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1. Introduction

We study the Lugiato-Lefever equation on the extended real line

ou=—pid*u—(+iou+iluu+F, pe{-11}, a€R, F>0,
1.1)

for u : R x[0,0) — C, which is a model from nonlinear optics [1]. An
important observation is that the principal part —gid?u is dispersive
while the damping term —u causes energy dissipation. The forcing term
F again adds energy to the physical system and allows for pattern forma-
tion as predicted by Lugiato and Lefever in [2]. The most fundamental
patterns such as pulses, small-amplitude or dnoidal periodic waves are
found in [3-6] and in [7] and [8], respectively. Recently, in [9], the
authors have obtained large-amplitude periodic waves.

In this paper, we prove nonlinear L*-stability of T-periodic standing
waves against initial perturbations from the space Léer(o, T)® L2(R)!
under diffusive spectral stability assumptions. These spectral assump-
tions are only established for the waves in [9] and [7].

We emphasize that sums of periodic and localized perturbations are
not necessarily localized or periodic and thus our result is a nontrivial
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! The term @ denotes the direct sum, that is for every u € L2_(0,T) & L*(R),

per

we find precisely one w € Lger(o, T) and v € L*(R) such that u = w + v.
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unification of the theories [10] (co-periodic) and [11] (localized). For
the precise formulation of our main result, we refer to Section 2.5.

In view of fully nonlocalized perturbations, the recently developed
nonlinear stability theory for dissipative semilinear systems [12] is not
immediately applicable to all pattern-forming semilinear systems such
as the Lugiato-Lefever equation. From this perspective, the present pa-
per is the first to accommodate nonlocalized perturbations and to com-
bine HI’)er(O, T)- and H*-theory. On the other hand, considerations from
fiber optics, see [13] and Remark 2.1, where combinations of localized
and co-periodic effects naturally occur, motivate the investigation of
these types of perturbations. Interpretating the Lugiato-Lefever equa-
tion as a variant of the cubic nonlinear Schrodinger equation, a related
inspiration for this paper comes from the so-called tooth problem ask-
ing whether solutions of the nonlinear Schrédinger equation with not
necessarily small initial data from Lger(R) @ L*(R) exist globally; we re-
fer to [14] and [15] for answers to the tooth problem and background
information.

Our central challenge is to develop the right modulational ansatz
to make a nonlinear iteration argument close. Inspired by [16], we in-
troduce both a temporal and a localized spatio-temporal phase modu-
lation to capture the critical dynamics of the perturbation induced by
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$H^1(\mathbb {R})+H^s(\mathbb {T})$


$C_{\rm ub}^m$


$C_{\rm ub}$


\begin {align}\label {LLE} \partial _t u = -\beta i \partial _x^2\thinspace u - (1+i\alpha ) u + i |u|^2\thinspace u + F, \quad \beta \in \{-1,1\}, \quad \alpha \in \R , \quad F>0,\end {align}


$u:\R \times [0,\infty ) \rightarrow \C $


$-\beta i \partial _x^2 u$


$-u$


$F$


$L^\infty $


$T$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$\oplus $


$u \in L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$w \in L^2_{\textrm {\textrm {per}}}(0,T)$


$v \in L^2(\R )$


$u = w + v$


$H^l_{\textrm {per}}(0,T)$


$H^k$


$L^2_{\textrm {\textrm {per}}}(\R ) \oplus L^2(\R )$


$L^2\,-\,L^\infty $


$C^\infty $


$m\in \mathbb {N}$


$H^1_{\textrm {\textrm {per}}}(\R ) \oplus H^1(\R )$


$C_{\textrm {ub}}(\R )$


$t \mapsto ||e^{i \partial _x^2 t}u_0||_{L^\infty }$


$u_0 \in C_{\textrm {ub}}(\R )$


$C_{\textrm {ub}}(\R )$


$M^{m}_{\infty ,1}(\R )$


$m\in \mathbb {N}_0$


$\mathbb {C}$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$|u|^2u$


$u \in \mathbb {C}$


$\u := ( \u _r,\u _i)^T := (\Re (u), \Im (u))^T: \R \rightarrow \R ^2$


\begin {align}\label {LLE_real} \u _t = \mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\u _{xx} + \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix}\u \right ) - \u + \mathcal {N}(\u ) + \begin {pmatrix} F \\ 0 \end {pmatrix},\end {align}


\begin {align*}\mathcal {J} = \begin {pmatrix} 0 & -1 \\ 1 & 0 \end {pmatrix}, \quad \mathcal {N}(\u ) = |\u |^2\thinspace J \u = \begin {pmatrix} - \u _i^3 - \u _r^2 \u _i \\ \u _r\u _i^2 + \u _r^3 \end {pmatrix}.\end {align*}


$L^2_{\textrm {per}}(0,T) \oplus L^2(\R )$


$T$


$\phi _0: \R \rightarrow \mathbb {C}$


$\phi := (\phi _r,\phi _i)^T := (\Re (\phi _0), \Im (\phi _0))^T: \R \rightarrow \R ^2$


$\phi + \w _0 + \v _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$\w _0 \in L^2_{\textrm {per}}(0,T)$


$\v _0 \in L^2(\R )$


$L^2_{\textrm {\textrm {per}}}(0,T)$


$\w $


$\u $


$\phi + \w _0 + \v _0$


$\u = \w + \v $


$\u (0) = \phi + \w _0 + \v _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$t\geq 0$


$x \in \R $


$\phi $


$\phi + L^2_{\textrm {\textrm {per}}}(0,T)$


$x\in \R $


$t\geq 0$


$L^2(\R )$


$\w _0 + \v _0$


$\w _0 \in L_{\textrm {\textrm {per}}}^2(0,T)$


$\v _0 \in L^2(\R )$


$\v _0$


$\v _0 + \w _0$


$\w _0$


$L^2_{\textrm {\textrm {per}}}(0,T) \oplus L^2(\R )$


$L^2(\R )$


$L^2_{\textrm {\textrm {per}}}(0,T)$


$\phi $


$\phi $


$t \geq 0$


$\u (t) = \w (t) + \v (t)$


\begin {align*}\tilde {\u }(t) = \u (t) - \phi = (\w (t) - \phi )+ \v (t) \text { and setting } \tilde {\w }(t) = \w (t) - \phi .\end {align*}


$\mathcal {L}_0(\phi )$


$\phi $


\begin {align}\label {linearization} &\mathcal {L}_0(\phi ) = \mathcal {J} \begin {pmatrix}-\beta \partial _x^2 - \alpha + 3\phi _r^2 + \phi _i^2 & 2\phi _r\phi _i \\ 2\phi _r\phi _i & -\beta \partial _x^2 - \alpha + \phi _r^2 + 3\phi _i^2 \end {pmatrix} - \mathcal {I},\end {align}


\begin {align}\label {def_R_1} \mathcal {R}_1(\phi )(\tilde {\w }) &= \mathcal {N}(\tilde {\w } + \phi ) - \mathcal {N}(\phi ) - \mathcal {N}'(\phi )\tilde {\w },\end {align}


\begin {align}\label {def_R_2} &\mathcal {R}_2(\phi )(\tilde {\w }, \v ) = \mathcal {R}_1(\phi )(\v +\tilde {\w }) - \mathcal {R}_1(\phi )(\tilde {\w }) = \mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v ) + \mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v ),\end {align}


\begin {align*}\mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v ) &= \mathcal {N}(\v +\tilde {\w } + \phi ) - \mathcal {N}(\tilde {\w }+\phi ) - \mathcal {N}'(\tilde {\w } + \phi )\v , \\\quad \mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v ) &= \mathcal {N}'(\tilde {\w } + \phi )\v - \mathcal {N}'(\phi )\v .\end {align*}


$K>0$


$C>0$


$\v ,\tilde {\w }\in \mathbb {C}$


$|\v |, |\tilde {\w }|\leq K$


\begin {align}\label {formal_nonlinear bounds} |\mathcal {R}_1(\phi )(\tilde {\w })| \leq C |\tilde {\w }|^2, \quad |\mathcal {R}_{2,1}(\phi )(\tilde {\w }, \v )| \leq C |\v |^2, \quad |\mathcal {R}_{2,2}(\phi )(\tilde {\w }, \v )| \leq C |\v ||\tilde {\w }|.\end {align}


$\mathcal {L}_0 = \mathcal {L}_0(\phi )$


$\mathcal {R}_1 = \mathcal {R}_1(\phi )$


$\mathcal {R}_2 = \mathcal {R}_2(\phi )$


$\mathcal {R}_{2,1} = \mathcal {R}_{2,1}(\phi )$


$\mathcal {R}_{2,2} = \mathcal {R}_{2,2}(\phi )$


$\phi $


$\phi $


$\El (\xi ) = e^{-i\xi \cdot } \mathcal {L}_0 e^{i\xi \cdot }$


$\xi \in [-\frac {\pi }{T},\frac {\pi }{T})$


$L_{\mathrm {\textrm {per}}}^2(0,T)$


$D(\El (\xi )) = H_{\mathrm {\textrm {per}}}^2(0,T)$


$\El (\xi )$


$\sigma _{L^2}(\El _0)\subset \{\lambda \in \C :\Re (\lambda )<0\}\cup \{0\}$


$\theta >0$


$\xi \in [-\frac {\pi }{T},\frac {\pi }{T})$


$\Re \,\sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi ))\leq -\theta \xi ^2$


$0$


$\El (0)$


$\El _0$


$L^2(\R )$


\begin {align*}\sigma _{L^2}(\El _0) = \bigcup _{\xi \in [-\frac {\pi }{T},\frac {\pi }{T})} \sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi )).\end {align*}


$\sigma _{L^2}(\El _0)$


$\El (0)$


$\phi '$


$0$


$\El (0)^*$


$\smash {\widetilde {\Phi }_0} \in H^2_{\mathrm {\textrm {per}}}(0,T)$


\begin {align*}\big \langle \widetilde {\Phi }_0,\phi '\big \rangle _{L^2(0,T)} = 1.\end {align*}


$\xi _0 \in (0, \frac {\pi }{T})$


$\sigma _{L^2}(\mathcal {L}_0)$


$\sigma _{L^2_{\textrm {per}}(0,T)}(\El (\xi ))$


$T$


$\Phi _\xi $


$\Phi _0 = \phi '$


$\lambda _c(\xi )$


$\El (\xi )$


$\El (\xi ) \Phi _\xi = \lambda _c(\xi )\Phi _\xi $


$\xi \in (-\xi _0,\xi _0)$


$T$


$\tilde {\Phi }_\xi $


$\overline {\lambda _c(\xi )}$


$\mathcal {L}(\xi )^*$


$\El (\xi )^* \tilde {\Phi }_\xi = \overline {\lambda _c(\xi )}\tilde {\Phi }_\xi $


$\xi \in (-\xi _0,\xi _0)$


$m \in \mathbb {N}_0$


\begin {align*}\left |\lambda _c(\xi ) - i a\xi + d \xi ^2\right | \lesssim |\xi |^3, \qquad \left \|\Phi _\xi - \phi _0'\right \|_{H^m(0,T)} \lesssim |\xi |,\end {align*}


$\xi \in (-\xi _0,\xi _0)$


$a \in \R $


$d > 0$


$\textrm {span}\{\Phi _\xi \}$


\begin {align*}\Pi (\xi )g = \Phi _\xi \langle \widetilde {\Phi }_\xi ,\mathbf {g} \rangle _{L^2(0,T)} , \quad \mathbf {g} \in L^2_{\textrm {\textrm {per}}}(0,T).\end {align*}


$C,\varepsilon >0$


$\w _0 \in H_{{\mathrm {per}}}^6(0,T)$


$\v _0 \in H^3(\R )$


\begin {equation*}E_0 := ||\w _0+\v _0||_{H^6_{\mathrm {per}}(0,T)\oplus H^3(\R )} < \varepsilon \end {equation*}


\begin {align}\label {properties_u_in_c_ub} \u (t) \in C([0,\infty ); C^2_{\mathrm {ub}}(\R )) \cap C^1([0,\infty );C_{\mathrm {ub}}(\R ))\end {align}


$\u (0) = \phi + \w _0 + \v _0$


$\gamma \in C([0,\infty ), H^5(\R ))$


$\sigma _* \in \R $


$t\geq 0$


$\v _0 \in H^3(\R )$


$\v $


$L^1\cap H^k$


$\w _0$


$\v $


$\w $


$\v $


$\w $


$\v $


$H^3(\R )$


$\w $


$L^\infty $


$\w _0 \in H_{\textrm {\textrm {per}}}^6(0,T)$


$H^1$


$L^\infty $


$H^1(\R ) \hookrightarrow L^\infty (\R )$


$\w _0 \in H^5_{\textrm {per}}(0,T)$


$\v _0 \in H^2(\R )$


$L^2$


$\v $


$L^\infty (\R )$


$(1+t)^{-\frac {1}{2}}$


$\frac {1}{4}$


$\v _0 \in L^1(\R )\cap H^3(\R )$


$\mathcal {R}_2(\tilde {\w },\v )$


$L^1(\R )$


$L^2(\R )$


$u(t)$


\begin {equation*}C([0,\infty ); H^6_{\textrm {per}}(0,T)\oplus H^3(\R ))\cap C^1([0,\infty ); H^4_{\textrm {per}}(0,T)\oplus H^1(\R )).\end {equation*}


$u(t)$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$u(t)$


$u(t)$


$M_{\infty ,1}(\R )$


$C_0$


$M_{\infty ,1}(\R )$


$M_{\infty ,1}(\R )$


$C([0,t), M_{\infty ,1}(\R ))$


$t>0$


$\u _0\in C_{\textrm {ub}}^2(\R ) \hookrightarrow M_{\infty ,1}(\R )$


$\u (t)$


$\u (0) = \w _0 + \v _0$


$\hat {\w }(t)$


$\v (t)$


$\hat {\w }(t)$


$\v (t)$


$\hat {\w }(t)$


$\sigma (t)$


$\hat {\w }(x,t) = \w (x-\sigma (t),t) - \phi (x)$


$\v (t)$


$\w (t)$


\begin {equation*}\hat {\v }(x,t) = \hat {\u }(x,t) - \hat {\w }(x,t) := \u (x-\sigma (t)-\gamma (t),t) - \hat {\w }(x,t) - \phi (x).\end {equation*}


$\gamma : [0,\infty )\times \R \rightarrow \R ^2$


$|\sigma _t(t)|$


$||\hat {\w }(t)||_{L^\infty }$


\begin {align*}\mathring {\v }(x,t) &= \mathring {\u }(x,t) - \hat {\w }(x+\sigma (t)+\gamma (x,t),t) \\ &:= \u (x,t) - \phi (x+\sigma (t) + \gamma (x,t),t) - \hat {\w }(x+\sigma (t) + \gamma (x,t),t)\end {align*}


$\mathring {\v }(t)$


$\mathring {\v }(t)$


$\hat {\v }(t)$


$C,\delta >0$


\begin {align*}E_0 = E_p + E_l \textrm { with } E_p = ||\w _0||_{H^6_{\textrm {per}}} \textrm { and } E_l = ||\v _0||_{H^3},\end {align*}


\begin {align}\label {strategy_per_result} |\sigma _t(t)|, ||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)} &\leq C e^{-\delta t}E_p, \quad |\sigma | \leq C E_p, \quad t\geq 0,\end {align}


\begin {align}\label {l2_results} ||\gamma _x(t)||_{H^4}, ||\gamma _t(t)||_{H^3}, ||\mathring {\v }(t)||_{H^3} \leq C(1+t)^{-\frac {1}{2}}E_l, \quad ||\gamma (t)||_{H^5} \leq C E_l, \quad t\geq 0.\end {align}


