
Efficient and Correct

Persistent Memory File Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Lukas Werling

Tag der mündlichen Prüfung: 12.12.2025

Erster Referent: Prof. Dr. Frank Bellosa

Zweiter Referent: Prof. Dr. Christian Dietrich

This document is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

In memory of my grandma

Emma Westermann

1929 – 2026

4

Abstract

Persistent memory (PM) is a novel storage technology that enables byte-granular

direct access from the CPU with low latency. Compared to traditional asynchronous

block storage, this access paradigm allows file systems to offer stronger persistence

guarantees at lower latency. However, it also introduces new challenges for perfor

mance, efficiency, and correctness. PM’s small atomic write size requires careful

use of PM primitives to prevent data loss in the event of a crash. Overloading PM

with parallel accesses results in expensive CPU stalls.

This thesis investigates the efficiency and correctness of PM file systems. First,

we introduce efficiency metrics that quantify CPU time and energy cost per unit

of storage access. We show that many existing PM file systems perform poorly

under parallel load. To address PM overload, we design mitigation mechanisms that

integrate with existing file systems and a monitoring technique to attribute direct-

access PM traffic to processes.

Second, to improve correctness, we present Suvi, an approach to black-box crash

consistency testing for PM file systems. Suvi traces a file system’s PM and NVMe

SSD accesses in a virtual machine and replays the trace with an accurate simulation

of x86 store-order semantics. Suvi generates crash images using two heuristics to

avoid combinatorial explosion, and then automatically analyzes the crash images

to detect atomicity bugs.

Together, these contributions provide measurement tools, mitigation strategies, and

testing infrastructure to make PM file systems more efficient and more reliable.

5

6

Acknowledgements

I would like to express my gratitude to Prof. Dr. Frank Bellosa for his continuous

support and helpful advice. He granted me the freedom to pursue my ideas and

provided valuable networking opportunities at conferences.

I am grateful to Prof. Dr. Christian Dietrich for kindly agreeing to act as the secondary

reviewer and for his constructive comments whenever I presented my work at

conferences and workshops.

Many thanks to my colleagues Daniel Habicht, Peter Maucher, and Thorsten

Gröninger for their thoughtful feedback on both the thesis and its presentation. Their

suggestions helped me improve the clarity and fix errors in technical descriptions.

I also thank Johannes Bechberger for his careful proofreading.

Finally, I owe special thanks to Christian Schwarz. His master’s thesis provided the

initial motivation to pursue PM file system efficiency and correctness. Christian also

provided regular insight into storage challenges from an industry perspective.

