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1 Introduction

The absence of direct evidence for new light particles beyond the Standard Model (SM)
at the Large Hadron Collider (LHC) has motivated a campaign of indirect searches in
the SM Effective Field Theory (SMEFT) framework. In SMEFT, new-physics effects are
parametrised through a series of higher-dimensional operators modifying the interactions of
the SM particles. Thus, SMEFT provides a systematic and model-agnostic way of probing
new physics in the absence of new light states. A key strength of the SMEFT framework
lies in its ability to correlate effects across different sectors of the SM interactions. In order
to fully exploit its potential in identifying signatures of physics beyond the SM, global
analyses and interpretations within the SMEFT paradigm have become essential, prompting
significant ongoing efforts [1–8].
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Such global interpretations are crucial, as they can reveal potential signs of new physics
or, at the very least, place constraints on the energy scale at which new physics could
appear by setting bounds on the Wilson Coefficients (WCs) of higher-dimensional operators.
Additionally, global interpretations help identify sectors with greater potential for deviations
from the SM by highlighting the least constrained operator classes. Notably, operators
involving four heavy-quark fields stand out as among the least constrained by current
experimental data. These induce contact interactions of four top quarks (tt̄tt̄), four bottom
quarks (bb̄bb̄), and interactions involving a top-quark pair with a bottom-quark pair (tt̄bb̄).

Results from global fits indicate that the new-physics scale associated with this class of
operators can be as low as a few hundred GeV; see, for example, the recent global analysis
by the SMEFiT collaboration [5]. These loose constraints arise because, at tree level, these
interactions are predominantly probed by tt̄tt̄ or tt̄bb̄ production, which suffer from large
experimental uncertainties [9–11]. Moreover, these inclusive measurements are not sufficient
to distinguish different colour and chirality structures in contact interactions, leading to
flat directions that weaken the constraints.

These findings-together with model-building arguments suggesting that new physics might
be top-philic [12–17]–have motivated indirect probes of the four-heavy contact operators via
their higher-loop contributions to observables that are measured more precisely than multi-
top-quark production. In particular, the effects of four-heavy-quark operators on electroweak
precision observables (EWPO) [18–20], single-Higgs production in gluon fusion [21, 22],
top-quark-pair production [23, 24] and flavour observables [20, 25] have been computed.
These studies demonstrate that such indirect probes supply information complementary to
four-top-quark production and must be included to obtain tighter limits on the strength
of these interactions.

In this work we carry out a fit that combines direct and indirect probes, thereby exploiting
their complementarity. Specifically, we include leading-order (LO) contributions to tt̄tt̄ and
tt̄bb̄ production; next-to-leading-order (NLO) contributions to tt̄ and tt̄H production; two-
loop effects in gluon-fusion Higgs production (gg → H) and Higgs decays, together with
the two-loop contributions to EWPO.

The chiral nature of the four-fermion contact interactions in the SMEFT demands
particular care in loop computations, because the Dirac algebra necessarily involves γ5. Since
γ5 is intrinsically four-dimensional, one must define a consistent continuation to d = 4− 2ϵ

dimensions. In this work, we adopt two distinct continuation schemes: the naïve dimensional
regularisation (NDR) scheme [26] and the Breitenlohner-Maison-’t Hooft-Veltman (BMHV)
scheme [27, 28].

Provided that each scheme is implemented consistently, any differences in EFT matrix
elements can be traced either to the scheme-dependent definition of the WCs [22] or to
finite terms specific to the chosen renormalisation prescription [29]. This is due to the fact
that NDR and BMHV predictions can be different in loop computations. We demonstrate
this explicitly for the two-loop process of single-Higgs production and decay mediated by
four-heavy-quark operators: in a dedicated fit, the bounds extracted for the WCs differ
between the NDR and BMHV schemes. Such scheme dependence has been studied also in the
context of di-Higgs production at the LHC [30], flavour physics [31–35]. It is worth noting
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that the choice of the γ5 continuation scheme is not the only source of scheme dependence
in loop computations [36–38].

The paper is organised as follows: in section 2, we state our flavour assumptions, introduce
the SMEFT operators relevant to this study, and outline the computational setup. Section 3
presents our predictions for the processes under consideration and summarises the analytic
expressions for the four-top-quark operators that modify the ggH and γγH couplings in both
the NDR and BMHV γ5 schemes. The scheme dependence of the resulting bounds on the
WCs is examined in section 4. Our fitting method and core results are detailed in section 5.
Finally, section 6 summarises our findings.

2 Theoretical framework and computation setup

In this section, we discuss the SMEFT theoretical employed, along with the technical details
underlying our computations.

2.1 SMEFT framework

A generic SMEFT Lagrangian, including terms up to O(Λ−4), can be written as

LSMEFT = LSM +
∑

i

c
(6)
i O(6)

i

Λ2 +
∑

j

c
(8)
j O(8)

j

Λ4 +O
(
Λ−6) , (2.1)

where c
(D)
i and O(D)

i are the WCs and SMEFT operators of mass dimension D, respectively,
and Λ denotes the scale of new physics. Restricting to the dimension-six operators, the
SMEFT prediction for cross section can be parametrised as

σSMEFT = σSM + σ
(i)
int

ci

Λ2 + σ
(i)
quad

c2i
Λ4 + σ(i,j)

cross
ci cj

Λ4 . (2.2)

Here σint originates from the interference between the SM and dimension-six SMEFT ampli-
tudes scaling as Λ−2, while σquad and σcross denote the diagonal (c2i ) and off-diagonal (cicj)
quadratic contributions scaling as Λ−4. An analogous parametrisation will be adopted for
the partial widths, Γ. In all our results we set Λ = 1TeV.

We use a specific flavour assumption of the SMEFT focused on top-quark interactions:

U(3)l × U(3)e × U(2)q × U(2)u × U(3)d ≡ U(2)2 × U(3)3, (2.3)

where the subscripts denote the five-fermion representations of the SM. This minimal
relaxation of the U(3)5 group allows for top-quark-chirality-flipping interactions, such as
dipole interactions and modifications to the top-Yukawa coupling. In the widely-used
Warsaw basis [39], the four-heavy subclass of dimension-six four-fermion operators are defined
as follows:

Q1(ijkl)
qq = (q̄iγ

µqj)(q̄kγµql), Q3(ijkl)
qq = (q̄iγ

µτ Iqj)(q̄kγµτ Iql),
Q1(ijkl)

qu = (q̄iγ
µqj)(ūkγµul), Q8(ijkl)

qu = (q̄iγ
µT Aqj)(ūkγµT Aul),

Q(ijkl)
uu = (ūiγ

µuj)(ūkγµul),
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where only third-generation quark fields are understood and we have used the notation Q to
denote operators written in said Warsaw basis, with the corresponding WCs denoted as Ci.
However, in this work, we use operators aligned with the dim6top [40] and SMEFTatNLO [23]
conventions, hereafter referred to as the ‘top basis’ — in which the operators are written
as Oi with Wilson coefficients ci. The translations of four-heavy coefficients at tree level
from the Warsaw basis to the top basis are as follows:

c1QQ = 2C(1)
qq − 2

3 C(3)
qq , c1Qt = C(1)

qu ,

c1tt = C(1)
uu , c8QQ = 8C(3)

qq ,

c8Qt = C(8)
qu .

(2.4)

The corresponding state-of-the-art constraints are reported in the recent global fit of ref. [5].
We note here that, in all our computations, we adopt the definition of the four-heavy
operator, O8

QQ, in terms of Warsaw-basis operators, i.e. O8
QQ = Q(3)

qq /8 + Q(1)
qq /24, rather

than O8
QQ = 1

2(Q̄γµT AQ)(Q̄γµT AQ). The two expressions differ by an evanescent operator,
as also discussed in ref. [20]. Numerical results can differ between the two definitions when
the evanescent operator contributes. All our results are consistent with the former definition,
and we will comment on this further.

