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 a b s t r a c t

In recent years, essential progress has been made in the nonlinear stability analysis of periodic Lugiato-Lefever 
waves against co-periodic and localized perturbations. Inspired by considerations from fiber optics, we introduce 
a novel iteration scheme which allows to perturb against sums of co-periodic and localized functions. This unifies 
previous stability theories in a natural manner.

1.  Introduction

We study the Lugiato-Lefever equation on the extended real line 

𝜕𝑡𝑢 = −𝛽𝑖𝜕2𝑥 𝑢 − (1 + 𝑖𝛼)𝑢 + 𝑖|𝑢|2 𝑢 + 𝐹 , 𝛽 ∈ {−1, 1}, 𝛼 ∈ ℝ, 𝐹 > 0,
(1.1)

for 𝑢 ∶ ℝ × [0,∞) → ℂ, which is a model from nonlinear optics [1]. An 
important observation is that the principal part −𝛽𝑖𝜕2𝑥𝑢 is dispersive 
while the damping term −𝑢 causes energy dissipation. The forcing term 
𝐹  again adds energy to the physical system and allows for pattern forma-
tion as predicted by Lugiato and Lefever in [2]. The most fundamental 
patterns such as pulses, small-amplitude or dnoidal periodic waves are 
found in [3–6] and in [7] and [8], respectively. Recently, in [9], the 
authors have obtained large-amplitude periodic waves.

In this paper, we prove nonlinear 𝐿∞-stability of 𝑇 -periodic standing 
waves against initial perturbations from the space 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ)1 
under diffusive spectral stability assumptions. These spectral assump-
tions are only established for the waves in [9] and [7].

We emphasize that sums of periodic and localized perturbations are 
not necessarily localized or periodic and thus our result is a nontrivial 

 E-mail address: joannis.alexopoulos@kit.edu
1 The term ⊕ denotes the direct sum, that is for every 𝑢 ∈ 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ), 
we find precisely one 𝑤 ∈ 𝐿2

per(0, 𝑇 ) and 𝑣 ∈ 𝐿2(ℝ) such that 𝑢 = 𝑤 + 𝑣.

unification of the theories [10] (co-periodic) and [11] (localized). For 
the precise formulation of our main result, we refer to Section 2.5.

In view of fully nonlocalized perturbations, the recently developed 
nonlinear stability theory for dissipative semilinear systems [12] is not 
immediately applicable to all pattern-forming semilinear systems such 
as the Lugiato-Lefever equation. From this perspective, the present pa-
per is the first to accommodate nonlocalized perturbations and to com-
bine 𝐻 𝑙

per(0, 𝑇 )- and 𝐻𝑘-theory. On the other hand, considerations from 
fiber optics, see [13] and Remark 2.1, where combinations of localized 
and co-periodic effects naturally occur, motivate the investigation of 
these types of perturbations. Interpretating the Lugiato-Lefever equa-
tion as a variant of the cubic nonlinear Schrödinger equation, a related 
inspiration for this paper comes from the so-called tooth problem ask-
ing whether solutions of the nonlinear Schrödinger equation with not 
necessarily small initial data from 𝐿2

per(ℝ)⊕𝐿2(ℝ) exist globally; we re-
fer to [14] and [15] for answers to the tooth problem and background 
information.

Our central challenge is to develop the right modulational ansatz 
to make a nonlinear iteration argument close. Inspired by [16], we in-
troduce both a temporal and a localized spatio-temporal phase modu-
lation to capture the critical dynamics of the perturbation induced by 
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$H^1(\mathbb {R})+H^s(\mathbb {T})$


$C_{\rm ub}^m$


$C_{\rm ub}$


\begin {align}\label {LLE} \partial _t u = -\beta i \partial _x^2\thinspace u - (1+i\alpha ) u + i |u|^2\thinspace u + F, \quad \beta \in \{-1,1\}, \quad \alpha \in \R , \quad F>0,\end {align}


$u:\R \times [0,\infty ) \rightarrow \C $


$-\beta i \partial _x^2 u$


$-u$


$F$


$L^\infty $


$T$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$\oplus $


$u \in L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$w \in L^2_{\textrm {\textrm {per}}}(0,T)$


$v \in L^2(\R )$


$u = w + v$


$H^l_{\textrm {per}}(0,T)$


$H^k$


$L^2_{\textrm {\textrm {per}}}(\R ) \oplus L^2(\R )$


$L^2\,-\,L^\infty $


$C^\infty $


$m\in \mathbb {N}$


$H^1_{\textrm {\textrm {per}}}(\R ) \oplus H^1(\R )$


$C_{\textrm {ub}}(\R )$


$t \mapsto ||e^{i \partial _x^2 t}u_0||_{L^\infty }$


$u_0 \in C_{\textrm {ub}}(\R )$


$C_{\textrm {ub}}(\R )$


$M^{m}_{\infty ,1}(\R )$


$m\in \mathbb {N}_0$


$\mathbb {C}$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$|u|^2u$


$u \in \mathbb {C}$


$\u := ( \u _r,\u _i)^T := (\Re (u), \Im (u))^T: \R \rightarrow \R ^2$


\begin {align}\label {LLE_real} \u _t = \mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\u _{xx} + \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix}\u \right ) - \u + \mathcal {N}(\u ) + \begin {pmatrix} F \\ 0 \end {pmatrix},\end {align}


\begin {align*}\mathcal {J} = \begin {pmatrix} 0 & -1 \\ 1 & 0 \end {pmatrix}, \quad \mathcal {N}(\u ) = |\u |^2\thinspace J \u = \begin {pmatrix} - \u _i^3 - \u _r^2 \u _i \\ \u _r\u _i^2 + \u _r^3 \end {pmatrix}.\end {align*}


$L^2_{\textrm {per}}(0,T) \oplus L^2(\R )$


$T$


$\phi _0: \R \rightarrow \mathbb {C}$


$\phi := (\phi _r,\phi _i)^T := (\Re (\phi _0), \Im (\phi _0))^T: \R \rightarrow \R ^2$


$\phi + \w _0 + \v _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$\w _0 \in L^2_{\textrm {per}}(0,T)$


$\v _0 \in L^2(\R )$


$L^2_{\textrm {\textrm {per}}}(0,T)$


$\w $


$\u $


$\phi + \w _0 + \v _0$


$\u = \w + \v $


$\u (0) = \phi + \w _0 + \v _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$t\geq 0$


$x \in \R $


$\phi $


$\phi + L^2_{\textrm {\textrm {per}}}(0,T)$


$x\in \R $


$t\geq 0$


$L^2(\R )$


$\w _0 + \v _0$


$\w _0 \in L_{\textrm {\textrm {per}}}^2(0,T)$


$\v _0 \in L^2(\R )$


$\v _0$


$\v _0 + \w _0$


$\w _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$L^2(\R )$


$L^2_{\textrm {\textrm {per}}}(0,T)$


$\phi $


$\phi $


$t \geq 0$


$\u (t) = \w (t) + \v (t)$


\begin {align*}\tilde {\u }(t) = \u (t) - \phi = (\w (t) - \phi )+ \v (t) \text { and setting } \tilde {\w }(t) = \w (t) - \phi .\end {align*}


$\mathcal {L}_0(\phi )$


$\phi $


\begin {align}\label {linearization} &\mathcal {L}_0(\phi ) = \mathcal {J} \begin {pmatrix}-\beta \partial _x^2 - \alpha + 3\phi _r^2 + \phi _i^2 & 2\phi _r\phi _i \\ 2\phi _r\phi _i & -\beta \partial _x^2 - \alpha + \phi _r^2 + 3\phi _i^2 \end {pmatrix} - \mathcal {I},\end {align}


\begin {align}\label {def_R_1} \mathcal {R}_1(\phi )(\tilde {\w }) &= \mathcal {N}(\tilde {\w } + \phi ) - \mathcal {N}(\phi ) - \mathcal {N}'(\phi )\tilde {\w },\end {align}


\begin {align}\label {def_R_2} &\mathcal {R}_2(\phi )(\tilde {\w }, \v ) = \mathcal {R}_1(\phi )(\v +\tilde {\w }) - \mathcal {R}_1(\phi )(\tilde {\w }) = \mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v ) + \mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v ),\end {align}


\begin {align*}\mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v ) &= \mathcal {N}(\v +\tilde {\w } + \phi ) - \mathcal {N}(\tilde {\w }+\phi ) - \mathcal {N}'(\tilde {\w } + \phi )\v , \\\quad \mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v ) &= \mathcal {N}'(\tilde {\w } + \phi )\v - \mathcal {N}'(\phi )\v .\end {align*}


$K>0$


$C>0$


$\v ,\tilde {\w }\in \mathbb {C}$


$|\v |, |\tilde {\w }|\leq K$


\begin {align}\label {formal_nonlinear bounds} |\mathcal {R}_1(\phi )(\tilde {\w })| \leq C |\tilde {\w }|^2, \quad |\mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v )| \leq C |\v |^2, \quad |\mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v )| \leq C |\v ||\tilde {\w }|.\end {align}


$\mathcal {L}_0 = \mathcal {L}_0(\phi )$


$\mathcal {R}_1 = \mathcal {R}_1(\phi )$


$\mathcal {R}_2 = \mathcal {R}_2(\phi )$


$\mathcal {R}_{2,1} = \mathcal {R}_{2,1}(\phi )$


$\mathcal {R}_{2,2} = \mathcal {R}_{2,2}(\phi )$


$\phi $


$\phi $


$\El (\xi ) = e^{-i\xi \cdot } \mathcal {L}_0 e^{i\xi \cdot }$


$\xi \in [-\frac {\pi }{T},\frac {\pi }{T})$


$L_{\mathrm {\textrm {per}}}^2(0,T)$


$D(\El (\xi )) = H_{\mathrm {\textrm {per}}}^2(0,T)$


$\El (\xi )$


$\sigma _{L^2}(\El _0)\subset \{\lambda \in \C :\Re (\lambda )<0\}\cup \{0\}$


$\theta >0$


$\xi \in [-\frac {\pi }{T},\frac {\pi }{T})$


$\Re \,\sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi ))\leq -\theta \xi ^2$


$0$


$\El (0)$


$\El _0$


$L^2(\R )$


\begin {align*}\sigma _{L^2}(\El _0) = \bigcup _{\xi \in [-\frac {\pi }{T},\frac {\pi }{T})} \sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi )).\end {align*}


$\sigma _{L^2}(\El _0)$


$\El (0)$


$\phi '$


$0$


$\El (0)^*$


$\smash {\widetilde {\Phi }_0} \in H^2_{\mathrm {\textrm {per}}}(0,T)$


\begin {align*}\big \langle \widetilde {\Phi }_0,\phi '\big \rangle _{L^2(0,T)} = 1.\end {align*}


$\xi _0 \in (0, \frac {\pi }{T})$


$\sigma _{L^2}(\mathcal {L}_0)$


$\sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi ))$


$T$


$\Phi _\xi $


$\Phi _0 = \phi '$


$\lambda _c(\xi )$


$\El (\xi )$


$\El (\xi ) \Phi _\xi = \lambda _c(\xi )\Phi _\xi $


$\xi \in (-\xi _0,\xi _0)$


$T$


$\tilde {\Phi }_\xi $


$\overline {\lambda _c(\xi )}$


$\mathcal {L}(\xi )^*$


$\El (\xi )^* \tilde {\Phi }_\xi = \overline {\lambda _c(\xi )}\tilde {\Phi }_\xi $


$\xi \in (-\xi _0,\xi _0)$


$m \in \mathbb {N}_0$


\begin {align*}\left |\lambda _c(\xi ) - i a\xi + d \xi ^2\right | \lesssim |\xi |^3, \qquad \left \|\Phi _\xi - \phi _0'\right \|_{H^m(0,T)} \lesssim |\xi |,\end {align*}


$\xi \in (-\xi _0,\xi _0)$


$a \in \R $


$d > 0$


$\textrm {span}\{\Phi _\xi \}$


\begin {align*}\Pi (\xi )g = \Phi _\xi \langle \widetilde {\Phi }_\xi ,\mathbf {g} \rangle _{L^2(0,T)} , \quad \mathbf {g} \in L^2_{\textrm {\textrm {per}}}(0,T).\end {align*}


$C,\varepsilon >0$


$\w _0 \in H_{{\mathrm {per}}}^6(0,T)$


$\v _0 \in H^3(\R )$


\begin {equation*}E_0 := ||\w _0+\v _0||_{H^6_{\mathrm {per}}(0,T)\oplus H^3(\R )} < \varepsilon \end {equation*}


\begin {align}\label {properties_u_in_c_ub} \u (t) \in C([0,\infty ); C^2_{\mathrm {ub}}(\R )) \cap C^1([0,\infty );C_{\mathrm {ub}}(\R ))\end {align}


$\u (0) = \phi + \w _0 + \v _0$


$\gamma \in C([0,\infty ), H^5(\R ))$


$\sigma _* \in \R $


$t\geq 0$


$\v _0 \in H^3(\R )$


$\v $


$L^1\cap H^k$


$\w _0$


$\v $


$\w $


$\v $


$\w $


$\v $


$H^3(\R )$


$\w $


$L^\infty $


$\w _0 \in H_{\textrm {\textrm {per}}}^6(0,T)$


$H^1$


$L^\infty $


$H^1(\R ) \hookrightarrow L^\infty (\R )$


$\w _0 \in H^5_{\textrm {per}}(0,T)$


$\v _0 \in H^2(\R )$


$L^2$


$\v $


$L^\infty (\R )$


$(1+t)^{-\frac {1}{2}}$


$\frac {1}{4}$


$\v _0 \in L^1(\R )\cap H^3(\R )$


$\mathcal {R}_2(\tilde {\w },\v )$


$L^1(\R )$


$L^2(\R )$


$u(t)$


\begin {equation*}C([0,\infty ); H^6_{\textrm {per}}(0,T)\oplus H^3(\R ))\cap C^1([0,\infty ); H^4_{\textrm {per}}(0,T)\oplus H^1(\R )).\end {equation*}


$u(t)$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$u(t)$


$u(t)$


$M_{\infty ,1}(\R )$


$C_0$


$M_{\infty ,1}(\R )$


$M_{\infty ,1}(\R )$


$C([0,t), M_{\infty ,1}(\R ))$


$t>0$


$\u _0\in C_{\textrm {ub}}^2(\R ) \hookrightarrow M_{\infty ,1}(\R )$


$\u (t)$


$\u (0) = \w _0 + \v _0$


$\hat {\w }(t)$


$\v (t)$


$\hat {\w }(t)$


$\v (t)$


$\hat {\w }(t)$


$\sigma (t)$


$\hat {\w }(x,t) = \w (x-\sigma (t),t) - \phi (x)$


$\v (t)$


$\w (t)$


\begin {equation*}\hat {\v }(x,t) = \hat {\u }(x,t) - \hat {\w }(x,t) := \u (x-\sigma (t)-\gamma (t),t) - \hat {\w }(x,t) - \phi (x).\end {equation*}


$\gamma : [0,\infty )\times \R \rightarrow \R ^2$


$|\sigma _t(t)|$


$||\hat {\w }(t)||_{L^\infty }$


\begin {align*}\mathring {\v }(x,t) &= \mathring {\u }(x,t) - \hat {\w }(x+\sigma (t)+\gamma (x,t),t) \\ &:= \u (x,t) - \phi (x+\sigma (t) + \gamma (x,t),t) - \hat {\w }(x+\sigma (t) + \gamma (x,t),t)\end {align*}


$\mathring {\v }(t)$


$\mathring {\v }(t)$


$\hat {\v }(t)$


$C,\delta >0$


\begin {align*}E_0 = E_p + E_l \textrm { with } E_p = ||\w _0||_{H^6_{\textrm {per}}} \textrm { and } E_l = ||\v _0||_{H^3},\end {align*}


\begin {align}\label {strategy_per_result} |\sigma _t(t)|, ||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)} &\leq C e^{-\delta t}E_p, \quad |\sigma | \leq C E_p, \quad t\geq 0,\end {align}


\begin {align}\label {l2_results} ||\gamma _x(t)||_{H^4}, ||\gamma _t(t)||_{H^3}, ||\mathring {\v }(t)||_{H^3} \leq C(1+t)^{-\frac {1}{2}}E_l, \quad ||\gamma (t)||_{H^5} \leq C E_l, \quad t\geq 0.\end {align}


$L^\infty $


$L^\infty $


\begin {align}\label {l_infty_result} ||\mathring {\v }(t)||_{L^\infty }\leq C (1+t)^{-\frac {3}{4}} E_l, \quad t\geq 0.\end {align}


\begin {align*}||\mathring {\u }(t)||_{L^\infty } &\leq ||\hat {\w }(\cdot + \sigma (t) + \gamma (\cdot ,t),t)||_{L^\infty } + ||\mathring {\v }(t)||_{L^\infty }, \quad t\geq 0,\end {align*}


\begin {align*}||\u (t) - \phi ||_{W^{2,\infty }}& \leq C\left (||\mathring {\u }(t)||_{W^{2,\infty }} + |\sigma (t)| + ||\gamma (t)||_{W^{2,\infty }} \right ), \quad t\geq 0,\end {align*}


$S$


$A, B \colon S \to \R $


$A(x) \lesssim B(x)$


$x \in S$


$C>0$


$x$


$A(x) \leq CB(x)$


$x \in S$


$\mathcal {L}_0$


$L_{\textrm {per}}^2(0,T)$


$L^2(\R )$


$\chi \colon [0,\infty ) \to \R $


$\chi (t) = 0$


$t \in [0,1]$


$\chi (t) = 1$


$t \in [2,\infty )$


$L_{\textrm {per}}^2(0,T)$


\begin {align*}\tilde {S}_1(t) = (e^{\mathcal {L}_0 t}- \chi (t)\Pi (0))\mathbf {g}\end {align*}


$\delta _0,C>0$


\begin {align*}||\tilde {S}_1(t) \mathbf {g}||_{H^6_{\textrm {per}}(0,T)} \leq C e^{-\delta _0 t}||\mathbf {g}||_{H^6_{\textrm {per}}(0,T)}\end {align*}


$\mathbf {g} \in {H^6_{\textrm {per}}(0,T)}$


$L^2(\R )$


$0\leq \rho \leq 1$


$(-\xi _0,\xi _0)$


$\rho \equiv 1$


$(-\frac {\xi _0}{2},\frac {\xi _0}{2})$


\begin {align*}e^{\El _0 t}\mathbf {g} = \tilde {S}_2(t)\mathbf {g} + \phi ' s_p(t)\mathbf {g},\end {align*}


\begin {align*}s_p(t)\mathbf {g}(x) &= \frac {\chi (t)}{2\pi } \int _\R \int _{-\frac {\pi }{T}}^\frac {\pi }{T} \rho (\xi )e^{i\xi (x-y) + \lambda _c(\xi )t}\tilde {\Phi }_\xi ^*(y) \,d\xi \mathbf {g}(y)\,dy, \\ S_r(t)\mathbf {g}(x) &= \frac {\chi (t)}{2\pi } \int _\R \int _{-\frac {\pi }{T}}^\frac {\pi }{T} \rho (\xi ) e^{i\xi (x-y) + \lambda _c(\xi )t}(\Phi _\xi (x) - \phi '(x))\tilde {\Phi }_\xi ^*(y) \,d\xi \mathbf {g}(y)\,dy, \\ S_e(t)\mathbf {g} &= e^{\El _0 t}\mathbf {g} - \phi ' s_p(t)\mathbf {g} - S_r(t)\mathbf {g} ,\end {align*}


\begin {align*}\tilde {S}_2(t)\mathbf {g} = S_e(t)\mathbf {g} + S_r(t)\mathbf {g}, \quad \mathbf {g} \in L^2(\R ), (x,t) \in \R \times [0,\infty ),\end {align*}


$S_e(t)$


$H^k(\R )$


$H^k(\R )$


$s_p(t)$


$S_r(t)$


$(1+t)^{-\frac {1}{2}}$


$s_p(t)$


$\Phi _\xi - \phi _0'$


$l,j \in \mathbb {N}_0$


$k \in \{0,1,2\}$


$C_{l,j}>0$


\begin {align*}||\partial _x^l \partial _t^j s_p(t) \partial _x^k\mathbf {g}||_{L^2} &\leq C_{l,j} (1+t)^{-\frac {l+j}{2}} ||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ) \\ ||\partial _x^l \partial _t^j s_p(t) \mathbf {g}||_{L^2} &\leq C_{l,j} (1+t)^{-\frac {1}{4}-\frac {l+j}{2}} ||\mathbf {g}||_{L^1}, \quad \mathbf {g} \in L^2(\R )\cap L^1(\R ),\end {align*}


$t\geq 0$


$C>0$


\begin {align*}||\tilde {S}_2(t) \mathbf {g}||_{L^2} \leq C (1+t)^{-\frac {3}{4}} ||\mathbf {g}||_{L^1\cap L^2}, \quad \mathbf {g} \in L^2(\R )\cap L^1(\R )\end {align*}


\begin {align*}||\tilde {S}_2(t) \mathbf {g}||_{L^2} \leq C(1+t)^{-\frac {1}{2}} ||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ),\end {align*}


$t\geq 0$


$\tilde {S}_c(t)$


$L^\infty $


$C,\delta _1>0$


\begin {align*}||\tilde {S}_2(t)\mathbf {g}||_{L^\infty } &\leq C \left (e^{-\delta _1 t}||\mathbf {g}||_{H^1} + (1+t)^{-1}||\mathbf {g}||_{L^1 \cap L^2}\right ), \quad \mathbf {g} \in H^1(\R ) \cap L^1(\R ), \\ ||\tilde {S}_2(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-\frac {3}{4}}||\mathbf {g}||_{H^1}, \quad \mathbf {g} \in H^1(\R ),\end {align*}