7

8

Contents

Abstract . ⁠5

Acknowledgements . ⁠7

1 Introduction . ⁠13

1.1 Motivation for Persistent Memory . ⁠13

1.2 Challenges for PM File Systems . ⁠14

1.3 Measuring and Improving PM Efficiency . ⁠15

1.4 PM File System Crash Consistency . ⁠16

1.5 Contributions . ⁠16

1.6 Student Theses and Publications . ⁠17

1.7 Structure . ⁠19

2 Background – Persistent Memory and File Systems . ⁠21

2.1 Optane Persistent Memory . ⁠21

2.1.1 Regions . ⁠22

2.1.2 Namespaces . ⁠23

2.1.3 Performance Counters . ⁠23

2.2 Linux File System Support for PM . ⁠25

2.2.1 Accessing PM from the Kernel . ⁠25

2.2.2 Block Translation Table (BTT) . ⁠25

2.2.3 Ext4 and XFS without BTT . ⁠26

2.2.4 DAX Support . ⁠27

2.3 PM File Systems . ⁠27

2.3.1 PMFS, WineFS, and OdinFS . ⁠28

2.3.2 Aerie . ⁠29

2.3.3 NOVA, NOVA-Fortis, and Ziggurat . ⁠30

2.3.4 Strata and Assise . ⁠31

2.3.5 SPMFS . ⁠31

2.3.6 Trio . ⁠32

2.3.7 P2CACHE . ⁠33

2.3.8 SlotFS . ⁠33

2.4 Crash Consistency . ⁠34

2.4.1 Crash Consistency for Persistent Memory . ⁠35

2.4.2 Crash Consistency for NVMe . ⁠37

3 Motivation – Designing Data Structures for PM . ⁠41

3.1 PM Ring Buffer Overview . ⁠41

9

3.1.1 PM Organization and Runtime Data . ⁠42

3.1.2 Recovery . ⁠43

3.1.3 Write Process . ⁠43

3.2 Implementation and Evaluation Setup . ⁠46

3.3 Memory Access Instructions . ⁠47

3.4 Parallel Accesses . ⁠49

3.4.1 Non-Interleaved Optane PM . ⁠49

3.5 Alignment and Access Size . ⁠50

3.6 NUMA . ⁠51

3.7 Discussion . ⁠52

3.8 PM Ring Buffer for File Systems . ⁠53

3.8.1 ZIL-PMEM: PM Write Cache for ZFS . ⁠53

3.8.2 DPWC: Write Cache for Block Devices . ⁠53

4 PM File System Efficiency . ⁠55

4.1 Metrics for File System Efficiency . ⁠56

4.1.1 Energy Efficiency . ⁠57

4.1.2 CPU Efficiency . ⁠58

4.2 Analyzing File System Efficiency . ⁠59

4.2.1 Measurement Setup . ⁠59

4.2.2 File System Selection . ⁠61

4.2.3 FIO Benchmark Setup . ⁠62

4.2.4 Power Measurements . ⁠63

4.3 Evaluation . ⁠66

4.3.1 ext4 and NOVA . ⁠66

4.3.2 OdinFS, ZIL-PMEM, and DPWC . ⁠69

4.4 Discussion . ⁠72

5 PM File System Overload Mitigation . ⁠73

5.1 Design and Implementation . ⁠73

5.1.1 Semaphore . ⁠74

5.1.2 Workqueue . ⁠75

5.1.3 DMA . ⁠75

5.2 File System Integration . ⁠76

5.3 Evaluation . ⁠76

5.3.1 Semaphore . ⁠76

5.3.2 Workqueue . ⁠77

5.3.3 DMA . ⁠80

5.4 Discussion . ⁠80

6 Userspace PM Access Accounting . ⁠81

6.1 Requirements . ⁠82

6.2 Accounting with Performance Counters . ⁠82

6.2.1 Read Accesses . ⁠82

6.2.2 Write Accesses . ⁠83

6.3 Approach: Sampling Memory Instructions . ⁠83

6.3.1 Processor Event Based Sampling (PEBS) . ⁠84

6.3.2 Bandwidth Estimation . ⁠84

10

6.3.3 Limitations . ⁠85

6.4 Implementation . ⁠86

6.5 Scheduling . ⁠87

6.6 Evaluation . ⁠88

6.6.1 Accuracy . ⁠88

6.6.2 Overhead and Latency . ⁠89

6.6.3 Scheduling . ⁠91

6.7 Related Work . ⁠92

6.8 Discussion . ⁠92

7 Crash Consistency Testing . ⁠95

7.1 Failure Points and Crash Images . ⁠95

7.2 Types of Crash Consistency Bugs . ⁠96

7.2.1 Logic Bugs . ⁠96

7.2.2 Missing Flush . ⁠97

7.2.3 Ordering Bug . ⁠97

7.2.4 Performance Bugs . ⁠98

7.3 Crash Consistency Testing Pipeline . ⁠98

7.4 Tracing Approaches . ⁠98

7.4.1 Binary Translation . ⁠99

7.4.2 Compiler Instrumentation . ⁠99

7.4.3 Manual Annotation . ⁠100

7.4.4 Function Tracing . ⁠100

7.5 Crash Consistency Testing Tools . ⁠100

7.5.1 Yat . ⁠101

7.5.2 PMTest . ⁠102

7.5.3 XFDetector . ⁠102

7.5.4 Witcher . ⁠103

7.5.5 Vinter . ⁠104

7.5.6 Chipmunk . ⁠104

7.5.7 Mumak . ⁠105

8 Suvi: Crash Consistency Testing for PM File Systems . ⁠107

8.1 Tracer . ⁠108

8.1.1 PM Tracing . ⁠109

8.1.2 NVMe Tracing . ⁠110

8.1.3 Hypercalls . ⁠112

8.1.4 Discussion . ⁠112

8.2 Crash Image Generator . ⁠113

8.2.1 Model Goals . ⁠113

8.2.2 Crash Image Metadata . ⁠114

8.3 PM Crash Image Model . ⁠115

8.3.1 Trace Replay . ⁠115

8.3.2 Failure Points . ⁠115

8.3.3 Global Store Ordering . ⁠116

8.3.4 Mixed Non-Temporal and Cached Stores . ⁠116

8.3.5 Crash Images with Volatile Caches . ⁠117

8.3.6 Crash Images with Persistent Caches (eADR) ⁠119

11

8.3.7 Partial Application of Non-Temporal Stores . ⁠121

8.4 PM Crash Image Heuristics . ⁠121

8.4.1 Suvi-Reads: Efficient Exploration of Crash States ⁠121

8.4.2 Suvi-NT: Detecting NT-Dependent Semantic States ⁠125

8.4.3 Suvi-Fast: Fast Crash Image Generation for Logic Bugs ⁠127

8.5 Cross-Media Crash Images . ⁠128

8.5.1 NVMe Crash Images . ⁠128

8.5.2 Combined Crash Images . ⁠130

8.5.3 Discussion . ⁠131

8.6 Tester . ⁠131

8.6.1 State Extraction . ⁠131

8.6.2 State Analysis . ⁠135

8.7 Trace Analysis . ⁠137

8.7.1 Trace Debugging . ⁠137

8.7.2 Trace Heuristics . ⁠139

9 Suvi: Implementation . ⁠141

9.1 Tracer . ⁠141

9.1.1 PANDA . ⁠141

9.1.2 QEMU . ⁠142

9.2 Memory Images . ⁠142

9.2.1 File System Copy-on-Write . ⁠143

9.2.2 Hash Memoization . ⁠143

9.2.3 Evaluation . ⁠144

9.3 Parallelization . ⁠145

9.3.1 Discussion . ⁠146

10 File System Testing with Suvi . ⁠149

10.1 Virtual Machine Setup . ⁠149

10.2 Test Cases . ⁠150

10.2.1 Vinter Test Cases . ⁠150

10.2.2 Automatic Test Case Generation . ⁠151

10.3 Performance . ⁠151

10.3.1 Heuristics . ⁠151

10.3.2 Tracer Implementations . ⁠152

10.3.3 Parallelization . ⁠153

10.4 Results . ⁠153

10.4.1 NOVA and NOVA-Fortis . ⁠153

10.4.2 PMFS and WineFS . ⁠155

10.4.3 ZIL-PMEM . ⁠155

10.5 Persistent Caches . ⁠155

10.6 Discussion . ⁠156

11 Conclusion . ⁠159

11.1 Outlook . ⁠160

References . ⁠163

12

Chapter 1

Introduction

1.1 Motivation for Persistent Memory
Modern systems have an increasing need for high-performance storage. Applications

such as key-value stores [101], graph processing [64], and search indices [49, 51]

require storage systems that can retrieve and modify data with minimal latency.

Traditional solid-state drives (SSDs) based on NVMe cannot properly fulfill this role.

As both the SSDs and interconnects such as PCIe are getting faster, the relative

overhead from storage accesses with NVMe increases. Approaches for kernel bypass

can decrease this overhead [62, 83], but require exclusive device access for a single

application.

Persistent memory (PM) offers a better solution. PM is byte-addressable and accessed

directly from the CPU like main memory, but retains its contents while the system

is powered off. PM therefore supports access with low latency, even for small access

sizes. With regular paging, the operating system can offer direct PM access to

userspace applications. In contrast to kernel bypass with NVMe, the operating system

retains control over access permissions, allowing sharing of PM between multiple

applications.

