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Abstract

In the energy transition from fossil energy sources to renewable energy sources, residential
buildings are increasingly integrating a range of components with high electricity consumption,
including heat pump (HP) for space heating and domestic hot water production and electric
vehicle (EV) charging points. These components could be collectively referred to as Distributed
Energy Resources (DERs), which can either be individual physical assets or aggregated virtually.
Furthermore, the corresponding technologies within DERs enable the adjustment of electricity
consumption to align with power generation, a concept known as Demand Side Management
(DSM). To investigate the effects of DERs in DSM, a wide variety of models and simulations
of the relevant components are required. However, when modeling these components and their
interactions for DSM purposes, the appropriate level of model complexity required for various
DSM applications often remains ambiguous. This is primarily due to the inherent trade-off
between the model’s complexity and the utility it provides, as their interactions can significantly
influence the overall performance and applicability of DSM strategies.

Inspired by Gossen’s First Law in the economics, which describes the law of diminishing marginal
utility, this thesis further investigates the hypothesis that Gossen’s First Law also holds in the
modeling for DSM. The proposed hypothesis states that in general, in the modeling of DERs for
DSM, the relationship between the model complexity and the model utility could be represented
by a diminishing marginal utility curve. To validate the proposed hypothesis, the quantification
methods for model complexity and model utility are first reviewed, discussed and defined within
the scope of this thesis. In the following, two heat pump case studies and a use case of EV
charging stations are carried out for validation. Lastly, a new Shapley value-based quantification
method for the contribution of submodels within a model class is introduced to further explore
the DERs modeling.

The results in all use cases are basically in line with the proposed hypothesis and indicate that the
hypothesis can act as a guideline that could help developing more simple and efficient models in
the context of DSM.






Kurzfassung

Im Rahmen der Energiewende von fossilen zu erneuerbaren Energiequellen werden in Wohnge-
biauden zunehmend eine Reihe von Komponenten mit hohem Stromverbrauch integriert, darunter
Wiérmepumpen fiir die Raumheizung sowie die Warmwasserbereitung, und die Ladestationen
fiir Elektrofahrzeuge. Diese Komponenten konnen gemeinsam als dezentrale Energiequellen
(Distributed Energy Resources, DERs) bezeichnet werden. Die konnen entweder als einzelne
Anlagen oder virtuell aggregierte Einheiten dargestellt werden. Dariiber hinaus erméglichen die
entsprechenden Technologien innerhalb der DERs eine Anpassung des Stromverbrauchs an die
Stromerzeugung, ein Konzept, das als Demand Side Management (DSM) bekannt ist. Um die
Auswirkungen von DERs im Rahmen des DSM zu untersuchen, ist eine Vielzahl von Modellen
und Simulationen der relevanten Komponenten erforderlich. Allerdings bleibt bei der Model-
lierung dieser Komponenten und ihrer Interaktionen fiir DSM-Zwecke jedoch oft unklar, wie
komplex das Modell fiir verschiedene DSM-Anwendungen sein muss. Dies liegt in erster Linie
an dem inhédrenten Kompromiss zwischen der Komplexitit des Modells und dem Nutzen, den es
bietet, da ihre Wechselwirkungen die Gesamtleistung und Anwendbarkeit von DSM-Strategien
erheblich beeinflussen konnen.

Inspiriert von Gossens erstem Gesetz in den Wirtschaftswissenschaften, das das Gesetz des ab-
nehmenden Grenznutzens beschreibt, stellt diese Arbeit daher die Hypothese auf, dass Gossens
erstes Gesetz auch in der Modellierung fiir DSM gilt. Die aufgestellte Hypothese besagt, dass
im Allgemeinen bei der DER-Modellierung im Rahmen des DSM die Beziehung zwischen Kom-
plexitit und Nutzen durch eine abnehmende Grenznutzungskurve dargestellt werden kann. Um
die aufgestellte Hypothese zu validieren, werden die Quantifizierungsmethoden fiir die Modell-
komplexitit und die Niitzlichkeit von Modellen zunichst im Rahmen dieser Arbeit iiberpriift,
diskutiert und definiert. Im Anschluss werden zwei Use Cases zu Wiarmepumpen sowie ein Use
Case zu Ladestationen fiir Elektrofahrzeuge durchgefiihrt, um die Validierung sicherzustellen.
Abschlielend wird eine neue, auf dem Shapley Value basierende Quantifizierungsmethode zur
Bewertung des Beitrags von Teilmodellen innerhalb einer Modellklasse im Kontext von DSM
vorgestellt, um die Modellierung von DERs weiter zu erforschen.

vii



Kurzfassung

Die Ergebnisse in allen Anwendungsfillen stimmen im Wesentlichen mit der aufgestellten Hy-
pothese iiberein und deuten darauf hin, dass die Hypothese als Leitlinie dienen kann, die bei der
Entwicklung einfacherer und effizienterer Modelle im Kontext von DSM hilfreich sein konnte.
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Preface

“Essentially, all models are wrong, but some are useful.”

“Remember that all models are wrong;
the practical question is how wrong do they have to be to not be useful.”

George E. P. Box and Norman R. Draper
in Empirical Model-Building and Response Surfaces
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1 Introduction

1.1 Motivation

Advancing towards a sustainable energy system, enhancing energy flexibility has become increas-
ingly important to accommodate the growing integration of renewable energy sources. According
to the federal statistical office of Germany (Statistisches Bundesamt 2023), the total energy con-
sumption of private households in Germany has only slightly increased by 7.8% from 2015 to
2021. During the same period, however, the share of renewable energy experienced a substantial
growth of 23.3%, eventually comprising over 14% of the total energy mix. Energy flexibility
refers not only to the ability to adjust power generation, which is challenging with renewables
due to their intermittent nature, but also to adapting electricity load on the demand side, which is
also known as Demand Side Management (DSM) (Impram et al. 2020). As a strategy to control
electricity demand and to manage demand over different terms, DSM is a very broad term which
is usually further defined based on specific use cases (Li et al. 2025). To control electricity load
on the demand side, the load-changing ability is required and this ability is usually provided
by Distributed Energy Resources (DERs). DERs are small-scale electricity generation, storage
and consumption systems that are able to be controlled. For instance, in the residential sector,
assets such as heat pumps for heating and supplying domestic hot water, rooftop solar panels for
self-generating electricity, home charging stations for e-mobility and even fuel cell systems as
home power plants (Thomas et al. 2020) can be classified as DERs. Although the DERs have the
ability to enhance energy flexibility on the demand side, substantial efforts are still required to
address ongoing challenges: in 2024, the federal environmental agency in Germany has reported
that despite of the biggest decline in terms of climate emissions in 2023 since 1990, the building
sector still exceeded the annual emissions permitted under the Federal Climate Protection Act
(KSG) by around 1.2 million tonnes of C'O5 equivalents (Umwelt Bundesamt 2024). To improve
this critical situation, one suggestion in (Umwelt Bundesamt 2024) is increased utilization of heat
pumps. This again underlines the importance of utilizing DERs on the demand side, especially
in the residential sector, and provides motivation to pursue research in this direction.

To investigate the effects of DERs in DSM applications, a wide variety of models and simulations
of the relevant energy systems and components are required. However, when modeling such
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components and their interactions for DSM applications, determining the appropriate level of
model’s complexity remains challenging. This is due to the inherent trade-off between model
utility and complexity. A complex model can usually provide more meaningful results than
a simple model, but the effort required for modeling increases accordingly (Chiasson 1999).
Besides, the main problem with complex models is that the mathematical optimizations could no
longer be solved numerically in a reasonable time which is usually essential in DSM. Therefore,
simple models are also needed for DSM and it is necessary to investigate the relationship between
the utility and the complexity of a model in order to provide a quantified reference for different
DSM applications.

The first inspiration to solve this core question addressed by this thesis comes from daily life in
different domains. In the sports medicine domain, (Morton et al. 2018) investigate the relationship
between the change in fat-free mass and the relative total protein intake. The results show that fat-
free mass stagnates after the so-called breakpoint, which means fat-free mass increases no more
with further increasing protein intake after this point. In the consumption domain, (Horowitz
et al. 2007) conduct three types of experimental treatments. The first experiment cover typical
goods-money tradeoffs to investigate, how the compensation demand, namely money, of subject
groups changes with respect to different amount of goods. The results show that the compensation
demand per unit decreases when the amount of goods increases.

The primary question of this thesis is, whether a similar result manifests for DSM applications,
with the horizontal axis being complexity and the vertical axis being utility, or not. Another
inspiration is derived from Gossen’s First Law in economics. Gossen’s laws are named after
Hermann Heinrich Gossen (1810-1858) and Gossen’s First Law is also known as the law of
diminishing marginal utility, which states that as consumption increases, marginal utility gained
from the consumption decreases (Gossen 1854). To quantitatively solve this main question of the
thesis, a novel approach and hypothesis is first proposed for investigating the relationship between
the model utility and the model complexity within the domain of DSM. The proposed hypothesis
states that in general the complexity-utility relationship in the field of DSM modeling could be
represented by a diminishing marginal utility curve.

For testing the proposed hypothesis, it is imperative to undertake a validation process through
diverse use cases, in which different sub-questions are addressed. More details on this are provided
in Section 1.4.



1.2 Related Work

1.2 Related Work

To establish the broader context of this thesis, this section reviews related work across relevant
domains with modeling and model complexity in DSM with DERs in focus. By analyzing different
contributions of existing research, this section also aims to identify existing gaps in the literature
and therefore underlines the importance and novelty of investigating the proposed hypothesis in
the present thesis. Furthermore, it should be pointed out that the subsequent chapters will present
further related work specific to their respective topics.

In recent years, the literature dedicated to the modeling of Demand Response (DR) or DSM has
grown substantially. For example, the part highlighted in orange in Fig. 1.1 shows the publication
trend from 2010 to 2024 based on the keyword combination "(’Demand Response’ or "Demand

on

Side Management’) and 'modeling’" in Scopus. This reflects the increasing academic and practical

Publication trend in Scopus
T T T T T T T T T T T T T T

2000

1500

1000
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Figure 1.1: Publication trend from 2010 to 2024 based on the keyword combination "(’Demand Response’ or 'Demand
Side Management’) and *'modeling’" in Scopus

interest in these areas. For instance, (Turitsyn et al. 2011) propose a modeling framework for
4 types of individual devices, that is, optional loads, deferrable loads, control loads and storage
loads, which are expected to participate in future DR markets on distribution grids. The proposed
framework is based on the standard Markov Decision Process (MDP) approach to focus only on
the qualitative features of the loads. Therefore, the differentiated 4 types of models are optimal
and generic. The modeling of specific systems and synergies between different systems is also not
investigated. In 2013, (Petersen et al. 2013) propose a more generic taxonomy to model flexibility
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on the demand side in Smart Grids (SG), categorizing systems into three distinct groups to facilitate
the optimization and resolution of challenges related to flexibility within SGs. This modeling
approach offers the advantages of simplifying the modeling process and enhancing optimization
efficiency. However, it falls short in addressing the complexities of real-world energy systems,
particularly the influence of factors such as temperature, due to the high level of abstraction in
the models. Consequently, these models face significant limitations in their direct applicability
to energy systems on the demand side. Similarly, the authors in (Barth et al. 2018) develop a
comprehensive modeling framework to mathematically describe demand side flexibility based on
different existing models. The modeling framework is also very abstract by integrating up to 14
different features, which represent constraints or parameters, into mathematical models.

In contrast, to obtain more details and to address the complexities of real-world energy systems,
detailed and complex models, i.e., white box models that are based on detailed physical entities
of a system, the laws of physics such as the thermodynamics and complex numerical techniques,
are up to the task. For instance, (Sliwa and Gonet 2005) develop a detailed theoretical model of
borehole heat exchangers, which is an important part of geothermal heat pump systems, utilizing
very complex heat flow equations, such as a three-dimensional equation for heat flow in the
Cartesian coordinates system. While the proposed model can lead to accurate simulation results,
the high complexity of the model and its corresponding solving method viz. the so-called Finite
Difference Method (FDM) limits the efficiency of solving the model. Similarly in another work
(Peralta et al. 2021), a detailed mathematical model of a ground source heat pump (GSHP)
system with vertical U-pipe heat exchangers is proposed to calculate the thermal load and then to
participate in day-ahead and real-time electricity markets. Although several assumptions are made
by the authors to reduce the complexity of the proposed model, the overall heat-flow equations
remain very detailed and require numerical techniques such as Lax-Wendroff finite difference
approximations to solve the model. Yet, the time resolution of the model is set to one hour in the
simulation. It’s evident that while detailed white box models can describe the interactions within
an energy system very well, the effort for modeling is enormous and the expansibility as well as
the practicability is limited, since the optimization tasks can no longer be solved in a reasonable
time. Other than detailed white box models, there is another common modeling approach which
pre-defines the model structure based on physical knowledge and identifies system parameters
based on measurement data, that is, gray box modeling. For example, (Frahm et al. 2023) utilize
the lumped resistance and capacitance approach to build a RC gray box model for the multi-zone
building structure as basis to evaluate the DR performance when using flexible electrical loads.
By building a gray box model with fewer necessary parameters, the complexity of the whole
thermal building model is reduced. This also helps to improve the efficiency when combining the
models with advanced control strategies, such as Model Predictive Control (MPC), and smaller
time step, such as 15 min in (Frahm et al. 2023). However, due to the reduced complexity of
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the models, gray box models can exhibit lower utility compared to white box models when the
identification data sets are equally accurate (Picard et al. 2016).

The above mentioned literature dedicated to the modeling of DERs in the context of DSM and
DR have been either focused on a new modeling framework or the performance of a new specific
approach. As mentioned in Section 1.1, no straightforward and comprehensive investigation of
the effect of DER model complexity on model utility in DSM has been done yet. Nevertheless,
there are some intriguing research results regarding model complexity in other domains. The
authors (Robinson 2023) explore the relationship between model complexity and model accuracy
in simulation by considering 3 ideal test models, which are the manufacturing model, the service
model and the panorama televisions model. The results show that diverse accuracy to model
complexity trajectories have been observed in different test models. For Building Information
Modeling (BIM), (McArthur 2015) consider the marginal utility of each geometric component to
develop a BIM model and investigate the relationship between the increasing benefit to the team
and the increasing extra effort required for a higher level of completeness. In the grid modeling
domain, (Weber et al. 2023) present a novel static network reduction method to investigate its
impact on a model of the German transmission grid. The reduction of the power grid model
is mainly topology-driven and thus focuses on the preservation of the overall network topology.
According to (Weber et al. 2023), the proposed method produces interpretable models that offer
a better reusability while achieving a comparable performance in the reduction grade.

The literature survey reveals an underexplored research gap in DERs modeling in the field of
DSM. Therefore, it’s necessary and worthwhile to investigate the relationship between the utility
and complexity of a model quantitatively in order to provide a better reference for diverse practical
DSM applications.

1.3 Research Questions and Contributions of the
present Dissertation

As delineated in the previous sections, the primary goal of this thesis is to investigate the relation-
ship between the model complexity and the model utility in the context of DSM quantitatively.
Mainly inspired by Gossen’s First Law in economics and relevant literature in other domains, a
hypothesis is first formulated to address this core issue. To validate this hypothesis, several open
research questions regarding the validation process, that have not been resolved satisfactorily in
the literature, are formulated in this section.

Research Question 1: How to quantify the complexity of DER models in the context of
DSM?
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Based on the hypothesis, complexity and utility of a model represents the two axes in a coordinate
system respectively. To quantitatively investigate the relationship between them, quantifying the
model complexity is an essential preliminary step. In the literature, there are many existing
measures to quantify the complexity of models or functions in different scenarios such as the
famous Big O notation for classifying the time complexity of algorithms. However, not all of these
are applicable to the scenarios discussed in this thesis. Therefore, this thesis discusses different
possibilities to quantify the model complexity and then identifies the concrete quantification
methods for different scenarios with DERs in DSM.

Research Question 2: How to quantify the utility of DER models in the context of DSM?

Similar to the first research question, quantifying utility of a DER model is another necessary
preliminary step. However, differing from complexity, utility is a more general concept and its
definition depends strongly on the specific applications. Therefore, there is a need for an accurate
specification of its scope.

Research Question 3: What is the relationship between the model complexity and the model
utility of DERs models in the context of DSM?

A complex model can usually provide more meaningful results, i.e., model utility than a simple
model, but the effort required to modeling it increases accordingly. The question of how to
achieve a reasonable balance when modeling for DSM considering the interactions between model
complexity and model utility is essential in practice. This question could be answered sensibly
after the relationship between model complexity and model utility is quantitatively investigated.
As mentioned in Section 1.1, this research question forms the core question of this thesis.

Research Question 4: How to quantify the contributions of a DER’s submodel to model
utility in DSM?

The DER models in practical application can be a simple model or a combined model with sub-
models. For DER models composed of several submodels, assessing the individual contribution
of each submodel to the overall accuracy is of significant value for a further informed decision-
making. This research question can help to take another step forward in expanding and applying
the hypothesis mentioned above to practical applications.
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Contributions:

e Different quantification methods for model complexity are analyzed and summarized based
on a literature review. After the discussion, the number of parameters as the model
complexity quantification approach is selected for white-box DER models and input size is
selected for black-box DER models.

e This thesis restricts the definition of model utility to accuracy. And according to the
definition of "accuracy" in ISO 5725-1, different useful metrics in descriptive statistics are
discussed and utilized for quantifying model utility on a per-use-case basis.

e A hypothesis that in general the complexity-utility relationship in DER models for DSM
can be represented by a diminishing marginal utility curve is proposed and tested with
different case studies.

e A new approach for quantifying the contribution of a DER’s submodel for DSM based on
the Shapley value is introduced and tested with a case study.

1.4 Thesis Outline

Based on the research questions, this thesis is structured as follows: Chapter 2 conducts a
comprehensive survey on the current state of DSM implementations, focusing on the utilized
models and the corresponding approaches. The survey offers an extensive and relatively complete
background and discussion of how models have been applied in practical DSM. The review results
suggest that simple DER models, such as linear models, can deliver relatively strong performance
in several practical DSM applications. This underlines the relevance and the importance of
the subsequent investigations. Chapter 3 responds to the Research Question (RQ) 1 and RQ2
by reviewing and discussing specific quantification methods for model complexity and model
utility. Specific quantification methods are then selected and explained as the foundation for
the subsequent validation. Chapter 4 follows as a further step to answer RQ3 by validating
the diminishing marginal utility hypothesis with three use cases, including two use cases based
on white-box models and one use case based on black-box models. Chapter 5 addresses RQ4
by suggesting a method for quantifying the contribution of DER’s submodels in the context of
DSM based on the Shapley value. In the same chapter, one of the use cases from Chapter 4 is
demonstrated to indicate the effectiveness of the proposed method. Finally, Chapter 6 concludes
the present thesis with a summary and an outlook on possible future research work. To provide
a more intuitive representation of the outline, Fig. 1.2 illustrates the detailed workflow of the
present thesis.
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In addition, it’s worth noting that some previously published contents in the current thesis are
block quoted from author’s own publications. To clearly identify them, the direct block quotations
are marked with a gray bar on the left and the sources are always provided in a box at the beginning
of the corresponding chapter or section.

Major parts of this chapter are adapted or reproduced from the author’s own previous

work:

This is an example box, intended to illustrate the definition of this type of block quotation.

This example sentence serves to illustrate the use of a block quotation with a gray bar on
the left.
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2 The Current State of Demand Side
Management Implementations

Major parts of this chapter are adapted or reproduced from the author’s own previous

work:

Chang Li, Felix Langner, Kevin Forderer, Jorg Matthes and Veit Hagenmeyer.

“A survey on the current state of demand response implementations: models and ap-
proaches”. In: ACM Energy Informatics Review, Volume 5, Issue 1.

doi: 10.1145/3757888.3757890.

