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o Al-supported methods are best combined, to balance different urban planning goals.

o Transdisciplinary methods can be used to test Al-supported methods for usability.

ARTICLE INFO ABSTRACT
Keywords: Confronted with increasing urban heat stress risks, local governments need to reconcile expanding green
Artificial Intelligence infrastructure for urban cooling with urban densification goals. However, the impacts of incremental urban
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development in established neighborhoods on urban heat stress risks remain poorly understood. We demonstrate
how decision support tools using Artificial Intelligence (AI) can assist complex urban land use and climate
adaptation planning. Our findings are based on an inter- and transdisciplinary research project that developed
and combined novel Al-supported simulation and prediction methods, namely 3D semantic models, Al-based
outdoor thermal comfort models, and optimization and scenario-based Al models. Tool development was com-
bined with transdisciplinary research to assess the real-world application potentials of Al-supported approaches
in the City of Freiburg, Germany. The article demonstrates how Al-supported methods can aide and expedite
urban land use and adaptation planning to support complex decision-making that needs to balance different
strategic goals and interests.

1. Introduction Panel on Climate Change (IPCC AR6), extreme events will intensify due
to climate change, with heatwaves becoming more frequent, more
According to the Sixth Assessment Report of the Intergovernmental intense, and lasting longer (IPCC 2023a). Cities experience climate
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change risks in multiple and complex ways because climatic hazards,
such as heat waves, heavy precipitation, and storms, interact with
exposure, i.e. the presence of people or objects in places and settings that
could be adversely affected and vulnerability, i.e. the propensity or
predisposition of these people or objects to be adversely affected (IPCC
2023b). In addition, the risks of climate change to urban areas are
compounded by local urban effects, such as urban heat islands (Oke
1973; 1982; Oke et al. 2017). Urban heat risks can thus be understood as
‘the potential for adverse consequences for human or ecological systems’
(IPCC 2023Db) that result from increases in average temperatures, more
frequent, more intense and prolonged occurrence of heatwaves in urban
areas, and the associated, spatially and socially differentiated effects of
exposure and vulnerability. According to a large modelling study by
Zhao et al. (2021), between 2000 and 2019 around 489,000 heat-related
excess deaths occurred globally each year, with heat-related mortality
being highest in Europe and Oceania. By 2100, up to two-thirds of the
global human population could be exposed to life-threatening climatic
conditions arising from coupled impacts of extreme heat and humidity
(Dodman et al. 2022), with substantial economic and social costs, such
as increasing school closures due and lost working hours due to heat
stress (United Nations 2024). The United Nations Secretary General’s
Call to Action on Extreme Heat considers dealing with urban heat by
‘fostering nature-positive cities and climate-sensitive urban design and
planning’ (United Nations 2024: 18) areas of primary concern, due to
the large number and high concentration of urban residents, commuters,
and visitors whose health and well-being may potentially be affected by
heat stress, adverse mental health effects, cardiovascular emergencies,
and heat-induced death. Heat stress also affects human productivity, e.
g., by reducing physical work capacity and motor-cognitive performance
(Ebi et al. 2021). Extreme heat events have been shown to be particu-
larly dangerous for city dwellers, resulting in high rates of mortality and
morbidity (Norton et al. 2015). These effects are projected to increase
with accelerating climate change (Guo et al. 2018; Ebi et al. 2018).

In built-up urban areas in Europe and elsewhere, heat-related urban
planning requires maximizing urban greening while at the same time
adhering to principles of sustainable and spatially efficient land use
management is a challenge that can prove difficult both politically and
technically (Erlwein et al. 2023; Verheij et al 2023). In established urban
neighborhoods and in cities with limited options to expand, the need for
densification and in-fill development (densification) to provide addi-
tional housing often clashes with the efforts to safeguard and expand
urban greenspace and enhance thermal comfort (Erlwein and Pauleit
2021). Artificial Intelligence (AI) provides significant potentials for
optimizing planning and decision-making at the intersection of urban
greening and densification (Aradjo et al. 2021; Othengrafen et al., 2025;
Lartey and Law 2025), yet it also comes with its own limitations and
challenges, including wide-ranging ethical concerns (Sanchez et al.
2025), questions regarding the anticipatory governance aspects
(Cugurullo and Xu 2025) and the hidden politics of ‘automated’ urban
planning (Peng et al. 2024) and Al urbanism (Cugurullo et al. 2024). The
main objective of this paper is to demonstrate how AI and machine
learning can substantially support urban heat risk analysis' and plan-
ning for heat adaptation in cities. We focus on the following research
question: How can Al-supported approaches and workflows contribute
to effective risk analysis and urban development planning aimed at
reducing heat hazards in established urban neighborhoods? We draw on
results from a 2021-2024 inter- and transdisciplinary research project
called ‘I4C - Intelligence for Cities’ that developed novel approaches for
Al-supported adaptation to urban climate risks and assessed their
application potentials in a real-world setting. Al methods were used

! ‘Risk analysis’ refers to the ISO 31000 process stage of risk assessment that
follows risk identification and precedes risk evaluation (ISO, 2018). Its purpose
is ‘to comprehend the nature of risk and its characteristics including, where
appropriate, the level of risk’ (ibid: 12).
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across the project for data assimilation, model input generation, model
performance increases, and predictions. Unparalleled in its spatial
(1x1m) and temporal (1hr) resolution, critical heat-related locations
could be identified, visualized, and risks quantified using Al-based
models and tools (Briegel et al., 2024). The project used an inter- and
transdisciplinary approach where natural and social scientists worked
with the City of Freiburg in southwestern Germany as the implementing
partner in a real-world application lab. Through knowledge
co-production, potential applications for the Al-based modelling and
prediction tools for analyzing neighborhood-scale urban heat hazards
developed in I14C were critically examined in transdisciplinary fashion.
Using an established inner-city neighborhood as case study area, we
demonstrated and critically reviewed the application potentials of
Al-supported urban heat risk analysis (as defined above) for
context-specific and scenario-driven urban heat adaptation planning
and decision-making. While focused on heat risk analysis, the findings
also have implications for other aspects of municipal climate risk
assessment (broadly understood as ‘the qualitative and/or quantitative
scientific estimation of risks’ (IPCC 2023b)) at the municipal scale.

2. Background

Cities are already experiencing extreme heat more often, more
frequently, and for longer periods (Meehl and Tebaldi 2004; Dosio et al.
2018; Perkins-Kirkpatrick and Lewis, 2020), leading to increased health
risks. By 2100, heatwave maximum temperatures in Central European
cities are projected increase by up to 14 °C (Guerreiro et al. 2018). Many
physical and non-physical urban parameters influence the heat-health
nexus (Ellena, Breil, and Soriani 2020). In European cities, urban land
use planning is a key lever for reducing heat hazards and future heat
stress. However, urban planners face the dilemma of reconciling the
need for urban greening to reduce heat-related risks with housing de-
mand and pressures for densification and compact city development
(Burton 2000) in order to minimize urban greenhouse gas emissions and
land use change on the urban fringe (Haaland and Van Den Bosch 2015;
Erlwein and Pauleit 2021). Intelligent adaptation supported by Al has the
potential to play a major role in supporting such complex adaptation
choices (Cheong, Sankaran, and Bastani 2022). It can help catalyze
climate-sensitive urban planning by providing urban planners and
decision-makers with precise and near real-time information that can
deliver fine-grained analysis of heat hazards. Drawing on a range of
potential development scenarios, such information can help urban
planners and municipal adaptation managers identify entry points for
heat-related climate adaptation interventions (cf. ISO International Or-
ganization for Standardization, 2021) and pave the ground for strategic,
heat-sensitive urban planning and design. However, the interface be-
tween Al methods, workflows and their outputs on the one hand and the
legal, regulatory and informational needs for making actual planning
decisions on the other hand is crucial for such tools to be applicable in
everyday urban planning and decision-making. In the following we
critically examine current challenges for urban heat risk analysis and
management to contextualize the tools developed and tested as part of
our research.

