KIT | KIT-Bibliothek | Impressum | Datenschutz

Review of Machine Learning-Based Electromagnetic Design Optimization for Electrical Machines

Chen, Nuo ORCID iD icon 1; Doppelbauer, Martin 2
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

The electrification of transportation is seeing rapid expansion. As an indispensable component, the electrical machine (EM) plays a pivotal role in this context. To enhance the optimization design of EMs efficiently and precisely, techniques based on artificial intelligence have emerged as a new research trend. This paper overviews the application of machine learning (ML) in the electromagnetic optimization domain for EMs. The involved approaches are categorized according to the input object of the ML model, the employed ML paradigm, and the type of metamodel. Furthermore, the principles of the different metamodels and methodologies, together with their respective advantages and limitations, are articulated in a detailed and comprehensive manner. In the end, the forthcoming research challenges and potential pathways for improvement in this field are discussed.


Originalveröffentlichung
DOI: 10.23919/ICEMS66262.2025.11316993
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.11.2025
Sprache Englisch
Identifikator ISBN: 978-89-86510-23-2
KITopen-ID: 1000189716
Erschienen in 2025 28th International Conference on Electrical Machines and Systems (ICEMS)
Veranstaltung 28th International Conference on Electrical Machines and System (ICEMS 2025), Busan, Südkorea, 16.11.2025 – 19.11.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 3728–3734
Schlagwörter electrical machine, artificial intelligence, machine learning, design optimization
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page