In this chapter, the current state of DSM implementations, i.e., practical experiments and applica-
tions, are reviewed and discussed in detail. First and foremost, it should be emphasized that DSM
as a strategy to control electricity demand is a very broad term and seeks to manage demand over
different terms. For instance, in a paper from 2011, (Palensky and Dietrich 2011) categorize DSM
into four types of measures, namely Energy Efficiency, Time of Use (ToU), Demand Response
(DR) and Spinning Reserve. In the more recent definitions from the IEA (IEA 2023), which are
used in this thesis, ToU is part of DR and DR is subdivided into implicit DR based on prices
and explicit DR based on monetary incentives. Within the scope of this thesis, DSM is primarily
centered on DR.

The structure of this chapter is as follows: the first section describes the state of the art regarding
existing review articles about DR researches and outlines their findings as well as limitations. Sec-
tion 2.2 presents the utilized review methodology in this work, which determines the correspond-
ing literature review results. The DR implementations in different sectors, namely residential,
commercial and industrial, are discussed in Section 2.3, Section 2.4 and Section 2.5 respectively.
Section 2.6 summarizes the findings and the contributions of this chapter and discusses potential
directions for further development in the context of DR implementations.
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2 The Current State of Demand Side Management Implementations

2.1 State of the Art

12

For short-term actions, DR as a type of DSM (Dornellas et al. 2016, Impram et al. 2020),
has proven to be an operational tool in maintaining reliability (Dornellas et al. 2016). In
general, the goals of DR can be divided into three categories: electrical demand increase,
decrease and re-planning (Impram et al. 2020). More specifically, electrical demand
increase contains valley filling (Deng et al. 2015, Lund et al. 2015) and load growth (Lund
et al. 2015). Demand decrease includes peak shaving (Deng et al. 2015, Lund et al. 2015)
and load conservation (Lund et al. 2015). Re-planning is load shifting over a specific time
horizon (Deng et al. 2015, Lund et al. 2015). Fig. 2.1 illustrates these goals in the context
of DR based on the literature mentioned above.
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Figure 2.1: Illustration of the goals in the context of DR based on (Deng et al. 2015, Lund et al. 2015)

Over the course of DR development, modeling and optimization of different objectives are
two of the major aspects to handle. Other aspects such as Information and Communication
Technology (ICT) advancement and new energy storage technology (Panda et al. 2022)
are also essential for the practical implementation of DR. In recent years, there has been
a growing number of reviews about DR and DSM researches with various focuses in
different sectors worldwide: (Kohlhepp et al. 2019) evaluate control and information
technology as well as the economic and regulatory frameworks for the DR flexibility
potential on the demand side based on several field studies. The focus lies on projects
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that include a large share of domestic HVAC/P2H (Power-to-Heat) and TES (Thermal
Energy Storage)-based DR in the residential sector. In another review of the broad scope
of DSM in the residential sector (Panda et al. 2022), the authors focus on the modeling,
optimization methods, major objectives and related topics. Regarding related literature,
they do not distinguish between simulation and implementation works. (Darwazeh et al.
2022) survey peak load management strategies in commercial buildings, in which the
load forecasting models and the impact of peak load reductions on indoor environment
have been discussed in detail. In the industrial sector, (Golmohamadi 2022) review
DSM in heavy industries such as cement production, aluminum smelting and oil refinery.
Employed optimization algorithms and software tools are discussed at length in the
review. However, the highlighted results are still based on simulation. In a more recent
review, the authors (Ranaboldo et al. 2024) focus on the advances in European markets
and regulations regarding industrial demand response (IDR) applications. In terms of
different technologies or methods, they emphasize the importance of digitalisation to
provide better DR services, but only to a relatively small extent.

— implicit DR: price-based programs
(ToU, Critical Peak Pricing, Real-Time Pricing, Inclining Block Rates)

Section 2.3
Residential

| explicit DR: incentive-based programs
(Direct Load Control, Critical Peak Rebate)

— implicit DR: price-based programs
(ToU, Real-Time Pricing)

Section 2.4

Commercia

L explicit DR: incentive-based programs
(Direct Load Control)

— interactive ToU in cement, paper, steel and

Section 2.5 medium-density fiberboard industry

Industrial

— ToU in ceramic manufacturing

Figure 2.2: A graph overview of the discussed DR concepts in the chapter

Based on the related work and to the best of our knowledge, there is a lack of focus
on the survey of new practical DR applications in the existing literature. In the present
chapter, we focus on the current state of practical DR implementations in residential,
commercial and industrial sectors respectively, especially on their corresponding modeling
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and optimization approaches. Fig. 2.2 presents a graph overview of the discussed DR
concepts in this chapter and the main contributions of this chapter are:

e The review provides a deeper insight of the utilized models and optimization/control
approaches of DR implementations

e Different findings, such as best practices and limitations of specific DR concepts, in resi-
dential, commercial and industrial sectors are highlighted in each section separately

e Based on the review results, several improvement suggestions are proposed in the discussion

2.2 Review Methodology

“The quality of literature reviews is particularly determined by the literature search pro-
cess.” as stated in (Brocke et al. 2009). For that reason, the literature search process used
in this chapter is described at first to improve the objectivity and transparency. Based
on the framework proposed in (Brocke et al. 2009), a review methodology is developed
in the following. Firstly, the review scope is to explore the practical experiments and
implementations in the field of DSM during the past five years with a focus on differ-
ent state-of-the-art modeling and optimization approaches. At the second step, different
key thematic terms such as ‘Demand Side Management’, ‘Commercial/Residential/Indus-
trial’, ‘Demand Response’, ‘Modeling’ and ‘Optimization’ are interchangeably combined
as topics to identify the highly relevant open access articles, which usually have broader
visibility and citation rates compared to closed access articles. The third step is selecting
a literature database and conducting the search. In our work, Scopus is chosen as a
main database while it is described as the world’s largest abstract database of indexed,
peer reviewed, scientific literature (Schotten et al. 2017). By using the backward refer-
ence searching, other databases are also utilized. However, it is worth noting that the
overview based on the mentioned review methodology is not able to cover every aspect
and literature comprehensively and is focused on identifying research gaps from different
categorical perspectives, that are, different sectors. The analysis of the searched literature
is then carried out based on three different sectors in the fourth step. In the last step,
a research agenda with possible improvement suggestions is provided for extending this
survey. Fig. 2.3 illustrates the employed review methodology.

14
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Figure 2.3: Illustration of the review methodology

2.3 Residential Demand Side Management

In the residential sector, the term DR is more often used compared to DSM (Deng et al.
2015, Parrish et al. 2020, Panda et al. 2022). The International Energy Agency (IEA)
has defined DR as “. .. balancing the demand on power grids by encouraging customers
to shift electricity demand to times when electricity is more plentiful or other demand is
.7 (IEA 2023). This definition
reveals two main mechanisms for DR applications, which are price-based programs as
implicit DR and incentive-based programs as explicit DR. These two mechanisms have

lower, typically through prices or monetary incentives. . .

a direct impact on the modeling and optimization approaches in practical applications
which are discussed separately as follows.

2.3.1 Price-based programs as implicit Demand Response

In residential implicit DR applications, different price signals and tariffs are utilized
to motivate consumers to shift electricity consumption. Based on the features of the
changing price signals, four common tariffs are further subdivided, namely Time-of-Use
Pricing (ToU), Critical Peak Pricing (CPP), Real-Time Pricing (RTP) and Inclining Block
Rates (IBR) (Deng et al. 2015, Yan et al. 2018). Each of them has practical applications
in the residential sector. Fig. 2.4 presents the illustration of these four tariffs. Table 2.1
summarizes the identified real-world implementations of implicit DR under different
price-based programs in residential sectors, which will be discussed in more detail below.
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Table 2.1: Identified implicit DR applications in the residential sector with a focus on modeling and optimization approaches

Research Place Objective Function Tariff Modeling Optimization Comments
Fraija et al., 2022 Canada Residential agents cost min- ToU Linear + Quadratic models Convex  RL for an online implementation
1mization
Rahman et al., 2021 Bangladesh Total financial benefit maxi- ToU Linear model Concave  Optimized by GA
mization
Jang et al., 2024 South Korea Marginal cost minimization ToU Linear + Third-orderpolyno- ~ Convex  Conditional logit estimation and instrumental re-
mial models gression
Pelletier et al., 2022 Canada / CPP / / Questionnaire based with deployment results
Wang et al., 2023 China Peaking cost minimization =~ CPP Linear-segment model Convex  Solved by an improved two-layer PSO algorithm
Burkhardt et al., 2023 USA Generation cost minimiza- CPP Linear estimation model / Field experiment
tion
Finck et al., 2020 Netherlands Operational cost minimiza- RTP Grey-box + Black-box mod- Convex  Combination with EMPC framework
tion els
Thorsteinsson et al., 2023~ Denmark Cost minimization RTP Linear + Second-order poly- ~ Convex  Combination with hierarchical MPC
nomial models
Bandyopadhyay et al., 2020 USA Overall peak load minimiza- RTP Linear models Convex  Identification of the adverse impact of RTP-based
tion DR
Elazab et al., 2022 Egypt Electricity cost minimiza- IBR MILP model Convex  With linear constraints
tion
Shaban et al., 2024 Egypt Net daily cost minimization IBR MIQP model Convex  Under a 7-block IBR tariff
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Figure 2.4: Illustration of different price-based programs based on (Deng et al. 2015, Yan et al. 2018)

ToU is a strategy that adjusts tariff rates in different blocks such as a common three-
block strategy in Fig. 2.4 within a day. The main purpose of this price strategy is to
motivate consumers to shift their loads to off-peak periods for balancing the overall
energy consumption and reducing costs. In (Fraija et al. 2022), a data-driven based
Demand Response Aggregator (DRA) for generating near-to-optimal Discount-Based
ToU (DB-ToU) tariffs has been developed. On the aggregator side, a Reinforcement
Learning (RL) technique is proposed for generating DB-ToU tariffs. On the customer
side, a typical convex optimization problem is formulated by combining a linear model
for indoor temperature and quadratic models for thermal comfort and penalization. In the
case study, a multi-agent environment of 20 residential houses, located in Quebec, Canada,
has been utilized. The results imply that the generated DB-ToU tariff has the capability
to learn the DR of the residential agents and thus is able to mitigate energy consumption
peaks and improve load factor. In another application (Rahman et al. 2021), the authors
provide a ToU pricing scheme by supplying different consumer groups via two measuring
meters, one of which is optimized by Genetic Algorithm (GA) for peak and off-peak energy
rates. The objective function w.r.t. the total financial benefit is established with a simple
linear model. The developed method is applied to the residential consumers of a practical
distribution system in Bangladesh and the results suggest that significant financial savings
can be achieved simultaneously by consumers and utilities. More recently, the researchers
in (Jang et al. 2024) analyzed the effects of an applied three-block ToU strategies on the
load patterns of residential customers and on producer surplus in South Korea from an
economic perspective. On the demand side, a linear model with the conditional logit
estimation and instrumental regression is implemented for analyzing consumption and
load changes at the household level. On the supply side, a general form of a third-order
polynomial for calculating system marginal price and the producer surplus is specified.
The results according to the real-world application data show that ToU can be an effective
measure for shifting electricity consumption from periods with higher marginal cost of
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18

generation (peak) to those with lower marginal cost (off-peak), while simultaneously
increasing producer surplus.

Compared to ToU, CPP is another simpler option, which charges a higher rate during peak
events of the day, for helping reduce demand on the electric grid during peak hours. In a
question-and-answer format article (Pelletier and Faruqui 2022), the authors discuss the
implementation experience of a winter peaking utility in Canada. In the focus groups of
residential customers, CPP is one of the two preferred options. It’s confirmed in practice
that a high price signal, CPP in this case, with the potential for greater savings rather than
alow-price signal, is preferred. Another practical implementation of CPP is introduced in
(Wang et al. 2023). The authors propose a fair residential CPP pricing scheme based on a
so-called penalty mechanism of electricity price for high-electricity consumers (PMEP-
H). In this scheme, the demand response load model is a simple linear-segment function
and three objective functions from different perspectives constitute a convex optimization
function. To solve this optimization problem, an improved two-layer Particle Swarm
Optimization (PSO) algorithm is utilized for a real residential area in a populated area in
northern China. The results show a promising effect of peak cut and increasing renewable
energy consumption in that area. Similar load-shifting effects when utilizing CPP are also
observed in a two-year field experiment involving 280 Texas households in (Burkhardt
et al. 2023). The modeling is carried out at the household level with a linear estimating
equation. With the use of appliance-level data, the authors (Burkhardt et al. 2023) also
provide the first evidence on the large contribution of air conditioning as DR to the
CPP and the potential of electric vehicle charging during off-peak times for managing
electricity load with minimal or no discomfort costs.

As one of the dynamic pricing strategies, RTP can provide electricity prices that vary
frequently, for instance hourly (Wang et al. 2020). This dynamic feature makes RTP
more suitable for a combination with advanced control such as model predictive control
(MPC). In a real-life demonstration (Finck et al. 2020), an economic model predictive
controller (EMPC) framework under RTP is tested in a residential building for regulating
demand flexibility. In this framework, two modeling techniques are utilized for the six
main system components. For the heating storage, two grey-box models are used for the
modeling. For demand and weather forecasting, different black-box models such as ANN
and Markov chains are utilized. The EMPCs are then applied to a convex optimization
problem for the minimization of operational costs. The results show that together with the
introduced dynamic RTP, EMPC can achieve the lowest operational costs while providing
more demand flexibility among the three implemented control strategies. In another
four-month long experimental study in Denmark (Thorsteinsson et al. 2023), the authors
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present a hierarchical MPC approach for DR under an hourly price model, namely a RTP
tariff. Fig 2.5 presents the overview of the control implementation.
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Figure 2.5: Overview of the control implementation, where blue represents computation process, green represents onsite
units and yellow represents the heating system and the experimental house (Thorsteinsson et al. 2023)

To reduce the complexity of the control scheme, a mixed integer convex cost function,
which contains linear models and second-order polynomial functions, is formulated.
The results show that load shifting is feasible and cost-effective based on the proposed
approach. Regarding the Danish price scheme, it is further established that the evening
peak is the decisive cost factor, and heat pump operations should be blocked during
this evening peak time. Although RTP is the most dynamic tariff, it cannot conclude
that RTP would be “cure-all” solutions to high peak demand issues. In addition to
the advantages of RTP, the adverse impact is also identified. According to the analysis
results on a community of 100 single-family houses in Austin (Bandyopadhyay et al.
2020), RTP-based DR programs can effectively shift the residential peak away from the
time of overall peak load but increase the magnitude of the residential peak load by
incentivizing customers to concentrate usage within the low-price hours. To support
this conclusion, a convex optimization model is developed. In this optimization model,
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different submodels as constraints are contained, such as a linear one-parameter thermal
model for modeling the HVAC system and the electric water heater. These submodels
involve energy conservation around the home and the bounds for the room as well as the
water temperature, which have a decisive impact on the optimization and the following
analysis along with the conclusion.

Other than the three tariffs mentioned above, which are based on the time of the day
(x-axis in Fig. 2.4), IBR provides different, usually two, price blocks depending on the
customers’ consumption. For instance, a power utility in Canada, BC Hydro, offers a
residential IBR with two blocks. As of April 1, 2024, a higher block price is almost 40%
more than the lower block price when a bi-monthly threshold of 1,350 kWh is exceeded
(BC Hydro 2024). This simple structure has resulted in a widespread adoption of IBR
by many power utilities since the 1980s (Deng et al. 2015), but this may also be one of
the reasons that it has ceased to be a focus of DSM applications research in the recent
years. IBR is usually treated as a known and unchanged input in the context of DSM.
In (Elazab et al. 2022), a three-time-frame energy management scheme under IBR is
proposed and applied to a house in Egypt. To reschedule the load and minimize the
electricity cost, a mixed-integer linear programming (MILP) model is developed. The
results show that reducing AC (air conditioner) power affects significantly the energy cost
in a positive way under the Egyptian IBR tariff. Also for the load scheduling problem in
Egyptian households, a more detailed application under a 7-block IBR with residential
customer-based data is investigated in (Shaban et al. 2024). The authors first design a
questionnaire to survey the characteristics of the Egyptian household appliances’ usage
in both cities and villages. To address the household load scheduling problem within a
time horizon of 24h, a mixed-integer quadratic programming (MIQP) model is developed
that aims to minimize the net daily cost. The findings underscore that the presence of PV
systems together with the proposed MIQP model can significantly reduce electricity bills
under IBR.

Focused on the modeling and optimization approaches, we derive the following findings:

20

e RTP is the most dynamic tariff and thus suitable for a combination with complex optimiza-

tion and control methods such as MPC
e RTP is not the “cure-all” solution to high peak demand issues in the residential sector

e Linear models can already achieve a lot of improvement despite their simplicity

e Most of the identified applications make use of convex optimization regarding cost or

energy consumption minimization
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e Advanced techniques such as RL, GA, PSO can help improving the optimization perfor-
mance

e IBR has not been the focus of research-oriented implementations in recent years

2.3.2 Incentive-based programs as explicit Demand
Response

In incentive-based programs or incentive-based demand response (IBDR) (Chen et al.
2021b, Gupta et al. 2022), the power utility or aggregators request a certain amount of
balancing power or power reduction explicitly, and the participants on the demand side are
compensated with incentives for it (Zheng et al. 2020, Dewangan et al. 2023). Based on
the identified explicit DR applications in the residential sector, we summarize the results
in Table 2.2 with detailed discussion in the following.

When IBDR is implemented in a centralized scheme, it’s called direct load control (DLC)
(Dewangan et al. 2023), which has been offered to residential and small commercial
users for decades (Deng et al. 2015, Davarzani et al. 2021). The ongoing research
of DLC in DR is more focused on developing optimal DLC scheduling models and
implementation mechanisms (Ozkop 2024). The authors in (Hlalele et al. 2021) propose
a model, that uses DLC to find an optimal strategy which minimizes generation costs
and maximizes renewable utilization. In the considered DR program, the electric water
heaters from residential customers can be directly controlled by the system operator at
the substation level. Specifically, a multi-objective model is formulated. To solve the
non-convex and non-linear optimization problem, the e-constraint method is used to
turn the multi-objective functions into a single objective function, which finds the best
compromise solution in a Pareto optimal set. Specifically, the ¢ is the Pareto solution
set as constraints in the objective function that is increased from the minimum to the
maximum value to generate a Pareto front. The results show that the introduction of DLC
improves the level of renewable energy utilization and significantly reduces the system
total operating cost. In another application involving DLC for 200 residential households
(Saleh et al. 2022), an energy not-served (ENS)-based assessment method for evaluating
smart grids (SG) functions operating residential loads is proposed and validated. The
method uses a linear combination to calculate the reduction in power demands during
peak-demand times. Actions of DLC in the implementation are initiated as ON/OFF
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actions for certain thermostatically controlled appliances, which are also formulated with
linear combinations.
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Table 2.2: Identified explicit DR applications in the residential sector with a focus on modeling and optimization approaches

Research Place Objective Function IBDR Modeling Optimization Comments

Hlalele et al., 2021 South African Total cost minimization DLC Multi-objective nonlinear models Non-convex e-constraint method

Saleh et al., 2022 Canada Peak load reduction DLC Combination of linear models / Actions of DLC are initiated as ON/OFF

Tomat et al., 2022 North America / DLC Building Envelop / An analysis of the behavior of occupants
after DLC events

Jacobsen et al., 2022 USA / CPR Linear regression models / Randomized Controlled Trial (RCT) eval-
uations

Kapeller et al., 2023 Austria / CPR Log-linear models / New variant of CPR

Hofmann et al., 2024 Norway / CPR Linear fixed effect models / Randomized Controlled Trial (RCT) eval-

uations
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However, the results in this study show that DLC could not provide a load-side con-
trol to reduce the power demands during peak-demand times as effective as other two
implemented control methods viz. PDM (peak-demand management) and DR (demand
response). Similar results regarding the efficacy of the DLC strategy are obtained in
(Tomat et al. 2022). The authors create an envelope model on EnergyPlus and use the
extensive real data from residential users, who are willing to share their data, to validate
the model. The observed results by clustering show that the efficiency of DLC is strongly
impacted by different utilization patterns. Some behavior such as a high setpoint decrease
after override can reduce or even nullify the efficacy of the DLC strategy.