2.1. Understanding outdoor human heat risk in urban areas

Outdoor human heat risk is the result of a dynamic interplay of heat
hazard occurrence, exposure to heat, and individual and contextual
vulnerabilities. Urban built form and urban vegetation can substantially
influence heat hazard occurrence as well as human exposure to heat in
cities. Heat exposure and a person’s subsequent heat stress result from a
complex interaction between different environmental factors (air tem-
perature, radiation, humidity, wind), the human thermophysiology
(Epstein and Moran 2006) as well as specific vulnerabilities, such un-
derlying chronic illnesses or having limited mobility. Importantly, a
physical-medical understanding of heat stress requires the prediction of
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influencing atmospheric input variables that control a person’s energy
balance — variables that vary greatly in terms of space and time in cities
and depending on the person’s health condition (ibid.; Holst and Mayer
2011). For simplification, thermal indices are often used to describe and
quantify the exposure of a standardized person to heat at any location
and time (Coccolo et al. 2016; Staiger, Laschewski, and Matzarakis
2019). In human biometeorology, a number of thermal indices have
been developed to describe heat stress (Potchter et al. 2018), including
the Perceived Temperature (Staiger, Laschewski, and Gratz 2012), the
Universal Thermal Climate Index (UTCI) (Jendritzky, De Dear, and
Havenith 2012) or the Physiologically Equivalent Temperature (PET)
(Hoppe 1999). Maps of the distribution frequency of thermal indices are
used in planning to identify areas of heightened heat risk (Matzarakis
et al. 2008; Ketterer and Matzarakis 2015). For example, in their climate
adaptation concept, the City of Freiburg blended maps of PET with the
vulnerability of the population and identified 14 areas as heat ‘hot spots’
(Stadt Freiburg, 2019). Here, PET was calculated using numerical-
physical models under a few theoretically-assumed case studies
(extreme summer weather situations today and in the future).

The variables determining thermal indices at any point and time can
be calculated with numerical-physical models considering current
weather conditions and the local geospatial environmental context.
Examples of such numerical-physical models are building-resolving ra-
diation models such as SOLWEIG (Lindberg, Holmer, and Thorsson
2008), building-resolving urban wind models such as Large Eddy Sim-
ulations (LES, (Giometto et al. 2017)), or urban climate models that
predict neighborhood-average temperature and humidity (e.g., SUEWS,
(Jarvi, Grimmond, and Christen 2011)). Also, integrative models such as
PAML-4U (Maronga et al. 2020) or ENVI-met (Sinsel et al. 2022) provide
calculations of all above variables. Combined, this allows for the
calculation of maps of thermal indices at any time based on atmospheric
input variables (air temperature, radiation, humidity, wind) and the
complex 3D form (morphology, trees, and materials). However, running
such physical simulations is complex, computationally demanding, and
hence only affordable for short periods, and small subsets of a city.
Although simulations with physical models are effective, there is a need
to develop more efficient statistical and Al-based methods (Matzarakis
et al. 2018; Masson et al. 2020; Meyer et al. 2022) directly interfacing
with widely available geospatial data. Only in this way can long-term
statistics of heat hazards (i.e., data on an hourly basis over ten to 30
years in the past or future) be simulated. When modelling efficiency is
enhanced using statistical and Al-based methods, this also facilitates
simultaneous analysis of heat hazards for a large number of incremental
development scenarios, which in turn allows for selecting the best
available adaptation planning options with reasonable and affordable
computing time.

2.2. Planning to minimize urban heat risk and maximize potentials for
cooling

Urban land use planning facilitates processes with direct implica-
tions for heat-related climate risks and adaptation, such as densifying
cities and promoting green infrastructure. Measures to reduce outdoor
urban heat risks can readily be taken into account when planning new
suburbs, e.g., by including ample green and blue infrastructure to in-
crease shading and evaporative cooling and by aligning buildings to
minimize solar radiation exposure and maximize naturally occurring air
flows (Santos Nouri et al. 2018). However, in already developed urban
areas, land use planning usually takes effect through a multitude of
small-scale and incremental planning interventions, such as by granting
individual building permits for in-fill development, building extensions
or by planting additional street trees. Even in cities where heat risk
reduction is a priority, these micro-scale interventions are then assumed
to add up to cumulative positive urban cooling effects, although the
complex interplay of urban form, wind patterns and solar radiation
exposure renders generalizable statements regarding the actual effects
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of such measures impossible a priori. Therefore, for urban land use
planning interventions to result in effective urban cooling, fine-grained
analyses of urban heat hazards and cooling potentials down to the
neighborhood, streetscape and even the building levels are required. To
date, such analyses have been based on physical modelling methods,
which are costly and time-consuming, especially if different climate
change scenarios are to be considered (Weeding et al. 2023).

2.3. Current challenges and limitations with urban heat risk analysis

In built-up areas not undergoing substantial urban redevelopment,
the strategies available for reducing land-use-based urban heat hazards
are limited. They include changes to building form and materials, sealed
surfaces, increasing vegetation (Venter, Krog, and Barton 2020), and
blue infrastructure to increase evapotranspiration (Aminipouri et al.
2019). Tree planting in public spaces is a critical nature-based adapta-
tion solution (Seddon et al. 2020) employed by many cities, including
those that are investing massively in green infrastructure by creating
‘urban forests’ (Jones and Instone 2016; Esperon-Rodriguez and Harri-
son 2021; Rotzer et al. 2023). Trees primarily decrease heat occurrence
during daytime due to an increased fraction of shading (Middel et al.
2016). They also help cool cities through evapotranspiration (ref.).
However, trees also increase heat retention during the night and the
effect on thermal comfort varies also depending on ground cover
(Middel et al. 2021). Finding an optimized trade-off between day-time
shading and night-time cooling can be complex. De-sealing and reve-
getating surfaces are another strategy at the hands of urban planners
(Parison et al. 2023; Vieillard et al. 2024). At a small scale, de-sealing
can readily be incorporated into urban planning, e.g., along light rail-
way tracks and in marginal urban streetscapes that pedestrians and
other traffic do not heavily frequent, and greening even small patches of
sealed land can result in measurable heat mitigation (Morel et al. 2025).
In heavily used and dense public spaces, large-scale de-sealing is more
challenging and requires, for example, re-thinking existing urban land
uses, such as the conversion of street parking into green spaces (Croeser
et al. 2022). In light of the need to balance urban greening with other
present challenges, such as providing additional housing, mitigating
urban greenhouse gas emissions and improving accessibility in the
compact city, it is evident that densification needs to be optimized, in
particular in the context of growing urban populations (Artmann,
Inostroza, and Fan 2019; Wicki, Hofer, and Kaufmann 2022). This
means deciding on the optimal, thermally most effective ways of adding
new buildings and trees. Al-supported methods promise to support such
complex decision-making for effective urban heat mitigation (Ketterer
and Matzarakis 2016; Shahrestani et al. 2023; Briegel et al., 2024). If
long-term simulations of urban heat amplifiers and mitigation potentials
under multiple development scenarios were readily available, urban
planners and decision-makers could effectively and more efficiently
select options that optimize and balance between densification re-
quirements on the one hand and reducing day and night time heat
hazards on the other. Eventually, some scenario-based optimizations
could even be done automatically. Through such substantial improve-
ments, urban heat risk analyses could evolve into a precise, real-time
planning tool for identifying urban areas suitable for densification and
those prioritized for ventilation and urban heat reduction (Chaturvedi
and De Vries 2021; Nagappan and Daud 2021).