$L^\infty $


$L^\infty $


\begin {align}\label {l_infty_result} ||\mathring {\v }(t)||_{L^\infty }\leq C (1+t)^{-\frac {3}{4}} E_l, \quad t\geq 0.\end {align}


\begin {align*}||\mathring {\u }(t)||_{L^\infty } &\leq ||\hat {\w }(\cdot + \sigma (t) + \gamma (\cdot ,t),t)||_{L^\infty } + ||\mathring {\v }(t)||_{L^\infty }, \quad t\geq 0,\end {align*}


\begin {align*}||\u (t) - \phi ||_{W^{2,\infty }}& \leq C\left (||\mathring {\u }(t)||_{W^{2,\infty }} + |\sigma (t)| + ||\gamma (t)||_{W^{2,\infty }} \right ), \quad t\geq 0,\end {align*}


$S$


$A, B \colon S \to \R $


$A(x) \lesssim B(x)$


$x \in S$


$C>0$


$x$


$A(x) \leq CB(x)$


$x \in S$


$\mathcal {L}_0$


$L_{\textrm {per}}^2(0,T)$


$L^2(\R )$


$\chi \colon [0,\infty ) \to \R $


$\chi (t) = 0$


$t \in [0,1]$


$\chi (t) = 1$


$t \in [2,\infty )$


$L_{\textrm {per}}^2(0,T)$


\begin {align*}\tilde {S}_1(t) = (e^{\mathcal {L}_0 t}- \chi (t)\Pi (0))\mathbf {g}\end {align*}


$\delta _0,C>0$


\begin {align*}||\tilde {S}_1(t) \mathbf {g}||_{H^6_{\textrm {per}}(0,T)} \leq C e^{-\delta _0 t}||\mathbf {g}||_{H^6_{\textrm {per}}(0,T)}\end {align*}


$\mathbf {g} \in {H^6_{\textrm {per}}(0,T)}$


$L^2(\R )$


$0\leq \rho \leq 1$


$(-\xi _0,\xi _0)$


$\rho \equiv 1$


$(-\frac {\xi _0}{2},\frac {\xi _0}{2})$


\begin {align*}e^{\El _0 t}\mathbf {g} = \tilde {S}_2(t)\mathbf {g} + \phi ' s_p(t)\mathbf {g},\end {align*}


\begin {align*}s_p(t)\mathbf {g}(x) &= \frac {\chi (t)}{2\pi } \int _\R \int _{-\frac {\pi }{T}}^\frac {\pi }{T} \rho (\xi )e^{i\xi (x-y) + \lambda _c(\xi )t}\tilde {\Phi }_\xi ^*(y) \,d\xi \mathbf {g}(y)\,dy, \\ S_r(t)\mathbf {g}(x) &= \frac {\chi (t)}{2\pi } \int _\R \int _{-\frac {\pi }{T}}^\frac {\pi }{T} \rho (\xi ) e^{i\xi (x-y) + \lambda _c(\xi )t}(\Phi _\xi (x) - \phi '(x))\tilde {\Phi }_\xi ^*(y) \,d\xi \mathbf {g}(y)\,dy, \\ S_e(t)\mathbf {g} &= e^{\El _0 t}\mathbf {g} - \phi ' s_p(t)\mathbf {g} - S_r(t)\mathbf {g} ,\end {align*}


\begin {align*}\tilde {S}_2(t)\mathbf {g} = S_e(t)\mathbf {g} + S_r(t)\mathbf {g}, \quad \mathbf {g} \in L^2(\R ), (x,t) \in \R \times [0,\infty ),\end {align*}


$S_e(t)$


$H^k(\R )$


$H^k(\R )$


$s_p(t)$


$S_r(t)$


$(1+t)^{-\frac {1}{2}}$


$s_p(t)$


$\Phi _\xi - \phi _0'$


$l,j \in \mathbb {N}_0$


$k \in \{0,1,2\}$


$C_{l,j}>0$


\begin {align*}||\partial _x^l \partial _t^j s_p(t) \partial _x^k\mathbf {g}||_{L^2} &\leq C_{l,j} (1+t)^{-\frac {l+j}{2}} ||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ) \\ ||\partial _x^l \partial _t^j s_p(t) \mathbf {g}||_{L^2} &\leq C_{l,j} (1+t)^{-\frac {1}{4}-\frac {l+j}{2}} ||\mathbf {g}||_{L^1}, \quad \mathbf {g} \in L^2(\R )\cap L^1(\R ),\end {align*}


$t\geq 0$


$C>0$


\begin {align*}||\tilde {S}_2(t) \mathbf {g}||_{L^2} \leq C (1+t)^{-\frac {3}{4}} ||\mathbf {g}||_{L^1\cap L^2}, \quad \mathbf {g} \in L^2(\R )\cap L^1(\R )\end {align*}


\begin {align*}||\tilde {S}_2(t) \mathbf {g}||_{L^2} \leq C(1+t)^{-\frac {1}{2}} ||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ),\end {align*}


$t\geq 0$


$\tilde {S}_c(t)$


$L^\infty $


$C,\delta _1>0$


\begin {align*}||\tilde {S}_2(t)\mathbf {g}||_{L^\infty } &\leq C \left (e^{-\delta _1 t}||\mathbf {g}||_{H^1} + (1+t)^{-1}||\mathbf {g}||_{L^1 \cap L^2}\right ), \quad \mathbf {g} \in H^1(\R ) \cap L^1(\R ), \\ ||\tilde {S}_2(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-\frac {3}{4}}||\mathbf {g}||_{H^1}, \quad \mathbf {g} \in H^1(\R ),\end {align*}


\begin {align*}||\partial _x s_p(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-\frac {3}{4}}||\mathbf {g}||_{L^2}, \quad \mathbf {g} \in L^2(\R ), \\ ||\partial _x s_p(t)\mathbf {g}||_{L^\infty } &\leq C (1+t)^{-1}||\mathbf {g}||_{L^1}, \quad \mathbf {g} \in L^1(\R ),\end {align*}


$t\geq 0$


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$T_{\textrm {max}} \in (0,\infty ]$


$\w \in C([0,T_{\textrm {max}}); H^6_{\textrm {per}}(0,T))\cap C^1([0,T_{\textrm {max}}); H^4_{\textrm {per}}(0,T))$


$\w (0) = \phi + \w _0$


$T_{\textrm {max}}<\infty $


\begin {align}\label {blowup_crit_w} \limsup _{t\uparrow T_{\textrm {max}}}||\w (t)||_{H^4_{\textrm {per}}(0,T)} = \infty .\end {align}


$\w $


$\v $


$\w $


$T_{\textrm {max}}$


$\v _0 \in H^3(\R )$


$\tau _{\textrm {max}}\leq T_{\textrm {max}}$


$\v \in C([0,\tau _{\textrm {max}}); H^3(\R ))\cap C^1([0,\tau _{\textrm {max}}); H^1(\R ))$


$\v (0) = \v _0$


$\tau _{\textrm {max}}<T_{\textrm {max}}$


\begin {align}\label {blowup_crit_v} \limsup _{t\uparrow \tau _{\textrm {max}}}||\v (t)||_{H^1} = \infty .\end {align}


$H^1_{\textrm {per}}(0,T) \hookrightarrow L^\infty (\R )$


\begin {align*}\v \mapsto \mathcal {N}( \v + \w ) - \mathcal {N}(\w )\end {align*}


$H^1(\R )$


$H^1(\R )$


\begin {align*}\mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\partial _x^2 - \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix} \right ) - \mathcal {I}\end {align*}


$C_0$


$H^1(\R )$


$H^3(\R )$


$\u (t)$


\begin {align*}\u (x- \sigma (t),t) - \phi (x) = (\w (x- \sigma (t),t) - \phi (x)) + \v (x-\sigma (t),t)\end {align*}


$\sigma : [0,\infty ) \rightarrow \R $


$\sigma (0) = 0$


\begin {align}\label {define_inverse_w} \hat {\w }(x,t) = \w (x- \sigma (t),t) - \phi (x).\end {align}


$\v (t)$


$\w (t) = \tilde {\w }(t) + \phi $


\begin {align}\label {define_inverse_v} \hat {\v }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x)\end {align}


$\gamma : \R \times [0,\infty ) \rightarrow \R $


$\gamma (\cdot ,0) = 0$


$\hat {\w }(t)$


$\hat {\v }(t)$


\begin {align*}\mathcal {R}_3(\hat {\w },\hat {\v },\gamma ) = \mathcal {Q}(\hat {\w },\hat {\v },\gamma ) + \partial _x\mathcal {S}(\hat {\v }, \gamma ) + \partial _x^2\mathcal {P}(\hat {\v },\gamma )\end {align*}


\begin {align*}&\mathcal {Q}(\hat {\w },\hat {\v },\gamma ) = (1-\gamma _x) \mathcal {R}_{2,1}(\hat {\w },\hat {\v }), \\ &\mathcal {S}(\hat {\v }, \gamma ) = - \gamma _t\hat {\v } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\v } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ), \\ &\mathcal {P}(\hat {\v }, \gamma ) = -\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right )\hat {\v }, \\ &\mathcal {T}(\hat {\w },\gamma )= - \gamma _x \mathcal {R}_1(\hat {\w }) - \partial _x\left (\gamma _t \hat {\w } - \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\right ) \\&\qquad \qquad - \partial _x^2\left (\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\w }\right ).\end {align*}


$\hat {\w }$


$\sigma _t$


$\gamma _x$


$\hat {\v }$


$\gamma _t$


$L^2$


$||\hat {\w }(t)||_{L^\infty }$


$|\sigma _t(t)|$


$\gamma _x(t)$


$\hat {\v }(t)$


$\gamma _t(t)$


$H^k(\R )$


$c>0$


$||f||_{L^\infty } \leq \frac {1}{2}$


$f \in H^1(\R )$


$||f||_{H^1} \leq c$


$C>0$


\begin {align*}L^1\textrm {-bound: } ||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{L^1} &\leq C \left (||\hat {\v }||_{L^2}^2 + ||(\gamma _x,\gamma _t)||_{H^2 \times H^1}(||\hat {\v }||_{H^2} + ||\gamma _x||_{L^2})\right ), \\ L^2\textrm {-bound: }||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{L^2} &\leq C \left (||\hat {\v }||_{H^1}^2 + ||(\gamma _x,\gamma _t)||_{H^2 \times H^1}(||\hat {\v }||_{H^2} + ||\gamma _x||_{L^2})\right ), \\ H^1\textrm {-bound: } ||\mathcal {R}_3(\hat {\w },\hat {\v },\gamma )||_{H^1} &\leq C \left (||\hat {\v }||_{H^1}^2 + ||(\gamma _x,\gamma _t)||_{H^3 \times H^2}(||\hat {\v }||_{H^3} + ||\gamma _x||_{H^1})\right ),\end {align*}


\begin {align*}L^2\textrm {-bounds: } ||\sigma _t \hat {\v }_x||_{L^2} &\leq C |\sigma _t||\hat {\v }||_{H^1}, \quad ||(1-\gamma _x) \mathcal {R}_{2,2}(\hat {\w }, \hat {\v })||_{L^2} \\ &\leq C ||\hat {\v }||_{L^2} ||\hat {\w }||_{H^1_{\textrm {per}}(0,T)}, \\ &||\mathcal {T}(\hat {\w },\gamma )||_{L^2} \leq C||(\gamma _x,\gamma _t)||_{H^2 \times H^1} ||\hat {\w }||_{H^3_{\textrm {per}}(0,T)}, \\ H^1\textrm {-bounds: } ||\sigma _t \hat {\v }_x||_{H^1} &\leq C |\sigma _t||\hat {\v }||_{H^2}, \quad ||(1-\gamma _x) \mathcal {R}_{2,2}(\hat {\w }, \hat {\v })||_{H^1} \\&\leq C ||\hat {\v }||_{H^1} ||\hat {\w }||_{H^2_{\textrm {per}}(0,T)}, \\ &||\mathcal {T}(\hat {\w },\gamma )||_{H^1} \leq C||(\gamma _x,\gamma _t)||_{H^3 \times H^2} ||\hat {\w }||_{H^4_{\textrm {per}}(0,T)},\end {align*}


$\hat {\v } \in H^3(\R )$


$\hat {\w } \in H^4_{\textrm {per}}(0,T)$


$(\gamma _t,\gamma _x) \in H^2(\R )\times H^3(\R )$


$\sigma _t \in \R $


\begin {align*}||\hat {\w }||_{H^4_{\textrm {per}}(0,T)}, ||\hat {\v }||_{H^1},||\gamma _x||_{H^3} \leq c.\end {align*}


$\mathring \w (x,t) = \w (x,t) - \phi (x+\sigma (t))$


\begin {align*}(\partial _t -\mathcal {L}_0) (\mathring {\w }(t) - \phi '\sigma ) &= \mathcal {R}_4(\mathring {\w }(t), \sigma (t)) + (\phi '(\cdot + \sigma (t)) - \phi ') \sigma _t(t)\end {align*}


\begin {align*}\mathcal {R}_4(\mathring {\w }(t), \sigma (t)) = \mathcal {R}_1(\phi (\cdot +\sigma (t)))(\mathring {\w }(t)) - (\mathcal {N}'(\phi ) - \mathcal {N}'(\phi (\cdot +\sigma (t)))) \mathring {\w }(t).\end {align*}


\begin {align}\label {choice_of_sigma} \sigma (t) =& \chi (t)\Pi (0) \tilde {\w }_0 + \int _0^t \chi (t-s) \Pi (0)\left (\mathcal {R}_4(\mathring {\w }(s), \sigma (s)) \right .\nonumber \\&\left .+(\phi '(\cdot + \sigma (s)) - \phi ') \sigma _s(s) \right )\,ds\end {align}


\begin {align}\label {semilinear_w} \mathring {\w }(t) = \tilde {S}_1(t) \tilde {\w }_0 + \int _0^t \tilde {S}_1(t-s)\left (\mathcal {R}_4(\mathring {\w }(s), \sigma (s)) +(\phi '(\cdot + \sigma (s)) - \phi ') \sigma _s(s) \right )\,ds.\end {align}


$\sigma $


$\w $


$T_{\textrm {max}}$


$t_{\textrm {max}, \sigma } \leq T_{\textrm {max}}$


$\mathring \w (x,t) = \w (x,t) - \phi (x+\sigma (t))$


\begin {align*}\sigma \in C^1([0,t_{\textrm {max},\sigma });\R ) \text { with } \sigma (0) = 0 \textrm { and } |(\sigma (t), \sigma _t(t))| < \frac {1}{2}, \quad t\in [0,t_{\textrm {max},\sigma }).\end {align*}


$t_{\textrm {max},\sigma } < \tau _{\textrm {max}}$


$\limsup _{t \uparrow t_{\textrm {max},\sigma }}|(\sigma (t), \sigma _t(t))| \geq \frac {1}{2}$


$K>0$


$C>0$


\begin {align*}&||\mathcal {R}_4(\mathring {\w }, \sigma )||_{H^6_{\textrm {per}}(0,T)} \leq C||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} \left (||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} + |\sigma | \right ), \\&\quad || (\phi '(\cdot + \sigma ) - \phi ') \sigma _t||_{H^6_{\textrm {per}}(0,T)} \leq C |\sigma ||\sigma _t|,\end {align*}


\begin {align*}|\sigma | + |\sigma _t| + ||\mathring {\w }||_{H^6_{\textrm {per}}(0,T)} \leq K.\end {align*}


$\hat {\v }(t)$


\begin {align*}\hat {\v }(t) =& e^{\mathcal {L}_0 t} \v _0 - \phi '\gamma (t) + \int _0^t e^{\mathcal {L}_0 (t-s)} \Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) \\ &-\sigma _s(s)\hat {\v }_x(s) + (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\v }(s),\hat {\w }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s)) \Bigr ) \,ds\\ &+ \gamma _x(t) \hat {\w }(t) + \gamma _x(t) \hat {\v }(t),\end {align*}