In contrast to DLC, another common strategy for IBDR in residential sector, namely the
critical peak rebate (CPR) or peak time rebate (PTR), allows consumers to determine the
demand reduction by themselves and provides them incentives for reducing usage during
critical hours below a baseline level of consumption (Parrish et al. 2020, Chen et al.
2021b, Jacobsen and Stewart 2022). In a field experiment run by a vertically-integrated
electric utility in the western U.S., the authors (Jacobsen and Stewart 2022) investigate
nine different pricing treatments for reducing demand during critical events. The nine
pricing treatments include three CPR-only, three ToU-only, and three ToU + CPR hybrids.
In this process, linear regression models are utilized for the randomized controlled trial
(RCT) evaluations of household energy consumption, which are based on the post-period
data. The post-period data employ controls that are computed based on pre-intervention
consumption. They found that the implementation of CPR alone reduces more demand
in residential sector than the combined implementation of CPR and ToU. The results
suggest that more complex pricing systems can overwhelm residential consumers and
result in unexpected consumer decision-making in DR. In another full-scale experiment
in Norway, the authors (Hofmann and Lindberg 2024) also utilize the RCT method for
their implementation and the experimental setup resembles critical rebate programs. For
the analysis of the households’ demand response, four different linear econometric fixed
effect models with individual fixed effects are formulated. In fixed effect models, the fixed
effects account for unobserved characteristics that do not change over time within entities,
such as living space of the household in this case. An average demand reduction of 2.92%
in peak hours are observed in the experiment. The results also suggest that a shorter peak
period results in a higher response and a statistically significant increased response can first
be observed when the rebate is above a threshold value. In addition to the conventional
CPR strategy as mentioned above, a new variant of CPR has been implemented in a
field trial in Austria (Kapeller et al. 2023). Instead of providing residential consumers
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incentives in peak demand hours, participants receive rebates when they remove the
consumption to local peak generation hours. The authors utilize log-linear models to
analyze the treatment effects viz. consumption change and load shifting. They find that
on average household electricity consumption is slightly increased by 5.7% during peak
generation hours and peak loads are lowered during peak demand times between 5% and

9%.

Apart from the two above mentioned common IBDR strategies in the residential sec-
tor, some other incentive-based programs such as Capacity Markets (CM), Demand
Bidding/Buyback, Ancillary Service Markets (ASM), Interruptible/Curtailed Load and
Emergency Demand Response have also been summarized in the literature (Nikolaidis
and Poullikkas 2020, Lotfi and Ghazi 2021, Davarzani et al. 2021). However, in the
course of our literature review, we found a lack of implementations with these IBDR
strategies in the residential sector over the last 5 years due to different reasons. For
instance, ASM refers to the capacity reserved market with a range of functions which
transmission system operators (TSO) contract so that they can guarantee system security.
Thus, their participants on the demand side are predominantly large and regular energy
consumers (Davarzani et al. 2021), such as commercial EV fleets (Owens et al. 2024), a
frequency containment reserve (FCR) market (Stromer et al. 2022) and even the power
grid of a province (Ding et al. 2023).
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Figure 2.6: Illustrative capacity demand curve, A-E stand for different key points regarding capacity auction (DECC
2014)
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Similar to ASM are the Demand Bidding/Buyback and CM programs. The former usually
encourages large electricity consumers to provide load reductions at a price at which they
are willing to be curtailed (Hadayeghparast and Karimipour 2020), e.g., large industrial
consumers in Brazil (Dranka et al. 2021). The latter requires not only a high level of
capacity but also runs over medium to long time periods. Fig. 2.6 shows an illustrative
capacity demand curve under CM programs based on (DECC 2014) that is released by
Department of Energy & Climate Change in the UK. It can be seen from the figure that
CM has the level of capacity in GW and a time period from 1 to 4 years.

In order to deal with power outages and unexpected events in power grids, Emergency
Demand Response programs are regarded as a potential method (Fan et al. 2021) in
restoration. However, Emergency Demand Response programs also usually target large
and industrial consumers (Cui et al. 2020, Lee et al. 2023). As for Interruptible/Curtailed
Load, a recent energy economics research in Ireland states that on average, consumers
are found to be mostly indifferent to curtailable contracts compared to their status quo
contract (Harold et al. 2021). This could be one of the reasons that this IBDR strategy
has not been the focus of relevant implementations in the last 5 years.

Focused on the modeling and optimization approaches, we derive the following outcomes:
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In the residential sector, DLC and CPR/PTR have recently gained more attention in research-
oriented implementations compared to other IBDR strategies

The focus of DLC implementations is developing optimal scheduling models and analyzing
treatment effects independent of specific optimization approaches

An impact evaluation such as RCT evaluation in the context of economics is often to be
observed in field experiments and practical implementations of CPR

For economic impact analysis, linear regression models and fixed effects models are often
employed

Other IBDR strategies, such as Demand Bidding/Buyback, CM, ASM and Emergency
Demand Response programs, are more suitable for large and regular energy consumers
such as industrial consumers
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Similar to the residential sector, energy consumption in the commercial sector such as
office buildings, warehouse and education buildings is also quite significant. According
to the U.S. Energy Information Administration, the residential and commercial sectors
accounted for about 19.7% and 17.2% respectively of total U.S. energy consumption in
2023, when electrical system energy losses are included (EIA 2023). However, unlike
small residential loads, multi-zone commercial systems, e.g., HVAC and building automa-
tion system (BAS) could offer much higher potential for load reduction (Darwazeh et al.
2022). Besides, more commercial buildings per capita would lead to higher consumption
levels (Gonzélez-Torres et al. 2022), which makes it worthwhile to implement DSM in
the commercial sector as well. Table 2.3 presents the identified DSM implementations in
the commercial sector with more details in the following discussion.

As identical to the residential sector, price- and incentive-based DR programs that are
mentioned in Section 2.3.1 are also the core of DSM applications in the commercial
sector when considering cost savings. Additionally, advanced control strategies such as
MPC are proven to have huge advantages for load reduction. For instance, a long-term
performance evaluation of the MPC controller under ToU tariffs in a small commercial
building is carried out in (Zhang et al. 2022). In this real-world operation, the authors first
use the lumped resistance and capacitance approach with an R8C4 network, as shown
in Fig. 2.7, to model the building thermal zones. The overall building thermal model is
a fourth-order linear model. The supervisory controller in the control system is a MPC
controller which optimizes the temperature setpoints in different zones, appliances and
the charge/discharge power of a battery with a time interval of 5 minutes. To minimize
the monthly energy cost, a convex optimization problem with an optimization horizon of
24h is formulated. The field test results show that in overall 11.7% savings of the annual
energy cost are achieved compared to the baseline viz. business as usual. Moreover, the
average peak reduction after utilizing MPC is 34%.
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Table 2.3: Identified DSM implementations in the commercial sector with a focus on modeling and optimization approaches

Research Place Objective Function Tariff Modeling Optimization Comments

Drgotia et al., 2020 Belgium Energy use and thermal dis- /  NL white-box model decoupled into a QP MPC combined with a NL optimization al-
comfort minimization Hammerstein-Wiener model structure gorithm as post-processing

Freund et al., 2021 Germany Heating energy demand and /  R7C4/ fourth-order linear model QP A comparison between MPC and RBC
thermal discomfort mini-
mization

Chenetal. 2021  China Economic benefit maximiza- ToU MDP model RL A non-deterministic way by using RL to
tion deal with DR events

Zhang et al., 2022 USA Electricity bill minimization ToU R8C4 / fourth-order linear model Convex  MPC as the supervisory controller

Blumetal., 2022 USA Daily energy consumption /  R2C2 gray-box model Convex  MPC as the main controller
minimization

Xiong et al., 2023  China Energy consumption and RTP Linear models Convex A combination of an improved TC and
cost minimization ATES

Saxena et al., 2023 Canada / / Linear models / A V2X program caters to participate in DR

Wang et al., 2024  China DR target tracking viz. fixed / / / Modified PSBC for coordinating TCLs dur-

20% load reduction

ing DR events
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Figure 2.7: The R8C4 network to model the building thermal zones. R, C and Q indicate resistance between the connected
temperature nodes, capacitance, and net heat addition to the nodes respectively (Zhang et al. 2022)

In another real-world implementation using an MPC controller to control the HVAC sys-
tem of a commercial office space of approximately 6000 m?, the authors (Blum et al.
2022) demonstrate usage of an open-source tool-chain called MPCPy (Blum and Wetter
2017). To reduce the complexity of the models, a zone-simplification scheme is ap-
plied for modeling, and RC gray-box models of thermal envelope zones with persistent
estimated parameters are developed in Modelica. Besides, forecasting models with differ-
ent approaches are developed as part of the implementation, such as k-Nearest Neighbors
(kNN) for weather forecasting and a simple average algorithm for internal load forecasting.
The optimal control problem is then defined to minimize the daily energy consumption
viz. the prediction horizon is 24 hours. To ensure feasibility of the optimization, three
slack variables as constraints, together with corresponding weights, are introduced for
the zone temperature and supply air temperature, instead of hard constraints. This is
typical for the case when the outside air temperature is too low to maintain the minimum
supply air temperature. The promising test results reveal an estimated 40% energy saving
by operation with MPC compared to operation without MPC over a two-month period,
without significant penalty to thermal comfort.

The effects of load reduction on the demand side by implementing MPC is not just
observed in traditional commercial buildings. In newly built energy-efficient commercial
buildings, the improvement is also significant (Freund and Schmitz 2021). The authors
demonstrate a three-month field test by operating MPC for heating energy demand and
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thermal discomfort optimization in a modern large-sized, energy-efficient office building
in Germany. In this process, a gray-box model with a R7C4 network for each zone,
i.e., a fourth-order model, is developed in Modelica at first. To minimize the heating
energy demand and thermal discomfort, a constrained non-linear optimization problem is
defined. The energy-efficient building is heated by thermally activated building systems in
the form of thermoactive ceilings. Thus, there is only one control input, namely the supply
temperature of the corresponding thermoactive ceilings heating circuit. Compared to the
default rule-based control (RBC), the 3-month field test results show a relative demand
reduction of 19.2%, 24.6% and 75.2% in February, March and April respectively after
implementing MPC. However, due to the slow-reacting dynamics of thermoactive ceilings,
an improvement in thermal comfort could not be clearly identified in this implementation.

Similarly, in a cloud-based implementation of MPC for an office building in Belgium, the
authors (Drgona et al. 2020) also first develop the building models in Modelica. However,
unlike the RC gray-box models mentioned above, a detailed white-box non-linear model in
Modelica IDEAS library is developed at first. Then, they use linearization and decoupling
technique to form a Hammerstein-Wiener model structure which lowers the complexity
of the control oriented building model. Fig. 2.8 presents the general model structure
with the decoupling principle. In this implementation, a large GSHP coupled with two
buffer tanks of 1000 liters each in the office building is the main production system for
thermal comfort and also the main focus of the MPC. The purpose of the MPC is to
minimize energy use and thermal discomfort, which in this case makes use of a quadratic
optimization (QP) problem. Since in a practical setup some variables such as heat flows
cannot be directly manipulated, the authors also introduce a post-processing algorithm to
solve a non-linear optimization problem for control variables based on the heat transfer
equation. The real-world operational results over 30 days show that the MPC operation
can not only save 53.5% energy usage but also improve thermal comfort by 36.9% at the
same time compared to the base line, namely the RBC operation.

In addition to the extensive use of MPC for load reduction in the DSM, other control
strategies have also been implemented and evaluated in the commercial sector in recent
research. For instance, to evaluate the performance of Priority Stack-Based Control
(PSBC) for coordinating thermostatically controlled loads in real office buildings, (Wang
et al. 2024) conduct a 22-day field test with the vanilla and modified PSBC strategies.
They first define two distinct DR scenarios, each with a 2h duration, for weekdays and
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Figure 2.8: A general building model structure with decoupled non-linearities (Drgona et al. 2020)

weekends due to different energy patterns. Instead of optimizing load profiles directly,
they establish a DR tracking target, namely a 20% reduction in power consumption
compared to the baseline. This target value is utilized in the PSBC to be compared with
the instantaneous aggregate power at each sample time and then to generate the regulation
signal to coordinate thermostatically controlled loads . To quantify imminence, i.e.,
priority, the temperature distance to the lower/upper temperature bound is measured. In
the vanilla PSBC strategy, the tracking target is constant, while in the modified PSBC
strategy, a tracking target modified mechanism is introduced. It should be noted that this
mechanism in the modified PSBC strategy is not to change the DR tracking target but to
adjust the tracking power consumption. The results reveal that both strategies can optimize
load profiles in terms of tracking target during DR events. Besides, the performance of
the modified PSBC strategy has a notable 17.9% improvement in tracking accuracy and a
significant 38.8% improvement in thermal discomfort over the vanilla PSBC strategy.

In another on-site experiment within a teaching building, (Xiong et al. 2023) test the effect
of a comprehensive DR strategy that combines an improved version of transactive control,
also known as market-based distributed control, and active thermal energy storage for
energy storage AC systems under RTP. The core idea of this combined DR strategy is to
use the two market value signals of bidding price and RTP to regulate the temperature
set-points of the active thermal energy storage dynamically, where the bidding price
is calculated by linear modeling on the basis of the real pricing during the past 24h.
Then the authors develop an algorithm of the strategy in the form of state flow with
slight differences for cooling and heating conditions. In the experimental set-up, the
active thermal energy storage consists of an air source heat pump (ASHP), an energy
storage tank, a variable air volume box, etc. Besides, for different conditions in summer
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and winter, a 5-day experiment for cooling and a 3-day experiment for space heating are
carried out separately. The results suggest that the proposed DR strategy could achieve the
largest reduction in total energy consumption and cost compared to the baseline operation
and other strategies such as transactive control alone or active thermal energy storage
alone. Furthermore, the indoor thermal comfort is better ensured with the combined
strategy. However, the advantage of the proposed DR strategy is greater in the space
cooling experiment than in the heating experiment. The reasons for this phenomenon are
not discussed in (Xiong et al. 2023).

Instead of the deterministic way such as modeling the DR strategy as an optimization
problem, non-deterministic methods are also suitable for DR operation. (Chen et al.
2021a) propose a RL framework to formulate the optimal DR strategy and demonstrated
the experiments of the proposed program for a commercial building-based virtual power
plant (VPP) platform. In this framework, the authors first model VPP operation by using a
Markov decision process to map the VPP state status and control action, and then formulate
the monetary economic benefit based on the utility function (Pourbabak et al. 2017) with
customization. The customization is designed for different commercial buildings and
satisfies non-decreasing but marginal non-increasing characteristics (Mohajeryami et al.
2016). Considering the limited computational capability of installed control unit for end-
users in real-world, the authors choose the simple action clipped Q-learning algorithm
for training, in which the action choices are bounded or clipped by the backup power
limitation. The implementation is carried out in 20 commercial buildings of different
types with HVAC as the main energy consumer, in 15-min time intervals for 13 to 15
days. During this period, a ToU structure of a local electricity price scheme in Shanghai
is executed, which contains DR incentives for peak and valley periods. The authors
conclude that all the participating buildings increase their economic benefit between
1.2% and 12.5% compared with original gain. It proves the ability of the proposed RL
method to benefit, in a non-deterministic way, the long-term operation of commercial
building-based VPP with DR.

In addition to mainly optimizing the control of HVAC systems in DSM as discussed
above, the urgent transition towards electric vehicle (EVs), especially the bidirectional
charging ability or “Vehicle to everything” (V2X), offers another opportunity for energy
management on the demand side. In a real-world demonstration in Canada, (Saxena et al.
2023) first design a survey for EV owners to consider their preferences as the pre-step for
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the V2X program design. These preferences, among which the most important are owner
convenience and the opportunity to earn revenue via V2X, decide which parameters are
considered in the implementation. In commercial buildings, the building owner acts as
an aggregator of EVs and other DERs, who dispatches the setpoints during DR events to
each EV based on the signals from the power system operator feeder (Kim et al. 2021).
Finally, the strategy is formulated by linear models along with linear constraints. In a
5-day field test, the EV used for testing has a maximum charging power of 6.6 kW and a
maximum discharging power of 30 kW. Fig. 2.9 presents the single line diagram of the
commercial building under test. The feasibility of the proposed program is validated in a
real-world demonstration that achieves an averaging 30.4 kW of load reduction during a
2 hour DR event under a contracted DR capacity of 30 kW. In the meantime, the actual
consumption of the building is reduced by 60.7 kWh and the EV owner earns $2.17/kWh
by discharging during the DR event.
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and optimization approaches, the following can be derived:

Figure 2.9: A single line diagram of the commercial building together with EV and other DERs under test (Saxena et al.

As summarized in Table 2.3, it’s clear to see that advanced control methods such as MPC are
more extensively used regarding optimization in the commercial sector. Focused on the modeling

e RC gray-box models of the building are commonly combined with MPC in the implemen-

tation

e Both deterministic and non-deterministic ways of optimization are applicable for DSM
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improvements in the DR implementation regarding load and cost reduction

e HVAC systems are the main object of modeling and control in most implementations due

to its high energy consumption

e V2X technology has a high potential as an important part of DSM in the commercial sector

e Long-term implementation needs to be further researched

2.5 Industrial Demand Side Management

34

Unlike the applications and implementations in the residential and commercial sectors,
most industries that take part in DR programs are participating through ancillary services
programs (Shoreh et al. 2016), which have different priorities compared to those in other
sectors. For instance, ancillary services are typically needed year round not just during
peak hours (Shoreh et al. 2016). Besides, due to the greater impact of the industrial sector
on the grid, the technical barriers such as open standards are necessary to be investigated.
Although standards like OpenADR (OpenADR 2011) and ZigBee (Deese and Daum
2018) have been adopted in several industrial applications, the development of associated
standards for DR interoperability is still ongoing. However, these open standards are
not the focus of this review. In this section, we discuss the unique characteristics and
improvements of DR in the industrial sector regarding modeling and optimization in recent
years.

In order to improve the traditional structure of ToU tariffs in the industrial sector, in
which the utility determines and communicates peak, mid-peak and off-peak hours to
industrial customers, (Kholerdi and Ghasemi-Marzbali 2021) propose a modified method
for determining the ToU based on the interactive structure. In this interactive ToU tariff,
the utility determines the peak months and hours for one year based on the obtained
yearly grid load curve. Meanwhile, the voluntary industrial customers select the off-peak
months and hours by themselves. By introducing the price elasticity of demand (Aalami
et al. 2010), a linear model of demand response is built which defines the relationship
between the load and the price in each hour of each month. In the implementation,
eight large industrial companies covering four businesses (cement, paper, steel and MDF)
have participated. The results reveal the improvement of the proposed interactive ToU.

Simple models such as linear models with linear constraints can already bring significant
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Compared to the conventional ToU, the average daily load reduction during peak hours
has improved from 5.49 MW to 13.59 MW, which equals a reduction of 18.6% instead of
7.5%.

In another demonstration in a ceramic manufacturing company, (Ma et al. 2020b) design
a data-driven sustainable intelligent manufacturing architecture based on DR. This frame-
work contains three layers: a perception layer, a management layer and an application
layer. In the implementation, the perception layer is responsible for real-time monitoring
of energy consumption, i.e., 1 minute in this case, and the other two layers are dealing with
energy efficiency assessment and optimization respectively. For ceramic manufacturing,
the authors have developed linear models for electrical energy peak load shifting based on
a typical serial production line with n shop-floors. However, the model in each floor that
considers the time of peak load shifting is non-linear. They utilized PSO for searching
the optimal time of peak load shifting in order to minimize the average energy cost. In
a 3-day comparative demonstration under a typical ToU tariff, the optimized ball mill
consumes 15% more energy with only 7.6% more cost, which makes the average cost
6.5% lower after optimization.

Aside from these two implementations mentioned above, as the review progressed, we
found that almost all published research articles in the last 5 years regarding DR im-
plementation in the industrial sector are based on simulations or numerical results. For
instance, the authors of (dos Santos et al. 2023) investigate 53 DR application studies
in industrial scenarios from 2013 to 2022. However, all 16 studies in the recent years,
i.e., covering from 2020 to 2022 in their review, are carried out only with simulations or
numerical analysis. This review result also lets us conclude that there is comparatively
few literature that focus on DSM implementation compared to the works that focus on
theoretical and numerical analysis.

