

EGU25-4145, updated on 19 Jan 2026

<https://doi.org/10.5194/egusphere-egu25-4145>

EGU General Assembly 2025

© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of tropical waves on the atmospheric structure and composition above Cabo Verde during the CADDIWA campaign

Tanguy Jonville¹, Maurus Borne³, Cyrille Flamant¹, Juan Cuesta⁴, Olivier Bock⁵, Pierre Bosser⁶, Christophe Lavaysse⁷, Andreas Fink³, and Peter Knippertz³

¹CNRS, LATMOS, France (tanguy.jonville@latmos.ipsl.fr)

³Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

⁴Université Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France

⁵Institut de physique du globe de Paris (IPGP), Université de Paris, CNRS, IGN, Paris, France

⁶Laboratoire des sciences et technologies de l'information, de la communication et de la connaissance (Lab-STICC), CNRS, ENSTA-Bretagne, Brest, France

⁷Institut des Géosciences de l'Environnement, CNRS-UGA-INRAE-IRD-Grenoble INP, 38000 Grenoble, France

The Cabo Verde region is subject to the activity of many tropical waves during the boreal summer. They are known to favour or inhibit convective activity, and to play a role in the formation of Tropical Cyclones. A frequency-wavenumber filtering method is used to identify the different waves. A novel tracking protocol is used to distinguish African Easterly Waves propagating north and south of the African Easterly Jet based on their frequencies within the Mixed-Rossby Gravity - Tropical Disturbance (MRG-TD) domain, labeled MRG-TD1 and MRG-TD2, respectively. Based on in-situ and satellite measurements from the Cloud Atmospheric Dynamics Dust Interactions in West Africa (CADDIWA) campaign which took place in Cape Verde in September 201, the impact of each tropical type on the atmosphere vertical structure and dust content is discussed. Our results show that Equatorial Rossby waves mainly impact thermodynamics above 750 hPa, while MRG-TD1 affect jet-level thermodynamics, and MRG-TD2 modulate moisture in the lower troposphere. Dust event are mainly driven by MRG-TD2. The importance of the interaction between waves for tropical cyclogenesis is also highlighted which provides new outlooks for improving tropical cyclogenesis forecasting in the region.