\begin {align*}||\partial _x s_p(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-\frac {3}{4}}||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ), \\ ||\partial _x s_p(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-1}||\mathbf {g}||_{L^1}, \quad \mathbf {g} \in L^1(\R ),\end {align*}


$t\geq 0$


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$T_{\textrm {max}} \in (0,\infty ]$


$\w \in C([0,T_{\textrm {max}}); H^6_{\textrm {per}}(0,T))\cap C^1([0,T_{\textrm {max}}); H^4_{\textrm {per}}(0,T))$


$\w (0) = \phi + \w _0$


$T_{\textrm {max}}<\infty $


\begin {align}\label {blowup_crit_w} \limsup _{t\uparrow T_{\textrm {max}}}||\w (t)||_{H^4_{\textrm {per}}(0,T)} = \infty .\end {align}


$\w $


$\v $


$\w $


$T_{\textrm {max}}$


$\v _0 \in H^3(\R )$


$\tau _{\textrm {max}}\leq T_{\textrm {max}}$


$\v \in C([0,\tau _{\textrm {max}}); H^3(\R ))\cap C^1([0,\tau _{\textrm {max}}); H^1(\R ))$


$\v (0) = \v _0$


$\tau _{\textrm {max}}<T_{\textrm {max}}$


\begin {align}\label {blowup_crit_v} \limsup _{t\uparrow \tau _{\textrm {max}}}||\v (t)||_{H^1} = \infty .\end {align}


$H^1_{\textrm {per}}(0,T) \hookrightarrow L^\infty (\R )$


\begin {align*}\v \mapsto \mathcal {N}( \v + \w ) - \mathcal {N}(\w )\end {align*}


$H^1(\R )$


$H^1(\R )$


\begin {align*}\mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\partial _x^2 - \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix} \right ) - \mathcal {I}\end {align*}


$C_0$


$H^1(\R )$


$H^3(\R )$


$\u (t)$


\begin {align*}\u (x- \sigma (t),t) - \phi (x) = (\w (x- \sigma (t),t) - \phi (x)) + \v (x-\sigma (t),t)\end {align*}


$\sigma : [0,\infty ) \rightarrow \R $


$\sigma (0) = 0$


\begin {align}\label {define_inverse_w} \hat {\w }(x,t) = \w (x- \sigma (t),t) - \phi (x).\end {align}


$\v (t)$


$\w (t) = \tilde {\w }(t) + \phi $


\begin {align}\label {define_inverse_v} \hat {\v }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x)\end {align}


$\gamma : \R \times [0,\infty ) \rightarrow \R $


$\gamma (\cdot ,0) = 0$


$\hat {\w }(t)$


$\hat {\v }(t)$


\begin {align*}\mathcal {R}_3(\hat {\w },\hat {\v },\gamma ) = \mathcal {Q}(\hat {\w },\hat {\v },\gamma ) + \partial _x\mathcal {S}(\hat {\v }, \gamma ) + \partial _x^2\mathcal {P}(\hat {\v },\gamma )\end {align*}


\begin {align*}&\mathcal {Q}(\hat {\w },\hat {\v },\gamma ) = (1-\gamma _x) \mathcal {R}_{2,1}(\hat {\w },\hat {\v }), \\ &\mathcal {S}(\hat {\v }, \gamma ) = - \gamma _t\hat {\v } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\v } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ), \\ &\mathcal {P}(\hat {\v }, \gamma ) = -\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right )\hat {\v }, \\ &\mathcal {T}(\hat {\w },\gamma )= - \gamma _x \mathcal {R}_1(\hat {\w }) - \partial _x\left (\gamma _t \hat {\w } - \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\right ) \\&\qquad \qquad - \partial _x^2\left (\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\w }\right ).\end {align*}


$\hat {\w }$


$\sigma _t$


$\gamma _x$


$\hat {\v }$


$\gamma _t$


$L^2$


$||\hat {\w }(t)||_{L^\infty }$


$|\sigma _t(t)|$


$\gamma _x(t)$


$\hat {\v }(t)$


$\gamma _t(t)$


$H^k(\R )$


$c>0$


$||f||_{L^\infty } \leq \frac {1}{2}$


$f \in H^1(\R )$


$||f||_{H^1} \leq c$


$C>0$


\begin {align*}L^1\textrm {-bound: } ||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{L^1} &\leq C \left (||\hat {\v }||_{L^2}^2 + ||(\gamma _x,\gamma _t)||_{H^2 \times H^1}(||\hat {\v }||_{H^2} + ||\gamma _x||_{L^2})\right ), \\ L^2\textrm {-bound: }||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{L^2} &\leq C \left (||\hat {\v }||_{H^1}^2 + ||(\gamma _x,\gamma _t)||_{H^2 \times H^1}(||\hat {\v }||_{H^2} + ||\gamma _x||_{L^2})\right ), \\ H^1\textrm {-bound: } ||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{H^1} &\leq C \left (||\hat {\v }||_{H^1}^2 + ||(\gamma _x,\gamma _t)||_{H^3 \times H^2}(||\hat {\v }||_{H^3} + ||\gamma _x||_{H^1})\right ),\end {align*}


\begin {align*}L^2\textrm {-bounds: } ||\sigma _t \hat {\v }_x||_{L^2} &\leq C |\sigma _t||\hat {\v }||_{H^1}, \quad ||(1-\gamma _x) \mathcal {R}_{2,2}(\hat {\w }, \hat {\v })||_{L^2} \\ &\leq C ||\hat {\v }||_{L^2} ||\hat {\w }||_{H^1_{\textrm {per}}(0,T)}, \\ &||\mathcal {T}(\hat {\w },\gamma )||_{L^2} \leq C||(\gamma _x,\gamma _t)||_{H^2 \times H^1} ||\hat {\w }||_{H^3_{\textrm {per}}(0,T)}, \\ H^1\textrm {-bounds: } ||\sigma _t \hat {\v }_x||_{H^1} &\leq C |\sigma _t||\hat {\v }||_{H^2}, \quad ||(1-\gamma _x) \mathcal {R}_{2,2}(\hat {\w }, \hat {\v })||_{H^1} \\&\leq C ||\hat {\v }||_{H^1} ||\hat {\w }||_{H^2_{\textrm {per}}(0,T)}, \\ &||\mathcal {T}(\hat {\w },\gamma )||_{H^1} \leq C||(\gamma _x,\gamma _t)||_{H^3 \times H^2} ||\hat {\w }||_{H^4_{\textrm {per}}(0,T)},\end {align*}


$\hat {\v } \in H^3(\R )$


$\hat {\w } \in H^4_{\textrm {per}}(0,T)$


$(\gamma _t,\gamma _x) \in H^2(\R )\times H^3(\R )$


$\sigma _t \in \R $


\begin {align*}||\hat {\w }||_{H^4_{\textrm {per}}(0,T)}, ||\hat {\v }||_{H^1},||\gamma _x||_{H^3} \leq c.\end {align*}


$\mathring \w (x,t) = \w (x,t) - \phi (x+\sigma (t))$


\begin {align*}(\partial _t -\mathcal {L}_0) (\mathring {\w }(t) - \phi '\sigma ) &= \mathcal {R}_4(\mathring {\w }(t), \sigma (t)) + (\phi '(\cdot + \sigma (t)) - \phi ') \sigma _t(t)\end {align*}


\begin {align*}\mathcal {R}_4(\mathring {\w }(t), \sigma (t)) = \mathcal {R}_1(\phi (\cdot +\sigma (t)))(\mathring {\w }(t)) - (\mathcal {N}'(\phi ) - \mathcal {N}'(\phi (\cdot +\sigma (t)))) \mathring {\w }(t).\end {align*}


\begin {align}\label {choice_of_sigma} \sigma (t) =& \chi (t)\Pi (0) \tilde {\w }_0 + \int _0^t \chi (t-s) \Pi (0)\left (\mathcal {R}_4(\mathring {\w }(s), \sigma (s)) \right .\nonumber \\&\left .+(\phi '(\cdot + \sigma (s)) - \phi ') \sigma _s(s) \right )\,ds\end {align}


\begin {align}\label {semilinear_w} \mathring {\w }(t) = \tilde {S}_1(t) \tilde {\w }_0 + \int _0^t \tilde {S}_1(t-s)\left (\mathcal {R}_4(\mathring {\w }(s), \sigma (s)) +(\phi '(\cdot + \sigma (s)) - \phi ') \sigma _s(s) \right )\,ds.\end {align}


$\sigma $


$\w $


$T_{\textrm {max}}$


$t_{\textrm {max}, \sigma } \leq T_{\textrm {max}}$


$\mathring \w (x,t) = \w (x,t) - \phi (x+\sigma (t))$


\begin {align*}\sigma \in C^1([0,t_{\textrm {max},\sigma });\R ) \text { with } \sigma (0) = 0 \textrm { and } |(\sigma (t), \sigma _t(t))| < \frac {1}{2}, \quad t\in [0,t_{\textrm {max},\sigma }).\end {align*}


$t_{\textrm {max},\sigma } < \tau _{\textrm {max}}$


$\limsup _{t \uparrow t_{\textrm {max},\sigma }}|(\sigma (t), \sigma _t(t))| \geq \frac {1}{2}$


$K>0$


$C>0$


\begin {align*}&||\mathcal {R}_4(\mathring {\w }, \sigma )||_{H^6_{\textrm {per}}(0,T)} \leq C||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} \left (||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} + |\sigma | \right ), \\&\quad || (\phi '(\cdot + \sigma ) - \phi ') \sigma _t||_{H^6_{\textrm {per}}(0,T)} \leq C |\sigma ||\sigma _t|,\end {align*}


\begin {align*}|\sigma | + |\sigma _t| + ||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} \leq K.\end {align*}


$\hat {\v }(t)$


\begin {align*}\hat {\v }(t) =& e^{\mathcal {L}_0 t} \v _0 - \phi '\gamma (t) + \int _0^t e^{\mathcal {L}_0 (t-s)} \Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) \\ &-\sigma _s(s)\hat {\v }_x(s) + (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\v }(s),\hat {\w }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s)) \Bigr ) \,ds\\ &+ \gamma _x(t) \hat {\w }(t) + \gamma _x(t) \hat {\v }(t),\end {align*}


$\gamma (0) = 0.$


$\hat {\v }(t)$


$t= 0$


$s_p(0) = 0$


$\gamma (0) = 0$


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\sigma $


$t_{\textrm {max},\sigma }$


$0<c < \frac {1}{2}$


$||f||_{L^\infty } \leq \frac {1}{c}||f||_{H^1}$


$f \in H^1(\R )$


$t_{\textrm {max},\gamma } \leq \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$\hat {\w }(t) = \w (\cdot -\sigma (t)) - \phi $


$\hat {\v }(t) = \u (\cdot - \sigma (t) - \gamma (\cdot ,t),t)- \hat {\w }(t)- \phi $


\begin {align*}\gamma \in C([0,t_{\textrm {max},\gamma }); H^5(\R )) \cap C^1([0,t_{\textrm {max},\gamma }); H^3(\R )) \text { with } \gamma (0) = 0\end {align*}


\begin {align}\label {max_gamma_cond} ||(\gamma (t), \gamma _t(t))||_{H^5\times H^3} < \frac {c}{2}, \quad t\in [0,t_{\textrm {max},\gamma }).\end {align}


$t_{\textrm {max},\gamma } < \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


\begin {align}\label {finite_time_cond_gamma} \limsup _{t \uparrow t_{\textrm {max},\gamma }}||\gamma (t), \gamma _t(t)||_{H^5 \times H^3} \geq \frac {c}{2}.\end {align}


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\hat {\v } \in C([0,t_{\textrm {max},2}); L^2(\R ))$


$\hat {\w }(t) = \w (\cdot -\sigma (t)) - \phi $


$\hat {\v }(t) \in H^3(\R )$


$t \in [0,t_{\textrm {max},\gamma })$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align*}\hat {\v }(x,t) = \v (x- \sigma (t) - \gamma (x,t),t) + \w (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x) \\ = \v (x- \sigma (t) - \gamma (x,t),t) + \w (x- \sigma (t) - \gamma (x,t),t) - \w (x - \sigma (t),t)\end {align*}


$\w (t) \in H^5_{\textrm {per}}(0,T) \hookrightarrow W^{4,\infty }(\R )$


\begin {align*}||\w (x- \sigma (t) - \gamma (x,t),t) - \w (x - \sigma (t),t)||_{H^3} \lesssim ||\gamma (t)||_{H^3}.\end {align*}


$\gamma (t) \in H^4 \hookrightarrow W^{3,\infty }$


$\sup _{s \in [0,t]}||\gamma _x(s)||_{L^\infty } \leq \frac {1}{2}$


$\v (t) \in H^3(\R )$


\begin {align*}\hat {\v }(t) \in H^3(\R )\end {align*}


$(1+t)^{-\frac {1}{2}}$


$\v $


$\gamma _x$


$|\sigma _t|$


$||\hat {\v }||_{L^2} \approx ||\hat {\v }_x||_{L^2}$


$(1+t)^{-\kappa }$


$\kappa \geq \frac {1}{2}$


$||\sigma _t \hat {\v }_x||_{L^2} \leq ||\hat {\v }_x||_{L^2}|\sigma _t|$


\begin {align*}\int _0^t (1+t-s)^{-\frac {1}{2}} (1+s)^{-\kappa }e^{-s} \,ds \lesssim (1+t)^{-\frac {1}{2}}.\end {align*}


$\sigma _t \hat {\v }_x$


$L^p$


$1\leq p < 2$


$\hat {\v }$


$\kappa = \frac {1}{2}$


$\v _0 \in L^1(\R )$


$\hat {\v }$


$\v $


$||\hat {\v }||_{H^3}$


$||\hat {\v }||_{L^2}$


$\gamma _t$


$\gamma _x$


$\sigma _t$


$\hat {\w }$


$\mathring {\v }$


\begin {align}\label {forward_equation} (\partial _t - \mathcal {L}_0(\mathring {\phi })) \mathring {\v }(t) = \mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot +\gamma (\cdot ,t),t),\mathring {\v }(t))+ \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))\end {align}


\begin {align*}\mathcal {L}_0(\mathring {\phi }) =& \mathcal {J} \begin {pmatrix}-\beta \partial _x^2 - \alpha + 3\mathring {\phi }_1^2 + \mathring {\phi }_2^2 & 2\mathring {\phi }_1\mathring {\phi }_2 \\ 2\mathring {\phi }_1\mathring {\phi }_2 -\beta \partial _x^2 - \alpha + \mathring {\phi }_1^2 + 3\mathring {\phi }_2^2 \end {pmatrix} \\ &- \mathcal {I}, \quad \mathring {\phi }(x,t) = \phi (x+ \gamma (x,t)),\end {align*}


\begin {align*}&\mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &=-\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) -\phi '(\cdot +\gamma (\cdot ,t)) \gamma _t(t) \\ & \qquad - \beta \mathcal {J} \Bigl (\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t)\gamma _{xx}(t) + \tilde {\w }_{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \\ &\qquad \qquad \quad + \phi '(\cdot +\gamma (\cdot ,t))\gamma _{xx}(t) + \phi ''(\cdot +\gamma (\cdot ,t))(2\gamma _x(t) + \gamma _x(t)^2) \Bigr ).\end {align*}


$\mathcal {R}_2(\mathring {\phi })$


$\tilde {\w }(t) = \w (t)- \phi $


$\w (t)$


$\mathring {\v }(t)$


$\w $


$T_{\textrm {max}}$


$\v $


$\tau _{\textrm {max}}$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\mathring {\v } \in C([0,t_{\textrm {max},\gamma }); H^3(\R )) \cap C^1([0,t_{\textrm {max},\gamma }); H^1(\R ))$


$\tilde {\w }(t) = \w (t) - \phi $


$j = 1,2,3$


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align*}||\partial _x^j \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))||_{L^2} &\leq C(||\gamma _x(t)||_{H^{j+1}} + ||\gamma _t(t)||_{H^{j}}),\\ ||\partial _x^j\mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot + \gamma (\cdot ,t),t), \mathring {\v }(t))||_{L^2} &\leq C||\mathring {\v }(t)||_{H^j}\end {align*}


\begin {align*}\sup _{0\leq s \leq t} \left (||\tilde {\w }(s)||_{H^6_{\textrm {per}}(0,T)}+ ||\mathring {\v }(s)||_{H^3}+ ||(\gamma _x(s),\gamma _s(s))||_{H^4\times H^3}\right ) \leq K.\end {align*}


\begin {align*}&||\partial _x^j( \beta \mathcal {J}\left (\tilde {\w }_{xx}(\cdot + \gamma (\cdot ,t),t)(2\gamma _x(t)+ \gamma _x(t)^2) + \tilde {\w }_x(\cdot + \gamma (\cdot ,t),t)\gamma _{xx}(t)\right ) \\&+ \tilde {\w }_x(\cdot + \gamma (\cdot ,t),t)\gamma _t(t))||_{L^2} \\ &\quad \lesssim ||\tilde {\w }(t)||_{H^{j+3}_{\textrm {per}}(0,T)} ||\gamma _x(t)||_{H^{j+1}} + ||\tilde {\w }(t)||_{H^{j+2}_{\textrm {per}}(0,T)} ||\gamma _t(t)||_{H^j},\end {align*}


$j = 1,2,3$


$H^k_{\textrm {per}}(0,T) \hookrightarrow W^{k-1,\infty }(\R )$


$\phi $


$\tilde {\w }$


$\mathcal {R}_2$


$\mathring {\v }$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\mathring {\v }$


$\tilde {\w }(t) = \w (t)- \phi $


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align}\label {preliminaries_boundind_damping} \sup _{0 \leq s\leq t} \left ( ||\tilde {\w }(s)||_{H^{6}_{\textrm {per}}(0,T)} + ||\mathring {\v }(s)||_{H^3} + ||(\gamma _x(s),\gamma _s(s))||_{H^{3}\times H^2} \right ) \leq K.\end {align}


$\v _0 \in H^5(\R )$


$\v \in C([0,\tau _{\textrm {max}})); H^5(\R ))\cap C^1([0,\tau _{\textrm {max}}); H^3(\R ))$


$H^5(\R )$


$H^3(\R )$


$\v _0 \in H^3(\R )$


$K>0$


$t \in [0,t_{\textrm {max}, \gamma })$


$\mathring {\v }$


$\partial _t - \mathcal {L}_0(\mathring {\phi })$


\begin {align*}E_j(t) = ||\partial _x^j \mathring {\v }(t)||_{L^2}^2 - \frac {1}{2\beta } \langle \mathcal {J} M(\mathring {\phi })\partial _x^{j-1}\mathring {\v }, \partial _x^{j-1}\mathring {\v }\rangle , \quad j = 1,2,3,\end {align*}


\begin {align*}M(\mathring {\phi }) = 2\begin {pmatrix} -2\mathring {\phi }_r \mathring {\phi }_i & \mathring {\phi }_r^2 - \mathring {\phi }_i^2 \\ \mathring {\phi }_r^2 - \mathring {\phi }_i^2 & 2\mathring {\phi }_r \mathring {\phi }_i \end {pmatrix}.\end {align*}


\begin {align*}\partial _t E_j(t) = - 2E_j(t) + R_1(t) + R_2(t)\end {align*}


\begin {align*}|R_1(t)| \leq \frac {2}{3} E_j(t) + C_1||\mathring {\v }(t)||_{L^2}^2\end {align*}


$t$


$C_1>0$


\begin {align*}R_2(t) =& 2 \Re \, \langle \partial _x^j \mathcal {R}_5(\hat {\w }(t), \gamma (t),\gamma _t(t)), \partial _x^j \mathring {\v }(t) \rangle _{L^2} \\&- \frac {1}{\beta } \Re \,\langle \mathcal {J} M(\mathring {\phi })\partial _x^{j-1} \mathcal {R}_5(\hat {\w }(t), \gamma (t),\gamma _t(t)), \partial _x^{j-1} \mathring {\v }(t) \rangle _{L^2}.\end {align*}


$t$


$C_2>0$


\begin {align*}|R_2(t)| \leq \frac {1}{3} E_j(t) + C_2\left (||\mathring {\v }(t)||_{L^2}^2 + ||\gamma _x(t)||^2_{H^{j+1}} + ||\gamma _t(t)||^2_{H^{j}}\right ).\end {align*}


\begin {align*}\partial _t E_j(t) \leq -E_j(t) + C_3\left (||\mathring {\v }(t)||_{L^2}^2 + ||\gamma _x(t)||^2_{H^{j+1}} + ||\gamma _t(t)||^2_{H^{j}}\right )\end {align*}


$t$


$C_3>0$


$j = 1,2,3$


$t$


$C_4>0$


\begin {align*}||\partial _x \mathring {\v }(t)||_{L^2}^2 \leq E_1(t)+ C_4||\mathring {\v }(t)||_{L^2}^2\end {align*}


\begin {align*}||\partial _x^j \mathring {\v }(t)||_{L^2}^2 \leq 2E_j(t) + C_4\left (||\mathring {\v }(t)||_{L^2}^2 + E_{j-1}(t)\right ),\end {align*}


$j = 2,3$


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align}\label {relate_h2} ||\mathring {\v }(t)||_{L^2} \leq C \left ( ||\hat {\v }(t)||_{L^2} + ||\gamma _x(t)||_{L^2} \right ),\end {align}


