KIT | KIT-Bibliothek | Impressum | Datenschutz

Metal–Insulator–Insulator–Metal (MIIM) Ag/SnO$_2$/Al$_2$O$_3$/Ag Diodes Fabricated by Ultraprecise Dispensing and Atomic Layer Deposition

Savadogo, Aboubacar 1; Huska, Klaus; Chavan, Rohit D.; Nyangonda, Thomas Nyachoti; Feßler, Jan 1; Aduda, Bernard Odhiambo; Paetzold, Ulrich Wilhelm ORCID iD icon 2; Lemmer, Uli ORCID iD icon 1; Hussein, Mohamed 1
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Currently, high-frequency, ultra-fast, and tunneling diodes are mainly fabricated using traditional lithography and evaporation techniques, typically limited to wafer sizes. This work introduces a new method for fabricating metal–insulator–insulator–metal (MIIM) diodes using ultra-precise dispensing (UPD) printing techniques, providing a practical alternative to traditional lithography. Enabling highly precise material deposition, minimizing waste and boosting manufacturing efficiency. Both bottom and top electrodes of the MIIM diode are silver(Ag) and fabricated via UPD, while atomic layer deposition (ALD) is employed to deposit the insulating layers. 1 nm of tin oxide(SnO2) and 1 nm of aluminum oxide(Al$_2$O$_3$) sandwiched between the electrodes: The Ag/SnO$_2$/Al$_2$O$_3$/Ag MIIM diode has a contact area of ca. 5.4 µm × 4.0 µm determined by FIB-SEM. A quantum simulator based on the Wentzel-Kramers-Brillouin (WKB) method is used to analyze the diode's performance and shows agreement with measurement results. The electrical characterization of the fabricated MIIM device exhibits a tunneling current in the nano- to microampere range, a zero-bias responsivity of −1.31 A/W, and dynamic resistance of 39.56 kΩ. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189723
Veröffentlicht am 19.01.2026
Originalveröffentlichung
DOI: 10.1002/aelm.202500615
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2199-160X
KITopen-ID: 1000189723
Erschienen in Advanced Electronic Materials
Verlag John Wiley and Sons
Seiten Art.-Nr.: e00615
Vorab online veröffentlicht am 16.01.2026
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page