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H I G H L I G H T S

• Weighing up urban greening and densification in established neighbourhood is complex.
• Urban land use and heat-based adaptation planning can be expedited with AI support.
• AI-supported methods are best combined, to balance different urban planning goals.
• Transdisciplinary methods can be used to test AI-supported methods for usability.
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A B S T R A C T

Confronted with increasing urban heat stress risks, local governments need to reconcile expanding green 
infrastructure for urban cooling with urban densification goals. However, the impacts of incremental urban 
development in established neighborhoods on urban heat stress risks remain poorly understood. We demonstrate 
how decision support tools using Artificial Intelligence (AI) can assist complex urban land use and climate 
adaptation planning. Our findings are based on an inter- and transdisciplinary research project that developed 
and combined novel AI-supported simulation and prediction methods, namely 3D semantic models, AI-based 
outdoor thermal comfort models, and optimization and scenario-based AI models. Tool development was com
bined with transdisciplinary research to assess the real-world application potentials of AI-supported approaches 
in the City of Freiburg, Germany. The article demonstrates how AI-supported methods can aide and expedite 
urban land use and adaptation planning to support complex decision-making that needs to balance different 
strategic goals and interests.

1. Introduction

According to the Sixth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC AR6), extreme events will intensify due 
to climate change, with heatwaves becoming more frequent, more 
intense, and lasting longer (IPCC 2023a). Cities experience climate 
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change risks in multiple and complex ways because climatic hazards, 
such as heat waves, heavy precipitation, and storms, interact with 
exposure, i.e. the presence of people or objects in places and settings that 
could be adversely affected and vulnerability, i.e. the propensity or 
predisposition of these people or objects to be adversely affected (IPCC 
2023b). In addition, the risks of climate change to urban areas are 
compounded by local urban effects, such as urban heat islands (Oke 
1973; 1982; Oke et al. 2017). Urban heat risks can thus be understood as 
‘the potential for adverse consequences for human or ecological systems’ 
(IPCC 2023b) that result from increases in average temperatures, more 
frequent, more intense and prolonged occurrence of heatwaves in urban 
areas, and the associated, spatially and socially differentiated effects of 
exposure and vulnerability. According to a large modelling study by 
Zhao et al. (2021), between 2000 and 2019 around 489,000 heat-related 
excess deaths occurred globally each year, with heat-related mortality 
being highest in Europe and Oceania. By 2100, up to two-thirds of the 
global human population could be exposed to life-threatening climatic 
conditions arising from coupled impacts of extreme heat and humidity 
(Dodman et al. 2022), with substantial economic and social costs, such 
as increasing school closures due and lost working hours due to heat 
stress (United Nations 2024). The United Nations Secretary General’s 
Call to Action on Extreme Heat considers dealing with urban heat by 
‘fostering nature-positive cities and climate-sensitive urban design and 
planning’ (United Nations 2024: 18) areas of primary concern, due to 
the large number and high concentration of urban residents, commuters, 
and visitors whose health and well-being may potentially be affected by 
heat stress, adverse mental health effects, cardiovascular emergencies, 
and heat-induced death. Heat stress also affects human productivity, e. 
g., by reducing physical work capacity and motor-cognitive performance 
(Ebi et al. 2021). Extreme heat events have been shown to be particu
larly dangerous for city dwellers, resulting in high rates of mortality and 
morbidity (Norton et al. 2015). These effects are projected to increase 
with accelerating climate change (Guo et al. 2018; Ebi et al. 2018).

In built-up urban areas in Europe and elsewhere, heat-related urban 
planning requires maximizing urban greening while at the same time 
adhering to principles of sustainable and spatially efficient land use 
management is a challenge that can prove difficult both politically and 
technically (Erlwein et al. 2023; Verheij et al 2023). In established urban 
neighborhoods and in cities with limited options to expand, the need for 
densification and in-fill development (densification) to provide addi
tional housing often clashes with the efforts to safeguard and expand 
urban greenspace and enhance thermal comfort (Erlwein and Pauleit 
2021). Artificial Intelligence (AI) provides significant potentials for 
optimizing planning and decision-making at the intersection of urban 
greening and densification (Araújo et al. 2021; Othengrafen et al., 2025; 
Lartey and Law 2025), yet it also comes with its own limitations and 
challenges, including wide-ranging ethical concerns (Sanchez et al. 
2025), questions regarding the anticipatory governance aspects 
(Cugurullo and Xu 2025) and the hidden politics of ‘automated’ urban 
planning (Peng et al. 2024) and AI urbanism (Cugurullo et al. 2024). The 
main objective of this paper is to demonstrate how AI and machine 
learning can substantially support urban heat risk analysis1 and plan
ning for heat adaptation in cities. We focus on the following research 
question: How can AI-supported approaches and workflows contribute 
to effective risk analysis and urban development planning aimed at 
reducing heat hazards in established urban neighborhoods? We draw on 
results from a 2021–2024 inter- and transdisciplinary research project 
called ‘I4C – Intelligence for Cities’ that developed novel approaches for 
AI-supported adaptation to urban climate risks and assessed their 
application potentials in a real-world setting. AI methods were used 

across the project for data assimilation, model input generation, model 
performance increases, and predictions. Unparalleled in its spatial 
(1x1m) and temporal (1hr) resolution, critical heat-related locations 
could be identified, visualized, and risks quantified using AI-based 
models and tools (Briegel et al., 2024). The project used an inter- and 
transdisciplinary approach where natural and social scientists worked 
with the City of Freiburg in southwestern Germany as the implementing 
partner in a real-world application lab. Through knowledge 
co-production, potential applications for the AI-based modelling and 
prediction tools for analyzing neighborhood-scale urban heat hazards 
developed in I4C were critically examined in transdisciplinary fashion. 
Using an established inner-city neighborhood as case study area, we 
demonstrated and critically reviewed the application potentials of 
AI-supported urban heat risk analysis (as defined above) for 
context-specific and scenario-driven urban heat adaptation planning 
and decision-making. While focused on heat risk analysis, the findings 
also have implications for other aspects of municipal climate risk 
assessment (broadly understood as ‘the qualitative and/or quantitative 
scientific estimation of risks’ (IPCC 2023b)) at the municipal scale.

2. Background

Cities are already experiencing extreme heat more often, more 
frequently, and for longer periods (Meehl and Tebaldi 2004; Dosio et al. 
2018; Perkins-Kirkpatrick and Lewis, 2020), leading to increased health 
risks. By 2100, heatwave maximum temperatures in Central European 
cities are projected increase by up to 14 ◦C (Guerreiro et al. 2018). Many 
physical and non-physical urban parameters influence the heat-health 
nexus (Ellena, Breil, and Soriani 2020). In European cities, urban land 
use planning is a key lever for reducing heat hazards and future heat 
stress. However, urban planners face the dilemma of reconciling the 
need for urban greening to reduce heat-related risks with housing de
mand and pressures for densification and compact city development 
(Burton 2000) in order to minimize urban greenhouse gas emissions and 
land use change on the urban fringe (Haaland and Van Den Bosch 2015; 
Erlwein and Pauleit 2021). Intelligent adaptation supported by AI has the 
potential to play a major role in supporting such complex adaptation 
choices (Cheong, Sankaran, and Bastani 2022). It can help catalyze 
climate-sensitive urban planning by providing urban planners and 
decision-makers with precise and near real-time information that can 
deliver fine-grained analysis of heat hazards. Drawing on a range of 
potential development scenarios, such information can help urban 
planners and municipal adaptation managers identify entry points for 
heat-related climate adaptation interventions (cf. ISO International Or
ganization for Standardization, 2021) and pave the ground for strategic, 
heat-sensitive urban planning and design. However, the interface be
tween AI methods, workflows and their outputs on the one hand and the 
legal, regulatory and informational needs for making actual planning 
decisions on the other hand is crucial for such tools to be applicable in 
everyday urban planning and decision-making. In the following we 
critically examine current challenges for urban heat risk analysis and 
management to contextualize the tools developed and tested as part of 
our research.