\begin {align}\label {relate_l2} ||\hat {\v }(t)||_{H^3} \leq C \left ( ||\mathring {\v }(t)||_{H^3} +||\gamma _x(t)||_{H^{3}} \right )\end {align}


\begin {align}\label {relate_l_infty} || \mathring {\v }(t)||_{L^\infty } \leq C\left ( ||\hat {\v }(t)||_{L^\infty } + ||\gamma _x(t)||_{L^\infty } \right ),\end {align}


\begin {align*}\sup _{0\leq s \leq t} \left ( ||\hat {\w }(s)||_{H^5_{\textrm {per}}} + ||\gamma (s)||_{H^4} + |\sigma (s)|\right )\leq K \textrm { and } \sup _{0\leq s\leq t}||\gamma _x(s)||_{L^\infty } \leq \frac {1}{2}.\end {align*}


$t \in [0,t_{\textrm {max},\gamma })$


$A_t(x) = x- \gamma (x,t) - \sigma (t)$


$B_t(x) = x+ \gamma (x,t) + \sigma (t)$


$||\gamma _x(t)||_{L^\infty } \leq \frac {1}{2}$


$A_t$


\begin {align*}x = A_t(A_t^{-1}(x)) = A_t^{-1}(x) - \gamma (A_t^{-1}(x),t) - \sigma (t)\end {align*}


\begin {align*}A_t^{-1}(x) - B_t(x) &= \gamma (A_t^{-1}(x),t) - \gamma (x,t).\end {align*}


\begin {align}\label {intermediate_integral} \gamma (A_t^{-1}(x),t) - \gamma (x,t) = (A_t^{-1}(x)-x) \int _0^1 \gamma _x(x+ \theta (A_t^{-1}(x)-x), t) \,d\theta ,\end {align}


$||\gamma _x(t)||_{L^\infty } \leq \frac {1}{2}$


\begin {align}\label {relation_key_estimate} ||A_t^{-1}- B_t||_{L^2} \lesssim ||\gamma _x||_{L^2}, \quad ||A_t^{-1}- B_t||_{H^l} \lesssim ||\gamma _x||_{H^l},\end {align}


$l = 1,2,3$


\begin {align*}||\hat {\v }(A_t^{-1}(\cdot ),t) - \hat {\v }(\cdot ,t)||_{H^3} \lesssim ||\hat {\v }(t)||_{H^3}, \quad ||\mathring {\v }(A_t(\cdot ),t) - \mathring {\v }(\cdot ,t)||_{L^2} \lesssim ||\mathring {\v }(t)||_{L^2}\end {align*}


\begin {align*}\hat {\v }(A_t^{-1}(x),t) - \mathring {\v }(x,t) = (\hat {\w }(B_t(x),t) -\hat {\w }(A_t^{-1}(x),t)) + (\phi (A_t^{-1}(x)) - \phi (B_t(x)))\end {align*}


\begin {align*}||\hat {\v }(A_t^{-1}(\cdot ),t) - \mathring {\v }(\cdot ,t)||_{H^3} \lesssim ||A_t^{-1} - B_t ||_{H^3} \lesssim ||\gamma _x||_{H^{3}}.\end {align*}


\begin {align*}\hat {\v }(x,t) &- \mathring {\v }(A_t(x),t) = -\hat {\w }(x,t) + \hat {\w }(x+ \gamma (A_t(x),t)-\gamma (x,t),t) \\&+ (-\phi (x) + \phi (x+ \gamma (A_t(x),t)-\gamma (x,t)))\end {align*}


\begin {align*}||\gamma (A_t(\cdot ),t) - \gamma (\cdot ,t)||_{L^2} \lesssim ||\gamma _x(t)||_{L^2},\end {align*}


\begin {align*}||\hat {\v }(\cdot ,t) - \mathring {\v }(A_t(\cdot ),t)||_{L^2} \lesssim ||\gamma _x(t)||_{L^2}.\end {align*}


$\w $


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$\w $


$T_{\textrm {max}}$


$\sigma $


$t_{\textrm {max},\sigma }$


$C ,\delta _2, \varepsilon _p>0$


\begin {align*}E_p := ||\w _0||_{H^6_{\textrm {per}}(0,T)}< \varepsilon _p ,\end {align*}


$\w (t)$


$\sigma (t)$


$t_{\textrm {max},\sigma } = T_{\textrm {max}} = \infty $


\begin {align*}|\sigma (t)|,&||\w (t) - \phi ||_{H^6_{\textrm {per}}(0,T)} \leq CE_p, \quad |\sigma _t(t)|, ||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)}, ||\mathring {\w }(t)\\ &||_{H^6_{\textrm {per}}(0,T)} \leq C e^{-\delta _2 t} E_p,\end {align*}


$t\geq 0$


$|\sigma (t)|$


$|\sigma _t(t)|$


$||\mathring {\w }(t)||_{H^6_{\textrm {per}}(0,T)}$


\begin {equation*}||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)} = ||\hat {\w }(\cdot +\sigma (t),t)||_{H^6_{\textrm {per}}(0,T)} = ||\mathring {\w }(t)||_{H^6_{\textrm {per}}(0,T)}\end {equation*}


$t\geq 0$


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$\varepsilon _p$


$E_l = ||\v _0||_{H^3}$


$0< c < \frac {1}{2}$


$E_p < \varepsilon _p$


$\eta : [0,t_{\textrm {max},\gamma }) \rightarrow \R $


$C\geq 1$


$E_l$


$E_p$


\begin {align}\label {key_inequality} \eta (t) \leq C(E_l + \eta (t)^2 + \eta (t)E_p)\end {align}


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t) < \frac {c}{2}$


$t_{\textrm {max},\gamma } < \infty $


\begin {align}\label {final_blow_conditions} \limsup _{t \uparrow t_{\textrm {max},\gamma }} \eta (t) \geq \frac {c}{2}.\end {align}


$\eta $


$E_p < \min \{\varepsilon _p, \frac {1}{2C}\}$


\begin {align}\label {absorbed_key_inequality} \eta (t) \leq 2C(E_l + \eta (t)^2).\end {align}


$4C^2E_l < \frac {c}{2}$


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t)\geq 4CE_l$


$\eta $


$t_0$


$\eta (t_0)= 4CE_l < \frac {c}{2}$


$c \in (0,\frac {1}{2})$


\begin {align*}\eta (t_0) \leq 2C\left (E_l + (16C^2E_l) E_l\right ) < 4CE_l.\end {align*}


\begin {align}\label {stability_result_end} \sup _{t \in [0,t_{\textrm {max},\gamma })} \eta (t) \leq 4CE_l < \frac {c}{2}\end {align}


$t_{\textrm {max},\gamma } = \tau _{\textrm {max}} = \infty $


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t)< \frac {c}{2}$


$\hat {\v }$


$||\hat {\v }(s)||_{H^3}$


\begin {align}\label {relate_v_hat} ||\hat {\v }(s)||_{H^3} \lesssim (1+s)^{-\frac {1}{2}}\eta (s),\end {align}


$s\in [0,t]$


$s\in [0,t]$


$\eta (t) \leq \frac {1}{2}$


$\gamma $


$s \in [0,t]$


$\mathring {\v }$


\begin {align*}||\mathring {\v }(s)||_{L^2} \lesssim (1+s)^{-\frac {1}{2}}\left ( E_l+ \eta (t)^2 + \eta (t)E_p\right )\end {align*}


$0\leq s \leq t$


\begin {align*}||\mathring {\v }(s)||_{H^3} \lesssim (1+s)^{-\frac {1}{2}}\left ( E_l+ \eta (t)^2 + \eta (t)E_p\right ),\end {align*}


$0\leq s \leq t$


$\eta (t) \leq \frac {1}{2}$


$|\sigma _t(t)|$


$||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)}$


$(1+t)^{-\kappa }$


$\kappa >\frac {1}{2}$


$L^\infty $


$L^2$


\begin {align*}&||\gamma _x(t)||_{L^\infty } \leq ||\partial _x s_p(t)||_{L^2 \rightarrow L^\infty }||\v _0||_{L^2} \\&+ \int _0^t ||\partial _x s_p(t-s)||_{L^1\rightarrow L^\infty }||\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s))||_{L^1} \,ds \\ &+\int _0^t ||\partial _x s_p(t-s)||_{L^2\rightarrow L^\infty } \Bigl ( ||\sigma _t(s)\hat {\v }_x(s)||_{L^2} + ||\mathcal {T}(\hat {\w }(s),\gamma (s))||_{L^2} \\ &+ ||(1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s))||_{L^2} \Bigr ) \,ds \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l + E_l \left (\int _0^t (1+t-s)^{-1} (1+s)^{-1} \,ds \right .\\&\left .+ \int _0^t (1+t-s)^{-\frac {3}{4}} (1+s)^{-\frac {1}{2}} e^{-\delta _2 s} \,ds \right ) \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


\begin {align*}||\hat {\v }(t)||_{L^\infty } &\lesssim (1+t)^{-\frac {3}{4}} E_l + \int _0^t (1+t-s)^{-1}||\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s))||_{L^1 \cap L^2} \,ds \\ &\quad + \int ^t_0 e^{-\delta _1(t-s)} ||\mathcal {R}_3(\hat {\w }(s), \hat {\v }(s),\gamma (s))||_{H^1} \,ds \\ & \quad +\int _0^t (1+t-s)^{-\frac {3}{4}} \Bigl ( ||\sigma _t(s)\hat {\v }_x(s)||_{H^1} \\ &+ ||(1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s))||_{H^1} + ||\mathcal {T}(\hat {\w }(s),\gamma (s))||_{H^1} \Bigr ) \,ds \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l +E_l \left (\int _0^t (1+t-s)^{-1}(1+s)^{-1} \,ds \right .\\ &\left .+\int _0^t (1+t-s)^{-\frac {3}{4}}(1+s)^{-\frac {1}{2}}e^{-\delta _2 s} \,ds \right ) \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


\begin {align*}||\mathring {\v }(t)||_{L^\infty } \lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


$\sigma _* := \int _0^\infty \sigma _s(s) \,ds$


\begin {align*}|\sigma _*-\sigma (t)| \leq \int _t^\infty |\sigma _s(s) | \,ds \lesssim e^{-\delta _1 t}E_p\end {align*}


\begin {align*}||\phi (\cdot + \sigma _* + \gamma (\cdot ,t), t) - \phi (\cdot + \sigma (t) + \gamma (\cdot ,t),t)||_{L^\infty } \lesssim e^{-\delta _1 t}E_p,\end {align*}


$t\geq 0$


$L^\infty $


$C_{\textrm {ub}}$


$L^\infty $


$L^2$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$L^2_{\textrm {per}}(0,T)$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$\w _0 + \v _0$


$\w _0 \in H_{\textrm {per}}^6(0,NT) \cap L^1_{\textrm {per}}(0,NT)$


$\v _0 \in H^3(\R )$


$N \in \mathbb {N}$


$L^1_{\textrm {per}}(0,NT)$


$N$


$\u = \w + \v $


$\w $


$\v $


$\u (0) = \w _0 + \v _0$


\begin {align}\label {uniform_result} ||\u (t)||_{L^\infty } \lesssim (1+t)^{-\frac {3}{4}} \left (||\w _0||_{H^6_{\textrm {per}}(0,NT) \cap L^1_{\textrm {per}}(0,NT)} +||\v _0||_{ H^3(\R )}\right ), \quad t\geq 0,\end {align}


$N \in \mathbb {N}$


\begin {align*}\hat {\w }(x,t) &= \w (x- \sigma (t) - \gamma _1(x,t),t) - \phi , \\ \hat {\v }(x,t) &= \u (x- \sigma (t) -\gamma _1(x,t) - \gamma _2(x,t),t) - \hat {\w }(x,t) - \phi (x)\end {align*}


\begin {align*}\mathring {\w }(x,t) &= \w (x,t) - \phi (x+ \sigma (t) + \gamma _1(x,t)), \\ \mathring {\v }(x,t) &= \u (x,t) - \hat {\w }(x+ \sigma (t) +\gamma _1(x,t) + \gamma _2(x,t),t) \\ &- \phi (x+ \sigma (t) +\gamma _1(x,t) + \gamma _2(x,t)),\end {align*}


\begin {equation*}\sigma : [0,\infty ) \rightarrow \R , \gamma _1 : [0,\infty ) \rightarrow L^2_{\textrm {per}}(0,NT) \textrm { and } \gamma _2: [0,\infty ) \rightarrow L^2(\R ).\end {equation*}


$\hat {\v }$


$\mathring {\v }$


\begin {equation*}||\partial _x\gamma _1(t)||_{L^2_{\textrm {per}}(0,NT)} , |\sigma _t(t)|, ||\hat {\w }(t)||_{L^2_{\textrm {per}}(0,NT)} \sim O((1+t)^{-\frac {3}{4}}),\end {equation*}


$N$


$\R + H^3(\R )$


$L^2_{\textrm {per}}(0,T) \oplus L^2(\R )$


$L^\infty $


$\gamma _0 -\sigma _*$


$||\gamma _0'||_{ H^3}$


$M^{m}_{\infty ,1}(\R )$


$M^m_{\infty ,1}(\R )$


$m \in \mathbb {N}$


$\hat {\u }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \phi (x)$


\begin {align*}(\partial _t-\mathcal {L}_0) (\hat {\v }) &= (\partial _t-\mathcal {L}_0)\hat {\u } - (\partial _t-\mathcal {L}_0) \hat {\w } \\ &= - (\partial _t-\mathcal {L}_0)(\phi '\gamma ) + (1-\gamma _x)\mathcal {R}_1(\hat {\u }) -\mathcal {R}_1(\hat {\w } ) + \sigma _t \hat {\w }_x \\ &\qquad + \partial _x\mathcal {S}(\hat {\u }, \gamma ,\gamma _t,\sigma _t) + \partial _x^2\mathcal {P}(\hat {\u },\gamma ) + (\partial _t -\mathcal {L}_0)(\gamma _x \hat {\u }),\end {align*}


$\hat {\u } = \hat {\v } + \hat {\w }$


\begin {align*}\widetilde {\mathcal {S}}(\hat {\u }, \gamma ,\gamma _t,\sigma _t) &= - \gamma _t\hat {\u } - \sigma _t \hat {\u } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\u } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ) \\ &= \widetilde {\mathcal {S}}(\hat {\v }, \gamma ,\gamma _t,\sigma _t) - \gamma _t \hat {\w } - \sigma _t \hat {\w } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\\ \mathcal {P}(\hat {\u }, \gamma ) &= -\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\u } = \mathcal {P}(\hat {\v }, \gamma ) + \mathcal {P}(\hat {\w }, \gamma ) .\end {align*}


$\sigma _t \hat {\w }$


$(\partial _t - \mathcal {L}_0)(\phi ' \sigma )$


\begin {align*}(\partial _t-\mathcal {L}_0) (\hat {\v } + \phi '\gamma - \gamma _x\hat {\w } - \gamma _x\hat {\v }) = & \mathcal {Q}(\hat {\w },\hat {\v },\gamma ) + \partial _x\mathcal {S}(\hat {\v }, \gamma ) + \partial _x^2\mathcal {P}(\hat {\v },\gamma )\\ & - \sigma _t \hat {\v }_x + (1-\gamma _x)\mathcal {R}_{2,2}(\hat {\w },\hat {\v }) + \mathcal {T}(\hat {\w },\gamma )\end {align*}


\begin {align*}\mathcal {Q}(\hat {\w },\hat {\v },\gamma ) &= (1-\gamma _x) (\mathcal {R}_1(\hat {\v } + \hat {\w }) - \mathcal {R}_1(\hat {\w }) - \mathcal {R}_{2,2}(\hat {\w },\hat {\v })) = (1-\gamma _x) \mathcal {R}_{2,1}(\hat {\v }, \hat {\w }), \\ \mathcal {S}(\hat {\v }, \gamma ) &= - \gamma _t\hat {\v } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\v } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ), \\ \mathcal {T}(\hat {\w },\gamma )&= - \gamma _x \mathcal {R}_1(\hat {\w }) - \partial _x\left (\gamma _t \hat {\w } - \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\right ) \\&\quad - \partial _x^2\left (\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\w }\right ).\end {align*}


\begin {align*}\mathring {\v }(x,t) = \u (x,t) - \w (x+\gamma (x,t),t),\end {align*}


$\mathring {\phi }(x,t) = \phi (x+ \gamma (x,t))$


\begin {align*}\mathcal {D}(\u ) = \mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\u _{xx} + \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix}\u \right ) - \u .\end {align*}


$\u $


$\w $


\begin {align*}&(\partial _t - \mathcal {L}_0(\mathring {\phi })) \mathring {\v }(t)\\ & = (\partial _t - \mathcal {D})(\u (t)) - (\partial _t - \mathcal {D})(\w )(\cdot +\gamma (\cdot ,t),t) - \mathcal {N}'(\mathring {\phi }(t))\mathring {\v }(t) \\&\quad + \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\&= \mathcal {N}(\mathring {\v }(t) + \tilde {\w }(\cdot + \gamma (\cdot ,t),t) + \mathring {\phi }(t)) - \mathcal {N}(\tilde {\w }(\cdot + \gamma (\cdot ,t),t) + \mathring {\phi }(t)) \\&\quad -\mathcal {N}'(\mathring {\phi })\mathring {\v }(t) + \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &= \mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot +\gamma (\cdot ,t),t),\mathring {\v }(t))+ \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))\end {align*}


\begin {align*}&\mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &= - \w _x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) - \beta \mathcal {J}\left ( \w _x(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) \right .\\&\left . \quad + \w _{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2)\right )\\ &= -\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) -\phi '(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) \\ & \quad - \beta \mathcal {J} \Bigl (\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) + \tilde {\w }_{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \\ &\quad + \phi '(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) + \phi ''(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \Bigr ).\end {align*}


$\tilde {\w }(t) = \w (t)-\phi $


$\w $


\begin {align*}\gamma (t) =& s_p(t)\v _0 + \int _0^t s_p(t-s)\Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) -\sigma _t(s)\hat {\v }_x(s) \\ &+ (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s),\hat {\v }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s)) \Bigr )\,ds\end {align*}


\begin {align*}\hat {\v }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x).\end {align*}


\begin {align*}\hat {\v }(t) = \hat {\v }(\gamma (t),t)\end {align*}


\begin {align*}\tilde {\mathcal {N}}(t,\sigma (s),\gamma (s),s) =& s_p(t-s)\Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) -\sigma _t(s)\hat {\v }_x(s) \\ &+ (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s))\Bigr ).\end {align*}


$0\leq \tau _1 \leq \tau _2<\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$j,k \in \mathbb {N}_0$


$K>0$


\begin {equation*}\sup _{t \in [0,\tau _2]} \left (||\w (t)||_{W^{1,\infty }} + |\sigma _t(t)|+ ||\v (t)||_{W^{1,\infty }} \right )\leq K.\end {equation*}


$C>0$


$C_{j,k}>0$


\begin {align}\label {bound_v_hat_appendix} \sup _{s \in [\tau _1,\tau _2]}||\hat {\v }(\gamma _1(s),s)-\hat {\v }(\gamma _2(s),s)||_{L^2} \leq C\sup _{s \in [\tau _1,\tau _2]}||\gamma _1(s)- \gamma _2(s)||_{L^2},\end {align}


$\gamma _1,\gamma _2 \in C([\tau _1,\tau _2]; H^5(\R )) \times C^1([\tau _1,\tau _2]; H^3(\R ))$


$\sup _{t \in [\tau _1,\tau _2]}||\partial _x\gamma _1(t)||_{L^\infty }, ||\partial _x\gamma _1(t)||_{L^\infty } \leq \frac {1}{2}$


$t \in [\tau _1,\tau _2]$


$s\in [\tau _1,t]$


\begin {align*}\hat {\v }(x,\gamma _1(s),s)-\hat {\v }(x,\gamma _2(s),s) &= \v (x- \sigma (s) - \gamma _1(x,s),s) \\&\quad -\v (x- \sigma (s) - \gamma _2(x,s),s) \\ & \quad + \w (x- \sigma (s) - \gamma _2(x,s),s) \\&\quad - \w (x- \sigma (s) - \gamma _1(x,s),s)\end {align*}


$\w (x- \sigma (s) - \gamma (x,s),s) - \phi (x) = \hat {\w }(x-\gamma (x,s),s)$


$j,k \in \mathbb {N}_0$


$\mathcal {R}_3 = \mathcal {Q} + \partial _x \mathcal {S} + \partial _x^2 \mathcal {P}$


$s_p(t)$


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)(\mathcal {R}_3(\hat {\w }(s),\hat {\v }(\gamma _1(s),s),\gamma _1(s)) -\mathcal {R}_3(\hat {\w }(s),\hat {\v }(\gamma _2(s), s),\gamma _2(s)))||_{L^2} \\ &\quad \leq C_{j,k} (||\gamma _1(s)-\gamma _2(s)||_{H^2} + ||\partial _t\gamma _1(s) - \partial _t \gamma _2(s)||_{L^2}),\end {align*}


$s_p(t-s)$


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl ((1-\partial _x\gamma _1(s))\mathcal {R}_{2,2}(\hat {\w }(s),\hat {\v }(\gamma _1(s),s)) \\ & -(1-\partial _x\gamma _2(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(\gamma _2(s),s))\Bigr )||_{L^2} \leq C_{j,k} ||\gamma _1(s)-\gamma _2(s)||_{H^1}.\end {align*}


