KIT | KIT-Bibliothek | Impressum | Datenschutz

Bivariate distributional copula regression for mixed non-time-to-event and time-to-event responses

Sanchez, Guillermo Briseño 1,2; Groll, Andreas
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose a distributional copula regression modelling approach for bivariate responses comprised of non-commensurate (i.e. mixed) variables. In our case, the margins are a right-censored time-to-event outcome and a non-time-to-event variable. The underlying hazard rate of the time-to-event margin is modelled using discrete-time-to-event (DT) or piecewise-exponential (PW) methods. A flexible statistical model is achieved by relying on the correspondence of the likelihood of the aforementioned time-to-event approaches with well-known univariate distributions. We construct joint bivariate distributions for these mixed responses by means of parametric bivariate copulas. This allows for separate specification of the dependence structure between the margins and their individual distribution functions. All coefficients of the distributional copula regression models considered here are estimated simultaneously via penalized maximum likelihood. We showcase the versatility of our proposed approach in an analysis of red-light running behaviour of E-cyclists by modelling the joint distribution of a mixed response comprised of a binary response and a time-to-event outcome that indicates the time of red traffic light running.


Verlagsausgabe §
DOI: 10.5445/IR/1000189740
Veröffentlicht am 20.01.2026
Originalveröffentlichung
DOI: 10.1177/1471082X251401632
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 1471-082X, 1477-0342
KITopen-ID: 1000189740
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Statistical Modelling
Verlag SAGE Publications
Vorab online veröffentlicht am 17.01.2026
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page