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In production engineering, the identification of optimal process parameters is
essential to advance product quality and overall equipment effectiveness.
Optimizing and adapting process parameters through experimental design is
relevant for different phases of the life cycle of a production process: (i) design
and development of new processes, (ii) failure analysis and optimization, and (iii)
adaptation and calibration in series production. Existing experimental design
approaches tend to be inefficient because they comprise static, non-adaptive
methodologies that separate experiment design from execution and analysis.
Instead, Bayesian Optimization (BO) offers an adaptive and data-efficient
methodology for experimental design termed Bayesian experimental design
(BED). In BED, the selection of an experiment is re-evaluated in each iteration
based on previous experiment results according to an acquisition function that
aims to maximize the informational content of each experiment. However, the
configuration of BO algorithms for specific optimization problems requires
extensive knowledge of both BO and process characteristics. The mean and
covariance functions of the surrogate model, the acquisition function, and initial
data sampling must be individually configured and significantly influence overall
optimization performance, preventing widespread adoption in production
engineering practice. To guide the configuration of BO algorithms for
optimizing production processes, in this paper, we perform an extensive
benchmark study with a total of 15,360 experiments. We evaluate the
performance of a variety of BO algorithm configurations (including kernels,
acquisition functions, and initial sampling sizes) on a total of eight
optimization problems with a noiseless and a noisy variant each. The
performance and robustness analysis reveals significant performance
differences between individual BO algorithm configurations. The results of our
benchmarking serve as empirical references based on which we derive actionable
guidelines for the application of BED in production engineering.
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Bayesian optimization, Bayesian experimental design, process optimization, production,
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1 Introduction

In production engineering, the technical, ecological, and
economical performance of production processes depend on the
parameter settings that configure the behavior of the process. To
investigate the relationship (response surface) between process
inputs and outputs, and therefore to find parameters that are
with
experimental parameter studies are performed. The goal of

optimal respect to an arbitrary objective function,
experimental design is to identify the set of process parameters
(also called factors) that are most relevant to the performance of the
process and to determine performance-optimal factor levels
Freiesleben et al. (2020); Rainforth et al. (2023). Production
processes are typically considered black-box systems, involve
highly complex, high-dimensional design and objective spaces,
and physical experimentation is time-, cost-, and resource
intensive. According to the so-called polylemma of production,
process optimization relies on human intuition, trial-and-error,
and slow optimization cycles Schmitt and Pfeifer (2015).
Traditional statistical experimental design methodologies and
metaheuristics comprise full and fractional factorial Design of
Experiments (DoE) Montgomery (2020); Durakovic (2017), one-
factor-at-a-time (OFAT), Taguchi Method Logothetis and Wynn
(1989), Response Surface Modeling Sarabia and Ortiz (2009), Latin
Hypercube Sampling Tang (1993), or optimal designs Smucker
et al. (2018).

Alternatively, Bayesian Optimization (BO) provides a model-
based framework for adaptive experimental design using
information-theoretic principles Rainforth et al. (2023). More
specifically, BO is a sequential decision-making strategy for the
optimization of arbitrary objective functions. In particular, BO is
especially suited for optimizing expensive-to-evaluate black-box
functions that i) do not have a closed-form representation, ii) do
not provide function derivatives, and iii) only allow for point-wise
evaluation Garnett (2023). BO consists of two core components: a
surrogate model used for modeling the to-be-optimized objective
function and an acquisition function that is sampled for guiding the
selection of to-be-evaluated parameter sets. During optimization,
the surrogate model is being continuously updated from a prior to a
posterior belief by applying the Bayes theorem after new
observations have been collected. The acquisition function utilizes
the uncertainty quantification of the surrogate model to maximize
the information gain of each experiment while balancing the
exploration-exploitation trade-off. The process optimization using
BO is performed until a pre-defined termination criterion (e.g.,
maximum number of experiments, pre-defined quality-level) is
fulfilled. This concept of BO stems from early 1970s-1980s
Mockus (1975); Mockus (1989) and has suffered till the recent
past from computational bottlenecks hindering wide-spread
(2023).
advancements of the recent years and the success of BO for

application Rainforth et al However, given the
hyperparameter optimization and neural architecture search, BO
has regained popularity and rapid progress over the past 10 years
Garnett (2023); Rainforth et al. (2023). The utilization of BO
algorithms for sequential experimental design in scientific and
engineering experimentation is termed Bayesian experimental
design (BED). To this end, BED has been applied in material
science Dieb and Tsuda (2018), manufacturing Maurya (2016),
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additive manufacturing Deneault et al. (2021); Guidetti et al.
(2022), laser processing Duris et al. (2020), fluid dynamics
Diessner et al. (2022), biotechnology Leyendecker et al. (2025);
Liang and Lai (2021), plasma coating Guidetti et al. (2022) and
information technology Haghanifar et al. (2020). The challenges in
applying BO in manufacturing technology are, in particular, the high
costs of experimentation and machine downtime, mixed variable
types, collaboration with and acceptance by process experts,
measurability of quality characteristics and measurement noise,
and safe exploration. Additionally, a key challenge in successfully
utilizing BO in production engineering is to find an optimal
configuration of the BED algorithm comprising the configuration
of the surrogate model and its mean and kernel functions, the
acquisition function, and the initial design (number of data points to
initialize the optimization). The BED configuration must be chosen
depending on the characteristics of the optimization problem,
i.e., the production process to be optimized, and precisely tuned
to achieve optimal results.

1.1 Literature review

Previous studies have explored the impact of BED configuration,
typically focusing on two components, most often the surrogate
model and the acquisition function, in combination. In the field of
materials science, Liang et al. Liang and Lai (2021) conducted a
benchmark study evaluating different Gaussian Process-based
surrogates alongside three acquisition functions, highlighting the
critical role of proper initialization and exploration strategies.
Diessner et al. Diessner et al. (2022) applied BED in the context
of computational fluid dynamics, performing a benchmark that
examined the effects of acquisition functions and initial sampling
sizes. Similarly, Le Riche and Picheny (2021) investigated various
surrogate models and initial design sizes on a standardized test set
Finck et al. (2010). While these contributions offer valuable insights
into individual components of BED configuration, none of them
addresses the combined interdependencies of acquisition function,
surrogate model, and initial design. This study aims to close that gap
by systematically examining the interactions among these three key
components in the context of production processes.

1.2 Approach and contribution of this paper

To investigate the optimization performance of different BO-
configurations, we design and select a total of eight engineering-
focused synthetic test functions (optimization problems) with
different
solutions. We perform a benchmark study by applying different

characteristics, complexities, and known optimal
BO-configurations to all optimization problems and compare the
individual performances. As proposed by Bossek et al. Bossek et al.
(2020a), we utilize the Dominated Hypervolume (HV) performance
metric to consider both the success rate and efficiency of
optimization. It is important to note that this study focuses on
production processes, which influences certain methodological
choices. In particular, since the number of adjustable parameters
in such processes typically does not exceed six Ilzarbe et al. (2008);
Arboretti et al. (2022), high-dimensional optimization problems are
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not considered. The general goal of this investigation is to derive
practical guidelines for configuring BED algorithms tailored to the
optimization of production processes. The key contributions of this
paper are:

1. We highlight the importance and challenges of experimental
design in production engineering and propose BED as a
promising data-driven methodology

2. We provide a methodology for benchmarking BO algorithms

3. By applying this methodology, we perform an extensive
benchmark study across eight physically motivated test
functions comprising a total of 15,360 experiments

4. The benchmarking results provide empirical references and we
derive actionable guidelines for the configuration of BO and
the application of BED in manufacturing process optimization

5. We outline the remaining challenges and derive further
research needs to promote the adoption of BED in
production engineering

The paper is structured as follows: After a brief introduction to
process optimization in production and experimental design in
Section 1, Materials and Methods (Section 2) outlines the
fundamentals of BED and presents details of the benchmark
study. In Section 3, we present the results of our study, which we
further interpret and discuss in Section 4. The paper closes with a
final conclusion and outlook in Section 5. For supplementary
material, please refer to the Supplementary Appendix 1.