2.2 Computation setup

For all our predictions, we utilise MadGraph5_aMC@NLO [41] and the SMEFT@NLO [23] package,
with the exceptions being gg → H, for which we employ the analytic expression given in
ref. [22] and the EWPO, for which we use the expressions in eq. (3.1) extracted from [19, 20]

— see dedicated discussions below. The parton distribution functions (PDF) set NNPDF3.1 in
the five-flavour scheme at NLO with αs(mZ) = 0.118 [42] is used as input for all Monte Carlo
(MC) simulations through the LHAPDF interface [43]. All computations are carried out in the
GF scheme [44, 45], which is recommended for SMEFT analyses by the LHC EFT WG [46].
The Fermi constant value is set to GF = 1.16637 × 10−5GeV−2. The masses of the Higgs
boson and the top quark are set to mH = 125GeV and mt = 172GeV, respectively.

As will be relevant later, it is important to note that in SMEFT@NLO [23], in d ̸= 4
dimensions, γ5 is treated as anti-commuting, and the cyclic property of Dirac matrices traces
is not maintained following the KKS scheme [47]. The latter is understood to be equivalent
to the NDR scheme supplemented with a fixed reading point.

The factorisation and renormalisation scales, µF and µR, are set to half of the sum of
the masses of the final state particles. The scale µEFT introduced in the counterterms of
the WCs is set to µR to ensure MS renormalisation for the EFT poles [24]. The effects of
renormalisation group equations (RGEs) on the WCs are not considered in this work, and
we interpret the WCs at a typical electroweak (EW) scale. We refer to refs. [48–51] for
RGE effects in this context. Considering the EWPO at scale Q ∼ mZ and four-top-quark
production at Q ∼ 2mt, we adopt scales within a factor of four of each other and thus
expect RGE effects to be under control.
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3 Studied processes

In this section, we review the characteristic features of the LHC processes analysed in this
work: four-top-quark production; top-quark pair production; top-quark pair production in
association with a Higgs boson; single-Higgs production with its subsequent decay. Finally,
we discuss the EWPO predictions employed in our analysis.

We keep our discussion of top-quark processes concise, since these computations are
already well established and extensively discussed in the literature. For the EWPO predictions,
however, we explicitly report the individual contributions to each of the WCs, as we are
not aware of any previous work where this has been done. In section C, we provide the
details of how these contributions were extracted using the EWPO two-loop results of ref. [20].
Finally, our treatment of single-Higgs production is comparatively more extensive, as we
use it to illustrate the emergence of the γ5−scheme dependence in the computation — an
aspect that is central to the discussion in the following section. All results discussed in
this section are presented in the NDR scheme, unless explicitly stated otherwise, as in the
context of single-Higgs production.

3.1 Four-top-quark production

Our pp → tt̄tt̄ predictions are listed in table 3 of section B. As demonstrated in ref. [52],
subleading terms stemming from the interference of four-fermion operators with weakly
mediated SM amplitudes play a non-negligible role; all such contributions are therefore
included in our calculation. It is worth noting that, unlike tt̄ production, the richer colour
structure of the pp → tt̄tt̄ process allows colour-singlet operators to interfere with the QCD
SM amplitudes already at LO.

In the pure SM, subleading EW contributions almost exactly cancel among themselves [53]
making the leading NLO QCD prediction highly reliable. In the EFT, however, such
cancellation is not guaranteed because the SMEFT operators alter the kinematic structure of
the amplitudes. A fully consistent NLO prediction in the SMEFT would thus require the
complete set of NLO QCD and EW corrections — an undertaking that is presently beyond
the reach of existing automated tools. Therefore, we employ only tree-level predictions
for this process.

3.2 Top-quark pair production (and in association with a Higgs)

In pp → tt̄(H), four-fermion operators that involve a third-generation doublet contribute at
tree level through b-quark-initiated amplitudes. The interference of colour-singlet four-fermion
operators with the SM vanishes at tree level when only purely QCD-induced amplitudes are
considered [54], because the top quarks are always produced in a colour-octet configuration.1

At NLO in QCD, however, both real and virtual corrections alter the colour flow and can
induce a non-zero interference for colour-singlets.

Inclusive predictions for all processes as well as the differential predictions in the Higgs
boson transverse momenta, pH

T , for both the SM and the SMEFT are collected in tables 2
1For weak-mediated Born amplitudes, i.e. tt̄ production via an s-channel weak boson, colour-singlets

can already interfere at LO. These contributions are generally expected to be subdominant and are not
considered here.
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and 3 of section B.2 The SMEFT results are separated into linear, O(Λ−2), and (off-) diagonal
quadratic, O(Λ−4), terms. As previously mentioned, at LO, the operators under study
contribute only through b-quark-initiated channels so the diagonal-quadratic piece from
c1tt vanishes. Because c1tt first appears at one loop, obtaining its quadratic contribution
would require squaring the loop amplitudes rendering it beyond the perturbative order
considered in this work.

We observe that c1Qt dominates the SMEFT corrections at NLO, providing by far the
largest linear contribution to the cross section. This is the case in both tt̄ and tt̄H production.
The dominance of this contribution can be traced back to cancellations among different
partonic channels and phase-space regions for all coefficients except c1Qt [23]. Moreover,
the contribution of the right-handed four-top-quark operator, O1

tt, features some strong
cancellation between the gluon- and quark-initiated channels in tt̄H production. This
cancellation amplifies the scale dependence and results in sizeable QCD uncertainties for
the linear contribution, as illustrated in table 3. The same pattern is visible differentially
in one of the pH

T bins in table 2. In tt̄ production, this effect is absent in the inclusive rate.
Moving to the off-diagonal quadratic terms, at LO, interference between colour-singlet and
colour-octet structures — whether between SM and EFT amplitudes or between two different
EFT operators — vanishes exactly, and so only singlet-singlet and octet-octet combinations
survive, as shown in table 3. At NLO, real emissions or virtual gluon exchange can mix
the colour flows, generating singlet-octet cross terms which are numerically tiny-cross terms
consistent with zero at the 2σ level are therefore omitted from the tables for clarity.

Finally, in figure 1, the differential distributions of the top-quark-pair invariant mass,
mtt̄, and the Higgs transverse momentum, pH

T , are displayed in the left and right panels,
respectively. For O(1) WCs, the four-heavy operators modify the SM prediction by at most
the percent level. This mild impact is expected, given both the one-loop suppression and the
small b-quark parton density driving these contributions. The dominant correction comes
from O1

Qt: its contribution is significant in the low-invariant-mass region of the tt̄ spectrum
while it induces an essentially flat shift in the pH

T distribution. All other operators yield
sub-percent effects; in some kinematic bins their contributions even change sign, as indicated
by the dashed curves in the figures.

3.3 Electroweak precision observables

Our EWPO predictions are obtained at the two-loop level leveraging the work of ref. [20] and
reported here in eq. (3.1). These results are quoted in the NDR scheme. It is also important
to emphasise that all EWPO results were extracted in the original Warsaw basis from ref. [20].
These results are expected to be consistent with our SMEFT@NLO calculations. Although the
latter employs the rotations defined in eq. (2.4), it ultimately remains formulated in the
Warsaw basis. In summary, extracting the EWPO results directly in either the original
Warsaw basis or the top basis is not expected to affect the WCs contributions, with the
sole exception of the four-heavy colour-octet operator. The original Warsaw basis choice
for said operator will differ by an evanescent contribution compared to its contribution

2Differential predictions in the top-quark-pair invariant mass, mtt̄, for tt̄ production are omitted here for
brevity, but can be provided upon request.
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Figure 1. Differential distributions of the top-quark-pair invariant mass in tt̄ (left) and of the Higgs
transverse momentum in tt̄H (right). The curves show the linear SMEFT contributions of the five
four-heavy operators, compared to the NLO SM prediction. The absolute values are plotted, and the
dashed lines indicate where the interference becomes destructive — that is, where the contributions
are negative.

defined with two colour-octet currents-see discussion below eq. (2.4). The reason is due to
the mapping in section 2.1 being a tree-level one (cf. ref. [20]). We further note that this
evanescent term can be numerically significant, and a substantial shift in the corresponding
contribution would be expected had the results in the top basis conventions of ref. [20]
been employed from the outset.