In summary, a series of challenges that are currently limiting appli-
cations of urban heat risk analyses can be identified: (1) they are com-
plex and costly to carry out as they rely on the time-consuming physical-
numerical modelling of context-specific micro-climatic conditions for
selected scenarios (Weeding et al., 2023). Therefore, (2) municipal ad-
ministrations usually outsource them to planning consultancies, result-
ing in substantial transaction costs, including time lags. Due to costs,
such heat-related and other forms of municipal climate risk assessments
are (3) usually only carried out for large urban developments or re-
developments and usually for selected periods, but not for smaller
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changes, and for already developed areas, e.g., established local neigh-
borhoods. Urban heat risk analyses are thus (4) currently not applied for
capturing small-scale, incremental changes to the urban form, which can
have a cumulative impact on urban heat over longer time frames. Such
small-scale changes are particularly relevant in safeguarding sustainable
spatial development, which focuses on minimizing urban spatial
expansion through densification of existing neighborhoods (Wicki,
Hofer, and Kaufmann 2022).

With current approaches, simulation and prediction, the required
level of detail at the meter scale and over long periods cannot be ach-
ieved with reasonable computational effort and cost allowing optimi-
zation efforts that are feasible for use by municipal administrations.
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However, recent advances in Al increasingly facilitate the performance
of complex computations on spatial and temporal fields quickly and at a
fraction of the computational costs (Middel et al. 2022). Al-based
models could provide information to urban planners and decision-
makers in near real-time and for iterative optimizations. To push the
frontier of Al-supported urban heat risk analysis, the I4C project
developed and implemented a workflow that combined precise semantic
3D models of urban form with weather and environmental data to model
building-resolved heat stress (Fig. 1). Furthermore, we explored using
Al-supported design optimizations, e.g., to effectively select tree
planting locations to mitigate heat at the pedestrian level.

< Redensification
scenarios

©) Weather model data
ERA-5

) Air temperature
and relative humidity

) Exceedance hours
for a given scenario

) Comparison

Fig. 1. Schematic representation of the proposed work flow. As inputs we use urban form LIDAR and Al-semantics (A), complemented by different development
scenarios (B) and past weather data from meteorological reanalysis models (C). In a first step three separate Al-based models are run that predict high-resolution
mean radiant temperature (D), pedestrian-level wind (E) and air temperature / humidity (F) for every hour over 10 years. Based on the three models, for each
hour the spatial distribution of thermal comfort (UTCI) is calculated (G). Summing up all cases over the 10 years of simulation when UTCI is exceeding thresholds for
heat stress, we calculate average annual exceedance hours for each pixel (H). The exceedance hours from a baseline scenario can then be compared to maps produced

the same way for another scenario (I) to assess microclimatic impacts.
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3. Study area and methods: Heat hazards in an urban
neighborhood under different development scenarios

A part of the I4C project involved developing novel Al-supported
workflow for modelling and predicting outdoor heat hazard occur-
rence and related risks of heat stress occurrence. For this paper, we use
the central part of the inner-city urban neighborhood of Wiehre, a resi-
dential and mixed-use area located immediately to the south of the city
center of Freiburg.

Wiehre was primarily developed in the late 19th and early 20th
century and, in December 2022, was home to 24.640 inhabitants (Stadt
Freiburg, 2024). The neighborhood is inhabited mainly by members of
middle and upper socioeconomic strata, with an exceptionally high
percentage of academics (Stadt Freiburg, 2024). The built form is
dominated by heritage-listed urban villas dating from the 18th, 19th and
early 20th centuries, which originally featured large, park-like court-
yards that, in recent decades, have become a focus of densification
(Fig. 2). Densification has mainly occurred through incremental in-fill
development and, to a lesser extent, urban re-development of non-
heritage-listed buildings. These measures for densification have
largely focused on providing additional residential space that is high in
demand in this inner-city neighborhood situated within the broader
context of a city that has continued to attract new residents. These in-fill
developments have been driven mostly by individual planning appli-
cations of building owners.

Situated in the Upper Rhine Valley, Freiburg and its neighborhood of
Wiehre experience a warm temperate climate, making it one of the
hottest areas in Germany. Based on long-term climate data
(1991-2020), the Freiburg region has an average annual air temperature
of 11.0 °C and a monthly mean air temperature of 20.1 °C in July. It also
experiences on average 19 days per year with maximum air tempera-
tures exceeding 30 °C (CDC, 2025). The average annual temperature
over the past decade (2015-2024) in the Freiburg area increased to
11.9 °C. almost 1 K above the long-term mean. The region is particularly
vulnerable to strong heat, with the Upper Rhine Valley currently expe-
riencing the highest levels of heat stress in Germany — a trend expected
to worsen in the future (Briegel et al., 2024; Hundhausen et al., 2023). In
a shorter-term study in 2022/23, the neighborhood of Wiehre has been
identified to experience elevated annual average air temperatures by +
0.5 °C, and 19 tropical nights per year — nights when the minimum air
temperature does not drop below 20 °C. This is indicative of a significant
nocturnal heat island effect, as compared outside the city at the official
weather station only 4 tropical nights were recorded per year (Plein
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et al., 2025).

Within Wiehre, a 1400 x 700 m subset of the neighborhood with
primarily residential / mixed-use was selected, referred to as study area
The study area has a population density of 88.4 inhabitants per hectare
of populated area (Stadt Freiburg, 2024: 12). The plan area in the study
areas is 22 % paved, 32 % occupied by building footprints, and is
covered by 44 % vegetation (Fig. 3).

We applied Al-supported models to (1) characterize and map the
neighborhood for modelling, (2) develop scenarios for this area with the
goal to identify and to assess climate-sensitive densification options and
heat mitigation options, and finally also, (3) optimizing mitigation op-
tions through Al-supported tools.

This paper highlights four different methodological steps carried out
as part of the I4C project:

1) Developing a 3D semantic model using LIDAR data and Al segmen-
tation to characterize highly detailed inputs on urban buildings,
structures, and vegetation needed in the subsequent heat hazard
modelling;

2) Developing an Al-based model for heat stress risk mapping at high
temporal (hours to years) and spatial resolution (resolving buildings
and trees) based on the 3D semantic model and varying weather
data.

3) Applying the Al-based model to numerous planning scenarios in the
study area, in particular, also using Al to ‘do the planning’ for opti-
mization of planning interventions for urban heat hazard mitigation
at the urban densification/urban greening dilemma using pre-
defined (simplified) criteria, and

4) Elaborating and assessing how the Al-supported models and their
outputs can best be incorporated into urban planning and decision-
making using participatory methods, such as scenario-based simu-
lation games.

4. Results: Tools for Al-supported heat adaptation planning in
urban areas

High-resolution heat risk modelling is an increasingly important
decision-support tool for planning heat mitigation options at or below
the urban neighborhood scale. In the following, we present the results of
the four steps outlined above. Our core aim in discussing the findings
from our developmental research is not to explicate the technical
methods used in detail (readers interested in this aspect are encouraged
to refer to Appendices Al to A3 and references therein) but to highlight

g, / b
Courtyard re-densified

s

Fig. 2. Aerial view of parts of the Wiehre neighborhood with typical block perimeter buildings and park-like courtyards featuring large trees in a near-original state
(left) and a densified precinct with in-fill development and less green infrastructure. .