2 Methodology

This section provides the theoretical concepts of BED by first
describing the fundamentals of experimental design in the
engineering domain (see Section 2.1). The fundamentals of BO
are given in Section 2.2 and BED is outlined in Section 2.3. In Section
2.4, we explain the scope, research aspects, and methodological
approach of our benchmark study.

2.1 Fundamentals of experimental design

In production engineering, experimental design is the process of
(called factors) and
determining the interaction of these factors on the output of the

identifying key influential parameters

process and modeling the corresponding response surface.
Accordingly, engineers and process operators utilize experimental
design methodologies to identify the most influential process
parameters and subsequently determine the optimal factor values
using statistical analysis. Inherent in every optimization is the
(2014).
Accordingly, a decision must be made for each candidate

exploration-exploitation dilemma Berger-Tal et al.
selection as to whether to explore the design space or search in
the vicinity of the already known best solutions. Therefore, in
engineering practice, a distinction can be made between four
levels of precision during execution. First, screening aims to
rapidly localize the important factors in the initial design space.
Second, in characterization, a narrowed search is conducted to
identify the most influential factors. Third, optimization aims to
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FIGURE 1
Schematic black-box production process model for
experimental design.

determine the optimal factor levels. Finally, validation serves to
ensure that the process is capable of consistently producing products
that meet the predetermined quality specifications. Whereas good
experimental designs ensure the validity of the optimal factor values
found, excellent designs retain a high ratio between the extracted
information and the invested resources Jankovic et al. (2021).
Figure 1 schematically visualizes the framework for process
optimization under the assumption of unknown system behavior.
The behavior of the system can be described as a function y,o0 =
f(x;z)+¢  that
[x1,...,%,]" € X CR" into an m-dimensional target vector y =
Wisee s ymlt € YR
uncontrollable  parameters

transforms ~ the input vector x=

under the potential influence of

and  disturbance values z=
[z1,...,2z,]7 € R" and a noise term ¢. In addition to the actual
target variable vector y, the process model can provide additional
data in the of process monitoring

.,05]T € R®. We assume that we do not have analytical

form observations
o= [og,..
knowledge about the process and that the system does not possess a
closed-form representation, does not provide functional derivatives,
and only allows for point-wise evaluation Garnett (2023).
Furthermore, the optimization problem of finding x*=

argmaxyey f (x) can  include controllable  and

uncontrollable influencing factors and - depending on the

multiple

number of target variables - can be either single or multi-
objective. Besides the complexity of both design and objective
spaces, the complexity and difficulty of the optimization problem
is inherently determined by the complexity of the underlying system
behavior. Depending on whether experiment design and
experimentation along with experiment validation are performed
in an iterative manner, a distinction can be made between sequential

and non-sequential experimental design approaches.

2.2 Fundamentals of Bayesian
Optimization (BO)

Optimization is an innate human behavior Garnett (2023) and
optimization problems are pervasive in scientific and industrial
fields that require optimization algorithms to be as efficient as
(2022).
metaheuristics that require large numbers of experiments and

possible Wang et al In contrast to well-known

function evaluations, BO - with its model-based, adaptive, and

active optimization policies - promises to be much more data-
efficient in finding a global optimum (minimum or maximum) of an
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unknown objective function Liang and Lai (2021). In general, the
model structure of a BO algorithm comprises two core components:
1) a surrogate model (see Section 2.2.1) and 2) an acquisition
function (see Section 2.2.2). The surrogate model aims to
faithfully approximate the input-output behavior of the system to
be optimized. The acquisition function indirectly defines the
optimization policy by assessing the value of future observations
and therefore guiding the parameter selection process Garnett
(2023). For starting the optimization, BO requires an initial
dataset D = {(x;,y,)}", that is the collection of observations of
the input-output behavior of the system. In BO, the Bayes
theorem is applied to incorporate a prior belief to maximize the
informational content and therefore the value of each new
experiment Duris et al. (2020). BO utilizes the Bayes theorem to
iteratively update its prior distribution (prior) after the dataset D has
been extended with new observations. The prior is updated to form
the posterior distribution (posterior). The prior represents a belief
about the behavior of the objective function f. The posterior
distribution is used to compute and optimize the acquisition
function in order to sample parameter combinations with high
informational content for conducting new experiments.

2.2.1 Surrogate model

BO requires a probabilistic surrogate model that provides
estimates and uncertainties of the objective function f Duris
et al. (2020). In this work, for surrogate models, we solely
consider non-parametric Gaussian processes (GP), the most
widely adopted surrogate model. We define the GP surrogate
model as f(x) ~ GP(m(x),k(x,x")). To perform both prediction
and uncertainty quantification, a GP utilizes a mean function m (x)
to specify the expected value of f and a covariance function k (x,x)
Duris et al. (2020); Greenhill et al. (2020). The covariance function
determines the covariance between the function values y and y’
corresponding to a pair of input parameters x and x’ Garnett (2023).
In comparison with the mean function, careful design of the
covariance function is of higher criticality for the fidelity of the
model and the
Garnett (2023).

experimentation’s sample path behavior

2.2.2 Acquisition function

For the optimization of an expensive-to-evaluate function with
black-box behavior, BO defines an optimization policy by
introducing a substitute optimization problem utilizing a so-
called acquisition function. In contrast to regular objective
functions, the acquisition function is differentiable, inexpensive to
evaluate and is derived from m(x) and k(x,x’) Greenhill et al.
(2020).
algorithms can be utilized to iteratively optimize the acquisition

Therefore, well-established numerical optimization
function in order to propose parameter sets to be evaluated next. The
acquisition function a(x,D): X — R assigns a score to each
parameter combination within the design space reflecting the
value of each experiment for solving the optimization problem
Garnett (2023). The acquisition function performs the trade-off
between exploration and exploitation and therefore strongly
influences the sample path behavior and optimization efficiency.
Besides knowledge gradient, entropy search, and predictive entropy
search, the most widely adopted single-objective acquisition
function is expected improvement Frazier (2018).
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2.3 Bayesian experimental design (BED)

Figure 2 describes the iterative operating principle of BED:
Starting with the design space X consisting of factors and
associated factor limits, which are typically predefined by process
N, BED iteratively
(Step 1). In each
experiments are conducted using the proposed factor value

experts, as well as initial data D = {(x;,y,)}
proposes new experiments iteration,
vector x (Step 2). Formally, this step can be viewed as a query of
the true objective function f (x,z) to measure the response vector.
As a result of the evaluation of the experiment, the objective vector y
is obtained. An iteration can comprise a single experiment or an
arbitrary number of experiments. In these cases, one refers to single-
point or batch experimentation. The results of the experiment (x,y)
are added to the dataset D (Step 3). In this way, BED receives
feedback on the result of the experiment to update the Gaussian
surrogate model (Step 4). Based on the quality of the solution, the
fulfillment of the termination condition is checked (Step 5). The
acceptance criterion can be arbitrarily defined and, for example, take
into account quality feature requirements, a maximum number of
experiments, or time, cost, or resource limitations. If the acceptance
criterion is satisfied, the optimization is terminated. Otherwise,
optimization continues as long as the termination condition is
not met. By sampling a new set of factor values through
optimization of the acquisition function, the next iteration
is entered.

2.4 Composition of the benchmark study

In this section we describe the scope and characteristics of our
benchmark study to investigate the suitability of different BED
algorithms on different types of optimization problems. The
scope of this study is limited to single-objective functions, single-
point evaluations, numerical, continuous and unconstrained
parameters. The study design
First, the BED algorithm
configuration options (configuration space) (see Section 2.4.1),

problems and controllable

comprises three components:
second, the optimization problems (performance space) (see
Section 2.4.2), and third, the performance metrics (performance

space) (see Section 2.4.3).