δΓbb̄
Z = 9.5412× 10−4 c1QQ + 1.0098× 10−4 c8QQ − 1.1409× 10−3 c1Qt

+ 4.4956× 10−7 c8Qt − 3.12× 10−6 c1tt,

δRc = −9.699× 10−5 c1QQ − 1.0265× 10−5 c8QQ + 1.1598× 10−4 c1Qt

− 4.5701× 10−8 c8Qt + 3.1718× 10−7 c1tt,

δRl = 1.1688× 10−2 c1QQ + 1.2371× 10−3 c8QQ − 1.3977× 10−2 c1Qt

+ 5.5074× 10−6 c8Qt − 3.8222× 10−5 c1tt,

δRb = 4.4158× 10−4 c1QQ + 4.6736× 10−5 c8QQ − 5.2803× 10−4 c1Qt

+ 2.0806× 10−7 c8Qt − 1.444× 10−6 c1tt,

δAb = 2.4597× 10−4 c1QQ + 3.2227× 10−5 c8QQ − 2.9442× 10−4 c1Qt

+ 5.834× 10−7 c8Qt + 5.7326× 10−5 c1tt,

δAb,FB = 2.5306× 10−4 c1QQ + 8.3078× 10−5 c8QQ − 3.0434× 10−4 c1Qt

+ 5.3495× 10−6 c8Qt + 5.2565× 10−4 c1tt .

(3.1)

The definitions of the observables, as well as details of the computation and numerical
inputs, are provided in section C. We note that (off-)diagonal quadratic EFT contributions
are strongly suppressed relative to the linear contributions shown in eq. (3.1). Moreover,
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g

g

H

(a) Higgs-top-quark coupling.

g

g

H

(b) Top-quark propagator.

g

g

H

(c) Gluon-top-quark vertex.

Figure 2. Feynman diagrams illustrating the corrections to gg → H induced by four-top-quark
SMEFT operator insertions.

the contributions of c8Qt and c1tt are purely two-loop induced, as they do not contribute to
the EWPO at one loop.

Although the one-loop contributions are not shown here-see section C for said contributions-
in comparison, we find the two-loop corrections to be negligible for all observables except
for the bottom-quark asymmetry, Ab, and its forward-backward counterpart, Ab,FB, where
they are significant.

3.4 Single-Higgs production in gluon-fusion and Higgs decays

Higgs production via gluon fusion and its decays into gluons and photons are loop-induced
already at LO. Four-top-quark operators contribute for the first time through two-loop
diagrams, such as those shown in figure 2 for the production process.

For single-Higgs production, we adopt the results of ref. [22]. A key challenge in these
computations arise from the presence of γ5 in the loop amplitudes rendering a delicate
treatment necessary when dimensional regularisation is used. It has been shown in ref. [22]
that isolated contributions of four-top-quark operators depend on the continuation scheme of
the γ5 matrix to d = 4−2ϵ dimensions. The reference studied two schemes: the NDR [26] and
the BMHV scheme [27, 28]. Whilst the former is algebraically inconsistent in the presence
of traces involving six or more γµ matrices [47, 55–57], the latter remains consistent but
the regulator spuriously breaks chiral symmetries and hence requires symmetry-restoring
counterterms [58–64].

The continuation-scheme dependence is expected to cancel upon matching, once a process-
specific set of operators at a given loop order is included.3 We adopt the loop-order definitions
of refs. [65, 66], which requires the assumption of weakly interacting and renormalisable UV
models. Scheme-independent results can be achieved by including operators that enter at a
lower loop order. In section A, we specify those additional operators for the case of ggH and
γγH and we provide results for the complete contribution to the renormalised matrix element,
together with auxiliary quantities not defined in this section. Since the focus of the present
paper is on the four-top operators, in this section we only show the contribution of the latter
to the renormalised matrix element, which we denote as MggH,4t

OS and it reads as follows:

MggH,4t
OS =

(
c1

Qt+
(

cF − cA

2

)
c8

Qt

)
KtG

1
Λ2M

ggH
tG +

(
c1

Qt+cF c8
Qt

) 1
Λ2 (BggH+Ktφ)MggH

SM , (3.2)

3This applies to scenarios in which UV divergences are absent in the UV model, a feature that is guaranteed
for the operators considered here by the superficial degree of divergence [29].

– 8 –



J
H
E
P
0
1
(
2
0
2
6
)
0
2
5

KtG=


√

2mtgs

16π2v (NDR)
0 (BMHV),

Ktφ=


m2

H−4m2
t

16π2 (NDR)
0 (BMHV),

(3.3)

BggH = 4m2
t−m2

H

8π2

(
β log

(
β−1
β+1

)
+2+log

(
µ2

R

m2
t

))
, β=

√
1−4m2

t

m2
H

. (3.4)

The matrix element in eq. (3.2) has been obtained in the on-shell (OS) renormalisation scheme
for the top-quark mass, whilst the operators are renormalised in the MS scheme. We note that
this differs from the renormalisation scheme of ref. [22]. The scheme dependence in eq. (3.2)
and in the following eq. (3.5) is parametrised by the K terms in eq. (3.3). The scheme
dependence arises, in principle, from all the diagrams sketched in figure 2. In particular,
the diagram topology in figure 2(a) gives the scheme-dependent contribution associated to
Ktφ, the diagram topology in figure 2(b) is nullified by the on-shell top mass counterterm
and the diagram topology in figure 2(c) gives the scheme-dependent contribution associated
to KtG. A detailed diagram-by-diagram analysis can be found in ref. [22], to which we
refer the interested reader.

Finally, we note that only the two operators O1
Qt and O8

Qt contribute to the matrix
element in eq. (3.2). This is a consequence of the colour structure of the diagrams and the
on-shell kinematic configurations of the external states.

The matrix element for the Higgs-photon coupling (γγH) can be obtained by performing
the replacements indicated in section A on eq. (3.2) yielding

MγγH,4t
OS =

(
c1Qt+cF c8Qt

)
KtG

Qte

gs

1
Λ2M

γγH
tγ +

(
c1Qt+cF c8Qt

) 1
Λ2 (BggH+Ktφ)MγγH

SM . (3.5)

We note that different combination of WCs enter in eq. (3.2) compared to eq. (3.5)–first
term of the former. The phenomenological consequences of this observation are discussed
in the following section.

4 Interpretation of SMEFT constraints in different γ5 schemes

In this section, we perform a simplified (toy) fit to assess the impact of the γ5 prescription
on the bounds on WCs from single-Higgs production. This fit uses the Higgs signal strength
and its associated data from ref. [67]. We restrict our study to the dominant gluon-fusion
channel and consider only total production rates, since measurements of the Higgs transverse-
momentum spectrum are not yet available. We use the same numerical inputs as in section 2.2
and we set µR = µF = mH/2 for Higgs production and µR = mH for the partial widths [68].

In table 4 of section B we list the numerical results for the single-Higgs production cross
section, σ, and the Higgs partial width, Γ, computed in both γ5 schemes using the formulae
derived in the previous section. We omit the O(Λ−4) terms, as they enter at one loop order
higher than the SM-O(Λ−2) interference.