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl (\sigma _t(s)\left (\hat {\v }_x(\gamma _1(s),s) - \hat {\v }_x(\gamma _2(s),s)\right ) \Bigr )||_{L^2} \leq C_{j,k} ||\gamma _1(s)-\gamma _2(s)||_{L^2}.\end {align*}


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl (\mathcal {T}(\hat {\w }(s), \gamma _1(s)) - \mathcal {T}(\hat {\w }(s),\gamma _1(s))\Bigr )||_{L^2} \\ &\leq C_{j,k} (||\gamma _1(s)-\gamma _2(s)||_{H^2} + ||\partial _t\gamma _1(s) - \partial _t \gamma _2(s)||_{L^2}),\end {align*}


$s_p(t-s)$


$s_p$


$\gamma (t) = 0$


$t \in [0,1]$


$\gamma $


$\tilde {\gamma }$


$[0,t_0]$


$t_0>0$


\begin {align*}X_{t_0,\tau _0} = \Bigl \{\gamma \in & C([t_0,t_0+\tau _0]; H^5(\R )) \cap C^1([t_0,t_0+\tau _0]; H^3(\R )): \\ &\sup _{s \in [t_0, t_0+ \tau _0]} ||(\gamma (s), \gamma _s(s))||_{H^5 \times H^3} < \frac {c}{2}\Bigr \}\end {align*}


$\tau _0>0$


\begin {equation*}\gamma \in C([t_0,t_0+\tau _0]; H^5(\R )) \cap C^1([t_0,t_0+\tau _0]; H^3(\R ))\end {equation*}


$t\in [t_0,t_0+\tau _0]$


$X_{t_1,t_2}$


$t_1 \in (0, \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\})$


$t_2>0$


\begin {align}\label {gamma_taking_piece_together} \gamma (t) = \begin {cases} \tilde {\gamma }(t), & t\in [0,t_0]\\ \gamma (t), & t\in [t_0,t_0+\tau _0] \end {cases}\end {align}


$[0,t_0 + \tau _0]$


$\gamma \in X_{t_0,\tau _0}$


$t_{\textrm {max},\gamma } \in (0,\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}]$


$t_{\textrm {max},\gamma }<\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$\tilde {\gamma }$


$\sup _{t \in [0,t_{\textrm {max},\gamma })} ||(\tilde {\gamma }(t),\tilde {\gamma }_t(t))||_{H^5\times H^3} < \frac {c}{2}.$


$X_{t_{\textrm {max},\gamma }, \tau _0'}$


$\tau _0'$


$[0,t_{\textrm {max},\gamma } + \tau _0')$


$||(\gamma (s), \gamma _s(s))||_{H^5 \times H^3} < \frac {c}{2}$


$t \in [0,t_{\textrm {max},\gamma } + \tau _0')$


$t_{\textrm {max},\gamma }$
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translational invariance of (1.1). Moreover, we employ novel 𝐿2 − 𝐿∞-
estimates in the nonlinear iteration argument to control the interaction 
between the periodic and localized components of the perturbation. For 
more details on the strategy of the proof, we refer to Section 2.6. The 
outlook section Section 6 is devoted to the robustness of our approach 
as well as its possible extension to periodic wave trains in viscous con-
servation laws where the handling of fully nonlocalized perturbations is 
similarly challenging as for the Lugiato-Lefever equation but for differ-
ent reasons. In case of the Lugiato-Lefever equation, a crucial difficulty 
towards extending to a fully nonlocalized stability result is to choose 
a suitable class of perturbations which contains all 𝐶∞-functions. The 
generic space of perturbations is given by
𝐶𝑚
ub(ℝ) = {𝑓 ∶ ℝ → ℂ ∶ 𝑓 is 𝑚-times differentiable with

uniformly continuous and bounded derivatives},
𝑚 ∈ ℕ, whenever studying reaction-diffusion systems [12,17,18]. The 
solutions of (1.1) with initial data in 𝐻1

per(ℝ)⊕𝐻1(ℝ) naturally lie in 
𝐶ub(ℝ) due to Sobolev embedding. However, it is shown in [19] that 
𝑡 ↦ ||𝑒𝑖𝜕2𝑥𝑡𝑢0||𝐿∞  blows up in finite times for certain 𝑢0 ∈ 𝐶ub(ℝ) and 
therefore it is convenient to study other spaces than 𝐶ub(ℝ) to ap-
proach a fully nonlocalized stability result for the Lugiato-Lefever equa-
tion (1.1). More suitable variants are given by the so-called modulation 
spaces 𝑀𝑚

∞,1(ℝ), 𝑚 ∈ ℕ0, which are introduced in [20]. We discuss such 
an extension in Section 6.4.

2.  Preparation and main result

We reformulate the Lugiato-Lefever equation as a semilinear system 
with a ℂ-linear part by splitting into real- and imaginary variables. Then, 
we construct perturbed solutions with initial data in 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ)
and derive the associated perturbation equations. At the end of this sec-
tion, we impose spectral properties and formulate our main result.

2.1.  Reformulation as real system

As |𝑢|2𝑢 is not differentiable with respect to 𝑢 ∈ ℂ, we introduce 𝐮 ∶=
(𝐮𝑟,𝐮𝑖)𝑇 ∶= (Re(𝑢), Im(𝑢))𝑇 ∶ ℝ → ℝ2 which transforms (1.1) into the real 
system 

𝐮𝑡 = 
((

−𝛽 0
0 −𝛽

)

𝐮𝑥𝑥 +
(

−𝛼 0
0 −𝛼

)

𝐮
)

− 𝐮 + (𝐮) +
(

𝐹
0

)

, (2.1)

where 

 =
(

0 −1
1 0

)

,  (𝐮) = |𝐮|2 𝐽𝐮 =
(

−𝐮3𝑖 − 𝐮2𝑟𝐮𝑖
𝐮𝑟𝐮2𝑖 + 𝐮3𝑟

)

.

2.2.  The perturbed solution in 𝐿2
per(0, 𝑇 )⊕𝐿2(ℝ)

We assume the existence of a periodic standing wave.
(H1) There exists a smooth, nonconstant and 𝑇 -periodic stationary so-
lution 𝜙0 ∶ ℝ → ℂ of (1.1).
We set 𝜙 ∶= (𝜙𝑟, 𝜙𝑖)𝑇 ∶= (Re(𝜙0), Im(𝜙0))𝑇 ∶ ℝ → ℝ2 and construct a so-
lution of (2.1) with initial datum 𝜙 + 𝐰0 + 𝐯0 in 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ) with 
𝐰0 ∈ 𝐿2

per(0, 𝑇 ) and 𝐯0 ∈ 𝐿2(ℝ) by following the strategy of [14]. We first 
solve 

𝐰𝑡 = 
((

−𝛽 0
0 −𝛽

)

𝐰𝑥𝑥 +
(

−𝛼 0
0 −𝛼

)

𝐰
)

− 𝐰 + (𝐰) +
(

𝐹
0

)

𝐰(0) = 𝜙 + 𝐰0

(2.2)

in 𝐿2
per(0, 𝑇 ). Then, we transfer from the solution 𝐰 of (2.1) to a solu-

tion 𝐮 of (2.1) with initial datum 𝜙 + 𝐰0 + 𝐯0 by solving the perturbed 
problem 

𝐯𝑡 = 
((

−𝛽 0
0 −𝛽

)

𝐯𝑥𝑥 −
(

−𝛼 0
0 −𝛼

)

𝐯
)

− 𝐯 + (𝐯 + 𝐰) − (𝐰)

𝐯(0) = 𝐯0.
(2.3)

Fig. 1. For the sake of illustration, we reduce to the real part of an initial per-
turbation 𝐰0 + 𝐯0 with 𝐰0 ∈ 𝐿2

per(0, 𝑇 ) and 𝐯0 ∈ 𝐿2(ℝ). This figure demonstrates 
that 𝐯0 can in particular be chosen such that 𝐯0 + 𝐰0 coincides with 𝐰0 except for 
finitely many periods for which the signal vanishes, which motivates the name 
"tooth space" for 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ) ("𝐿2(ℝ) knocks out teeth of 𝐿2
per(0, 𝑇 )").

In summary, if we solve (2.2) and (2.3), then 𝐮 = 𝐰 + 𝐯 is a solution of 
(2.1) with 𝐮(0) = 𝜙 + 𝐰0 + 𝐯0.

Remark 2.1  (Interpretation from fiber optics). The cubic nonlinear 
Schrödinger equation on 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ) can be understood as model 
from nonlinear fiber optics by considering 𝑡 ≥ 0 as point on a fiber and 𝑥 ∈ ℝ
as time variable, cf. [13]. The stationary periodic solution 𝜙 is then the signal 
at any point on the fiber if it is chosen as input signal. Prescribing a signal at 
the initial point of the fiber by 𝜙 + 𝐿2

per(0, 𝑇 ), we ask how the signal as func-
tion depending on the time 𝑥 ∈ ℝ looks at the place 𝑡 ≥ 0 on the fiber. Adding 
an 𝐿2(ℝ)-perturbation corresponds to temporally limited changes of the input 
signal. In particular, one may switch off the periodic signal for finitely many 
times as illustrated in Fig. 1. Global existence of the perturbed solutions then 
translates to the observation that the fiber has infinite length while stability 
of 𝜙 is interpreted as that the signal stays close to 𝜙 at any point 𝑡 ≥ 0 on the 
fiber. 

2.3.  Unmodulated perturbation equations

Given a solution 𝐮(𝑡) = 𝐰(𝑡) + 𝐯(𝑡) of (2.1), we derive the unmodu-
lated perturbation equations by splitting the perturbation as 
𝐮̃(𝑡) = 𝐮(𝑡) − 𝜙 = (𝐰(𝑡) − 𝜙) + 𝐯(𝑡) and setting 𝐰̃(𝑡) = 𝐰(𝑡) − 𝜙.

This gives the coupled perturbation system 
𝐰̃𝑡 = 0(𝜙)𝐰̃ +1(𝜙)(𝐰̃)
𝐰̃(0) = 𝐰0,

𝐯𝑡 = 0(𝜙)𝐯 +2(𝜙)(𝐰̃, 𝐯)
𝐯(0) = 𝐯0,

(2.4)

where 0(𝜙) is the linearization of (2.1) about 𝜙, given by 

0(𝜙) = 
(

−𝛽𝜕2𝑥 − 𝛼 + 3𝜙2
𝑟 + 𝜙2

𝑖 2𝜙𝑟𝜙𝑖
2𝜙𝑟𝜙𝑖 −𝛽𝜕2𝑥 − 𝛼 + 𝜙2

𝑟 + 3𝜙2
𝑖

)

− , (2.5)

first residual nonlinearity is given by 
1(𝜙)(𝐰̃) =  (𝐰̃ + 𝜙) − (𝜙) − ′(𝜙)𝐰̃, (2.6)

and the second residual nonlinearity is defined by 
2(𝜙)(𝐰̃, 𝐯) = 1(𝜙)(𝐯 + 𝐰̃) −1(𝜙)(𝐰̃) = 2,1(𝜙)(𝐰̃, 𝐯) +2,2(𝜙)(𝐰̃, 𝐯),

(2.7)

with

2,1(𝜙)(𝐰̃, 𝐯) =  (𝐯 + 𝐰̃ + 𝜙) − (𝐰̃ + 𝜙) − ′(𝐰̃ + 𝜙)𝐯,
2,2(𝜙)(𝐰̃, 𝐯) =  ′(𝐰̃ + 𝜙)𝐯 − ′(𝜙)𝐯.

Fix some constant 𝐾 > 0. Then, there exists a constant 𝐶 > 0 such that 
for 𝐯, 𝐰̃ ∈ ℂ with |𝐯|, |𝐰̃| ≤ 𝐾 we have the nonlinear bounds 
|1(𝜙)(𝐰̃)| ≤ 𝐶|𝐰̃|2, |2,1(𝜙)(𝐰̃, 𝐯)| ≤ 𝐶|𝐯|2, |2,2(𝜙)(𝐰̃, 𝐯)| ≤ 𝐶|𝐯||𝐰̃|.

(2.8)

For the local wellposedness of (2.4), we refer to Section 4.1.
We also abbreviate 0 = 0(𝜙), 1 = 1(𝜙), 2 = 2(𝜙), 2,1 =

2,1(𝜙) and 2,2 = 2,2(𝜙) whenever 𝜙 is the original periodic wave pro-
file.
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2.4.  Spectral assumptions on 𝜙

Consider the Bloch operators (𝜉) = 𝑒−𝑖𝜉⋅0𝑒𝑖𝜉⋅, 𝜉 ∈ [− 𝜋
𝑇 ,

𝜋
𝑇 ), posed 

on 𝐿2
per(0, 𝑇 ) with domain 𝐷((𝜉)) = 𝐻2

per(0, 𝑇 ). Since (𝜉) has compact 
resolvent, its spectrum consists of isolated eigenvalues of finite algebraic 
multiplicity only.

We introduce the standard diffusive spectral stability assumptions, 
cf. [10,11,16,21].

(D1) We have 𝜎𝐿2 (0) ⊂ {𝜆 ∈ ℂ ∶ Re(𝜆) < 0} ∪ {0};
(D2) There exists a constant 𝜃 > 0 such that for any 𝜉 ∈ [− 𝜋

𝑇 ,
𝜋
𝑇 ) we have 

Re 𝜎𝐿2
per(0,𝑇 )

((𝜉)) ≤ −𝜃𝜉2;
(D3) 0 is a simple eigenvalue of (0).

The spectrum of 0 on 𝐿2(ℝ) is the union of the spectra of the Bloch 
operators, i.e., 
𝜎𝐿2 (0) =

⋃

𝜉∈[− 𝜋
𝑇 , 𝜋𝑇 )

𝜎𝐿2
per(0,𝑇 )

((𝜉)).

The spectrum 𝜎𝐿2 (0) is purely essential, see e.g. [22,23]. We empha-
size that the periodic solutions of (1.1) established in [7] and [9] satisfy 
(H1) and (D1)-(D3). First, Assumption (D3) together with the transla-
tional invariance of (1.1) imply that the kernel of (0) is spanned by 𝜙′. 
Therefore, 0 is also a simple eigenvalue of the adjoint operator (0)∗. By 
Φ̃0 ∈ 𝐻2

per(0, 𝑇 ), we denote the corresponding eigenfunction satisfying 
⟨

Φ̃0, 𝜙
′⟩

𝐿2(0,𝑇 ) = 1.

For some sufficiently small 𝜉0 ∈ (0, 𝜋
𝑇 ), we summarize the following 

properties and refer to [11, Lemma 2.1] for their justifications and fur-
ther properties of 𝜎𝐿2 (0) and 𝜎𝐿2

per(0,𝑇 )
((𝜉)).

(P1) There exist 𝑇 -periodic and smooth eigenfunctions Φ𝜉 with Φ0 = 𝜙′

associated to the simple eigenvalue 𝜆𝑐 (𝜉) of (𝜉), i.e., (𝜉)Φ𝜉 =
𝜆𝑐 (𝜉)Φ𝜉 for 𝜉 ∈ (−𝜉0, 𝜉0).

(P2) There exist 𝑇 -periodic and smooth eigenfunctions Φ̃𝜉 associated 
to the simple eigenvalue 𝜆𝑐 (𝜉) of the adjoint operator (𝜉)∗, i.e., 
(𝜉)∗Φ̃𝜉 = 𝜆𝑐 (𝜉)Φ̃𝜉 for 𝜉 ∈ (−𝜉0, 𝜉0).

(P3) For any 𝑚 ∈ ℕ0, the expansions 
|

|

|

𝜆𝑐 (𝜉) − 𝑖𝑎𝜉 + 𝑑𝜉2||
|

≲ |𝜉|3, ‖

‖

‖

Φ𝜉 − 𝜙′
0
‖

‖

‖𝐻𝑚(0,𝑇 )
≲ |𝜉|,

hold for 𝜉 ∈ (−𝜉0, 𝜉0) with some coefficients 𝑎 ∈ ℝ and 𝑑 > 0.

We define the spectral projections onto span{Φ𝜉} as 

Π(𝜉)𝑔 = Φ𝜉⟨Φ̃𝜉 , 𝐠⟩𝐿2(0,𝑇 ), 𝐠 ∈ 𝐿2
per(0, 𝑇 ).

2.5.  Formulation of main result

We are now in the position to state our main result.
Theorem 2.1. Assume (H1) and (D1)-(D3). There exist constants 𝐶, 𝜀 > 0
such that for initial data 𝐰0 ∈ 𝐻6

per (0, 𝑇 ) and 𝐯0 ∈ 𝐻3(ℝ) with
𝐸0 ∶= ||𝐰0 + 𝐯0||𝐻6

per (0,𝑇 )⊕𝐻3(ℝ) < 𝜀

there exist a solution 
𝐮(𝑡) ∈ 𝐶([0,∞);𝐶2

ub(ℝ)) ∩ 𝐶1([0,∞);𝐶ub(ℝ)) (2.9)

of (2.1) with initial condition 𝐮(0) = 𝜙 + 𝐰0 + 𝐯0, some smooth function 𝛾 ∈
𝐶([0,∞),𝐻5(ℝ)) and a constant 𝜎∗ ∈ ℝ with the properties 
||𝐮(𝑡) − 𝜙||𝑊 2,∞ ≤ 𝐶𝐸0 (2.10)

and 

||𝐮(⋅, 𝑡) − 𝜙0(⋅ + 𝜎∗ + 𝛾(⋅, 𝑡))||𝐿∞ ≤ 𝐶(1 + 𝑡)−
3
4 𝐸0, (2.11)

for all 𝑡 ≥ 0. 

We briefly discuss the regularity assumptions in Theorem 2.1. The 
assumption 𝐯0 ∈ 𝐻3(ℝ) is justified by the fact that the regularity control 
on 𝐯 mainly proceeds along the lines of a standard 𝐿1 ∩𝐻𝑘-nonlinear 
stability analysis [11,24] using the nonlinear damping estimate estab-
lished in [25]. The reason for the regularity assumption on 𝐰0 is that 𝐯
is considered as a perturbation of the periodic solution 𝐰, which yields 
expressions in the modulated perturbation equations for 𝐯 where 𝐰 ap-
pears with two spatial derivatives. As we need to control 𝐯 in 𝐻3(ℝ), 
this leads to three more derivatives on 𝐰. Therefore, we need to bound 
the fifth derivative in 𝐿∞ which is covered by assuming 𝐰0 ∈ 𝐻6

per(0, 𝑇 ). 
Since we estimate the 𝐻1-norm of the residual in Section 5.2 in order to 
find an 𝐿∞-estimate (in the spirit of the embedding 𝐻1(ℝ) ↪ 𝐿∞(ℝ)), 
it suffices to demand 𝐰0 ∈ 𝐻5

per(0, 𝑇 ) and 𝐯0 ∈ 𝐻2(ℝ) when one only 
aims to establish pure 𝐿2-estimates on 𝐯 and henceforth obtain (2.11) 
in 𝐿∞(ℝ) with lower decay rate (1 + 𝑡)−

1
2 .

Comparing (2.11) to the associated estimate in [11], we loose an 
algebraic decay factor of 14  and one might ask whether we can compen-
sate this lack of decay by taking the assumption 𝐯0 ∈ 𝐿1(ℝ) ∩𝐻3(ℝ). 
However, this assumption does not improve the decay rates due to the 
coupling terms 2(𝐰̃, 𝐯) in (2.4) which cannot be controlled in 𝐿1(ℝ)
but only in 𝐿2(ℝ), cf. Remark 4.1.

Another interesting contrast to the result in [11] is the constant phase 
shift arising in the modulational estimate (2.11). The reason for this 
constant phase shift precisely originates from the fact the we not only 
enclose localized- but also co-periodic perturbation. This is reflected in 
designing the modulational approach to exploit the orbital stability re-
sult from [10].

Remark 2.2  (Uniqueness of solutions).  The solution 𝑢(𝑡) in Theorem 2.1 
is unique from the sum space

𝐶([0,∞);𝐻6
per(0, 𝑇 )⊕𝐻3(ℝ)) ∩ 𝐶1([0,∞);𝐻4

per(0, 𝑇 )⊕𝐻1(ℝ)).

The reason is as follows. Taking a solution 𝑢(𝑡) of (2.1) from the sum space, 
then it fulfills (2.1) pointwisely. Since the sum 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ) is direct, 
we can split 𝑢(𝑡) in a periodic part which satisfies (2.2) and a localized part 
which necessarily satisfies (2.3). These both parts are uniquely determined 
through Propositions 4.1 and 4.2. This implies that 𝑢(𝑡) is the unique solution 
of (2.1) from the sum space.

Concerning fully nonlocalized solutions of (2.1), local well-posedness of 
(2.1) with initial data from the modulation space 𝑀∞,1(ℝ) follows by stan-
dard semigroup theory, invoke e.g. [26, Theorem 1.2 in Section 6.1], using 
the observations that the principal linear part of the Eq. (2.1) generates a 𝐶0-
semigroup on 𝑀∞,1(ℝ) and that 𝑀∞,1(ℝ) admits the algebra property. For 
the latter, we refer to [27, Lemma 5.10]. As an immediate consequence, there 
exists a unique (mild) solution of (2.1) as element from 𝐶([0, 𝑡),𝑀∞,1(ℝ)), 
𝑡 > 0, whenever 𝐮0 ∈ 𝐶2

ub(ℝ) ↪ 𝑀∞,1(ℝ). In particular, this shows that the 
solution 𝐮(𝑡) of (2.1) with 𝐮(0) = 𝐰0 + 𝐯0 in Theorem 2.1 satisfying (2.9) is 
unique, see also [26, Corollary 1.3 in Section 6.1]. 