2.4.1 Definition of the configuration space

The components of BED algorithms investigated in this study
comprise the kernel (also known as covariance function), the
acquisition function, and the initial sampling design. Building
upon the findings from the studies of Palar and Shimoyama
(2019); Picheny et al. (2013); Le Riche and Picheny (2021);
Liang and Lai (2021), this work considers four kernels: RBF,
Matern05, Maternl5, Matern25, as they belong to the standard
portfolio of BO and can be applied to different processes. Each of
these isotropic kernels k is also investigated with their anisotropic
counterpart utilizing automatic relevance detection (ARD)
Duvenaud (2014). ARD implicitly determines the relevance of
the input parameters and aims to enhance the modeling accuracy
and optimization efficiency.

Regarding the acquisition function «, expected improvement
(EI), probability of improvement (PI), and upper confidence bound
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(UCB) (with exploration scale of § = 0.2) are examined, along with a
variation of EI known as Noisy Expected Improvement or NEI,
which is specifically designed to handle noisy problems more
effectively. For a detailed study of the presented acquisition
functions, please refer to Garnett (2023).

To define the initial design, three choices must be made: the
initial sampling size, the initial sampling strategy, and the number of
independent runs. The initial sampling size u is a key component for
determining the exploration phase of BED before fitting the GP
model. Following the methodology outlined in Le Riche and Picheny
(2021), this study considers three initial sampling sizes: Small (S, five
trials), Medium (M, 10 trials), and Large (L, 30 trials), while
maintaining a fixed total budget of 35 trials. The decision to set
the initial sampling size independently of the dimensionality of the
problem aligns with the study’s focus on experimental design for
production processes, which typically involve no more than six
parameters and a maximum of 30 trials Ilzarbe et al. (2008). This
restriction confines the study to low-dimensional spaces, whereas
for high-dimensional problems, adjustments to the initial sampling
size would be necessary.

Within various sampling strategies, pseudo-random Sobol
sampling is chosen due to its ability to effectively cover the
parameter space under the specific conditions encountered. Due
to the stochastic nature of the Sobol algorithm, it is decisive to
perform multiple independent runs for each BO configuration on
each test function. Following the recommendations of Mersmann
etal. (2010), a total of ten independent runs are conducted, using ten
different random seeds. Each random seed is applied to each BO
configuration, ensuring that all configurations start with the same
initial data and that no configuration benefits from random
fluctuations. A detailed description of the Sobol algorithm can be
found in Section 1.1 of the Supplementary Material.

2.4.2 Definition of the problem space

To examine the performance of different BO algorithm
configurations on different optimization problems, we create
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artificial datasets utilizing a total of eight analytic test functions
(see Figure 4). Four of these eight test functions, namely, FI, F2, F3,
F4, are mathematical problems. The remaining four
(AdaptedBranin, Borehole, OTLCircuit, WingWeight) originate
from Forrester et al. (2008); Surjanovic and Bingham (2021) and
comprise physically motivated optimization problems. Please refer
to the Supplementary Material Section 1.2 for a detailed description
of the optimization problems.

Consistent with previous benchmark studies Qin et al. (2021);
Picheny et al. (2013); Palar and Shimoyama (2019); Gan et al.
(2021), this research investigates both noiseless and noisy versions
of objective functions. To introduce random noise to the output of
the noisy functions, a noise level of 0.1 is employed, following the
approach outlined in Qin et al. (2021) and Gan et al. (2021). In
each trial, a pseudorandom number ranging between 0 and
0.1 with a uniform distribution is generated. This number is
then multiplied with the standard deviation (SD) of the
objective of the respective function and added to the output
value. The SD of the function’s objective is calculated on the
basis of a random uniform sampling of size 10,000. This
methodology allows for a controlled examination and
comparison of the effects of noise. It is essential to emphasize
that the noise in this work is homoscedastic, meaning it does not
the the

Heteroscedastic noise is not considered in this study.

depend on sequential course of experiment.

2.4.3 Definition of the performance space

In this study, we focus on three key metrics to evaluate the
performance of individual BED configurations on the optimization
problems: solution quality, robustness, and efficiency. We employ
the multi-objective dominated hypervolume (HV) metric, as
proposed by Bossek et al. (2020b). According to Equation 1, the
HV metric integrates robustness (measured by the probability of
failure py) and efficiency (measured by the running time of
successful experiments r;). Lower values of ps and r, yield
higher HV values, indicating superior overall performance. It
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should be noted that the HV metric was chosen because of its
efficiency-robustness trade-off, since the number of required
experiments constitutes the key cost driver in the optimization of
production engineering systems. The HV metric is illustrated in
Figure 3 (left) and calculated according to Algorithm 1.

HV = (1-r)(1 - py) (1)
1: Let I be a test function
2: Let 6(k,a,u) be a BO configuration
3: Letie{l,...,w}beasingle trial
4: Let u be the number of Sobol trials, U={1,...,u}
5: Let vbe the number of Bayesian trials, V={u+1,...,v}
6: Let w=u+v be the total budget, W=UuV
7. Let je{l,...,m} be a single run of total runsm
8: for each combination 6,I do
9: for each trial i do
10: Calculate relative deviation (Ay1);
according to (2)
11: end for
12: for each run j do
13: if the algorithm finds an optimal solution
within + Ay* according to (3) then
14: Set success; =1
15: else
16: Set success; =0
17: end if
18: end for
19: Define successful runs set S according to (4)
20: Calculate  probability of  failure p%
according to (5)
21: Calculate running time r%! according to (6)
22: Calculate dominated Hypervolume HvoL
according to (7)
23: end for

Algorithm 1. Calculate Dominated Hypervolume (HV).

o The relative deviation is calculated as the normalized
difference between the known optimal solution y* and the
observed solution y; at each trial i for each run j (Equation 2).
This normalization is performed to ensure comparability
between different test functions.

(A7), = ‘yy;y 2)

« Arun j is considered successful if the algorithm has found an
optimal solution within the tolerance range of + A y* relative to
the known optimal solution for each test function (Equation
3). In this work a value of Ay* = 0.05 is utilized for all test
functions, corresponding to an optimization of 95%.

1 if 3JAy<Ay* | ieV

0 otherwise

A3)

success; = {

o Set of successful runs (Equation 4):
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§= {J €{l,...,m} with success; = 1} (4)

o The probability of failure p?’l for one BO configuration 6 and a
test function I over all m runs can be defined as Equation 5:

l m
pfgl =1-— z success; (5)
m &

« The running time r®! for one BO configuration 6 and a
test function I is the first successful trial i within the
Bayesian trials where the set tolerance was achieved
(Equation 6). It is aggregated through all successful runs
S and normalized to the total budget w. This last step sets
the reference time T defined in the HV equation of Bossek
et al. (2020b) to 1.

P = 11 Z arg min (Ay;), (6)
w8 .

jes i€V

o Finally, the dominated Hypervolume HV® of a BO
configuration 6 on a test function I can be calculated as
follows (Equation 7).

HV? = (1-721)(1- p}") 7)

Higher values of HV indicate better performance of the BO
configuration, while lower values suggest inefficiency, lack of
robustness, or a combination of both. The minimal HV-value is
0, with py = 1.0 and ; = 1.0, while the maximum HV-value is given
at py =0 and a minimal running time of r; = 0.14, resulting in a
maximum of HV= 0.86. The minimal running time of r; = 0.14 is
the result of dividing the minimum number of initial samples by the
fixed budget (5/35 =~ 0.142).

In order to compare different BO configurations and assess
their suitability on the various test functions, we utilize a
classification approach based on the resulting HV and taking
into account the interrelationships between kernels, acquisition
functions and initial dataset size. Each configuration (i.e., each
kernel, acquisition function, and initial dataset size) is classified
as qualified if it results in a good performance for optimizing the
test function, non-qualified if it leads to poor performance, or
undetermined if there is no clear outcome regarding its
performance. This classification approach is depicted in
Algorithm 2.