2.1. Understanding outdoor human heat risk in urban areas

Outdoor human heat risk is the result of a dynamic interplay of heat 
hazard occurrence, exposure to heat, and individual and contextual 
vulnerabilities. Urban built form and urban vegetation can substantially 
influence heat hazard occurrence as well as human exposure to heat in 
cities. Heat exposure and a person’s subsequent heat stress result from a 
complex interaction between different environmental factors (air tem
perature, radiation, humidity, wind), the human thermophysiology 
(Epstein and Moran 2006) as well as specific vulnerabilities, such un
derlying chronic illnesses or having limited mobility. Importantly, a 
physical-medical understanding of heat stress requires the prediction of 

1 ‘Risk analysis’ refers to the ISO 31000 process stage of risk assessment that 
follows risk identification and precedes risk evaluation (ISO, 2018). Its purpose 
is ‘to comprehend the nature of risk and its characteristics including, where 
appropriate, the level of risk’ (ibid: 12).
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influencing atmospheric input variables that control a person’s energy 
balance − variables that vary greatly in terms of space and time in cities 
and depending on the person’s health condition (ibid.; Holst and Mayer 
2011). For simplification, thermal indices are often used to describe and 
quantify the exposure of a standardized person to heat at any location 
and time (Coccolo et al. 2016; Staiger, Laschewski, and Matzarakis 
2019). In human biometeorology, a number of thermal indices have 
been developed to describe heat stress (Potchter et al. 2018), including 
the Perceived Temperature (Staiger, Laschewski, and Grätz 2012), the 
Universal Thermal Climate Index (UTCI) (Jendritzky, De Dear, and 
Havenith 2012) or the Physiologically Equivalent Temperature (PET) 
(Höppe 1999). Maps of the distribution frequency of thermal indices are 
used in planning to identify areas of heightened heat risk (Matzarakis 
et al. 2008; Ketterer and Matzarakis 2015). For example, in their climate 
adaptation concept, the City of Freiburg blended maps of PET with the 
vulnerability of the population and identified 14 areas as heat ‘hot spots’ 
(Stadt Freiburg, 2019). Here, PET was calculated using numerical- 
physical models under a few theoretically-assumed case studies 
(extreme summer weather situations today and in the future).

The variables determining thermal indices at any point and time can 
be calculated with numerical-physical models considering current 
weather conditions and the local geospatial environmental context. 
Examples of such numerical-physical models are building-resolving ra
diation models such as SOLWEIG (Lindberg, Holmer, and Thorsson 
2008), building-resolving urban wind models such as Large Eddy Sim
ulations (LES, (Giometto et al. 2017)), or urban climate models that 
predict neighborhood-average temperature and humidity (e.g., SUEWS, 
(Järvi, Grimmond, and Christen 2011)). Also, integrative models such as 
PAML-4U (Maronga et al. 2020) or ENVI-met (Sinsel et al. 2022) provide 
calculations of all above variables. Combined, this allows for the 
calculation of maps of thermal indices at any time based on atmospheric 
input variables (air temperature, radiation, humidity, wind) and the 
complex 3D form (morphology, trees, and materials). However, running 
such physical simulations is complex, computationally demanding, and 
hence only affordable for short periods, and small subsets of a city. 
Although simulations with physical models are effective, there is a need 
to develop more efficient statistical and AI-based methods (Matzarakis 
et al. 2018; Masson et al. 2020; Meyer et al. 2022) directly interfacing 
with widely available geospatial data. Only in this way can long-term 
statistics of heat hazards (i.e., data on an hourly basis over ten to 30 
years in the past or future) be simulated. When modelling efficiency is 
enhanced using statistical and AI-based methods, this also facilitates 
simultaneous analysis of heat hazards for a large number of incremental 
development scenarios, which in turn allows for selecting the best 
available adaptation planning options with reasonable and affordable 
computing time.

2.2. Planning to minimize urban heat risk and maximize potentials for 
cooling

Urban land use planning facilitates processes with direct implica
tions for heat-related climate risks and adaptation, such as densifying 
cities and promoting green infrastructure. Measures to reduce outdoor 
urban heat risks can readily be taken into account when planning new 
suburbs, e.g., by including ample green and blue infrastructure to in
crease shading and evaporative cooling and by aligning buildings to 
minimize solar radiation exposure and maximize naturally occurring air 
flows (Santos Nouri et al. 2018). However, in already developed urban 
areas, land use planning usually takes effect through a multitude of 
small-scale and incremental planning interventions, such as by granting 
individual building permits for in-fill development, building extensions 
or by planting additional street trees. Even in cities where heat risk 
reduction is a priority, these micro-scale interventions are then assumed 
to add up to cumulative positive urban cooling effects, although the 
complex interplay of urban form, wind patterns and solar radiation 
exposure renders generalizable statements regarding the actual effects 

of such measures impossible a priori. Therefore, for urban land use 
planning interventions to result in effective urban cooling, fine-grained 
analyses of urban heat hazards and cooling potentials down to the 
neighborhood, streetscape and even the building levels are required. To 
date, such analyses have been based on physical modelling methods, 
which are costly and time-consuming, especially if different climate 
change scenarios are to be considered (Weeding et al. 2023).

2.3. Current challenges and limitations with urban heat risk analysis

In built-up areas not undergoing substantial urban redevelopment, 
the strategies available for reducing land-use-based urban heat hazards 
are limited. They include changes to building form and materials, sealed 
surfaces, increasing vegetation (Venter, Krog, and Barton 2020), and 
blue infrastructure to increase evapotranspiration (Aminipouri et al. 
2019). Tree planting in public spaces is a critical nature-based adapta
tion solution (Seddon et al. 2020) employed by many cities, including 
those that are investing massively in green infrastructure by creating 
‘urban forests’ (Jones and Instone 2016; Esperon-Rodriguez and Harri
son 2021; Rötzer et al. 2023). Trees primarily decrease heat occurrence 
during daytime due to an increased fraction of shading (Middel et al. 
2016). They also help cool cities through evapotranspiration (ref.). 
However, trees also increase heat retention during the night and the 
effect on thermal comfort varies also depending on ground cover 
(Middel et al. 2021). Finding an optimized trade-off between day-time 
shading and night-time cooling can be complex. De-sealing and reve
getating surfaces are another strategy at the hands of urban planners 
(Parison et al. 2023; Vieillard et al. 2024). At a small scale, de-sealing 
can readily be incorporated into urban planning, e.g., along light rail
way tracks and in marginal urban streetscapes that pedestrians and 
other traffic do not heavily frequent, and greening even small patches of 
sealed land can result in measurable heat mitigation (Morel et al. 2025). 
In heavily used and dense public spaces, large-scale de-sealing is more 
challenging and requires, for example, re-thinking existing urban land 
uses, such as the conversion of street parking into green spaces (Croeser 
et al. 2022). In light of the need to balance urban greening with other 
present challenges, such as providing additional housing, mitigating 
urban greenhouse gas emissions and improving accessibility in the 
compact city, it is evident that densification needs to be optimized, in 
particular in the context of growing urban populations (Artmann, 
Inostroza, and Fan 2019; Wicki, Hofer, and Kaufmann 2022). This 
means deciding on the optimal, thermally most effective ways of adding 
new buildings and trees. AI-supported methods promise to support such 
complex decision-making for effective urban heat mitigation (Ketterer 
and Matzarakis 2016; Shahrestani et al. 2023; Briegel et al., 2024). If 
long-term simulations of urban heat amplifiers and mitigation potentials 
under multiple development scenarios were readily available, urban 
planners and decision-makers could effectively and more efficiently 
select options that optimize and balance between densification re
quirements on the one hand and reducing day and night time heat 
hazards on the other. Eventually, some scenario-based optimizations 
could even be done automatically. Through such substantial improve
ments, urban heat risk analyses could evolve into a precise, real-time 
planning tool for identifying urban areas suitable for densification and 
those prioritized for ventilation and urban heat reduction (Chaturvedi 
and De Vries 2021; Nagappan and Daud 2021).