Possible reasons for this finding are, for example, the efforts and costs to model and
optimize a large industry equipment are too high for a research work and the companies
care mostly on costs and profits (Ma et al. 2020b). Implementations in the industrial
sector may involve confidentiality issues and conflict of interest (dos Santos et al. 2023).
Besides, there is a variety of barriers, such as informational barriers, slowing participation
in industrial DR (Scharnhorst et al. 2024), which could result in increasing the difficulty
of drawing findings in industrial DR implementations. Other barriers to implement DR
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in the industrial sector are well summarized in (Shoreh et al. 2016, Lashmar et al. 2022,

Scharnhorst et al. 2024).

Based on the results above, our findings for industrial DSM are summarized as follows:

e Dominant industries that have high potential for implementing DSM are energy-intensive

industries such as cement, metals, mineral products, etc.

The number of research-oriented implementations of industrial DSM in the last five years
are very limited.!

Linear models at a high level, i.e., without consideration of detailed physical behavior of
specific equipment, can already contribute to industrial DSM remarkably

For medium- and small-sized industrial companies, it’s important to ensure that the cost
savings of implementing DR is higher than updating equipment such as for real-time

monitoring

2.6 Discussion

DSM as one efficient strategy for exploiting load management on the demand side can
not only bring financial benefits for customers in different sectors, but also contribute to
stabilizing the grid as renewable energy sources become more prevalent. Moreover, with
the development of ICT on one side and modeling techniques as well as optimization
algorithms on the other side, it is important to investigate research-oriented implementa-
tions of DSM to provide deeper insights into its potential.

Based on the review results, we find that the active research-oriented implementations
in the last five years have focused on the residential and commercial sector whereas the
works in the industrial sector are mostly simulation- or numerical analysis-based. In the
residential sector, RTP and ToU have attracted more research attention in the implicit
DR compared to the other two tariff schemes. This result is supported by their high
dynamics, especially RTP, which makes them more suitable for the combination with
novel optimization methods. However, it cannot be concluded that RTP is the "cure-all"
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solution in all situations. As for the explicit DR in the residential sector, DLC and CPR
have gained more research attention compared to other IBDR schemes. In the commercial
sector, the RC gray-box models are extensively used due to its good trade-off between
the required modeling efforts and accuracy. Moreover, the combination with MPC is a
common choice for implementation. In addition, HVAC systems are still the main object
of the implementation in the commercial sector due to its high energy consumption. In
the industrial sector, most of the literature from the last years focused on simulations or
numerical analysis, which makes the number of implementation-related literature much
less than theoretical works. Lastly, it is worth noting that there is a common feature of
findings in the different sectors, namely, simple models such as linear models can already
achieve a lot of improvement in the DSM implementations.

While this chapter has provided a comprehensive survey of recent practical DSM applications
in the literature, several limitations must be acknowledged. First, the selection of a literature
database inevitably reflects a certain degree of subjectivity. The focus was placed primarily on
studies published in English and in peer-reviewed journals in Scopus, which may exclude relevant
insights from other databases or languages. In addition, the review concentrated mainly on
modeling and the corresponding optimization approaches, while other important aspects during
implementation, such as ICT technologies and standards, were only briefly addressed. This
selective concentration may limit the completeness of the overall picture and some innovative
findings in several practical applications. Future review should therefore aim at integrating
a broader set of databases, even in languages other than English, and optimizing the review
methodology to gain access to richer information, such as in the industrial sector, that cannot be
obtained through conventional methods.

As for future implementation, we propose several improvement suggestions with a focus
on modeling and optimization based on our findings. First of all, it would be interesting to
investigate the impact of models with different complexities, which constitutes the main
focus of the following chapters of this thesis. In the review process, we have seen that
both complex models and simple models can bring remarkable benefits in DSM. The
second suggestion is to widen the focus of real-world implementations, especially in the
commercial sector, from primarily HVAC to also include V2X technologies. The third
one is to investigate the reliability of the models and optimization methods in a long-term
implementation. Most of the implementation works that we have reviewed have been
evaluated for a duration between several days and one month.
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3 Hypothesis and Quantification

Parts of this chapter are adapted or reproduced from the author’s own previous works:

Chang Li, Kevin Forderer, Tobias Moser, Luigi Spatafora and Veit Hagenmeyer.
“Gossen’s first law in the modeling for demand side management: a first heat pump case
study”.

In: 2023 Springer Energy Informatics Academy Conference (ELA 2023), 2023, pp.
111-125. doi: 10.1007/978-3-031-48652-4_8.

This chapter systematically addresses RQ1 and RQ2: "How to quantify the complexity and
the utility of DER models in the context of DSM?", based on the hypothesis, that the famous
Gossen’s First Law in economics applies in the domain of DSM with DERs. The first section
introduces the theoretical foundation of Gossen’s Law and the DERs, namely heat pump systems
and electric vehicle charging equipments, that are the reference systems for the validation in the
following Chapter 4. Then the exact hypothesis is proposed in Section 3.2. The following Section
3.3 discusses different methods for quantifying model complexity and model utility within the
considered domain and indicates as well as explains the methods chosen for the validation, which
is conducted in Chapter 4 with three different use cases.

3.1 Theoretical Foundation

This section aims at introducing the necessary theoretical foundation for the following sections.
This includes Gossen’s Law in economics, the working principles of heat pump systems and the
characteristics of the charging process for electric vehicles.
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3 Hypothesis and Quantification

3.1.1 Gossen’s Law

In 1854, Hermann Heinrich Gossen has introduced three laws of economics in his book Entwick-
elung der Gesetze des menschlichen Verkehrs, und der daraus fliessenden Regeln fiir menschliches
Handeln (Gossen 1854), which are also known as Gossen’s Law. Gossen’s first Law describes
the law of diminishing marginal utility, which states that marginal utility decreases across an
increasing quantity of ranges relevant to decision-making. This range could be consumption
of goods (e.g. food) or services. In this relationship, there is a so-called saturation point for
marginal utility. It decides whether marginal utility is positive or negative. When the quantity of
ranges is less than the value of the saturation point, marginal utility is positive. Mathematically,
the following equations (Gossen 1854) are used to formally characterize this relationship for use
cases of only positive marginal utility, where U is the quantified utility and C' is the quantified
consumption. The theoretical relationship for use cases of positive marginal utility is illustrated
in Fig. 3.1.

g—g >0 (3.1)
9*U
30z <0 (32

Tlustration of Gossen's first law till the saturation point

Utility

Saturation Point

Consumption

Figure 3.1: Illustration of Gossen’s first law till the saturation point, given quantification

Gossen’s second law is also known as the law of equi-marginal utility, which indicates that
the optimum satisfaction, i.e., utility of a combination of several commodities is reached when
marginal utility relative to its price is equal across all commodities. This law applies for use cases
that contain at least two commodities. Formally, it can be represented by Equation (3.3) (Gossen
1854), where P is the price and (i, j) represents different commodities.
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Unlike the mentioned laws above, Gossen’s third law is a defined concept, which indicates that the
subjective scarcity is source of economic value. This concept, however, is difficult to be formally
described by mathematical equations.

3.1.2 Heat Pump Systems

In the residential sector, heat pump systems usually contain two major subsystems: a heat pump
and a hot water storage. The operating principle of a heat pump used for house space heating
and hot water supply is based on a reverse Carnot thermodynamic cycle (Sarbu and Sebarchievici
2014), which means the thermal energy at the output consists of two parts, i.e., environmental
energy and operating energy, namely the consumed electricity. Fig. 3.2 shows the basic operating
principle, based on (Bundesverband Wirmepumpe e.V. 2019), of a typical heat pump system in
the residential sector.

ﬁ Operating energy

A
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.

Heat source system Heat pump Heat distribution and storage system

Figure 3.2: Operating principle of a typical residential heat pump system based on (Bundesverband Wirmepumpe e.V.
2019)

In the operation process for heating, the heat exchanger extracts environmental energy from heat

sources to the brine, which is then delivered to a refrigerant by another heat exchanger. The
compressor uses most of the electricity to move a refrigerant through a refrigeration cycle. The
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heat is then passed on to the home heat distribution or/and storage system through another heat
exchanger. Based on the different heat sources for the environmental energy, heat pumps are
further subdivided into Air Source Heat Pump (ASHP), Ground Source Heat Pump (GSHP) and
Water Source Heat Pump (WSHP).

In addition to the heat pump itself, the integration of a hot water storage, i.e., thermal energy
storage plays a pivotal role in enhancing operational flexibility, particularly for addressing the
intermittency of renewable energy sources. By decoupling energy production from demand,
thermal energy storage enables efficient load-shifting and stabilization of grid interactions. There
exist a variety of storage systems for thermal energy, such as hot water tank, Phase Change
Materials (PCMs)-based thermal energy storage system, seasonal thermal energy storage, etc. In
the residential sector, due to heat power requirements and cost considerations, a hot water tank is
the most common configuration. As the name indicates, a hot water tank utilizes hot water as the
thermal energy storage medium and is encased in a tank that has excellent insulation, so that the
heat loss is small.

The operating principle and the configuration of a heat pump system determines the main heat
transfer processes in the system as well, which takes place in three subsystems. First of all,
there is the heat exchange with the environment, the modeling of which is determined by the
heat sources. For instance, an ASHP uses an outdoor evaporator heat exchanger coil with fans
to extract heat from the ambient air forcedly, while a GSHP could use a Ground Heat Exchanger
(GHE) in borehole to absorb heat from the ground source. Considering the use cases in the
following sections, which involve GSHP systems, the focus of further discussions is then on a
typical GSHP system. To build and validate a detailed theoretical thermal model of a borehole
GHE for heat transfer requires too many geometric and thermal properties (Sliwa and Gonet 2005,
Ruiz-Calvo et al. 2015), which are beyond the scope of the present work. Alternatively, if only
the inlet temperature 7" and outlet temperature 7°%* of the borehole GHE are focused on, as
shown in Fig. 3.3, based on the First Law of Thermodynamics, the specific heat capacity of brine
¢ and the mass flow of brine 1, can be used to calculate the temperature change at different time
steps as follows:

abs

. P
Ttout — thn + Q,t. (34)
Cp - My

where P“f’f is the absorbed thermal power at time ¢, which is also the difference between thermal

power PQ’,’t and electrical power of the GSHP phr

1¢ at the same time step and calculated in
Equation (3.5).
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Figure 3.3: Illustration of a borehole GHE

Paby = Pg{’t - Pe’;{’t (3.5)

The second heat exchange process takes place in the heat pump itself. Similar to the modeling
of the GHE, the thermal model of a heat pump could also have a varying degree of detail and
complexity. As mentioned before, heat pumps operate upon a reverse Carnot cycle involving
four steps. In a detailed, physical model, each step and the associated physical processes can
be described. However, in the context of DSM, models are much more abstract. Therefore, the
attention is focused on abstract models that are based on the Coefficient of Performance (COP),
which is typically used to characterize heat pump’s instantaneous overall performance at each
time step. This value is influenced by many factors in actual operation such as the supply/return
temperature, outdoor temperature, etc.. Equation (3.6) provides the definition of the COP, where
the thermal power ng’t of the heat pump is measured and calculated based on the First Law
of Thermodynamics in Equation (3.7), in which ¢, p,, and V,, are the specific heat capacity,
density and volume rate of water respectively. The difference between supply temperature and
return temperature is represented by (T'suPPly — Treturn),

hp

P
COP, = —22 (3.6)
el,t
P, = co Vi« pu - (TP — Tyeterm) (3.7)
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The third heat exchange occurs in the hot water storage. The temperature and the corresponding
thermal energy variations within the hot water storage significantly influence the performance of
the entire system. Assuming that the density and specific heat capacity of hot water inside the
storage are constant and the heat loss is negligible throughout the considered time frame, based
on the heat capacity formula, the thermal energy change in the storage between two successive
time steps is calculated as follows:

AQS =cy- Vs Pw * (Tgnean - Ttnzelan) (3.8)

where V is the volume of the hot water tank and (777¢%" —T,;75*") denotes the average temperature
change of the hot water, which are determined in Equation (3.9) for multiple layers with different
temperatures within the hot water storage, assuming that the temperature is evenly distributed in
each layer at every time step:

I~
Tyt = =~ T (3.9)
i=1

By modeling the main heat transfer processes in these three subsystems, the simulation and
validation of the heat pump system’s performance is feasible and will be carried out in detail with
two use cases in Section 4.1 and Section 4.2.

3.1.3 Electric Vehicle Supply Equipment

An Electric Vehicle Supply Equipment (EVSE), also known as charging station or chargepoint, is
a power supply device that is capable of recharging plug-in Electric Vehicle (EV) with different
power output in Alternating Current (AC) or Direct Current (DC). With the development of
electric vehicles in the last years, the number of electric chargepoints is expanding rapidly, which
therefore gains more attention and importance to act as DERs and has an increasing impact on
grid integration (Das et al. 2020).

In terms of the modeling of charging behavior, simplified or linear models are utilized at an early
stage for theoretical research purposes. For instance, the authors (Hoimoja et al. 2012) use a
simplified linear Equation (3.10), that is based on the State of Charge (SoC), to calculate the
charging time ., where E'py the rated battery capacity and P, the charging power are assumed
to be constant.
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Socstart - SOCstop
Pch

teh = Epyv - (3.10)
However, in a more practical context, due to the uncoordinated deployment of charging stations
(Chang et al. 2021) and the system fluctuations regarding charging behaviors (Gong et al. 2020),
the charging environment is dynamic (Alsabbagh et al. 2020). This makes the use of traditional
modeling methods such as white-box models difficult for an accurate analysis and forecast (Chen
et al. 2022) of charging behaviors, which are essential for operational decision making such
as DSM. For instance, the results of short-term load forecasting can help utilities to optimize
generation and to ensure grid stability in the short term. More details will be discussed together
with the use case in Section 4.3.2.

3.2 Hypothesis

We propose the applicability of Gossen’s First Law for the relationship between model utility and
model complexity within the domain of DSM. The proposed hypothesis is stated as follows (Li
et al. 2023):

Hypothesis. In general, the complexity-utility relationship in the modeling of Distributed Energy
Resources for Demand Side Management could be represented by a diminishing marginal utility

curve.

In order to validate this hypothesis, some preliminary questions, namely the quantification of the
model complexity and the model utility, needs to be discussed and answered first in the following
Section 3.3.

3.3 Quantification Methods

The proposed hypothesis assumes a diminishing marginal utility curve to represent the complexity-
utility relationship in the modeling of DERs for DSM. As with Gossen’s First Law, the marginal
utility itself is an inherently abstract concept and needs to be quantified first in order to illustrate
its relationship with consumption or other properties, such as income (Layard et al. 2008) in
economics. Similarly, the method for quantifying the complexity and utility of DERs modeling in
DSM is also crucial to visualize the interaction between them. This section discusses separately
what kinds of quantitative options for complexity and utility are available and then explains the
rationale for the choices made in this thesis.
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3.3.1 Quantification of the Model Complexity

In computer science, complexity can be measured in various ways, such as required time, number
of operations, required memory and big O notation. They do depend on the specific algorithms,
their implementation, and the hardware they are running on. For instance, big O notation is
often used to classify the efficiency or complexity of algorithms according to how their run time
grows as the input size increases (Cormen et al. 2001). However, this famous approach primarily
refers to algorithms or functions without the consideration of the involved models, which are
of more importance in the context of DERs modeling in DSM. Therefore, in our scenario an
appropriate approach should consider the models and the functions together. To determine the
approaches, a short review of different methods for quantifying the model complexity is conducted
first, followed by a discussion and analysis of different approaches. The review methodology is
as same as described in Section 2.2 with a focus on the review works from different domains.
Finally, the methods adopted in this thesis is selected based on this evaluation

For a better understanding of what is model complexity in environmental and climatological
research, the authors (Malmborg et al. 2024) propose a more explicit definition of model com-
plexity from an ecological perspective. This definition incorporates four facets, namely model
class complexity, parameters complexity, input complexity and computational complexity. The
model class complexity determines the structure of a model such as statistical or mechanistic
models. The parameters complexity contains the number of parameters included in a model and
the estimability of parameters. The input complexity touches on a diverse range of aspects such
as challenges when collecting data, which is usually depending on the natural environmental
process. The computational complexity relates to the several aspects of a model workflow such
as software and model fitting degree.

Model Class

Model Complexity

Computation

Figure 3.4: Definition of model complexity from an ecological perspective based on (Malmborg et al. 2024)

Fig. 3.4 shows the structure of this definition of model complexity. However, the authors propose
this definition primarily as a conceptual paradigm, without providing concrete examples or detailed
explanations.
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In a review of urban building energy modeling (UBEM) approaches and methods, (Ali et al.
2021) discuss several modeling approaches and methods that could increase or decrease the
model complexity. For instance, in data-driven models, which is a type of bottom-up modeling
approach, feature extraction could reduce the model’s complexity by eliminating unnecessary or
irrelevant variables. Therefore, the number of extracted features can be utilized to compare the
complexity of different data-driven models. Another type of bottom-up modeling approach, the
reduced-order models have less complexity compared to the physics-based models due to fewer
required inputs for the model formulation process. In this context, the number of required inputs
can be used to compare the complexity of different reduced-order models. Besides, the reduced-
order models provide more flexibility for optimization and reduce computational complexity.
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Figure 3.5: Scheme for different levels of model complexity depending on the type of study, based on (Clauf and Georges
2019)

In a more specific use case, (Clauff and Georges 2019) investigate the influence of model com-
plexity in heat pump control on different key performance indicators for the energy efficiency,
the DR potential and the heat pump operation. The authors adopt a scheme, outlined in (Madani
et al. 2011), for selecting the necessary level of model complexity for a given type of analysis.
Fig. 3.5 presents this adopted scheme and the authors investigate in Zone D when investigating
models for the water storage tank, the heat pump control, the auxiliary heater control and the heat
pump system control.

In the case study, the authors first investigate 6 control schemes with different model complexity.
However, the model complexity is not directly quantified at the beginning, but instead inferred
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through the number of HP cycles and average HP run time. Regarding the model complexity of
auxiliary heater control, the authors also do not quantify the complexity, but rather approaches it
by combining different components.

In some specific modeling environments or languages, such as Modelica, the configuration of a
modeling component has a direct impact on the number of unknowns and equations of the system
represented by the Differential-Algebraic System of Equations (DAE) (Qiu et al. 2024) and this
results in a change in model complexity (Kovacevi¢ et al. 2025). In this context, the notion of
"configuration" has two layers of meaning. The first refers to different modeling components
that have similar functions in a system. For instance, Fig. 3.6 shows a complex stratified thermal
storage model for domestic hot water (DHW), which could also be reconfigured by a simple
non-stratified thermal storage model for the same purpose. The second meaning concerns the
configuration menu of a modeling component, which could be adjusted based on the inputs. This
approach offers the advantage of facilitating a clear and intuitive quantification and comparison
of model complexity based on the number of unknowns and equations of DAE, similar to the
third approach. However, this approach still has certain limitations. For example, modeling
components may depend on specific libraries, making cross-library comparisons challenging, as
components from different libraries are not necessarily compatible with each other. Additionally,
while modifying certain modeling components, the extent to which the number of unknowns and
equations of DAE is reduced is often difficult to predict in advance before the start of simulation.
This could limit its feasibility and interpretability in some scenarios.

QLoss
I .

.
L

Storage_ DHW

Figure 3.6: A stratified thermal storage model for domestic how water in Modelica (Kovacevi¢ et al. 2025)

Another approach to quantify the model complexity could involve assessing the number of
parameters required in models, which is similar to one of the discussed facets in (Malmborg
et al. 2024). In general, on a structural basis, any model is a combination of different inputs and
outputs. In addition, for the same model, the number of parameters could be adjusted according
to the study objectives or experimental conditions, so that models of different complexity can
be built and identified accordingly. In particular, white-box and gray-box models are developed
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based on physical laws or physical structures of a system (Li et al. 2023), which makes the
parameters possess clear physical interpretability. Such interpretability can further facilitate the
understanding and explanation of differences between models of varying complexity.