Since each individual configuration appears in multiple
combinations with other configuration parameters, simple
aggregation techniques, such as computing the median HV
across all runs, may distort the actual performance. For
example, if the RBF kernel performs well when paired with EI,
NEIL and UCB, but poorly with P, its overall median HV may be
skewed downward, thus underrepresenting its true capability.
While a variance analysis could reveal the degree to which a
configuration influences outcomes, it does not provide insight
into the quality of the performance itself, which is essential for
this study. Therefore, a more nuanced classification method is
applied that considers both performance level and variability
across combinations.
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Dominated Hypervolume (HV) adapted from Bossek et al. (2020b) (left) and HV span plot with classification areas (green: qualified, yellow:
undetermined, red: non-qualified) (right) (or: probability of failure, rs: running time of successful runs, T: optimization budget, t;: non-qualified threshold,

tng: qualified threshold, a,: width of undetermined classification area).

1: for each test function i in the problem space I do

2: Initialize lists: Q« []1//Qualified
configurations

3: Initialize lists: NQ « []//Non-qualified
configurations

4: Initialize lists: UD « []//Undetermined

configurations
5: Letcbeacomponent of aBOconfiguration (cbeinga
kernel, acquisition  function or initial
sampling size)

6: for all trials where the configuration contains c

in 6 do
7: Compute median of HV#! for the trials
8: if median of HV?! is in non-qualified area then
9: Add ¢ to NQ
10: end if

11: end for
12:  for all configurations where c in 6 and not in NQ do

13: Compute median of HV®!

14: if median of HV®! is in qualified area then
15: Add c to Q

16: else

17: Add ¢ to UD

18: end if

19: end for

20: end for

Algorithm 2. Classify configurations.

To classify the BO configurations effectively, the HV values
ranging from 0 to 0.86 are divided into three distinct areas: non-
qualified NQ (red), qualified Q (green), and undetermined UD
(yellow) (Figure 3 (right)). Each black point represents an
experiment with a specific BO configuration 6 = (K, a,u). The
limits of the areas, represented by the thresholds ¢, and t,, are
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determined based on the distribution of HV values obtained from
the experiments for each test function. The width of the
undetermined area, denoted by a,, also varies according to the
characteristics of the test function. To determine the non-qualified
threshold t,; and the qualified threshold f;, a comparative and
adaptive approach is followed based on the obtained benchmark
results in noiseless and noisy cases, separately. For t,,, the
configuration variable with the lowest median HV value is
identified, and the threshold is placed just above the 50th
percentile of the median of the single configurations. This
approach ensures that configurations with poor performance are
eliminated from consideration. For tys the variables with the best
distribution of HV are taken into account, and the threshold is set
below the 25th percentile of the best configurations. By adopting this
approach, configurations that show superior performance
are identified.

It is important to note that the thresholds can be adjusted
according to specific requirements of the user, such as
demanding higher efficiency or robustness. However, in this
study, the comparative approach is chosen to provide practical
and general recommendations for the selected BO configurations.
At the conclusion of the evaluation, each individual configuration is
classified as either qualified, non-qualified, or undetermined for each
test function. This analysis allows for a more informed and nuanced
assessment of the performance of each configuration in optimizing
the test functions. By classifying the configurations in this manner,
practical recommendations can be made regarding the suitability of
different BO configurations for specific test functions in terms of

robustness and efficiency.

2.4.4 Summary of the benchmark study

As a summary, Figure 4 provides a final overview of the key
characteristics of our study. It encompasses the problem space
characteristics, BO algorithm configurations and performance
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Problem Space Characteristics

BO Algorithm Configurations

8 Test Functions 2 Noise Levels 8 Kernel 4 Acq. Functions 3 Init. Sampling Sizes
F1 Noiseless RBF El S (5 Trials)
F2 Noisy Matern05 PI M (10 Trials)
F3 Matern15 ucB L (30 Trials)
F4 Matern25 NEI
AdaptedBranin RBF-ARD
Borehole Matern05-ARD
OTLCircuit Matern15-ARD
WingWeight Matern25-ARD

8 x 2 = 16 Configurations

8 x 4 x 3 = 96 Configurations

10 Runs (Random Seeds) per Configurations

16 x 96 x 10 = 15,360 Experiments

Performance Space

Evaluation Metrics

Assessment of BO Configurations

Dominated Hypervolume HV
Robustness
Efficiency

FIGURE 4
Overview of the benchmark study.

metrics. The evaluation process involves 16 optimization problems,
consisting of eight functions with two noise levels. In the BO
configuration space, a total of 96 configurations are tested, which
is obtained by combining eight kernels, four acquisition functions,
and three initial sampling sizes in a full-factorial manner. This
results in a thorough evaluation of 1,536 configurations. In order to
achieve statistical significance, ten experiments with different
random seeds are carried out and evaluated for each
conﬁguration. In total, the study comprises 15,360 experiments.
The performance metrics include both the metrics for each
individual experiment and the classification metrics used to
with This
comprehensive approach allows for a thorough investigation of

compare the BO configurations each other.
BO algorithms and provides valuable insights for making
informed decisions when selecting suitable configurations for
different optimization tasks.

The study is conducted in the following way: First, the BO
configuration 6 = (K, «,u) is defined, and a random seed is set to
ensure stochastic robustness. Using the Sobol sampling strategy,
the test function is evaluated with an initial sampling size of u =
S, M, L to collect the initial dataset. Subsequently, the GP model
with the kernel k is fitted. The acquisition function « is called to
select candidates for the next evaluation of the test function,
yielding the corresponding objective value. We define a fixed
budget of trials for each experiment run across all problems,
enabling a comparison of the problems and their complexity.
The choice of the fixed budget is based on the study of Ilzarbe
et al. (2008) who investigated the use of DOE in different
engineering applications. Of the 77 reviewed articles, 77% ran a
number of trials less or equal to 30 per experiment. Based on this
review, a fix budget of 35 trials per experiment is set for all
configurations and test functions. If the number of trials has
not exceeded the total budget of 35 trials, an additional trial is
performed. This process is repeated until a total of 10 runs with
different random seeds have been executed.
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Qualified
Undetermined
Non-Qualified

3 Results

In this section, the results of the benchmark study (Section
2.4) are outlined according to the following structure: In Section
3.1, preliminary results provide an overview of the analysis and
narrow subsequent examination. Subsequently, in Section 3.2,
emphasis is placed on evaluating the responsiveness of the test
functions. This offers insight into the overall
level

analysis

optimization achievable for each test function,
irrespective of specific BO configurations. The overarching
goal is to uncover the importance of selecting appropriate BO
configurations for specific test functions, while underscoring
variations in their optimization capabilities. In Section 3.3, a
detailed examination of individual BO configurations is
conducted with a focus on specific test functions. This analysis
leads to the qualification of individual kernels, acquisition

functions, and initial sampling sizes.

3.1 Preliminaries

In this Section, an initial overview of the performance of the BO
configurations is provided. The aim of these preliminary
observations is to gain a first impression of the results and
identify any emerging trends in the data, regardless of the
specific test function being examined. This analysis helps to
narrow down the focus of the study and identify areas of interest
for further investigation.

Figure 5 displays the resulting HV of all experiments
conducted on each test function, considering both noisy and
noiseless scenarios. The HV values are plotted based on two key
components: the probability of failure ps and the running time of
successful experiments r;, as depicted in Figure 3. Each test
function has the same number of points (8 kernels x
4 acquisition functions x 3 sizes x 2 noise levels = 192), and
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in some functions, they overlap. It is important to note that the
points in all three subfigures represent the same data, but are
differentiated by color labels based on the specific configuration.
The upper subfigure provides insights into the performance of
different kernels, the middle subfigure examines the impact of
various acquisition functions, and the lower subfigure explores
the influence of the initial sampling size. This evaluation yields
three main findings:

o The test functions F1, F2, and OTLCircuit consistently exhibit
higher HV values (lower values of ps and r,) in all
combinations of BO configurations. This suggests that these
functions are comparatively simpler compared to the other
test functions.