The theoretical signal strengths, µTh, used in the fit are defined as follows:

µTh
X = σSMEFTBR(H→X)SMEFT

σSMBR(H→X)SM
, X≡ [γγ, W+W−, ZZ, bb̄, τ+τ−, µ+µ−]. (4.1)

In eq. (4.1), the same K-factor is used to account for higher-order corrections both in the
SM and linear, O

(
Λ−2), EFT contributions to the production cross section and so it cancels

out in the signal strengths.

– 9 –
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Concerning the branching ratios, BR(H → X), in eq. (4.1), four-top-quark operators
modify only the loop-induced partial widths H→gg and H→γγ-later denoted as Γgg and
Γγγ , respectively. Consequently the total Higgs width, ΓTot, changes and it multiplies all
branching ratios by a common factor. Every theoretical signal strength in our fit therefore
receives this universal rescaling — except for µTh

γγ . Said channel is additionally affected by
the process-specific four-top-quark contribution given in eq. (3.5). In particular, we have

ΓTot = ΓTot
SM + KggΓgg

int + KγγΓγγ
int, (4.2)

where Γgg
int and Γγγ

int can be read from table 4, whilst the K-factors Kgg and Kγγ are obtained
as the ratio between the SM best estimates [69–82] and the SM values in table 4. The
following are the values we employ [68]: ΓTot

SM = 4.088MeV, Kgg = 1.707, Kγγ = 0.913.
We present here the theoretical signal strengths, expanded to linear order in the WCs,

in the NDR scheme:

µTh
γγ = 1− 0.0159× c1Qt − 0.00239× c8Qt

− 6.60× 10−5(c1Qt)2 − 2.34× 10−5(c8Qt)2 − 9.34× 10−5c1Qtc
8
Qt,

µTh
Y = 1− 0.0186× c1Qt − 0.00606× c8Qt

− 1.47× 10−5(c1Qt)2 − 1.17× 10−6(c8Qt)2 − 8.39× 10−6c1Qtc
8
Qt,

(4.3)

and the BMHV one:

µTh
γγ = 1− 0.00451× c1Qt − 0.00601× c8Qt

− 2.53× 10−6(c1Qt)2 − 4.50× 10−6(c8Qt)2 − 6.75× 10−6c1Qtc
8
Qt,

µTh
Y = 1− 0.00491× c1Qt − 0.00655× c8Qt

− 5.66× 10−7(c1Qt)2 − 1.01× 10−6(c8Qt)2 − 1.51× 10−6c1Qtc
8
Qt,

(4.4)

where Y ≡ [ W+W−, ZZ, bb̄, τ+τ−, µ+µ−].
In figure 3 we display the two-dimensional ∆χ2 contours for the single-Higgs production

fit in the (c1Qt, c8Qt) plane. This result highlights the scheme dependence introduced by the
choice of γ5-continuation prescription. The analysis is restricted to four-top-quark operators
and the fit retains all linear, quadratic, and mixed (cross) terms in eqs. (4.3) and (4.4).

As can be inferred from figure 3, the fit can distinguish between c1Qt and c8Qt in NDR but
finds a flat direction for c1Qt+cF c8Qt in BHMV. This can be understood by inspecting eq. (3.2):
in the BMHV scheme, contributions of the type shown in figure 2(c) vanish, leaving a
degeneracy in the WCs. Conversely, in the NDR scheme, they are non-vanishing and are
proportional to the linear combination c1

Qt+
(

cA− cF

2

)
c8

Qt, which lifts the degeneracy.
As detailed in section A, the WCs of operators entering at one-loop order depend on

the scheme in such a way that they compensate for the scheme-dependent four-top-quark
contribution. This observation highlights that a γ5-prescription-independent result can
be obtained only when a sufficiently complete set of SMEFT operators is included, as
demonstrated in ref. [22]. If those additional operators are omitted, our fit — restricted to
four-quark operators — must be interpreted differently in the NDR and BMHV schemes.
Indeed, since the four-top operators behave differently in the two schemes, the corresponding
fits probe distinct UV scenarios: either those that generate only four-top-quark operators
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Figure 3. ∆χ2 contours for the single-Higgs production fit in the (c1
Qt, c8

Qt) plane, shown for each
decay channel, i.e. Y and γγ and for their combination, labelled as ‘combined’. The left (right) panel
corresponds to the NDR (BMHV) γ5 scheme. A pronounced flat direction emerges in the BMHV fit,
whereas no such degeneracy appears in the NDR scheme.

in the NDR scheme, or those that generate only four-top-quark operators in the BMHV
scheme. These represent two separate classes of UV models.

5 Constraining four-quark operators: fit method, inputs and results

5.1 Fit method

We analyse the impact of SMEFT operators on measured inclusive and differential cross
sections, σEx, by performing individual and marginalised χ2 fits. For an operator coefficient
ci, the theoretical cross section, σTh, in each bin, can be written as shown in eq. (2.2)

When statistical and systematic uncertainties are provided separately by the experimental
collaborations, the total experimental uncertainty, ∆Ex, in each bin is determined by combining
both uncertainties in a quadrature, i.e. assuming no correlation-the total experimental
uncertainty provided directly by the collaborations is used when available. The normalisation,
∆Tot, entering the test statistic is the quadrature sum of experimental and theoretical
uncertainties, the latter being the QCD scale uncertainties of SM predictions. Conservatively,
we choose that as the maximum of the scale uncertainty envelope.

For each bin, the χ2 contribution is therefore calculated as

χ2
bin =

(
σEx − σTh

∆Tot

)2
, (5.1)

and the total χ2 is obtained by summing over all bins, as well as over all considered
observables and processes:

χ2 =
∑
proc.

∑
obs.

∑
bins

χ2
bin. (5.2)

Observables from different experiments are assumed to be uncorrelated. Finally, for the
EWPO fit, we use the correlations between the different observables as quoted in ref. [83].
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Tag
√

s, L Final state Observable ndat. Ref.(Ex) Location/HEPData Ref.(Th)
pp → tt̄

CMStt̄ 13 TeV, 137 fb−1 lepton+jets dσ/dmtt̄ 15 [84] /Table 37 [84]
ATLAStt̄ 13 TeV, 36 fb−1 lepton+jets dσ/dmtt̄ 9 [85] /Table 617 [85]

pp → tt̄H

ATLAStt̄H 13 TeV, 140 fb−1 H → bb̄ dσ/dpH
T 6 [86] Figure 3 in the ref./ [87]

pp → tt̄tt̄

CMS4t 13 TeV, 138 fb−1 multi-leptons σtot.
tt̄tt̄

1 [10] /Figure 8 [88]
ATLAS4t 13 TeV, 140 fb−1 multi-leptons σtot.

tt̄tt̄
1 [9] /Table 17 [88]

gg → H

CMSggH 13 TeV, 138 fb−1 W+W− , ZZ , bb̄ , τ+τ− , µ+µ− µEx
Y 1 [67] /Table 12 eqs. (4.3) and (4.4)

CMSggH 13 TeV, 138 fb−1 γγ µEx
γγ 1 [67] /Table 12 eqs. (4.3) and (4.4)

pp → tt̄bb̄

ATLAStt̄bb̄ 13 TeV, 36.1 fb−1 lepton+jets σtot.
tt̄bb̄

1 [89] /Table 5 as in [5]
CMS1

tt̄bb̄
13 TeV, 35.9 fb−1 all-jets σtot.

tt̄bb̄
1 [11] Figure 3 in the ref./ as in [5]

CMS2
tt̄bb̄

13 TeV, 35.9 fb−1 dilepton σtot.
tt̄bb̄

1 [90] Table 4 in ref. (FPS)/ as in [5]
CMS3

tt̄bb̄
13 TeV, 35.9, fb−1 lepton+jets σtot.

tt̄bb̄
1 [90] Table 4 in ref. (FPS)/ as in [5]

EWPO
EWPO1 Z-pole, / Z decays Γbb̄

Z , Rc , Rl , Rb 1 [83] Tables 7.1 and 8.4 in ref. [91]
EWPO2 Z-pole, / Z decays Ab , Ab,FB 1 [83] Table 8.4 in ref. [83]

Table 1. Summary of the inputs used in the fit. For each dataset we list, from left to right: (i) the
dataset label; (ii) the centre-of-mass energy and integrated luminosity; (iii) the measured final state;
(iv) the observable under study; (v) the number of data points; (vi) the experimental publication; (vii)
the location of the experimental data (either in the publication or via its HEPData entry4); and (viii)
the reference used for theoretical predictions.