Intel Optane PM was the first widely-available commercial implementation of PM.

Like DRAM, Optane modules come in the DIMM form factor and attach directly to

the CPU’s memory controller. We base most of the analysis in this thesis on Intel

Optane PM.

More recently, support for Compute Express Link (CXL) appeared in CPUs from

multiple vendors, including Intel and AMD. With CXL, devices attached via a PCIe link

can offer byte-addressable PM. We expect that most of the techniques we introduce

for Optane PM in this thesis also apply to CXL-attached PM.

File systems provide structured and controlled access to storage devices. By targeting

a common file system API, applications can store data without knowledge of the

underlying storage technology. The file system controls access permissions and

allows safe shared access to different applications. Although PM can be used without

a file system, file systems remain valuable for these reasons.

13

1 Introduction 1.1 Motivation for Persistent Memory

Most PM file systems offer direct access (DAX) to applications, a feature not found in

regular file systems. With DAX, the file system provides memory mappings to a file’s

PM pages. After establishing such a mapping, an application can read and write to

PM without further involvement of the operating system, bypassing the kernel.

1.2 Challenges for PM File Systems
PM can offer its low latency thanks to its integration into the CPU’s memory hierarchy,

allowing synchronous and direct access at byte granularity. In comparison, tradi

tional storage devices are accessed over an asynchronous protocol. The operating

system submits requests for data blocks, which the storage device fulfills by copying

the data to system memory and then signaling request completion. From blocks to

bytes is a change of paradigm that introduces novel challenges in the design and

implementation of file systems for performance, efficiency, and correctness.

A correct file system implementation should be crash-consistent. In the event of a

crash, the file system’s data structures should remain consistent to avoid corrupted

or lost files. Traditional storage devices support crash-consistent file system design

by offering atomic block updates of typically 512 or 4096 bytes. In the event of a

crash during a write operation, such a block is either written completely or not

at all. With PM, the CPU’s memory write path offers a much smaller atomic write

size of only 8 bytes. Additionally, PM file systems and applications need to manage

volatile state in the write path (e.g., caches and write buffers) by introducing special

instructions called PM primitives. Correct use of these PM primitives is challenging

since they do not have a visible effect on the application data during runtime but

are critical for consistency after a crash.

Synchronous access to PM from the CPU is essential for low latency but becomes

expensive once the PM is under load and cannot answer requests immediately. On

traditional storage devices with asynchronous access, the operating system can

schedule other processes during the wait time or put the CPU in a low-power sleep

state. This is not possible with PM, as individual PM accesses are not visible to the

operating system. Instead, the CPU pipeline stalls during the wait time, wasting CPU

time and energy.

This problem is amplified with Optane PM due to its sensitivity to parallel accesses.

Because of internal caching structures, its total throughput declines under parallel

load, as shown in Figure 1.1. Individual threads then experience a significant

Figure 1.1: Throughput and latency of 4 KiB writes to Optane PM.

14

1 Introduction 1.2 Challenges for PM File Systems

increase in access latency and, therefore, CPU stall cycles. To mitigate this problem,

PM file systems and applications must limit parallel accesses to PM.

A secondary challenge follows from this requirement. After obtaining a direct PM

mapping, applications can access PM without further involvement of the file system.

This results in a situation in which neither the file system nor the application can

manage parallel PM accesses. The file system does not have knowledge of application

activity, and an application cannot know about the activity of other applications.

1.3 Measuring and Improving PM Efficiency
Since file systems act as an abstraction layer between applications and storage, they

are responsible for ensuring that the storage is accessed as efficiently as possible

for any given workload. For example, file systems for hard disks commonly reduce

seeks by arranging related data blocks sequentially. Additionally, operating systems

include I/O schedulers that can rearrange asynchronous requests to traditional

storage devices. Similar I/O scheduling is not feasible for synchronously accessed PM.

In this thesis, we introduce approaches for measuring and improving the efficiency

of PM file systems. Our efficiency metrics assign a specific cost (CPU time or energy)

to accessing a certain amount of storage. We design the metrics so that they are

independent of storage device throughput and CPU clock speed. We evaluate multiple

file systems and find that most PM file systems do not access PM efficiently under a

parallel write load.

We propose three mechanisms for improving the efficiency of PM file systems under

parallel load. We design these mechanisms to be easily integrable into existing

PM file systems. They include two software-based approaches for limiting parallel

accesses and another approach based on hardware offloading. We show that these

mechanisms are effective for improving PM file system efficiency. In combination

with our efficiency metric, we expect future file system designs to incorporate

efficient PM access into their designs.

Our efficiency metric and the mechanisms can only cover PM accesses over the file

system API. Applications that access PM over DAX mappings cannot be covered. As

discussed above, such applications should still avoid overloading PM with excessive

parallel accesses. Effective limits require a global view of the volume of PM accesses

from all concurrently running applications. Existing hardware and operating system

mechanisms cannot provide this information with association to both applications

and PM devices. We introduce a monitoring approach based on memory access

instruction sampling that provides the required association. We show that our

monitoring estimates PM write bandwidth accurately and with low latency.

We make the monitoring data available to applications via shared memory, allowing

them to react immediately to overload situations. Using this monitoring data, we

implement a policy based on core specialization that can limit the number of CPU

cores stalling on PM accesses.

15

1 Introduction 1.3 Measuring and Improving PM Efficiency

PM File System

Test Case
Crash Image

Generator
TesterTracer

Bugs

Trace Crash

Images

VM
PM/NVMe

Simulation

Figure 1.2: Suvi’s crash consistency testing pipeline.

1.4 PM File System Crash Consistency
The correct use of PM primitives is critical for PM file systems to ensure data con

sistency after a crash. In this thesis, we introduce Suvi, an approach for black-box

crash consistency testing of PM file systems. As a black-box approach, Suvi places

minimal requirements on the tested software and can analyze any PM file system

running in a virtual machine. Rather than employing heuristics for bug detection,

Suvi uses a record-and-replay approach that finds concrete witnesses for crash con

sistency bugs.