In the context of deep learning algorithms, model complexity is also a challenge. In a systematic
overview of recent studies on model complexity in deep learning, (Hu et al. 2021) divide model
complexity of deep learning into two categories: model expressive capacity and model effective
complexity. The first category, model expressive capacity, captures the capacity of deep learning
models in approximating complex problems, namely the upper bound. On the other hand, the
model effective complexity reflects the practical complexity (Hanin and Rolnick 2019) of the
functions represented by deep learning models with specific parameterization. It means that the
effective model complexity could only be quantified for a model with fixed parameters. Based
on this categorization, Equation (3.11) indicates the relationship between the expressive model
complexity (denoted by M E'C(H) and the effective model complexity (denoted by £ M C'), where
h and H represents a deep learning model and its corresponding hypothesis space respectively.

MEC(H) = sup{EMC(h): h € H} 3.1

In practical applications, more attention is given to KM C' and its quantitative measures. In
deep learning models, an effective complexity measure is expected to be sensitive to different
parameter values used in models with the same structure (Hu et al. 2021). The authors point out
that a well-known method is based on the piecewise linear property, which is suitable for deep
learning models with piecewise linear activation functions. Other quantification metrics, such
as the double descent phenomenon and Fisher-Rao norm, are primarily based on ideas and with
respect to a certain category of deep learning models. Therefore, they do not receive detailed
discussions by the authors. In general, detecting effective model complexity during training
helps to investigate the usefulness of optimization algorithms, the role of regularizations, and
generalization capability (Hu et al. 2021).

In addition to the methods mentioned above, when the scope of deep learning models is further
extended to black-box models, there exists another approach specifically designed for them. In
contrast to white-box models and gray-box models, black-box models do not focus on the physical
properties or structures of a system and instead are data-driven by large empirical or measurement
datasets (Li et al. 2023). Therefore, the physical details of a system, such as energy system,
in black-box models are usually neglected and massive highly resolved datasets such as load
profiles are necessary for good modeling performance. Typically, black-box models are integrated
with advanced algorithms such as Machine Learning (ML) algorithms to form a comprehensive
model system. Due to the unique structures and characteristics of different ML algorithms, such as
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hyperparameter settings, input sizes, etc., which differ significantly from traditional physics-based
models, quantification of their complexity also requires a different treatment depending on the
specific algorithms utilized in the black-box models. In this thesis, an ML algorithm, namely the
Random Forest (RF), is utilized in one use case. For this algorithm, its input size can be directly
employed for quantifying model complexity for regression problems with black-box models.
More details are further discussed in combination with concrete use cases in Section 4.2.1.3 and
Section 4.3.

Table 3.1: Summary of the discussed approaches for quantification of the model complexity

Approach Use-case Scenario Scope of Application
Big O notation Classification of algorithmic complexity +++

Feature extraction Data-driven models in UBEM +

Reduced order Gray-box models in UBEM ++

The number of unknowns Models in Modelica language ++

and equations of DAE

The number of parameters White-box and gray-box models +++
Piecewise linear property Deep learning models with piecewise ++

linear activation functions
Input sizes Black-box models +++

Table 3.1 provides a summary of several different approaches discussed above for quantification
of the complexity of models and algorithms. Each approach is evaluated in terms of its use-
case scenario and the corresponding scope of application, where more + means a wider scope
of application. It’s worth noting that not all of them are listed in Table 3.1 while some of the
approaches are hard to be quantified, such as by using different control schemes. Among them,
the approach using the number of parameters demonstrates the highest degree of applicability
and feasibility for white-box and gray-box models based on the comparative analysis. The
ecological perspective in (Malmborg et al. 2024) also indicates that parameter complexity is
widely applicable. It is particularly advantageous in that it facilitates a deeper understanding
of model behavior, as the associated parameters are explicitly defined and possess physically
interpretable meaning. This interpretability allows for clear insight into the internal mechanisms
of different models and the complexity they represent. It overcomes the limitation focusing
solely on algorithms while neglecting the models themselves, as identical models may be utilized
with different algorithms. Consequently, the number of required parameters, has been chosen to
quantify the complexity for the first two use cases in this thesis, where models are constructed
based on physical laws. In contrast, the last listed approach, which is specifically tailored for
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black-box models, is selected for the third use case, which contains data-driven models, in this
thesis. A detailed discussion and application of the selected approaches will be provided in the
following Chapter 4.

3.3.2 Quantification of the Model Utility

One major goal of DSM applications is to reduce the cost of energy acquisition and the associated
penalties by continuously monitoring energy use and managing appliance schedules (Bakare
et al. 2023). Moreover, DSM not only aims to help customers reduce energy consumption or
costs, but also seeks to assist grid operators in addressing generation-side imbalances due to
variable generation. In doing so, DSM could contribute significantly to enhancing the resilience,
operational efficiency, and flexibility of the overall energy system. Based on this definition, the
methods for quantification of the model utility can be derived from the practical applications of
DSM. In (Péan et al. 2019), the authors explain and summarize four typical ways for utilizing
DSM, namely load-shifting, peak shaving, reduction of energy use and valley filling. Based on
these, the amount of shifted energy can be used as a measure for quantification.
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Figure 3.7: Quantified flexibility by using daily energy costs (De Coninck and Helsen 2016)

In (De Coninck and Helsen 2016), two more specific measures, namely daily primary energy use
and daily energy costs are defined to show the improved and quantified utility in a comparative
study when implementing MPC and rule-based control (RBC) in the same objective. Fig. 3.7 and
Fig. 3.8 provide a visual representation of these two measures.

In addition, it is worth noting that the accuracy of a model must first be verified through offline
simulations before the model is used to analyze utility and optimize flexibility with optimization
approaches, such as MPC, in DSM applications. Models with high predictive and simulation
accuracy can assist grid operators or DSM participants in optimizing resource allocation, such as
regulating the required demand by matching the energy resources and energy availability without
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Figure 3.8: Quantified flexibility by using daily primary energy use (De Coninck and Helsen 2016)

adding new sources to the present system, reducing unnecessary energy waste and effectively
lowering operational costs (Panda et al. 2022), thereby improving the overall efficiency and
profitability of DSM applications. Furthermore, models with high predictive accuracy can further
enhance the effectiveness of optimization approaches that rely on predictive steps such as MPC.
According to ISO 5725-1, the general term “accuracy” describes the closeness of a measurement
to the true value.

Based on this definition, the accuracy of a model with the help of some useful metrics in
descriptive statistics, such as normalized Root Mean Square Error (nRMSE), normalized Mean
Absolute Error (nMAE), Mean Absolute Percentage Error (MAPE) and Maximum Absolute
Percentage Error (MaxAPE), can be quantitatively described. One major focus of this thesis is on
the accuracy of different models in an offline simulation and uses quantified accuracy to represent
utility of models. In order to reduce the impact of absolute values on the accuracy analysis, three
descriptive statistics namely nRMSE, nMAE, MAPE and MaxAPE are defined in Equation (3.12),
(3.13), (3.14) and (3.15), where Y is the generated or simulated value and Y, is the ground truth.

” RMSE(Y)
nRMSE(Y) = —— CARTITA (3.12)
. MAE(Y)
IMAE(Y) = —— CARTTIVA (3.13)
i=1 %
MAPE(Y) = % > Y“Y_ Y (3.14)
1 a,i
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Ya,i - Y;

a,t

MaxAPE(}A/) = max (3.15)

3.4 Discussion

In this chapter, the theoretical foundation for the hypothesis of diminishing marginal utility in
DER modeling for DSM is first introduced. Then the focus lies on quantifying model complexity
and utility in our scope, in order to answer the RQ1 and RQ2. As the first step, a brief survey
of other review and application works related to complexity of models and algorithms across
different domains is carried out. Table 3.1 presents the summary of different approaches for
model complexity quantification. Considering the use-case scenario and scope of application,
the number of parameters and input size are selected for white-box and black-box DER models
respectively. For the quantification of model utility, it is first defined as the accuracy of a model,
considering that the subsequent validation focuses on offline simulations. Afterwards, different
useful metrics in descriptive statistics according to the definition of "accuracy" in ISO 5725-1 are
introduced. The metrics constitute the foundation for quantifying model utility.

Given the results of this chapter, there are still limitations that can be addressed in future work.
Firstly, the development of DER models in Modelica language is well established (Kovacevi¢ et al.
2025). Therefore, quantification method for model complexity using the number of unknowns
and equations of DAE can be employed to investigate DER models in this language framework.
Moreover, model utility is defined as accuracy in this thesis due to offline simulations. For online
experiments and practical applications, other quantification approaches for quantifying model
utility can provide important new insights, such as energy consumption, energy cost and C'O2
emission.
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4 Gossen’s First Law in the Modeling
of Distributed Energy Resources for
Demand Side Management

This chapter aims to address RQ3 systematically, namely "what is the relationship between the
model complexity and the model utility of DERs models in the context of DSM?", by validating
the proposed hypothesis in Section 3.2 through three different use cases. Key validation metrics
are defined and analyzed to assess the reliability of the proposed hypothesis. The three use cases,
including a one-day GSHP experiment at the Energy Lab at Karlsruhe Institute of Technology
(KIT), a real-world GSHP dataset from a well constructed residential house at Switzerland and a
massive real-world dataset of domestic EV chargepoints statistics in the UK, which are discussed
in detail from Section 4.1 to Section 4.3. Finally, the results of this chapter are discussed and
concluded in Section 4.4 and a brief outlook on a potential further development is given in the
same section.

4.1 Heat Pump Case Study

Major Parts of this section are adapted or reproduced from the author’s own previous

works:

Chang Li, Kevin Forderer, Tobias Moser, Luigi Spatafora and Veit Hagenmeyer.
“Gossen’s first law in the modeling for demand side management: a first heat pump case
study”.

In: 2023 Springer Energy Informatics Academy Conference (EI.A 2023), 2023, pp. 111-
125. doi: 10.1007/978-3-031-48652-4_8.

In this section, the focus of the first case study lies on a GSHP system with a hot water storage
(HWS) that is responsible for both space heating and domestic hot water supply. The system is
part of the Living Lab Energy Campus (LLEC) from the Energy Lab at KIT. This section consists
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of four parts, namely the fundamentals, including the experimental setting and the methodology,
the utilized dataset, modeling process and the results as well as their discussion.

4.1.1 Fundamentals

This subsection introduces the experimental setting of the GSHP system first and then describes
the methodology for modeling the heat and the energy transfer in each subsystem of a GSHP
system, which constitutes the foundation for the subsequent model classification in Section 4.1.4.

Ground Floor Upper Floor

Figure 4.1: Schematic floor plan of the LLEC house (Li et al. 2023)

Analyzing the utility of different models relies on accurate real-world measurement data, which
are provided by our measurement system infrastructure. Regarding the experimental setting, the
floor plan and setup of our LLEC buildings (Hagenmeyer et al. 2016) is briefly introduced first to
give an overview of their spatial layout and their heating matrix setup. Subsequently, the technical
and software infrastructure that makes time series data from LLEC available is described.

Within the facilities of the Energy Lab (KIT 2014), three free-standing single-family houses have
been purpose-built and equipped with a large variety of automation hardwares to allow for the
use of advanced modern energy solutions (Hagenmeyer et al. 2016). All houses share the same
two-story floor plan with several normal rooms, kitchen and restroom, as shown in Fig. 4.1. But
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they differ in the choice of heating source. Each room is equipped with a range of different kinds
of sensors and actuators, e.g., room climate sensors, heat flow meters, motorized windows, and
smart thermostats, with only minor differences in equipment between the houses. The hardware
is addressed by a programmable logic controller (PLC), which handles control requests from
external systems and automatically collects, filters and stores measurement data in our database.
The latter process will be explained in more detail in the following.

Raaupntil

(a) The NIBE heat pump in the experimental LLEC house (b) The Oskar hot water storage in the experimental LLEC
house

Figure 4.2: The hardware of heat pump and hot water storage in the experimental house

This use case focuses on the LLEC house that uses a GSHP together with a HWS for the house
heating and domestic hot water supply. Fig. 4.2 shows the HP and HWS in the experimental
house and Fig. 4.3 presents the schematic heat matrix of the overall heating system along with the
electrical circuit installed in the experimental LLEC house. The GSHP has its own internal sensors
to determine the hot water flow rate, the supply and return temperature of water and brine as well
as other data points. Furthermore, additional external sensors for water temperature and flow rate
are installed to build a redundant measurement system to ensure more useful characteristics such
as self-calibration, error compensation and the recovery of lost information.
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Figure 4.3: Schematic heat matrix and electrical circuit of the experimental LLEC house (Li et al. 2023)
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of the simulation results.
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The measurement system architecture for measurement acquisition, processing and storage
is shown in Fig. 4.4 and consists of separate tools for collecting, processing, and storing
timeseries data, with the relevant systems being shown in green. The data source in our
experiments is the PLC, which acquires data in regular intervals via different bus systems
or analogue inputs. The data is then formatted as JSON and sent to a Message Queuing
Telemetry Transport (MQTT) Broker with a data point specific topic. The formative data
is subsequently received by a data logger service subscribed to the MQTT topic, parsed,
and pushed to our InfluxDB database via its Representational State Transfer (REST)
interface. This new architecture allows to easily select the required inputs for different
models via their respective topics and to choose the datasets for the validation and analysis

Data Storage

InfluxDB

Xxx_public

XXX_private

Standardized JSON (new format)

InfluxDB Line Protocol (old format)

others

CMVC-InfluxDB

Figure 4.4: Technical infrastructure for data acquisition, processing and storage at LLEC (Li et al. 2023)

The operating principle of a GSHP for house space heating and hot water supply is based on a

reverse Carnot thermodynamic cycle (Sarbu and Sebarchievici 2014), which means the thermal

energy at the output consists of two parts, i.e., environmental energy and electrical driving energy.
Depending on the source of different energy, models can vary accordingly. This use case focuses
on a Ground-Coupled Heat Pump, a subset of GSHP, with vertical U-tubes as Ground Heat
Exchanger (GHE). In this case, heat transfer takes place in three subsystems: GHE in borehole,

heat pump and hot water storage, as described in Section 3.1.2. The structure of the system, as

presented in Fig. 4.3, provides an overview of the subsystems that are to be modeled. The exact

mathematical models with different complexity for each subsystem are developed and explained

in the following.

59



4 Gossen’s First Law in the Modeling of Distributed Energy Resources for Demand Side Management

4.1.2 Methodology

In order to validate the hypothesis, the modeling of each subsystem represents the initial step.
For each subsystem, white-box models are developed using mathematical models according to its
physical and functional characteristics. In this process, a key aspect lies in investigating whether
models of different complexity can be applied to the same subsystem. These models are then
parametrized and calibrated with experimental data obtained from LLEC. Based on the defined
quantification methods in Chapter 3, different model classes with quantified complexity are then
introduced. The model classes are built upon the models of the various subsystems and constitute
the foundation for validation within offline simulations, where the quantified model utility, namely
the accuracy, is systematically compared.

4.1.3 Dataset

Nibe - WP.HFM smperatures

Figure 4.5: An illustrative example of the supply and return temperature of the experimental GSHP from January 2025
to February 2025 on Grafana

For the analysis and validation, a typical winter day in February 2023 is selected and the sensor

data for 24 h is recorded continuously. The reason for initially selecting only a single day,
a relatively short time frame, for experimentation and data collection lies in the fact that this
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represents the first attempt to validate the proposed hypothesis. This limitation is addressed in
the following Section 4.2.

The raw data is automatically collected and stored in a 1-min interval, which can be directly read
and represented on the open and composable observability platform Grafana (Grafana 2014).
Fig. 4.5 serves as an illustrative example to show raw data of the supply and return temperature
of the experimental GSHP from January to February 2025.

The data are then collated to 60-min intervals by using the first value in each hour for the offline
simulation of load profile. The initial value of the electrical power of the GSHP is set to the first
value of the measurement.

4.1.4 Modeling

In this section, the employed model classification, i.e., model class is introduced and different
options for modeling a GSHP and HWS with varying degree of complexity, which are used for
the evaluation, are discussed. Four different model classes (A, B, C, and D) with decreasing
complexity in terms of the number of parameters required are introduced. An overview of the
classification and the number of required parameters is first presented in Table 4.1.

Table 4.1: Model classification with respect to parameters

Model Class Combination Number of required Parameters
Model A (4.1)(4.2)(4.7)(4.9)(4.10) 11

Model B (4.7)(4.8)

Model C (4.5)(4.8)

Model D (4.3)(4.6) 3

For the heat exchange occurring in the U-tubes GHE, Equation (4.1) and (4.2) model the heat
exchange process based on the physical laws mentioned in Section 3.1.2.

abs

abs __ php hp
Poi =Por—Pay

4.2)
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In terms of the thermal model of the heat pump itself, models that are based on COP are considered,
as explained in Section 3.1.2. In (Peralta et al. 2021), a linear data-fitting equation is utilized for
calculating the COP of the GSHP, taking the outlet temperature of the borehole GHE and indoor
temperature into consideration. Similarly, in this use case, a second-order polynomial regression
in consideration of outdoor air temperature 7" is employed, to calculate the declared COP and
declared heat power P, in kW at medium partial load based on the data sheet of the heat pump
manufacturer (NIBE 2023) in Equation (4.3) and (4.4). The R-squared value of the regression is
0.9902 and 0.9972 respectively, which represent a very good fit of the model to the data.

COP™ = —0.0007 - (T™)% +0.0983 - (T;™") + 3.8429 “.3)

Pan = 0.0009 - (TF")? — 0.1992 - (TF™) + 3.4164 (4.4)

Furthermore, Equation (4.3) and (4.4) can be simplified by neglecting the effect of outdoor
temperature and consider COP<°"5!- as well as P5?"5' as a constant as follows:

COPeonst = 3.8429 4.5)

P5onst = 3.4164 (4.6)

Alternatively, the COP"9 can be calculated directly with the measured thermal and electrical
data over a period of time and obtain an average value as follows:

n hp
copws = X > Fo

hp
n 1 Pel,t

4.7

The thermal power ng)t is measured and calculated with Equation (4.8), where ¢,,, p,, and Vw are
the specific heat capacity, density and volume rate of water respectively. The difference between
supply temperature and return temperature is represented by (75uPPly — Treturn),

P, = cu - Vi - pu - (TP — Tyeterm) (4.8)

As the central storage for thermal energy, the temperature and corresponding energy changes in
the HWS have a significant impact on the overall system. Regarding the thermal model of a HWS,
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the structure of a HWS determines its temperature calculation. In this use case, a multi-layer hot
water tank with negligible heat loss as the central storage for domestic hot water and space heating
is implemented. Assuming the density and the specific heat capacity of hot water as constant, the
thermal energy change in the storage between two successive time steps is calculated as follows:

AQs = ¢y - Vs po - (T = T"F") (4.9)

where V is the volume of the hot water tank and (77™¢*™ —T,"9*") denotes the average temperature
change of hot water, which are determined in Equation (4.10) with the assumption that the
temperature is evenly distributed in each layer at every time step:

TE + T + T}
Tfmean — t + t + t (410)
) 3
In Equation (4.10), three temperature sensors placed in the upper, middle and lower layer of the
HWS are used to measure the temperature of each layer, assuming that each of these temperatures

represents one-third of the total capacity.

Based on the aforementioned models, a more detailed interpretation of the model classifications
presented in Table 4.1 can now be provided. As shown in Table 4.1, Model A utilizes Equa-
tion (4.1) and (4.2) to calculate the absorbed thermal power in the brine directly. The result is then
combined with Equation (4.7) to calculate the electrical power of the heat pump. In addition, the
energy change in the hot water storage is also taken into account by calculating Equation (4.9) and
(4.10). Model B combines Equation (4.7) and (4.8) to compute the consumed electrical power
of the heat pump without consideration of the energy change in the storage. Furthermore, Model
C uses a constant COP"*5t to estimate the Pe}ll%”t.
obtained in the simplest Model D. An overview of the individual parameters that apply to the four

Finally, a constant declared heat power is

model classes is given in Table 4.2.