5.2 Fit inputs

We discuss here the inputs for the processes included in our fit, which are summarised
in table 1.

pp → tt̄. The SM predictions in the bins of ATLAStt̄ are taken from the corresponding
publication [85], where MC simulations were generated using Powheg-Box v2 [92–95] interfaced
with Pythia 8.210 [96]. The cross-section normalisation of these MC samples is set to the
NNLO + next-to-next-to-leading-logarithmic (NNLL) QCD prediction [97–103], as indicated
explicitly in table 1 of the publication. Predictions and measurements from ATLAStt̄ are
normalised to the total cross section of 832+20

−29 pb, as reported therein.
The SM predictions in the bins of CMStt̄ are also taken from the corresponding publica-

tion [84]. The cross-section normalisation of these MC samples is set to the NNLO in the
strong coupling constant including the resummation of NNLL soft-gluon terms calculated
with TOP++ (version 2.0) [97]. This amounts to a normalisation factor, i.e. the inclusive
tt̄ production cross section, of 832+40

−46 pb. The SM theoretical uncertainties are taken from
the respective publications.

pp → tt̄H. We use the SM predictions and the associated uncertainties provided in the
analysis of ref. [87]. We use the experimental data from the most recent measurement
of ref. [86] reporting a measured total cross section of 411+24%

−22% fb. The SM differential

4https://www.hepdata.net/
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predictions [68, 104–109] extracted from ref. [87] are in good agreement with our own results
presented in table 2 of section B.

pp → tt̄tt̄. For both datasets, we adopt the SM cross section of ref. [88], computed at NLO
(QCD+EW)+NLL accuracy, yielding 13.37+7.77%

−13.3% fb.

pp → tt̄bb̄. We extract the experimental measurements and theoretical predictions — for
both the SM-assigned a 10% theoretical uncertainty- and the SMEFT — from ref. [5].5

gg → H. The analysis presented in ref. [67] reports signal-strength modifiers, µEx
i , cate-

gorised through their decay modes i, with uncertainties representing the total experimental
error, combining both systematic and statistical contributions. These results are summarised
as follows:

µEx
µµ = 0.33+0.74

−0.70 , µEx
ττ = 0.66+0.21

−0.21 , µEx
ZZ = 0.93+0.14

−0.13 ,

µEx
W W = 0.90+0.11

−0.10 , µEx
bb = 5.31+2.97

−2.54 , µEx
γγ = 1.08+0.12

−0.11 .
(5.3)

The results reported in eq. (5.3) are of the gluon-fusion production mode and constitute the
experimental input for our fit. Given that gluon fusion is directly sensitive to the operators
we consider and is the dominant production mode for single-Higgs production, we do not
expect significant sensitivity from other production modes.We set the SM prediction to unity.

EWPO. Our predictions are obtained at the two-loop level leveraging the work of ref. [20]
as discussed in section 3.3 and in section C. Experimental measurements and correlations
are taken from ref. [83]. SM predictions for all observables apart from Ab and Ab,FB are
extracted from table 2 of ref. [91]. SM predictions of Ab and Ab,FB are taken directly from
table 8.4 in ref. [83].

5.3 Fit results

Figure 4 shows the two-dimensional ∆χ2 contours at 95% CL for the case where only
linear EFT terms are included whilst figure 5 corresponds to the scenario where quadratic
contributions are also taken into account. In both panels, we display the contours for the
combined fit (all processes) under two distinct scenarios: one in which only the two WCs
of interest are varied (black solid-line contour, labelled as ‘comb-2D’ in the plots) with all
other coefficients fixed to zero, and one in which those two coefficients are scanned while
the remaining WCs are profiled (black dashed-line contour, labelled as ‘comb-profiled’ in the
plots). The best-fit point (BFP) is indicated in each case. In table 5 of section B we list all
the 95% CL bounds obtained on each of the five WCs. Finally, we note that all our upcoming
results-including gg → H results- are obtained using the NDR scheme.

We observe that, in the linear case of figure 4, the comb-2D fit yields smaller and
differently shaped contours than those obtained from the individual channels. This illustrates
that the inclusion of additional production modes provides complementary information
and strengthens the overall constraints. By contrast, the comb-profiled contours display

5The SMEFiT database can be found here: https://github.com/LHCfitNikhef/smefit_database/.
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Figure 4. Two-dimensional fits for the four-heavy operator coefficients. Shown are the constraints
from each set of observables separately and their combination. Only linear terms, O(Λ−2), in the EFT
parametrisation are included. The best-fit point (BFP) for the combined fit is indicated for both the
two-parameter scan and the profiled scan.

significantly weaker constraining power in comparison to the comb-2D ones, underscoring the
impact of the profiled coefficients. Examining at individual datasets, we observe that most
are plagued by flat directions; four-top-quark production, for example, shows flat directions
for all coefficient pairs we consider. Top-quark pair production in association with a Higgs
and tt̄bb̄ seem to exhibit the least constraining power among the different processes. Inclusive
Higgs production probes only a subset of the coefficients and also has no significant impact
on the final combination.

Furthermore, we observe a sizeable impact of the two-loop corrections in our EWPO fit
— particularly when compared with the corresponding one-loop contours of ref. [24]. These
effects are driven mainly by the non-negligible two-loop contributions to the asymmetry
observables Ab and Ab,FB; see section C for a detailed comparison between the one- and
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Figure 5. Same as figure 4, but including quadratic terms, O(Λ−4), in the EFT parametrisation.

two-loop results for these quantities. We find that the combination of EWPO, top-quark
pair and four-top-quark production significantly reduces the allowed parameter space. For
some pairs we note that the contours extracted from the EWPO do not include the SM
at the 95% CL. This is related to the well-known discrepancy between the measurement
of Ab,FB and its SM prediction [83].

At the quadratic level of figure 5, the combined fit yields markedly tighter bounds, driven
predominantly by the four-top-quark measurements. The comb-2D contour lies very close
to the four-top-quark one, with modest additional tightening from the EWPO. Moreover,
the discrepancy between the comb-profiled and comb-2D contours is less pronounced than
in the linear case. The most significant reduction in the allowed parameter space appears
in the (c(8)QQ–c

(1)
QQ) plane, where the four-top-quark channel alone exhibits an almost blind

direction; here the EWPO combination is essential to lift the degeneracy.
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6 Conclusion

In this work we explored how various classes of observables can shed light on the dimension-six
four-heavy-quark operators. These operators are notoriously difficult to constrain: global
EFT fits typically leave them essentially undetermined at the linear level. To overcome
this, several studies have examined loop-induced effects in specific observables, which offer
complementary sensitivity to these otherwise elusive interactions.

In particular, we have explored the tree-level contributions of the four-heavy operators
to four-top-quark production at the LHC; their one-loop contributions to top-quark pair
production and to associated Higgs production-both inclusive and differentially; the two-loop
contributions to single-Higgs production in gluon fusion and its subsequent decays; and the
one- and two-loop contributions to EWPO. We presented results for all these channels at
linear and, where available, quadratic terms in the EFT expansion.