Suvi implements a crash consistency testing pipeline, shown in Figure 1.2, that

traces PM accesses of a test case in a virtual machine. From the trace, it generates

crash images that represent possible PM contents in the event of a crash. Finally,

Suvi can automatically determine the crash atomicity of file system operations by

analyzing the semantic state contained in the crash images.

Suvi innovates on previous approaches to crash consistency testing in multiple

ways. It offers full-system tracing of PM and NVMe accesses using virtual machines

with binary translation, allowing analysis of cross-media file systems that use

these storage technologies. It includes an advanced PM simulation that models

the ordering of x86 store instructions more precisely than other crash consistency

testing approaches and supports both volatile and persistent caches. Two heuristics

ensure efficient generation of crash images by avoiding a combinatorial explosion

when there is a large number of PM stores. By using file system copy-on-write and

a memoized hashing scheme, Suvi makes the analysis of large PM images feasible.

Finally, Suvi’s analysis tools allow the automatic detection of crash consistency bugs

and help developers identify the causes of such bugs.

1.5 Contributions
Our work presented in this thesis makes the following contributions:

• We introduce novel metrics for file system efficiency. The metrics measure the

efficient use of CPU time and energy. We design them to be independent of both

storage device throughput and CPU clock speed.

• We evaluate multiple file systems (PM and NVMe) with our metrics. Our results

show that most PM file systems were not designed with efficiency in mind.

• We propose and evaluate measures improve the efficiency of PM file systems by

mitigating PM overload.

16

1 Introduction 1.5 Contributions

• We propose an approach for accounting userspace PM accesses that can associate

throughput with both processes and PM devices. We evaluate the accuracy and

overhead of our approach. Using the accounting data, we propose PM overload

mitigation based on core specialization.

• We introduce Suvi, a comprehensive approach for black-box crash consistency

testing of file systems based on virtual machines. In particular, Suvi encompasses:

‣ Support for analyzing cross-media file systems using PM and NVMe.

‣ An improved simulation of x86 PM crash consistency semantics. Compared to

previous work, it models the interaction of x86 global store order with weakly

ordered non-temporal stores more accurately.

‣ Simulation of both volatile and persistent caches.

‣ Two primary strategies for efficiently generating crash images: an improved

heuristic based on post-failure read accesses and a strategy for fast analysis of

logic bugs.

‣ A secondary heuristic for exploring crash states with weakly ordered non-

temporal stores.

‣ Novel handling of PM images through file system copy-on-write and memoized

hashing, optimized for small modifications to large images.

‣ Automated analysis of test results for atomicity, including tools for pinpointing

the root cause of bugs.

1.6 Student Theses and Publications
Parts of this thesis are based on previously published information. We supervised

a number of student theses that contributed to this thesis:

• In his master’s thesis Low-Latency Synchronous IO For OpenZFS Using Persistent

Memory [111], Christian Schwarz introduced ZIL-PMEM, a component for ZFS that

logs synchronous writes on PM. The design and implementation of ZIL-PMEM

motivate large parts of this thesis. We discuss ZIL-PMEM in Chapter 3, where we

use a reimplementation of its low-level PM data structure to analyze Optane PM

performance. Research in crash consistency testing that resulted in Vinter and

Suvi was motivated by a desire to verify correctness of the implementation of

ZIL-PMEM.

• With his master’s thesis Automatic Non-Volatile Memory Crash Consistency Testing for

Full Systems [69], Samuel Kalbfleisch provided the basis for Vinter [68]. We build

Suvi, as presented in this thesis, on a reimplementation of his Python prototype

in the Rust programming language.

• In his bachelor’s thesis Reducing Synchronous Write Latency With a PMEM Write Cache

in the Device Mapper Layer [32], Ilia Bozhinov adapts the PM data structure from ZIL-

PMEM for use as a generic block device write cache. We analyze his implementation

in Chapter 4.

• Daniel Ritz designed and implemented a crash consistency tester for NVMe in

his bachelor’s thesis Crash Consistency Testing for Block Based File Systems on NVMe

17

1 Introduction 1.6 Student Theses and Publications

Drives [105]. Parts of his approach, especially for tracing NVMe commands, are

part of Suvi’s support for NVMe.

• In his master’s thesis GPU4FS: A Graphics Processor-Accelerated File System [91], Peter

Maucher explored implementing a complete file system on a GPU. His analysis

of PM accesses from a GPU informed our discussion of memcpy offloading in

Chapter 5.

• Thomas Schmidt explored performance counters for accounting PM usage in his

master’s thesis Achieving Optimal Throughput for Persistent Memory with Per-Process

Accounting [110]. His thesis included a userspace implementation of our idea for

PEBS-based sampling, which failed to show useful results. For this reason, we

created an independent kernelspace implementation for Chapter 6.

• In his bachelor’s thesis Crash Consistency Testing for Cross-Media File Systems using

Persistent Memory and NVMe [123], Lucas Wäldele united Vinter and Daniel Ritz’s

NVMe crash consistency tester. The major effort of this thesis was the implemen

tation of PM tracing on top of modern QEMU since Vinter’s PANDA-based tracer

does not support NVMe. Suvi’s cross-media tracer evolved from his work.

• For his bachelor’s thesis Analyzing Persistent Memory Crash Consistency of WineFS with

Vinter [119], Paul Wedeck designed and implemented multiple small improvements

to Vinter that we integrated into Suvi. Most prominently, these include support

for parallel analysis of multiple tests and parallel state extraction.

• Thomas-Christian Oder integrated Mumak’s [46] strategy for crash image gener

ation into Vinter in his bachelor’s thesis Fast Persistent Memory Crash Consistency

Analysis based on Virtual Machines [99]. We adopt this strategy in Suvi as described

in Chapter 8.