Additionally, Table 4.3 lists the fixed thermal and other parameters, where the specific heat
capacity of brine is taken from the technical diagram provided by the heat pump manufacturer
(NIBE 2023) and based on a 20 vol% mixture of Tyfocor.

4.1.5 Results and Discussions

In this section, based on the model classification in Section 4.1.4, various models are used to
perform offline simulations to calculate the load profile, namely the electrical power of the GSHP
system, and to analyze the results against the measurement.
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Table 4.2: Overview of the applied parameters to each model class

Parameter Model A Model B Model C Model D

Tsupply [ ]
Treturn ]
Vi [ ]
COPpP*v9
myp

Tout

Tin

T

Tm

Tl

Pw

Cw

Cb
Vs

TETL’U .

const.
Pdh

cope |

Table 4.3: Fixed thermal and volume parameters

Parameter Value
Hot water tank volume V 920 L
Specific heat capacity of water c,, 4186 J/(kg-°C)
Density of water p,, 0.988 kg/LL
Specific heat capacity of brine ¢, 3940 J/(kg-°C)

For the simulation and analysis, the initial value of the electrical power of the GSHP is set to
the first value of the measurement. Fig. 4.6 shows the simulation results of the different model
classes and their deviation from the measurement. The diagram shows that the results of Model
A, which is the most complex one in this use case, are almost identical to the measured results
since it considers not only the energy transfer in the heat pump itself in detail but also the thermal
energy change in the HWS. In contrast, the less complex Models B and C show large deviations
at some points in time, such as ¢ = 10 and ¢ = 15. This behavior could be caused by ignoring
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Figure 4.6: Comparison between model simulation results and measured values (Li et al. 2023)

the energy change in the HWS in both models. Besides, it’s worth noting that the deviations
of Model B are not always smaller than the deviations of Model C at all time steps, although
Model B is slightly more complex than Model C in terms of the number of required parameters.
Finally, Model D consistently exhibits a relatively large deviation from the measured values, as it
relies solely on declared constant PS2™** and does not account for more complex dynamic energy
transformations.

In order to describe the overall statistic features of the simulation results, the MAPE and the
MaxAPE are calculated, yielding the results presented in Table 4.4. Model A, with the most
parameters, has the lowest MAPE of 0.68% as compared to the other three simplified models.
Furthermore, the MaxAPE by using Model A is also the minimum in all models. Between Model
B and Model C with a slight difference in the model complexity, it is worth noting that although
the MaxAPE of Model B is larger than that of Model C, the MAPE of Model B is still smaller
than the MAPE of Model C. As for Model D, the largest simplification of it leads to the largest
error among the other models.

As explained in Section 3.3.2, quantification of the model utility by utilizing accuracy is dependent
on the particular application being considered. In order to quantify the utility of these models, the
following formula Equation (4.11) is defined to calculate and describe the accuracy, i.e., utility of
the model, where U represents the utility of a model in natural number.

U = (1 — (MAPE)) - 100 (4.11)
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Table 4.4: Comparison of MAPE and MaxAPE

MAPE MaxAPE
Model A 0.68% 0.82%
Model B 1.65% 5.55%
Model C 1.80% 4.54%
Model D 8.07% 17.32%

Diminishing marginal utility curve for GSHP modeling
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Figure 4.7: Diminishing marginal utility curve based on model complexity (based on (Li et al. 2023))

With this definition, the relationship between model complexity and model utility of four different
GSHP model classes is illustrated in Fig. 4.7. This demonstrates that the results are basically in
line with our hypothesis of diminishing marginal utility. However, regarding the limitations of
data points, the graph line is not as smooth as the approximated diminishing marginal utility curve
determined via regression methods which is also presented in orange dashed line in Fig. 4.7. On
one hand, this difference between the simulation results and the approximated curve is evident in
the initial stage of the curve. On the other hand, based on the substantial improvement in terms
of the utility from Model D to Model C, it indicates that a highly satisfactory outcome can be
achieved without a substantial increase in the model complexity in this use case. However, this
first study is only limited in scope and therefore provides only limited evidence. In the following
sections, additional studies are conducted to add further evidence to our claim.

66



4.2 A Thorough Heat Pump Case Study

4.2 A Thorough Heat Pump Case Study

Major Parts of this section are adapted or reproduced from the author’s own previous

works:

Chang Li, Gina Brecher, Jovana Kovacevi¢, Hiiseyin Cakmak, Kevin Forderer, Jorg
Matthes and Veit Hagenmeyer.

“Gossen’s first law in the modeling for demand side management: a thorough heat pump
case study with deep learning based partial time series data generation”.

In: Springer Energy Informatics, 2024, 4:47. doi: 10.1186/s42162-024-00353-z.

The use case in Section 4.1 is a first attempt to validate the proposed hypothesis. However,
there are two major limitations in this first use case. The first is that only one day, i.e., 24 h in
February has been selected for validation, which could limit the robustness and generalizability
of the proposed hypothesis, since different days might have different patterns. Secondly, potential
applications of the findings, especially in real-world scenarios rather than experiments, should
be discussed and summarized in more detail (Li et al. 2024a). Therefore, this second thorough
case study is focused on a GSHP system with two HWSs and their operation over a longer time
period. In this process, a large real-world dataset with the predicted flow rate data is utilized as
the input. The system is installed in a stand-alone house in real-world scenarios in Switzerland,
which is equipped with corresponding automatic data measurement and data storage equipments
(Meyer 2024). To handle the problem of the absence of time series data in the dataset, three
different machine learning algorithms together with our modified persistence model, which serves
as the baseline, are first utilized and compared. With the generated flow rate, the heat pump
system modeling, model classification based on the complexity namely the number of required
parameters and load profile simulation for a time horizon of 7 days with different patterns are
then carried out. This section consists of five parts, namely the fundamentals, including the
methodology and the experimental setting, the utilized dataset, the data generation results, the
modeling process and the results as well as discussions.

4.2.1 Fundamentals

Similar to Section 4.1.1, in this section the fundamentals for modeling the heat and the energy
transfer in each subsystem of a GSHP system are also introduced, which constitutes the foundation
for the subsequent model classification in Section 4.2.3. In the second part, the related work and
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the algorithms for time series data generation are introduced, which are essential for ensuring the
completeness of the dataset that is utilized in this use case for the subsequent simulations.

4.2.1.1 Heat and Energy Transfer

In Section 4.1.4, the modeling of the ground source heat pump is carried out based on three main
subsystems for heat transfer, namely the thermal model of the borehole GHE, the thermal model
of the heat pump itself and the thermal model of the HWS. However, due to the new structure of
the selected system in the current use case, it’s necessary to modify the models. In addition, it’s
worth noting that in order to improve readability of equation numbering in each use case, the tags
of some equations below are renumbered, although they remain unchanged from the use case in
the last section.

The selected system uses a GSHP together with a smaller hot water tank for the domestic hot
water supply and a larger hot water tank for the house heating. The schematic heat matrix of the
overall heating system as well as different positions of the installed temperature sensors is shown
in Fig. 4.8.

The heat transfer in the HP itself, namely the thermal power P, is measured and calculated with
Equation (4.12) without change, where c¢,,, p,, and Vi, are the specific heat capacity, density
and volume rate of water respectively. The difference between supply temperature and return
temperature is represented by (7$uPPly — Treturn),

Py =cy Vi pu- (TP — Treturm) 4.12)

The heat transfer in the borehole GHE is unchanged modeled in Equation (4.13) and (4.14), where
T and T°"* are the inlet and outlet temperature of the borehole GHE as shown in Fig. 3.3. ¢, is
the specific heat capacity of the brine and my;, is the mass flow of the brine. Besides, Pégbs is the
absorbed thermal power, which is also the difference between Pg and P.

abs
T =T g (4.13)
b b
Py =Py —P (4.14)

To model the performance of the heat pump itself, one simple way is to calculate the COP directly
with the measured thermal and electrical power over a period of time to obtain an average value
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Figure 4.8: Schematic heat matrix consisting of positions of installed temperature sensors

as presented in Equation (4.15). Moreover, the thermal power can be obtained as mentioned in
Equation (4.12).

1 Py

COP™9 =
Py

- (4.15)
n
t=1

In this use case, the system contains two different hot water tanks for different purposes as shown
in Fig. 4.8. As the central storage for thermal energy, the temperature and corresponding energy

69



4 Gossen’s First Law in the Modeling of Distributed Energy Resources for Demand Side Management

changes have a significant impact on the overall system. Therefore, it’s necessary to consider
the energy changes of the storage separately. Moreover, it shows that 4 temperature sensors are
installed at different layers in the large heating storage tank and 3 temperature sensors are placed
for the smaller one with equal distance from each other. This layout leads to the modification
of the thermal model of the HWS. In general, the thermal energy change in the storage between
two successive time steps can be calculated with Equation (4.16) under the assumption that the
density and the specific heat capacity of hot water is constant. In Equation (4.16), the V is the
volume of the hot water tank and (777¢" — T;75%") denotes the average temperature change of
the hot water, which are determined in Equation (4.17) and (4.18) for the small and the large
storage respectively with the assumption that the temperature is evenly distributed in each layer
at every time step.

AQs =y - Vs - po - (T4 = T)75™) (4.16)
T25¢:m T50cm TlOOcm
qreans 2t Flr  H ¢ (4.17)
3
Tbottom 4 p25em 4 p50cm TtOP
Ttmean,l _ t =+ t + t + t (418)
4
4.2.1.2 Related Work: Time Series Data Generation
Table 4.5: Excerpt from the raw data
Date and Time Tsupply [oC]  Treturn [o(C] Pqo [W]  PI[W] COP
2021-01-02 03:00:00 42.4 34.6 13898 3440 4.04
2021-01-02 03:15:00 51.9 44.3 13494 4040 3.34
2021-01-02 03:30:00 58.3 51.1 12775 4612 2.77

The data in the dataset is provided with an interval of 30 seconds to 60 seconds (Meyer 2024). In
this use case, the historical raw data with a time interval of 15 minutes are extracted for the years
2021 and 2022. Table 4.5 shows an excerpt from the extracted raw data, where Tsupply return
Pg and P have the same meaning as explained in Equation (4.12). However, one key variable is
missing in the raw data, which is the flow rate, i.e., Vw in Equation (4.12). This variable is used
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for calculating the thermal power and thus needs to be generated first for the following comparison
and simulation.

Dealing with partially missing data in modeling when utilizing large datasets for validation,
has been an important topic, not only in engineering but also in other fields such as
medicine for a long time. In order to address this problem more accurately and reliably,
different approaches, from common statistical techniques to machine learning based
methods in recent years, are explored based on different use cases in many publications.
In (Zhang 2016), single imputation of missing data such as mean, median and mode
imputations is conducted. However, no quantified results are summarized in the article.
The authors in (Austin et al. 2021) have developed a model based on multiple imputation
to create imputed data and proven that the created values by using multiple imputation
are plausible for their use case. Another new technique, which is a hybrid approach of
single and multiple imputation techniques, is proposed in (Khan and Hoque 2020) in two
variations to impute categorical and numeric data. The experimental results show that
the proposed algorithm achieves a higher F-measure around 20%, which is a measure of
predictive performance, for binary data imputation and around 11% improvement in terms
of error reduction for numeric data. To handle the nonlinear associations between the
variables in multilevel models, a flexible sequential approach based on Bayesian estimation
techniques is proposed in (Grund et al. 2021), which outperforms the conventional MI
methods for multilevel models with nonlinear effects. In (Weber et al. 2021), the authors
have introduced a new Copy-Paste Imputation method for imputing energy and power
time series. The method takes into account the total energy of each gap and outperforms
the selected three benchmark imputation methods in their work.

In addition to using statistical methods to reconstruct missing data, machine learning
imputation methods are also widely used for imputation of missing data. For instance,
the authors in (Jerez et al. 2010) compare the performance of machine learning based
techniques such as multi-layer perceptron (MLP) and k-nearest neighbor (KNN) with sta-
tistical techniques such as MI. The results reveal that the machine learning techniques lead
to a significant enhancement of accuracy compared to statistical procedures. Similarly,
eight statistical and machine learning imputation methods are compared based on real
data and predictive models in (Li et al. 2024c). The most effective results are attained
by KNN and Random Forest (RF). In the survey paper (Emmanuel et al. 2021), the au-
thors aggregate different imputation methods, particularly focusing on machine learning
techniques. They evaluate the performance of KNN and missForest, which is an iterative
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method based on RF, by utilizing a power plant fan dataset. Besides the common machine
learning techniques, deep learning methods are also explored for dealing with missing
data such as Long Short-Term Memory (LSTM). In (Tian et al. 2018), a new model named
as LSTM-M is proposed for managing missing data in the traffic flow, which outperforms
several other methods such as Support Vector Regression (SVR) in terms of accuracy.
Likewise, the authors in (Ma et al. 2020a) propose a LSTM-BIT model, which is a hybrid
LSTM model with Bi-directional Imputation and Transfer Learning (BIT). The results
show that the proposed model achieves a 4.24% to 47.15% RMSE under different missing
rates.

Moreover, since Transformer was proposed in 2017 (Vaswani et al. 2017), the exploration
of applications based on its architecture is still ongoing. The huge success of this ar-
chitecture in natural language processing (NLP) and computer vision (CV) motivates the
exploration of its further potential such as handling time series data (Hertel et al. 2023).
However, there have been very few works that focus on utilizing Transformer for handling
data generation.

4.2.1.3 Selected Approaches

Based on the related works presented above, three different approaches are selected for data gen-
eration in this section, namely RF, LSTM and Transformer. Furthermore, a modified persistence
model as the baseline is proposed for a better quantitative comparison and discussion. These
algorithms for forecasting the flow rate in the heat pump modeling are first briefly described,
together with the definition of our modified persistence model as the baseline.

As an ensemble learning method for classification and regression problems (Breiman
2001), RF has been widely used in many classification and regression problems. When
dealing with data generation, it also shows promising results as stated in (Emmanuel et al.
2021). When the data is presented through time series, it requires transforming the time
series dataset into a supervised learning problem first. Fig. 4.9 shows this transformation
process, a sliding window with an input size of one as an example, where Y is the value
at each time step.

In detail, the value Y at the next time step is used as the ground truth for prediction of the current
time step. For instance, Y2 and Y3 are used as the prediction value for the first and the second
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time step and so on. In this way, the time series dataset is transformed from a single array into
two separate arrays, thereby constituting a supervised learning problem.

However, there is a limitation of this method that cannot be ignored, i.e., random forest
cannot extrapolate. It means that predicted values are always within the range of the
training set. In this use case, different input sizes are tested to find an ideal parameter.
Finally, a bagged regression ensemble object with an input size of 5 together with the
temporal features such as Monday, Tuesday etc. as the 6th input is created, to use the
bootstrap aggregation method for model training, since significant improvements with
further increased input sizes can not be achieved within our simulation setting.

@/@/ /‘/@/
ojojofofo

Figure 4.9: Transformation of time series into a supervised learning problem with input size of one

00

For predicting data based on time series while avoiding the vanishing gradient problem,
LSTM has been developed as a modified version of traditional RNN. By introducing
the so-called gates, LSTM can regulate the flow of information and maintain valuable
information. In comparison to other RNN, LSTM can deal with large amounts of data and
time steps easily (Zhu et al. 2019). Besides, it’s also powerful when managing missing
data as presented in (Tian et al. 2018, Ma et al. 2020a). Based on these advantages, it’s
been chosen as one of the algorithms in the use case for predicting the flow rate.

For all RNNs, one major limitation is that the computations must be performed in the
sequence’s order, which makes parallel computation difficult and thus limits the efficiency
when dealing with long sequences. The proposed Transformer architecture in (Vaswani
et al. 2017), which relies on the self-attention and multi-head attention mechanism,
solved this limitation, making it more efficient than RNNs. While there is still debate
about the advantages of Transformer in time series as remarked in (Wen et al. 2022),
the consideration and introduction of this new architecture to deal with time series data
generation is worthwhile.
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Figure 4.10: Modified persistence model

The persistence model (Notton and Voyant 2018) is often used as a trivial reference model
when different forecast models are compared. In this work, a modified version of the
persistence model is defined by considering the temporal impacts. Instead of generating
the future value by assuming that no changes happen between the current time step and
next time step, the values from the previous week are used, as presented in Fig. 4.10.

4.2.2 Dataset and Generation Results

According to the date and time, the raw data are pre-processed into time series data by
hour at first. Besides, it’s assumed that the thermal power and the electrical power are
constant throughout each time interval. Moreover, it’s worth noting that the thermal power
equals zero when the heat pump is turned off, which means that the frequency of zeros in
the pre-processed data should be as small as possible to avoid the case of sparse data.

It should be noted that there is no explicit definition specifying the frequency of zeros required in
a dataset for it to be classified as sparse data. However, machine learning often performs poorly in
prognosis, especially when dealing with sparse data (Peng et al. 2021). Therefore, it’s preferable
to choose datasets with fewer zeros.

Based on these three conditions mentioned above, the data from January 4th to February
7th in 2021 and from January 31st to March 6th in 2022 are selected for the calculation
of the average flow rate by hour. Each time period starts on Monday and ends on Sunday.
The reason for choosing another month in 2022 is that several days of data are completely
missing in January. Fig. 4.11 shows the results of calculated flow rate of the selected 5
weeks in 2021 and 2022. The frequency of zeros of the selected time period in 2021 and
2022 are 23.57% and 32.38% respectively. It shows that the data in 2021 are denser than
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the data in 2022. Therefore, the chosen time period in 2021 will be determined for the
following analysis and validation.

January 4th to February 7th in 2021
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Figure 4.11: Average flow rate during the selected time period in 2021 and 2022

Based on the discussed approaches in Section 4.2.1.2, the flow rate generation results are given
and compared in the following steps. As mentioned above, the selected time period in 2021
contains 5 weeks. The flow rate in the first 4 weeks are calculated and used as training set with
cross-validation. The subsequent week of 7 days serves as the ground truth for validation of the
generated flow rate. In contrast to predicting multiple subsequent time steps in a closed loop
forecasting, an open loop forecasting for generating the data at the next time step is utilized in this
case. This means that for subsequent time steps, the ground truth, which is the calculated flow
rate in this case, is collected and used as input till the last time step.

The conventional approach is to create forecast models for each measured variable in Equa-
tion (4.12), namely the thermal power, the supply and return temperatures and then use the
predicted values of these variables for calculating the flow rate. Compared to this conventional
approach, the proposed pre-processing approach is more straightforward and less complex. The
proposed approach calculates the flow rate in the past explicitly and only needs to create a forecast
model for the flow rate directly.

To optimize the forecast results of each method, the hyperparameters are tuned in different ap-
proaches separately, where the hyperparameters for RF are automatically optimized in MATLAB
and the tuned hyperparameter settings for LSTM and Transformer in PyTorch are shown in Ta-
ble 4.6. It’s worth noting that hyperparameters such as epoch and number of layers in LSTM
and Transformer, which have a significant impact on the complexity and the run time of both
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approaches, are set to be the same in order to ensure that the complexity of both methods does
not differ too much within the range of tuned values.

Table 4.6: Hyperparameter setting for LSTM and Transformer

LST™M Transformer
Input Size 1 Num Heads 16
Hidden Size 256 |Hidden Dimension 512
Hidden Layer 1 Num Layers 1
Batch Size 128 | Batch Size 4
Epoch 200 |Epoch 200
Learning Rate 0.01 |Learning Rate 0.001
Optimizer Adam | Regularization Dropout = 0.1
; Generated with RF
0.5 Train data :
7 — Ground Truth .
S W vl s i
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2 time [h]
=}
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% Generated with modified persistence model
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Figure 4.12: Generated average flow rate with RF and the modified persistence model (Li et al. 2024a)

Two descriptive statistics, as defined in Section 3.3.2, are summarized in Table 4.7. The detailed
plots are presented in Fig. 4.12 and Fig. 4.13. It should be noted that only an excerpt of the
training data is plotted in order to better visualize the comparison between the ground truth and
the generated data.