In the case of single-Higgs production via gluon fusion and its subsequent decays, we
scrutinised the dependence of the results on the choice of the prescription for the continuation
of γ5 to d = 4− 2ϵ. We show that this scheme dependence numerically propagates into the
bounds on the WCs. Therefore, one must exercise caution when interpreting these limits.
Indeed, by restricting the analysis to four-top-quark operators, this assumption leads to a
different interpretation of the fit in the BMHV scheme compared with NDR. Establishing
a coherent correspondence between the two schemes therefore necessitates the inclusion of
additional operators. We defer a full global fit in the BMHV scheme to future work, as our
restricted fit clearly calls for a global picture including a full basis of operators.

Finally, we performed a fit combining experimental data from the LHC and LEP,
incorporating all relevant theoretical and experimental uncertainties. This allowed us to
identify the most sensitive observables and to elucidate the complementarity between tree-
and loop-level probes. In the linear fit, the synergy between heavy-quark production and
EWPO is key to reducing the allowed parameter space. In the quadratic fit, the strongest
constraints arise from four-top-quark production, with the EWPO further reducing the
allowed parameter space and lifting degeneracies where present. Moreover, we observed non-
negligible two-loop effects in the EWPO fit, predominantly driven by the sizeable two-loop
corrections to the asymmetry observables.

In conclusion, we note that a comprehensive assessment of the impact of the observables
considered in this work requires their inclusion in a global fit together with the complete set
of relevant operators. It is also worthwhile to investigate UV-complete theories which, upon
matching onto the EFT, reproduce the operator basis examined here.
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A Matrix elements for ggH and γγH

In this appendix we provide the explicit expression for the auxiliary quantities appearing
in eqs. (3.2) and (3.5). We also include the contribution from the operators

Otφ ≡ Q(33)
uφ = (q̄3φ̃u3)

(
φ†φ

)
, OtG ≡ Q(33)

uG = q̄3φ̃σµνT Au3G
A
µν ,

OφG ≡ QφG =GA,µνGA
µν

(
φ†φ

)
,

(A.1)

which are required to obtain a result that is independent of the γ5 continuation scheme. We
note that the operator OφG is introduced to renormalise the one-loop contribution from
OtG. We note that the results presented here employ the MS renormalisation scheme for
the WCs and the on-shell scheme for the top-quark mass, in contrast to ref. [22], where all
parameters were renormalised in the MS scheme.

The matrix element for the process gg → H (or, equivalently, H → gg) reads

MggH
OS = cφG

Λ2 MggH
φG +

[
ctG +

(
c1Qt +

(
cF − cA

2

)
c8Qt

)
KtG

] 1
Λ2M

ggH
tG

+
[
1 +

(
c1Qt + cF c8Qt

) 1
Λ2 (BggH +Ktφ)−

v3√
2mt Λ2 ctφ

]
MggH

SM ,

(A.2)

where cA and cF are the SU(N) Casimir invariants in the adjoint and fundamental rep-
resentations, respectively. For SU(3)C they take the values cA = 3 and cF = 4/3. The
factor BggH is defined in eq. (3.4).

The matrix elements entering eq. (A.2) are

MggH
tG =−TF

gsmt√
2π2Lµ1µ2ϵµ1(p1)ϵµ2(p2)δA1A2× (A.3)(

m2
t

m2
H

log2
(

β−1
β+1

)
+
√
1− 4m2

t

m2
H

log
(

β−1
β+1

)
+2log

(
µ2

R

m2
t

)
+1
)

,

MggH
SM =TF

g2sm2
t

4π2vm2
H

Lµ1µ2ϵµ1(p1)ϵµ2(p2)δA1A2×
(

m2
H−4m2

t

m2
H

log2
(

β−1
β+1

)
−4
)

, (A.4)

MggH
φG =−4ivLµ1µ2ϵµ1(p1)ϵµ2(p2)δA1A2 . (A.5)

Here TF is the Dynkin index of the fundamental representation of SU(N). The Lorentz
structure of the amplitude is

Lµ1µ2 = (m2
H/2 gµ1µ2 − pµ2

1 pµ1
2 ), (A.6)

with p1 and p2 being the gluon momenta. The indices A1 and A2 denote the gluon
colour indices.
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The scheme dependence arising from the two-loop contributions of four-top-quark opera-
tors, parametrised by KtG, and Ktφ in eq. (3.3), can be compensated by assuming the WCs
of operators entering at one loop order are scheme dependent. In particular, the relations

cNDR
tφ = cBMHV

tφ +
(
c1Qt + cF c8Qt

) yt(λ − y2t )
8π2 , (A.7)

cNDR
tG = cBMHV

tG −
(

c1Qt +
(

cF − cA

2

)
c8Qt

)
ytgs

16π2 , (A.8)

render the prediction in eq. (A.2) scheme independent. In these expressions, yt is the top-
quark Yukawa coupling and λ = m2

H/(2v2). We note that some of the shifts depend on the
strong coupling constant, gs, and thus on the renormalisation scale. This scale dependence
must be accounted for when a dynamical scale choice is employed in the calculation.

We now present the matrix element for the Higgs-photon coupling. We use F µν to denote
the photon field strength tensor and introduce the operators Otγ = (t̄LσµνtR)H+v√

2 Fµν and
Oφγ = HvF µνFµν . These operators are not part of the Warsaw basis, as they are defined
directly in terms of the physical fields in the broken phase. Their expression in Warsaw-basis
operators can be found in refs. [110, 111]. We finally obtain

MγγH
OS = MγγH

SM,W + cφγ

Λ2 Mφγ +
[
ctγ +

(
c1Qt + cF c8Qt

)
KtG

Qte

gs

] 1
Λ2M

γγH
tγ

+
[
1 +

(
c1Qt + cF c8Qt

) 1
Λ2 (BggH +Ktφ)−

v3√
2mt Λ2 ctφ

]
MγγH

SM .

(A.9)

The one-loop matrix element for H → γγ can be obtained from that for H → gg by
making the substitutions gs → eQt and TF δA1A2 → NC in MggH

tG , MggH
SM , where e is the

electric charge of the electron and Qt = 2/3 is the quantised charge of the top quark. We
denote the matrix elements of the Higgs boson decay into photons as MγγH

tγ , MγγH
SM . The

tree-level insertion of Oφγ is given by MγγH
φγ = −4ivLµ1µ2ϵµ1(p1)ϵµ2(p2). Regarding the

two-loop matrix elements, each four-top-quark operator insertion generates two different
colour contractions. We are able to obtain our result from the Higgs-gluon coupling since in
the diagrams in figure 2, the only non-vanishing term features a single Dirac trace, allowing
the colour structures to be identified unambiguously.

For completeness, the SM contribution to H → γγ with W -boson loops reads

MγγH
SM,W = e2

4π2v

(
6m2

W

m2
H

+
(
6m4

W

m4
H

− 3m2
W

m2
H

)
log2

(
βW − 1
βW + 1

)
+ 1

)
, (A.10)

where βW =
√
1− 4m2

W

m2
H

.