We previously presented parts of this thesis in the publications listed below. At

USENIX ATC’22 [68] we introduced Vinter, an approach to PM crash consistency

testing that provides the basis for Suvi. We later presented extensions to Vinter at

FGBS’24 [121] that became part of Suvi, including cross-device analysis and faster

crash image generation. At DIMES’23 [120], we presented our file system efficiency

metric and mechanisms for improving the efficiency of PM file systems.

The remaining two publications are partially informed by the contributions of this

thesis. With GPU4FS (FGBS’24 [90]), we take the idea of hardware offloading of PM

accesses for efficiency further by moving the entire file system to the GPU. In our

work on operating system support for CXL-based hybrid SSDs (DIMES’24 [50]), we

evaluate efficiency using metrics from this thesis.

• Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. 2022. Vinter: Automatic

Non-Volatile Memory Crash Consistency Testing for Full Systems. In 2022 USENIX

Annual Technical Conference (USENIX ATC 22), 2022. 933–950. Retrieved from https://

www.usenix.org/conference/atc22/presentation/werling

• Lukas Werling, Yussuf Khalil, Peter Maucher, Thorsten Gröninger, and Frank

Bellosa. 2023. Analyzing and Improving CPU and Energy Efficiency of PM File

Systems. In Proceedings of the 1st Workshop on Disruptive Memory Systems, October

2023. ACM, Koblenz Germany, 31–37. https://doi.org/10.1145/3609308.3625265

18

https://www.usenix.org/conference/atc22/presentation/werling
https://www.usenix.org/conference/atc22/presentation/werling
https://doi.org/10.1145/3609308.3625265

1 Introduction 1.6 Student Theses and Publications

• Lukas Werling, Thomas-Christian Oder, Lucas Wäldele, Daniel Ritz, and Frank

Bellosa. 2024. Improvements in Crash Consistency Testing for Persistent Memory

File Systems. In Tagungsband des FG-BS Frühjahrstreffens 2024, 2024. Gesellschaft

für Informatik e.V., Bochum, Germany. https://doi.org/10.18420/FGBS2024F-01

• Peter Maucher, Lennard Kittner, Nico Rath, Gregor Lucka, Lukas Werling, Yussuf

Khalil, Thorsten Gröninger, and Frank Bellosa. 2024. Full-Scale File System

Acceleration on GPU. In Tagungsband des FG-BS Frühjahrstreffens 2024, 2024. https://

doi.org/10.18420/FGBS2024F-03

• Daniel Habicht, Yussuf Khalil, Lukas Werling, Thorsten Gröninger, and Frank

Bellosa. 2024. Fundamental OS Design Considerations for CXL-based Hybrid

SSDs. In Proceedings of the 2nd Workshop on Disruptive Memory Systems (DIMES '24),

November 2024. Association for Computing Machinery, New York, NY, USA, 51–

59. https://doi.org/10.1145/3698783.3699380

1.7 Structure
The remainder of this work is structured into the following chapters:

Chapter 2 Background – Persistent Memory and File Systems (p. 21)

We first take a look at Intel Optane PM and how the Linux kernel supports PM,

especially for use in file systems. We then give an overview of PM file systems that

we evaluate for efficiency or crash consistency in later chapters.

Chapter 3 Motivation – Designing Data Structures for PM (p. 41)

We motivate our work in performance and crash consistency with a PM data structure

for a file system.

Chapter 4 PM File System Efficiency (p. 55)

This chapter introduces our metrics for file system efficiency. We evaluate the

metrics on multiple file systems and show that most PM file systems are not efficient

under parallel accesses.

Chapter 5 PM File System Overload Mitigation (p. 73)

We then describe approaches for improving PM file system efficiency. We apply the

approaches to a PM file system and compare their performance and efficiency.

Chapter 6 Userspace PM Access Accounting (p. 81)

The previous two chapters handled efficiency of PM access from the file system,

which leaves out applications that map PM for direct access. In this chapter, we

introduce an approach for accounting PM access from userspace applications with

association of individual processes and PM devices.

Chapter 7 Crash Consistency Testing (p. 95)

We introduce fundamentals on crash consistency, discuss typical testing approaches,

and review previous work.

19

https://doi.org/10.18420/FGBS2024F-01
https://doi.org/10.18420/FGBS2024F-03
https://doi.org/10.1145/3698783.3699380

1 Introduction 1.7 Structure

Chapter 8 Suvi: Crash Consistency Testing for PM File Systems (p. 107)

We then present Suvi, our approach to crash consistency testing for file systems.

Chapter 9 Suvi: Implementation (p. 141)

We discuss details from Suvi’s implementation that are necessary for Suvi’s

performance, including the tracer component, management of memory images,

and parallelization.

Chapter 10 File System Testing with Suvi (p. 149)

We show how Suvi can test file systems in practice. We describe test selection,

evaluate performance, and discuss analysis results.

Chapter 11 Conclusion (p. 159)

Finally, we conclude our work and discuss directions for future research.

20

Chapter 2

Background – Persistent Memory and

File Systems

The goal of this thesis is to improve the efficiency and correctness of PM file systems.

In this chapter, we introduce the storage stack on which this thesis builds. This

includes Optane PM modules, PM support in the Linux kernel, several research

PM file systems, and the crash consistency semantics of PM on x86 CPUs and for

NVMe SSDs.

2.1 Optane Persistent Memory
Intel Optane Persistent Memory are persistent memory modules in the DIMM form

factor.

Intel released three generations of Optane memory, shown in Table 2.1. Each

generation was released together with a CPU from Intel’s Scalable product line.

Optane DIMMs of each generation were available in three sizes (128 GiB, 256 GiB,

512 GiB). Optane 100 and 200 both use the DDR-T interface which has the same

physical form factor as DDR4. Optane 300 uses DDR-T2 with the physical form

factor of DDR5 DIMMs. First-generation Optane PM was introduced in 2019. Intel

discontinued Optane before the release of the third generation in 2022 [89].