$\gamma (0) = 0.$


$\hat {\v }(t)$


$t= 0$


$s_p(0) = 0$


$\gamma (0) = 0$


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\sigma $


$t_{\textrm {max},\sigma }$


$0<c < \frac {1}{2}$


$||f||_{L^\infty } \leq \frac {1}{c}||f||_{H^1}$


$f \in H^1(\R )$


$t_{\textrm {max},\gamma } \leq \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$\hat {\w }(t) = \w (\cdot -\sigma (t)) - \phi $


$\hat {\v }(t) = \u (\cdot - \sigma (t) - \gamma (\cdot ,t),t)- \hat {\w }(t)- \phi $


\begin {align*}\gamma \in C([0,t_{\textrm {max},\gamma }); H^5(\R )) \cap C^1([0,t_{\textrm {max},\gamma }); H^3(\R )) \text { with } \gamma (0) = 0\end {align*}


\begin {align}\label {max_gamma_cond} ||(\gamma (t), \gamma _t(t))||_{H^5\times H^3} < \frac {c}{2}, \quad t\in [0,t_{\textrm {max},\gamma }).\end {align}


$t_{\textrm {max},\gamma } < \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


\begin {align}\label {finite_time_cond_gamma} \limsup _{t \uparrow t_{\textrm {max},\gamma }}||\gamma (t), \gamma _t(t)||_{H^5 \times H^3} \geq \frac {c}{2}.\end {align}


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\hat {\v } \in C([0,t_{\textrm {max},2}); L^2(\R ))$


$\hat {\w }(t) = \w (\cdot -\sigma (t)) - \phi $


$\hat {\v }(t) \in H^3(\R )$


$t \in [0,t_{\textrm {max},\gamma })$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align*}\hat {\v }(x,t) = \v (x- \sigma (t) - \gamma (x,t),t) + \w (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x) \\ = \v (x- \sigma (t) - \gamma (x,t),t) + \w (x- \sigma (t) - \gamma (x,t),t) - \w (x - \sigma (t),t)\end {align*}


$\w (t) \in H^5_{\textrm {per}}(0,T) \hookrightarrow W^{4,\infty }(\R )$


\begin {align*}||\w (x- \sigma (t) - \gamma (x,t),t) - \w (x - \sigma (t),t)||_{H^3} \lesssim ||\gamma (t)||_{H^3}.\end {align*}


$\gamma (t) \in H^4 \hookrightarrow W^{3,\infty }$


$\sup _{s \in [0,t]}||\gamma _x(s)||_{L^\infty } \leq \frac {1}{2}$


$\v (t) \in H^3(\R )$


\begin {align*}\hat {\v }(t) \in H^3(\R )\end {align*}


$(1+t)^{-\frac {1}{2}}$


$\v $


$\gamma _x$


$|\sigma _t|$


$||\hat {\v }||_{L^2} \approx ||\hat {\v }_x||_{L^2}$


$(1+t)^{-\kappa }$


$\kappa \geq \frac {1}{2}$


$||\sigma _t \hat {\v }_x||_{L^2} \leq ||\hat {\v }_x||_{L^2}|\sigma _t|$


\begin {align*}\int _0^t (1+t-s)^{-\frac {1}{2}} (1+s)^{-\kappa }e^{-s} \,ds \lesssim (1+t)^{-\frac {1}{2}}.\end {align*}


$\sigma _t \hat {\v }_x$


$L^p$


$1\leq p < 2$


$\hat {\v }$


$\kappa = \frac {1}{2}$


$\v _0 \in L^1(\R )$


$\hat {\v }$


$\v $


$||\hat {\v }||_{H^3}$


$||\hat {\v }||_{L^2}$


$\gamma _t$


$\gamma _x$


$\sigma _t$


$\hat {\w }$


$\mathring {\v }$


\begin {align}\label {forward_equation} (\partial _t - \mathcal {L}_0(\mathring {\phi })) \mathring {\v }(t) = \mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot +\gamma (\cdot ,t),t),\mathring {\v }(t))+ \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))\end {align}


\begin {align*}\mathcal {L}_0(\mathring {\phi }) =& \mathcal {J} \begin {pmatrix}-\beta \partial _x^2 - \alpha + 3\mathring {\phi }_1^2 + \mathring {\phi }_2^2 & 2\mathring {\phi }_1\mathring {\phi }_2 \\ 2\mathring {\phi }_1\mathring {\phi }_2 -\beta \partial _x^2 - \alpha + \mathring {\phi }_1^2 + 3\mathring {\phi }_2^2 \end {pmatrix} \\ &- \mathcal {I}, \quad \mathring {\phi }(x,t) = \phi (x+ \gamma (x,t)),\end {align*}


\begin {align*}&\mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &=-\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) -\phi '(\cdot +\gamma (\cdot ,t)) \gamma _t(t) \\ & \qquad - \beta \mathcal {J} \Bigl (\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t)\gamma _{xx}(t) + \tilde {\w }_{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \\ &\qquad \qquad \quad + \phi '(\cdot +\gamma (\cdot ,t))\gamma _{xx}(t) + \phi ''(\cdot +\gamma (\cdot ,t))(2\gamma _x(t) + \gamma _x(t)^2) \Bigr ).\end {align*}


$\mathcal {R}_2(\mathring {\phi })$


$\tilde {\w }(t) = \w (t)- \phi $


$\w (t)$


$\mathring {\v }(t)$


$\w $


$T_{\textrm {max}}$


$\v $


$\tau _{\textrm {max}}$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\mathring {\v } \in C([0,t_{\textrm {max},\gamma }); H^3(\R )) \cap C^1([0,t_{\textrm {max},\gamma }); H^1(\R ))$


$\tilde {\w }(t) = \w (t) - \phi $


$j = 1,2,3$


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align*}||\partial _x^j \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))||_{L^2} &\leq C(||\gamma _x(t)||_{H^{j+1}} + ||\gamma _t(t)||_{H^{j}}),\\ ||\partial _x^j\mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot + \gamma (\cdot ,t),t), \mathring {\v }(t))||_{L^2} &\leq C||\mathring {\v }(t)||_{H^j}\end {align*}


\begin {align*}\sup _{0\leq s \leq t} \left (||\tilde {\w }(s)||_{H^6_{\textrm {per}}(0,T)}+ ||\mathring {\v }(s)||_{H^3}+ ||(\gamma _x(s),\gamma _s(s))||_{H^4\times H^3}\right ) \leq K.\end {align*}


\begin {align*}&||\partial _x^j( \beta \mathcal {J}\left (\tilde {\w }_{xx}(\cdot + \gamma (\cdot ,t),t)(2\gamma _x(t)+ \gamma _x(t)^2) + \tilde {\w }_x(\cdot + \gamma (\cdot ,t),t)\gamma _{xx}(t)\right ) \\&+ \tilde {\w }_x(\cdot + \gamma (\cdot ,t),t)\gamma _t(t))||_{L^2} \\ &\quad \lesssim ||\tilde {\w }(t)||_{H^{j+3}_{\textrm {per}}(0,T)} ||\gamma _x(t)||_{H^{j+1}} + ||\tilde {\w }(t)||_{H^{j+2}_{\textrm {per}}(0,T)} ||\gamma _t(t)||_{H^j},\end {align*}


$j = 1,2,3$


$H^k_{\textrm {per}}(0,T) \hookrightarrow W^{k-1,\infty }(\R )$


$\phi $


$\tilde {\w }$


$\mathcal {R}_2$


$\mathring {\v }$


$\gamma $


$\sigma $


$t_{\textrm {max},\sigma }$


$t_{\textrm {max},\gamma }$


$\w $


$T_{\textrm {max}}$


$\v $


$\v _0$


$\tau _{\textrm {max}}$


$\mathring {\v }$


$\tilde {\w }(t) = \w (t)- \phi $


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align}\label {preliminaries_boundind_damping} \sup _{0 \leq s\leq t} \left ( ||\tilde {\w }(s)||_{H^{6}_{\textrm {per}}(0,T)} + ||\mathring {\v }(s)||_{H^3} + ||(\gamma _x(s),\gamma _s(s))||_{H^{3}\times H^2} \right ) \leq K.\end {align}


$\v _0 \in H^5(\R )$


$\v \in C([0,\tau _{\textrm {max}})); H^5(\R ))\cap C^1([0,\tau _{\textrm {max}}); H^3(\R ))$


$H^5(\R )$


$H^3(\R )$


$\v _0 \in H^3(\R )$


$K>0$


$t \in [0,t_{\textrm {max}, \gamma })$


$\mathring {\v }$


$\partial _t - \mathcal {L}_0(\mathring {\phi })$


\begin {align*}E_j(t) = ||\partial _x^j \mathring {\v }(t)||_{L^2}^2 - \frac {1}{2\beta } \langle \mathcal {J} M(\mathring {\phi })\partial _x^{j-1}\mathring {\v }, \partial _x^{j-1}\mathring {\v }\rangle , \quad j = 1,2,3,\end {align*}


\begin {align*}M(\mathring {\phi }) = 2\begin {pmatrix} -2\mathring {\phi }_r \mathring {\phi }_i & \mathring {\phi }_r^2 - \mathring {\phi }_i^2 \\ \mathring {\phi }_r^2 - \mathring {\phi }_i^2 & 2\mathring {\phi }_r \mathring {\phi }_i \end {pmatrix}.\end {align*}


\begin {align*}\partial _t E_j(t) = - 2E_j(t) + R_1(t) + R_2(t)\end {align*}


\begin {align*}|R_1(t)| \leq \frac {2}{3} E_j(t) + C_1||\mathring {\v }(t)||_{L^2}^2\end {align*}


$t$


$C_1>0$


\begin {align*}R_2(t) =& 2 \Re \, \langle \partial _x^j \mathcal {R}_5(\hat {\w }(t), \gamma (t),\gamma _t(t)), \partial _x^j \mathring {\v }(t) \rangle _{L^2} \\&- \frac {1}{\beta } \Re \,\langle \mathcal {J} M(\mathring {\phi })\partial _x^{j-1} \mathcal {R}_5(\hat {\w }(t), \gamma (t),\gamma _t(t)), \partial _x^{j-1} \mathring {\v }(t) \rangle _{L^2}.\end {align*}


$t$


$C_2>0$


\begin {align*}|R_2(t)| \leq \frac {1}{3} E_j(t) + C_2\left (||\mathring {\v }(t)||_{L^2}^2 + ||\gamma _x(t)||^2_{H^{j+1}} + ||\gamma _t(t)||^2_{H^{j}}\right ).\end {align*}


\begin {align*}\partial _t E_j(t) \leq -E_j(t) + C_3\left (||\mathring {\v }(t)||_{L^2}^2 + ||\gamma _x(t)||^2_{H^{j+1}} + ||\gamma _t(t)||^2_{H^{j}}\right )\end {align*}


$t$


$C_3>0$


$j = 1,2,3$


$t$


$C_4>0$


\begin {align*}||\partial _x \mathring {\v }(t)||_{L^2}^2 \leq E_1(t)+ C_4||\mathring {\v }(t)||_{L^2}^2\end {align*}


\begin {align*}||\partial _x^j \mathring {\v }(t)||_{L^2}^2 \leq 2E_j(t) + C_4\left (||\mathring {\v }(t)||_{L^2}^2 + E_{j-1}(t)\right ),\end {align*}


$j = 2,3$


$K>0$


$C>0$


$t \in [0,t_{\textrm {max},\gamma })$


\begin {align}\label {relate_h2} ||\mathring {\v }(t)||_{L^2} \leq C \left ( ||\hat {\v }(t)||_{L^2} + ||\gamma _x(t)||_{L^2} \right ),\end {align}


\begin {align}\label {relate_l2} ||\hat {\v }(t)||_{H^3} \leq C \left ( ||\mathring {\v }(t)||_{H^3} +||\gamma _x(t)||_{H^{3}} \right )\end {align}


\begin {align}\label {relate_l_infty} || \mathring {\v }(t)||_{L^\infty } \leq C\left ( ||\hat {\v }(t)||_{L^\infty } + ||\gamma _x(t)||_{L^\infty } \right ),\end {align}


\begin {align*}\sup _{0\leq s \leq t} \left ( ||\hat {\w }(s)||_{H^5_{\textrm {per}}} + ||\gamma (s)||_{H^4} + |\sigma (s)|\right )\leq K \textrm { and } \sup _{0\leq s\leq t}||\gamma _x(s)||_{L^\infty } \leq \frac {1}{2}.\end {align*}


$t \in [0,t_{\textrm {max},\gamma })$


$A_t(x) = x- \gamma (x,t) - \sigma (t)$


$B_t(x) = x+ \gamma (x,t) + \sigma (t)$


$||\gamma _x(t)||_{L^\infty } \leq \frac {1}{2}$


$A_t$


\begin {align*}x = A_t(A_t^{-1}(x)) = A_t^{-1}(x) - \gamma (A_t^{-1}(x),t) - \sigma (t)\end {align*}


\begin {align*}A_t^{-1}(x) - B_t(x) &= \gamma (A_t^{-1}(x),t) - \gamma (x,t).\end {align*}


\begin {align}\label {intermediate_integral} \gamma (A_t^{-1}(x),t) - \gamma (x,t) = (A_t^{-1}(x)-x) \int _0^1 \gamma _x(x+ \theta (A_t^{-1}(x)-x), t) \,d\theta ,\end {align}


$||\gamma _x(t)||_{L^\infty } \leq \frac {1}{2}$


\begin {align}\label {relation_key_estimate} ||A_t^{-1}- B_t||_{L^2} \lesssim ||\gamma _x||_{L^2}, \quad ||A_t^{-1}- B_t||_{H^l} \lesssim ||\gamma _x||_{H^l},\end {align}


$l = 1,2,3$


\begin {align*}||\hat {\v }(A_t^{-1}(\cdot ),t) - \hat {\v }(\cdot ,t)||_{H^3} \lesssim ||\hat {\v }(t)||_{H^3}, \quad ||\mathring {\v }(A_t(\cdot ),t) - \mathring {\v }(\cdot ,t)||_{L^2} \lesssim ||\mathring {\v }(t)||_{L^2}\end {align*}


\begin {align*}\hat {\v }(A_t^{-1}(x),t) - \mathring {\v }(x,t) = (\hat {\w }(B_t(x),t) -\hat {\w }(A_t^{-1}(x),t)) + (\phi (A_t^{-1}(x)) - \phi (B_t(x)))\end {align*}


\begin {align*}||\hat {\v }(A_t^{-1}(\cdot ),t) - \mathring {\v }(\cdot ,t)||_{H^3} \lesssim ||A_t^{-1} - B_t ||_{H^3} \lesssim ||\gamma _x||_{H^{3}}.\end {align*}


\begin {align*}\hat {\v }(x,t) &- \mathring {\v }(A_t(x),t) = -\hat {\w }(x,t) + \hat {\w }(x+ \gamma (A_t(x),t)-\gamma (x,t),t) \\&+ (-\phi (x) + \phi (x+ \gamma (A_t(x),t)-\gamma (x,t)))\end {align*}


\begin {align*}||\gamma (A_t(\cdot ),t) - \gamma (\cdot ,t)||_{L^2} \lesssim ||\gamma _x(t)||_{L^2},\end {align*}


\begin {align*}||\hat {\v }(\cdot ,t) - \mathring {\v }(A_t(\cdot ),t)||_{L^2} \lesssim ||\gamma _x(t)||_{L^2}.\end {align*}