« Upon closer examination of the initial sampling sizes, it is
evident that all experiments conducted with a large initial
dataset exhibit higher running times and consequently lower
values of HV. Across all test functions, no experiment with this
configuration surpasses an HV value of 0.15, regardless of the
choice of acquisition function or kernel. This observation can
be mathematically explained by the fact that none of the
experiment points have values of 75 below 0.85. This is due
to the minimum running time achievable by the (L)-
experiments occurring at trial 30, which when divided by
the total budget of 35 trials (as explained in Equation 6),
results in a value of 0.85.

« No other obvious trend can be observed with respect to single
kernels or acquisition functions across the different test
functions. While there is a tendency of underperformance
of Matern05 for F1 or F2, this trend is not consistently
observed in all other test functions. The absence of obvious
trends, apart from the ones mentioned earlier, highlights the
need for further investigation and analysis to gain a deeper
understanding of the performance of different configurations
and their interrelationships in various test functions.

Based on these findings, the subsequent evaluation will only
include small (S) and medium (M) initial sampling sizes, excluding
large ones (L). It has been demonstrated that larger initial sampling
sizes result in lower efficiency without offering significant
advantages in robustness.

3.2 Analysis of the responsiveness of the
test functions

In this Section, the results of the responsiveness of the test
functions under optimization with the selected BO configurations
are shown. The evaluation considers the overall performance
metric HV, the robustness measured by the probability of
failure pyr, and the efficiency measured by the running time r;.
Additionally, the analysis distinguishes between noiseless and
noisy data, providing insights into the noise sensitivity of the
optimization for each test function. Section 3.2.1 addresses the
average optimization level that can be achieved for each test
function, elucidating the similarities or differences in the
optimization capability of the BO configurations. Section 3.2.2
zooms in on individual aspects of robustness and efficiency.
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3.2.1 Optimization level

The overall optimization level for each test function is depicted
in Figure 6. It presents boxplot distributions of the HV values for all
experiments, categorized by the eight test functions and
distinguishing between noiseless and noisy data. The position of
the box, indicated by the median HV value, represents the level of
optimization that can be achieved for each function. The length of
the box, represented by the interquartile range (IQR), provides
insights into the range of HV values covered by the BO
configurations. Functions with lower IQRs indicate that a wide
range of BO configurations can achieve results close to the
median HV value, indicating simplicity of the function. On the
other hand, functions with higher IQRs suggest that not all
configurations are equally effective in optimizing them, indicating
a greater variability in performance and the need for more specific
configurations. A rough grouping can be made according to the
comparison between HV median and IQR:

A. F1, F2, OTLCircuit show higher HV and smaller IQR values in
both noiseless and noisy cases.

B. F4, WingWeight show medium HV and higher IQR values,
similar in noiseless and noisy cases.

C. F3, AdaptedBranin, Borehole show lower HV and higher IQR
values and differences between noiseless and noisy cases.

We observe the following results for each of these groups:

A. The test functions F1, F2, and OTLCircuit exhibit median HV
values of approximately 0.7, with OTLCircuit having more
outliers towards lower HV values, suggesting there are some
configurations that are clearly less qualified than the others.
The IQR of all three functions is less than 0.12, indicating a
similar optimization potential with most of the BO
configurations. Notably, for these three functions, the
optimization results on noisy data appear to be similar to
those on noiseless data, suggesting a low sensitivity to noise in
these particular functions.

B. The test functions F4 and WingWeight show median HV
values around 0.5. For F4, the IQR is 0.19 in noiseless cases and
0.11 in noisy cases. In the case of WingWeight, the IQR is
0.28 for both noiseless and noisy cases, with the noiseless case
slightly skewed towards higher HV values. The long whiskers
of both functions towards lower HV values indicate the lower
performance of some BO configurations.

C. The functions F3, AdaptedBranin, and Borehole exhibit a
more heterogeneous group in terms of optimization results.
For F3, the median HV values are around 0.2, and the IQR is
approximately 0.2 in both noiseless and noisy cases, making it
the test function with the poorest overall performance. In
contrast, AdaptedBranin and Borehole exhibit median HV
values of 0.56 and 0.45, respectively, with larger IQRs of nearly
0.4 in noiseless cases. When considering noisy data, the
median HV values decrease to 0.2 for both functions, and
the IQRs reduce to approximately 0.14. Among all the
functions, the difference in performance between noiseless
and noisy cases is most pronounced for these two functions.
These observations highlight the complexity and sensitivity of
the optimization process for these particular test functions.

frontiersin.org


https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2025.1614335

Leyendecker et al. 10.3389/fmtec.2025.1614335

® RBF ® Matern05 ® Maternl5 ® Matern25
v RBF-ARD v Matern05-ARD v Maternl5-ARD v Matern25-ARD
F1 F2 F3 F4
1.0 ~
015 0.15 0.1; OV & © WS 0.15
0.8 — T ———CHeNDE D OV — oV
Vo oVED@ID W oV
0.6 \\ ~ vVese W v -
~ . vwmee v ooy
0.4 I L WV - i
wwWwe oveve -
0.2 0 Y L] @ WYV o ey @
wwy ' LR J - yvwve o N \4
0.0 — - -— e —
AdaptedBranin Borehole OTLCircuit WingWeight
1.0 - «
015 | Y ° - 0.1; YW oW 0.15 0.15
0.8 T ve ovaD @ VYV Y-V T Ve VvV VvV
L__ 8 L e 0% A\ W owvew
0.6 OO VNG YOO o VoW @ e oF ~ w-v-e
< oWmsme o Vv o © @eed vy v 0007 0 © v
0.4 v-oveer L4 o wouw oo v v » -V ¥
o VD V L[] o | e w v - o »
0.2 »-ow -« vvV-ver o veav amevev w
yewvev v vV eame o munvee o™ o W -
0.0 - - e s - - -—
0.00 025 050 075 1.00 0.00 025 050 075 100 0.00 025 050 075 1.00 0.00 025 050 075 1.00
Ts Ts Ts Ts
a
EI e UCB e PI ® NEI
F1 F2 F3 F4
1.0 ~
0.15 0.15 0.; @0 ® o @D 0.15
0.8 T T - L o T
-
0.6 o
I~ °
0.4 ¥ ® e
o>
0.2 0 @
D0 o
0.0 —— - o~
AdaptedBranin WingWeight
0.15 0.15
T 0@ O 00
® @
® e o
o0 [ ] 0000 © © L]
L4 L ®» o
® o a e o
o ee ° aye e o
oanees <o e I DD (o]
. 025 0.0 075 100 0.00 025 050 0.75 1.00
Ts Ts Ts
e S e M e L
F1 F2 F3 F4
1.0 ~
0.15 0.15 0.1; ®O® ® e W 0.15
0.8 T T — GUIDMm oD T
-
0.6 L 2
L]
0.4 L] e
[
0.2 Lld ® -
*ve o o (d [ Jd
0.0 — - - P
AdaptedBranin Borehole
1.0 « ~
015 @ o e 0.1; @ e 0.15 0.15
0.8 T e oo @ 000 o @ T T
aEDp e» o Gus 00 -
0.6 WO WO o o Dow ee
eguDba o o o e o0 L]
0.4 o 0D L] o @D o o
o am o L e« X ® o
0.2 @08 - -0 08 ® (e L3
[ & X T} o e ca@me @Ene e [ J
0.0 _— - P -
025 050 075 1.00 0.00 025 050 0.75 1.00

0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00
Ts Ts

C

FIGURE 5
HV over all test functions for different kernel functions. (@) HV over all test functions for different kernel functions, acquisition functions. (b) HV over

all test functions for different acquisition functions, and initial dataset sizes. (c) HV over all test functions for different initial dataset sizes.

while Group C functions, especially noisy cases, present the highest
complexity and varied optimization success. These findings
emphasize the influence of function complexity and noise on
BO performance. This underlines the relevance of a precise

In summary, the test functions exhibit varying levels of
optimization difficulty across three groups. Group A functions
are relatively easier to optimize, Group B functions pose
moderate challenges with no significant noise-related differences,

Frontiers in Manufacturing Technology 10 frontiersin.org


https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2025.1614335

Leyendecker et al.