2.6.  Strategy of proof

The main task in the proof of Theorem 2.1 is to find a suitable way 
to modulate the perturbations allowing to close a nonlinear argument 
through iterative estimates on their Duhamel formulae. The construc-
tion of the perturbations 𝐰̂(𝑡) and 𝐯(𝑡) shows that 𝐰̂(𝑡) is independent of 
𝐯(𝑡). Therefore, we first modulate 𝐰̂(𝑡) by introducing a temporal mod-
ulation function 𝜎(𝑡). Precisely, we choose 𝐰̂(𝑥, 𝑡) = 𝐰(𝑥 − 𝜎(𝑡), 𝑡) − 𝜙(𝑥). 
Then, we do not only interpret 𝐯(𝑡) as perturbation of 𝐰(𝑡) but do the 
same for their modulated variants. This leads to the following inverse-
modulated perturbation

𝐯̂(𝑥, 𝑡) = 𝐮̂(𝑥, 𝑡) − 𝐰̂(𝑥, 𝑡) ∶= 𝐮(𝑥 − 𝜎(𝑡) − 𝛾(𝑡), 𝑡) − 𝐰̂(𝑥, 𝑡) − 𝜙(𝑥).

We arrive at a coupled system which allows to make an a-posteriori 
choice of the spatio-temporal phase modulation 𝛾 ∶ [0,∞) ×ℝ → ℝ2. We 
are then in the position to exploit the exponential decay of |𝜎𝑡(𝑡)| and 
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||𝐰̂(𝑡)||𝐿∞ . We also introduce the forward-modulated perturbation
𝐯̊(𝑥, 𝑡) = 𝐮̊(𝑥, 𝑡) − 𝐰̂(𝑥 + 𝜎(𝑡) + 𝛾(𝑥, 𝑡), 𝑡)

∶= 𝐮(𝑥, 𝑡) − 𝜙(𝑥 + 𝜎(𝑡) + 𝛾(𝑥, 𝑡), 𝑡) − 𝐰̂(𝑥 + 𝜎(𝑡) + 𝛾(𝑥, 𝑡), 𝑡)

which obeys a semilinear equation and can thus be used to control reg-
ularity in the nonlinear iteration. We control regularity by deriving a 
nonlinear damping estimate on 𝐯̊(𝑡) and subsequently relating 𝐯̊(𝑡) to ̂𝐯(𝑡). 
Finally, we show the following stability estimates: for suitable constants 
𝐶, 𝛿 > 0 and small initial conditions 
𝐸0 = 𝐸𝑝 + 𝐸𝑙 with 𝐸𝑝 = ||𝐰0||𝐻6

per
 and 𝐸𝑙 = ||𝐯0||𝐻3 ,

we find 
|𝜎𝑡(𝑡)|, ||𝐰̂(𝑡)||𝐻6

per(0,𝑇 )
≤ 𝐶𝑒−𝛿𝑡𝐸𝑝, |𝜎| ≤ 𝐶𝐸𝑝, 𝑡 ≥ 0, (2.12)

and 
||𝛾𝑥(𝑡)||𝐻4 , ||𝛾𝑡(𝑡)||𝐻3 , ||𝐯̊(𝑡)||𝐻3 ≤ 𝐶(1 + 𝑡)−

1
2 𝐸𝑙 , ||𝛾(𝑡)||𝐻5 ≤ 𝐶𝐸𝑙 , 𝑡 ≥ 0.

(2.13)

Using 𝐿∞-estimates on the propagators, we arrive at the refined 𝐿∞-
estimate 
||𝐯̊(𝑡)||𝐿∞ ≤ 𝐶(1 + 𝑡)−

3
4 𝐸𝑙 , 𝑡 ≥ 0. (2.14)

Applying (2.12) and (2.14), Theorem 2.1 follows from the observations 
||𝐮̊(𝑡)||𝐿∞ ≤ ||𝐰̂(⋅ + 𝜎(𝑡) + 𝛾(⋅, 𝑡), 𝑡)||𝐿∞ + ||𝐯̊(𝑡)||𝐿∞ , 𝑡 ≥ 0,

and 
||𝐮(𝑡) − 𝜙||𝑊 2,∞ ≤ 𝐶

(

||𝐮̊(𝑡)||𝑊 2,∞ + |𝜎(𝑡)| + ||𝛾(𝑡)||𝑊 2,∞
)

, 𝑡 ≥ 0,

and Sobolev embedding. The estimate (2.12) can be derived along the 
lines of the co-periodic stability analysis in [10] and therefore the re-
maining task of this paper is to prove (2.13) and (2.14).

Notation.. Let 𝑆 be a set, and let 𝐴,𝐵∶ 𝑆 → ℝ. Throughout the paper, 
the expression “𝐴(𝑥) ≲ 𝐵(𝑥) for 𝑥 ∈ 𝑆”, means that there exists a con-
stant 𝐶 > 0, independent of 𝑥, such that 𝐴(𝑥) ≤ 𝐶𝐵(𝑥) holds for all 𝑥 ∈ 𝑆.

3.  Linear estimates

We collect well-known facts about the semigroup generated by the 
linearization 0 on 𝐿2

per(0, 𝑇 ) and on 𝐿2(ℝ). Let 𝜒 ∶ [0,∞) → ℝ be a 
smooth temporal cut-off function satisfying 𝜒(𝑡) = 0 for 𝑡 ∈ [0, 1] and 
𝜒(𝑡) = 1 for 𝑡 ∈ [2,∞).

3.1.  Semigroup decomposition and estimates on 𝐿2
per(0, 𝑇 )

We write 
𝑆̃1(𝑡) = (𝑒0𝑡 − 𝜒(𝑡)Π(0))𝐠

and have the following linear estimate.
Proposition 3.1  ([10,28]). Assume (H1) and (D1)-(D3). There exist 
constants 𝛿0, 𝐶 > 0 such that the estimate 
||𝑆̃1(𝑡)𝐠||𝐻6

per(0,𝑇 )
≤ 𝐶𝑒−𝛿0𝑡||𝐠||𝐻6

per(0,𝑇 )

is valid for all 𝐠 ∈ 𝐻6
per(0, 𝑇 ). 

3.2.  Semigroup decomposition and estimates on 𝐿2(ℝ)

Assume (H1) and (D1)-(D3). Let 0 ≤ 𝜌 ≤ 1 be a smooth cut-off func-
tion with support in (−𝜉0, 𝜉0) and 𝜌 ≡ 1 on (− 𝜉0

2 ,
𝜉0
2 ). Using Floquet-Bloch 

theory and recalling (P1)-(P3), we decompose 
𝑒0𝑡𝐠 = 𝑆̃2(𝑡)𝐠 + 𝜙′𝑠𝑝(𝑡)𝐠,

with

𝑠𝑝(𝑡)𝐠(𝑥) =
𝜒(𝑡)
2𝜋 ∫ℝ ∫

𝜋
𝑇

− 𝜋
𝑇

𝜌(𝜉)𝑒𝑖𝜉(𝑥−𝑦)+𝜆𝑐 (𝜉)𝑡Φ̃∗
𝜉 (𝑦) 𝑑𝜉𝐠(𝑦) 𝑑𝑦,

𝑆𝑟(𝑡)𝐠(𝑥) =
𝜒(𝑡)
2𝜋 ∫ℝ ∫

𝜋
𝑇

− 𝜋
𝑇

𝜌(𝜉)𝑒𝑖𝜉(𝑥−𝑦)+𝜆𝑐 (𝜉)𝑡(Φ𝜉 (𝑥) − 𝜙′(𝑥))Φ̃∗
𝜉 (𝑦) 𝑑𝜉𝐠(𝑦) 𝑑𝑦,

𝑆𝑒(𝑡)𝐠 = 𝑒0𝑡𝐠 − 𝜙′𝑠𝑝(𝑡)𝐠 − 𝑆𝑟(𝑡)𝐠,

and 
𝑆̃2(𝑡)𝐠 = 𝑆𝑒(𝑡)𝐠 + 𝑆𝑟(𝑡)𝐠, 𝐠 ∈ 𝐿2(ℝ), (𝑥, 𝑡) ∈ ℝ × [0,∞),

as in [11,24,29]. The principal observations are that 𝑆𝑒(𝑡) decays expo-
nentially from 𝐻𝑘(ℝ) to 𝐻𝑘(ℝ), while 𝑠𝑝(𝑡) admits decay analogously to 
the heat semigroup and 𝑆𝑟(𝑡) decays with the additional rate (1 + 𝑡)−

1
2

compared 𝑠𝑝(𝑡) due to the term Φ𝜉 − 𝜙′
0 and (P3). We summarize the 

following linear estimates.
Proposition 3.2. Assume (H1) and (D1)-(D3). Let 𝑙, 𝑗 ∈ ℕ0 and 𝑘 ∈
{0, 1, 2}. Then there exists a constant 𝐶𝑙,𝑗 > 0 such that

||𝜕𝑙𝑥𝜕
𝑗
𝑡 𝑠𝑝(𝑡)𝜕

𝑘
𝑥𝐠||𝐿2 ≤ 𝐶𝑙,𝑗 (1 + 𝑡)−

𝑙+𝑗
2
||𝐠||𝐿2 , 𝐠 ∈ 𝐿2(ℝ)

||𝜕𝑙𝑥𝜕
𝑗
𝑡 𝑠𝑝(𝑡)𝐠||𝐿2 ≤ 𝐶𝑙,𝑗 (1 + 𝑡)−

1
4−

𝑙+𝑗
2
||𝐠||𝐿1 , 𝐠 ∈ 𝐿2(ℝ) ∩ 𝐿1(ℝ),

for all 𝑡 ≥ 0. Furthermore, there exists a constant 𝐶 > 0 such that 

||𝑆̃2(𝑡)𝐠||𝐿2 ≤ 𝐶(1 + 𝑡)−
3
4
||𝐠||𝐿1∩𝐿2 , 𝐠 ∈ 𝐿2(ℝ) ∩ 𝐿1(ℝ)

and 
||𝑆̃2(𝑡)𝐠||𝐿2 ≤ 𝐶(1 + 𝑡)−

1
2
||𝐠||𝐿2 , 𝐠 ∈ 𝐿2(ℝ),

for all 𝑡 ≥ 0. 
Proof.  The first two estimates are precisely shown in [11, Lemma 3.1]. 
The third one is a consequence of [11, Lemma 3.1 & Lemma 3.2]. Adapt-
ing the proof of the estimate 𝑆̃𝑐 (𝑡) in [11, Lemma 3.2], one immediately 
finds the last estimate. ∎
Proposition 3.3  (𝐿∞-estimates). Assume (H1) and (D1)-(D3). There 
exist constants 𝐶, 𝛿1 > 0 such that
||𝑆̃2(𝑡)𝐠||𝐿∞ ≤ 𝐶

(

𝑒−𝛿1𝑡||𝐠||𝐻1 + (1 + 𝑡)−1||𝐠||𝐿1∩𝐿2
)

, 𝐠 ∈ 𝐻1(ℝ) ∩ 𝐿1(ℝ),

||𝑆̃2(𝑡)𝐠||𝐿∞ ≤ 𝐶(1 + 𝑡)−
3
4
||𝐠||𝐻1 , 𝐠 ∈ 𝐻1(ℝ),

and

||𝜕𝑥𝑠𝑝(𝑡)𝐠||𝐿∞ ≤ 𝐶(1 + 𝑡)−
3
4
||𝐠||𝐿2 , 𝐠 ∈ 𝐿2(ℝ),

||𝜕𝑥𝑠𝑝(𝑡)𝐠||𝐿∞ ≤ 𝐶(1 + 𝑡)−1||𝐠||𝐿1 , 𝐠 ∈ 𝐿1(ℝ),

for all 𝑡 ≥ 0. 
Proof.  The last two estimates are shown in [11, Lemma 3.2]. The first 
two estimates are consequences of [11, Lemma 3.1] together with [24, 
Corollary 3.4] and [29, Proposition 3.1]. ∎

4.  Nonlinear iteration scheme

4.1.  Local existence of the solutions

Using standard semigroup theory, see e.g. [30] or [26], we establish
Proposition 4.1. Let 𝐰0 ∈ 𝐻6

per(0, 𝑇 ). There exist a maximal time 
𝑇max ∈ (0,∞] and a unique solution 𝐰 ∈ 𝐶([0, 𝑇max);𝐻6

per(0, 𝑇 )) ∩
𝐶1([0, 𝑇max);𝐻4

per(0, 𝑇 )) of (2.2) with 𝐰(0) = 𝜙 + 𝐰0. If 𝑇max < ∞, then 

lim sup
𝑡↑𝑇max

||𝐰(𝑡)||𝐻4
per(0,𝑇 )

= ∞. (4.1)

Having the solution 𝐰 at hand, the local existence of 𝐯 follows.
Proposition 4.2. Let 𝐰 and 𝑇max be as in Proposition 4.1. Let 𝐯0 ∈
𝐻3(ℝ). There exist a maximal time 𝜏max ≤ 𝑇max and a unique solution 
𝐯 ∈ 𝐶([0, 𝜏max);𝐻3(ℝ)) ∩ 𝐶1([0, 𝜏max);𝐻1(ℝ)) of (2.3) with 𝐯(0) = 𝐯0. If 
𝜏max < 𝑇max, then 
lim sup
𝑡↑𝜏max

||𝐯(𝑡)||𝐻1 = ∞. (4.2)
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Proof.  Due to the embedding 𝐻1
per(0, 𝑇 ) ↪ 𝐿∞(ℝ), we have that 

𝐯 ↦  (𝐯 + 𝐰) − (𝐰)

is locally Lipschitz-continuous as map from 𝐻1(ℝ) to 𝐻1(ℝ). Moreover, 


((

−𝛽 0
0 −𝛽

)

𝜕2𝑥 −
(

−𝛼 0
0 −𝛼

))

− 

generates a 𝐶0-semigroup on 𝐻1(ℝ) with domain 𝐻3(ℝ). Therefore, 
Proposition 4.2 follows from [26, Theorem 1.4 of Section 6.1]. ∎

4.2.  Inverse-modulated perturbations

We first modulate 𝐮(𝑡), that is, we consider 
𝐮(𝑥 − 𝜎(𝑡), 𝑡) − 𝜙(𝑥) = (𝐰(𝑥 − 𝜎(𝑡), 𝑡) − 𝜙(𝑥)) + 𝐯(𝑥 − 𝜎(𝑡), 𝑡)

for some 𝜎 ∶ [0,∞) → ℝ with 𝜎(0) = 0 to be defined a-posteriori. Then, 
we set 
𝐰̂(𝑥, 𝑡) = 𝐰(𝑥 − 𝜎(𝑡), 𝑡) − 𝜙(𝑥). (4.3)

Motivated by the fact that 𝐯(𝑡) is a perturbation of 𝐰(𝑡) = 𝐰̃(𝑡) + 𝜙, we 
subsequently define 
𝐯̂(𝑥, 𝑡) = 𝐮(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝐰̂(𝑥, 𝑡) − 𝜙(𝑥) (4.4)

for some 𝛾 ∶ ℝ × [0,∞) → ℝ with 𝛾(⋅, 0) = 0 to be defined a-posteriori. 
We find the modulated perturbation equations for 𝐰̂(𝑡), 
(𝜕𝑡 − 0)(𝐰̂ + 𝜙′𝜎) = 1(𝐰̂) − 𝜎𝑡𝐰̂𝑥

𝐰̂(0) = 𝐰0 − 𝜙.
(4.5)

and the one for 𝐯̂(𝑡), 
(𝜕𝑡 − 0)(𝐯̂ + 𝜙′𝛾 − 𝛾𝑥𝐰̂ − 𝛾𝑥𝐯̂) = 3(𝐰̂, 𝐯̂, 𝛾) − 𝜎𝑡𝐯̂𝑥 + (1 − 𝛾𝑥)2,2(𝐰̂, 𝐯̂)
+  (𝐰̂, 𝛾)𝐯̂(0) = 𝐯0,

(4.6)

where 
3(𝐰̂, 𝐯̂, 𝛾) = (𝐰̂, 𝐯̂, 𝛾) + 𝜕𝑥(𝐯̂, 𝛾) + 𝜕2𝑥(𝐯̂, 𝛾)

and

(𝐰̂, 𝐯̂, 𝛾) = (1 − 𝛾𝑥)2,1(𝐰̂, 𝐯̂),

(𝐯̂, 𝛾) = −𝛾𝑡𝐯̂ + 𝛽

(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐯̂ −
𝛾2𝑥

1 − 𝛾𝑥
𝜙′

)

,

(𝐯̂, 𝛾) = −𝛽
(

𝛾𝑥 +
𝛾𝑥

1 − 𝛾𝑥

)

𝐯̂,

 (𝐰̂, 𝛾) = −𝛾𝑥1(𝐰̂) − 𝜕𝑥

(

𝛾𝑡𝐰̂ − 𝛽
(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐰̂
))

− 𝜕2𝑥

(

𝛽
(

𝛾𝑥 +
𝛾𝑥

1 − 𝛾𝑥

)

𝐰̂
)

.

We delegate the derivation of (4.6) to Appendix A. The main observation 
is that in the nonlinearities of (4.6) any 𝐰̂- and 𝜎𝑡-term is paired with a 
𝛾𝑥, 𝐯̂ or 𝛾𝑡 contribution suggesting that we have sufficient control for an 
𝐿2-iteration scheme since we expect exponential decay for ||𝐰̂(𝑡)||𝐿∞  and 
|𝜎𝑡(𝑡)| from [10] while we control 𝛾𝑥(𝑡), 𝐯̂(𝑡) and 𝛾𝑡(𝑡) in 𝐻𝑘(ℝ). To this 
end, we establish the following straightforward bounds which follow by 
Hölder’s inequality and Sobolev embedding.
Lemma 4.1. Fix a constant 𝑐 > 0 such that ||𝑓 ||𝐿∞ ≤ 1

2  for all 𝑓 ∈ 𝐻1(ℝ)
with ||𝑓 ||𝐻1 ≤ 𝑐 due to Sobolev embedding. There exists a constant 𝐶 > 0
such that
𝐿1-bound: ||3(𝐰̂, 𝐯̂, 𝛾)||𝐿1 ≤ 𝐶

(

||𝐯̂||2
𝐿2

+ ||(𝛾𝑥, 𝛾𝑡)||𝐻2×𝐻1 (||𝐯̂||𝐻2 + ||𝛾𝑥||𝐿2 )
)

,

𝐿2-bound: ||3(𝐰̂, 𝐯̂, 𝛾)||𝐿2 ≤ 𝐶
(

||𝐯̂||2
𝐻1 + ||(𝛾𝑥, 𝛾𝑡)||𝐻2×𝐻1 (||𝐯̂||𝐻2 + ||𝛾𝑥||𝐿2 )

)

,

𝐻1-bound: ||3(𝐰̂, 𝐯̂, 𝛾)||𝐻1 ≤ 𝐶
(

||𝐯̂||2
𝐻1 + ||(𝛾𝑥, 𝛾𝑡)||𝐻3×𝐻2 (||𝐯̂||𝐻3 + ||𝛾𝑥||𝐻1 )

)

,

and

𝐿2-bounds: ||𝜎𝑡𝐯̂𝑥||𝐿2 ≤ 𝐶|𝜎𝑡||𝐯̂||𝐻1 , ||(1 − 𝛾𝑥)2,2(𝐰̂, 𝐯̂)||𝐿2

≤ 𝐶||𝐯̂||𝐿2 ||𝐰̂||𝐻1
per(0,𝑇 )

,

|| (𝐰̂, 𝛾)||𝐿2 ≤ 𝐶||(𝛾𝑥, 𝛾𝑡)||𝐻2×𝐻1 ||𝐰̂||𝐻3
per(0,𝑇 )

,

𝐻1-bounds: ||𝜎𝑡𝐯̂𝑥||𝐻1 ≤ 𝐶|𝜎𝑡||𝐯̂||𝐻2 , ||(1 − 𝛾𝑥)2,2(𝐰̂, 𝐯̂)||𝐻1

≤ 𝐶||𝐯̂||𝐻1 ||𝐰̂||𝐻2
per(0,𝑇 )

,

|| (𝐰̂, 𝛾)||𝐻1 ≤ 𝐶||(𝛾𝑥, 𝛾𝑡)||𝐻3×𝐻2 ||𝐰̂||𝐻4
per(0,𝑇 )

,

hold for all 𝐯̂ ∈ 𝐻3(ℝ), 𝐰̂ ∈ 𝐻4
per(0, 𝑇 ), (𝛾𝑡, 𝛾𝑥) ∈ 𝐻2(ℝ) ×𝐻3(ℝ) and 𝜎𝑡 ∈

ℝ provided 
||𝐰̂||𝐻4

per(0,𝑇 )
, ||𝐯̂||𝐻1 , ||𝛾𝑥||𝐻3 ≤ 𝑐.

4.3.  Modulation in the purely co-periodic setting

The forward-modulated perturbation 𝐰̊(𝑥, 𝑡) = 𝐰(𝑥, 𝑡) − 𝜙(𝑥 + 𝜎(𝑡))
fulfills the semilinear system 
(𝜕𝑡 − 0)(𝐰̊(𝑡) − 𝜙′𝜎) = 4(𝐰̊(𝑡), 𝜎(𝑡)) + (𝜙′(⋅ + 𝜎(𝑡)) − 𝜙′)𝜎𝑡(𝑡)

with 
4(𝐰̊(𝑡), 𝜎(𝑡)) = 1(𝜙(⋅ + 𝜎(𝑡)))(𝐰̊(𝑡)) − ( ′(𝜙) − ′(𝜙(⋅ + 𝜎(𝑡))))𝐰̊(𝑡).