According to the results in Table 4.7, the minimum error of the generated data is given by LSTM
with a nRMSE of 10.56% and a nMAE of 7.47%. On the other hand, the results of RF are no
better than the baseline with the modified persistence model. This demonstrates the limitation of
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Figure 4.13: Generated average flow rate with LSTM and Transformer (Li et al. 2024a)

Table 4.7: Summary of descriptive statistics for each algorithm

Persistence Model RF LSTM Transformer
nRMSE 22.08% 22.00% 10.56% 24.46%
nMAE 15.14% 16.26% 7.47% 19.73%

RF when dealing with sparse data, although the input size of RF is longer compared to LSTM.
In addition, attention should be drawn to the fact that the summarized results represent the
capability of each machine learning algorithm under the current tuned hyperparameter settings
in this scenario. For the model classification and utility comparison in Section 4.2.3, the LSTM
generated results with the smallest error will be utilized.

4.2.3 Modeling

In this section, the employed model classification is introduced and different options for modeling
a GSHP with two HWSs with varying degree of complexity are discussed, which are used for
the evaluation. By using the modified models, five different model classes (A, B, C, D and E)
with decreasing complexity in terms of the number of required parameters are defined. All model
classes utilize Equation (4.12) to calculate the thermal power with the generated average flow rate
to further obtain the electrical power, while Model A considers the energy changes in both HWSs,
Model B and Model C neglect the impact of the small and the large hot water tank respectively.
Moreover, Model D is further simplified by ignoring the energy changes in both storage. The
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last Model E directly uses the average COP to calculate the consumed electrical power. Table 4.8
presents the model classification and the number of required parameters and an overview of the
individual parameters that apply to each model class is given in Table 4.9.

Table 4.8: Model classification with respect to parameters

Model Class Combination Number of required Parameters
Model A (4.12)(4.13)(4.14)(4.16)(4.17)(4.18) 16

Model B (4.12)(4.13)(4.14)(4.16)(4.18) 14

Model C (4.12)(4.13)(4.14)(4.16)(4.17) 13

Model D (4.12)(4.13)(4.14) 9

Model E (4.12)(4.15) 7

Table 4.9: Overview of the applied parameters to each model class

Parameter Model A Model B Model C Model D Model E

Tsupply ]
|

Treturn
Vw

mp
Tout
Tin
Tbottom

T25cm

T50cm

Tl()(]cm
Ttop
Pw
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4.2.4 Results and Discussions

As explained in Section 3.3.2, quantification of the model utility by utilizing accuracy is dependent
on the particular application being considered. In this use case, the quantification of the utility of
the models is modified with the new definition in Equation (4.19), where U represents the utility
of a model in percentage. The reason to use nMAE instead of MAPE as described in Section 4.1.5
is that the ground truth in this use case contains zeros, which makes the calculation of MAPE
infeasible.

U = (1 — (nMAE)) - 100[%] (4.19)

As mentioned in Section 4.2.2, a time horizon of 168 hours, namely a consecutive 7-day period
in winter, is determined for the simulation and analysis, while this application scenario focuses
on space heating and hot water supply. Besides, different from the initialization in the first use
case in Section 4.1, the initial value of the consumed electrical power is calculated by utilizing
the generated flow rate. Fig. 4.14 shows the results of different models along with the differences
between them and the ground truth.

168h Load Profile/Model A 168h Load Profile/Model B

50 100 150 50 100 150
time [h] time [h]

168h Load Profile/Model C 168h Load Profile/Model D

50 100 150 50 1 00 1 50
time [h] time [h]

168h Load Profile/Model E

Ground Truth
e Model A/B/C/D/E

N WY U l‘A i [k
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time [h]

Figure 4.14: Comparison between model results and measured results (Li et al. 2024a)
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The diagram shows that the results of Model A are the closest to the measured results, whereas
Model B and Model D show several large deviations at some time steps as shown in some tips of
the curve. What these two models have in common is that neither considers the energy changes
in the small storage for domestic hot water. Therefore, one possible reason for this behavior is
that the usage patterns of the domestic hot water are more dynamic than heating. In addition, the
simplest Model E in our case presents a larger value than the ground truth in most cases, which
could be caused by the underestimated average COP in Equation (4.15), since COP is equal zero
when the heat pump is turned off.

In order to describe the overall statistic features of the simulation results and the utility of the
models as defined above, the nMAE and the corresponding U are calculated, yielding the results
presented in Table 4.10. Model A, with the highest complexity in terms of the required parameters,
has the lowest nMAE of 3.77% compared to other four model classes and thus has the highest
utility among all models. Besides, it’s worth noting that Model B has a lower nMAE than Model
C despite the large deviations at some time steps, which means the overall impact of the large hot
water storage is greater than that of the small one.

Table 4.10: nMAE and Utility of each model class

Model A Model B Model C Model D Model E

nMAE 3.77% 10.62% 16.99% 20.78% 26.79%
U 96.23% 89.38% 83.01% 79.22% 73.21%

With the definition in Equation (4.19), the relationship between the utility and the complexity of
all five model classes is illustrated in Fig. 4.15. This demonstrates that the results with a longer
time horizon of 7 days are further verifying the proposed hypothesis in Section 3.2, which is
that the complexity-utility relationship in the field of DSM modeling could be represented by a
diminishing marginal utility curve. However, it is important to note that the graph line is not as
smooth as an approximated diminishing marginal utility curve described by a polynomial curve
of degree 2, which is also presented in orange dashed line as a reference in Fig. 4.15. Moreover,
the large deviation between the simulation and the approximation results, such as the data point
of Model C, reveals that there could exist gaps between the simulation and an ideal value by
approximation when the model might neglect key elements or parameters that are essential to
system accuracy during simplification. For instance, Model C neglects the impact of the larger
HWS during model simplification and this results in the large deviation in Fig. 4.15. In comparison
to the results in Section 4.1.5, it can be observed that the consideration of a longer time horizon,
namely more data points, inherently mitigates the possible negative effect of individual outliers
on the overall results. The main reason why the curve in Fig. 4.7 exhibits a significantly steeper
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Figure 4.15: Diminishing marginal utility curve based on the complexity of models (Li et al. 2024a)

increase at the beginning compared to the curve line in this use case is that the improvement of
the utility is more significant between the first two relatively simplified model classes in the first
use case than in this use case. And this could potentially be caused by the limited number of data
points in the first use case. Moreover, compared to the first use case, one key variable, namely the
flow rate, in this use case is generated based on LSTM, which could also have an impact on the
marginal utility curve. Furthermore, due to the zero values of electrical power in our dataset, the
definition of utility of models is modified in the present use case compared to Section 4.1. Both
results underline that quantification of model utility is dependent on the utilized datasets. Based
on the results in Fig. 4.15, which are basically in line with the diminishing marginal utility curve,

the proposed hypothesis is further verified.
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4.3 Aggregated Load of Charging Stations Case
Study

Parts of this chapter are adapted or reproduced from the author’s own previous works:

Chang Li, Miao Zhang, Kevin Forderer, Jorg Matthes and Veit Hagenmeyer.

“A comparative analysis of machine learning algorithms for aggregated electric charge-
point load forecasting”.

In: 9th International Conference on Sustainable and Renewable Energy Engineering,
2024, 545. doi: 10.1051/e3sconf/202454501004.

In the two use cases mentioned above, modeling is carried out based on white-box models.
However, as discussed in Section 3.3.1, this modeling approach is not applicable to all scenarios,
such as black-box models for forecasting. Therefore, it is necessary to investigate another type of
use case based on black-box models and validate the proposed hypothesis in this scenario.

In this section, a use case based on aggregated load forecasting of charging stations for EVs is
investigated. Due to the uncoordinated deployment of charging stations (Chang et al. 2021) and
the system fluctuations regarding charging behaviors (Gong et al. 2020), the charging environment
is dynamic (Alsabbagh et al. 2020). This makes the use of traditional modeling methods such
as white-box models difficult for an accurate analysis and forecast (Chen et al. 2022), which
is essential for operational decision making such as demand side management. For instance,
the results of short-term load forecasting can help utilities to optimize generation and to ensure
grid stability in the short term. This section consists of three parts, namely the utilized dataset,
the modeling process based on machine learning models and the results as well as discussions.
The utilized methodology for forecasting has been described in Section 4.2.1.2 and will not be
repeated here.

4.3.1 Dataset

The raw data for the experimental statistics on the usage of domestic electric vehicle
chargepoints are released by Department for Transport in the UK in December 2018.
The raw data contain 3.2 million charging events recorded across approximately 25,000
funded domestic chargepoints through the whole year of 2017 (Department for Transport
2018). This dataset is found to be useful in other research topics such as the performance
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analysis of battery-assisted charging (Ali et al. 2020) and demand response (Fang et al.
2020). Table 4.11 shows a part structure of the raw data.

Table 4.11: Part structure of the raw data

Start Date  Start Time End Date End Time  Energy [kWh] Plugin Duration [h]

2017-12-31 23:59:23 2018-01-01 18:20:23 8.8 18.35
2017-12-31 23:59:00 2018-01-01 00:03:00 10.2 0.07
2017-12-31 23:59:00 2018-01-01 13:40:00 6.2 13.68

Based on the date and time, the raw data are pre-processed to generate aggregated load
demand by hour. In the preprocessing, any plug-in events that were less than 3 minutes
in length are treated as anomalies and therefore excluded. Besides, it’s assumed that the
charging power is constant throughout the plugin duration based on empirical observation
and the simplified piecewise-linear charging profile model in (Zhang et al. 2012).

In addition, attention should be drawn to the fact that in actual charging scenarios, the power
drawn by each individual vehicle is not constant through the whole charging process. However,
since this use case focuses on the statistical results of a large volume of raw data rather than the
data of an individual vehicle, the simplification can be considered reasonable for practical DSM
applications.

Load Demand by hour in 2017

1 1 1 1 1

0 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

time [h]

Aggregated Load Demand [kWh]

Figure 4.16: Aggregated Load Demand by hour in the year 2017 (Li et al. 2024b)
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All pre-processed data for the year 2017 are presented in Fig.4.16. To enhance data diversity
while maintaining the efficiency of subsequent model training and forecast, the data of January,
April, July and October as representative months in each season are extracted separately as inputs,
which are presented in Fig.4.17.
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(a) Aggregated Load Demand by hour in January and April 2017 (Li et al. 2024b)
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(b) Aggregated Load Demand by hour in July and October 2017 (Li et al. 2024b)
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Figure 4.17: Aggregated Load Demand by hour in January, April, July and October of 2017 as representative months in
each season

Then the first 744 hours in January, April, July and October respectively are used as training set
with cross-validation for model training and the next 72 hours of data are reserved for test. By
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utilizing the descriptive statistics, i.e., nRMSE and MAPE, the results of forecasting models with
different complexity are evaluated.

4.3.2 Modeling

Asmentioned in Section 4.2.1.2, RF is a commonly-used and powerful machine learning algorithm
in many classification and regression problems. Moreover, as discussed in Section 3.3.1, another
advantage of RF compared to other machine learning algorithms is that its input size can be directly
employed for quantifying model complexity for regression problems. For time series forecasting,
it requires that the time series dataset is transformed into a supervised learning problem first (Li
et al. 2024b). Fig. 4.9 has already shown this transformation process, i.e., sliding window, with
an input size of one as an example, where Y is the value at each time step. In this use case, the
forecasting model is built on RF and the complexity of different models is quantified by using
different input sizes, as discussed in Section 3.3.1, to create a bagged regression ensemble object.
In order to investigate the relationship between the black-box model complexity and the model
utility, RF with varying input sizes are applied. Finally, five bagged regression ensemble objects
are created, with an input size from 1 to 5 together with the temporal features of days such as
Monday, Tuesday etc. as the extra input, to use the bootstrap aggregation method for model
training. Equation (4.20) presents the structure of the features of different input sizes, where n is
the number of input sizes and 1 to 10 mean each month respectively. These models are utilized
to support the investigation of the hypothesis by generating the utility-complexity curve.

Featureyy  Featureia ... Featurey,  Fealtureiemporall
Features1  Featuresy ... Features,  Featuréiemporals
X = (4.20)
Featurery  Featurers ... Featurer, Featuréeiemporalr
Featureigr Featureipa ... Featureio, Featureiemporaiio

4.3.3 Results and Discussions

In this use case, the quantification of the utility of the forecast models is modified with the new
definition in Equation (4.21), where U represents the utility of a forecast model in percentage and
avgMAPE is the mean value of MAPE in each representative month of the year.

U = (1 — (avgMAPE)) - 100[%] 4.21)
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Figure 4.18: Load demand forecast results with an input size of 5

As mentioned in Section 4.3.1, the predictive horizon of 72 hours is set up for each month. In
order to illustrate the performance of the forecasting models, Fig. 4.18 shows the results when
the input size is set to 5, i.e., n = 5 in Equation (4.20). First of all, the diagram shows that
the patterns of the data have a huge impact on the forecasting accuracy of forecast models. For
instance, in this use case, the most complex model demonstrates strong predictive performance
in January, July and October, yet its accuracy significantly deteriorates during April. Therefore,
the average of all months in Equation (4.21) effectively attenuates the influence of these pattern
variations. Besides, RF cannot extrapolate. It means that predicted values are always within the
range of the training set, which is also confirmed by the results.

In order to describe the overall statistic features of the forecasting results and the utility of the
models as defined above, the avgMAPE and the corresponding U are calculated, yielding the
results presented in Table 4.12. The model in the rightmost column, with the highest complexity
in terms of the input sizes (excluding the temporal feature), has the lowest avgMAPE of 19.37%
compared to other four forecast models and thus has the highest utility among all forecast models.
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Table 4.12: avgMAPE and Utility of forecast models with different input sizes, excluding the temporal feature

Input Size 1 2 3 4 5
avgMAPE 46.46% 36.60% 28.43% 24.10% 19.37%
U 53.54% 63.40% 71.57% 75.90% 80.63%

Diminishing marginal utility curve:
aggregated EV charging load forecasting models based on RF
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Figure 4.19: Diminishing marginal utility curve based on the complexity of models

With the definition in Equation (4.21), the relationship between the utility and the complexity
of all five forecast models are illustrated in Fig. 4.19. This demonstrates that the results in the
context of black-box models are further verifying the proposed hypothesis in Section 3.2, which
is that the complexity-utility relationship in the field of DSM modeling could be represented by
a diminishing marginal utility curve.

However, it should be noted that the graph line is again not as smooth as an approximated
diminishing marginal utility curve given as a polynomial curve of degree 2, which is presented in
orange dashed line as a reference in Fig. 4.19. The relative large deviation between the simulation
and the approximation results, such as the data point when the input size is equal one, reveals
that there could exist gaps between the simulation and an ideal value by approximation, which is
reasonable for an over simplified forecast model.

Furthermore, as the same algorithm and simulation hardware are employed for different forecasting
models across this use case, it is also worthwhile to investigate the relationship between model
utility and the computation time. Fig. 4.20 presents this relationship, where the horizontal
axis indicates the computation time in seconds and the respective input sizes of the models are
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Utility over Computation Time:
aggregated EV charging load forecasting models based on RF
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Figure 4.20: Utility over computation time based on RF models

annotated in the figure. It can be seen that the results also exhibit a diminishing marginal utility
trend. However, as explained in Section 3.3.1, there is a limitation of utilizing the computation
time compared to using the input size as the horizontal axis. The computation time does depend
on specific algorithms and the simulation environment, which makes it challenging to quantify
model complexity before conducting simulations or experiments. In contrast, the complexity of
forecast models can be already quantified during modeling by utilizing the input size.

In addition, it can be observed that when the input size increases from 4 to 5, the computation time
rises sharply, whereas the previous computation time’s increases are nearly linear regarding the
increasing input sizes. This indicates that the internal computational complexity of the algorithm
RF, when used to construct forecasting models, does not grow linearly with the input size.
This finding can further assist decision-makers in selecting a model of appropriate complexity,
particularly when interpreted in conjunction with the diminishing marginal utility curve presented
in Fig. 4.19.

4.4 Discussion Summary

In this chapter, three use cases are carried out to validate the proposed hypothesis and answer
the RQ3: What is the relationship between the model complexity and the model utility of DERs
models in the context of DSM?, based on the accuracy in off-line simulations. The first two
use cases focus on white-box DER models for GSHP systems. The evaluation of the models by
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using various data sources demonstrates the validity of the proposed hypothesis for presenting
the relationship between the model complexity and the model utility in the modeling of GSHP,
as a type of DERs, for DSM. However, the results also show that the real graph lines in both use
cases are not as smooth as an ideal diminishing marginal utility curve. One reason for this is
that the quantification of the model complexity is not mathematically continuous, which limits
the smoothness of the real curve. Another reason is that the approximated diminishing marginal
utility curve is an idealized curve itself, which is more intended to express a trend of a relationship
between two variables. In addition, the curve in the second use case aligns more closely with the
ideal curve compared to that in the first use case. This could be caused by the different number of
data points that are used in the simulations. This additional result could provide suggestions for
future experiments that a longer time horizon of investigation might help to minimize the effect
of individual outliers on the overall analysis.

After validating the hypothesis with white-box DER models, the third use case looks into modeling
with black-box DER models in order to deal with the scenarios in DSM where the white-box
models are less suited, such as load forecasting of EV charging stations. By leveraging an
extensive real-world dataset for model training, the results are promising and in line with the
proposed hypothesis as well. It’s worth noting that the computation time can also be used as a
quantification method for complexity when utilizing the same algorithm for forecast models. In
addition, both real curves in this use case also have gaps to their respective approximated ideal
curves, which can be attributed to the same reasons mentioned above.

Overall, the evaluation with three use cases shows the validity of the proposed hypothesis to
present the relationship between model complexity and model utility for DERs in DSM, which
answers the RQ3 directly. The proposed hypothesis can be used to identity the relationships
across various practical applications by developers, engineers or operators in order to provide a
quantified reference for different DSM applications.

Lastly, given the results of this chapter, there are several areas that future works can improve on.
As the comparison between the first and the second GSHP use cases shows, the time horizon
of the experiment, i.e., the number of data points, have an impact on the results. To further
improve the validity of the hypothesis, future experiments or investigations should cover a time
horizon that is longer than 7 days. Furthermore, the hypothesis has to be further investigated
and validated with other possible DERs on the demand side, e.g. battery systems, to broaden its
scope of application. Moreover, new explainable methods for quantifying the complexity of other
black-box models need to be investigated to further validate the hypothesis in the scenarios with
black-box models.
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5 AQuantification of the Contribution of
Distributed Energy Resources
Submodel in Demand Side
Management

This chapter takes a step further and aims at addressing RQ4: "How to quantify the contributions
of a DER’s submodel to model utility in DSM?" systematically by introducing a quantification
method for determining the contribution of a DER’s submodel in the context of DSM based on the
Shapley value. As mentioned in Section 1.3, the goal of DSM in general is to reschedule energy
consumption on the demand side to electricity production and electrical load on the power grid.
In other words, DSM should contribute to improve the flexibility in the overall energy system.
However, the value of flexibility in DSM is a measure that is challenging to quantify. Furthermore,
for DERs models composed of several submodels, assessing the individual contribution of each
submodel to the overall accuracy is of significant value for informed decision-making. To deal
with this challenge, this chapter introduces an approach for determining the contribution of
DERs submodels by considering the maximal power of a DER in the context of DSM based
on the Shapley value. This quantification method is another step forward for confirming the
hypothesis of diminishing marginal utility of model complexity in practical DSM applications.
The remainder of this chapter is structured as follows: Section 5.1 introduces the theoretical
foundation of Shapley values and then related works are discussed in Section 5.2. In Section 5.3,
a case study for a heat pump system is carried out to demonstrate the application of the proposed
approach. Finally, the results are discussed in Section 5.4, providing insights into potential
applications.