In this thesis, we evaluate with 128 GiB Optane 100 DIMMs on Cascade Lake systems

(see Section 3.2 and Section 4.2.1 for detailed system overviews). We discuss Optane

performance in Chapter 3.

Optane PM has two layers of configuration. The ipmctl [2] tool configures regions

across one or more Optane modules. This tool is specific to Optane PM. On top

of regions, the Linux kernel manages PM namespaces, which are configured with

Generation Year Capacity [GiB] CPU Generation

100 [8] 2019 128, 256, 512 Cascade Lake SP

200 [9] 2020 128, 256, 512 Ice Lake SP

300 [10] 2023 128, 256, 512 Sapphire Rapids SP

Table 2.1: Overview of Optane PM generations.

21

2 Background – Persistent Memory and File Systems 2.1 Optane Persistent Memory

Memory Mode AppDirect

CPU

Optane PM

DRAM

CPU

Optane PM DRAM

Figure 2.1: Logical view of Optane PM configured in Memory Mode and AppDirect

mode.

ndctl [3]. Similar to partitions on block devices, namespaces allow separate

management and configuration of parts of a PM region. Since namespaces are a

concept by the Linux kernel, their use extends to other PM technologies. We discuss

regions and namespace in more detail in the following sections.

2.1.1 Regions

A region spans one or more Optane modules connected to one CPU. Regions over

multiple Optane modules are interleaved. The memory controller distributes accesses

to an interleaved region over all modules. The interleaving size is 4 KiB [127].

Accesses over a sufficiently large memory area (e.g., 16 KiB with four interleaved

modules) can therefore use the combined throughput of all modules.

There are two modes for regions: Memory Mode and AppDirect mode, pictured in

Figure 2.1. In Memory Mode, the configured Optane capacity appears to the system

as regular, volatile main memory. The memory controller transparently uses its

connected DRAM as a cache to hide high access latencies to Optane. In this mode,

Optane is only used for its larger capacity compared to DRAM, not for its persistence.

In this thesis, we focus on Optane as persistent memory and do not further discuss

Memory Mode.

In AppDirect mode, the Optane region appears separately to the system. The

system firmware communicates the PM areas with the e820 memory map [44].

In the memory map, persistent memory areas are marked as type 7. Linux does

not use these areas as main memory. Instead, they are handled by the NVDIMM

subsystem [11], which manages namespaces as described in the following section.

On Linux, the e820 memory map can be overwritten in the kernel command line

with the memmap parameter [71]. For example, passing a parameter memmap=16G!2G

marks 16 GiB of memory starting at offset 2 GiB (physical address 231) as persistent

memory. This is useful for simulating PM on systems lacking real Optane memory.

We use this parameter for file system tests in Suvi (Chapter 8).

Configuration

Optane regions are configured by the system firmware as part of the boot process.

With commands as given below, ipmctl can create provisioning goals, which are

applied by the firmware after a reboot [2].

22

2 Background – Persistent Memory and File Systems 2.1 Optane Persistent Memory

 SocketID | ISetID | Type | Capacity | Free | HealthState

==

 0x0000 | 0x6e6dc3d053748888 | AppDirect | 504 GiB | 0 GiB | Healthy

 0x0001 | 0x70efc3d0f3678888 | AppDirect | 504 GiB | 0 GiB | Healthy

Listing 2.1: Shortened output from ipmctl show -region with two interleaved

regions with four Optane modules.

Configure all PM in AppDirect mode with interleaving.

ipmctl create -goal PersistentMemoryType=AppDirect

Configure all PM in AppDirect mode with separate regions per module.

ipmctl create -goal PersistentMemoryType=AppDirectNotInterleaved

ipmctl also includes commands for reading the state of individual modules and the

currently active regions. Listing 2.1 shows example output for reading the currently

configured regions.

2.1.2 Namespaces

PM namespaces are managed by the Linux kernel and are configured with the ndctl

tool [3]. A namespace has a size and one of the following modes:

raw The namespace appears as a block device with no extra kernel support for

atomicity or direct access. This mode is not commonly used.

sector The namespace appears as a block device, with the kernel providing atomic

block (or sector) writes. We describe the underlying mechanism in Section 2.2.2.

fsdax The namespace appears as a block device, with kernel support for direct

access (DAX). This mode is required for kernel PM file systems.

devdax The namespace appears as a special character device that allows mapping

the underlying PM into userspace processes. This mode is usually used for

userspace PM file systems. For higher-level userspace PM software, it is usually

preferrable to obtain a DAX mapping from a PM file system, which simplifies

access permissions.

For fsdax and devdax namespaces, the kernel needs to allocate memory manage

ment metadata for each 4 KiB physical page frame (struct page with a size of

64 bytes [122]). A 128 GiB Optane module therefore requires 2 GiB of space for page

metadata. The kernel can either allocate this metadata on PM (reducing the size of

the namespace), or on regular main memory.

The Linux kernel can also use a devdax namespace as regular main memory. This

can be configured with the daxctl tool [3]. In contrast to Optane’s Memory Mode,

PM configured this way appears separately from the system’s DRAM as its own

NUMA node.

2.1.3 Performance Counters

Performance counters are mechanisms that provide insight into how hardware

components operate by counting specific events. There are two primary ways

to obtain data on Optane operation: counters on the Optane modules and CPU

performance counters with Optane events.

Optane Module Counters

Optane modules provide counters for four events [2].

23

2 Background – Persistent Memory and File Systems 2.1 Optane Persistent Memory

---DimmID=0x0001---

 MediaReads=0x00000000000000000000006ae129ca2c

 MediaWrites=0x00000000000000000000005404670098

 ReadRequests=0x00000000000000000000000b33bafaea

 WriteRequests=0x000000000000000000000044d83a57c5

 TotalMediaReads=0x000000000000000000000ac3809dcff0

 TotalMediaWrites=0x0000000000000000000008b300ca5010

 TotalReadRequests=0x00000000000000000000011b2ece5a75

 TotalWriteRequests=0x00000000000000000000055a55b71f0b

Listing 2.2: Example output from ipmctl show -performance, showing on-DIMM

performance counters.