Introducing the temporal modulation function

𝜎(𝑡) =𝜒(𝑡)Π(0)𝐰̃0 + ∫

𝑡

0
𝜒(𝑡 − 𝑠)Π(0)

(

4(𝐰̊(𝑠), 𝜎(𝑠))

+(𝜙′(⋅ + 𝜎(𝑠)) − 𝜙′)𝜎𝑠(𝑠)
)

𝑑𝑠 (4.7)

gives rise to the Duhamel formula 

𝐰̊(𝑡) = 𝑆̃1(𝑡)𝐰̃0 + ∫

𝑡

0
𝑆̃1(𝑡 − 𝑠)

(

4(𝐰̊(𝑠), 𝜎(𝑠)) + (𝜙′(⋅ + 𝜎(𝑠)) − 𝜙′)𝜎𝑠(𝑠)
)

𝑑𝑠.

(4.8)

By a standard fixed point argument, we have local existence of 𝜎.
Proposition 4.3. Let 𝐰 and 𝑇max be as in Proposition 4.1. There exists 
a maximal time 𝑡max,𝜎 ≤ 𝑇max such that (4.7) with 𝐰̊(𝑥, 𝑡) = 𝐰(𝑥, 𝑡) − 𝜙(𝑥 +
𝜎(𝑡)) has a unique solution 

𝜎 ∈ 𝐶1([0, 𝑡max,𝜎 );ℝ) with 𝜎(0) = 0 and |(𝜎(𝑡), 𝜎𝑡(𝑡))| < 1
2
, 𝑡 ∈ [0, 𝑡max,𝜎 ).

If 𝑡max,𝜎 < 𝜏max, then lim sup𝑡↑𝑡max,𝜎 |(𝜎(𝑡), 𝜎𝑡(𝑡))| ≥
1
2 . 

Furthermore, using the mean value theorem, the following bounds hold.
Lemma 4.2. Let 𝐾 > 0. There exists a constant 𝐶 > 0 such that
||4(𝐰̊, 𝜎)||𝐻6

per(0,𝑇 )
≤ 𝐶||𝐰̊||𝐻6

per(0,𝑇 )

(

||𝐰̊||𝐻6
per(0,𝑇 )

+ |𝜎|
)

,

||(𝜙′(⋅ + 𝜎) − 𝜙′)𝜎𝑡||𝐻6
per(0,𝑇 )

≤ 𝐶|𝜎||𝜎𝑡|,

provided 
|𝜎| + |𝜎𝑡| + ||𝐰̊||𝐻6

per(0,𝑇 )
≤ 𝐾.

4.4.  Choice of the spatio-temporal phase modulation

We have the Duhamel formula for 𝐯̂(𝑡),

𝐯̂(𝑡) =𝑒0𝑡𝐯0 − 𝜙′𝛾(𝑡) + ∫

𝑡

0
𝑒0(𝑡−𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠))

− 𝜎𝑠(𝑠)𝐯̂𝑥(𝑠) + (1 − 𝛾𝑥(𝑠))2,2(𝐯̂(𝑠), 𝐰̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠

+ 𝛾𝑥(𝑡)𝐰̂(𝑡) + 𝛾𝑥(𝑡)𝐯̂(𝑡),

under the condition that 𝛾(0) = 0. We make the implicit choice 

𝛾(𝑡) =𝑠𝑝(𝑡)𝐯0 + ∫

𝑡

0
𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠)) − 𝜎𝑠(𝑠)𝐯̂𝑥(𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐯̂(𝑠), 𝐰̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠
(4.9)
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which reduces the Duhamel formula for 𝐯̂(𝑡) to 
𝐯̂(𝑡) =𝑆̃2(𝑡)𝐯0 + 𝛾𝑥(𝑡)𝐰̂(𝑡) + 𝛾𝑥(𝑡)𝐯̂(𝑡)

+ ∫

𝑡

0
𝑆̃2(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠)) − 𝜎𝑠(𝑠)𝐯̂𝑥(𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐯̂(𝑠), 𝐰̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠.

(4.10)

Setting 𝑡 = 0 in (4.9) and using that 𝑠𝑝(0) = 0, one indeed verifies that 
𝛾(0) = 0.

Proposition 4.4. Let 𝐰 and 𝑇max as in Proposition 4.1, 𝐯, 𝐯0 and 𝜏max
as in Proposition 4.2 and 𝜎 and 𝑡max,𝜎 as in Proposition 4.3. Further-
more, let 0 < 𝑐 < 1

2  be a constant such that ||𝑓 ||𝐿∞ ≤ 1
𝑐 ||𝑓 ||𝐻1  for all 

𝑓 ∈ 𝐻1(ℝ). There exists a maximal time 𝑡max,𝛾 ≤ min{𝜏max, 𝑡max,𝜎} such that 
(4.9) with 𝐰̂(𝑡) = 𝐰(⋅ − 𝜎(𝑡)) − 𝜙 and 𝐯̂(𝑡) = 𝐮(⋅ − 𝜎(𝑡) − 𝛾(⋅, 𝑡), 𝑡) − 𝐰̂(𝑡) − 𝜙
has a unique solution 
𝛾 ∈ 𝐶([0, 𝑡max,𝛾 );𝐻5(ℝ)) ∩ 𝐶1([0, 𝑡max,𝛾 );𝐻3(ℝ)) with 𝛾(0) = 0

satisfying 
||(𝛾(𝑡), 𝛾𝑡(𝑡))||𝐻5×𝐻3 < 𝑐

2
, 𝑡 ∈ [0, 𝑡max,𝛾 ). (4.11)

If 𝑡max,𝛾 < min{𝜏max, 𝑡max,𝜎}, then 

lim sup
𝑡↑𝑡max,𝛾

||𝛾(𝑡), 𝛾𝑡(𝑡)||𝐻5×𝐻3 ≥ 𝑐
2
. (4.12)

Proof.  See Appendix C. ∎

Corollary 4.1. Let 𝐰 and 𝑇max as in Proposition 4.1 and 𝐯, 𝐯0 and 𝜏max as 
in Proposition 4.2. Let 𝛾, 𝜎 and 𝑡max,𝜎 , 𝑡max,𝛾 as in Propositions 4.3 and 4.4. 
Then, the inverse-modulated perturbation 𝐯̂ ∈ 𝐶([0, 𝑡max,2);𝐿2(ℝ)) defined 
by (4.4) satisfies (4.10) with 𝐰̂(𝑡) = 𝐰(⋅ − 𝜎(𝑡)) − 𝜙 and 𝐯̂(𝑡) ∈ 𝐻3(ℝ) for 
all 𝑡 ∈ [0, 𝑡max,𝛾 ). 
Proof.  Let 𝑡 ∈ [0, 𝑡max,𝛾 ). We observe
𝐯̂(𝑥, 𝑡) = 𝐯(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) + 𝐰(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝐰̂(𝑥, 𝑡) − 𝜙(𝑥)

= 𝐯(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) + 𝐰(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝐰(𝑥 − 𝜎(𝑡), 𝑡)

yielding on the one hand, with 𝐰(𝑡) ∈ 𝐻5
per(0, 𝑇 ) ↪ 𝑊 4,∞(ℝ) and the 

mean value theorem, 
||𝐰(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝐰(𝑥 − 𝜎(𝑡), 𝑡)||𝐻3 ≲ ||𝛾(𝑡)||𝐻3 .

On the other hand, since 𝛾(𝑡) ∈ 𝐻4 ↪ 𝑊 3,∞, sup𝑠∈[0,𝑡] ||𝛾𝑥(𝑠)||𝐿∞ ≤ 1
2  and 

𝐯(𝑡) ∈ 𝐻3(ℝ), we conclude 
𝐯̂(𝑡) ∈ 𝐻3(ℝ)

with the help of the chain and substitution rule. ∎

Remark 4.1. We can now provide some intuition where the decay (1 +
𝑡)−

1
2  for 𝐯 and 𝛾𝑥 in (2.13) originates from. For this purpose, assume that 

|𝜎𝑡| admits exponential decay while ||𝐯̂||𝐿2 ≈ ||𝐯̂𝑥||𝐿2  decays at rate (1 +
𝑡)−𝜅 with 𝜅 ≥ 1

2 . Considering the term ||𝜎𝑡𝐯̂𝑥||𝐿2 ≤ ||𝐯̂𝑥||𝐿2 |𝜎𝑡| in (4.9) and 
(4.10), this yields the integral 

∫

𝑡

0
(1 + 𝑡 − 𝑠)−

1
2 (1 + 𝑠)−𝜅𝑒−𝑠 𝑑𝑠 ≲ (1 + 𝑡)−

1
2 .

By noting that 𝜎𝑡𝐯̂𝑥 cannot be estimated in any 𝐿𝑝-norm with 1 ≤ 𝑝 < 2 due 
to the lack of localization of 𝐯̂, we can only close an iterative argument with 
𝜅 = 1

2  at best. This shows that even with the additional assumption 𝐯0 ∈
𝐿1(ℝ), the decay rate on 𝐯̂ cannot be improved. 

4.5.  Forward-modulation of 𝐯 and nonlinear damping estimates

We wish to control ||𝐯̂||𝐻3  in terms of ||𝐯̂||𝐿2 , 𝛾𝑡, 𝛾𝑥, 𝜎𝑡 and 𝐰̂
in the nonlinear iteration argument in order to control regularity, cf. 

Lemma 4.1. For this purpose, we introduce the forward-modulated per-
turbation 𝐯̊, that is, 
𝐯̊(𝑥, 𝑡) = 𝐮(𝑥, 𝑡) − 𝐰̂(𝑥 + 𝜎(𝑡) + 𝛾(𝑥, 𝑡), 𝑡) − 𝜙(𝑥 + 𝜎(𝑡) + 𝛾(𝑥, 𝑡))

= 𝐮(𝑥, 𝑡) − 𝐰(𝑥 + 𝛾(𝑥, 𝑡), 𝑡)

= 𝐯(𝑥, 𝑡) + 𝐰(𝑥, 𝑡) − 𝐰(𝑥 + 𝛾(𝑥, 𝑡), 𝑡),

(4.13)

which satisfies the semilinear system, cf. Appendix B, 
(𝜕𝑡 − 0(𝜙̊))𝐯̊(𝑡) = 2(𝜙̊)(𝐰̃(⋅ + 𝛾(⋅, 𝑡), 𝑡), 𝐯̊(𝑡)) +5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡)) (4.14)

with

0(𝜙̊) =
(

−𝛽𝜕2𝑥 − 𝛼 + 3𝜙̊2
1 + 𝜙̊2

2 2𝜙̊1𝜙̊2
2𝜙̊1𝜙̊2 − 𝛽𝜕2𝑥 − 𝛼 + 𝜙̊2

1 + 3𝜙̊2
2

)

− , 𝜙̊(𝑥, 𝑡) = 𝜙(𝑥 + 𝛾(𝑥, 𝑡)),

and

5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))
= −𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑡(𝑡) − 𝜙′(⋅ + 𝛾(⋅, 𝑡))𝛾𝑡(𝑡)

− 𝛽
(

𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑥𝑥(𝑡) + 𝐰̃𝑥𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2)

+ 𝜙′(⋅ + 𝛾(⋅, 𝑡))𝛾𝑥𝑥(𝑡) + 𝜙′′(⋅ + 𝛾(⋅, 𝑡))(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2)
)

.

Note that 2(𝜙̊) is as defined in (2.7) and 𝐰̃(𝑡) = 𝐰(𝑡) − 𝜙 is the umodu-
lated perturbation of 𝐰(𝑡). We setup the local existence for the forward-
modulated perturbation 𝐯̊(𝑡) which is a straightforward consequence of 
Propositions 4.1, 4.3 and 4.4.
Corollary 4.2. Let 𝐰 and 𝑇max as in Proposition 4.1 and 𝐯, and 
𝜏max as in (4.2). Let 𝛾, 𝜎 and 𝑡max,𝜎 , 𝑡max,𝛾 as in Propositions 4.3 and 
4.4. Then, the forward-modulated perturbation 𝐯̊ ∈ 𝐶([0, 𝑡max,𝛾 );𝐻3(ℝ)) ∩
𝐶1([0, 𝑡max,𝛾 );𝐻1(ℝ)) defined by (4.13) satisfies (4.14) with 𝐰̃(𝑡) = 𝐰(𝑡) −
𝜙. 
Lemma 4.3. Let 𝑗 = 1, 2, 3. Fix 𝐾 > 0. There exists some 𝐶 > 0 such that 
for 𝑡 ∈ [0, 𝑡max,𝛾 ), we obtain

||𝜕𝑗𝑥5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))||𝐿2 ≤ 𝐶(||𝛾𝑥(𝑡)||𝐻𝑗+1 + ||𝛾𝑡(𝑡)||𝐻𝑗 ),

||𝜕𝑗𝑥2(𝜙̊)(𝐰̃(⋅ + 𝛾(⋅, 𝑡), 𝑡), 𝐯̊(𝑡))||𝐿2 ≤ 𝐶||𝐯̊(𝑡)||𝐻𝑗

provided 

sup
0≤𝑠≤𝑡

(

||𝐰̃(𝑠)||𝐻6
per(0,𝑇 )

+ ||𝐯̊(𝑠)||𝐻3 + ||(𝛾𝑥(𝑠), 𝛾𝑠(𝑠))||𝐻4×𝐻3

)

≤ 𝐾.

Proof.  We bound
||𝜕𝑗𝑥(𝛽

(

𝐰̃𝑥𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2) + 𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑥𝑥(𝑡)
)

+ 𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑡(𝑡))||𝐿2

≲ ||𝐰̃(𝑡)||𝐻𝑗+3
per (0,𝑇 )

||𝛾𝑥(𝑡)||𝐻𝑗+1 + ||𝐰̃(𝑡)||𝐻𝑗+2
per (0,𝑇 )

||𝛾𝑡(𝑡)||𝐻𝑗 ,

𝑗 = 1, 2, 3, where we used the Sobolev embedding 𝐻𝑘
per(0, 𝑇 ) ↪

𝑊 𝑘−1,∞(ℝ). Similarly, one proceeds for terms involving 𝜙 instead of 𝐰̃. 
Also it is straightforward to check the bound for 2. ∎

Proceeding as in [11,16,25], we are now in the position to derive a 
nonlinear damping estimate for 𝐯̊.
Proposition 4.5. Let 𝛾, 𝜎 and 𝑡max,𝜎 , 𝑡max,𝛾 as in Propositions 4.3 and 4.4. 
Let 𝐰 and 𝑇max as in Proposition 4.1. Take 𝐯, 𝐯0 and 𝜏max as in Proposi-
tion 4.2. Define 𝐯̊ through (4.13) and set 𝐰̃(𝑡) = 𝐰(𝑡) − 𝜙. Fix 𝐾 > 0. There 
exists a constant 𝐶 > 0 such that 
||𝐯̊(𝑡)||2

𝐻3 ≤ 𝐶
(

𝑒−𝑡||𝐯0||2𝐻3 + ||𝐯̊(𝑡)||2
𝐿2

+ ∫

𝑡

0
𝑒−(𝑡−𝑠)

(

||𝐯̊(𝑠)||2
𝐿2 + ||𝛾𝑥(𝑠)||2𝐻4 + ||𝛾𝑡(𝑠)||2𝐻3

)

𝑑𝑠
)

(4.15)

for all 𝑡 ∈ [0, 𝑡max,𝛾 ) provided 

sup
0≤𝑠≤𝑡

(

||𝐰̃(𝑠)||𝐻6
per(0,𝑇 )

+ ||𝐯̊(𝑠)||𝐻3 + ||(𝛾𝑥(𝑠), 𝛾𝑠(𝑠))||𝐻3×𝐻2

)

≤ 𝐾. (4.16)
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Proof.  First we use that 𝐯0 ∈ 𝐻5(ℝ) gives a solution 
𝐯 ∈ 𝐶([0, 𝜏max));𝐻5(ℝ)) ∩ 𝐶1([0, 𝜏max);𝐻3(ℝ)) of (2.4) arguing anal-
ogously as in Proposition 4.2. Since 𝐻5(ℝ) is dense in 𝐻3(ℝ) an 
approximation argument as in [30, Proposition 4.3.7] yields the result 
for 𝐯0 ∈ 𝐻3(ℝ).

Fix 𝐾 > 0. Let 𝑡 ∈ [0, 𝑡max,𝛾 ) such that (4.16) holds. The forward-
modulated perturbation 𝐯̊ is designed such that the principal part in 
(4.14) is given by 𝜕𝑡 − 0(𝜙̊). This is the reason why we choose the same 
energies as introduced in [11,16] and [25], that is, 

𝐸𝑗 (𝑡) = ||𝜕𝑗𝑥𝐯̊(𝑡)||
2
𝐿2 −

1
2𝛽

⟨𝑀(𝜙̊)𝜕𝑗−1𝑥 𝐯̊, 𝜕𝑗−1𝑥 𝐯̊⟩, 𝑗 = 1, 2, 3,

with 

𝑀(𝜙̊) = 2
(

−2𝜙̊𝑟𝜙̊𝑖 𝜙̊2
𝑟 − 𝜙̊2

𝑖
𝜙̊2
𝑟 − 𝜙̊2

𝑖 2𝜙̊𝑟𝜙̊𝑖

)

.

We compute, see [25] and [16], 
𝜕𝑡𝐸𝑗 (𝑡) = −2𝐸𝑗 (𝑡) + 𝑅1(𝑡) + 𝑅2(𝑡)

with 
|𝑅1(𝑡)| ≤

2
3
𝐸𝑗 (𝑡) + 𝐶1||𝐯̊(𝑡)||2𝐿2

for some 𝑡-independent constant 𝐶1 > 0 and
𝑅2(𝑡) =2Re ⟨𝜕𝑗𝑥5(𝐰̂(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡)), 𝜕𝑗𝑥𝐯̊(𝑡)⟩𝐿2

− 1
𝛽
Re ⟨𝑀(𝜙̊)𝜕𝑗−1𝑥 5(𝐰̂(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡)), 𝜕𝑗−1𝑥 𝐯̊(𝑡)⟩𝐿2 .

By Lemma 4.3, using (4.16), interpolation and Young’s inequality, there 
exists a 𝑡-independent constant 𝐶2 > 0 such that 

|𝑅2(𝑡)| ≤
1
3
𝐸𝑗 (𝑡) + 𝐶2

(

||𝐯̊(𝑡)||2
𝐿2 + ||𝛾𝑥(𝑡)||2𝐻𝑗+1 + ||𝛾𝑡(𝑡)||2𝐻𝑗

)

.

We conclude 
𝜕𝑡𝐸𝑗 (𝑡) ≤ −𝐸𝑗 (𝑡) + 𝐶3

(

||𝐯̊(𝑡)||2
𝐿2 + ||𝛾𝑥(𝑡)||2𝐻𝑗+1 + ||𝛾𝑡(𝑡)||2𝐻𝑗

)

for some 𝑡-independent constant 𝐶3 > 0 and 𝑗 = 1, 2, 3. Integrating the 
latter and using, for some 𝑡-independent constant 𝐶4 > 0, 
||𝜕𝑥𝐯̊(𝑡)||2𝐿2 ≤ 𝐸1(𝑡) + 𝐶4||𝐯̊(𝑡)||2𝐿2

and 
||𝜕𝑗𝑥𝐯̊(𝑡)||

2
𝐿2 ≤ 2𝐸𝑗 (𝑡) + 𝐶4

(

||𝐯̊(𝑡)||2
𝐿2 + 𝐸𝑗−1(𝑡)

)

,

𝑗 = 2, 3, which follow by interpolation and Young’s inequality, we arrive 
at (4.15). ∎
Lemma 4.4. Fix 𝐾 > 0. Let the assumptions be as in the previous corollary. 
There exists 𝐶 > 0 such that for all 𝑡 ∈ [0, 𝑡max,𝛾 ) it holds 
||𝐯̊(𝑡)||𝐿2 ≤ 𝐶

(

||𝐯̂(𝑡)||𝐿2 + ||𝛾𝑥(𝑡)||𝐿2
)

, (4.17)

||𝐯̂(𝑡)||𝐻3 ≤ 𝐶
(

||𝐯̊(𝑡)||𝐻3 + ||𝛾𝑥(𝑡)||𝐻3
)

(4.18)

and 
||𝐯̊(𝑡)||𝐿∞ ≤ 𝐶

(

||𝐯̂(𝑡)||𝐿∞ + ||𝛾𝑥(𝑡)||𝐿∞
)

, (4.19)

provided 

sup
0≤𝑠≤𝑡

(

||𝐰̂(𝑠)||𝐻5
per

+ ||𝛾(𝑠)||𝐻4 + |𝜎(𝑠)|
)

≤ 𝐾 and sup
0≤𝑠≤𝑡

||𝛾𝑥(𝑠)||𝐿∞ ≤ 1
2
.