$\w $


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$\w $


$T_{\textrm {max}}$


$\sigma $


$t_{\textrm {max},\sigma }$


$C ,\delta _2, \varepsilon _p>0$


\begin {align*}E_p := ||\w _0||_{H^6_{\textrm {per}}(0,T)}< \varepsilon _p ,\end {align*}


$\w (t)$


$\sigma (t)$


$t_{\textrm {max},\sigma } = T_{\textrm {max}} = \infty $


\begin {align*}|\sigma (t)|,&||\w (t) - \phi ||_{H^6_{\textrm {per}}(0,T)} \leq CE_p, \quad |\sigma _t(t)|, ||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)}, ||\mathring {\w }(t)\\ &||_{H^6_{\textrm {per}}(0,T)} \leq C e^{-\delta _2 t} E_p,\end {align*}


$t\geq 0$


$|\sigma (t)|$


$|\sigma _t(t)|$


$||\mathring {\w }(t)||_{H^6_{\textrm {per}}(0,T)}$


\begin {equation*}||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)} = ||\hat {\w }(\cdot +\sigma (t),t)||_{H^6_{\textrm {per}}(0,T)} = ||\mathring {\w }(t)||_{H^6_{\textrm {per}}(0,T)}\end {equation*}


$t\geq 0$


$\w _0 \in H^6_{\textrm {per}}(0,T)$


$\varepsilon _p$


$E_l = ||\v _0||_{H^3}$


$0< c < \frac {1}{2}$


$E_p < \varepsilon _p$


$\eta : [0,t_{\textrm {max},\gamma }) \rightarrow \R $


$C\geq 1$


$E_l$


$E_p$


\begin {align}\label {key_inequality} \eta (t) \leq C(E_l + \eta (t)^2 + \eta (t)E_p)\end {align}


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t) < \frac {c}{2}$


$t_{\textrm {max},\gamma } < \infty $


\begin {align}\label {final_blow_conditions} \limsup _{t \uparrow t_{\textrm {max},\gamma }} \eta (t) \geq \frac {c}{2}.\end {align}


$\eta $


$E_p < \min \{\varepsilon _p, \frac {1}{2C}\}$


\begin {align}\label {absorbed_key_inequality} \eta (t) \leq 2C(E_l + \eta (t)^2).\end {align}


$4C^2E_l < \frac {c}{2}$


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t)\geq 4CE_l$


$\eta $


$t_0$


$\eta (t_0)= 4CE_l < \frac {c}{2}$


$c \in (0,\frac {1}{2})$


\begin {align*}\eta (t_0) \leq 2C\left (E_l + (16C^2E_l) E_l\right ) < 4CE_l.\end {align*}


\begin {align}\label {stability_result_end} \sup _{t \in [0,t_{\textrm {max},\gamma })} \eta (t) \leq 4CE_l < \frac {c}{2}\end {align}


$t_{\textrm {max},\gamma } = \tau _{\textrm {max}} = \infty $


$t \in [0,t_{\textrm {max},\gamma })$


$\eta (t)< \frac {c}{2}$


$\hat {\v }$


$||\hat {\v }(s)||_{H^3}$


\begin {align}\label {relate_v_hat} ||\hat {\v }(s)||_{H^3} \lesssim (1+s)^{-\frac {1}{2}}\eta (s),\end {align}


$s\in [0,t]$


$s\in [0,t]$


$\eta (t) \leq \frac {1}{2}$


$\gamma $


$s \in [0,t]$


$\mathring {\v }$


\begin {align*}||\mathring {\v }(s)||_{L^2} \lesssim (1+s)^{-\frac {1}{2}}\left ( E_l+ \eta (t)^2 + \eta (t)E_p\right )\end {align*}


$0\leq s \leq t$


\begin {align*}||\mathring {\v }(s)||_{H^3} \lesssim (1+s)^{-\frac {1}{2}}\left ( E_l+ \eta (t)^2 + \eta (t)E_p\right ),\end {align*}


$0\leq s \leq t$


$\eta (t) \leq \frac {1}{2}$


$|\sigma _t(t)|$


$||\hat {\w }(t)||_{H^6_{\textrm {per}}(0,T)}$


$(1+t)^{-\kappa }$


$\kappa >\frac {1}{2}$


$L^\infty $


$L^2$


\begin {align*}&||\gamma _x(t)||_{L^\infty } \leq ||\partial _x s_p(t)||_{L^2 \rightarrow L^\infty }||\v _0||_{L^2} \\&+ \int _0^t ||\partial _x s_p(t-s)||_{L^1\rightarrow L^\infty }||\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s))||_{L^1} \,ds \\ &+\int _0^t ||\partial _x s_p(t-s)||_{L^2\rightarrow L^\infty } \Bigl ( ||\sigma _t(s)\hat {\v }_x(s)||_{L^2} + ||\mathcal {T}(\hat {\w }(s),\gamma (s))||_{L^2} \\ &+ ||(1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s))||_{L^2} \Bigr ) \,ds \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l + E_l \left (\int _0^t (1+t-s)^{-1} (1+s)^{-1} \,ds \right .\\&\left .+ \int _0^t (1+t-s)^{-\frac {3}{4}} (1+s)^{-\frac {1}{2}} e^{-\delta _2 s} \,ds \right ) \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


\begin {align*}||\hat {\v }(t)||_{L^\infty } &\lesssim (1+t)^{-\frac {3}{4}} E_l + \int _0^t (1+t-s)^{-1}||\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s))||_{L^1 \cap L^2} \,ds \\ &\quad + \int ^t_0 e^{-\delta _1(t-s)} ||\mathcal {R}_3(\hat {\w }(s), \hat {\v }(s),\gamma (s))||_{H^1} \,ds \\ & \quad +\int _0^t (1+t-s)^{-\frac {3}{4}} \Bigl ( ||\sigma _t(s)\hat {\v }_x(s)||_{H^1} \\ &+ ||(1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s))||_{H^1} + ||\mathcal {T}(\hat {\w }(s),\gamma (s))||_{H^1} \Bigr ) \,ds \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l +E_l \left (\int _0^t (1+t-s)^{-1}(1+s)^{-1} \,ds \right .\\ &\left .+\int _0^t (1+t-s)^{-\frac {3}{4}}(1+s)^{-\frac {1}{2}}e^{-\delta _2 s} \,ds \right ) \\ &\lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


\begin {align*}||\mathring {\v }(t)||_{L^\infty } \lesssim (1+t)^{-\frac {3}{4}} E_l,\end {align*}


$t\geq 0$


$\sigma _* := \int _0^\infty \sigma _s(s) \,ds$


\begin {align*}|\sigma _*-\sigma (t)| \leq \int _t^\infty |\sigma _s(s) | \,ds \lesssim e^{-\delta _1 t}E_p\end {align*}


\begin {align*}||\phi (\cdot + \sigma _* + \gamma (\cdot ,t), t) - \phi (\cdot + \sigma (t) + \gamma (\cdot ,t),t)||_{L^\infty } \lesssim e^{-\delta _1 t}E_p,\end {align*}


$t\geq 0$


$L^\infty $


$C_{\textrm {ub}}$


$L^\infty $


$L^2$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$L^2_{\textrm {per}}(0,T)$


$L^2_{\textrm {per}}(0,T)\oplus L^2(\R )$


$\w _0 + \v _0$


$\w _0 \in H_{\textrm {per}}^6(0,NT) \cap L^1_{\textrm {per}}(0,NT)$


$\v _0 \in H^3(\R )$


$N \in \mathbb {N}$


$L^1_{\textrm {per}}(0,NT)$


$N$


$\u = \w + \v $


$\w $


$\v $


$\u (0) = \w _0 + \v _0$


\begin {align}\label {uniform_result} ||\u (t)||_{L^\infty } \lesssim (1+t)^{-\frac {3}{4}} \left (||\w _0||_{H^6_{\textrm {per}}(0,NT) \cap L^1_{\textrm {per}}(0,NT)} +||\v _0||_{ H^3(\R )}\right ), \quad t\geq 0,\end {align}


$N \in \mathbb {N}$


\begin {align*}\hat {\w }(x,t) &= \w (x- \sigma (t) - \gamma _1(x,t),t) - \phi , \\ \hat {\v }(x,t) &= \u (x- \sigma (t) -\gamma _1(x,t) - \gamma _2(x,t),t) - \hat {\w }(x,t) - \phi (x)\end {align*}


\begin {align*}\mathring {\w }(x,t) &= \w (x,t) - \phi (x+ \sigma (t) + \gamma _1(x,t)), \\ \mathring {\v }(x,t) &= \u (x,t) - \hat {\w }(x+ \sigma (t) +\gamma _1(x,t) + \gamma _2(x,t),t) \\ &- \phi (x+ \sigma (t) +\gamma _1(x,t) + \gamma _2(x,t)),\end {align*}


\begin {equation*}\sigma : [0,\infty ) \rightarrow \R , \gamma _1 : [0,\infty ) \rightarrow L^2_{\textrm {per}}(0,NT) \textrm { and } \gamma _2: [0,\infty ) \rightarrow L^2(\R ).\end {equation*}


$\hat {\v }$


$\mathring {\v }$


\begin {equation*}||\partial _x\gamma _1(t)||_{L^2_{\textrm {per}}(0,NT)} , |\sigma _t(t)|, ||\hat {\w }(t)||_{L^2_{\textrm {per}}(0,NT)} \sim O((1+t)^{-\frac {3}{4}}),\end {equation*}


$N$


$\R + H^3(\R )$


$L^2_{\textrm {per}}(0,T) \oplus L^2(\R )$


$L^\infty $


$\gamma _0 -\sigma _*$


$||\gamma _0'||_{ H^3}$


$M^{m}_{\infty ,1}(\R )$


$M^m_{\infty ,1}(\R )$


$m \in \mathbb {N}$


$\hat {\u }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \phi (x)$


\begin {align*}(\partial _t-\mathcal {L}_0) (\hat {\v }) &= (\partial _t-\mathcal {L}_0)\hat {\u } - (\partial _t-\mathcal {L}_0) \hat {\w } \\ &= - (\partial _t-\mathcal {L}_0)(\phi '\gamma ) + (1-\gamma _x)\mathcal {R}_1(\hat {\u }) -\mathcal {R}_1(\hat {\w } ) + \sigma _t \hat {\w }_x \\ &\qquad + \partial _x\mathcal {S}(\hat {\u }, \gamma ,\gamma _t,\sigma _t) + \partial _x^2\mathcal {P}(\hat {\u },\gamma ) + (\partial _t -\mathcal {L}_0)(\gamma _x \hat {\u }),\end {align*}


$\hat {\u } = \hat {\v } + \hat {\w }$


\begin {align*}\widetilde {\mathcal {S}}(\hat {\u }, \gamma ,\gamma _t,\sigma _t) &= - \gamma _t\hat {\u } - \sigma _t \hat {\u } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\u } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ) \\ &= \widetilde {\mathcal {S}}(\hat {\v }, \gamma ,\gamma _t,\sigma _t) - \gamma _t \hat {\w } - \sigma _t \hat {\w } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\\ \mathcal {P}(\hat {\u }, \gamma ) &= -\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\u } = \mathcal {P}(\hat {\v }, \gamma ) + \mathcal {P}(\hat {\w }, \gamma ) .\end {align*}


$\sigma _t \hat {\w }$


$(\partial _t - \mathcal {L}_0)(\phi ' \sigma )$


\begin {align*}(\partial _t-\mathcal {L}_0) (\hat {\v } + \phi '\gamma - \gamma _x\hat {\w } - \gamma _x\hat {\v }) = & \mathcal {Q}(\hat {\w },\hat {\v },\gamma ) + \partial _x\mathcal {S}(\hat {\v }, \gamma ) + \partial _x^2\mathcal {P}(\hat {\v },\gamma )\\ & - \sigma _t \hat {\v }_x + (1-\gamma _x)\mathcal {R}_{2,2}(\hat {\w },\hat {\v }) + \mathcal {T}(\hat {\w },\gamma )\end {align*}


\begin {align*}\mathcal {Q}(\hat {\w },\hat {\v },\gamma ) &= (1-\gamma _x) (\mathcal {R}_1(\hat {\v } + \hat {\w }) - \mathcal {R}_1(\hat {\w }) - \mathcal {R}_{2,2}(\hat {\w },\hat {\v })) = (1-\gamma _x) \mathcal {R}_{2,1}(\hat {\v }, \hat {\w }), \\ \mathcal {S}(\hat {\v }, \gamma ) &= - \gamma _t\hat {\v } + \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2}\hat {\v } - \frac {\gamma _x^2}{1-\gamma _x}\phi ' \right ), \\ \mathcal {T}(\hat {\w },\gamma )&= - \gamma _x \mathcal {R}_1(\hat {\w }) - \partial _x\left (\gamma _t \hat {\w } - \beta \mathcal {J}\left ( \frac {\gamma _{xx}}{(1-\gamma _x)^2} \hat {\w }\right )\right ) \\&\quad - \partial _x^2\left (\beta \mathcal {J}\left (\gamma _x + \frac {\gamma _x}{1-\gamma _x}\right ) \hat {\w }\right ).\end {align*}


\begin {align*}\mathring {\v }(x,t) = \u (x,t) - \w (x+\gamma (x,t),t),\end {align*}


$\mathring {\phi }(x,t) = \phi (x+ \gamma (x,t))$


\begin {align*}\mathcal {D}(\u ) = \mathcal {J} \left (\begin {pmatrix}-\beta & 0 \\ 0 & -\beta \end {pmatrix}\u _{xx} + \begin {pmatrix}-\alpha & 0 \\ 0 & -\alpha \end {pmatrix}\u \right ) - \u .\end {align*}


$\u $


$\w $


\begin {align*}&(\partial _t - \mathcal {L}_0(\mathring {\phi })) \mathring {\v }(t)\\ & = (\partial _t - \mathcal {D})(\u (t)) - (\partial _t - \mathcal {D})(\w )(\cdot +\gamma (\cdot ,t),t) - \mathcal {N}'(\mathring {\phi }(t))\mathring {\v }(t) \\&\quad + \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\&= \mathcal {N}(\mathring {\v }(t) + \tilde {\w }(\cdot + \gamma (\cdot ,t),t) + \mathring {\phi }(t)) - \mathcal {N}(\tilde {\w }(\cdot + \gamma (\cdot ,t),t) + \mathring {\phi }(t)) \\&\quad -\mathcal {N}'(\mathring {\phi })\mathring {\v }(t) + \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &= \mathcal {R}_2(\mathring {\phi })(\tilde {\w }(\cdot +\gamma (\cdot ,t),t),\mathring {\v }(t))+ \mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t))\end {align*}


\begin {align*}&\mathcal {R}_5(\tilde {\w }(t),\gamma (t),\gamma _t(t)) \\ &= - \w _x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) - \beta \mathcal {J}\left ( \w _x(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) \right .\\&\left . \quad + \w _{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2)\right )\\ &= -\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) -\phi '(\cdot +\gamma (\cdot ,t),t) \gamma _t(t) \\ & \quad - \beta \mathcal {J} \Bigl (\tilde {\w }_x(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) + \tilde {\w }_{xx}(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \\ &\quad + \phi '(\cdot +\gamma (\cdot ,t),t)(\gamma _{xx}(t)) + \phi ''(\cdot +\gamma (\cdot ,t),t)(2\gamma _x(t) + \gamma _x(t)^2) \Bigr ).\end {align*}


$\tilde {\w }(t) = \w (t)-\phi $


$\w $


\begin {align*}\gamma (t) =& s_p(t)\v _0 + \int _0^t s_p(t-s)\Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) -\sigma _t(s)\hat {\v }_x(s) \\ &+ (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s),\hat {\v }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s)) \Bigr )\,ds\end {align*}


\begin {align*}\hat {\v }(x,t) = \u (x- \sigma (t) - \gamma (x,t),t) - \hat {\w }(x,t) - \phi (x).\end {align*}