5.1 Theoretical Foundation

In 1951, the mathematician Lloyd Shapley has introduced a solution concept in n-Person Game,
i.e., cooperative game theory, for quantifying each player’s contribution by evaluating the marginal
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impact they make when added to all possible subsets of players, and computing the average of
these impacts (Shapley 1951). This quantified value is also known as the Shapley value. This
solution concept has proved to be the only solution that satisfies all four foundational properties,
namely efficiency, symmetry, linearity and null player, in 1953 (Kuhn and Tucker 1953). This
establishes the theoretical groundwork for the method’s future use in a wide range of disciplines.

According to (Winter 2002), the Shapley value ¢ of player i is calculated by using the following
equations, where S' is a subset or a coalition of the whole set /N of n players and v is the value
function to determine the value or worth of a coalition. And |S| represents the number of players
in this coalition S, whose cardinality is between 0 and n — 1.

pw = 3 BRI DN e ) - wis)) 5.1

SCN\{:} nl
1 n—1\""

SRS (w(SU{i}) — v(S)) (5.2)
2 ()

As mentioned above, the Shapley value satisfies four foundational properties. The first property
is efficiency, which means the sum of Shapley values of all players equals the value of the whole
set N. This property guarantees that the gain is distributed among all players. Equation (5.3)
(Kuhn and Tucker 1953) formulates this property.

> wi(v) = v(N) (53)

iEN

The second property is symmetry, which means that if two different players ¢ and j contribute
equally to all possible coalitions, then their Shapley values are also equal. This property guarantees
that the players are treated equally if contribute equally. Equation (5.4) (Kuhn and Tucker 1953)
formulates this property, where S is an arbitrary coalition without 7 and j.

v(SU{i}) = v(SU{j}) = wi(v) = ¢;(v) (5.4)

The third property is linearity, which means the Shapley values of the player ¢ in different value
functions are linear and additive. This property considers mainly the situation where more value
functions are involved in the analysis. The following equations (Kuhn and Tucker 1953) formulate
this property, where v and w are different value functions and a is any real number.
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pi(v+w) = ¢;(v) + pi(w) (5.5)
wi(av) = ap;(v) (5.6)

The last foundational property is the so-called null player or dummy player, which means that if
player ¢ does not contribute to any coalition in terms of the value function v, then the Shapley
value of ¢ is zero and this player ¢ is the so-called dummy player or null player. This property
further guarantees the fair contribution of each player when evaluating the marginal impact they
make. Equation (5.7) (Kuhn and Tucker 1953) formulates this property, where S is an arbitrary
coalition without 7.

W(SU{i}) = v($) = ¢ilv) = 0 5.7)

It is precisely because the Shapley value satisfies these four foundational properties that it has
found applications not only in game theory, but also in a wide range of other fields with the
idea of "players" being replaced with other domain concepts. Some of them are discussed in the
following section.

5.2 State of the Art

In recent years, the concept of the Shapley value, initially proposed within game theory, has found
widespread applications in various domains beyond its original context, such as explainable
Artificial Intelligence (AI), cost allocation, energy systems and so on (Varenhorst et al. 2024).
For instance, the authors (Lundberg and Lee 2017) have proposed a unified framework named
as SHapley Additive exPlanations (SHAP), which is based on Shapley value, for interpreting
predictions. In 2020, they further improve the interpretability of tree-based models, such as
random forests, decision trees, and gradient boosted trees, by presenting TreeExplainer, an
explanation method for trees in these models based on Shapley value (Lundberg et al. 2020).
However, other authors (Kumar et al. 2020) point out that some further assumptions, such as
the feature independence, are needed to use this framework for interpretation. This could lead
to an inaccurate approximation to the true Shapley values. To deal with the dependence of
features in machine learning models, (Aas et al. 2021) have improved the Kernel SHAP method
by estimating the conditional distribution to incorporate dependence. This improvement has
led to a more accurate approximations to the true Shapley values than the original Kernel SHAP
approach. In 2023, the team that developed SHAP has published a review article further discussing
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algorithms to generate Shapley value explanations (Chen et al. 2023). By comparing 24 distinct
algorithms, the authors highlight the key innovations in recent approaches for estimating Shapley
value explanations and give recommendations, such as the importance of the feature-removal
approach and the specific estimation strategy, for the utilization of Shapley value explanations in
both industry and academia (Chen et al. 2023). Another survey carried out by (Luo and Pei 2024)
focuses on methods for computing the Shapley value in the domain of databases and machine
learning, where they also point out the idea of "players" are being tuples, tables, features, data
samples and models in specific applications.

In the domain of energy systems, the Shapley value has also proven to be highly applicable as
well. For approximating the Shapley value in realistic community energy settings, a team in
the Netherlands has compared several existing methods and proposed a more efficient one by
clustering consumers into a smaller number of demand profiles (Cremers et al. 2022). In other
application, the authors from Norway (Cai et al. 2023) have presented an Energy Management
(EM) strategy for residential microgrid systems using Model Predictive Control (MPC)-based
Reinforcement Learning (RL) and Shapley value, where the Shapley value approach is applied
as a feasible solution for distributing the collective cost. Considering energy system operators,
a distributed approach of Shapley value calculation for the redispatch congestion cost allocation
to deal with data privacy concerns with respect to real-world implementation is briefly discussed
in (Bauer et al. 2023). For device flexibility in DSM, the authors (Varenhorst et al. 2024) have
proposed a method to determine the value of flexible assets using average marginal contributions,
based on the Shapley value. In their scenario, the optimization goal is to minimize the Euclidean
norm of a single smart house profile using DSM.

By reviewing the above numerous recent publications related to the Shapley value, it’s observable
that most of them are focused either on the methods for computing the Shapley value or on the
application in black-box models, which have already made a lot of progress. However, in the
context of white-box models for DERs in DSM, the potential of the Shapley value remains to
be explored. Therefore, in the next section a novel approach for quantifying the contribution
of DERs submodels based on the Shapley value together with a use case will be presented and
discussed.

5.3 Heat Pump and Heat Pump Storage Case Study

The goal of this section is to propose a new approach for quantifying the contribution of DERs
submodels in the context of white-box DER models based on the Shapley value and to show how
the approach can be applied in the context of DSM with the use case mentioned in Section 4.2.
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5.3.1 Quantification Approach

In Chapter 4, the first two use cases both employ white-box models to describe GSHP systems.
In defining the model utility U, the simulation results derived from different model classes are
compared with the actual measurements by using metrics such as MAPE and nMAE. In order
to quantify the contribution of submodels based on the Shapley value in the following analysis,
an essential prerequisite lies in how the value function v is defined. Considering that, a device’s
ability to contribute effectively to load profile adjustment, i.e., flexibility adjustment, in DSM is
closely related to its maximum power P,,,,. Therefore, the following definition for the value
function v is first proposed in our scenario, where S is the coalition of submodel;. It is important
to note that the submodel; here has a different meaning than the model class mentioned in
Chapter 4. It represents different mathematical models which are used to build a model class. In
other words, equations such as Equation (4.12), Equation (4.13) form the submodel; here. Under
this definition, the value function v represents the realistically reliable maximum adjustable power
of a coalition S to load adjustment in DSM.

U(S) = U(Z Subm0d6l1) = Praz - U(S) (-8)
S

Then the Shapley value of a coalition S, i.e., a white-box model with submodels in our scenario,
can be calculated according to Equation (5.2).

5.3.2 The Shapley Value for Heat Pump and Hot Water
Storage Submodels

In this section, the attention is focused on how the proposed approach can be applied to the use
case with white-box DERs models. As mentioned at the beginning of Section 5.3, the detailed
set up of the use case is already described in Section 4.2, where the P,,,, = 12.5 kW. Table 4.8
presents the model classification results with five model classes, among which Model E is too
abstract and neglects the impact of HWSs. Therefore, the objectives of the following valuation
include Model A to Model D. For comprehensibility of the following explanation, an excerpt of
Table 4.8 is presented below.

As discussed in Section 5.1 and Section 5.2, the idea of "player" in game theory can be replaced
with other concepts depending on the use case. As shown in Table 5.1, it is evident that
Equations (4.12) (4.13) (4.14) are required for all four model classes. Based on the proposed
concept, the model classes can be conceptualized as a n-Person Game, where n is equal to 4. The
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detailed mapping is presented in Table 5.2. Table 5.3 then shows the conceptualization of Model
Class as a coalition and its corresponding value based on Equation (5.8).

Table 5.1: Model classification with respect to parameters, an excerpt of Table 4.8

Model Class Combination Number of required Parameters
Model A (4.12)(4.13)(4.14)(4.16)(4.17)(4.18) 16

Model B (4.12)(4.13)(4.14)(4.16)(4.18) 14

Model C (4.12)(4.13)(4.14)(4.16)(4.17) 13

Model D (4.12)(4.13)(4.14) 9

Table 5.2: Mapping of submodel; based on the proposed concept

Equations "Player" submodel;
(4.12)(4.13)(4.14) submodelq
(4.16) submodels
“4.17) submodels
(4.18) submodely

Table 5.3: Conceptualization of Model Class based on the proposed concept

Model Class Coalition Value of coalition v(S)
Model A submodely, submodels, submodels, submodely 12.03 kW

Model B submodely, submodels, submodely 11.17 kW

Model C submodely, submodels, submodels 10.38 kW

Model D submodely 9.90 kW

According to Equation (5.2), the Shapley value of each submodel; can be computed step by step.
Given that n is equal to 4 in this use case, the number of computational steps remains manageable,
thereby enabling a visualization of the full calculation procedure. For instance, Table 5.4 presents
the full calculation procedure of the Shapley value of submodel;, where Ysubmoder; = 10.58kW
when the final result is rounded with two decimal precision. Similarly, the Shapley value of the
rest submodels can be computed and the full steps will not be repeated here. The results of the
Shapley value of all four submodels are printed in Fig. 5.1.
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Table 5.4: The Shapley value kW of submodely

Subset S v(SU{i}) v(S) |S| Weight Weighted
Contribution
1) 9.90 0 0 1/4 2.475 kW
submodels 9.90 0 1 1/12 0.825 kW
submodels 9.90 0 1 1/12 0.825 kW
submodely 9.90 0 1 1/12 0.825 kW
submodels, submodels 10.38 0 2 1/12 0.865 kW
submodels, submodely 11.17 0 2 1/12 0.931 kW
submodels, submodely 9.90 0 2 1/12 0.825 kW
submodels, submodels,  12.03 0 3 1/4 3.008 kW
submodely
Psubmodel 10.58 kW
The Shapley value of each submodel
T T T T

10 —
Z sl -
)
=
g 6f .
>
2
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2
= 2F .

0.68 0.95 0.52
0

submodel;  submodely  submodel;  submodely

Figure 5.1: The Shapley value of each model in kW

With the calculated Shapley value, the contribution of each submodel in the coalition is quantified.
Based on the results, the satisfaction of four foundational properties mentioned in Section 5.1
needs to be verified first. The first and most important property, namely efficiency, can directly be
verified by aggregating the Shapley value of all submodels, which is equal to 12.03 kW exactly.
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Table 5.5 shows the verification. The second and the third property, symmetry and linearity, do
not apply to this use case, as no two submodels’ Shapley values are equal and the value function
is uniquely defined. The last property is also not applicable to this case since each submodel
("player") has a certain contribution to the coalition. More detailed discussions are presented in
the following section.

Table 5.5: Verification of the efficiency property

submodel; Shapley value kW

submodely 10.58

submodels 0.68 Z ©i(v) = 12.03
submodels 0.25 i€Model A

submodely 0.52

Value of coalition Model A kW v(Model A) = 12.03

5.4 Discussion

Based on the results in Fig. 5.1, it’s clear to see that the Shapley value of submodel; is markedly
higher than that of the remaining submodels in the whole set, i.e., Model A. This finding indicates
that submodel; has a dominant influence in the formulation of Model A when using Model A to
evaluate the flexibility of DSM assets. This result is also expected, as this submodel is essential
across all model classes. Furthermore, the Shapley value of submodel, is more than twice that
of submodels. And in this scenario, submodels and submodel interpret the impact of the small
and the large HWS respectively. Based on the approach, the contribution of submodely, that is,
the large HWS, could be quantified as 2.08 times that of submodels, the small HWS. Combined
with their Shapley values, their impacts on the whole coalition, which is defined considering the
maximal power of the GSHP system, are also quantified.

In addition, it is important to highlight how this methodology differs from another approach,
namely sensitivity analysis, which studies the uncertainty in the output of a mathematical model
or system can be apportioned to different sources of uncertainty in its inputs (The Joint Research
Centre: EU Science Hub 2025). It should be more considered as a pre-requisite for statistical
model (Saltelli et al. 2004) or used to test the robustness of the results of a model or system
(Gutierrez-Garcia et al. 2022).
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Overall, the evaluation with the use case shows the feasibility of the proposed methodology to
quantify the contribution of submodels within white-box DER models in DSM based on the
Shapley value, which answers the RQ4 directly. The methodology can be used together with the
proposed hypothesis in Chapter 4 to further assist developers, engineers or operators, not only in
selecting a model with an appropriate level of complexity based on utility requirements, but also
facilitating a deeper understanding of which submodel within the model class contributes most
to the overall flexibility in DSM, particularly when the model class can be viewed as a coalition.

Lastly, given the results of this chapter, there are different areas that future works can improve on.
In defining the value function in this case study, the maximum power of the GSHP system was
taken into account. This is because the maximum power determines the theoretical upper limit of
the adjustable capacity that a DER can provide when participating in DSM. However, the value
function could be redefined according to different scenarios, allowing it to be integrated with
other variables such as energy costs. This could further extend the applicability of the approach.
Furthermore, an extension of this approach to encompass other model types, such as gray-box
models, might serve as a potential improvement.
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6.1 Conclusion

In the present dissertation, the influence of DER model complexity on their utility for DSM
is investigated. The study begins with a comprehensive survey on the current state of DSM
implementations in the residential, commercial and industrial sector, focusing on their models and
approaches. One important finding of the review is that, in many practical DSM/DR applications,
simple models such as linear models can already yield highly satisfactory results. To support
better decision-making for developers, engineers or operators by providing a quantified reference,
it’s worthwhile to investigate this relationship between the model complexity and the model utility
quantitatively, which leads to:

RQ1: How to quantify the complexity of DER models in the context of DSM? In Chapter 3, a
brief review of other review and application works related to complexity of models and algorithms
across different domains is first carried out. In the literature, there are many existing measures to
quantify the complexity of models or functions in different scenarios. The quantifiable measures
resulting from the review analysis and discussions are summarized in Table 3.1, with their scope
of application specified. After comparing the limitations and advantages of different measures
and considering our scenarios, the number of parameters and input sizes are chosen for white-box
DER models and black-box DER models respectively due to their different model characteristics.

RQ2: How to quantify the utility of DER models in the context of DSM? In Chapter 3,
after establishing the quantification method for the model complexity, different quantification
methods for the model utility are further analyzed. Since the subsequent validation process
is primarily based on offline simulations, the model utility is defined here in terms of model
accuracy. Moreover, utility is a more general concept and its definition depends strongly on the
specific applications. Therefore, different useful metrics in descriptive statistics according to the
definition of "accuracy" in ISO 5725-1 are introduced. These metrics, such as MAPE and nMAE,
are subsequently employed in the quantification of the model utility, based on the requirements
of different use cases.

After the quantification of model complexity and utility, it leads to:
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RQ3: What is the relationship between the model complexity and the model utility of DERs
models in the context of DSM? To address the core research question of this thesis, a hypothesis
in Chapter 3 is proposed, mainly inspired by Gossen’s First Law in economics. The hypothesis
states that the complexity-utility relationship in the modeling of distributed energy resources for
demand side management could be represented by a diminishing marginal utility curve in general.
To validate the hypothesis, three use cases are investigated in Chapter 4, including two heat pump
systems based on white-box models and one electric vehicle supply equipment use case based on
black-box models. The results of all use cases are basically in line with the hypothesis, although
the derivation is relatively large at few individual data points. The simulation results are strongly
dependent on the length and quality of the data. A lack of rich data could result in individual
outliers exerting an excessive influence on the calculation of the model utility, which could result
in large derivation such as excessive curve growth rate. Therefore, it is noted in the discussion
of Chapter 4 that extending time horizon represents a significant and necessary avenue for future
work and improvement.

For white-box models of distributed energy resources, they could consist of several different
submodels. In addition to quantify the model complexity as one whole model, it’s also worthwhile
to further investigate the specific contributions of each submodel, which leads us to:

RQ4: How to quantify the contributions of a DER’s submodel to model utility in DSM?
For DERs models composed of several submodels, assessing the individual contribution of each
submodel to the overall model utility, namely accuracy in our case study, is of significant value for
informed decision-making. In Chapter 5, a new approach based on the Shapley value to quantify
the contribution of submodels within a whole white-box model is introduced. In this approach,
the maximum power of the ground source heat pump system is incorporated through the definition
of the value function. The approach is applied to the heat pump and hot water storage case study,
which is described in Chapter 4, to demonstrate its feasibility.

In conclusion, by answering the four research questions discussed above, this thesis contributes to
providing energy system developers, modeling engineers and operators with a quantified reference
to support decision-making by proposing a novel hypothesis and a new quantification method for
the contribution of submodels. The thesis provides a new direction for exploring the relationship
between the model complexity and the model utility. This potentially enables a more efficient
choice of models for an application. When it comes to a deeper understanding of the contribution
of submodels, the presented quantification approach based on the Shapley value enables more
straightforward and transparent comparison and analysis.
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6.2 Outlook

The proposed hypothesis is validated with three use cases in this thesis. However, there are three
main facets that could be further researched and improved in the future work. First of all, the
datasets for validation of the first and the second use case cover 1 day and 7 days respectively. In a
future experiment, the time horizon should be longer than 7 days to minimize the impact of specific
outliers on the overall results. Moreover, datasets from different seasons or years could enrich
the data and potentially provide more insights. Secondly, modeling of other energy systems
on the demand side, such as home battery system, could provide more validation results and
further enable the investigation of the synergy of different energy equipments on the demand side.
Thirdly, for systems that are not well-suited to white-box modeling, such as treating a house as one
node in the energy network and modeling district heating networks, other model types, that are
gray-box and black-box models, should be implemented. To investigate the relationship between
the model complexity and the model utility in these scenarios, new quantification methods could
be further defined and identified.
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Nomenclature

Abbreviations

Al

AC
ASM
ASHP
BAS
BIM
CPP
CPR
CM
DSM
DR
DER
DRA
DLC
EMPC
EDR
EVSE
FCR
FFM

Artificial Intelligence

Air Conditioner

Ancillary Service Markets

Air Source Heat Pump

Building Automation System
Building Information Modeling
Critical Peak Pricing

Critical Peak Rebate

Capacity Markets

Demand Side Management
Demand Response

Distributed Energy Resource
Demand Response Aggregator
Direct Load Control

Economic Model Predictive Controller
Emergency Demand Response
Electric Vehicle Supply Equipment
Frequency Containment Reserve

Fat-free Mass
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Abbreviations

GA Genetic Algorithm

GSHP Ground Source Heat Pump

HpP Heat Pump

HWS Hot Water Storage

ICT Information and Communication Technology
IDR Industrial Demand Response

IEA International Energy Agency

IBR Inclining Block Rates

IBDR Incentive-Based Demand Response
KIT Karlsruher Institute of Technology

LSTM Long Short-Term Memory

MPC Model Predictive Control
MDP Markov Decision Process
MILP Mixed-Integer Linear Programming

MIQP Mixed-Integer Quadratic Programming
MAPE Mean Absolute Percentage Error
MaxAPE Maximum Absolute Percentage Error
MDP Markov Decision Process

nRMSE  normalized Root Mean Square Error

nMAE normalized Mean Absolute Error

P2H Power-to-Heat

PSO Particle Swarm Optimization
PDM Peak-Demand Management
PTR Peak Time Rebate

PSBC Priority Stack-Based Control
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Abbreviations

RTP
RL
RCT
RBC
RF
SHAP
SG
TES
ToU
TSO
Va2X

VPP

Real-Time Pricing
Reinforcement Learning
Randomized Controlled Trial
Rule-Based Control

Random Forest

SHapley Additive exPlanations
Smart Grid

Thermal Energy Storage
Time-of-Use

Transmission System Operators
Vehicle to Everything

Virtual Power Plant
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