MediaReads/MediaWrites count the number of 64 byte reads or writes to the media

on the module.

ReadRequests/WriteRequests count the number of DDR-T read or write transac

tions (64 bytes).

All events are counted per DIMM since last boot and as lifetime total. These counters

can be read with ipmctl. Listing 2.2 shows an example output. We analyze output

from these counters in Chapter 3.

CPU Counters for PM

Intel Cascade Lake CPUs (the CPUs we use in this thesis) provide three types of

counters that can count events associated with Optane [63, search for “PMM”]. On-

core events are counted within a core as part of instruction execution. There are only

two on-core PM events that count L3 cache misses from load instructions, which

are either fetched from local PM (MEM_LOAD_RETIRED.LOCAL_PMM) or from remote

PM (MEM_LOAD_L3_MISS_RETIRED.REMOTE_PMM).

There are no on-core events for stores to PM. Since x86 CPUs have write-back caches,

the CPU core writes only to its L1 cache when executing a store instruction. When a

cache line is evicted from the L3 cache and the store reaches PM, there is no direct

association with the original store instructions anymore. Similarly, non-temporal

stores are handled by write-coalescing buffers.

The second type of counters are off-core response counters [61, Vol. 3B §20.3.8.3.1].

These counters count specific interactions between the on-core L2 cache and the L3

cache or memory. The counted events are selected with a combination of a request

type (e.g., data or code read, prefetches) and a supplier (e.g., L3 cache, DRAM, PM).

Similar to the on-core counters, the off-core response counters cannot provide

information about writes to PM.

Finally, uncore counters provide events from the memory controller [55, 60].1 The

available events include commands issued to PM (e.g., reads and writes) and the state

of read and write request queues. From the read and write command counts, the total

read and write bandwidth to PM can be calculated: each command transfers 64 bytes.

1There are also uncore events for components other than the memory controller, but these are
unrelated to PM.

24

2 Background – Persistent Memory and File Systems

2.2 Linux File System Support for PM
This thesis deals with PM file systems in the Linux kernel. In this section, we therefore

introduce the interfaces that Linux provides for PM access from both kernelspace

and userspace.

The upstream Linux kernel [12] supports PM for file systems in two ways: a translation

layer for traditional block-based file systems and DAX support in some file systems.

2.2.1 Accessing PM from the Kernel

A PM namespace configured as fsdax appears as a block device /dev/pmemX in a

Linux system.2 The NVDIMM driver implements the block device access function

pmem_submit_bio.3 It supports basic read and write requests, which are fulfilled

with a memory copy routine. Writes to PM are performed with non-temporal stores

on x86 (via memcpy_flushcache). The flags REQ_PREFLUSH and REQ_FUA trigger a

memory fence before or after the operation.

Consequently, file systems using the block I/O layer in Linux (bio) do not require

modifications to run on top of PM. However, there are two major differences

compared to traditional block devices (e.g., those using SCSI or NVMe). First, this

thin compatibility layer does not provide any crash consistency guarantees beyond

those of the underlying PM. The Block Translation Table, described below, solves

this problem by implementing atomicity for larger blocks.

Second, rather than submitting the I/O request to a device and waiting for the result,

the compatibility layer performs a synchronous memory copy on the kernel thread

that submitted the bio request. This has consequences for the performance and

energy efficiency of file systems on top of PM, which we discuss in Chapter 5.

File systems that target PM specifically can obtain a pointer to the PM name

space to bypass the bio compatibility layer. The kernel provides the function

dax_direct_access for this purpose. Listing 2.3 shows an example of how to use

this function. PM file systems such as NOVA and PMFS (introduced below) obtain

a PM pointer once during initialization and then access PM exclusively through

that pointer.

2.2.2 Block Translation Table (BTT)

With the Block Translation Table (BTT) [72, 117], the kernel provides atomic block

access to traditional file systems. These file systems expect atomicity for full block

updates, which usually have a size of 512 bytes or 4 KiB. The BTT provides this block

atomicity with an indirection layer that maps logical block addresses (LBA) to PM

offsets. Every update to a logical block allocates a new data block on PM. A journal

ensures that the mapping from the old to the new data block changes atomically.

The BTT is sufficient for using PM via arbitrary file systems, but it cannot provide

direct access (DAX) to PM for userspace applications. For this reason, the Linux file

system developers implemented DAX support in two traditional file systems, ext4

and XFS [116].

2For example, an fsdax namespace called namespace1.0 appears as /dev/pmem1.

3File drivers/nvdimm/pmem.c [12]

25

2 Background – Persistent Memory and File Systems 2.2 Linux File System Support for PM

static int get_pm_pointer(

 struct block_device *bdev, /* input: handle to block device */

 void **pm_virt_addr, /* output: virtual address */

 long *pm_size /* output: size in bytes */

)

{

 pfn_t pfn;

 struct dax_device *dax_dev;

 int ret;

 /* Obtain handle to a DAX device. */

 dax_dev = fs_dax_get_by_bdev(bdev);

 if (!dax_dev) { return -EINVAL; }

 /* Obtain pointer to DAX area. */

 *pm_size = dax_direct_access(dax_dev,

 0, LONG_MAX / PAGE_SIZE, /* offset and maximum size */

 pm_virt_addr, &pfn /* output: address and page frame number */

) * PAGE_SIZE; /* return: number of pages */

 if (*pm_size <= 0) { return -EINVAL; }

 return 0; /* success */

}

Listing 2.3: Example for how a file system can obtain a pointer to PM from a block

device handle in Linux 5.15.4

2.2.3 Ext4 and XFS without BTT

Both ext4 and XFS implement journaling to protect metadata (and optionally file

data) updates from crashes. Originally, ext4 implemented physical journaling with

JBD2 [112]. Physical journaling takes place at the level of on-disk data blocks: Before

overwriting a protected block, the file system stores a copy of either the old or the

new block in the journal. After a crash, the file system recovers by copying the blocks

in the journal to their intended disk locations.