\begin {align*}\hat {\v }(t) = \hat {\v }(\gamma (t),t)\end {align*}


\begin {align*}\tilde {\mathcal {N}}(t,\sigma (s),\gamma (s),s) =& s_p(t-s)\Bigl (\mathcal {R}_3(\hat {\w }(s),\hat {\v }(s),\gamma (s)) -\sigma _t(s)\hat {\v }_x(s) \\ &+ (1-\gamma _x(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(s)) + \mathcal {T}(\hat {\w }(s),\gamma (s))\Bigr ).\end {align*}


$0\leq \tau _1 \leq \tau _2<\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$j,k \in \mathbb {N}_0$


$K>0$


\begin {equation*}\sup _{t \in [0,\tau _2]} \left (||\w (t)||_{W^{1,\infty }} + |\sigma _t(t)|+ ||\v (t)||_{W^{1,\infty }} \right )\leq K.\end {equation*}


$C>0$


$C_{j,k}>0$


\begin {align}\label {bound_v_hat_appendix} \sup _{s \in [\tau _1,\tau _2]}||\hat {\v }(\gamma _1(s),s)-\hat {\v }(\gamma _2(s),s)||_{L^2} \leq C\sup _{s \in [\tau _1,\tau _2]}||\gamma _1(s)- \gamma _2(s)||_{L^2},\end {align}


$\gamma _1,\gamma _2 \in C([\tau _1,\tau _2]; H^5(\R )) \times C^1([\tau _1,\tau _2]; H^3(\R ))$


$\sup _{t \in [\tau _1,\tau _2]}||\partial _x\gamma _1(t)||_{L^\infty }, ||\partial _x\gamma _1(t)||_{L^\infty } \leq \frac {1}{2}$


$t \in [\tau _1,\tau _2]$


$s\in [\tau _1,t]$


\begin {align*}\hat {\v }(x,\gamma _1(s),s)-\hat {\v }(x,\gamma _2(s),s) &= \v (x- \sigma (s) - \gamma _1(x,s),s) \\&\quad -\v (x- \sigma (s) - \gamma _2(x,s),s) \\ & \quad + \w (x- \sigma (s) - \gamma _2(x,s),s) \\&\quad - \w (x- \sigma (s) - \gamma _1(x,s),s)\end {align*}


$\w (x- \sigma (s) - \gamma (x,s),s) - \phi (x) = \hat {\w }(x-\gamma (x,s),s)$


$j,k \in \mathbb {N}_0$


$\mathcal {R}_3 = \mathcal {Q} + \partial _x \mathcal {S} + \partial _x^2 \mathcal {P}$


$s_p(t)$


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)(\mathcal {R}_3(\hat {\w }(s),\hat {\v }(\gamma _1(s),s),\gamma _1(s)) -\mathcal {R}_3(\hat {\w }(s),\hat {\v }(\gamma _2(s), s),\gamma _2(s)))||_{L^2} \\ &\quad \leq C_{j,k} (||\gamma _1(s)-\gamma _2(s)||_{H^2} + ||\partial _t\gamma _1(s) - \partial _t \gamma _2(s)||_{L^2}),\end {align*}


$s_p(t-s)$


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl ((1-\partial _x\gamma _1(s))\mathcal {R}_{2,2}(\hat {\w }(s),\hat {\v }(\gamma _1(s),s)) \\ & -(1-\partial _x\gamma _2(s))\mathcal {R}_{2,2}(\hat {\w }(s), \hat {\v }(\gamma _2(s),s))\Bigr )||_{L^2} \leq C_{j,k} ||\gamma _1(s)-\gamma _2(s)||_{H^1}.\end {align*}


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl (\sigma _t(s)\left (\hat {\v }_x(\gamma _1(s),s) - \hat {\v }_x(\gamma _2(s),s)\right ) \Bigr )||_{L^2} \leq C_{j,k} ||\gamma _1(s)-\gamma _2(s)||_{L^2}.\end {align*}


\begin {align*}||&\partial _t^j\partial _x^k s_p(t-s)\Bigl (\mathcal {T}(\hat {\w }(s), \gamma _1(s)) - \mathcal {T}(\hat {\w }(s),\gamma _1(s))\Bigr )||_{L^2} \\ &\leq C_{j,k} (||\gamma _1(s)-\gamma _2(s)||_{H^2} + ||\partial _t\gamma _1(s) - \partial _t \gamma _2(s)||_{L^2}),\end {align*}


$s_p(t-s)$


$s_p$


$\gamma (t) = 0$


$t \in [0,1]$


$\gamma $


$\tilde {\gamma }$


$[0,t_0]$


$t_0>0$


\begin {align*}X_{t_0,\tau _0} = \Bigl \{\gamma \in & C([t_0,t_0+\tau _0]; H^5(\R )) \cap C^1([t_0,t_0+\tau _0]; H^3(\R )): \\ &\sup _{s \in [t_0, t_0+ \tau _0]} ||(\gamma (s), \gamma _s(s))||_{H^5 \times H^3} < \frac {c}{2}\Bigr \}\end {align*}


$\tau _0>0$


\begin {equation*}\gamma \in C([t_0,t_0+\tau _0]; H^5(\R )) \cap C^1([t_0,t_0+\tau _0]; H^3(\R ))\end {equation*}


$t\in [t_0,t_0+\tau _0]$


$X_{t_1,t_2}$


$t_1 \in (0, \min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\})$


$t_2>0$


\begin {align}\label {gamma_taking_piece_together} \gamma (t) = \begin {cases} \tilde {\gamma }(t), & t\in [0,t_0]\\ \gamma (t), & t\in [t_0,t_0+\tau _0] \end {cases}\end {align}


$[0,t_0 + \tau _0]$


$\gamma \in X_{t_0,\tau _0}$


$t_{\textrm {max},\gamma } \in (0,\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}]$


$t_{\textrm {max},\gamma }<\min \{\tau _{\textrm {max}},t_{\textrm {max},\sigma }\}$


$\tilde {\gamma }$


$\sup _{t \in [0,t_{\textrm {max},\gamma })} ||(\tilde {\gamma }(t),\tilde {\gamma }_t(t))||_{H^5\times H^3} < \frac {c}{2}.$


$X_{t_{\textrm {max},\gamma }, \tau _0'}$


$\tau _0'$


$[0,t_{\textrm {max},\gamma } + \tau _0')$


$||(\gamma (s), \gamma _s(s))||_{H^5 \times H^3} < \frac {c}{2}$


$t \in [0,t_{\textrm {max},\gamma } + \tau _0')$


$t_{\textrm {max},\gamma }$
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translational invariance of (1.1). Moreover, we employ novel L? — L*®-
estimates in the nonlinear iteration argument to control the interaction
between the periodic and localized components of the perturbation. For
more details on the strategy of the proof, we refer to Section 2.6. The
outlook section Section 6 is devoted to the robustness of our approach
as well as its possible extension to periodic wave trains in viscous con-
servation laws where the handling of fully nonlocalized perturbations is
similarly challenging as for the Lugiato-Lefever equation but for differ-
ent reasons. In case of the Lugiato-Lefever equation, a crucial difficulty
towards extending to a fully nonlocalized stability result is to choose
a suitable class of perturbations which contains all C*-functions. The
generic space of perturbations is given by

Cl’lnb(R) = {f : R C: f is m-times differentiable with
uniformly continuous and bounded derivatives},

m € N, whenever studying reaction-diffusion systems [12,17,18]. The
solutions of (1.1) with initial data in le)er([R) @ H'(R) naturally lie in
Cyp(R) due to Sobolev embedding. However, it is shown in [19] that
t ||e"(’§’uo||Lm blows up in finite times for certain u, € Cy;,(R) and
therefore it is convenient to study other spaces than C,,(R) to ap-
proach a fully nonlocalized stability result for the Lugiato-Lefever equa-
tion (1.1). More suitable variants are given by the so-called modulation
spaces Mo";’] (R), m € Ny, which are introduced in [20]. We discuss such
an extension in Section 6.4.

2. Preparation and main result

We reformulate the Lugiato-Lefever equation as a semilinear system
with a C-linear part by splitting into real- and imaginary variables. Then,
we construct perturbed solutions with initial data in Lfm(o, T)® L*(R)
and derive the associated perturbation equations. At the end of this sec-
tion, we impose spectral properties and formulate our main result.

2.1. Reformulation as real system

As |u|?u is not differentiable with respect to u € C, we introduce u : =
(u,,u;)T 1= (Re(u), Im())” : R — R? which transforms (1.1) into the real

system
0 —a 0 F
_ﬂ>uxx+<0 _a>u>—u+/\f(u)+<0>, 2.1)

=
2

where
_ (0 -1 ) _ —u?—uru,-
J—(l O)’ N@) = |u] Ju—<urui2+u§ .

2.2. The perturbed solution in L;er(O, T)® L*(R)

We assume the existence of a periodic standing wave.
(H1) There exists a smooth, nonconstant and T-periodic stationary so-
lution ¢, : R — C of (1.1).
We set ¢ := (¢, d;)T := (Re(ey), Im(¢hy))” : R — R? and construct a so-
lution of (2.1) with initial datum ¢ + w; + v, in Lfm(o, T) ® L*(R) with

w, € Léer(o, T)and v, € L*(R) by following the strategy of [14]. We first

solve

_ -p 0 —a 0 B F
=3 (5 St (0 ) weven (§)
w(0) =¢+w,

in Léer(o, T). Then, we transfer from the solution w of (2.1) to a solu-
tion u of (2.1) with initial datum ¢ + w, + v, by solving the perturbed
problem

_ -p 0 [~ 0 _ _
v,_J<<O _ﬂ)vxx <0 _a>v> v+ N +w) - N(w) 23

v(0) = vj.
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Periodic initial perturbation
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Initial perturbation from L2..(0,T) & L*(R)
Fig. 1. For the sake of illustration, we reduce to the real part of an initial per-
turbation w, + v, with wy € L2, (0,T) and v, € L*(R). This figure demonstrates
that v, can in particular be chosen such that v, + w, coincides with w, except for
finitely many periods for which the signal vanishes, which motivates the name
"tooth space" for L2_(0,T) @ L*(R) ("L*(R) knocks out teeth of L2_(0,7)").

per per

In summary, if we solve (2.2) and (2.3), then u = w + v is a solution of
(2.1) with u(0) = ¢ + wy + vg.

Remark 2.1 (Interpretation from fiber optics). The cubic nonlinear
Schrodinger equation on L; (0. 7)® L%(R) can be understood as model
from nonlinear fiber optics by considering t > 0 as point on a fiber and x € R
as time variable, cf. [13]. The stationary periodic solution ¢ is then the signal
at any point on the fiber if it is chosen as input signal. Prescribing a signal at
the initial point of the fiber by ¢ + le, (0, T), we ask how the signal as func-
tion depending on the time x € R looks at the place t > 0 on the fiber. Adding
an L*(R)-perturbation corresponds to temporally limited changes of the input
signal. In particular, one may switch off the periodic signal for finitely many
times as illustrated in Fig. 1. Global existence of the perturbed solutions then
translates to the observation that the fiber has infinite length while stability
of ¢ is interpreted as that the signal stays close to ¢ at any point t > 0 on the
fiber.

2.3. Unmodulated perturbation equations
Given a solution u(¢) = w(?) + v(¢) of (2.1), we derive the unmodu-
lated perturbation equations by splitting the perturbation as
u(t) = u(t) — ¢ = (w(t) — ¢) + v(¢) and setting w(r) = w(z) — ¢.
This gives the coupled perturbation system

W, = Lo(@W + R ()W), = Lo()V + Ry(h)(W, V)

W(0) = w,, v(0) = vy, @
where £(¢) is the linearization of (2.1) about ¢, given by

Lo =7 (—ﬂa,% _20141 qidaf +97 o2 -iﬁﬁg . 3#) 1 @8
first residual nonlinearity is given by

Ri(@)F) = N (W + @) — N (@) — N (9)W, (2.6)

and the second residual nonlinearity is defined by
Ro(P)(W, V) = R($)(V + W) — R ($)(W) = Ry 1 ($)(W, V) + Ry 5 ()(W, V),
(2.7)
with
R 1 ()W, V) = N(V+ W + §) = N (W + §) — N (W + ¢)v,
R ()W, V) = N (W + g)v — N (@)v.
Fix some constant K > 0. Then, there exists a constant C > 0 such that

for v, w € C with |v|, |W| < K we have the nonlinear bounds

IR {(PW)] < CIW, Ry (DWW S CIVIE [Rys(@)(W, V)| < CIv]|W].

(2.8)

For the local wellposedness of (2.4), we refer to Section 4.1.

We also abbreviate Ly = Ly($), R =R (¢), R, =Ry(d), Ry =
R, 1(¢)and R, , = R, ,(¢) whenever ¢ is the original periodic wave pro-
file.
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2.4. Spectral assumptions on ¢

Consider the Bloch operators L£(&) = e™¢' L/, £ € [—%, Z), posed
on Léer(o, T) with domain D(L(¢)) = ngr(o, T). Since £(¢) has compact
resolvent, its spectrum consists of isolated eigenvalues of finite algebraic
multiplicity only.

We introduce the standard diffusive spectral stability assumptions,
cf. [10,11,16,21].

(D1) We have 6,2(Ly) C {4 € C : Re(4) < 0} U {0};

(D2) There exists a constant # > 0 such that for any & € [—%, %) we have
Reops or)(LE@) <08

(D3) 0 is a simple eigenvalue of £(0).

The spectrum of £, on L?(R) is the union of the spectra of the Bloch
operators, i.e.,

or2(Ly) = U O'le’er(oj)(ﬁ(f))

sel-%.5)

The spectrum o;2(L,) is purely essential, see e.g. [22,23]. We empha-
size that the periodic solutions of (1.1) established in [7] and [9] satisfy
(H1) and (D1)-(D3). First, Assumption (D3) together with the transla-
tional invariance of (1.1) imply that the kernel of £(0) is spanned by ¢'.
Therefore, 0 is also a simple eigenvalue of the adjoint operator £(0)*. By

&50 S ngr(O, T), we denote the corresponding eigenfunction satisfying

<50’ ¢,>L2(O,T) =1L

For some sufficiently small &, € (0, %), we summarize the following
properties and refer to [11, Lemma 2.1] for their justifications and fur-
ther properties of 6;>(£() and o, > o) L©).

per\V>

(P1) There exist T-periodic and smooth eigenfunctions @, with @, = ¢’
associated to the simple eigenvalue 4.(¢) of L(&), i.e., L&D, =
A.(&)®; for & € (=&, &y)-

(P2) There exist T-periodic and smooth eigenfunctions <T>§ associated
to the simple eigenvalue 4.(¢) of the adjoint operator L(£)*, i.e.,
5(5)*‘55 = 2,(8)®; for & € (=&, &)

(P3) For any m € N, the expansions

[~ 44|

2.(&) —iag +d&*| S|P, < Iél.

H™(0,T)

hold for & € (-¢, &) with some coefficients a € R and d > 0.

We define the spectral projections onto span{®,} as

) = O(P. 8) 127 & E L2 (0,T).
2.5. Formulation of main result

We are now in the position to state our main result.