Proof.  Let 𝑡 ∈ [0, 𝑡max,𝛾 ). We write 𝐴𝑡(𝑥) = 𝑥 − 𝛾(𝑥, 𝑡) − 𝜎(𝑡) and 𝐵𝑡(𝑥) =
𝑥 + 𝛾(𝑥, 𝑡) + 𝜎(𝑡) . By the inverse function theorem and the fact that 
||𝛾𝑥(𝑡)||𝐿∞ ≤ 1

2 , it is easy to check that 𝐴𝑡 is invertible with 

𝑥 = 𝐴𝑡(𝐴−1
𝑡 (𝑥)) = 𝐴−1

𝑡 (𝑥) − 𝛾(𝐴−1
𝑡 (𝑥), 𝑡) − 𝜎(𝑡)

and therefore 
𝐴−1
𝑡 (𝑥) − 𝐵𝑡(𝑥) = 𝛾(𝐴−1

𝑡 (𝑥), 𝑡) − 𝛾(𝑥, 𝑡).

We also compute 

𝜕𝑥(𝐴−1
𝑡 (𝑥)) = 1

1 − 𝛾𝑥(𝐴−1
𝑡 (𝑥), 𝑡)

, 𝜕2𝑥(𝐴
−1
𝑡 (𝑥)) =

𝛾𝑥𝑥(𝐴−1
𝑡 (𝑥), 𝑡)

(1 − 𝛾𝑥(𝐴−1
𝑡 (𝑥), 𝑡))3

,

𝜕3𝑥(𝐴
−1
𝑡 (𝑥)) =

𝛾𝑥𝑥𝑥(𝐴−1
𝑡 (𝑥), 𝑡)

(1 − 𝛾𝑥(𝐴−1
𝑡 (𝑥), 𝑡))4

+
3𝛾𝑥𝑥(𝐴−1

𝑡 (𝑥), 𝑡)2

(1 − 𝛾𝑥(𝐴−1
𝑡 (𝑥), 𝑡))5

.

(4.20)

Using 

𝛾(𝐴−1
𝑡 (𝑥), 𝑡) − 𝛾(𝑥, 𝑡) = (𝐴−1

𝑡 (𝑥) − 𝑥)∫

1

0
𝛾𝑥(𝑥 + 𝜃(𝐴−1

𝑡 (𝑥) − 𝑥), 𝑡) 𝑑𝜃, (4.21)

(4.20) and ||𝛾𝑥(𝑡)||𝐿∞ ≤ 1
2 , we can estimate 

||𝐴−1
𝑡 − 𝐵𝑡||𝐿2 ≲ ||𝛾𝑥||𝐿2 , ||𝐴−1

𝑡 − 𝐵𝑡||𝐻 𝑙 ≲ ||𝛾𝑥||𝐻 𝑙 , (4.22)

for 𝑙 = 1, 2, 3. This is shown in [31,  Lemma 2.7] and [25, Corollary 5.3]. 
It additionally follows 
||𝐯̂(𝐴−1

𝑡 (⋅), 𝑡) − 𝐯̂(⋅, 𝑡)||𝐻3 ≲ ||𝐯̂(𝑡)||𝐻3 , ||𝐯̊(𝐴𝑡(⋅), 𝑡) − 𝐯̊(⋅, 𝑡)||𝐿2 ≲ ||𝐯̊(𝑡)||𝐿2

as for [16, (3.24) & (3.25)]. We observe 
𝐯̂(𝐴−1

𝑡 (𝑥), 𝑡) − 𝐯̊(𝑥, 𝑡) = (𝐰̂(𝐵𝑡(𝑥), 𝑡) − 𝐰̂(𝐴−1
𝑡 (𝑥), 𝑡)) + (𝜙(𝐴−1

𝑡 (𝑥)) − 𝜙(𝐵𝑡(𝑥)))

and estimate with (4.22) and the mean value theorem, 
||𝐯̂(𝐴−1

𝑡 (⋅), 𝑡) − 𝐯̊(⋅, 𝑡)||𝐻3 ≲ ||𝐴−1
𝑡 − 𝐵𝑡||𝐻3 ≲ ||𝛾𝑥||𝐻3 .

On the other hand,
𝐯̂(𝑥, 𝑡) − 𝐯̊(𝐴𝑡(𝑥), 𝑡) = −𝐰̂(𝑥, 𝑡) + 𝐰̂(𝑥 + 𝛾(𝐴𝑡(𝑥), 𝑡) − 𝛾(𝑥, 𝑡), 𝑡)

+ (−𝜙(𝑥) + 𝜙(𝑥 + 𝛾(𝐴𝑡(𝑥), 𝑡) − 𝛾(𝑥, 𝑡)))

and by and the mean value theorem and with 
||𝛾(𝐴𝑡(⋅), 𝑡) − 𝛾(⋅, 𝑡)||𝐿2 ≲ ||𝛾𝑥(𝑡)||𝐿2 ,

which follows by (4.21), we obtain 
||𝐯̂(⋅, 𝑡) − 𝐯̊(𝐴𝑡(⋅), 𝑡)||𝐿2 ≲ ||𝛾𝑥(𝑡)||𝐿2 .

Putting everything together, we arrive at (4.17) and (4.18). The relation 
(4.19) follows analogously. ∎

5.  Nonlinear stability analysis

5.1.  The nonlinear iteration

We first establish nonlinear stability of 𝐰.
Theorem 5.1. Let 𝐰0 ∈ 𝐻6

per(0, 𝑇 ). Let 𝐰, 𝑇max be as in Proposition 4.1 
and let 𝜎 and 𝑡max,𝜎 as in Proposition 4.3. There exist 𝐶, 𝛿2, 𝜀𝑝 > 0 such that 
for 
𝐸𝑝 ∶= ||𝐰0||𝐻6

per(0,𝑇 )
< 𝜀𝑝,

the functions 𝐰(𝑡) and 𝜎(𝑡) exist globally, i.e. 𝑡max,𝜎 = 𝑇max = ∞, and
|𝜎(𝑡)|,||𝐰(𝑡) − 𝜙||𝐻6

per(0,𝑇 )
≤ 𝐶𝐸𝑝, |𝜎𝑡(𝑡)|, ||𝐰̂(𝑡)||𝐻6

per(0,𝑇 )
, ||𝐰̊(𝑡)

||𝐻6
per(0,𝑇 )

≤ 𝐶𝑒−𝛿2𝑡𝐸𝑝,

for all 𝑡 ≥ 0. 
Proof.  The estimates on |𝜎(𝑡)|, |𝜎𝑡(𝑡)| and ||𝐰̊(𝑡)||𝐻6

per(0,𝑇 )
 follow by a 

standard procedure, see [23] and [10], taking Proposition 3.1 and 
Lemma 4.2 for (4.8) into account. We observe that

||𝐰̂(𝑡)||𝐻6
per(0,𝑇 )

= ||𝐰̂(⋅ + 𝜎(𝑡), 𝑡)||𝐻6
per(0,𝑇 )

= ||𝐰̊(𝑡)||𝐻6
per(0,𝑇 )

for all 𝑡 ≥ 0, to finish the proof. ∎
Let 𝐰0 ∈ 𝐻6

per(0, 𝑇 ) and 𝜀𝑝 as in Theorem 5.1. We set 𝐸𝑙 = ||𝐯0||𝐻3

and choose 0 < 𝑐 < 1
2  as in Proposition 4.4. Under the assumption 𝐸𝑝 <

𝜀𝑝, we consider the template function 𝜂 ∶ [0, 𝑡max,𝛾 ) → ℝ given by 

𝜂(𝑡) = sup
0≤𝑠≤𝑡

(

(1 + 𝑠)
1
2
(

||𝐯̊(𝑠)||𝐻3(ℝ) + ||(𝛾𝑥(𝑠), 𝛾𝑠(𝑠))||𝐻4×𝐻3
)

+ ||𝛾(𝑡)||𝐿2

)
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and show that there exists a constant 𝐶 ≥ 1 independent of 𝐸𝑙 and 𝐸𝑝
such that 
𝜂(𝑡) ≤ 𝐶(𝐸𝑙 + 𝜂(𝑡)2 + 𝜂(𝑡)𝐸𝑝) (5.1)

for every 𝑡 ∈ [0, 𝑡max,𝛾 ) with 𝜂(𝑡) < 𝑐
2 . By Proposition 4.4, we have the 

property: if 𝑡max,𝛾 < ∞, then 
lim sup
𝑡↑𝑡max,𝛾

𝜂(𝑡) ≥ 𝑐
2
. (5.2)

Furthermore, 𝜂 is continuous by Proposition 4.4 and Corollaries 4.1 and 
4.2 and monotonically increasing.
Iteration argument. Suppose we have proven (5.1). First we take 𝐸𝑝 <
min{𝜀𝑝,

1
2𝐶 } which gives 

𝜂(𝑡) ≤ 2𝐶(𝐸𝑙 + 𝜂(𝑡)2). (5.3)

Now, choose 4𝐶2𝐸𝑙 <
𝑐
2 . Assuming there exists some 𝑡 ∈ [0, 𝑡max,𝛾 ) such 

that 𝜂(𝑡) ≥ 4𝐶𝐸𝑙, the continuity of 𝜂 provides a 𝑡0 with 𝜂(𝑡0) = 4𝐶𝐸𝑙 <
𝑐
2 . 

Therefore, (5.3) and 𝑐 ∈ (0, 12 ) imply 
𝜂(𝑡0) ≤ 2𝐶

(

𝐸𝑙 + (16𝐶2𝐸𝑙)𝐸𝑙
)

< 4𝐶𝐸𝑙 .

This is a contradiction and we arrive at 
sup

𝑡∈[0,𝑡max,𝛾 )
𝜂(𝑡) ≤ 4𝐶𝐸𝑙 <

𝑐
2

(5.4)

and hence (5.2) cannot hold. We conclude that (5.4) holds with 𝑡max,𝛾 =
𝜏max = ∞. This proves (2.13) and it suffices to justify (5.1). For this pur-
pose, let 𝑡 ∈ [0, 𝑡max,𝛾 ) with 𝜂(𝑡) < 𝑐

2 .
Bound on 𝐯̂. We first bound ||𝐯̂(𝑠)||𝐻3  for which we use (4.18), that 

is, 

||𝐯̂(𝑠)||𝐻3 ≲ (1 + 𝑠)−
1
2 𝜂(𝑠), (5.5)

for 𝑠 ∈ [0, 𝑡]. Together with the nonlinear bounds, Lemma 4.1, Proposi-
tion 3.2 and Theorem 5.1, we arrive at 

||𝐯̂(𝑠)||𝐿2 ≲ (1 + 𝑠)−
1
2 𝐸𝑙 + ||𝛾𝑥(𝑠)||𝐿2 ||𝐰̂(𝑠)||𝐿∞ + ||𝛾𝑥(𝑠)||𝐻1 ||𝐯̂(𝑠)||𝐿2

+ ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

3
4
||3(𝐰̂(𝜏), 𝐯̂(𝜏), 𝛾(𝜏))||𝐿1∩𝐿2 𝑑𝜏

+ ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

1
2
(

||𝜎𝑡(𝜏)𝐯̂𝑥(𝜏)||𝐿2 + || (𝐰̂(𝜏), 𝛾(𝜏))||𝐿2

+ ||(1 − 𝛾𝑥(𝜏))2,2(𝐰̂(𝜏), 𝐯̂(𝜏))||𝐿2

)

𝑑𝜏

≲ (1 + 𝑠)−
1
2 𝐸𝑙 + (1 + 𝑠)−

1
2 𝜂(𝑡)2 + (1 + 𝑠)−

1
2 𝜂(𝑡)𝐸𝑝

+ 𝜂(𝑡)2 ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

3
4 (1 + 𝜏)−1𝑑 𝜏

+ 𝜂(𝑡)𝐸𝑝 ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

1
2 (1 + 𝜏)−

1
2 𝑒−𝛿2𝜏𝑑 𝜏

≲ (1 + 𝑠)−
1
2
(

𝐸𝑙 + 𝜂(𝑡)2 + 𝜂(𝑡)𝐸𝑝
)

,

(5.6)

for 𝑠 ∈ [0, 𝑡], where we used that 𝜂(𝑡) ≤ 1
2 .

Bounds on 𝛾. We estimate, with (5.5), Proposition 3.2, Lemma 4.1 and 
Theorem 5.1, 
||𝜕𝑘𝑠 𝜕

𝑙
𝑥𝛾(𝑠)||𝐿2 ≤ ||𝜕𝑘𝑠 𝜕

𝑙
𝑥𝑠𝑝(𝑠)||𝐿2→𝐿2 ||𝐯0||𝐿2

+ ∫

𝑠

0
||𝜕𝑘𝑠 𝜕

𝑙
𝑥𝑠𝑝(𝑠 − 𝜏)||𝐿1→𝐿2 ||3(𝐰̂(𝜏), 𝐯̂(𝜏), 𝛾(𝜏))||𝐿1 𝑑𝜏

+ ∫

𝑠

0
||𝜕𝑘𝑠 𝜕

𝑙
𝑥𝑠𝑝(𝑠 − 𝜏)||𝐿2→𝐿2

(

||𝜎𝑡(𝜏)𝐯̂𝑥(𝜏)||𝐿2 + || (𝐰̂(𝜏), 𝛾(𝜏))||𝐿2

+ ||(1 − 𝛾𝑥(𝜏))2,2(𝐰̂(𝜏), 𝐯̂(𝜏))||𝐿2
)

𝑑𝜏

≲ (1 + 𝑠)−
𝑘+𝑙
2 𝐸𝑙 + 𝜂(𝑠)2 ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

1
4 −

𝑘+𝑙
2 (1 + 𝜏)−1𝑑 𝜏

+ 𝜂(𝑠)𝐸𝑝 ∫

𝑠

0
(1 + 𝑠 − 𝜏)−

𝑘+𝑙
2 (1 + 𝜏)−

1
2 𝑒−𝛿2𝜏𝑑 𝜏

≲ (𝐸𝑙 + 𝜂(𝑡)2 + 𝜂(𝑡)𝐸𝑝)

⎧

⎪

⎨

⎪

⎩

1,  if 𝑙 + 𝑘 = 0

(1 + 𝑠)−
1
2 ,  if 𝑙 + 𝑘 = 1

(1 + 𝑠)−1,  otherwise,

(5.7)

for every 𝑠 ∈ [0, 𝑡].
Bounds on 𝐯̊. Invoking (5.6) and (5.7), (4.17) yields 
||𝐯̊(𝑠)||𝐿2 ≲ (1 + 𝑠)−

1
2
(

𝐸𝑙 + 𝜂(𝑡)2 + 𝜂(𝑡)𝐸𝑝
)

for all 0 ≤ 𝑠 ≤ 𝑡. Finally, with Proposition 4.5 and (5.7), we obtain 
||𝐯̊(𝑠)||𝐻3 ≲ (1 + 𝑠)−

1
2
(

𝐸𝑙 + 𝜂(𝑡)2 + 𝜂(𝑡)𝐸𝑝
)

,

for all 0 ≤ 𝑠 ≤ 𝑡, using 𝜂(𝑡) ≤ 1
2 .

We have shown the key inequality (5.1).
Remark 5.1. The proof of (5.1) reveals that the nonlinear iteration argu-
ment closes as long as |𝜎𝑡(𝑡)| and ||𝐰̂(𝑡)||𝐻6

per(0,𝑇 )
 decay of order (1 + 𝑡)−𝜅 for 

some 𝜅 > 1
2 . 

5.2.  Refined 𝐿∞-estimates

By Proposition 3.3 and the nonlinear bounds in Lemma 4.1 and rein-
serting the 𝐿2-estimates (2.13), we obtain
||𝛾𝑥(𝑡)||𝐿∞ ≤ ||𝜕𝑥𝑠𝑝(𝑡)||𝐿2→𝐿∞ ||𝐯0||𝐿2

+ ∫

𝑡

0
||𝜕𝑥𝑠𝑝(𝑡 − 𝑠)||𝐿1→𝐿∞ ||3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠))||𝐿1 𝑑𝑠

+ ∫

𝑡

0
||𝜕𝑥𝑠𝑝(𝑡 − 𝑠)||𝐿2→𝐿∞

(

||𝜎𝑡(𝑠)𝐯̂𝑥(𝑠)||𝐿2 + || (𝐰̂(𝑠), 𝛾(𝑠))||𝐿2

+ ||(1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝑠))||𝐿2

)

𝑑𝑠

≲ (1 + 𝑡)−
3
4 𝐸𝑙 + 𝐸𝑙

(

∫

𝑡

0
(1 + 𝑡 − 𝑠)−1(1 + 𝑠)−1 𝑑𝑠

+∫

𝑡

0
(1 + 𝑡 − 𝑠)−

3
4 (1 + 𝑠)−

1
2 𝑒−𝛿2𝑠 𝑑𝑠

)

≲ (1 + 𝑡)−
3
4 𝐸𝑙 ,

for all 𝑡 ≥ 0. Furthermore, we have

||𝐯̂(𝑡)||𝐿∞ ≲ (1 + 𝑡)−
3
4 𝐸𝑙 + ∫

𝑡

0
(1 + 𝑡 − 𝑠)−1||3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠))||𝐿1∩𝐿2 𝑑𝑠

+ ∫

𝑡

0
𝑒−𝛿1(𝑡−𝑠)||3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠))||𝐻1 𝑑𝑠

+ ∫

𝑡

0
(1 + 𝑡 − 𝑠)−

3
4
(

||𝜎𝑡(𝑠)𝐯̂𝑥(𝑠)||𝐻1

+ ||(1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝑠))||𝐻1 + || (𝐰̂(𝑠), 𝛾(𝑠))||𝐻1

)

𝑑𝑠

≲ (1 + 𝑡)−
3
4 𝐸𝑙 + 𝐸𝑙

(

∫

𝑡

0
(1 + 𝑡 − 𝑠)−1(1 + 𝑠)−1 𝑑𝑠

+∫

𝑡

0
(1 + 𝑡 − 𝑠)−

3
4 (1 + 𝑠)−

1
2 𝑒−𝛿2𝑠 𝑑𝑠

)

≲ (1 + 𝑡)−
3
4 𝐸𝑙 ,

for all 𝑡 ≥ 0. With the help of (4.19), we deduce 
||𝐯̊(𝑡)||𝐿∞ ≲ (1 + 𝑡)−

3
4 𝐸𝑙 ,

for all 𝑡 ≥ 0. Finally, we observe that for 𝜎∗ ∶= ∫ ∞
0 𝜎𝑠(𝑠) 𝑑𝑠, we have 

|𝜎∗ − 𝜎(𝑡)| ≤ ∫

∞

𝑡
|𝜎𝑠(𝑠)| 𝑑𝑠 ≲ 𝑒−𝛿1𝑡𝐸𝑝

and therefore 
||𝜙(⋅ + 𝜎∗ + 𝛾(⋅, 𝑡), 𝑡) − 𝜙(⋅ + 𝜎(𝑡) + 𝛾(⋅, 𝑡), 𝑡)||𝐿∞ ≲ 𝑒−𝛿1𝑡𝐸𝑝,

for all 𝑡 ≥ 0. As described in Section 2.6, Theorem 2.1 follows.

6.  Discussion

6.1.  Applicability of the scheme to viscous conservation laws

A satisfying 𝐿∞-stability theory considering 𝐶ub-perturbations is es-
tablished in parabolic reaction-diffusion systems [18] which can be ex-
tended beyond the parabolic setting as shown in the context of the 
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FitzHugh-Nagumo system [12]. On the other hand, there are crucial ob-
stacles in establishing pure 𝐿∞-stability results for viscous conservation 
laws as described in [12,17]. An interesting ingredient of the 𝐿2-analysis 
in [31] is that the authors introduce a sum of spatio-temporal modula-
tion functions to capture more than one critical mode arising from the 
presence of the conservation laws. Therefore, a key difficulty lies in the 
fact that the critical dynamics is governed by a coupled Whitham sys-
tem for which one cannot immediately apply the Cole-Hopf transform 
as done in the scalar case for which this Whitham system reduces to the 
Burgers’ equation [12,18]. This begs the question of whether we can ap-
ply our 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ)-scheme to this setting, cf. [31] and [32]. In 
order to generate a result like Theorem 2.1 in this setting, the question 
reduces to whether such a sum of spatio-temporal modulation functions 
is compatible with our approach. As the 𝐿2

per(0, 𝑇 )-theory can be settled 
by a standard procedure, we strongly expect that it is relatively straight-
forward to allow for 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ)-perturbations by precisely fol-
lowing our nonlinear analysis, in particular using the modified versions 
of inverse- and forward-modulated perturbations in Sections 4.2 and 
4.5, and by respecting the semigroup decomposition and estimates es-
tablished in [31, pp. 149] and the nonlinear damping estimate in [31, 
pp. 146].