Il noiseless

R s B}
e oy

"

B noisy

F1

F2

¢
‘ N“‘O

OTLCircuit Iy

F4

WingWeight
F3

AdaptedBrani

Borehole

h

0.0 0.2 0.4

HV— max!

0.6 0.8

FIGURE 6
Distribution of HV values for test functions, given noiseless and

noisy data. Higher values are better.

algorithm configuration when dealing with complex and noisy
optimization problems.

3.2.2 Robustness and efficiency

To gain insights into the robustness and efficiency in all BO
configurations, a closer look at the two components of HV is taken:
the probability of failure ps and the running time r,. Figure 7
provides visual representations of the distribution of ps and r for
each test function over all BO configurations. Keeping the grouping
defined above, following observations can be made:

A. F1 and F2 consistently achieve a 100% success rate (ps = 0.0)

across almost all configurations, indicating their high
in optimization, independent of the BO
configuration used. Similarly, the OTLCircuit function
a 90% rate with 75% of the
configurations, while the outliers should be considered as

robustness

demonstrates success
non-robust configurations. In terms of efficiency, these
three functions can be effectively optimized with 75% of
the configurations, as they are able to reach the predefined
tolerance level within 0.3 of the total budget. These
observations hold true for both noiseless and noisy cases,
highlighting the resilience of these functions to noise
interference.

. F4 exhibits an overall efficiency of around r; = 0.46 across all
configurations. While there are some configurations that are not
qualified in terms of robustness, most of them perform well in
this regard. On the other hand, the WingWeight function shows
anarrow IQR for the running time, suggesting that the majority
of configurations achieve a high efficiency around r, = 0.4.
However, there are some outliers indicating that certain
configurations may struggle to reach optimal efficiency. In
terms of the probability of failure, WingWeight displays a
wider IQR, indicating a greater variation in robustness across
different BO configurations. This highlights the importance of
carefully selecting the appropriate BO configuration for this
particular test function, as there can be significant differences in
performance and robustness among the various configurations.

. In terms of efficiency, both AdaptedBranin and Borehole
exhibit similar behavior. The median values of the running
time (r;) approximate to 0.4 for noiseless cases and shift
towards 0.6 for noisy cases. Furthermore, all configurations
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achieve these efficiency levels with a relatively narrow
interquartile range (IQR) of less than 0.17. On the other
hand, the F3 function appears to be less affected by noise
in terms of efficiency, with median r, values of around 0.6 for
both noiseless and noisy cases.

When it comes to robustness, noiseless AdaptedBranin and
Borehole show a probability of failure (ps) of 0.1 with 50% of
the BO configurations, indicating relatively high robustness.
However, the remaining configurations exhibit lower levels of
robustness, as reflected in the wider IQR values. In the noisy
cases, AdaptedBranin and Borehole have p; median values of
0.5, with IQR values of 0.2 and 0.4, respectively. For the
F3 function, the probability of failure is consistently 0.5 in both
noiseless and noisy cases, with wider IQR values of 0.6 and 0.4,
respectively.

From these observations, it can be concluded that the selection
of qualified BO configurations is decisive to achieve a high level of
robustness for these test functions. Specifically, for AdaptedBranin
and Borehole, certain configurations demonstrate good
performance in terms of efficiency and robustness, while others
may lead to suboptimal results. Therefore, careful consideration of
the specific BO configuration is essential to ensure effective
optimization for these test functions.

Table 1 provides the numerical values of the results discussed
earlier, including the median values and IQRs (in parentheses) of
HV, py, and r; for each test function, keeping the established
groups. These values offer a quantitative representation of the
overall performance of the BO configurations on the selected test
functions. It can be observed that F1 shows the best optimization
results with highest HV values, while F3 exhibits the worst
performance under all test functions. Additionally, a notable
difference can be noticed between the noiseless and noisy cases
for AdaptedBranin and Borehole, particularly in terms of
robustness. The values for probability of failure in the noisy
cases are substantially higher compared to the noiseless cases,
indicating that the presence of noise has a significant impact on the
performance of BO configurations on these functions. This
highlights the need to carefully consider the influence of noise
when optimizing these test functions using BO.

Following conclusions can be drawn out of this analysis:

A. F1, F2, and OTLCircuit can be considered relatively simple
functions in both noiseless and noisy cases. Regardless of the
specific BO configurations used (excluding outliers), these
functions exhibit robustness and efficiency.

. F4 and WingWeight represent the next level of complexity.
There are no significant differences between noiseless and
noisy cases. While most configurations achieve the desired
efficiency, there are some configurations that lack the desired
robustness.

. F3, AdaptedBranin, and Borehole are the most complex
functions in the problem space. They exhibit lower
efficiency levels compared to other functions. Moreover, the
behavior differs significantly between noiseless and noisy
cases, and certain BO configurations demonstrate higher
levels of robustness and efficiency. This underscores the
importance of examining the configurations in greater detail.
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3.3 Analysis of optimization performance of
BO configurations

After examining the general responsiveness of the test functions
in Section 3.2, a more detailed analysis is conducted on the
individual BO configurations. The objective is to determine the
appropriateness of each configuration for optimizing specific test
functions, following the systematic approach described in Section
2.4.3. Streamlining this process, the analysis seeks to identify
whether certain single kernels, acquisition functions, or initial
sampling sizes can be clearly classified as qualified or non-
qualified, irrespective of their combination. The thresholds for
each test function are shown in Figure 8. Configurations with
HV values inside the red are classified as non-qualified.
Configurations with HV values in the yellow are classified as
undetermined. Configurations with HV values in the green area
are classified as qualified for optimization. For each test function, the
end of the green area marks the maximal optimization achieved by
the best BO configuration on that function. The test functions are
grouped according to Section 3.2, which provides insights into the
complexity of optimizing each test function.

Group A (F1, F2, OTLCircuit) has a wide non-qualified area,
indicating that optimizations under HV = 0.7 are not acceptable
for this kind of functions and that most of the BO configurations
achieve an optimization level of higher than HV =0.75. The
thresholds of second group B (F4, WingWeight) shift in the
middle, with wider undetermined areas. This suggests that the
best optimization to achieve with appropriate BO configurations
lies on the qualified area with values of HV between 0.6 and 0.7,
while choosing an inappropriate BO configuration results in HV
values between 0 and 0.46. Group C (F3, AdaptedBranin,
Borehole) presents the most complex scenario. With significant
differences between non-qualified and qualified areas, the
optimization of these functions is expected to be lower, with
varying ranges between 0.55 and 0.7 depending on the function.
This leads to the fact that choosing the right combination of BO
configuration is essential for achieving the high optimization
possible. To address these inquiries, a detailed analysis of
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F3 and Borehole in Sections 3.3.1 and 3.3.2 is conducted.
Further results for the other test functions can be found in
Supplementary ~ Appendix 1.3. By analyzing the BO
configurations in their different combinations and classifying
them into the qualification areas, an assessment on the single
kernels, acquisition functions and initial sampling sizes can be
made. This is based on the statistical procedure described on
Section 2.4.3, which reduces the non-qualified configurations
when they present non-optimal results irrespective of their

combination.