In summary, a series of challenges that are currently limiting appli
cations of urban heat risk analyses can be identified: (1) they are com
plex and costly to carry out as they rely on the time-consuming physical- 
numerical modelling of context-specific micro-climatic conditions for 
selected scenarios (Weeding et al., 2023). Therefore, (2) municipal ad
ministrations usually outsource them to planning consultancies, result
ing in substantial transaction costs, including time lags. Due to costs, 
such heat-related and other forms of municipal climate risk assessments 
are (3) usually only carried out for large urban developments or re
developments and usually for selected periods, but not for smaller 
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changes, and for already developed areas, e.g., established local neigh
borhoods. Urban heat risk analyses are thus (4) currently not applied for 
capturing small-scale, incremental changes to the urban form, which can 
have a cumulative impact on urban heat over longer time frames. Such 
small-scale changes are particularly relevant in safeguarding sustainable 
spatial development, which focuses on minimizing urban spatial 
expansion through densification of existing neighborhoods (Wicki, 
Hofer, and Kaufmann 2022).

With current approaches, simulation and prediction, the required 
level of detail at the meter scale and over long periods cannot be ach
ieved with reasonable computational effort and cost allowing optimi
zation efforts that are feasible for use by municipal administrations. 

However, recent advances in AI increasingly facilitate the performance 
of complex computations on spatial and temporal fields quickly and at a 
fraction of the computational costs (Middel et al. 2022). AI-based 
models could provide information to urban planners and decision- 
makers in near real-time and for iterative optimizations. To push the 
frontier of AI-supported urban heat risk analysis, the I4C project 
developed and implemented a workflow that combined precise semantic 
3D models of urban form with weather and environmental data to model 
building-resolved heat stress (Fig. 1). Furthermore, we explored using 
AI-supported design optimizations, e.g., to effectively select tree 
planting locations to mitigate heat at the pedestrian level.

Fig. 1. Schematic representation of the proposed work flow. As inputs we use urban form LIDAR and AI-semantics (A), complemented by different development 
scenarios (B) and past weather data from meteorological reanalysis models (C). In a first step three separate AI-based models are run that predict high-resolution 
mean radiant temperature (D), pedestrian-level wind (E) and air temperature / humidity (F) for every hour over 10 years. Based on the three models, for each 
hour the spatial distribution of thermal comfort (UTCI) is calculated (G). Summing up all cases over the 10 years of simulation when UTCI is exceeding thresholds for 
heat stress, we calculate average annual exceedance hours for each pixel (H). The exceedance hours from a baseline scenario can then be compared to maps produced 
the same way for another scenario (I) to assess microclimatic impacts.
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3. Study area and methods: Heat hazards in an urban 
neighborhood under different development scenarios

A part of the I4C project involved developing novel AI-supported 
workflow for modelling and predicting outdoor heat hazard occur
rence and related risks of heat stress occurrence. For this paper, we use 
the central part of the inner-city urban neighborhood of Wiehre, a resi
dential and mixed-use area located immediately to the south of the city 
center of Freiburg.

Wiehre was primarily developed in the late 19th and early 20th 
century and, in December 2022, was home to 24.640 inhabitants (Stadt 
Freiburg, 2024). The neighborhood is inhabited mainly by members of 
middle and upper socioeconomic strata, with an exceptionally high 
percentage of academics (Stadt Freiburg, 2024). The built form is 
dominated by heritage-listed urban villas dating from the 18th, 19th and 
early 20th centuries, which originally featured large, park-like court
yards that, in recent decades, have become a focus of densification 
(Fig. 2). Densification has mainly occurred through incremental in-fill 
development and, to a lesser extent, urban re-development of non- 
heritage-listed buildings. These measures for densification have 
largely focused on providing additional residential space that is high in 
demand in this inner-city neighborhood situated within the broader 
context of a city that has continued to attract new residents. These in-fill 
developments have been driven mostly by individual planning appli
cations of building owners.

Situated in the Upper Rhine Valley, Freiburg and its neighborhood of 
Wiehre experience a warm temperate climate, making it one of the 
hottest areas in Germany. Based on long-term climate data 
(1991–2020), the Freiburg region has an average annual air temperature 
of 11.0 ◦C and a monthly mean air temperature of 20.1 ◦C in July. It also 
experiences on average 19 days per year with maximum air tempera
tures exceeding 30 ◦C (CDC, 2025). The average annual temperature 
over the past decade (2015–2024) in the Freiburg area increased to 
11.9 ◦C. almost 1 K above the long-term mean. The region is particularly 
vulnerable to strong heat, with the Upper Rhine Valley currently expe
riencing the highest levels of heat stress in Germany – a trend expected 
to worsen in the future (Briegel et al., 2024; Hundhausen et al., 2023). In 
a shorter-term study in 2022/23, the neighborhood of Wiehre has been 
identified to experience elevated annual average air temperatures by +
0.5 ◦C, and 19 tropical nights per year − nights when the minimum air 
temperature does not drop below 20 ◦C. This is indicative of a significant 
nocturnal heat island effect, as compared outside the city at the official 
weather station only 4 tropical nights were recorded per year (Plein 

et al., 2025).
Within Wiehre, a 1400 x 700 m subset of the neighborhood with 

primarily residential / mixed-use was selected, referred to as study area 
The study area has a population density of 88.4 inhabitants per hectare 
of populated area (Stadt Freiburg, 2024: 12). The plan area in the study 
areas is 22 % paved, 32 % occupied by building footprints, and is 
covered by 44 % vegetation (Fig. 3).

We applied AI-supported models to (1) characterize and map the 
neighborhood for modelling, (2) develop scenarios for this area with the 
goal to identify and to assess climate-sensitive densification options and 
heat mitigation options, and finally also, (3) optimizing mitigation op
tions through AI-supported tools.

This paper highlights four different methodological steps carried out 
as part of the I4C project: 

1) Developing a 3D semantic model using LIDAR data and AI segmen
tation to characterize highly detailed inputs on urban buildings, 
structures, and vegetation needed in the subsequent heat hazard 
modelling;

2) Developing an AI-based model for heat stress risk mapping at high 
temporal (hours to years) and spatial resolution (resolving buildings 
and trees) based on the 3D semantic model and varying weather 
data.

3) Applying the AI-based model to numerous planning scenarios in the 
study area, in particular, also using AI to ‘do the planning’ for opti
mization of planning interventions for urban heat hazard mitigation 
at the urban densification/urban greening dilemma using pre- 
defined (simplified) criteria, and

4) Elaborating and assessing how the AI-supported models and their 
outputs can best be incorporated into urban planning and decision- 
making using participatory methods, such as scenario-based simu
lation games.

4. Results: Tools for AI-supported heat adaptation planning in 
urban areas

High-resolution heat risk modelling is an increasingly important 
decision-support tool for planning heat mitigation options at or below 
the urban neighborhood scale. In the following, we present the results of 
the four steps outlined above. Our core aim in discussing the findings 
from our developmental research is not to explicate the technical 
methods used in detail (readers interested in this aspect are encouraged 
to refer to Appendices A1 to A3 and references therein) but to highlight 

Fig. 2. Aerial view of parts of the Wiehre neighborhood with typical block perimeter buildings and park-like courtyards featuring large trees in a near-original state 
(left) and a densified precinct with in-fill development and less green infrastructure. .
Source: Google Earth 2024
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key developmental steps that bear direct relevance for AI-supported 
adaptation to urban heat risks. Key opportunities and limitations 
regarding the application of AI-based models and tools and their 
application in urban heat adaptation planning are then critically 
reviewed in the Discussion section.