Source: Google Earth 2024



H. Fiinfgeld et al.

z
B
@
< B
o
~N
<

47.984°N

7.843°E
Current landcover [ Paved ] Grass
and scenarios Il Buildings Il Water

Il Tree Canopy

Landscape and Urban Planning 268 (2026) 105574

Redensification
@ Additional trees

Fig. 3. Map of the Wiehre study area in Freiburg including modifications to built form and vegetation considered in the Al-based simulations. Current land cover is
shown in colors, while added buildings (in-fill in scenarios 5-8) are shown as hashed purple outlines. The locations of new tree plantings considered in scenarios 2, 4,
6, and 8 (Table 1) are purple dots. The sites for additional tree locations are possible available spaces. The plausibility of such tree placements must be established

using ground-truthing on site.

key developmental steps that bear direct relevance for Al-supported
adaptation to urban heat risks. Key opportunities and limitations
regarding the application of Al-based models and tools and their
application in urban heat adaptation planning are then critically
reviewed in the Discussion section.

4.1. Characterizing urban form using LIDAR and Al segmentation

Describing, georeferencing, and quantifying urban form is one of the
main starting points for developing strategies for mitigating human heat
risks in densely populated urban areas. Urban form is also a crucial
determinant at the neighborhood scale when considering potentially
contradictory urban planning goals, such as the need to densify estab-
lished inner-urban residential areas through infill development, while at
the same ensuring public acceptance of such development and allowing
for urban cooling by, for example, retaining mature trees (Wicki, Hofer,
and Kaufmann 2022). In urban outdoor spaces, this requires detailed
and timely information on the urban form (in particular buildings and
vegetation) to consider shading, thermal radiation, surface energy ex-
changes, and wind. Although, digital surface models exist for many
cities, they may be incomplete and, for instance, rarely include all
vegetation, which is critical in shading and cooling cities through
evapotranspiration (Krayenhoff et al. 2021).

Airborne or ground-based Light Detection and Ranging (LiDAR) data
can provide up-to-date and complete information on urban form
including buildings and vegetation. The resolution, however, is often
limited, and it can be challenging to obtain vegetation data at the
pedestrian scale due to the geometric limitations of overhanging trees
and roofs. Therefore, cities also use car-based surveys with terrestrial
laser scanning. This data provides point clouds of laser returns that must
first be translated into 3D datasets. To use this data as input for heat
stress models, the data needs to be further converted into objects,
identifying relevant forms (buildings, types of trees) and discarding
dynamic objects (cars, garbage bins.). The process of translating LIDAR
point clouds into objects is called semantic segmentation. In the case

study, we tested an Al-based approach to transform the LIDAR point
clouds in the area of Wiehre into geometric objects.

The Al-based segmentation results in an automated 3D object clas-
sification per LiDAR point of the Wiehre area are shown in Fig. 4. Details
on the Al-based approach can be found in Appendix Al. This approach
serves as a baseline input, providing geospatial data on urban form in
the subsequent heat modelling (Fig. 1, A). In particular, it separates stiff
and non-transparent objects like buildings from partially translucent
vegetation. We show that segmentation using Al-based 3D neural
network approaches can efficiently generate meaningful, realistic digital
models of urban form (buildings, vegetation) that can be used for
various specialized urban planning applications due to the high-
resolution semantic representation. As our study showed, they could
serve as a key decision-support tool for municipalities with limited
financial resources that, in the near future, could be applied in-house
without relying on specialized planning and spatial data consultancies.

4.2. Ai-supported heat stress and mitigation mapping

Al-based methods have tremendous potential to help address urban
heat stress and to overcome some of the main challenges with urban heat
stress analysis outlined above. As part of the I4C project, we developed a
novel and efficient Al-based model chain that accurately predicts maps
of thermo-physiological stress based on the type of geospatial data
outlined above and weather data (Fig. 1). In summary, the model
framework consist of three different Al-based emulators of numerical-
physical models that predict pedestrian-level mean radiant tempera-
ture (Fig. 1, D), wind (Fig. 1, E) as well as air temperature and relative
humidity (Fig. 1, F) based on fixed urban form and constantly changing
weather data. Mean radiant temperature and wind are modelled at 1 x 1
m spatial resolution because they depend on shadow patterns and three-
dimensional pressure fields around buildings, respectively. Air temper-
ature and humidity change less in space, so they were modelled at 500 x
500 m resolution. All models were run at an hourly resolution over 10
years. From the three model outputs, UTCI was calculated for every hour
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Fig. 4. Al-based segmentation of the Wiehre Area, including urban vegetation.

at 1 x 1 m resolution (Fig. 1, G). Summing up all daytime hours in any
pixel when the UTCI value was greater than a threshold for moderate
(UTCI > 26 °C), strong (UTCI > 32 °C), very strong (UTCI > 38 °C) and
extreme (UTCI > 46 °C) heat stress enabled the calculation of average
daytime exceedance hours for each class. Similarly, summing up all
nocturnal hours when the UTCI value was greater than 20 °C led to
nocturnal exceedance hours for heat (Fig. 1, H). A more detailed tech-
nical description of the model framework and how UTCI and the
necessary variables for its calculation (air temperature, relative hu-
midity, wind speed, and mean radiant temperature) were obtained can
be found in Appendix A2, as well as in Briegel et al. (2023) and Briegel
et al. (2024). The calculated UTCI values has a comparable accuracy as
the numerical-physical models which it is based on with a mean absolute
error of 2.3 K compared to a dense urban sensor network (see Appendix
A2 and Briegel et al., 2024).

The model was first run for a baseline scenario (SC1), representing
the urban area in its current (2021) state, including today’s built form
and vegetation. Then, different heat mitigation options were considered,
including adding 5 % more trees (SC2), desealing all inner courtyards
(SC3), as well as a combination of SC2 and SC3 (SC4). The additional
trees are considered mature, with a maximum height of 12 m and a
spherical crown with a diameter of 9 m. To simulate the impact of
additional densification, 65 additional (hypothetical) detached

buildings were added as infill (+-3% plan area), primarily on courtyards
and currently open spaces (SC5). This scenario was again combined with
additional trees (SC6), desealing of the remaining courtyard areas (SC7),
and the combination of additional trees and desealing (SC8). Finally,
two sensitivity scenarios were run. These assess the maximum potential
impact on ecosystem services. In SC9, all surfaces, including major
roads, are desealed, in SC10, all trees are removed. Each scenario (SC1-
10) was run for 36,720 time steps covering all summers (May —
September) from 2010 to 2019. From the output, the average exceed-
ance hours per year for moderate, strong, very strong or extreme heat stress
were extracted for each 1 x 1 m pixel.

Fig. 5 shows a map of the study area with the number of hours
experiencing strong heat stress (UTCI > 32 °C) for the study area in its
current form. Blue colors show areas with few hours of strong heat stress,
located mainly on the northern side of buildings and underneath clusters
of mature tree crowns. Orange and red delineate areas with more hours
of strong heat stress, mostly found on unshaded South-facing walls, on
large open areas, and along paved traffic infrastructure.