3.3.1 F3 - Analysis and classification

In this section, the results for F3 are presented. The classification
ranges are as follows: non-qualified, [0.0, t,,q] undetermined, ]t,,q, tq[
and qualified, [tq,0.86],with the thresholds tug = 0.15 and ty = 0.31.
The configurations falling within each area are identified and
analyzed to provide insights into their performance on the
F3 test function. In Figure 9a, the results of the classification
approach for the noiseless F3 function are depicted. Among the
kernels, RBF, Matern05, and Maternl5 are classified as non-
qualified, as are UCB and PI among the acquisition functions,
and medium (M) initial sampling size. After excluding these
configurations, the following configurations can be classified as
qualified: small (S) initial sampling size, EI and NEI for the
acquisition and all with  ARD. The
classification for the Matern25 kernel remains undetermined.

functions, kernels

In Figure 9b, the results of the classification approach for the
noisy F3 function are presented. In this case, all isotropic kernels are
excluded, as well as UCB, PI, and the M initial sampling size. The
overall optimization performance is lower than in noiseless cases.
Among the remaining conﬁgurations, RBF-ARD, Maternl15-ARD
and Matern25-ARD among the kernels, NEI among the acquisition
functions and small initial sampling size can be classified as
qualified. The classification for the rest of the configurations
remains undetermined. Indeed, it is interesting to observe that
the same trend can be observed between noiseless and noisy
cases for the F3 function. The noisy case shifts all values into
lower optimization levels, indicating the impact of noise on the
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TABLE 1 Overview of HV, p¢, and r; median values for each test function and BO configurations (IQR values in parenthesis).

Group Test function HV T prl rs |
Noiseless Noisy Noiseless Noisy Noiseless
F1 0.71 0.71 0.00 0.00 0.29 0.29
F1 (IQR) (0.11) (0.10) (0.00) (0.00) (0.11) (0.10)
F2 0.70 0.70 0.00 0.00 0.30 0.30
* F2 (IQR) (0.09) (0.07) (0.00) (0.00) (0.09) (0.07)
OTLCircuit 0.70 0.70 0.00 0.00 0.29 0.29
OTLCircuit (IQR) (0.10) (0.06) (0.10) (0.10) (0.05) (0.08)
F4 0.53 0.46 0.00 0.10 0.46 0.48
F4 (IQR) (0.19) (0.11) (0.13) (0.20) (0.09) (0.07)
’ WingWeight 0.50 0.48 0.1 0.1 0.38 0.43
WingWeight (IQR) (0.28) (027) (030) (0.50) (0.11) (0.11)
F3 0.20 0.18 0.50 0.50 0.61 0.60
F3 (IQR) (023) (0.19) (0.60) (0.40) (0.15) (0.16)
AdaptedBranin 0.56 0.20 0.10 0.50 0.40 0.60
¢ AdaptedBranin (IQR) (0.41) (0.12) (0.60) (020) (0.14) (0.15)
Borehole 0.45 0.20 0.05 0.50 0.46 0.63
Borehole (IQR) (0.36) (0.16) (0.63) (0.40) (0.17) (0.17)
performance of the BO configurations. However, despite this shift, — area, with no single configuration being qualified for

the clear recommendations for qualified configurations remain
consistent. For both noiseless and noisy cases, kernels with ARD,
EL or NEI and a small (S) initial sampling size are recommended for
optimizing the F3 function. This highlights the robustness and
effectiveness of these configurations, making them reliable
choices for practical applications.

3.3.2 Borehole - Analysis and classification

In this section, the results for Borehole are presented. The
qualification thresholds are set to ,, = 0.19 and f, = 0.54 with
minimal and maximal HV values of zero and 0.86. The
configurations falling within each area are identified and
analyzed to provide insights into their performance on the
Borehole test function. Figure 10a illustrates the results of the
classification approach for the noiseless Borehole function. Based
on the analysis, the Matern05 kernel and the PI acquisition function
are classified as non-qualified. Among the initial sampling sizes,
both small (S) and medium (M) sizes present similar results. After
excluding the non-qualified configurations RBF-ARD, Maternl5-
ARD, and Matern25-ARD are classified as qualified. All other
configurations fall into the undetermined area, indicating that
their performance on the Borehole function is lower and requires
a dedicated combination of the other configuration variables.

In Figure 10b, the results of the classification approach for the
noisy Borehole function are presented. According to the analysis, the
isotropic RBF and Matern05 kernels, as well as the PI acquisition
function, are classified as non-qualified for the noisy Borehole
function. All other configurations fall into the undetermined

Frontiers in Manufacturing Technology 13

optimization with higher values than HV = 0.56. However, it is
worth noting that there is one outlier at HV = 0.48, indicating that
the combination of Matern15-ARD, NEI, and small initial sampling
size achieves a comparatively higher performance, although none of
these configurations can be single classified as qualified. There is a
clear difference in the reduction of performance between the
noiseless and noisy cases. The noisy Borehole function shows a
significant decrease in optimization performance compared to its
noiseless counterpart. However, the differences between the single
configurations in the noisy case are lower than in the noiseless one.

4 Discussion

In this section, the results for all test functions are discussed. We
evaluate the performance of the BO configurations on all test
functions and provide actionable guidelines. Table 2 presents the
classification results of all single BO configurations on the noiseless
and noisy test functions. While the classification of BO
configurations is performed for each individual test function,
some general observations can be made that apply across
different test functions. These general observations provide
valuable insights into the overall performance of certain
configurations, enabling users to make informed decisions and

tailor their BO algorithms more effectively to specific
optimization tasks. In the following, the results are discussed
individually for kernels, acquisition functions, and initial

sampling sizes.
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4.1 Kernels

Across the test functions, the Matern05 kernel is consistently
classified as non-qualified, indicating its poor performance in
optimizing the selected problems. However, in the case of
AdaptedBranin and F4, Matern05 is categorized as undetermined,
suggesting that its performance is not clearly better or worse than
other configurations. For AdaptedBranin, it is undetermined for both
noiseless and noisy cases, and for F4, it is undetermined only for noisy
cases. This indicates that the performance of Matern05 on these two

Frontiers in Manufacturing Technology
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functions is not as straightforward as in other cases, and it may require
further to understand its behavior. Overall,
Matern05 shows inferior performance across most test functions,
making it a less preferable choice for optimizing these problems.

investigation

Matern05-ARD performs poorly in all test functions and is never
classified as the best option in both noiseless and noisy cases. For group
C, it seems to be a plausible option in noiseless cases, but not a good
option in noisy ones. Its overall performance is consistently inferior
compared to other configurations, reinforcing the observation that
Matern05-ARD is not a general recommended choice for optimizing
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the test functions. Given its consistently poor performance, it is
advisable to avoid using Matern05-ARD as a kernel configuration
RBF  performs
satisfactorily in optimizing the simple functions of group A. In

when applying BO to these test functions.

group B, it is classified as qualified for noiseless functions and
undetermined for noisy ones. However, for the complex group C,
RBF encounters challenges in optimizing F3, remains undetermined for
AdaptedBranin, and is undetermined for noiseless Borehole and non-
qualified for its noisy case. Overall, RBF shows decent performance for
simple functions but struggles in more complex and noisy scenarios.
The RBF-ARD and Matern25-ARD kernels do indeed exhibit similar
behaviors in many cases. For group A, they both perform well on both
noiseless and noisy functions. However, for groups B and C, they show
the trend of performing worse on noisy functions compared to noiseless
ones. Matern25-ARD struggles particularly on the noisy functions F4,
WingWeight, and AdaptedBranin, being consistently classified as non-
qualified in these cases. On F3 and Borehole, Matern25-ARD is
classified as qualified in noiseless cases and undetermined in noisy
cases. On the other hand, RBF-ARD achieves the highest performance
on F3 in both noisy and noiseless cases. It generally presents a qualified-
undetermined classification in noiseless-noisy cases and is only
classified as non-qualified in the noisy case of F4. Overall both RBF-
ARD and Matern25-ARD kernels show potential for optimizing
noiseless functions, while presenting an acceptable performance on
noisy functions.

Matern25 performs well in group A (simple functions) but
encounters difficulties in handling noisy cases for the more

Frontiers in Manufacturing Technology

complex groups B and C. It is classified as undetermined for
the Borehole function in both noiseless and noisy cases. Similar
to RBF-ARD and Matern25-ARD, the performance of Matern25 is
mixed, with drops in optimization observed in noisy conditions.
While Matern25 shows satisfactory performance for simple
functions, its ability to handle noise and complexity diminishes
for more challenging optimization problems. This findings go
hand in hand with the ones of Palar and Shimoyama (2019)
and Le Riche and Picheny (2021). Maternl5 and Maternl5-
ARD configurations show promising performance. They are
classified as qualified for most test functions, offering good
The Maternl5 kernel the
anisotropic one in group B (F4 and WingWeight), while the
better (F3,
AdaptedBranin, and Borehole). Indeed, and as a general
conclusion, group B seems to be optimized better by isotropic

results. isotropic outperforms

anisotropic  version performs in group C

kernels and group C by anisotropic ones. Further investigation
about the problems’ landscape is needed, to adequately
recommend a certain kernel for a given problem. However as a
general recommendation, Maternl5 and Matern15-ARD seem
suitable for optimizing a wide range of problems.