Theorem 2.1. Assume (H1) and (D1)-(D3). There exist constants C,e > 0
such that for initial data w,, € ngr(O, T) and v, € H3(R) with
Ey :=|lwy+ V0||ngr(0,T)ﬂ)H3(R) <e
there exist a solution
u(t) € C([0, 00); C3 (R)) N C' ([0, 0); Cypp(R)) 2.9)

of (2.1) with initial condition u(0) = ¢ + w,, + v, some smooth function y €
C([0, ), H>(R)) and a constant o, € R with the properties

[lu@®) - ¢llp20 < CE, (2.10)
and
[, D) = (- + 0, + 7o )| oo < C(1 + t)_%EO, (2.11)

forallt > 0.
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We briefly discuss the regularity assumptions in Theorem 2.1. The
assumption v, € H3(R) is justified by the fact that the regularity control
on v mainly proceeds along the lines of a standard L! n H*-nonlinear
stability analysis [11,24] using the nonlinear damping estimate estab-
lished in [25]. The reason for the regularity assumption on w is that v
is considered as a perturbation of the periodic solution w, which yields
expressions in the modulated perturbation equations for v where w ap-
pears with two spatial derivatives. As we need to control v in H3(R),
this leads to three more derivatives on w. Therefore, we need to bound
the fifth derivative in L® which is covered by assuming w, € ngr(o, T).
Since we estimate the H'-norm of the residual in Section 5.2 in order to
find an L*-estimate (in the spirit of the embedding H'(R) & L®(R)),
it suffices to demand w, € ngr(O, T) and v, € H*(R) when one only
aims to establish pure L2-estimates on v and henceforth obtain (2.11)

in L*(R) with lower decay rate (1 + t)_%.

Comparing (2.11) to the associated estimate in [11], we loose an
algebraic decay factor of % and one might ask whether we can compen-
sate this lack of decay by taking the assumption v, € L'(R) n H3(R).
However, this assumption does not improve the decay rates due to the
coupling terms R,(W,v) in (2.4) which cannot be controlled in L!(R)
but only in L?(R), cf. Remark 4.1.

Another interesting contrast to the result in [11] is the constant phase
shift arising in the modulational estimate (2.11). The reason for this
constant phase shift precisely originates from the fact the we not only
enclose localized- but also co-periodic perturbation. This is reflected in
designing the modulational approach to exploit the orbital stability re-
sult from [10].

Remark 2.2 (Uniqueness of solutions). The solution u(t) in Theorem 2.1
is unique from the sum space

C((0, 00); Hp,, (0.T) @ H(R)) N C' ([0, co0); H,, (0.T) & H'(R)).

The reason is as follows. Taking a solution u(t) of (2.1) from the sum space,
then it fulfills (2.1) pointwisely. Since the sum L;er(O, T) @ L*(R) is direct,
we can split u(t) in a periodic part which satisfies (2.2) and a localized part
which necessarily satisfies (2.3). These both parts are uniquely determined
through Propositions 4.1 and 4.2. This implies that u(t) is the unique solution
of (2.1) from the sum space.

Concerning fully nonlocalized solutions of (2.1), local well-posedness of
(2.1) with initial data from the modulation space M ;(R) follows by stan-
dard semigroup theory, invoke e.g. [26, Theorem 1.2 in Section 6.1], using
the observations that the principal linear part of the Eq. (2.1) generates a C,-
semigroup on M, ;(R) and that M, ;(R) admits the algebra property. For
the latter, we refer to [27, Lemma 5.10]. As an immediate consequence, there
exists a unique (mild) solution of (2.1) as element from C([0,1), M, ; (R)),
t > 0, whenever u, € Cib([R) < M, | (R). In particular, this shows that the
solution u(r) of (2.1) with u(0) = w,, + v, in Theorem 2.1 satisfying (2.9) is
unique, see also [26, Corollary 1.3 in Section 6.1].

2.6. Strategy of proof

The main task in the proof of Theorem 2.1 is to find a suitable way
to modulate the perturbations allowing to close a nonlinear argument
through iterative estimates on their Duhamel formulae. The construc-
tion of the perturbations w(r) and v(r) shows that w(7) is independent of
v(1). Therefore, we first modulate w(¢) by introducing a temporal mod-
ulation function o(¢). Precisely, we choose W(x, 1) = w(x — (), ) — p(x).
Then, we do not only interpret v(¢) as perturbation of w(¢) but do the
same for their modulated variants. This leads to the following inverse-
modulated perturbation

V(x, 1) =0(x,1) — W(x, 1) :=u(x —o(t) —y(@),1) — W(x,1) — p(x).

We arrive at a coupled system which allows to make an a-posteriori
choice of the spatio-temporal phase modulation y : [0, ) x R — R2. We
are then in the position to exploit the exponential decay of |o,(r)| and
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[|W(®)|| ;. We also introduce the forward-modulated perturbation
V(x, 1) = a(x, 1) = W(x + o(t) + 7(x,1),1)
=ulx, ) — dp(x + o(t) + y(x,1), 1) — Wx + o(t) + y(x,1),1)

which obeys a semilinear equation and can thus be used to control reg-
ularity in the nonlinear iteration. We control regularity by deriving a
nonlinear damping estimate on v(¢) and subsequently relating v(¢) to v(z).
Finally, we show the following stability estimates: for suitable constants
C, 6 > 0 and small initial conditions

Ey = E, + E; with E, = ||| o and E; = [1%ll;5.

we find

- -5
0O 150l o) < Ce'E,. ol SCE,, 120, (2.12)

and

1
Ny Ol g 1y Ol g, (Ol s CA+D72E;,  |lyOllys SCE;, t20.
(2.13)

Using L*-estimates on the propagators, we arrive at the refined L*-
estimate

OIS 5C(l+t)"%E,, t>0. (2.14)
Applying (2.12) and (2.14), Theorem 2.1 follows from the observations
Ol Lo < NWC+ 00 + 70,0l Lo + VO o0, 120,
and

() = ¢l 2 < (RO ae +o0@] + [rOlly2e). 120,

and Sobolev embedding. The estimate (2.12) can be derived along the
lines of the co-periodic stability analysis in [10] and therefore the re-
maining task of this paper is to prove (2.13) and (2.14).

Notation.. Let S be a set, and let A, B: S — R. Throughout the paper,
the expression “A(x) < B(x) for x € S”, means that there exists a con-
stant C > 0, independent of x, such that A(x) < CB(x) holds forall x € S.

3. Linear estimates

We collect well-known facts about the semigroup generated by the

linearization £, on Lf)er(o, T) and on L3(R). Let y: [0,00) > R be a

smooth temporal cut-off function satisfying y(¢r) =0 for ¢ € [0, 1] and
20 =1fort € [2,c0).

; s ; 2
3.1. Semigroup decomposition and estimates on L;,(0.T)

We write
81(1) = (' = x(OT(0))g
and have the following linear estimate.

Proposition 3.1 ([10,28]). Assume (H1) and (D1)-(D3). There exist
constants &,, C > 0 such that the estimate

N —dpt
1S} (t)g”ngr(O,T) < Ce ™ ”g”H;er(OsT)

is valid for all g € H},(0,T).

3.2. Semigroup decomposition and estimates on L*(R)

Assume (H1) and (D1)-(D3). Let 0 < p < 1 be a smooth cut-off func-

tion with support in (&, &)) and p = 1 on (—%", %"). Using Floquet-Bloch
theory and recalling (P1)-(P3), we decompose

ef'g = S, (g + ¢'s, (e,
with

x® T
s,(Dg(x) = E/R/—

z
T

PE)eETIHENDL(y) deg(y) dy,
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P& D, (x) — ¢ ()P} () dég(y) dy,

S,(0g(x) = % /R / i

S (g =e“'g—¢'s, (g - S,(g,
and
S,(ng = S, (g + S,(Dg,

as in [11,24,29]. The principal observations are that ,(¢) decays expo-
nentially from H*(R) to H*(R), while s,() admits decay analogously to

Sis

g e LX(R), (x,1) € R x [0, ),

1
the heat semigroup and S,(¢) decays with the additional rate (1 +1)"2
compared s,(7) due to the term @, — ¢6 and (P3). We summarize the
following linear estimates.

Proposition 3.2. Assume (HI1) and (D1)-(D3). Let I,j €Ny and k €
{0,1,2}. Then there exists a constant C,;>0 such that

10075, (gl 12 < C (1407 2] 2R
0 Sp\)0 8ll2 =0 g||L2’ ge L°(R)

. 1
[10L0/s, (el 2 < C (1 +0737 2 [Igll, g€ L*R)nL'(R),

for all t > 0. Furthermore, there exists a constant C > 0 such that

15,0gll2 < CA+07 3 lgll iz g€ LXRINLIR)
and

15,00gll2 < CA+0 2 lgll2, g€ LX),
forallt>0.

Proof. The first two estimates are precisely shown in [11, Lemma 3.1].
The third one is a consequence of [11, Lemma 3.1 & Lemma 3.2]. Adapt-
ing the proof of the estimate S‘c(t) in [11, Lemma 3.2], one immediately
finds the last estimate. [J

Proposition 3.3 (L*®-estimates). Assume (H1) and (D1)-(D3). There

exist constants C, 5, > 0 such that

1Sl oo < Ce®Igll 1 + A+ D7 gl Lin2), g€ H'®) N L'R),
15,0l = < CA+07F lglly1, g€ HI®R),

and

10,5,(0gll = < CA+0 5 lgll2, g € LXR),

l10,s,(0gll e < CA+07"Igll, g€ L'(R),

forallt>0.

Proof. The last two estimates are shown in [11, Lemma 3.2]. The first
two estimates are consequences of [11, Lemma 3.1] together with [24,
Corollary 3.4] and [29, Proposition 3.1]. O

4. Nonlinear iteration scheme
4.1. Local existence of the solutions

Using standard semigroup theory, see e.g. [30] or [26], we establish

Proposition 4.1. Let w, € H;er(o, T). There exist a maximal time

Tax € (0,00] and a unique solution weC([O,TmuX);H;’er(O,T))n

C ([0, Trngx)s Hyp, (0.T) of (2.2) with w(0) = ¢ + Wo. If Ty < oo, then

limsup ||w(?)| |H;,‘e,(o,r> = o0. “4.1)

M Tax

Having the solution w at hand, the local existence of v follows.

Proposition 4.2. Let w and T,,,, be as in Proposition 4.1. Let v, €
H3(R). There exist a maximal time Ty, < Tje, and a unique solution
V € C([0, Tay); H3(R) N C([0, Tpgr); HU(R)) of (2.3) with v(0) = v,. If
Trmax < Tmaxs then

(4.2)

lim sup |[v()]| ;1 = 0.
N Tmax
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Proof. Due to the embedding H!_ (0,T) & L®(R), we have that

per
v NV4+w —NWw

is locally Lipschitz-continuous as map from H'!(R) to H'(R). Moreover,

(S0 S)

generates a Cy-semigroup on H!(R) with domain H3(R). Therefore,
Proposition 4.2 follows from [26, Theorem 1.4 of Section 6.1]. O

4.2. Inverse-modulated perturbations

We first modulate u(), that is, we consider
u(x —o(?),1) — d(x) = (W(x — o(1),1) — p(x)) + v(x — 6(1),1)

for some o : [0, 00) > R with ¢(0) = 0 to be defined a-posteriori. Then,
we set

W(x, 1) = w(x —o(t),1) — p(x). (4.3)

Motivated by the fact that v(¢) is a perturbation of w(r) = w(t) + ¢, we
subsequently define

V(x,1) =u(x —o(t) —y(x,1),1) — W(x,1) — p(x) 4.9

for some y : R X [0,00) - R with y(-,0) =0 to be defined a-posteriori.
We find the modulated perturbation equations for w(),

@, — L)W + ¢'o) = R (W) — 6,W,
W(0) = wy — .

and the one for ¥(7),

(4.5)

0 = LY+ @'y = 7, W = 1) = R3(W, ¥, 1) — 6,9, + (1 =7 )R, (W, 684. 6)
+ T (W, 7)¥(0) = vy,

where

R3(W,9,7) = Q(W, ¥,7) + 0,S(,7) + 0*P(¥,7)

and

QW,9,7) = (1 = 7Ry, (W, ),
v i
SN s xx o Ix ’
SW,y) = }'tv+ﬁ-]<(1_yx)2v l_qub),

PE.y) = —ﬂJ(Vx + )6,
1 - yx

. X X Yax o

—a§<ﬂ3<yx+ : U >W>
—¥x

We delegate the derivation of (4.6) to Appendix A. The main observation
is that in the nonlinearities of (4.6) any w- and o,-term is paired with a
7y, V or ¥, contribution suggesting that we have sufficient control for an
L-iteration scheme since we expect exponential decay for ||W(?)|| ;« and
|o,(t)| from [10] while we control y,.(), ¥(f) and y,(r) in H*(R). To this
end, we establish the following straightforward bounds which follow by
Holder’s inequality and Sobolev embedding.

Lemma 4.1. Fix a constant ¢ > 0 such that || f|| ;o < %for all f € H\(R)

with || f| 1 < ¢ due to Sobolev embedding. There exists a constant C > 0
such that

L'-bound: ||R;(W, ¥, 7)l|,1 < C(IIVIIZLZ F s 7O g2t ¥ g2 + ||7x||L2)),
L?-bound: ||R3(W, ¥, 7)l| 2 < C(IIGIIZI + s 7O 2 U191 g2 + IInyILz)),
H'-bound: ||R5(W,¥,7)l| ;1 < C(IIVIIZI + U 7O 3502 U1V g3 + IIVXI|H1)>,
and

L2-bounds: ||, ¥, |12 < Clo 9], [1(1 = 7R, (W, D)l 12
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< C||O||L2”W||leer(0,7'),
N7 %Nl 2 < ClGe ol W3, o)

(L = 7 )R (W, )| 1

S Cl¥Ha Wl g2 o1y

H'-bounds: ||o,9,|| ;1 < Clo,||9]] 2,

7% Nl < ClHGx i W g o7y

hold for all v € H*(R), W € H,, (0, T), (. v,) € H*(R)x H*(R) and 5, €
R provided

19115 0y 1911zl s <.
4.3. Modulation in the purely co-periodic setting

The forward-modulated perturbation w(x,?) = w(x,?) — ¢(x + (1))
fulfills the semilinear system

(0, = L)W — @'6) = Ry(W(1). 6(0) + (@' (- + 6(1) — ¢)o, (1)
with
Ry(W(0), o(1)) = Ry(P(- + sNW(®) — (N (9) = N (9(- + 6 ())W().

Introducing the temporal modulation function
t
o(t) =xOI0)W, +/ 2t = SII0)(R4(W(s), 6(5))
0

+@' (- +0(5)) — $oy(s)) ds 4.7)

gives rise to the Duhamel formula
t
w(t) = S, (W, + / S1(t = 9)(Ry(W(s),0(5)) + (@' (- + 6(5)) — ¢)oy(s)) ds.
0
(4.8)

By a standard fixed point argument, we have local existence of ¢.

Proposition 4.3. Let w and Ty, be as in Proposition 4.1. There exists
a maximal time t,,q, ; < Ty Such that (4.7) with w(x, 1) = w(x, 1) — ¢p(x +
o(t)) has a unique solution

o € C'((0, max.s)s R) with 6(0) = 0 and |(c(1), 6,(1))| < %, 1 € [0, Tmax)-
If taeo < Tmaw then limsup,y,  |(0(),0,())| > 3.
Furthermore, using the mean value theorem, the following bounds hold.
Lemma 4.2. Let K > 0. There exists a constant C > 0 such that
1R gg 07y < I g o) (1ML o) + 1)

||(¢,( +0)-— d’,)gxl |ngr(0,T) < Clolloyl,
provided

o1+ 1]+ 111 0.7y < K-

4.4. Choice of the spatio-temporal phase modulation
We have the Duhamel formula for ¥(z),

V(0 =e“'vo — ¢'r () + /0 o (R5(¥(). %), 7(5))

=0 ()V,(5) + (1 = 7x ()R (¥(s), W(s)) + T (W(s), 7(S))> ds
+ 7 (OWE) + 7, ()V(@),

under the condition that y(0) = 0. We make the implicit choice

t
(1) =s,(D)vy +/ syt = S)<R3(W(S),‘7(S), 7(5)) = o5(s)V,(s)
0 4.9

+ (1 = 7. ()R (V(5), W(s)) + T (W(s), 7(S))) ds
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which reduces the Duhamel formula for ¥(¢) to
V(1) =8,V + 7, (V@) + ¥ (D)

N /O 530 = 5)( Ry 50517659 = 7,97, (4.10)
(1= 7 (DR (5). W) + T (R, 7(5) ) ds.