6.2.  Uniformly subharmonic plus localized perturbations

Considering the uniformly subharmonic nonlinear stability result for 
the Lugiato-Lefever equation in [16], the question arises whether we 
can show a nonlinear stability result involving perturbations 𝐰0 + 𝐯0
with 𝐰0 ∈ 𝐻6

per(0, 𝑁𝑇 ) ∩ 𝐿1
per(0, 𝑁𝑇 ), 𝐯0 ∈ 𝐻3(ℝ) and which is uniform 

in 𝑁 ∈ ℕ. We note that as in [16] the additional condition 𝐿1
per(0, 𝑁𝑇 )

is crucial in [16] to guarantee the uniformity in 𝑁 .
Suppose (H1) and (D1)-(D3). Now, given a solution 𝐮 = 𝐰 + 𝐯 of (1.1) 

where 𝐰 solves (2.2) and 𝐯 solves (2.3) with 𝐮(0) = 𝐰0 + 𝐯0, we broadly 
sketch a possible scheme for the claimed stability estimate 

||𝐮(𝑡)||𝐿∞ ≲ (1 + 𝑡)−
3
4
(

||𝐰0||𝐻6
per(0,𝑁𝑇 )∩𝐿1

per(0,𝑁𝑇 ) + ||𝐯0||𝐻3(ℝ)

)

, 𝑡 ≥ 0,

(6.1)

uniformly in 𝑁 ∈ ℕ. Keeping the main lines of this paper, we might 
introduce the inverse-modulated perturbations
𝐰̂(𝑥, 𝑡) = 𝐰(𝑥 − 𝜎(𝑡) − 𝛾1(𝑥, 𝑡), 𝑡) − 𝜙,

𝐯̂(𝑥, 𝑡) = 𝐮(𝑥 − 𝜎(𝑡) − 𝛾1(𝑥, 𝑡) − 𝛾2(𝑥, 𝑡), 𝑡) − 𝐰̂(𝑥, 𝑡) − 𝜙(𝑥)

and the forward-modulated perturbations
𝐰̊(𝑥, 𝑡) = 𝐰(𝑥, 𝑡) − 𝜙(𝑥 + 𝜎(𝑡) + 𝛾1(𝑥, 𝑡)),

𝐯̊(𝑥, 𝑡) = 𝐮(𝑥, 𝑡) − 𝐰̂(𝑥 + 𝜎(𝑡) + 𝛾1(𝑥, 𝑡) + 𝛾2(𝑥, 𝑡), 𝑡)

− 𝜙(𝑥 + 𝜎(𝑡) + 𝛾1(𝑥, 𝑡) + 𝛾2(𝑥, 𝑡)),

with modulation functions
𝜎 ∶ [0,∞) → ℝ, 𝛾1 ∶ [0,∞) → 𝐿2

per(0, 𝑁𝑇 ) and 𝛾2 ∶ [0,∞) → 𝐿2(ℝ).

To derive suitable perturbation equations for 𝐯̂ and 𝐯̊, we refer to Ap-
pendices A and B. Finally, with the established decay rates, see [16, 
Theorem 1.4],

||𝜕𝑥𝛾1(𝑡)||𝐿2
per(0,𝑁𝑇 ), |𝜎𝑡(𝑡)|, ||𝐰̂(𝑡)||𝐿2

per(0,𝑁𝑇 ) ∼ 𝑂((1 + 𝑡)−
3
4 ),

uniformly in 𝑁 , one may invoke Remark 5.1 and [16, Proposition 3.7]). 
It remains to prove versions of Proposition 4.5 and Lemma 4.4 to deduce 
(6.1).

6.3.  Nonlocalized phase modulations

An interesting feature of the modulational stability estimate (2.11) 
is that we capture the most critical dynamics of the periodic wave by 
a phase modulation from ℝ +𝐻3(ℝ). This class of functions covers the 
simplest nontrivial nonlocalized phase perturbations one could think of. 

Therefore, an interesting open question is whether we can allow for per-
turbations from 𝐿2

per(0, 𝑇 )⊕𝐿2(ℝ) as well as (𝐿∞-large) initial modula-
tions 𝛾0 − 𝜎∗ such that ||𝛾 ′0||𝐻3  is small to conclude an estimate such as 
(2.11). We refer to [25] for a nonlinear stability result against localized 
perturbations in this context, allowing for a nonlocalized initial phase 
modulation.

6.4.  Fully nonlocalized perturbations

Local well-posedness results in nonlinear Schrödinger-type equa-
tions, possibly with (periodic) potentials, have been established for ini-
tial data from the modulation space 𝑀𝑚

∞,1(ℝ), see e.g. [33,34], [35, pages 
245–252] and references therein. At the same time, global in time results 
are widely open. Due to the additional dissipativity in (1.1) compared to 
the classical cubic nonlinear Schrödinger equation, we expect the possi-
bility to extend our result to perturbations from 𝑀𝑚

∞,1(ℝ) for sufficiently 
large 𝑚 ∈ ℕ. This might be achieved by conceptually following the lines 
of [12] through the complex inversion formula of the semigroup. Never-
theless, it turns out that high-frequency damping and regularity control 
are delicate challenges and it seems that essentially new ideas have to 
be developed.

CRediT authorship contribution statement

Joannis Alexopoulos: Writing – original draft.

Data availability

No data was used for the research described in the article.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: 
Joannis Alexopoulos reports financial support was provided by German 
Research Foundation. Joannis Alexopoulos reports a relationship with 
Karlsruhe Institute of Technology that includes: employment. If there 
are other authors, they declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgment

The author is grateful to Björn de Rijk for valuable discussions and 
support during all stages of this work. The author also thanks the anony-
mous reviewers for valuable comments. This project is funded by the 
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 
– Project-ID 491897824 and Project-ID 258734477 – SFB 1173.

Appendix A.  Derivation of (4.6)

We write 𝐮̂(𝑥, 𝑡) = 𝐮(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝜙(𝑥), insert (4.5) and [16, 
(3.4)] to obtain
(𝜕𝑡 − 0)(𝐯̂) = (𝜕𝑡 − 0)𝐮̂ − (𝜕𝑡 − 0)𝐰̂

= −(𝜕𝑡 − 0)(𝜙′𝛾) + (1 − 𝛾𝑥)1(𝐮̂) −1(𝐰̂) + 𝜎𝑡𝐰̂𝑥

+ 𝜕𝑥(𝐮̂, 𝛾, 𝛾𝑡, 𝜎𝑡) + 𝜕2𝑥(𝐮̂, 𝛾) + (𝜕𝑡 − 0)(𝛾𝑥𝐮̂),

where, recalling 𝐮̂ = 𝐯̂ + 𝐰̂,

̃(𝐮̂, 𝛾, 𝛾𝑡, 𝜎𝑡) = −𝛾𝑡𝐮̂ − 𝜎𝑡𝐮̂ + 𝛽

(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐮̂ −
𝛾2𝑥

1 − 𝛾𝑥
𝜙′

)

= ̃(𝐯̂, 𝛾, 𝛾𝑡, 𝜎𝑡) − 𝛾𝑡𝐰̂ − 𝜎𝑡𝐰̂ + 𝛽
(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐰̂
)

(𝐮̂, 𝛾) = −𝛽
(

𝛾𝑥 +
𝛾𝑥

1 − 𝛾𝑥

)

𝐮̂ = (𝐯̂, 𝛾) + (𝐰̂, 𝛾).
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We emphasize that the critical terms 𝜎𝑡𝐰̂ and (𝜕𝑡 − 0)(𝜙′𝜎) cancel out. 
We arrive at
(𝜕𝑡 − 0)(𝐯̂ + 𝜙′𝛾 − 𝛾𝑥𝐰̂ − 𝛾𝑥𝐯̂) =(𝐰̂, 𝐯̂, 𝛾) + 𝜕𝑥(𝐯̂, 𝛾) + 𝜕2𝑥(𝐯̂, 𝛾)

− 𝜎𝑡𝐯̂𝑥 + (1 − 𝛾𝑥)2,2(𝐰̂, 𝐯̂) +  (𝐰̂, 𝛾)

with

(𝐰̂, 𝐯̂, 𝛾) = (1 − 𝛾𝑥)(1(𝐯̂ + 𝐰̂) −1(𝐰̂) −2,2(𝐰̂, 𝐯̂)) = (1 − 𝛾𝑥)2,1(𝐯̂, 𝐰̂),

(𝐯̂, 𝛾) = −𝛾𝑡𝐯̂ + 𝛽

(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐯̂ −
𝛾2𝑥

1 − 𝛾𝑥
𝜙′

)

,

 (𝐰̂, 𝛾) = −𝛾𝑥1(𝐰̂) − 𝜕𝑥

(

𝛾𝑡𝐰̂ − 𝛽
(

𝛾𝑥𝑥
(1 − 𝛾𝑥)2

𝐰̂
))

− 𝜕2𝑥

(

𝛽
(

𝛾𝑥 +
𝛾𝑥

1 − 𝛾𝑥

)

𝐰̂
)

.

Appendix B.  Derivation of (4.14)

We recall that 
𝐯̊(𝑥, 𝑡) = 𝐮(𝑥, 𝑡) − 𝐰(𝑥 + 𝛾(𝑥, 𝑡), 𝑡),

set 𝜙̊(𝑥, 𝑡) = 𝜙(𝑥 + 𝛾(𝑥, 𝑡)) and use the notions (2.5), (2.6) and (2.7). Fur-
thermore, we write 

(𝐮) = 
((

−𝛽 0
0 −𝛽

)

𝐮𝑥𝑥 +
(

−𝛼 0
0 −𝛼

)

𝐮
)

− 𝐮.

Using that 𝐮 and 𝐰 are solutions of (2.1), we derive
(𝜕𝑡 − 0(𝜙̊))𝐯̊(𝑡)
= (𝜕𝑡 −)(𝐮(𝑡)) − (𝜕𝑡 −)(𝐰)(⋅ + 𝛾(⋅, 𝑡), 𝑡) − ′(𝜙̊(𝑡))𝐯̊(𝑡)
+5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))

=  (𝐯̊(𝑡) + 𝐰̃(⋅ + 𝛾(⋅, 𝑡), 𝑡) + 𝜙̊(𝑡)) − (𝐰̃(⋅ + 𝛾(⋅, 𝑡), 𝑡) + 𝜙̊(𝑡))

− ′(𝜙̊)𝐯̊(𝑡) +5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))
= 2(𝜙̊)(𝐰̃(⋅ + 𝛾(⋅, 𝑡), 𝑡), 𝐯̊(𝑡)) +5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))

with

5(𝐰̃(𝑡), 𝛾(𝑡), 𝛾𝑡(𝑡))
= −𝐰𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑡(𝑡) − 𝛽

(

𝐰𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(𝛾𝑥𝑥(𝑡))

+𝐰𝑥𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2)
)

= −𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑡(𝑡) − 𝜙′(⋅ + 𝛾(⋅, 𝑡), 𝑡)𝛾𝑡(𝑡)

− 𝛽
(

𝐰̃𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(𝛾𝑥𝑥(𝑡)) + 𝐰̃𝑥𝑥(⋅ + 𝛾(⋅, 𝑡), 𝑡)(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2)

+ 𝜙′(⋅ + 𝛾(⋅, 𝑡), 𝑡)(𝛾𝑥𝑥(𝑡)) + 𝜙′′(⋅ + 𝛾(⋅, 𝑡), 𝑡)(2𝛾𝑥(𝑡) + 𝛾𝑥(𝑡)2)
)

.

Recall that 𝐰̃(𝑡) = 𝐰(𝑡) − 𝜙 denotes the unmodulated perturbation of 𝐰.

Appendix C.  Proof of Proposition 4.4

We recall the Duhamel formula (4.9) given by

𝛾(𝑡) =𝑠𝑝(𝑡)𝐯0 + ∫

𝑡

0
𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠)) − 𝜎𝑡(𝑠)𝐯̂𝑥(𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠

whereas 
𝐯̂(𝑥, 𝑡) = 𝐮(𝑥 − 𝜎(𝑡) − 𝛾(𝑥, 𝑡), 𝑡) − 𝐰̂(𝑥, 𝑡) − 𝜙(𝑥).

To prevent confusion, we write 
𝐯̂(𝑡) = 𝐯̂(𝛾(𝑡), 𝑡)

and for the sake of readability, we introduce
̃ (𝑡, 𝜎(𝑠), 𝛾(𝑠), 𝑠) =𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠)) − 𝜎𝑡(𝑠)𝐯̂𝑥(𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

.

We do a contraction argument. For this purpose, we establish nonlinear 
bounds.

Lemma C.1. Fix 0 ≤ 𝜏1 ≤ 𝜏2 < min{𝜏max, 𝑡max,𝜎}. Let 𝑗, 𝑘 ∈ ℕ0 and fix 𝐾 >
0. Suppose that

sup
𝑡∈[0,𝜏2]

(

||𝐰(𝑡)||𝑊 1,∞ + |𝜎𝑡(𝑡)| + ||𝐯(𝑡)||𝑊 1,∞
)

≤ 𝐾.

There exist constants 𝐶 > 0 and 𝐶𝑗,𝑘 > 0 such that we have the bounds 
sup

𝑠∈[𝜏1 ,𝜏2]
||𝐯̂(𝛾1(𝑠), 𝑠) − 𝐯̂(𝛾2(𝑠), 𝑠)||𝐿2 ≤ 𝐶 sup

𝑠∈[𝜏1 ,𝜏2]
||𝛾1(𝑠) − 𝛾2(𝑠)||𝐿2 , (C.1)

and 
sup

𝑡∈[𝜏1 ,𝜏2]
sup

𝑠∈[𝜏1 ,𝑡]
||𝜕𝑗𝑡 𝜕

𝑘
𝑥(̃ (𝑡, 𝜎(𝑠), 𝛾2(𝑠), 𝑠) − ̃ (𝑡, 𝜎(𝑠), 𝛾2(𝑠), 𝑠))||𝐿2

≤ 𝐶𝑗,𝑘 sup
𝑠∈[𝜏1 ,𝜏2]

(||𝛾1(𝑠) − 𝛾2(𝑠)||𝐻2 + ||𝜕𝑡𝛾1(𝑠) − 𝜕𝑡𝛾2(𝑠)||𝐿2 ),
(C.2)

for any 𝛾1, 𝛾2 ∈ 𝐶([𝜏1, 𝜏2];𝐻5(ℝ)) × 𝐶1([𝜏1, 𝜏2];𝐻3(ℝ)) with 
sup𝑡∈[𝜏1 ,𝜏2] ||𝜕𝑥𝛾1(𝑡)||𝐿∞ , ||𝜕𝑥𝛾1(𝑡)||𝐿∞ ≤ 1

2 . 
Proof.  Let 𝑡 ∈ [𝜏1, 𝜏2] and 𝑠 ∈ [𝜏1, 𝑡]. We rewrite
𝐯̂(𝑥, 𝛾1(𝑠), 𝑠) − 𝐯̂(𝑥, 𝛾2(𝑠), 𝑠) = 𝐯(𝑥 − 𝜎(𝑠) − 𝛾1(𝑥, 𝑠), 𝑠)

− 𝐯(𝑥 − 𝜎(𝑠) − 𝛾2(𝑥, 𝑠), 𝑠)

+ 𝐰(𝑥 − 𝜎(𝑠) − 𝛾2(𝑥, 𝑠), 𝑠)

− 𝐰(𝑥 − 𝜎(𝑠) − 𝛾1(𝑥, 𝑠), 𝑠)

and since 𝐰(𝑥 − 𝜎(𝑠) − 𝛾(𝑥, 𝑠), 𝑠) − 𝜙(𝑥) = 𝐰̂(𝑥 − 𝛾(𝑥, 𝑠), 𝑠), this yields 
(C.1) by the mean value theorem. Let 𝑗, 𝑘 ∈ ℕ0. Recalling the choice 
of 3 =  + 𝜕𝑥 + 𝜕2𝑥 and the estimates on 𝑠𝑝(𝑡) from Proposition 3.2, 
we obtain
||𝜕𝑗𝑡 𝜕

𝑘
𝑥𝑠𝑝(𝑡 − 𝑠)(3(𝐰̂(𝑠), 𝐯̂(𝛾1(𝑠), 𝑠), 𝛾1(𝑠)) −3(𝐰̂(𝑠), 𝐯̂(𝛾2(𝑠), 𝑠), 𝛾2(𝑠)))||𝐿2

≤ 𝐶𝑗,𝑘(||𝛾1(𝑠) − 𝛾2(𝑠)||𝐻2 + ||𝜕𝑡𝛾1(𝑠) − 𝜕𝑡𝛾2(𝑠)||𝐿2 ),

by taking derivatives on 𝑠𝑝(𝑡 − 𝑠) and (C.1). Next, with the Cauchy-
Schwarz inequality, we find

||𝜕𝑗𝑡 𝜕
𝑘
𝑥𝑠𝑝(𝑡 − 𝑠)

(

(1 − 𝜕𝑥𝛾1(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝛾1(𝑠), 𝑠))

− (1 − 𝜕𝑥𝛾2(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝛾2(𝑠), 𝑠))
)

||𝐿2 ≤ 𝐶𝑗,𝑘||𝛾1(𝑠) − 𝛾2(𝑠)||𝐻1 .

Moreover, we have 

||𝜕𝑗𝑡 𝜕
𝑘
𝑥𝑠𝑝(𝑡 − 𝑠)

(

𝜎𝑡(𝑠)
(

𝐯̂𝑥(𝛾1(𝑠), 𝑠) − 𝐯̂𝑥(𝛾2(𝑠), 𝑠)
)

)

||𝐿2 ≤ 𝐶𝑗,𝑘||𝛾1(𝑠) − 𝛾2(𝑠)||𝐿2 .

Together with

||𝜕𝑗𝑡 𝜕
𝑘
𝑥𝑠𝑝(𝑡 − 𝑠)

(

 (𝐰̂(𝑠), 𝛾1(𝑠)) −  (𝐰̂(𝑠), 𝛾1(𝑠))
)

||𝐿2

≤ 𝐶𝑗,𝑘(||𝛾1(𝑠) − 𝛾2(𝑠)||𝐻2 + ||𝜕𝑡𝛾1(𝑠) − 𝜕𝑡𝛾2(𝑠)||𝐿2 ),

again taking derivatives on 𝑠𝑝(𝑡 − 𝑠), we arrive at (C.2). ∎
By the choice of 𝑠𝑝, we immediately have that 𝛾(𝑡) = 0 for 𝑡 ∈ [0, 1]. We 
need to justify that we can extend the modulation function 𝛾 to a maxi-
mal time such that the alternative (4.12) holds.
Proof of Proposition 4.4.  Let 𝛾̃ be a solution of (4.9) on [0, 𝑡0] with 
some 𝑡0 > 0. Lemma C.1 tells us that 

𝛾 ↦ 𝑠𝑝(𝑡)𝐯0 + ∫

𝑡

𝑡0
𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝑠), 𝛾(𝑠)) − 𝜎𝑡(𝑠)𝐯̂𝑥(𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠
(C.3)

defines a contraction on
𝑋𝑡0 ,𝜏0 =

{

𝛾 ∈𝐶([𝑡0, 𝑡0 + 𝜏0];𝐻5(ℝ)) ∩ 𝐶1([𝑡0, 𝑡0 + 𝜏0];𝐻3(ℝ)) ∶

sup
𝑠∈[𝑡0 ,𝑡0+𝜏0]

||(𝛾(𝑠), 𝛾𝑠(𝑠))||𝐻5×𝐻3 < 𝑐
2

}

for sufficiently small 𝜏0 > 0. By the Banach fixed point theorem, there 
exists a unique solution

𝛾 ∈ 𝐶([𝑡0, 𝑡0 + 𝜏0];𝐻5(ℝ)) ∩ 𝐶1([𝑡0, 𝑡0 + 𝜏0];𝐻3(ℝ))
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of 

𝛾(𝑡) = 𝑠𝑝(𝑡)𝐯0 + ∫

𝑡0

0
𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝛾̃(𝑠), 𝑠), 𝛾̃(𝑠)) − 𝜎𝑡(𝑠)𝐯̂𝑥(𝛾̃(𝑠), 𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝛾̃(𝑠), 𝑠)) +  (𝐰̂(𝑠), 𝛾̃(𝑠))
)

𝑑𝑠

+ ∫

𝑡

𝑡0
𝑠𝑝(𝑡 − 𝑠)

(

3(𝐰̂(𝑠), 𝐯̂(𝛾(𝑠), 𝑠), 𝛾(𝑠)) − 𝜎𝑡(𝑠)𝐯̂𝑥(𝛾(𝑠), 𝑠)

+ (1 − 𝛾𝑥(𝑠))2,2(𝐰̂(𝑠), 𝐯̂(𝛾(𝑠), 𝑠)) +  (𝐰̂(𝑠), 𝛾(𝑠))
)

𝑑𝑠

(C.4)

for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏0]. Since (C.3) defines a contraction on 𝑋𝑡1 ,𝑡2  for every 
𝑡1 ∈ (0,min{𝜏max, 𝑡max,𝜎}) and sufficiently small 𝑡2 > 0, we conclude that 

𝛾(𝑡) =

{

𝛾̃(𝑡), 𝑡 ∈ [0, 𝑡0]
𝛾(𝑡), 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏0]

(C.5)

is the unique solution of (4.9) on [0, 𝑡0 + 𝜏0] such that 𝛾 ∈
𝑋𝑡0 ,𝜏0 . Now, there exists a maximal time 𝑡max,𝛾 ∈ (0,min{𝜏max, 𝑡max,𝜎}]
such that (4.11) holds. Assume that 𝑡max,𝛾 < min{𝜏max, 𝑡max,𝜎}. If 
(4.12) fails, then there exists a unique solution 𝛾̃ of (4.9) with 
sup𝑡∈[0,𝑡max,𝛾 ) ||(𝛾̃(𝑡), 𝛾̃𝑡(𝑡))||𝐻5×𝐻3 < 𝑐

2 . This again allows to solve (C.4) 
on 𝑋𝑡max,𝛾 ,𝜏′0

 for some small 𝜏′0 giving a solution of (4.9) via (C.5) 
on [0, 𝑡max,𝛾 + 𝜏′0) with ||(𝛾(𝑠), 𝛾𝑠(𝑠))||𝐻5×𝐻3 < 𝑐

2  for all 𝑡 ∈ [0, 𝑡max,𝛾 + 𝜏′0). 
This contradicts the maximality of 𝑡max,𝛾 and we conclude (4.12). ∎
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