4.1. Characterizing urban form using LIDAR and AI segmentation

Describing, georeferencing, and quantifying urban form is one of the 
main starting points for developing strategies for mitigating human heat 
risks in densely populated urban areas. Urban form is also a crucial 
determinant at the neighborhood scale when considering potentially 
contradictory urban planning goals, such as the need to densify estab
lished inner-urban residential areas through infill development, while at 
the same ensuring public acceptance of such development and allowing 
for urban cooling by, for example, retaining mature trees (Wicki, Hofer, 
and Kaufmann 2022). In urban outdoor spaces, this requires detailed 
and timely information on the urban form (in particular buildings and 
vegetation) to consider shading, thermal radiation, surface energy ex
changes, and wind. Although, digital surface models exist for many 
cities, they may be incomplete and, for instance, rarely include all 
vegetation, which is critical in shading and cooling cities through 
evapotranspiration (Krayenhoff et al. 2021).

Airborne or ground-based Light Detection and Ranging (LiDAR) data 
can provide up-to-date and complete information on urban form 
including buildings and vegetation. The resolution, however, is often 
limited, and it can be challenging to obtain vegetation data at the 
pedestrian scale due to the geometric limitations of overhanging trees 
and roofs. Therefore, cities also use car-based surveys with terrestrial 
laser scanning. This data provides point clouds of laser returns that must 
first be translated into 3D datasets. To use this data as input for heat 
stress models, the data needs to be further converted into objects, 
identifying relevant forms (buildings, types of trees) and discarding 
dynamic objects (cars, garbage bins.). The process of translating LIDAR 
point clouds into objects is called semantic segmentation. In the case 

study, we tested an AI-based approach to transform the LIDAR point 
clouds in the area of Wiehre into geometric objects.

The AI-based segmentation results in an automated 3D object clas
sification per LiDAR point of the Wiehre area are shown in Fig. 4. Details 
on the AI-based approach can be found in Appendix A1. This approach 
serves as a baseline input, providing geospatial data on urban form in 
the subsequent heat modelling (Fig. 1, A). In particular, it separates stiff 
and non-transparent objects like buildings from partially translucent 
vegetation. We show that segmentation using AI-based 3D neural 
network approaches can efficiently generate meaningful, realistic digital 
models of urban form (buildings, vegetation) that can be used for 
various specialized urban planning applications due to the high- 
resolution semantic representation. As our study showed, they could 
serve as a key decision-support tool for municipalities with limited 
financial resources that, in the near future, could be applied in-house 
without relying on specialized planning and spatial data consultancies.

4.2. Ai-supported heat stress and mitigation mapping

AI-based methods have tremendous potential to help address urban 
heat stress and to overcome some of the main challenges with urban heat 
stress analysis outlined above. As part of the I4C project, we developed a 
novel and efficient AI-based model chain that accurately predicts maps 
of thermo-physiological stress based on the type of geospatial data 
outlined above and weather data (Fig. 1). In summary, the model 
framework consist of three different AI-based emulators of numerical- 
physical models that predict pedestrian-level mean radiant tempera
ture (Fig. 1, D), wind (Fig. 1, E) as well as air temperature and relative 
humidity (Fig. 1, F) based on fixed urban form and constantly changing 
weather data. Mean radiant temperature and wind are modelled at 1 x 1 
m spatial resolution because they depend on shadow patterns and three- 
dimensional pressure fields around buildings, respectively. Air temper
ature and humidity change less in space, so they were modelled at 500 x 
500 m resolution. All models were run at an hourly resolution over 10 
years. From the three model outputs, UTCI was calculated for every hour 

Fig. 3. Map of the Wiehre study area in Freiburg including modifications to built form and vegetation considered in the AI-based simulations. Current land cover is 
shown in colors, while added buildings (in-fill in scenarios 5–8) are shown as hashed purple outlines. The locations of new tree plantings considered in scenarios 2, 4, 
6, and 8 (Table 1) are purple dots. The sites for additional tree locations are possible available spaces. The plausibility of such tree placements must be established 
using ground-truthing on site.
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at 1 x 1 m resolution (Fig. 1, G). Summing up all daytime hours in any 
pixel when the UTCI value was greater than a threshold for moderate 
(UTCI > 26 ◦C), strong (UTCI > 32 ◦C), very strong (UTCI > 38 ◦C) and 
extreme (UTCI > 46 ◦C) heat stress enabled the calculation of average 
daytime exceedance hours for each class. Similarly, summing up all 
nocturnal hours when the UTCI value was greater than 20 ◦C led to 
nocturnal exceedance hours for heat (Fig. 1, H). A more detailed tech
nical description of the model framework and how UTCI and the 
necessary variables for its calculation (air temperature, relative hu
midity, wind speed, and mean radiant temperature) were obtained can 
be found in Appendix A2, as well as in Briegel et al. (2023) and Briegel 
et al. (2024). The calculated UTCI values has a comparable accuracy as 
the numerical-physical models which it is based on with a mean absolute 
error of 2.3 K compared to a dense urban sensor network (see Appendix 
A2 and Briegel et al., 2024).

The model was first run for a baseline scenario (SC1), representing 
the urban area in its current (2021) state, including today’s built form 
and vegetation. Then, different heat mitigation options were considered, 
including adding 5 % more trees (SC2), desealing all inner courtyards 
(SC3), as well as a combination of SC2 and SC3 (SC4). The additional 
trees are considered mature, with a maximum height of 12 m and a 
spherical crown with a diameter of 9 m. To simulate the impact of 
additional densification, 65 additional (hypothetical) detached 

buildings were added as infill (+3% plan area), primarily on courtyards 
and currently open spaces (SC5). This scenario was again combined with 
additional trees (SC6), desealing of the remaining courtyard areas (SC7), 
and the combination of additional trees and desealing (SC8). Finally, 
two sensitivity scenarios were run. These assess the maximum potential 
impact on ecosystem services. In SC9, all surfaces, including major 
roads, are desealed, in SC10, all trees are removed. Each scenario (SC1- 
10) was run for 36,720 time steps covering all summers (May −
September) from 2010 to 2019. From the output, the average exceed
ance hours per year for moderate, strong, very strong or extreme heat stress 
were extracted for each 1 x 1 m pixel.

Fig. 5 shows a map of the study area with the number of hours 
experiencing strong heat stress (UTCI > 32 ◦C) for the study area in its 
current form. Blue colors show areas with few hours of strong heat stress, 
located mainly on the northern side of buildings and underneath clusters 
of mature tree crowns. Orange and red delineate areas with more hours 
of strong heat stress, mostly found on unshaded South-facing walls, on 
large open areas, and along paved traffic infrastructure.

Fig. 6a shows a map of the difference in hours with strong heat stress 
between SC5 (additional densification with infill buildings) and SC1 
(baseline). This difference estimates the impact of the densification on 
pedestrian-level outdoor heat stress. The densification increases the 
spatially averaged number of hours with strong heat stress only 

Fig. 4. AI-based segmentation of the Wiehre Area, including urban vegetation.
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minimally, from 53.1 to 54.1 h per year. The area that would experience 
at least 66 h of strong heat stress increases by 1.1 % due to the densi
fication. Average air temperatures would not change significantly. 
However, minimum nocturnal air temperatures would increase by 
0.5 ◦C. Overall, the impact of the re-densification on heat stress and air 
temperature is minor, with a pattern that in-filled buildings generally 
increase heat stress on their south side but decrease heat stress to the 
north, due to their shadows. Fig. 6b shows a map of the difference in 
hours with strong heat stress between SC6 (densification plus 5 % 
additional trees) and SC1 (baseline). Hence, this is an attempt to esti
mate the impact of additional densification while mitigating heat by tree 
planting at the same time. The 5 % additional trees have a significant 
effect, reducing the number of hours with strong heat stress from 54.1 to 
45.1 h per year, the area affected by at least 66 h of extreme heat stress 
would be reduced by 32 %. Average air temperature would increase by 
0.1 ◦C and minimum nocturnal air temperature by 0.4 ◦C. The impact of 
an additional 5 % trees on average air temperature is limited as the small 
number of trees only produce a marginal effect, mainly through shading.