Fig. 6a shows a map of the difference in hours with strong heat stress
between SC5 (additional densification with infill buildings) and SC1
(baseline). This difference estimates the impact of the densification on
pedestrian-level outdoor heat stress. The densification increases the
spatially averaged number of hours with strong heat stress only
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Fig. 5. Al-based modelling of heat stress in the baseline scenario 1. The map shows hours per year with strong heat stress (UTCI > 32 °C) calculated based on hourly

weather data from the period 2010-2019.

minimally, from 53.1 to 54.1 h per year. The area that would experience
at least 66 h of strong heat stress increases by 1.1 % due to the densi-
fication. Average air temperatures would not change significantly.
However, minimum nocturnal air temperatures would increase by
0.5 °C. Overall, the impact of the re-densification on heat stress and air
temperature is minor, with a pattern that in-filled buildings generally
increase heat stress on their south side but decrease heat stress to the
north, due to their shadows. Fig. 6b shows a map of the difference in
hours with strong heat stress between SC6 (densification plus 5 %
additional trees) and SC1 (baseline). Hence, this is an attempt to esti-
mate the impact of additional densification while mitigating heat by tree
planting at the same time. The 5 % additional trees have a significant
effect, reducing the number of hours with strong heat stress from 54.1 to
45.1 h per year, the area affected by at least 66 h of extreme heat stress
would be reduced by 32 %. Average air temperature would increase by
0.1 °C and minimum nocturnal air temperature by 0.4 °C. The impact of
an additional 5 % trees on average air temperature is limited as the small
number of trees only produce a marginal effect, mainly through shading.

Tab. 1 summarizes the same spatial statistics for all scenarios from
SC1 to 10 for the entire study area. From the different Al-based simu-
lations, several planning-relevant findings can be derived: For example,
unsealing all inner courtyards has an impact that is about half as
effective (—3.2 h / year or —6% reduction in strong heat stress)
compared to adding 5 % mature trees (—8.8 h / year or —17 % reduction
in strong heat stress). Combining the two will further cool the city, but it
is not simply the addition of the two effects (—10.9 h / year, —21 %).
However, it is also notable from Tab. 1 that planting trees causes an
increase in night-time heat hours with UTCI > 20 °C by about 5 % and an
increase of nocturnal air temperatures due to radiation trapping at night.
This effect is rarely reported because, due to computing constraints,
most assessments only consider and simulate daytime conditions. The
effect of densification on 24-hour average air temperatures is negligible
for all scenarios except the sensitivity SC10, removing all trees, which
would cause an overall air temperature increase of 1 °C across the
neighborhood. In other words, the current mature tree canopy in the
neighborhood decreases heat stress hours by 46 % and cools the

neighborhood by 1 °C, which highlights an imperative to maintain
mature trees during and despite densification.

4.3. Optimizing adaptive planning interventions for urban heat hazard
mitigation

In addition to Al-based modelling of current and future user-defined
urban densification options, we also explored the potential of Al-based
methods to automatically select greening options that optimize spe-
cific climate adaptation goals, e.g., reducing urban heat hazards. For
example, urban planners may want to identify optimal placements for
trees and buildings for any given densification scenario, in a way that
minimizes avoids creating additional heat hot spots and minimizes any
reduction or degradation of existing thermally comfortable outdoor
space. The optimal placement depends on ground land cover (e.g., grass
vs. paved) as well as on areas already areas by buildings or trees.

To explore the potential of such an optimization-based AI approach
to reduce urban heat, we used two scenarios of additional trees to
mitigate mean radiant temperature, a main determinant of daytime
thermal discomfort, using an Al-based optimization (Schrodi et al.,
2023). The output map of such an Al-generated tree-planting option is
visualized in Fig. 7, which shows the location and impact of generated
trees to most efficiently mitigate heat at the pedestrian level by adding of
four trees/ha and ten trees/ha within a subset of the study area. Through
optimal placement of trees, the mean radiant temperature can be
reduced on daily average by 0.33 K and 0.66 K for four trees/ha and ten
trees/ha, respectively (Fig. 7b,c). This relatively low decrease is due to
the spatial averaging across the entire study area, as well as the aver-
aging of the effects of the trees across the day. The nocturnal effects of
the trees are rather an increase in Ty due to radiation trapping.
Nevertheless, locally observed decrease in Tyt is up to 8 K.

4.4. Examining real-world application potentials in urban planning and
decision-making

To examine the potential applicability of enhanced heat risk
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Fig. 6. Changes in heat stress due to (a) densification with 10 % more buildings (new buildings hashed) and (b) 10 % more buildings plus 5 % more mature trees and
all backyards de-sealed in the study area. The maps show the differences in hours per year with strong heat stress (UTCI > 32 °C) between (a) scenario 4 and 1, and

(b) scenario 8 and 1 for the period 2010-2019.

management using the Al-based models and tools discussed above, we
worked with City of Freiburg officials in the Office of Environmental
Protection, the Office of Urban Planning, the Surveying Office and the
Digital and IT Office. We used qualitative and participatory methods to
assess the real-world requirements of Al-supported climate change
adaptation planning and decision-making. A participatory and scenario-
based planning exercise was implemented in October 2023, where ten
local government officials and seven researchers discussed key decision
points in heat-related statutory land use planning and explored the po-
tentials and implications of Al-supported models and their map-based
outputs. The scenario-based planning exercise was set in the year
2030 (i.e. the near future) and assumed that the Al-based decision-
support tools for reducing urban heat risks discussed above work
without any technical flaws. The exercise centered on the map-based
application using Al-based modelling of heat stress through densifica-
tion (as highlighted in Fig. 5 and 6a,b) and on the automatic tree

placement optimization tool (Fig. 7, see above). These two tools were
used to identify key decision points for urban heat risk reduction in
statutory urban land use planning and strategic climate change
adaptation.

The simulated planning process highlighted the substantial potential
of Al-supported methods for enhancing and expediting urban heat-
related climate risk management at different planning stages, particu-
larly during exploratory phases of developing binding land use plans.
Key potential benefits identified were overall cost and time efficiencies,
the ability to produce many variations for land use plans at limited
expense, and the potential for using Al-supported maps as additional
evidence base in the political process and in discussing adaptation op-
tions with the general public (Tab. 2). However, the evaluation of the
exercise also highlighted that some decision-makers found the
complexity of the Al-based tools difficult to understand, in particular
regarding which aspects of the tools and the output maps generated
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Table 1
Metrics of the different planning scenarios.

Interventions Daytime heat stress Nocturnal heat stress Other climate impacts
Scenario Additional Additional Additional Number of Fraction Number of Fraction Mean air Mean Mean Mean
(SC) buildings unsealing trees (%) exceedance of area exceedance of area temperature maximum minimum air  relative
(%) (%) hours > 32° with hours > with (°Call air temperature humidity
UTCI per exceed- 20 °C UTCL exceed- pixels)® temperature (°C, all (all
year (mean ancees > per year ances > (°C, all pixels)® pixels)®
per pixel) 32° UTCI  (mean per 20 °C pixels)*
(at least pixel) UTCI (at
66 h)? least
(%) 108 h)®
(%)
1 - - 0 53.1 33.4 100.2 33.2 16.2 21.0 5.7 78.3
2 — - +5% 44.3 23.0 104.8 36.6 16.2 21.0 5.6 78.4
3 - +100 % 0 49.9 29.9 97.7 31.5 16.2 21.0 5.0 78.8
4 - +100 % +5% 42.2 20.4 102.2 34.3 16.2 21.0 4.9 78.8
5 +10 % — 0 54.4 34.5 104.7 37.5 16.3 21.0 6.2 78.1
6 +10 % - +5% 45.1 23.4 109.6 41.0 16.3 21.1 6.1 78.1
7 +10 % +100 % 0 51.3 31.2 102.0 35.9 16.2 21.0 5.5 78.6
8 +10 % +100 % +5% 42.9 20.9 106.8 39.0 16.2 21.0 5.5 78.6
9 - All - 45.9 22.4 94.9 29.7 16.1 21.0 4.2 79.4
surfaces
unsealed
10 - - All trees 98.4 86.3 82.0 22.1 16.3 21.1 77.6
removed

2The 67. Percentile of the UTCI > 32 °C distribution of the status-quo is used a threshold.
3The 67. Percentile of the UTCI > 20 °C distribution of the status-quo is used a threshold.
4 Mean values are weighted SUEWS 500 x 500 m tiles based on proportion within Study Area (redensificated area).
5 Mean values are weighted SUEWS 500 x 500 m tiles based on proportion within Study Area (redensificated area).

were based on Al The planners involved in the exercise also voiced
concerns regarding Al-based tools potentially limiting creative freedoms
necessary for achieving high-quality urban planning outcomes amidst
unclear legal liabilities for Al-based planning decisions. In addition,
multiple practical challenges were identified, such as aligning Al-
supported and scenario-based modelling with a diverse array of plan-
ning time frames and the need to keep physical building and climate and
weather-related data up to date on an at least annual basis.