4.2 Acquisition functions

Among all acquisition functions, PI consistently performs
worse than all the other options, with the exception of
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TABLE 2 Classification for noiseless (0) and noisy (1) test functions. Green: qualified, yellow: undetermined, red: non-qualified. Kernels with ARD are grayed
out because, in one-dimensional functions like F2, there is no difference between isotropic and anisotropic kernels.
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F4 where it is classified in noiseless and noisy cases as
undetermined. In the noisy case, UCB and EI are worse,
considered non-qualified. These observations highlight the
general recommendation of not using PI as a default choice for
an unknown process without further investigation. This finding is
consistent with previous works Benjamins et al. (2022); Ath et al.
(2021), which have also explained the poor performance of PI due
to its greedy nature.

UCB has a better performance than PI, but still encounter
difficulties in several functions. In both noiseless and noisy
F1 and F3 is UCB classified as non-qualified, as well as for noisy
F4. It remains undetermined for AdaptedBranin and Borehole and
further simpler noisy functions. The performance of UCB could be
due to its fixed -parameter, which may prioritize exploitation over
exploration, limiting its ability to effectively explore the search space
and find the global optimum. As a result, UCB is generally not
recommended as a default choice for an unknown process without
investigating the influence of the § parameter and carefully tuning it
for specific optimization tasks. This finding contradicts the
outcomes of studies by Qin et al. (2021) and Diessner et al.
(2022), who reported better results with UCB than with EL
Further investigation must be made regarding this acquisition
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function in production fields. Among all acquisition functions, EI
and NEI stand out as the best performing options. EI performs
consistently well in all test functions, but it encounters difficulties in
optimizing noisy F4 and is undetermined in noisy WingWeight,
F3 and both noiseless AdaptedBranin and Borehole. On the other
hand, NEI shows the best performance across all test functions, both
in noiseless and noisy cases, and although is undetermined in some
functions, it is not outperformed by any other acquisition function.
As a result, NEI appears to be the better default choice for new,
unknown processes, providing robust and efficient optimization
capabilities.

4.3 Initial sampling sizes

In group A, the small initial sampling size (S) clearly
outperforms the medium one (M) in both noiseless and noisy
cases. Similarly, in group C, the smaller sampling size tends to
perform better than the medium one. Only in the noisy cases of
group B, medium initial sampling seems to represent a better option
than small initial sampling sizes. This could be due to the lack of
exploration at the beginning of the experiment. In general, based on
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the performance across six of eight test functions (groups A and C),
the best option would be to begin with a small (S) initial dataset and
prioritize the efficiency of the algorithm, underlining the state of the
art presented in the introduction. If, during the course of the
experiment, it is observed that the optimization is not sufficient,
a couple of exploratory trials could be implemented in the mid-time
to compensate for the possible lack of exploration at the initial steps.
Such adaptive approaches to enhance a better balance between
exploration and exploitation are under investigation Benjamins
et al. (2022); Hoffman et al. (2010).

4.4 Summary of actionable guidelines for
applying BED in manufacturing

In summary, we deduce the following findings and guidelines
regarding the configuration of the kernel, acquisition function, and
initial sampling size. In general, it appears that there is no one-fits-
all solution for the different optimization problems, but rather that
the different characteristics of the optimization problems place
different demands on BO configuration. For kernels, RBF presents a
reasonable choice for simple test functions, while we recommend
Maternl15-ARD as a reasonable default option for complex
optimization problems. In principle, it is advisable to use
anisotropic (ARD) kernels for more complex problems, such as
those typically encountered in manufacturing. Since noise
negatively impacts optimization performance, process and
measurement noise should be minimized by precisely calibrating
both actuators and sensors of the manufacturing process. With
regard to acquisition functions, it appears that the exploration
behavior has a significant influence on optimization performance,
especially in the case of complex problems. Based on their
exploratory behavior, we recommend EI and NEI as qualified
default options, while PI and the investigated UCB configuration
are not suggested. In terms of initial sampling size, we recommend
keeping the additionally randomly generated experiment data small
and instead leaving the search for the optimum to the BO algorithm
with a sufficiently exploratory acquisition function. Already
existing datasets for which no further experiments need to be
conducted should nevertheless be utilized to initialize the BO
algorithms. In addition, it is decisive to perform screening and
characterization trials prior to optimization to determine the most
critical parameters and associated parameter ranges, thus keeping
the dimensionality of the optimization problem as small but also as
influential as possible.

5 Conclusion

Optimization of production processes is an ongoing challenge
for manufacturing companies in order to continuously improve
product quality and process productivity, increase the overall
thus
competitive. Process optimization is becoming more complex

equipment effectiveness, and remain economically
given that a rising number of process parameters and objectives
must be precisely adjusted to each other (e.g., due to the growing
efficiency concerns, tighter quality specifications, and shorter

product life cycles). Traditional experimental design methods
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are no longer able to cope with the increasing complexity of
(BO),
Bayesian Experimental Design (BED) has evolved as an

process optimization. With Bayesian Optimization
adaptive, data-driven approach to efficiently find optimal
the

domain. However, to successfully utilize BO in

parameters in black-box optimization problems in
engineering
engineering use-cases, BO algorithms have to be precisely
the the

performance of individual configurations of the BO algorithm

configured to given problem. To investigate
for different optimization problems and to unravel insights that
allow the derivation of practical guidelines, we designed and
conducted a BED benchmark study comprising a total of
15,360 experiments.

As a result of our study, we present an extensive performance
and robustness analysis that unveils significant performance
differences between individual BO algorithms on different
optimization problems. The results of the benchmark study
provide empirical references and actionable guidelines for the
configuration of BED. The study advocates BED as an adaptive,
data-efficient tool for optimizing process parameters, achieving 95%
precision within a budget of 35 iterations using the best-qualified
configurations at various levels of complexity. We show that there is
no universally optimal BO configuration. For complex optimization
problems, particularly in manufacturing, anisotropic kernels such as
Matern15-ARD are recommended, while exploration-oriented
acquisition functions like EI or NEI offer robust default choices.
Randomly generated initial experiments should be kept small and
instead leave the search for the optimum to a sufficiently exploratory
BO algorithm.

Furthermore, the results underscore the significant role of
benchmark studies in not only identifying optimal BO
configurations but also highlighting an existing research gap in
terms of understanding the interplay between the characteristics of
production processes and BED performance. The performance of
the BO configuration unveils distinct intrinsic patterns in various
test functions, indicating shared responses among certain test
functions to the optimization process. Importantly, the results of
our study fails to unravel a clear relationship between the
characteristics of optimization problems and the performance of
BO configurations. This suggests that current characteristics do not
adequately capture the inherent patterns of the response of test
functions to optimization. A focus of applied research must
therefore lie on the investigation and identification of production
process and data characteristics that correlate strongly with the
performance of different BO algorithms, allowing one to make a
profound configuration decision for successfully applying BED to
new optimization problems. The limitations of our study include its
focus on single-objective optimization and that it does not include a
further examination of different hyperparameter sets for both
kernels and acquisition functions. To further establish BED in
production engineering practice and to accelerate process
optimization and reduce development costs, our further research
focuses on the collaboration between BED and domain experts
comprising the integration of expert knowledge into BED. We
examine the extension to multi-objective optimization cases and
investigate the communication between domain experts to increase
comprehensibility, and thus facilitate user acceptance and
widespread adoption in industry applications.
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