Tab. 1 summarizes the same spatial statistics for all scenarios from 
SC1 to 10 for the entire study area. From the different AI-based simu
lations, several planning-relevant findings can be derived: For example, 
unsealing all inner courtyards has an impact that is about half as 
effective (− 3.2 h / year or − 6% reduction in strong heat stress) 
compared to adding 5 % mature trees (− 8.8 h / year or − 17 % reduction 
in strong heat stress). Combining the two will further cool the city, but it 
is not simply the addition of the two effects (− 10.9 h / year, − 21 %). 
However, it is also notable from Tab. 1 that planting trees causes an 
increase in night-time heat hours with UTCI > 20 ◦C by about 5 % and an 
increase of nocturnal air temperatures due to radiation trapping at night. 
This effect is rarely reported because, due to computing constraints, 
most assessments only consider and simulate daytime conditions. The 
effect of densification on 24-hour average air temperatures is negligible 
for all scenarios except the sensitivity SC10, removing all trees, which 
would cause an overall air temperature increase of 1 ◦C across the 
neighborhood. In other words, the current mature tree canopy in the 
neighborhood decreases heat stress hours by 46 % and cools the 

neighborhood by 1 ◦C, which highlights an imperative to maintain 
mature trees during and despite densification.

4.3. Optimizing adaptive planning interventions for urban heat hazard 
mitigation

In addition to AI-based modelling of current and future user-defined 
urban densification options, we also explored the potential of AI-based 
methods to automatically select greening options that optimize spe
cific climate adaptation goals, e.g., reducing urban heat hazards. For 
example, urban planners may want to identify optimal placements for 
trees and buildings for any given densification scenario, in a way that 
minimizes avoids creating additional heat hot spots and minimizes any 
reduction or degradation of existing thermally comfortable outdoor 
space. The optimal placement depends on ground land cover (e.g., grass 
vs. paved) as well as on areas already areas by buildings or trees.

To explore the potential of such an optimization-based AI approach 
to reduce urban heat, we used two scenarios of additional trees to 
mitigate mean radiant temperature, a main determinant of daytime 
thermal discomfort, using an AI-based optimization (Schrodi et al., 
2023). The output map of such an AI-generated tree-planting option is 
visualized in Fig. 7, which shows the location and impact of generated 
trees to most efficiently mitigate heat at the pedestrian level by adding of 
four trees/ha and ten trees/ha within a subset of the study area. Through 
optimal placement of trees, the mean radiant temperature can be 
reduced on daily average by 0.33 K and 0.66 K for four trees/ha and ten 
trees/ha, respectively (Fig. 7b,c). This relatively low decrease is due to 
the spatial averaging across the entire study area, as well as the aver
aging of the effects of the trees across the day. The nocturnal effects of 
the trees are rather an increase in Tmrt due to radiation trapping. 
Nevertheless, locally observed decrease in Tmrt is up to 8 K.

4.4. Examining real-world application potentials in urban planning and 
decision-making

To examine the potential applicability of enhanced heat risk 

Fig. 5. AI-based modelling of heat stress in the baseline scenario 1. The map shows hours per year with strong heat stress (UTCI > 32 ◦C) calculated based on hourly 
weather data from the period 2010–2019.
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management using the AI-based models and tools discussed above, we 
worked with City of Freiburg officials in the Office of Environmental 
Protection, the Office of Urban Planning, the Surveying Office and the 
Digital and IT Office. We used qualitative and participatory methods to 
assess the real-world requirements of AI-supported climate change 
adaptation planning and decision-making. A participatory and scenario- 
based planning exercise was implemented in October 2023, where ten 
local government officials and seven researchers discussed key decision 
points in heat-related statutory land use planning and explored the po
tentials and implications of AI-supported models and their map-based 
outputs. The scenario-based planning exercise was set in the year 
2030 (i.e. the near future) and assumed that the AI-based decision- 
support tools for reducing urban heat risks discussed above work 
without any technical flaws. The exercise centered on the map-based 
application using AI-based modelling of heat stress through densifica
tion (as highlighted in Fig. 5 and 6a,b) and on the automatic tree 

placement optimization tool (Fig. 7, see above). These two tools were 
used to identify key decision points for urban heat risk reduction in 
statutory urban land use planning and strategic climate change 
adaptation.

The simulated planning process highlighted the substantial potential 
of AI-supported methods for enhancing and expediting urban heat- 
related climate risk management at different planning stages, particu
larly during exploratory phases of developing binding land use plans. 
Key potential benefits identified were overall cost and time efficiencies, 
the ability to produce many variations for land use plans at limited 
expense, and the potential for using AI-supported maps as additional 
evidence base in the political process and in discussing adaptation op
tions with the general public (Tab. 2). However, the evaluation of the 
exercise also highlighted that some decision-makers found the 
complexity of the AI-based tools difficult to understand, in particular 
regarding which aspects of the tools and the output maps generated 

Fig. 6. Changes in heat stress due to (a) densification with 10 % more buildings (new buildings hashed) and (b) 10 % more buildings plus 5 % more mature trees and 
all backyards de-sealed in the study area. The maps show the differences in hours per year with strong heat stress (UTCI > 32 ◦C) between (a) scenario 4 and 1, and 
(b) scenario 8 and 1 for the period 2010–2019.
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were based on AI. The planners involved in the exercise also voiced 
concerns regarding AI-based tools potentially limiting creative freedoms 
necessary for achieving high-quality urban planning outcomes amidst 
unclear legal liabilities for AI-based planning decisions. In addition, 
multiple practical challenges were identified, such as aligning AI- 
supported and scenario-based modelling with a diverse array of plan
ning time frames and the need to keep physical building and climate and 
weather-related data up to date on an at least annual basis.

5. Discussion

Using AI-supported approaches for analyzing and optimizing land 
use and adaptation planning promises tangible improvement for 
addressing urban outdoor heat risks in cities. However, at present, AI- 
supported approaches and workflows require establishing preliminary 
pieces of data collection and training work, while also addressing data 
availability, technical as well as legal and ethical challenges that are 
likely to emerge during the process. In the following, we discuss the 
potentials and possible challenges of integrating AI-supported ap
proaches and methods into real-world urban planning and adaptation 
processes.

5.1. 3D data availability and requirements

As our case study showed, data acquisition to generate 3D semantic 
models that serve as a basis for effective and useful AI-based modelling is 
a crucial step upon which all subsequent urban heat hazard and heat 
stress analyses are built. Even in data-rich environments such as in the 
City of Freiburg, data acquisition can be a challenge and remains con
strained by cost and broader feasibility constraints: 3D data collection 
can be carried out by mounting sensor platforms to different vehicles 
such as cars, drones, or airplanes, but each of these data collection 
methods comes with different strength and weaknesses. In our example, 
a car mounted sensor was able to collect very accurate and dense data at 
limited cost, but the collection process was still cumbersome and some 
parts of the urban morphology (e.g., gardens, roof tops) could not be 
fully observed. LiDAR + RGB-based measurements collected via 

airplanes, which are relatively expensive, are typically more affected by 
a low signal-to-noise ratio that renders data less reliable. Therefore, 
decisions regarding the approach(es) to data collection will need to be 
guided by weighing up costs, legal and regulatory constraints (see 
below) and specific data requirements. In the case of semantic seg
mentation, the performance of the neural network is directly linked to 
the amount and suitability of training data and therefore highly sus
ceptible to training data limitations. In our study, different methods for 
reducing the required training data were explored. One promising di
rection is using Active Learning, where a neural network is trained with 
a very small base of labelled examples. The network then queries a 
human for more labels on those samples it is most uncertain about. This 
allows improving network performance while not requiring a complete 
annotation of the data. In the future, fusing aerial and car-based data 
collection methods can help further automatize creating homogeneous 
3D data baselines where all relevant signals are best represented.

