Global Land Management Dataset 2020This dataset provides a global, spatially explicit map of land management intensity for the year 2020 at a spatial resolution of 0.01° (~1 km at the equator). Management intensity is classified across cropland, pasture, and forest systems using a harmonised, rule-based framework that integrates global datasets on land use, fertiliser inputs, irrigation, and forest harvest intensity.The dataset enables consistent global analyses of land management patterns and supports applications in land-use modelling, sustainability assessments, and human-environment research.
Spatial Extent: Global land areasResolution: 0.01° (~1 km)Coordinate system: WGS84 (EPSG:4326)Year: 2020
Each grid cell is assigned a single discrete class (values 1–50), representing land management intensity.Cropland: Very extensive, extensive (rainfed/irrigated), and intensive (rainfed/irrigated) classes for major crops (maize, wheat, rice, soybean, starchy roots), plus other cropsPasture: Very extensive, extensive, intensive, and unmanagedForest: Unmanaged, extensive, and intensive management for major forest typesOther classes: Urban, agroforestry, photovoltaics, unmanaged land, and water
... mehr
| Value | Class name || ----: | ---------------------------------------------------- || 1 | Urban || 2–6 | Maize (Very extensive ? Intensive irrigated) || 7–11 | Wheat (Very extensive ? Intensive irrigated) || 12–16 | Rice (Very extensive ? Intensive irrigated) || 17–21 | Soy (Very extensive ? Intensive irrigated) || 22–26 | Starchy roots (Very extensive ? Intensive irrigated) || 27 | Other crops || 28 | Photovoltaics (PV) || 29 | Agroforestry (AF) || 30 | Unmanaged land || 31–45 | Forest classes (by type and intensity) || 46–49 | Pasture classes || 50 | Water |
Class codes:
1: ('Urban', '#EE0F05'),
2: ('VExt_maize', '#F5D081'), 3: ('Ext_rf_maize', '#E8C278'), 4: ('Ext_irr_maize', '#D6B55F'), 5: ('Int_rf_maize', '#F3B361'), 6: ('Int_irr_maize', '#D99A2B'),
7: ('VExt_wheat', '#F5DEB3'), 8: ('Ext_rf_wheat', '#E8C258'), 9: ('Ext_irr_wheat', '#D6AF3F'), 10: ('Int_rf_wheat', '#EDAD37'), 11: ('Int_irr_wheat', '#C9972B'),
12: ('VExt_rice', '#F3D44D'), 13: ('Ext_rf_rice', '#DCAC64'), 14: ('Ext_irr_rice', '#C9963C'), 15: ('Int_rf_rice', '#F5B829'), 16: ('Int_irr_rice', '#D49A1F'),
17: ('VExt_soy', '#DEB887'), 18: ('Ext_rf_soy', '#E8C288'), 19: ('Ext_irr_soy', '#CFA36D'), 20: ('Int_rf_soy', '#F3B351'), 21: ('Int_irr_soy', '#C98C2E'),
22: ('VExt_sroots', '#FFC0CB'), 23: ('Ext_rf_sroots', '#F3B8E1'), 24: ('Ext_irr_sroots', '#D99CC9'), 25: ('Int_rf_sroots', '#F789E6'), 26: ('Int_irr_sroots', '#C96AB3'),
27: ('Other_crops', '#F3B341'), 28: ('PV', '#D66528'), 29: ('AF', '#D0E9C8'), 30: ('UNM', '#BFBFBF'),
31: ('UNM_mxdF', '#335C33'), 32: ('Ext_mxdF', '#5D9A5D'), 33: ('Int_mxdF', '#88CC88'),
34: ('UNM_ndl_evrg', '#004D00'), 35: ('Ext_ndl_evrg', '#058A03'), 36: ('Int_ndl_evrg', '#BDED50'),
37: ('UNM_brdl_evrg', '#006600'), 38: ('Ext_brdl_evrg', '#268C20'), 39: ('Int_brdl_evrg', '#BDED80'),
40: ('UNM_ndl_dcds', '#066B04'), 41: ('Ext_ndl_dcds', '#009917'), 42: ('Int_ndl_dcds', '#A4F1B5'),
43: ('UNM_brdl_dcds', '#213907'), 44: ('Ext_brdl_dcds', '#2DA03E'), 45: ('Int_brdl_dcds', '#8FF186'),
46: ('VExt_pas', '#979006'), 47: ('Ext_pas', '#E5E217'), 48: ('Int_pas', '#FFFB1C'), 49: ('UNM_pas', '#767005'),
50: ('Water', '#0000FF')