Setting 7 = 0 in (4.9) and using that 5,(0) =0, one indeed verifies that
y(0)=0.

Proposition 4.4. Let w and T,
as in Proposition 4.2 and ¢ and t

as in Proposition 4.1, v, vy and Tpqy
as in Proposition 4.3. Further-
more, let 0<c<% be a constant such that ||f||je» < %llf“Hl for all

max,c

f € H'(R). There exists a maximal time t,yq,. , < Min{Zyq0: gy } SUCh that
(4.9) with w(t) = w(- — (1)) — ¢ and ¥(t) = u(- — o (t) — y(-, 1), 1) = W) —
has a unique solution

¥ € CU0, tge, )s HIR)) N CH((0, gy, ) HP (R)) with 1(0) = 0
satisfying

NG @, 7O gsys < % 1 € [0, Iymgny)- 4.11)
If tiax, < Min{ gy, tngys 1> then
timsup |17 (). 7,0 prerrs 2 5 (4.12)

Mmax.y
Proof. See Appendix C. O

Corollary 4.1. Let w and T, as in Proposition 4.1 and v, v and 4, as
in Proposition 4.2. Let y, ¢ and tmgy 5 tmax,, @S in Propositions 4.3 and 4.4.
Then, the inverse-modulated perturbation ¥ € C([0, t;410); L%*(R)) defined

by (4.4) satisfies (4.10) with W(t) = w(- — (1)) — ¢ and %(t) € H>(R) for
allt € [0, tyay)-

Proof. Let? € [0, 1,y ,)- We observe

Vx, 1) = v(x —a(t) = y(x,1),1) + W(x — o(t) — y(x,1),1) = W(x, 1) — p(x)
=v(x —o(t) —y(x, 0,0+ Wx —o(t) —y(x,0),1) = W(x — o(1), 1)

yielding on the one hand, with w(r) € Hser(O, T) < W4*(R) and the

mean value theorem,

[lWwix = o(t) = y(x,0),0) = W(x = o(0), Dl 3 Sy DIl 3.

On the other hand, since y(1) € H* & W3, sup i 17x($)] 1 < % and
v(1) € H3(R), we conclude

¥(r) € H3(R)
with the help of the chain and substitution rule. O

Remark 4.1. We can now provide some intuition where the decay (1 +
1

1) 2 for v and y, in (2.13) originates from. For this purpose, assume that

|o,| admits exponential decay while ||V||,2 ~ ||V,||;2 decays at rate (1+

7 with k > L. Considering the term ||, V.|| ;2 < ||V || 2l0,] in (4.9) and

(4.10), this yields the integral

! 1 1
/ (I+t—5) 21 +s) e Sds<(1+D72.
0
By noting that 6,V cannot be estimated in any LP-norm with 1 < p < 2 due
to the lack of localization of ¥, we can only close an iterative argument with

K= % at best. This shows that even with the additional assumption v, €
L(R), the decay rate on ¥ cannot be improved.

4.5. Forward-modulation of v and nonlinear damping estimates

We wish to control |[V]|ys in terms of [|[V]|;2, 7, 7y o, and W
in the nonlinear iteration argument in order to control regularity, cf.
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Lemma 4.1. For this purpose, we introduce the forward-modulated per-
turbation v, that is,

V(x, 1) =u(x,t) — W(x + o) + y(x,1),1) — p(x + 6(t) + y(x,1))

=u(x, 1) — wx + y(x,1),1) (4.13)
=v(x, 1)+ w(x, 1) — w(x + y(x,1),1),

which satisfies the semilinear system, cf. Appendix B,

(0 = Lo(NV(1) = Ro(@)F(- + 7(,0),0,9(1)) + Rs (WD), y (1), 7,(1)  (4.14)

with

—po2 — a + 3¢ + ¢
24y — po2 —a + ¢% + 3¢§
-1 (x.0) = p(x + y(x.1),

£o() =J< 2"’1"’2>

and

Rs(W(@), y(1), r,(1)
=W, (- +7C0,07,0) — ' ¢ + 7. D)y, (1)

= BT (Wl 700 0) 4 W (7D D10 + 7, 0)
+ @' CH7ED @ + ¢+ (D)2 () + yx(t)z)).

Note that Rz(qg) is as defined in (2.7) and w(r) = w(t) — ¢ is the umodu-
lated perturbation of w(r). We setup the local existence for the forward-
modulated perturbation v(r) which is a straightforward consequence of
Propositions 4.1, 4.3 and 4.4.

Corollary 4.2. Let w and T, as in Proposition 4.1 and v, and
Tmax @ i (4.2). Let y, ¢ and tyay s tpgy, GS in Propositions 4.3 and
4.4. Then, the forward-modulated perturbation V € C([0, tpqy,); H 3R)N
C([0, t,gy,); H'(R)) defined by (4.13) satisfies (4.14) with W(t) = w(t) —
¢.

Lemma 4.3. Let j = 1,2,3. Fix K > 0. There exists some C > 0 such that
for t € [0,,4.,), we obtain

[10{Rs(W(@), (), v, | 2 < CUlyOl g1 + 7O i),
[0SR (YW + 7 (1), 0, VD[ 2 < CIVD I g

provided

max.,y

sup (I ge, o7 + N2 + 1150 13D o ) < K.
0<s<t per=>

Proof. We bound

0L(BT (W (- + (o 1. D2y (0) + 7, (1) + W (- + 7 (1), Dy (1)
+ Wi (- +7C 0,07, 2

S IV 530 IOt + UKD g2 O s
j=1,2,3, where we used the Sobolev embedding Hl’)‘er((), T)<
Wk=1»o(R). Similarly, one proceeds for terms involving ¢ instead of W.
Also it is straightforward to check the bound for R,. O

Proceeding as in [11,16,25], we are now in the position to derive a
nonlinear damping estimate for v.

Proposition 4.5. Lety, o and ;4 ;5 tmax,, @S in Propositions 4.3 and 4.4.
Let w and T,,,, as in Proposition 4.1. Take v, vy and 7y, as in Proposi-
tion 4.2. Define v through (4.13) and set w(t) = w(t) — ¢. Fix K > 0. There
exists a constant C > 0 such that

3 2 — 2 ° 2
IFOIE, < (e 1Ivol 2 + IFIE,

' (4.15)
. /0 eI (INGIE, + @I, + )P ) ds)
for all t € [0, tpqy., ) provided
sup (”W(S)l |H1,?er(0fT) + ||‘°’(S)| | H3 + ||(7x(S), y.y(s))||H3xH2> <K. (416)

0<s<t
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Proof. First we wuse that v,€ H(R) gives a solution
v € C([0, Tmay)); HY(R) N CH([0, Tipay); H3(R)) of (2.4) arguing anal-
ogously as in Proposition 4.2. Since H>(R) is dense in H*(R) an
approximation argument as in [30, Proposition 4.3.7] yields the result
for vy € H3(R).

Fix K > 0. Let 7 € [0, 1,y ,) such that (4.16) holds. The forward-
modulated perturbation v is designed such that the principal part in
(4.14) is given by 9, — £(¢). This is the reason why we choose the same
energies as introduced in [11,16] and [25], that is,

) = [100¥0)I 2, ﬁ(JM(Jﬁ)di’li Iy, =123,
with

209 b - if’?>

* — §? 2¢0,.¢; )

We compute, see [25] and [16],

M) = 2(

0,E;(t) = =2E;(t) + R, (1) + Ry(1)
with
IR O] < SE0+CINOIE,
for some t-independent constant C; > 0 and
Ry (1) =2Re (0] Rs(W(1), 7 (1), 7,(1), 9,¥(1)) 2
- %Re (T M@ R0, 7(0), 7,0, 2-51)) 2.

By Lemma 4.3, using (4.16), interpolation and Young’s inequality, there
exists a t-independent constant C, > 0 such that

1 o
R0 £ 2B+ CoIFOIE, + 11 0IE, . + 1101, ).
We conclude
0,E,(1) < —E;0 + C5 (INOIE, + 1701, ., + 111011, )

for some r-independent constant C; > 0 and j = 1,2, 3. Integrating the
latter and using, for some #-independent constant C, > 0,

OV, < Ey(0) + Cy VDI,
and
10V, <2E,0 + C(INOIE, + E,Ly ),

j = 2,3, which follow by interpolation and Young’s inequality, we arrive
at (4.15). O

Lemma 4.4. Fix K > 0. Let the assumptions be as in the previous corollary.
There exists C > 0 such that for all t € [0, 1,4, ) it holds

VOl 2 < CIROI 2 + Ol 12). (4.17)
19O g3 < CIFON s + 7Ol g3 ) (4.18)
and

VOl o < CIRONI Lo + 7Ol 1) (4.19)

provided

- 1
sup (1Nl s + 117Gl s + 1o ) < K and sup (17,5l < 3.
0<s<t per 0<s<t 2

Proof. Let ¢ € [0, max,y)- We write A,(x) = x —y(x,1) — o(?) and B,(x) =
X+ y(x,1)+ o(t) . By the inverse function theorem and the fact that
7 O oo < %, it is easy to check that A, is invertible with

x = A,(A,_l(x)) = A,_l(x) - }'(A,_l(x), 1) —o(1)
and therefore

A7N () = B,(x) = y(A7 (), 1) — y(x,1).
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We also compute
(AT (), 1)
(1= 7 (A7 ). 0)3
3y ex(A71 (), 12
(= 7,(A7 ). 0)p

1
1 -7 (A7 (0,0
Yaxx (A7 (), 1)
(1= 7, (A7), )y

0. (AT (x) = 02 (AT (x) =

(4.20)

WA (X)) =
Using
1
YA 0,0 = r(x, 1) = (A7 () = x) / re(x +0(AT (x) — x), 1) dO, (4.21)
0

(4.20) and ||y, ()] ;o < %, we can estimate

AT = B2 Srellpzs AT = Bl Syl (4.22)

for I = 1,2,3. This is shown in [31, Lemma 2.7] and [25, Corollary 5.3].
It additionally follows

AT .0 = 9Dl s SIFOI s, INACLD =VC0l 2 S TN 2
as for [16, (3.24) & (3.25)]. We observe
VAT (), 1) = V(x, 1) = (W(B,(x), 1) — W(AT (%), 1)) + (P(A] (x)) — (B,(x)))
and estimate with (4.22) and the mean value theorem,
I9CAT .0 = VDl s S AT = Billgs S el lgs-
On the other hand,
V(x, 1) — V(A,(x), 1) = =W(x, 1) + W(x + 7(A,(X), 1) — y(x,1),1)
+ (=(x) + d(x + v (A, (x), 1) — 7 (x,1)))
and by and the mean value theorem and with
[y (A, ) = vC, Dl 2 S Hre Ol g2,
which follows by (4.21), we obtain
V¢, 1) = V(A (), Dl 2 S @] 2.
Putting everything together, we arrive at (4.17) and (4.18). The relation
(4.19) follows analogously. O
5. Nonlinear stability analysis

5.1. The nonlinear iteration

We first establish nonlinear stability of w.

Theorem 5.1. Let wy € HJ, (0.T). Let W, Tpnq, be as in Proposition 4.1

and let o and tqy , as in Proposition 4.3. There exist C,6,, €, > 0 such that
for
Ep = ||W0||ngr(0,]—) < Sp,
the functions w(t) and o(t) exist globally, i.e. t,,4, , = Tipgy = 00, and
|U(t)|’| |W(l) - ¢| |ngr(O~T) < CEp? |O't(l)|, “W(t)l | H}?er(O’T)’ ”VBV(I)
—5,1
”ngr(o"r) <Ce ™ Ep,
forallt>0.
Proof. The estimates on |o(1)|, |o,(t)] and [|W(")I] s o) follow by a
per\Vs
standard procedure, see [23] and [10], taking Proposition 3.1 and
Lemma 4.2 for (4.8) into account. We observe that
[IW(®)] |H8er(0*T) = ||W(: +o(®), 1) |ngr((),7") = ”vcv(t)l |ngr(0~T)
for all 7 > 0, to finish the proof. O

Let wy € Hf)’er(O, T) and ¢, as in Theorem 5.1. We set E; = ||vp|| 3
and choose 0 < ¢ < 1 as in Proposition 4.4. Under the assumption E,<

€,, we consider the template function 7 : [0, 7,y ,) — R given by

n(t) = sup ((1 + S)% (||{’(S)||H3(R) + ||(7x(5)7 }’S(S))||H4x1-13) + ||7’(’)||L2)

0<s<t
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and show that there exists a constant C > 1| independent of E; and E,
such that

n(t) < C(E; +n(t)* + n()E,) (5.1)
for every ¢ € [0, Tmaxy) with #(r) < % By Proposition 4.4, we have the

property: if 7., , < oo, then

limsup n(t) > % (5.2)

Mmax,y

Furthermore, 5 is continuous by Proposition 4.4 and Corollaries 4.1 and
4.2 and monotonically increasing.

Iteration argument. Suppose we have proven (5.1). First we take E, <
min{e,, %} which gives

n(t) < 2C(E; + n()*). (5.3)

Now, choose 4C%E; < % Assuming there exists some 7 € [0, 1,y ,,) Such

that 5(r) > 4CE,, the continuity of # provides a #, with #(¢;) = 4CE, < %
Therefore, (5.3) and ¢ € (0, l) imply

n(ty) < 2C(E, + (16C2E)E,) < ACE,.
This is a contradiction and we arrive at

sup () <4CE, < % 5.4

te[O,rmax',)

and hence (5.2) cannot hold. We conclude that (5.4) holds with Tmaxy =
Tmax = 0. This proves (2.13) and it suffices to justify (5.1). For this pur-
pose, let 1 € [0, fay ) With (1) < %

Bound on V. We first bound ||¥(s)|| ;3 for which we use (4.18), that
is,

1913 < (1 + )72 n(s), 5.5)

for s € [0, 1]. Together with the nonlinear bounds, Lemma 4.1, Proposi-
tion 3.2 and Theorem 5.1, we arrive at

[N S A+ S)% E; + 17 2 [1WS) Lo + Uy g1 V()] 12
+/‘(1 +5 = 1 R W (@), 9@ r | 12 7
0
s 1

+/0 (I+s—-1)2 <||6r(7)‘7x(f)||L2 + 1T (W(D), y ()l 12
+ {11 = 7 (2R, (W(7), ‘A’(T))HLZ) dr
1 1 ] (5.6

SU+972E + 1+ 200 + (1 + 5 2()E,

N 3
+n(t)2/ A+s—0)7i(l+0) Ydr
0
+"I(I)E,,/ (1+s—r)_%(1+f)_%e*527dr
0

< U+ 977 (B + 17 + 1), ),

for s € [0, ¢], where we used that #(r) < %

Bounds on y. We estimate, with (5.5), Proposition 3.2, Lemma 4.1 and
Theorem 5.1,

okl y ()12 < 1100 5,912 2 1Voll 2
+/ [10%0Ls,(s = DIl 1 12 [IR3(W(D), ¥(), y ()| 11 dT
0
+ [ 10805, = 0ll2z (0RO llz +IT @O
0
110 = 7 ()R (WD T2 ) d
©.7)

_kl , [° _1_kl .
S +5)7 2 E +n(s) /(l+s—r) T2 1+ de
0

s _kH 1
+l’](S)Ep/(1+S—T) 2 (1+7)y2e2%dr
0

1, if I +k=0

1
SE+n@ +1OEN) 1 +5)72, ifl+k=1
(1+s)"', otherwise,
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for every s € [0, 1].
Bounds on v. Invoking (5.6) and (5.7), (4.17) yields

N2 S (14972 (E; + 1) +n()E,)

for all 0 < s < . Finally, with Proposition 4.5 and (5.7), we obtain
1
¥ g3 S A+ 972 (E +7()* + n(1)E,).

for all 0 < s <t, using () < %
We have shown the key inequality (5.1).