5. Discussion

Using Al-supported approaches for analyzing and optimizing land
use and adaptation planning promises tangible improvement for
addressing urban outdoor heat risks in cities. However, at present, Al-
supported approaches and workflows require establishing preliminary
pieces of data collection and training work, while also addressing data
availability, technical as well as legal and ethical challenges that are
likely to emerge during the process. In the following, we discuss the
potentials and possible challenges of integrating Al-supported ap-
proaches and methods into real-world urban planning and adaptation
processes.

5.1. 3D data availability and requirements

As our case study showed, data acquisition to generate 3D semantic
models that serve as a basis for effective and useful Al-based modelling is
a crucial step upon which all subsequent urban heat hazard and heat
stress analyses are built. Even in data-rich environments such as in the
City of Freiburg, data acquisition can be a challenge and remains con-
strained by cost and broader feasibility constraints: 3D data collection
can be carried out by mounting sensor platforms to different vehicles
such as cars, drones, or airplanes, but each of these data collection
methods comes with different strength and weaknesses. In our example,
a car mounted sensor was able to collect very accurate and dense data at
limited cost, but the collection process was still cumbersome and some
parts of the urban morphology (e.g., gardens, roof tops) could not be
fully observed. LiDAR + RGB-based measurements collected via

airplanes, which are relatively expensive, are typically more affected by
a low signal-to-noise ratio that renders data less reliable. Therefore,
decisions regarding the approach(es) to data collection will need to be
guided by weighing up costs, legal and regulatory constraints (see
below) and specific data requirements. In the case of semantic seg-
mentation, the performance of the neural network is directly linked to
the amount and suitability of training data and therefore highly sus-
ceptible to training data limitations. In our study, different methods for
reducing the required training data were explored. One promising di-
rection is using Active Learning, where a neural network is trained with
a very small base of labelled examples. The network then queries a
human for more labels on those samples it is most uncertain about. This
allows improving network performance while not requiring a complete
annotation of the data. In the future, fusing aerial and car-based data
collection methods can help further automatize creating homogeneous
3D data baselines where all relevant signals are best represented.

5.2. Limitations of the UTCI AI model

Despite the positive trade-off between accuracy and computational
cost, there are limitations to the Al-based UTCI model framework for
simulating pedestrian-level outdoor heat stress. While the numerical
models SUEWS (T,/RH) and SOLWEIG (Ty,;t) incorporate time lag ef-
fects, the emulators do not consider previous time step states. Although
the emulator predictors are set to incorporate this by applying lag effects
(e.g. T, of previous time steps), time-dependent processes such as the
gradual heating of buildings may not be fully represented.

Although the Al-based model framework was carefully tested against
a wide variety of urban environments, caution should be taken when
applying it to other cities or climates. The model can only capture urban
environments and climates that have the same building and vegetation
morphologies, and the same meteorological data, as those covered by
the training data. Therefore, this model should only be transferred to
similar climates and cities.

Also, the Al-based model framework uses mean values for each
spatial area (i.e., tile), irrespective of the area’s diverse use types. For
example, a sealed area in a private courtyard used as a parking lot is

10
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Fig. 7. Al-based tree planting in the Wiehre area with 4 and 10 additional trees/ha (b,c). The study area has an extent of 500 x 500 m.

weighted equally in the model as a busy footpath on the roadside outside
a string of local shops. Also, the model cannot distinguish between
different user groups, e.g., whether or not a public sealed area is used by
people particularly vulnerable to heat, e.g., a footpath outside a nursing
home or a kindergarten.

5.3. Enhanced performance and efficiency gains through AI support

As infill urban developments in existing neighborhoods occur
incrementally, detailed and highly context-sensitive heat risk analyses
are necessary. One of the key benefits of Al-based models vis-a-vis
physical models is that, once the modelling data has been obtained and
the model has been set up, many different planning scenarios can be
calculated for a local urban precinct at low cost and in reasonable time:
such models do not rely on high-performance computing capabilities,
and once a suitable user interface has been generated, they can be run
using a few mouse clicks. In addition to ‘testing’ different planning
scenarios (i.e., where exactly a new building or a tree of a specific shape
and height could be placed), the Al-based model can also simulate
seasonally changing conditions across large time frames, as the models
can be run for specific days of the year, for the near or the far future.

11

Therefore, one of the key benefits of Al-supported heat risk analyses is
the ability to process very large quantities of data in a near real-time
fashion. The outputs of such model runs can be produced as maps,
which can then serve as a basis for goal-orientated planning discussions
(including participatory deliberation). Such decision-making could take
technical and qualitative aspects into account that are currently not
included in the model, such as underground infrastructure, aesthetics,
and intended beneficiary groups.

Nevertheless, it should be noted that Al-based models are developed
and tested for specific and targeted applications and are not generally
valid, as physics-based models are. This means, while current Al-based
models are valuable tools for assessing heat risks in specific environ-
ments, they cannot reproduce the full complexity of physical-numerical
urban climate models.

5.4. Legal and ethical implications for Al-supported urban heat
adaptation

At present, Al systems merely serve as decision-support tools, to
provide input into decision-making. However, there is potential for
(generative) Al systems to independently suggest optimization decisions
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Table 2

Opportunities and challenges of using Al-supported methods in statutory land
use planning and climate change adaptation, as identified by participants in a
scenario-based simulation exercise, 19 October 2023.

Al-supported methods in urban heat-related planning and adaptation:
Opportunities Challenges

Cost and resources savings (when
compared to using physical models)
Increased time efficiencies

High initial and maintenance costs (e.g.,
for maintaining data quality and currency)
Lack of transparency and plausibility of
Al-based modelling results

Focus on quantitative assessments
potentially sidelines qualitative aspects
Unclear legal liabilities for Al-based urban
planning and decision-making

Optimizing urban land use planning
from the outset

Enhanced evidence base for data-
driven deliberation and decision-
making

Developing a broad range of planning
options, leading to more open-
minded planning

Supporting the increased need to
develop multi-functional urban
spaces

Fostering sensitization and awareness
raising for urban heat issues across
departments/offices

Too many planning options may become
politically instrumentalized, making it
difficult to reach consensus
Understanding the limitations of Al-
supported tools and communicating these
appropriately to stakeholders

in the future, which can then significantly influence planning decisions,
e.g., by visualizing options and thus making them much more tangible
and more easily accessible to decision-makers and the wider public alike
(see Cugurullo and Xu 2025). As a basis for decision-making, Al-based
predictions are typically incorporated into informal planning in-
struments such as city concepts and strategies, which in turn prepare
decisions within the framework of formal legal instruments (develop-
ment plans and land use plans). Regardless of the specific legal inte-
gration of Al-based predictions in procedures and decisions, there are
legal challenges, such as (1) uncertainties resulting from limited tech-
nical possibilities or limited knowledge; (2) challenges under certain
data protection laws of safeguarding personal rights and data protection
when recording local data as part of semantic models; (3) risks of
discrimination in the selection of modelling and training areas, which
may exacerbate urban inequalities; and (4) ethical challenges of trans-
parency, as Al-based methods as the precise ‘intelligence’ of Al is
grounded in neuronal networks’ machine and deep learning processes
that are practically incomprehensible. On the other hand, Al-based
methods are highly efficient and therefore allow for in-depth analyses
down to the level of streets and individual buildings. As such, their
potential for in-depth analysis of existing and potential future urban
form and its heat risks can also support evidence-based urban planning
and decision-making, e.g., by treating politically contested objects of the
urban form (such as buildings with historical meanings, street trees of
particular local significance, or sealed car parking areas) in the same
way as less controversial ones. This in turn can support more nuanced
deliberation on different options for urban redevelopment and improve
the legitimacy of planning decisions.