To render the Higgs decay into photons scheme-independent, we must employ eq. (A.7)
with the relation analogous to eq. (A.8), namely

cNDR
tγ = cBMHV

tγ − eQt

yt

(
c1Qt + cF c8Qt

)
8π2 . (A.11)
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J
H
E
P
0
1
(
2
0
2
6
)
0
2
5

dσNLO/dpH
T [pb]

pH
T < 60 GeV 60 ≤ pH

T <

120 GeV
120 ≤ pH

T <

200 GeV
200 ≤ pH

T <

300 GeV
300 ≤ pH

T <

450 GeV
pH

T ≥ 450 GeV

SM 1.197e−1 ±
0.054%+6%

−9.08%

1.785e−1 ±
0.052%+5.94%

−9.17%

1.258e−1 ±
0.065%+5.97%

−9.43%

5.203e−2 ±
0.096%+5.47%

−9.61%

1.888e−2 ±
0.141%+3.36%

−9.24%

5.179e−3 ±
0.28%+1.76%

−6.8%

O(ci/Λ2)

c1
tt −3.693e−5 ±

1.878%+55.11%
−34.6%

−1.173e−4 ±
0.867%+49.39%

−31.81%

−1.223e−4 ±
1.11%+56.16%

−35.46%

1.134e−6 ±
139%+1632%

−2106%

9.791e−5 ±
1.872%+21.88%

−18.05%

1.567e−4 ±
1.387%+31.86%

−22.53%

c1
QQ −9.997e−5 ±

1.227%+36.9%
−25.25%

−1.911e−4 ±
0.96%+38.41%

−26.06%

−1.63e−4 ±
1.896%+42.95%

−28.45%

−4.519e−5 ±
6.025%+64.81%

−39.8%

3.056e−5 ±
9.49%+32.56%

−28.18%

7.125e−5 ±
5.559%+31.13%

−22.19%

c8
QQ 2.735e−5 ±

3.993%+11.41%
−14.46%

5.53e−5 ±
3.214%+9.25%

−13.25%

8.329e−5 ±
2.527%+13.33%

−13.98%

8.667e−5 ±
2.701%+15.39%

−12.49%

8.205e−5 ±
3.134%+24.33%

−17.51%

7.729e−5 ±
4.074%+32.33%

−22.3%

c1
Qt −1.262e−3 ±

0.246%+31.97%
−22.67%

−1.93e−3 ±
0.203%+32.61%

−22.98%

−1.338e−3 ±
0.258%+33.74%

−23.52%

−4.837e−4 ±
0.553%+34.96%

−24.05%

−1.277e−4 ±
1.555%+34.69%

−23.78%

−3.17e−5 ±
6.399%+31.59%

−22.27%

c8
Qt −1.149e−4 ±

1.008%+39.12%
−28.69%

−1.266e−4 ±
1.521%+45.7%

−33.33%

3.364e−6 ±
74.484%+389%

−535%

9.672e−5 ±
2.479%+20.53%

−14.5%

1.129e−4 ±
2.405%+28.3%

−19.84%

1.088e−4 ±
3.605%+33.57%

−23.02%

O(c2
i /Λ4)

c1
tt × × × × × ×

c1
QQ 2.89e−5 ±

2.048%+4.14%
−5.08%

5.913e−5 ±
1.867%+4.61%

−4.27%

6.764e−5 ±
1.804%+4.94%

−3.84%

5.253e−5 ±
2.259%+6.82%

−4.48%

3.687e−5 ±
3.338%+8.42%

−5.56%

2.779e−5 ±
4.385%+8.37%

−5.23%

c8
QQ 4.415e−6 ±

3.202%+8.53%
−5.52%

8.902e−6 ±
2.504%+7.99%

−4.62%

1.034e−5 ±
2.034%+9.56%

−5.3%

8.285e−6 ±
2.89%+10.59%

−5.96%

5.831e−6 ±
4.934%+12%

−6.83%

4.937e−6 ±
6.78%+14.48%

−8.38%

c1
Qt 2.833e−5 ±

1.938%+4.06%
−5.02%

6.055e−5 ±
1.45%+4.17%

−5.06%

6.545e−5 ±
1.927%+5.11%

−3.51%

5.113e−5 ±
2.355%+6.15%

−3.97%

3.639e−5 ±
3.024%+7.48%

−4.79%

3.042e−5 ±
4.135%+12.52%

−8.65%

c8
Qt 4.303e−6 ±

3.461%+8.26%
−5.78%

8.2e−6 ±
2.807%+8.72%

−6.28%

1.01e−5 ±
2.563%+9.22%

−5.09%

7.497e−6 ±
7.655%+11.93%

−7.69%

4.598e−6 ±
11.933%+15.1%

−13.59%

4.561e−6 ±
8.879%+12.56%

−6.43%

O(cicj/Λ4)

c1
QQc1

Qt 1.49e−5 ±
8.241%+8.56%

−6.91%

2.817e−5 ±
7.635%+9.7%

−8.02%

2.928e−5 ±
9.17%+10.63%

−6.63%

1.762e−5 ±
14.089%+10.58%

−6.63%

1.086e−5 ±
21.595%+8.73%

−8.76%

−2.153e−6 ±
118%+62.83%

−68.99%

c8
QQc8

Qt 3.253e−6 ±
11.559%+2.76%

−5.77%

5.878e−6 ±
10.101%+10.34%

−13.75%

7.997e−6 ±
7.513%+4.73%

−6.71%

4.398e−6 ±
19.689%+9.78%

−12.84%

4.704e−6 ±
18.524%+5.68%

−1.91%

6.259e−7 ±
123%+109%

−122%

Table 2. Differential pH
T predictions in the SM and SMEFT in the tt̄H process. The cross sections

are reported as the integral within the bin range. The uncertainties quoted correspond, respectively,
to the Monte Carlo statistical uncertainty and the QCD scale uncertainty from a 9-point variation.

B Numerical predictions

Table 2 presents the differential pH
T spectrum in the ATLAS tt̄H bins, whilst table 3 lists the

inclusive cross sections for all top-quark processes. SMEFT results are split into interference,
quadratic, and cross terms, with total-rate K-factors given. All WCs are set to unity
and Λ = 1 TeV. Predictions are quoted within their QCD scale uncertainties and MC
statistical errors. Predictions which are compatible with zero within a MC error of 2σ or
greater are omitted and denoted by the ‘-’. The ‘x’ indicates no contribution from the
corresponding operator.

Table 4 lists our numerical predictions for single-Higgs production and for Higgs decays
into gluons and photons. The quoted SM value is the LO result with only top- and W -boson
loops included. Quadratic SMEFT terms are strongly suppressed relative to the linear ones
and are therefore not shown.

C EWPO

We employ the relations in eq. (C.1) where the WCs CHD and CHW B are expressed in
terms of the shifts to the oblique parameters S and T [19] and in terms of the shifts of the
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J
H
E
P
0
1
(
2
0
2
6
)
0
2
5

σint [pb]

O(ci/Λ2)

c1
Qt (NDR) −0.3203

c8
Qt (NDR) −0.1033

c1
Qt (BMHV) −0.0830

c8
Qt (BMHV) −0.1106

σSM 16.51 pb

(a) gg → H cross section.

Γint [MeV]

O(ci/Λ2)

c1
Qt (NDR) −1.912× 10−3

c8
Qt (NDR) −4.810× 10−4

c1
Qt (BMHV) −2.781× 10−4

c8
Qt (BMHV) −3.708× 10−4

ΓSM 0.1960 MeV

(b) H → gg partial width.

Γint [MeV]

O(ci/Λ2)

c1
Qt (NDR) 2.798× 10−5

c8
Qt (NDR) 3.731× 10−5

c1
Qt (BMHV) 4.069× 10−6

c8
Qt (BMHV) 5.426× 10−6

ΓSM 1.016× 10−2 MeV

(c) H → γγ partial width.

Table 4. Linear EFT contributions and SM values for single-Higgs inclusive production cross section in
gluon-fusion channel (table 4(a)) and Higgs decays (tables 4(b) and 4(c)), parametrised as in eq. (2.2).
WCs are set to unity with Λ = 1TeV. The SM values correspond to the LO one-loop result including
only the dominant top- and W -loops. Results are presented in both the NDR and the BMHV schemes.

Weinberg angle, sθ, and the effective couplings [91]. The two-loop contributions to the oblique
parameters ∆S and ∆T have been computed in and are taken from ref. [20].

CHD = −2α∆T

v2
, CHW B = α∆S

4 cθ sθ v2
,

δs2θ = m2
W CHD

2
√
2GF m2

Z

+ mW CHW B√
2GF mZ

√
1− m2

W

m2
Z

, δgZ = − CHD

4
√
2GF

.