Remark 5.1. The proof of (5.1) reveals that the nonlinear iteration argu-
ment closes as long as |o,(t)| and ||W(®)|| 46 o) decay of order (1 + 1) for
per\Y>

some k > %

5.2. Refined L*™-estimates

By Proposition 3.3 and the nonlinear bounds in Lemma 4.1 and rein-
serting the L?-estimates (2.13), we obtain

72Ol < 105,001 e Vol 2
t
#1005, = M1 R0 56) OD .
t
# [ 050 = 9l (1Ol + TGO
0
1100 = 7 (DR (RS I 2 ) ds

3 t
5(1+z)7E,+E,</ (I+1—9"' 1 +5)7 ds
0

! 3 1
+/(1+r-s)‘1(1+s)‘ie-525ds>
0

3
SU+D73E,

for all + > 0. Furthermore, we have

1
||‘A’(t)||Loo S+ t)_% E, +/0 (I+1- S)_l||R3(V’V(S),‘A’(S),}’(S))||LlnL2 ds
t
+ /0 IRy (W(s), 9(5), 7D g1 ds

! 3
+/(1+t—s)_1(||0',(s)ffx(s)||H1
0
+ (1 = 7, (DR (W), VDI g1 + T (W), y (DI | g1 ) ds

3 t
5(1+r)‘1E,+E,</ A+t—s"'A+s5)ds
0

4 3 1
+/(1+t—s)_3(1+s)_ie_'szsds>
0
3
S+ 4E,
for all > 0. With the help of (4.19), we deduce
3
VOl SA+0D72E,
for all # > 0. Finally, we observe that for 5, := f0°° o,(s)ds, we have
0.~ o0l < [ lo,0lds s E,
t
and therefore

(- + 0, + 70,0 = d + 6(0) + 7 1.0 o S eV E,,

for all t+ > 0. As described in Section 2.6, Theorem 2.1 follows.
6. Discussion
6.1. Applicability of the scheme to viscous conservation laws
A satisfying L*-stability theory considering C;,-perturbations is es-

tablished in parabolic reaction-diffusion systems [18] which can be ex-
tended beyond the parabolic setting as shown in the context of the
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FitzHugh-Nagumo system [12]. On the other hand, there are crucial ob-
stacles in establishing pure L*-stability results for viscous conservation
laws as described in [12,17]. An interesting ingredient of the L?-analysis
in [31] is that the authors introduce a sum of spatio-temporal modula-
tion functions to capture more than one critical mode arising from the
presence of the conservation laws. Therefore, a key difficulty lies in the
fact that the critical dynamics is governed by a coupled Whitham sys-
tem for which one cannot immediately apply the Cole-Hopf transform
as done in the scalar case for which this Whitham system reduces to the
Burgers’ equation [12,18]. This begs the question of whether we can ap-
ply our Lger(o T) @ L?*(R)-scheme to this setting, cf. [31] and [32]. In
order to generate a result like Theorem 2.1 in this setting, the question
reduces to whether such a sum of spatio-temporal modulation functions
is compatible with our approach. As the Lf)er(O, T)-theory can be settled
by a standard procedure, we strongly expect that it is relatively straight-
forward to allow for L%er(o, T) @ L*(R)-perturbations by precisely fol-
lowing our nonlinear analysis, in particular using the modified versions
of inverse- and forward-modulated perturbations in Sections 4.2 and
4.5, and by respecting the semigroup decomposition and estimates es-
tablished in [31, pp. 149] and the nonlinear damping estimate in [31,
pp. 146].

6.2. Uniformly subharmonic plus localized perturbations

Considering the uniformly subharmonic nonlinear stability result for
the Lugiato-Lefever equation in [16], the question arises whether we
can show a nonlinear stability result involving perturbations wy + v
with w, € ngr(o NT)n L;er(o NT), vy € H3(R) and which is uniform
in N € N. We note that as in [16] the additional condition Llljer(O NT)
is crucial in [16] to guarantee the uniformity in N.

Suppose (H1) and (D1)-(D3). Now, given a solutionu = w + v of (1.1)
where w solves (2.2) and v solves (2.3) with u(0) = w,, + v, we broadly
sketch a possible scheme for the claimed stability estimate

L onn + Mol ). 120,

_3
0@z 1075 (W61l v
(6.1)

uniformly in N € N. Keeping the main lines of this paper, we might
introduce the inverse-modulated perturbations

Wix, 1) = wx —o(®) =y (x,0,1) — ¢,

V0, 1) = u(x — o(1) — 71 (x, 1) = 7p(x, 1), 1) = W(x, 1) — (x)

and the forward-modulated perturbations

W(x, 1) = wx, 1) — ¢p(x + o (1) + 7, (x, 1)),

v(x, 1) = u(x, 1) = W(x + 6 (1) + 7, (x, 1) + 7o (x, 1), 1)
—p(x+ o) +7,(x,0) + rp(x, 1)),

with modulation functions

[0, 00) —» L? 2 [0, 00) — LA(R).

per

61 [0,00) > R,y : (0, NT) and 7,

To derive suitable perturbation equations for v and v, we refer to Ap-
pendices A and B. Finally, with the established decay rates, see [16,
Theorem 1.4],

_3
||axJ/l(I)| |Lf)er(0vNT)’ |O-t(t)|’ ”W(t)l |Lf)er(0’NT) ~ O((l + t) 4),

uniformly in N, one may invoke Remark 5.1 and [16, Proposition 3.71).
It remains to prove versions of Proposition 4.5 and Lemma 4.4 to deduce
(6.1).

6.3. Nonlocalized phase modulations

An interesting feature of the modulational stability estimate (2.11)
is that we capture the most critical dynamics of the periodic wave by
a phase modulation from R + H3(R). This class of functions covers the
simplest nontrivial nonlocalized phase perturbations one could think of.
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Therefore, an interesting open question is whether we can allow for per-
turbations from L;er(o T) @ L*(R) as well as (L>-large) initial modula-
tions y, — o, such that ||y0|| g3 is small to conclude an estimate such as
(2.11). We refer to [25] for a nonlinear stability result against localized
perturbations in this context, allowing for a nonlocalized initial phase

modulation.
6.4. Fully nonlocalized perturbations

Local well-posedness results in nonlinear Schrodinger-type equa-
tions, possibly with (periodic) potentials, have been established for ini-
tial data from the modulation space M" | (R), see e.g. [33,34], [35, pages
245-252] and references therein. At the same time, global in time results
are widely open. Due to the additional dissipativity in (1.1) compared to
the classical cubic nonlinear Schrédinger equation, we expect the possi-
bility to extend our result to perturbations from M | (R) for sufficiently
large m € N. This might be achieved by conceptually following the lines
of [12] through the complex inversion formula of the semigroup. Never-
theless, it turns out that high-frequency damping and regularity control
are delicate challenges and it seems that essentially new ideas have to
be developed.
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Appendix A. Derivation of (4.6)
We write @(x, ) = u(x — o(t) — y(x,1),1) — $(x), insert (4.5) and [16,
(3.4)] to obtain
(0r = Lo)®) = (9, = Lo = (9, — LoW
=—(0, - Lo)@'7) + (1 -y )R (W) —
+0,S@,7,7,,0,) + 93P, 7) + (9, — Lo) 7, ),

R (W) +o,W,

where, recalling @t = ¥ + W,

~ v 2

S, y,7,0,) =—y—oc i+ T L S WL S
e (I-7r2 T-7,

_ §(€',7,71y‘7z) -y, W—0o,W+ ﬂJ(ﬁW)

P(,y) =-BJ <Yx + ny )ﬁ =PWE.7) + P(W.7).

l_x
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We emphasize that the critical terms o,W and (9, — L)(¢' o) cancel out.
We arrive at

0 = LOE + @'y — 7, W = 7,9) =Q(W.¥.7) + 0, S(¥.7) + 2P (¥.7)

=0V + (L =7 )Ry, (W, V) + T (W, 7)
with
QW ¥.7) = (1 = 1 )R (¥ + W) = R (W) = Ry y (W, 9)) = (I = 7, )Ry (V. W),

2
N e Vxx o 7x /
S(v’y)_ ytv+ﬂj<(1_yx)2v l_qu&),
) X . Ter o
TN = 1R 9 =0, (”W ) M( (=72 w))

—aﬁ(ﬂJ<yx+ ; Yx >W>
—7x

Appendix B. Derivation of (4.14)

We recall that
v(x, 1) = u(x, 1) — w(x + y(x,1),1),

set ¢(x, 1) = ¢(x + y(x, 1) and use the notions (2.5), (2.6) and (2.7). Fur-
thermore, we write
>u) “u.

- 0 —a 0
D(u)=(]<<0ﬁ —ﬂ>u“+<0 o
Using that u and w are solutions of (2.1), we derive
(@, = Lo(@)¥(1)

= (9, — D)(u(n)) — (9, = DYW)(- + 7(-.1).1) = N” ((£)¥(t)
+ Rs(W(H), ¥ (1), 7,(8))
= N @) + W+ (0,0 + ) = NV + (.00 + (1))
= N(@¥®) + Rs(W(E), y(1), 7,(1))
= Ry (@)W(- +7(, 1), 1), (1)) + Rs (WD), 7(1), 7,(2))
with
Rs(W(D), v (1), v,(1))
=W (- + 70,07, = BT (W + 7,0, D7 ()
W (G0 D7 () + 7,(07))
= =W, (- + 70,070 = ¢ ¢+ 70,01,
= BT (W 70,000 + Wi+ 70,010 + 7,0

+ @' 7D DT D) + G+ y (L0, D2y (1) + yx(t)2)).

Recall that w(¢) = w(t) — ¢ denotes the unmodulated perturbation of w.

Appendix C. Proof of Proposition 4.4

We recall the Duhamel formula (4.9) given by
t
y(0) =s,(H)vy + /0 syt = S)(Rg(V”V(S)ﬁ(S), 7(5)) = 0,(s)V,(s)

+ (1= 7 (DR 2(H(3), 9(5)) + T (W(s), (5)) ) ds
whereas
V(x, 1) =u(x — o(t) — y(x,1),1) — W(x, 1) — p(x).
To prevent confusion, we write
V(@) =¥ (), 1)
and for the sake of readability, we introduce

N (1.0(5),7(9), 9) =8,(t = ) R3 (W), 96, 7(5) = 0,59, (5)

+ (1= 7R a (W), ¥(5) + T (W(s), 7(5)))-

We do a contraction argument. For this purpose, we establish nonlinear
bounds.

10
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Lemma C.1. Fix0 < 7 < 1) < min{ gy, tmaxs }- Let j, k € Ny and fix K >
0. Suppose that

sup ([IWOllyiee + 1o, O] + VOl 100 ) < K.
1€[0.7,]

There exist constants C > 0 and C; , > 0 such that we have the bounds

sup (91 (8),8) = V(a5 )12 C sup |11 (s) = a2, (C.1)
s€lr],15] s€[ry,12]

and

sup  sup |10/ 0K (N (1, 0(5), 7,(5), 5) = N(2, 6(5), 72(5), )| 12

te[r),mp] s€lry.t]

(C.2)
<Cjx sup (lri(s) = ra)llp2 + 19:y1(s) = 9,12 ()l1 2),

s€lry,n]
for any 71,72 € C([7y, 7,]; H>(R)) X Cl([7}, 7,]; H3(R)) with
SUPrerey ey 1071 Dl o 110,71 Dl o0 < 3.
Proof. Lett € [7},7,] and s € [7},!]. We rewrite
V(x, 71(5), 8) = V(x, 75(5), ) = V(x — 6(s) — 7, (x, 5), 5)
= V(x —0o(s) = rp(x,5),5)
+ w(x —o(s) — r,(x, 5), 5)

—w(x —0o(s) —7,(x,5),5)

and since w(x —o(s) —y(x,s),s) — p(x) = W(x — y(x,s),s), this yields
(C.1) by the mean value theorem. Let j, k € N. Recalling the choice
of R; =0+0,S+ 637) and the estimates on s (@0 from Proposition 3.2,
we obtain

11070 ,(t = R3(W(s), 9, (5), 5), 71 (5)) = R3(W(s), ¥(r2(s), ), v2(s )] .2
< Ciilri() = r2ll g2 + 119,71(s) = 9,72 ()| £2),

by taking derivatives on 5,(t—5) and (C.1). Next, with the Cauchy-
Schwarz inequality, we find

11070%5,t = 9)((1 = 0,71 (DR 2 (W), U1 (5),5)

= (1= 0,2 R 2 (W), 95150 Y112 < il I11(9) = 12O 1
Moreover, we have
1107055,t = )0, (31 (51, 5) = 529, 9) 1112 < Cpall1a(®) = 2O 2
Together with
1107055, = )( T (W52, 71(50) = T (W), 725D ) 12

< G (1) = @Il + 110,71(5) = dra()l1 2).
again taking derivatives on s,(t — 5), we arrive at (C.2). O

By the choice of s,, we immediately have that y(t) = 0 for 7 € [0, 1]. We
need to justify that we can extend the modulation function y to a maxi-
mal time such that the alternative (4.12) holds.

Proof of Proposition 4.4. Let 7 be a solution of (4.9) on [0,7,] with

some #;, > 0. Lemma C.1 tells us that

1
y o 5,0V + / st = ) (R (W(5), 950, 7(5) = ,(5)9,5)
fo (C.3)

+ (1= 7Ry a(W(s), ¥(5) + T (W(s), 7(5) ) ds
defines a contraction on

Xipm = {y €C([tg, tg + 7ol; H (R) N C' ([t 19 + 7o]: H3(R)) :

sup (), 7 s < %}
s€ltg,to+70]

for sufficiently small 7, > 0. By the Banach fixed point theorem, there
exists a unique solution

v € C([ty, tg + 7o1; H(R) N Cl([ty, 19 + 7]; H(R))
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of
To
7(1) = 5,(DVy +/0 syt = S)(Rg(W(S), V(7 (5), 5), 7(5)) — 6,(5)V(F(s), 8)

+ (1 = 7 ()R, (W(5), V(7 (5), 8)) + T (W(s), 7(S))) ds
' (C.4)
+ / 5yt = s)(R3(W(s>, Y(9). ). 7(5) = 6,()9,(1(5). 5)

fo

+ (1 = 7R (W(5), V(¥ (5), 8)) + T (W(s), }’(S))) ds

for t € [ty, 1, + 7y]. Since (C.3) defines a contraction on X, , for every
1) € (0, min{ 7y, }) and sufficiently small 7, > 0, we conclude that

max,o
yiny= 4 70 1€ 10:4] (C.5)
y(), tE [ty ty+ 7l

is the unique solution of (4.9) on [0,7y+7,] such that y e
X7, Now, there exists a maximal time ty,,, € (0, min{7pay, fmaxe 11
such that (4.11) holds. Assume that tn,,, <min{zyay, fmayete If
(4.12) fails, then there exists a unique solution ¥ of (4.9) with
SR | L ORI IPENPEIRS % This again allows to solve (C.4)
on X,mawyr(/) for some small r(’) giving a solution of (4.9) via (C.5)

on [0, fryay, +70) With [[(r(8), r,(5D| sxs < 5 for all 1 € [0, 1oy, + 70)-

This contradicts the maximality of #,,,, and we conclude (4.12). O
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