5.2. Limitations of the UTCI AI model

Despite the positive trade-off between accuracy and computational 
cost, there are limitations to the AI-based UTCI model framework for 
simulating pedestrian-level outdoor heat stress. While the numerical 
models SUEWS (Ta/RH) and SOLWEIG (Tmrt) incorporate time lag ef
fects, the emulators do not consider previous time step states. Although 
the emulator predictors are set to incorporate this by applying lag effects 
(e.g. Ta of previous time steps), time-dependent processes such as the 
gradual heating of buildings may not be fully represented.

Although the AI-based model framework was carefully tested against 
a wide variety of urban environments, caution should be taken when 
applying it to other cities or climates. The model can only capture urban 
environments and climates that have the same building and vegetation 
morphologies, and the same meteorological data, as those covered by 
the training data. Therefore, this model should only be transferred to 
similar climates and cities.

Also, the AI-based model framework uses mean values for each 
spatial area (i.e., tile), irrespective of the area’s diverse use types. For 
example, a sealed area in a private courtyard used as a parking lot is 

Table 1 
Metrics of the different planning scenarios.

Interventions Daytime heat stress Nocturnal heat stress Other climate impacts

Scenario 
(SC)

Additional 
buildings 
(%)

Additional 
unsealing 
(%)

Additional 
trees (%)

Number of 
exceedance 
hours > 32◦

UTCI per 
year (mean 
per pixel)

Fraction 
of area 
with 
exceed- 
ancees >
32◦ UTCI 
(at least 
66 h)2 

(%)

Number of 
exceedance 
hours >
20 ◦C UTCI 
per year 
(mean per 
pixel)

Fraction 
of area 
with 
exceed- 
ances >
20 ◦C 
UTCI (at 
least 
108 h)3 

(%)

Mean air 
temperature 
(◦C all 
pixels)3

Mean 
maximum 
air 
temperature 
(◦C, all 
pixels)4

Mean 
minimum air 
temperature 
(◦C, all 
pixels)5

Mean 
relative 
humidity 
(all 
pixels)3

1 − − 0 53.1 33.4 100.2 33.2 16.2 21.0 5.7 78.3
2 − − +5% 44.3 23.0 104.8 36.6 16.2 21.0 5.6 78.4
3 − +100 % 0 49.9 29.9 97.7 31.5 16.2 21.0 5.0 78.8
4 − +100 % +5% 42.2 20.4 102.2 34.3 16.2 21.0 4.9 78.8
5 +10 % − 0 54.4 34.5 104.7 37.5 16.3 21.0 6.2 78.1
6 +10 % − +5% 45.1 23.4 109.6 41.0 16.3 21.1 6.1 78.1
7 +10 % +100 % 0 51.3 31.2 102.0 35.9 16.2 21.0 5.5 78.6
8 +10 % +100 % +5% 42.9 20.9 106.8 39.0 16.2 21.0 5.5 78.6
9 − All 

surfaces 
unsealed

− 45.9 22.4 94.9 29.7 16.1 21.0 4.2 79.4

10 − − All trees 
removed

98.4 86.3 82.0 22.1 16.3 21.1 ​ 77.6

2The 67. Percentile of the UTCI > 32 ◦C distribution of the status-quo is used a threshold.
3The 67. Percentile of the UTCI > 20 ◦C distribution of the status-quo is used a threshold.
4 Mean values are weighted SUEWS 500 x 500 m tiles based on proportion within Study Area (redensificated area).
5 Mean values are weighted SUEWS 500 x 500 m tiles based on proportion within Study Area (redensificated area).
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weighted equally in the model as a busy footpath on the roadside outside 
a string of local shops. Also, the model cannot distinguish between 
different user groups, e.g., whether or not a public sealed area is used by 
people particularly vulnerable to heat, e.g., a footpath outside a nursing 
home or a kindergarten.

5.3. Enhanced performance and efficiency gains through AI support

As infill urban developments in existing neighborhoods occur 
incrementally, detailed and highly context-sensitive heat risk analyses 
are necessary. One of the key benefits of AI-based models vis-à-vis 
physical models is that, once the modelling data has been obtained and 
the model has been set up, many different planning scenarios can be 
calculated for a local urban precinct at low cost and in reasonable time: 
such models do not rely on high-performance computing capabilities, 
and once a suitable user interface has been generated, they can be run 
using a few mouse clicks. In addition to ‘testing’ different planning 
scenarios (i.e., where exactly a new building or a tree of a specific shape 
and height could be placed), the AI-based model can also simulate 
seasonally changing conditions across large time frames, as the models 
can be run for specific days of the year, for the near or the far future. 

Therefore, one of the key benefits of AI-supported heat risk analyses is 
the ability to process very large quantities of data in a near real-time 
fashion. The outputs of such model runs can be produced as maps, 
which can then serve as a basis for goal-orientated planning discussions 
(including participatory deliberation). Such decision-making could take 
technical and qualitative aspects into account that are currently not 
included in the model, such as underground infrastructure, aesthetics, 
and intended beneficiary groups.

Nevertheless, it should be noted that AI-based models are developed 
and tested for specific and targeted applications and are not generally 
valid, as physics-based models are. This means, while current AI-based 
models are valuable tools for assessing heat risks in specific environ
ments, they cannot reproduce the full complexity of physical-numerical 
urban climate models.

5.4. Legal and ethical implications for AI-supported urban heat 
adaptation

At present, AI systems merely serve as decision-support tools, to 
provide input into decision-making. However, there is potential for 
(generative) AI systems to independently suggest optimization decisions 

Fig. 7. AI-based tree planting in the Wiehre area with 4 and 10 additional trees/ha (b,c). The study area has an extent of 500 x 500 m.
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in the future, which can then significantly influence planning decisions, 
e.g., by visualizing options and thus making them much more tangible 
and more easily accessible to decision-makers and the wider public alike 
(see Cugurullo and Xu 2025). As a basis for decision-making, AI-based 
predictions are typically incorporated into informal planning in
struments such as city concepts and strategies, which in turn prepare 
decisions within the framework of formal legal instruments (develop
ment plans and land use plans). Regardless of the specific legal inte
gration of AI-based predictions in procedures and decisions, there are 
legal challenges, such as (1) uncertainties resulting from limited tech
nical possibilities or limited knowledge; (2) challenges under certain 
data protection laws of safeguarding personal rights and data protection 
when recording local data as part of semantic models; (3) risks of 
discrimination in the selection of modelling and training areas, which 
may exacerbate urban inequalities; and (4) ethical challenges of trans
parency, as AI-based methods as the precise ‘intelligence‘ of AI is 
grounded in neuronal networks’ machine and deep learning processes 
that are practically incomprehensible. On the other hand, AI-based 
methods are highly efficient and therefore allow for in-depth analyses 
down to the level of streets and individual buildings. As such, their 
potential for in-depth analysis of existing and potential future urban 
form and its heat risks can also support evidence-based urban planning 
and decision-making, e.g., by treating politically contested objects of the 
urban form (such as buildings with historical meanings, street trees of 
particular local significance, or sealed car parking areas) in the same 
way as less controversial ones. This in turn can support more nuanced 
deliberation on different options for urban redevelopment and improve 
the legitimacy of planning decisions.

