[2] & (1 << N = 1)));

353 assume (! ((start[2] & (1 << N — 1)) »~ (start[3] & (1 << N - 1))))

354 assume (! ((start[0] & (1 << N - 3)) ~ (start[2] & (1 << N = 3))))

355 assume ( (start[0] & (1 << N - 3)) » (start[l] & (1 << N - 3)));

356 assume (! ((start[1l] & (1 << N — 3)) ~ (start[3] & (1 << N - 3))))

357

358 unsigned int arrSeqlIdx[NUMBER_START_SEQS];

359 for (unsigned int i = 0; i < NUMBER_START_SEQS; i++) {

360 arrSeqldx[i] = getSequencelIndexFromArray (start[i],
startState) ;

361 }

362 if (WEAK_SECURITY == ) |

363 for (unsigned int i = 0; i < (NUMBER_START_SEQS - 1); i++) {

364 startState.seqlarrSeqldx[i]].probs.frac[0].num = 1;

365 }

366 unsigned int lastStartSeq = NUMBER_START_SEQS - 1;

367 unsigned int arrIdx = arrSeqgldx[lastStartSeq];

368 unsigned int lastProbIdx = NUMBER_PROBABILITIES - 1;

369 startState.seqlarrIdx] .probs.frac[lastProbIdx].num =
1sOneOne (start[lastStartSeq]);

370 } else {

371 for (unsigned int i = 0; i < (NUMBER_START_SEQS); i++) {

372 startState.seqglarrSeqldx[i]].probs.frac[i].num = 1;

373 }

374 }

375 stateWithAllPermutations = getStateWithAllPermutations();

376 tryPermutation (startState);

377 assert (0) ;

378 return 0;

379 1}
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