5.5. Enhancing adaptive capacities in municipalities using Al-supported
approaches

A range of measures can be taken to implement Al-supported de-
cisions in local governments (Tab. 3). There are low-threshold oppor-
tunities for using Al-based tools effectively, e.g., for gaining an overview
of different planning scenarios and for identifying the range of techni-
cally or politically feasible land use and adaptation planning options, or
to elaborate the most cost-effective options and thus save limited public
funds. Such ‘decision options tests’ can be conducted in-house or
awarded to external contractors; also incremental in-fill developments
can be assessed for their heat-related implications, e.g., by running Al-
based simulations for individual construction permits.

Shifts in predictive technology can produce efficiency gains with
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Table 3

Guidelines for structurally embedding Al-supported decision-support. The bullet
points represent key findings from a best practice review summarizing current
state of the art with regard to including Al-supported processes in municipal
climate adaptation and land use planning. Key sources are: Berryhill et al. 2019;
Engstrom et al. 2020; Hein and Volkenandt 2020; Wulf and Egli 2021, Campion

et al. 2022.

Planning Implementation Governance
e Determining o Developing Al strategy o Establishing a
specific papers to determine the supervisory/control

requirements (data,
decision-making

appropriate and
intended use of Al-based

body for monitoring and
evaluation of Al-

needs,...) tools supported processes

- Identifying specific e Ensuring appropriate e Regular, comprehensive
tasks and technical infrastructure testing for quality
administering o Piloting (e.g., control

e associated experiments, learning e Updating / further
processes processes) development of data

o Identifying o Establishing a sources and methods

beneficial and
limiting aspects

feasibility and

Comparing goals vs.

multidisciplinary team
with clearly defined
responsibilities
Promoting Al acceptance

Institutionalized
training and
development options

constraints through information

e Appraising legal campaigns (citizens)
framework o Offering training courses
conditions (staff)

e Garnering support e Inter-municipal
from upper cooperation
management

e Identifying suitable
actors, e.g.,

‘champions’,
relevant

departments etc.

potentially transformative effects in municipal administrations and the
local governance of urban heat. Using Al-based methods, larger mu-
nicipalities may soon be able to run parts of the simulations of the heat
impacts of buildings and other urban infrastructure in-house (i.e., in
municipal planning offices). In that case, however, urban planning de-
partments will need to substantially upskill their planners to develop the
skills to effectively and appropriately use Al-support decision support
tools. Far from relinquishing ‘control’ to Al (a commonly held fear also
expressed in our participatory research with the City of Freiburg),
municipal planners who are trained to use tools supported by Al may be
able to effectively steer a larger proportion — or perhaps the entire —
process of generating evidence bases for planning in-house, to expedite
planning processes on the whole while maintaining total quality over-
sight. Ultimately, using Al-supported simulation and prediction methods
is likely to result in a need for more technically skilled planning
personnel or a shift towards an institutionalized interface between urban
planning departments and urban digital data hubs, where Al-based
modelling and prediction tools can be housed and maintained. With
regard to political decision-making, elected councilors will need to be
trained in understanding the basic challenges and pitfalls of Al-based
methods - yet this may add additional demands on already heavily
burdened lay decision-makers.

6. Conclusions

Al-supported, locally contextualized and highly specific forecasts of
urban heat discussed here directly support the New Urban Agenda’s and
other international policy frameworks’ calls for ramping up the use of
‘smart’ digital technologies for improving evidence-based decision-
making with methods and approaches that are both ubiquitously
applicable and affordable. As we were able to demonstrate, Al-based
modelling and prediction methods have the potential to radically
transform urban planning and decision-making in climate change
adaptation. More efficient and finer-grained climate modelling using
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statistical-numerical processes can reduce the costs of establishing the
evidence base for heat-resilient urban development and help select or
pre-select the most effective options for mitigating heat. As shown in our
case study of the City of Freiburg, the need for expensive and time-
consuming heat exposure and sensitivity analyses can be reduced by
drawing on Al-supported methods, in particular Al-trained 3D semantic
models and deep learning UTCI models. The possibilities of calculating
heat-related effects of urban greening and densification under different
climate change projections are promising here because this facilitates
cost-effective and rapid assessment of how urban greening and densifi-
cation interventions will perform under different climate futures.

In addition, generative high-resolution Al can assist in virtual ex-
periments at early stages of planning processes, e.g., at the precinct
scale, when new green infrastructure options are being considered. For
example, if a brownfield is to be redeveloped, high-resolution and
scenario-based Al modelling can rapidly produce spatially explicit rep-
resentations of future buildings, sealed surfaces, and green and blue
infrastructure (e.g., the location of trees and water fountains) and their
respective positive or negative impacts on urban heat. Moreover, high-
resolution modelling can also assist in the assessment of the ecosystem
functions and value of existing green infrastructure. For instance, Al-
supported modelling can highlight the value of preserving and main-
taining mature trees in urban cooling: the mature tree canopy in our
study area reduces annual heat stress hours by half, cooling the neigh-
borhood by an average of 1 °C.

When it comes to implementing Al-supported urban land use and
adaptation to mitigate heat, there are still many challenges issues to be
resolved, in particular in relation to the development of appropriate
technical interfaces that can be integrated with existing geodata portals
and digital models; the skillset required by urban planners; and the
governance and quality assurance of Al-supported planning, including
legal and ethical ramifications. However, with the rapid advances in
machine learning, deep learning, and generative Al, technological ca-
pabilities are likely to become rapidly available for everyday planning
situations. These technologies can expedite urban planning processes
while making them more affordable — once specific preliminary re-
quirements regarding data, IT infrastructure as well as ethical and
governance challenges have been addressed.
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Appendix

Appendix A. 1 — technical description of the Al-based urban form
segmentation and annotation

For our study area, data collected in a recent ground-based LiDAR
survey of the City of Freiburg using a car-based mobile mapping plat-
form was available. Before its use in heat hazard models, the dataset
required substantial processing. The ground-based LiDAR dataset con-
tained GPS coordinates, with the intensity of return points in space being
complemented by visual 360-degree images. The ground-based data for
the entire City of Freiburg contained 31.040 point cloud tiles with a
spatial dimension of 50 x 50 m each. Manual semantic segmentation of
ground-based LiDAR data would be very labor- and cost-intensive, and
therefore, not economical for urban neighborhoods or complete cities.
For example, manually annotating all data in Freiburg would take 760
days, with a person working 24 h/day. Although 3D neural networks for
segmentation tasks exist (Thomas et al. 2019), the main labor-intensive
part is the training and optimization for a defined number of object
classes.