5.5. Enhancing adaptive capacities in municipalities using AI-supported 
approaches

A range of measures can be taken to implement AI-supported de
cisions in local governments (Tab. 3). There are low-threshold oppor
tunities for using AI-based tools effectively, e.g., for gaining an overview 
of different planning scenarios and for identifying the range of techni
cally or politically feasible land use and adaptation planning options, or 
to elaborate the most cost-effective options and thus save limited public 
funds. Such ‘decision options tests’ can be conducted in-house or 
awarded to external contractors; also incremental in-fill developments 
can be assessed for their heat-related implications, e.g., by running AI- 
based simulations for individual construction permits.

Shifts in predictive technology can produce efficiency gains with 

potentially transformative effects in municipal administrations and the 
local governance of urban heat. Using AI-based methods, larger mu
nicipalities may soon be able to run parts of the simulations of the heat 
impacts of buildings and other urban infrastructure in-house (i.e., in 
municipal planning offices). In that case, however, urban planning de
partments will need to substantially upskill their planners to develop the 
skills to effectively and appropriately use AI-support decision support 
tools. Far from relinquishing ‘control’ to AI (a commonly held fear also 
expressed in our participatory research with the City of Freiburg), 
municipal planners who are trained to use tools supported by AI may be 
able to effectively steer a larger proportion – or perhaps the entire – 
process of generating evidence bases for planning in-house, to expedite 
planning processes on the whole while maintaining total quality over
sight. Ultimately, using AI-supported simulation and prediction methods 
is likely to result in a need for more technically skilled planning 
personnel or a shift towards an institutionalized interface between urban 
planning departments and urban digital data hubs, where AI-based 
modelling and prediction tools can be housed and maintained. With 
regard to political decision-making, elected councilors will need to be 
trained in understanding the basic challenges and pitfalls of AI-based 
methods – yet this may add additional demands on already heavily 
burdened lay decision-makers.

6. Conclusions

AI-supported, locally contextualized and highly specific forecasts of 
urban heat discussed here directly support the New Urban Agenda’s and 
other international policy frameworks’ calls for ramping up the use of 
‘smart’ digital technologies for improving evidence-based decision- 
making with methods and approaches that are both ubiquitously 
applicable and affordable. As we were able to demonstrate, AI-based 
modelling and prediction methods have the potential to radically 
transform urban planning and decision-making in climate change 
adaptation. More efficient and finer-grained climate modelling using 

Table 2 
Opportunities and challenges of using AI-supported methods in statutory land 
use planning and climate change adaptation, as identified by participants in a 
scenario-based simulation exercise, 19 October 2023.

AI-supported methods in urban heat-related planning and adaptation:
Opportunities Challenges

Cost and resources savings (when 
compared to using physical models)

High initial and maintenance costs (e.g., 
for maintaining data quality and currency)

Increased time efficiencies Lack of transparency and plausibility of 
AI-based modelling results

Optimizing urban land use planning 
from the outset

Focus on quantitative assessments 
potentially sidelines qualitative aspects

Enhanced evidence base for data- 
driven deliberation and decision- 
making

Unclear legal liabilities for AI-based urban 
planning and decision-making

Developing a broad range of planning 
options, leading to more open- 
minded planning

Too many planning options may become 
politically instrumentalized, making it 
difficult to reach consensus

Supporting the increased need to 
develop multi-functional urban 
spaces

Understanding the limitations of AI- 
supported tools and communicating these 
appropriately to stakeholders

Fostering sensitization and awareness 
raising for urban heat issues across 
departments/offices

Table 3 
Guidelines for structurally embedding AI-supported decision-support. The bullet 
points represent key findings from a best practice review summarizing current 
state of the art with regard to including AI-supported processes in municipal 
climate adaptation and land use planning. Key sources are: Berryhill et al. 2019; 
Engstrom et al. 2020; Hein and Volkenandt 2020; Wulf and Egli 2021, Campion 
et al. 2022.

Planning Implementation Governance

• Determining 
specific 
requirements (data, 
decision-making 
needs,…)

⋅ Identifying specific 
tasks and 
administering

• associated 
processes

• Identifying 
beneficial and 
limiting aspects

• Comparing goals vs. 
feasibility and 
constraints

• Appraising legal 
framework 
conditions

• Garnering support 
from upper 
management

• Identifying suitable 
actors, e.g., 
'champions', 
relevant 
departments etc.

• Developing AI strategy 
papers to determine the 
appropriate and 
intended use of AI-based 
tools

• Ensuring appropriate 
technical infrastructure

• Piloting (e.g., 
experiments, learning 
processes)

• Establishing a 
multidisciplinary team 
with clearly defined 
responsibilities

• Promoting AI acceptance 
through information 
campaigns (citizens)

• Offering training courses 
(staff)

• Inter-municipal 
cooperation

• Establishing a 
supervisory/control 
body for monitoring and 
evaluation of AI- 
supported processes

• Regular, comprehensive 
testing for quality 
control

• Updating / further 
development of data 
sources and methods

• Institutionalized 
training and 
development options
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statistical-numerical processes can reduce the costs of establishing the 
evidence base for heat-resilient urban development and help select or 
pre-select the most effective options for mitigating heat. As shown in our 
case study of the City of Freiburg, the need for expensive and time- 
consuming heat exposure and sensitivity analyses can be reduced by 
drawing on AI-supported methods, in particular AI-trained 3D semantic 
models and deep learning UTCI models. The possibilities of calculating 
heat-related effects of urban greening and densification under different 
climate change projections are promising here because this facilitates 
cost-effective and rapid assessment of how urban greening and densifi
cation interventions will perform under different climate futures.

In addition, generative high-resolution AI can assist in virtual ex
periments at early stages of planning processes, e.g., at the precinct 
scale, when new green infrastructure options are being considered. For 
example, if a brownfield is to be redeveloped, high-resolution and 
scenario-based AI modelling can rapidly produce spatially explicit rep
resentations of future buildings, sealed surfaces, and green and blue 
infrastructure (e.g., the location of trees and water fountains) and their 
respective positive or negative impacts on urban heat. Moreover, high- 
resolution modelling can also assist in the assessment of the ecosystem 
functions and value of existing green infrastructure. For instance, AI- 
supported modelling can highlight the value of preserving and main
taining mature trees in urban cooling: the mature tree canopy in our 
study area reduces annual heat stress hours by half, cooling the neigh
borhood by an average of 1 ◦C.

When it comes to implementing AI-supported urban land use and 
adaptation to mitigate heat, there are still many challenges issues to be 
resolved, in particular in relation to the development of appropriate 
technical interfaces that can be integrated with existing geodata portals 
and digital models; the skillset required by urban planners; and the 
governance and quality assurance of AI-supported planning, including 
legal and ethical ramifications. However, with the rapid advances in 
machine learning, deep learning, and generative AI, technological ca
pabilities are likely to become rapidly available for everyday planning 
situations. These technologies can expedite urban planning processes 
while making them more affordable – once specific preliminary re
quirements regarding data, IT infrastructure as well as ethical and 
governance challenges have been addressed.
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Appendix 

Appendix A. 1 − technical description of the AI-based urban form 
segmentation and annotation

For our study area, data collected in a recent ground-based LiDAR 
survey of the City of Freiburg using a car-based mobile mapping plat
form was available. Before its use in heat hazard models, the dataset 
required substantial processing. The ground-based LiDAR dataset con
tained GPS coordinates, with the intensity of return points in space being 
complemented by visual 360-degree images. The ground-based data for 
the entire City of Freiburg contained 31.040 point cloud tiles with a 
spatial dimension of 50 x 50 m each. Manual semantic segmentation of 
ground-based LiDAR data would be very labor- and cost-intensive, and 
therefore, not economical for urban neighborhoods or complete cities. 
For example, manually annotating all data in Freiburg would take 760 
days, with a person working 24 h/day. Although 3D neural networks for 
segmentation tasks exist (Thomas et al. 2019), the main labor-intensive 
part is the training and optimization for a defined number of object 
classes.

