KIT | KIT-Bibliothek | Impressum | Datenschutz

Insights into the operational stability of wide-bandgap perovskite and tandem solar cells under rapid thermal cycling

Sun, Kun; Guo, Renjun 1; Zhou, Qilin; Fang, Lingyi 2; Jiang, Xiongzhuo; Wegener, Simon A.; Liang, Yuxin; Li, Zerui; Liang, Suzhe; Schwartzkopf, Matthias; Aydin, Erkan; Koyiloth Vayalil, Sarathlal; Roth, Stephan V.; Paetzold, Ulrich W. ORCID iD icon 1; Müller-Buschbaum, Peter
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Temperature variations can induce phase transformations and strain in perovskite solar cells (PSCs), undermining their structural stability and device performance. Despite growing interest, the operational stability of triple-cation wide-bandgap (WBG) PSCs and tandem solar cells (TSCs) under rapid solar-thermal cycling remains poorly understood. Here, we investigate the operational stability of WBG PSCs (~1.68 eV) with a champion power conversion efficiency (PCE) of 24.31% and extend the study to TSCs. We find that degradation during device operation under rapid solar-thermal cycling (temperature change rate of 10 °C/min) is independent of passivation and occurs in two distinct regimes: an initial burn-in phase, which accounts for a rapid 60% relative loss in performance, followed by a steady degradation characterized by temperature-dependent fluctuations in photovoltaic parameters. By operando grazing-incidence wide-angle X-ray scattering and photoluminescence measurements, we reveal that temperature-induced strain, phase transition, and the increased non-radiative recombination collectively contribute to the degradation of PSCs. This work advances the understanding of the degradation mechanisms of WBG PSCs and TSCs, providing insights toward improving their operational thermal stability for real-world applications.


Verlagsausgabe §
DOI: 10.5445/IR/1000189727
Veröffentlicht am 19.01.2026
Originalveröffentlichung
DOI: 10.1038/s41467-025-68219-w
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000189727
Erschienen in Nature Communications
Verlag Nature Research
Band 17
Heft 1
Seiten Art.-Nr.: 596
Vorab online veröffentlicht am 14.01.2026
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page