As part of the I4C project, an Al-based segmentation method was
developed to identify objects within the LIDAR point cloud data with the
following categories: buildings (walls, roofs), sealed surfaces, vegetated
surfaces, leaf trees, needle trees, bushes, hedges, other vegetation, and
dynamic objects (e.g., cars, bicycles, garbage bins). With the segmen-
tation, relevant objects such as buildings, hedges, or trees are used as
inputs in the heat risk model, while mobile and unresolved objects, such
as cars, power lines, or street lights, are discarded. Therefore, we
developed, implemented, and tested an Al-based neural network
approach for automated 3D data segmentation of urban form data. As
part of this work, a subset of data outside the study area was manually
labelled by human annotators into the above categories to serve as
training data using the software CloudCompare (Girardeau-Montaut).
The annotation of a 50 x 50 m tile typically took 3 to 8 h. The process
was repeated for 17 training tiles covering typical urban forms. A se-
mantic segmentation network (KPConv, Thomas et al. 2019) was trained
on labelled data. The training of the network took about 24-36 h. The
network was then applied to all LiDAR data within the study area,
providing an annotated dataset of buildings and different vegetation
types, as illustrated in Fig. 4.

Appendix A. 2 — technical description of the Al-based model
chain to map spatial heat stress

This study used the Al-based model framework presented by Ron-
neberger et al. (2015), Briegel et al. (2024, 2023), Wehrle et al. (2024),
where all details on model development and evaluation can be found.
The proposed framework by Briegel et al. (2024) introduced a novel and
computationally efficient machine learning framework for modeling
outdoor human thermal comfort at a fine spatial resolution of 1 x 1 m in
complex urban environments. This approach, referred to as the Human
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Thermal Comfort Neural Network (HTC-NN), enables high-resolution
prediction of outdoor thermal comfort by downscaling numerical
weather prediction or reanalysis data, while explicitly accounting for
urban geometry and functional characteristics. The HTC-NN is
composed of four submodels and all submodels were developed, trained,
and tested by using state-of-the-art numerical-physical urban climate
models:

(i) A building-resolved U-Net (Ronneberger et al. 2015) is used for
modeling mean radiant temperature (Ty,,t) by emulating the numerical
model SOLWEIG (Lindberg, Holmer, and Thorsson 2008). Details on the
emulator can be found in Briegel et al. (2023).

(ii) Two neighborhood-scale multilayer perceptrons (MLPs) are used
for predicting air temperature (T,) and relative humidity (RH) based on
the numerical urban climate model SUEWS (Jarvi, Grimmond, and
Christen 2011; Ward et al. 2016). Details on the emulator can be found
in Briegel et al. (2024);

(iii) A building-resolved statistical wind field emulator based on
random forest (RF) regression trained on large-eddy simulations (LESs —
Albertson & Parlange, 1999a,b). Details on the emulator can be found in
Briegel et al. (2024) and Webhrle et al. (2024).

The U-Net emulates the SOLWEIG model to predict Tyrat 1.1 ma.g.
L. with 1 x 1 m resolution. The MLPs emulate the surface energy balance
model SUEWS at a 500 x 500 m scale to estimate T, and RH at 2.0 m
above ground level (a.g.l.). The wind fields, resolved at 10 m a.g.l. and
1 x 1 m resolution within the urban canopy layer, are derived from x ,y,
and z wind components, using RF models trained on LES output for four
cardinal wind directions. This integrated framework enables rapid, high-
resolution assessments of human thermal comfort in urban areas with
limited computational overhead, making it suitable for operational use
or climate adaptation planning.

Each submodel in the model chain was evaluated independently
using simulation data from its parent numerical model that had not
previously been used, as well as measurement data from a dense urban
sensor network in Freiburg that recorded all the variables required to
calculate UTCI (Briegel et al., 2024, 2023; Wehrle et al., 2024). The
sensor network is organized into two categories: Tier-I (biometeoro-
logical) stations and tier-II stations, comprising 7 and 30 stations,
respectively (Feigel et al., 2025; Plein et al., 2025). Tier-I stations pro-
vide comprehensive meteorological and biometeorological observa-
tions, including T,, RH, wind speed, and black-globe temperature, which
allows the calculation of Ty (Feigel et al., 2025). In contrast, the Tier-1I
stations offer a more limited set of measurements, recording only T, and
RH (Plein et al., 2025). The final UTCI results were additionally tested
against UTCI measurements from the Tier-I stations in the sensor
network (Briegel et al., 2024; Plein et al., 2025). A detailed table for
each of the four variables as well as for UTCI can be found in Table 4 of
Briegel et al. (2024). The MLPs can predict T, and RH with a level of
accuracy comparable to that of the SUEWS model. Both achieve a Root
Mean Square Error (RMSE) of around 1.5 K and 8 %, respectively. The
U-Net model for Ty, closely matches SOLWEIG, achieving RMSEs of
6.18 and 5.86 K, respectively. Despite the lower R? values, wind speed
predictions from the RF model significantly reduce the RMSE compared
to the forcing data. Overall, the HTC-NN accurately estimates UTCI
(RMSE ~ 3 K, R? = 0.92), performing similarly to SOLWEIG but lower
computational costs (e.g. U-Net is 130 times faster than SOLWEIG).

The hourly spatial UTCI output data of the model chain over ten
years is much too large to be stored in files. Therefore, in the model, all
data were aggregated into 1 °C bins for UTCI from which for each pixel,
the number of hours per year could be calculated which experience
moderate (UTCI > 26 °C), strong (UTCI > 32 °C), very strong (UTCI >
38 °C) and extreme (UTCI > 46 °C) heat stress. In addition, the number
of hours was aggregated separately in the model and output for day and
night (based on actual sunrise and sunset times). Data were then
transferred to a Geographic Information System (QGIS Development
Team 2024) where data were mapped and analyzed spatially and
separately for each scenario.
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Appendix A. 3 — technical description of the Al-based tree
placement optimization tool

We summarize our approach below and refer interested readers to
(Schrodi et al., 2023). The goal of the optimization tool is to automati-
cally find the best tree planting sites for a given number of trees and a
given time period, e.g., a week, month, year, or decade. We based our
optimization tool on the mean radiant temperature (Ty,;) modelling
approach of (Schrodi et al., 2023); refer to Appendix A2 for details.
However, while estimation of Ty, is faster than for physical models, we
still found them too slow for our optimization tool. Note that we want to
automatically plant trees so that they reduce Ty, for a time period. That
is, we want to reduce the overall Ty, for that time period. To obtain this
aggregated result, we need to estimate Tp, for all timesteps of that time
period and finally aggregate (e.g., average) it. However, this is compu-
tationally very costly. Thus, we learn a meta-network that directly pre-
dicts the average T, of that time period in a single step. This effectively
reduces the computational cost of the estimation of the average Ty, by a
factor that scales with the number of timesteps of that time period
(Schrodi et al., 2023).

Having a fast approximation of average T, for a time period at our
hands, we use a classical iterated local search approach (Lourenco,
Martin, and Stiitzle 2003) for our optimization. Specifically, we
initialize the optimization based on a greedy heuristic and iteratively (1)
perturb the current best tree planting sites with a genetic algorithm and
(2) refine the best candidate from the previous perturbation by a hill
climbing algorithm. For the greedy heuristic, we place the trees at the
sites, in which each individual tree yields the largest reduction in Tmrt.
For the perturbation, we used a genetic algorithm that applies random
mutations and single-point crossovers to the current best tree site con-
figurations, interleaved with few random tree site configurations. Sub-
sequently, we refine the best-found tree site configurations with a
classical hill climbing algorithm.

Data availability
Data will be made available on request.
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