As part of the I4C project, an AI-based segmentation method was 
developed to identify objects within the LIDAR point cloud data with the 
following categories: buildings (walls, roofs), sealed surfaces, vegetated 
surfaces, leaf trees, needle trees, bushes, hedges, other vegetation, and 
dynamic objects (e.g., cars, bicycles, garbage bins). With the segmen
tation, relevant objects such as buildings, hedges, or trees are used as 
inputs in the heat risk model, while mobile and unresolved objects, such 
as cars, power lines, or street lights, are discarded. Therefore, we 
developed, implemented, and tested an AI-based neural network 
approach for automated 3D data segmentation of urban form data. As 
part of this work, a subset of data outside the study area was manually 
labelled by human annotators into the above categories to serve as 
training data using the software CloudCompare (Girardeau-Montaut). 
The annotation of a 50 x 50 m tile typically took 3 to 8 h. The process 
was repeated for 17 training tiles covering typical urban forms. A se
mantic segmentation network (KPConv, Thomas et al. 2019) was trained 
on labelled data. The training of the network took about 24–36 h. The 
network was then applied to all LiDAR data within the study area, 
providing an annotated dataset of buildings and different vegetation 
types, as illustrated in Fig. 4.

Appendix A. 2 ¡ technical description of the AI-based model 
chain to map spatial heat stress

This study used the AI-based model framework presented by Ron
neberger et al. (2015), Briegel et al. (2024, 2023), Wehrle et al. (2024), 
where all details on model development and evaluation can be found. 
The proposed framework by Briegel et al. (2024) introduced a novel and 
computationally efficient machine learning framework for modeling 
outdoor human thermal comfort at a fine spatial resolution of 1 × 1 m in 
complex urban environments. This approach, referred to as the Human 
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Thermal Comfort Neural Network (HTC-NN), enables high-resolution 
prediction of outdoor thermal comfort by downscaling numerical 
weather prediction or reanalysis data, while explicitly accounting for 
urban geometry and functional characteristics. The HTC-NN is 
composed of four submodels and all submodels were developed, trained, 
and tested by using state-of-the-art numerical-physical urban climate 
models:

(i) A building-resolved U-Net (Ronneberger et al. 2015) is used for 
modeling mean radiant temperature (Tmrt) by emulating the numerical 
model SOLWEIG (Lindberg, Holmer, and Thorsson 2008). Details on the 
emulator can be found in Briegel et al. (2023).

(ii) Two neighborhood-scale multilayer perceptrons (MLPs) are used 
for predicting air temperature (Ta) and relative humidity (RH) based on 
the numerical urban climate model SUEWS (Järvi, Grimmond, and 
Christen 2011; Ward et al. 2016). Details on the emulator can be found 
in Briegel et al. (2024);

(iii) A building-resolved statistical wind field emulator based on 
random forest (RF) regression trained on large-eddy simulations (LESs −
Albertson & Parlange, 1999a,b). Details on the emulator can be found in 
Briegel et al. (2024) and Wehrle et al. (2024).

The U-Net emulates the SOLWEIG model to predict Tmrt at 1.1  m a.g. 
l. with 1 × 1 m resolution. The MLPs emulate the surface energy balance 
model SUEWS at a 500 × 500  m scale to estimate Ta and RH at 2.0  m 
above ground level (a.g.l.). The wind fields, resolved at 10  m a.g.l. and 
1 × 1 m resolution within the urban canopy layer, are derived from x ,y, 
and z wind components, using RF models trained on LES output for four 
cardinal wind directions. This integrated framework enables rapid, high- 
resolution assessments of human thermal comfort in urban areas with 
limited computational overhead, making it suitable for operational use 
or climate adaptation planning.

Each submodel in the model chain was evaluated independently 
using simulation data from its parent numerical model that had not 
previously been used, as well as measurement data from a dense urban 
sensor network in Freiburg that recorded all the variables required to 
calculate UTCI (Briegel et al., 2024, 2023; Wehrle et al., 2024). The 
sensor network is organized into two categories: Tier-I (biometeoro
logical) stations and tier-II stations, comprising 7 and 30 stations, 
respectively (Feigel et al., 2025; Plein et al., 2025). Tier-I stations pro
vide comprehensive meteorological and biometeorological observa
tions, including Ta, RH, wind speed, and black-globe temperature, which 
allows the calculation of Tmrt (Feigel et al., 2025). In contrast, the Tier-II 
stations offer a more limited set of measurements, recording only Ta and 
RH (Plein et al., 2025). The final UTCI results were additionally tested 
against UTCI measurements from the Tier-I stations in the sensor 
network (Briegel et al., 2024; Plein et al., 2025). A detailed table for 
each of the four variables as well as for UTCI can be found in Table 4 of 
Briegel et al. (2024). The MLPs can predict Ta and RH with a level of 
accuracy comparable to that of the SUEWS model. Both achieve a Root 
Mean Square Error (RMSE) of around 1.5 K and 8 %, respectively. The 
U-Net model for Tmrt closely matches SOLWEIG, achieving RMSEs of 
6.18 and 5.86 K, respectively. Despite the lower R2 values, wind speed 
predictions from the RF model significantly reduce the RMSE compared 
to the forcing data. Overall, the HTC-NN accurately estimates UTCI 
(RMSE ~ 3 K, R2 = 0.92), performing similarly to SOLWEIG but lower 
computational costs (e.g. U-Net is 130 times faster than SOLWEIG).

The hourly spatial UTCI output data of the model chain over ten 
years is much too large to be stored in files. Therefore, in the model, all 
data were aggregated into 1 ◦C bins for UTCI from which for each pixel, 
the number of hours per year could be calculated which experience 
moderate (UTCI > 26 ◦C), strong (UTCI > 32 ◦C), very strong (UTCI >
38 ◦C) and extreme (UTCI > 46 ◦C) heat stress. In addition, the number 
of hours was aggregated separately in the model and output for day and 
night (based on actual sunrise and sunset times). Data were then 
transferred to a Geographic Information System (QGIS Development 
Team 2024) where data were mapped and analyzed spatially and 
separately for each scenario.

Appendix A. 3 ¡ technical description of the AI-based tree 
placement optimization tool

We summarize our approach below and refer interested readers to 
(Schrodi et al., 2023). The goal of the optimization tool is to automati
cally find the best tree planting sites for a given number of trees and a 
given time period, e.g., a week, month, year, or decade. We based our 
optimization tool on the mean radiant temperature (Tmrt) modelling 
approach of (Schrodi et al., 2023); refer to Appendix A2 for details. 
However, while estimation of Tmrt is faster than for physical models, we 
still found them too slow for our optimization tool. Note that we want to 
automatically plant trees so that they reduce Tmrt for a time period. That 
is, we want to reduce the overall Tmrt for that time period. To obtain this 
aggregated result, we need to estimate Tmrt for all timesteps of that time 
period and finally aggregate (e.g., average) it. However, this is compu
tationally very costly. Thus, we learn a meta-network that directly pre
dicts the average Tmrt of that time period in a single step. This effectively 
reduces the computational cost of the estimation of the average Tmrt by a 
factor that scales with the number of timesteps of that time period 
(Schrodi et al., 2023).

Having a fast approximation of average Tmrt for a time period at our 
hands, we use a classical iterated local search approach (Lourenço, 
Martin, and Stützle 2003) for our optimization. Specifically, we 
initialize the optimization based on a greedy heuristic and iteratively (1) 
perturb the current best tree planting sites with a genetic algorithm and 
(2) refine the best candidate from the previous perturbation by a hill 
climbing algorithm. For the greedy heuristic, we place the trees at the 
sites, in which each individual tree yields the largest reduction in Tmrt. 
For the perturbation, we used a genetic algorithm that applies random 
mutations and single-point crossovers to the current best tree site con
figurations, interleaved with few random tree site configurations. Sub
sequently, we refine the best-found tree site configurations with a 
classical hill climbing algorithm.

Data availability

Data will be made available on request.
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