(C.1)

Using eq. (C.1) and substituting into the shifts in vector and axial-vector couplings shown
in eq. (C.2)—which can be found in ref. [91]—we obtain the modified vector and axial-vector
couplings due to the effective operators:

δgf
V = δgZ gf

V + Qf δs2θ ,

δgf
A = δgZ gf

A ,
(C.2)

where gf
V = T3/2 − Qf s2θ and gf

A = T3/2, where T3 is weak isospin and Qf is the electric
charge. We adopt the conventions of ref. [91] and use the following definitions of the EWPO:

Γi =
√
2GF m3

Z Nc

3π

(
|g i

V |2 + |g i
A|2
)
,

Γhad =
∑

q=u,d,c,s,b

Γq, Rc =
Γc

Γhad
, Rb =

Γb

Γhad
, Rℓ =

Γhad
Γℓ

.
(C.3)

For the numerical analysis we adopt the following input parameters:

GF = 1.166379× 10−5 GeV−2, mW = 80.379 GeV, mZ = 91.1876 GeV,

v = 246.22 GeV, α = 1/132.184, s2θ = 0.2230,

c2θ = 1− s2θ, mt = 172.5 GeV, Λ = 1 TeV,

µR = mZ , ΓSM
Z = 2.4941 GeV, ΓSM

had = 1.6944 GeV,

RSM
b = 0.21582, ASM

b = 0.9347, ASM
b,FB = 0.1029 .

(C.4)
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Corrections to Γb

Adopting the one-loop result of ref. [20] and including the two-loop contributions as described
above, the relative shift in the Z → bb̄ partial width, δΓb, reads

δΓ1L
b /ΓSM

Z = (3.8320 c1QQ + 0.4065 c8QQ − 4.5839 c1Qt)× 10−4

δΓ1L+2L
b /ΓSM

Z = (3.8255 c1QQ + 0.4049 c8QQ − 4.5745 c1Qt + 0.0018 c8Qt − 0.0125 c1tt)× 10−4,
(C.5)

where δΓ1L
b and δΓ1L+2L

b denote the one-loop and the combined one- and two-loop contri-
butions, respectively.

Corrections to Rc, Rℓ, and Rb

Implementing the above definitions and expanding to first order in δΓb, we obtain

R̄c =
ΓSM

c

ΓSM
had + δΓb

≃ RSM
c

(
1− δΓb

ΓSM
had

)
, R̄ℓ =

ΓSM
had + δΓb

ΓSM
ℓ

≃ RSM
ℓ

(
1 + δΓb

ΓSM
had

)
,

R̄b =
ΓSM

b + δΓb

ΓSM
had + δΓb

≃ RSM
b +

(
1− RSM

b

) δΓb

ΓSM
had

. (C.6)

Replacing δΓb → δΓ1L
b or δΓ1L+2L

b gives

δR1L
c /RSM

c = (−5.6404 c1QQ − 0.5983 c8QQ + 6.7472 c1Qt)× 10−4

δR1L+2L
c /RSM

c = (−5.6308 c1QQ − 0.5959 c8QQ + 6.7333 c1Qt − 0.0026 c8Qt + 0.0184 c1tt)× 10−4,

δR1L
b /RSM

b = (20.494 c1QQ + 2.1742 c8QQ − 24.516 c1Qt)× 10−4

δR1L+2L
b /RSM

b = (20.459 c1QQ + 2.1654 c8QQ − 24.465 c1Qt + 0.0096 c8Qt − 0.0669 c1tt)× 10−4.
(C.7)

Corrections to Ab, Ab,FB

Using the one-loop result of ref. [20], the one-loop shifts read

δA1L
b /ASM

b = (2.3648 c1QQ + 0.2508 c8QQ − 2.8288 c1Qt)× 10−4

δA1L
b,FB/ASM

b,FB = (2.3682 c1QQ + 0.2512 c8QQ − 2.8329 c1Qt)× 10−4
(C.8)

where we have used the relation Ab,FB = 3/4AbAe [112]. Including the two-loop shifts using
the following relations [112]:

Ae = 2 gℓ
V gℓ

A

(gℓ
V )2 + (gℓ

A)2
, Af = 2 gf

V gf
A

(gf
V )2 + (gf

A)2
, (C.9)

we obtain the total corrections for the asymmetry observables:

δA1L+2L
b /ASM

b = (2.6316 c1QQ + 0.3447 c8QQ − 3.1499 c1Qt + 0.0062 c8Qt + 0.6133 c1tt)× 10−4,

δA1L+2L
b,FB /ASM

b,FB = (24.593 c1QQ + 8.0737 c8QQ − 29.576 c1Qt + 0.5198 c8Qt + 51.083 c1tt)× 10−4.
(C.10)

– 22 –



J
H
E
P
0
1
(
2
0
2
6
)
0
2
5

Order tt̄H tt̄tt̄ tt̄bb̄ gg→H tt̄ EWPO

c1tt
O(Λ−2) [ -79.98, 37.36 ] [ -11.31, 1.42 ] – – [ -6.94, 11.72 ] [ -14.92, - 1.68 ]
O(Λ−4) [ -79.98, 37.36 ] [ -1.62, 1.89 ] – – [ -6.94, 11.72 ] [ -14.92, - 1.68 ]

c1QQ

O(Λ−2) – [ -19.00, 2.40 ] – – [ -14.75, 22.89 ] [ -0.94, 2.49 ]
O(Λ−4) [ -13.20, 11.92 ] [ -3.20, 3.85 ] [ -9.31, 9.32 ] – [ -14.06, 9.36 ] [ -0.94, 2.49 ]

c8QQ

O(Λ−2) – [ -57.01, 7.20 ] [ -39.53, 91.23 ] – [ -16.18, 26.89 ] [ -13.31, 16.79 ]
O(Λ−4) [ -38.30, 24.08 ] [ -9.60, 11.55 ] [ -21.91, 17.67 ] – [ -41.86, 17.41 ] [ -13.31, 16.79 ]

c1Qt

O(Λ−2) [ -26.19, 68.73 ] [ -2.35, 18.64 ] – [ -3.14, 11.23 ] [ -6.77, 9.34 ] [ -2.08, 0.78 ]
O(Λ−4) [ -10.40, 13.92 ] [ -3.27, 2.78 ] [ -9.39, 9.26 ] [ -3.16, 10.93 ] [ -7.27, 9.69 ] [ -2.08, 0.78 ]

c8Qt

O(Λ−2) [ -117.00, 39.40 ] [ -44.30, 5.59 ] [ -38.41, 88.66 ] [ -6.71, 42.30 ] [ -8.69, 18.14 ] –
O(Λ−4) [ -44.52, 22.92 ] [ -5.73, 6.59 ] [ -21.56, 17.34 ] [ -7.06, 39.16 ] [ -56.11, 19.70 ] –

Table 5. 95% CL individual bounds from each process.

Individual Marginalised

O(Λ−2) O(Λ−4) O(Λ−2) O(Λ−4)

c1tt [ -9.12, -0.89 ] [ -1.66, 1.49 ] [ -16.30, -1.45 ] [ -1.50, 1.52 ]
c1QQ [ -0.99, 2.41 ] [ -0.84, 3.03 ] [ -8.42, 8.50 ] [ -0.97, 5.94 ]
c8QQ [ -11.39, 11.46 ] [ -8.60, 10.84 ] [ -75.66, 48.77 ] [ -19.43, 5.85 ]
c1Qt [ -1.74, 1.03 ] [ -2.30, 1.17 ] [ -10.99, 6.71 ] [ -1.37, 2.69 ]
c8Qt [ -7.93, 12.88 ] [ -4.39, 6.63 ] [ -9.50, 58.36 ] [ -4.09, 6.20 ]

Table 6. 95% CL individual and marginalised bounds from the combined fit.

D Additional fit results

We report here the 95% CL bounds on each of the five WCs from each process, summarised
in table 5. The corresponding individual and marginalised limits from the combined fit
are shown in table 6. All bounds are quoted at both linear and quadratic order in the
EFT expansion.
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