In contrast, XFS employs logical journaling [112]. The entries in a logical journal

describe individual file system operations. A logical journal is therefore more

compact than a physical journal, leading to better runtime performance. However,

crash recovery is more complex than with a physical journal, since the file system

needs to replay the operations in the journal. With FastCommit [112], ext4 now also

performs logical journaling for certain file system operations (e.g., file creation and

deletion, appending data to a file).

Both XFS and ext4 protect journal entries with checksums. The journals are therefore

already sufficiently protected from partially-written blocks after a crash. Since

neither file system relies on atomic block updates without journaling for metadata

updates, it is safe to use ext4 and XFS on PM without the Block Translation Table.

Previous works have analyzed the behavior of these file systems on top of traditional

block devices under crashes. Mohan et al.‘s CrashMonkey [93] found no crash con

sistency bugs in ext4 and XFS when injecting crashes at persistence points (i.e.,

4Note that although the parameters to these functions change over time, the overall process
remains the same.

26

2 Background – Persistent Memory and File Systems 2.2 Linux File System Support for PM

fsync() or sync()). Jaffer et al. evaluated the behavior of ext4 under certain

faults, including incompletely written blocks (“shorn writes”) [65]. They show that

ext4 can recover from such faults, although with partial data loss in some cases.

Consequently, ext4 and XFS were already well-equipped for handling crashes before

the introduction of PM.

2.2.4 DAX Support

Without the indirection from the Block Translation Table, ext4 and XFS can hand

out memory mappings to file data residing on PM to userspace applications. This

feature is called DAX (for direct access) in Linux.

If the underlying device supports DAX and no conflicting file system features are

enabled (e.g., file system encryption), a flag in the inode controls whether DAX-

mapping a file is allowed. Alternatively, the file system mount option dax=always

overrides the inode flag and enables DAX for all files [73].

If a userspace process requests a shared memory mapping of a file with the DAX flag

set, the file system will always map the file’s PM pages directly. A process can ensure

that a mapping is a DAX mapping by calling mmap with the MAP_SYNC flag [13]. If the

file’s DAX flag is not set, mmap would then return the EOPNOTSUPP error. Since the

MAP_SYNC flag does not otherwise change the memory mapping, it is not possible

to obtain a “traditional” mapping via the page cache for files that support DAX [50].

2.3 PM File Systems
PM’s byte-addressability provides new opportunities for file system design. PM file

systems no longer need to organize their data in fixed-size blocks as dictated by the

underlying block storage device. This allows file systems to offer crash consistency

guarantees at a finer level of granularity.

In Table 2.2, we provide an overview of research PM file systems that are relevant

for this thesis. We compare the following features:

Kernelspace/Userspace Whether the file system runs completely in kernelspace

(K) or has a userspace component (U).

Cross-Media Whether the file system supports storing data on traditional block

storage in addition to PM. This property is relevant for Suvi, which can test

crash consistency properties of cross-media file systems.

PM Bandwidth Control Whether the file system actively limits its bandwidth when

writing to PM. We propose mechanisms for PM bandwidth control in this thesis.

Strong Consistency We consider a file system to implement strong consistency if

all individual file system operations are immediately and atomically persisted

to PM. In contrast, traditional file systems implement delayed persistence and

only guarantee that data is retained after a later call to fsync() [14]. Suvi can

automatically test strong consistency properties of file systems.

Artifact Available Whether an artifact with the file system’s source code is publicly

available. We need access to the source code in order to evaluate crash consis

tency with Suvi or to compare PM bandwidth control mechanisms.

We describe ZIL-PMEM in Chapter 3 and give a more detailed overview of the other

file systems in the following sections.

27

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

File System Year

K
e

rn
e

l/
U

s
e

r
S

p
a

c
e

C
ro

s
s

-M
e

d
ia

P
M

 B
a

n
d

w
id

th
 C

o
n

tr
o

l

S
tr

o
n

g
 C

o
n

s
is

te
n

c
y

A
r

ti
fa

c
t

A
v

a
il

a
b

le

PMFS [41] 2014 K ✗ ✗ 🗸 🗸

Aerie [118] 2014 U ✗ ✗ ✗ ⚠️

NOVA [125] 2016 K ✗ ✗ 🗸 🗸

NOVA-Fortis [126] 2017 K ✗ ✗ 🗸 🗸

Strata [79] 2017 U 🗸 ✗ ⚠️ 🗸

Ziggurat [132] 2019 K 🗸 ✗ (🗸) ⚠️

SplitFS [67] 2019 U ✗ ✗ 🗸 🗸

WineFS [66] 2021 K ✗ ✗ 🗸 🗸

ZIL-PMEM [111] 2021 K 🗸 🗸 🗸 🗸

SPMFS [128] 2021 U ✗ 🗸 (🗸) ✗

OdinFS [134] 2022 K ✗ 🗸 🗸 🗸

Assise [25] 2022 U 🗸 ✗ ✗ 🗸

Trio [133] 2023 U ✗ 🗸 ⚠️ 🗸

P2CACHE [84] 2023 K 🗸 ✗ ⚠️ 🗸

SlotFS [131] 2023 U ✗ ✗ ⚠️ 🗸

Table 2.2: Overview of research PM file systems with a comparison of features

relevant for this thesis. ⚠️ denotes problems with the file system implementation’s

crash consistency guarantees that are obvious without detailed analysis.

2.3.1 PMFS, WineFS, and OdinFS

PMFS [41] was the first file system designed for persistent memory in current x86

systems and implemented as a Linux kernel file system. Its data layout is optimized

for byte-addressable PM. In particular, its allocator manages data in blocks according

to the processor’s page sizes (4 KiB, 2 MiB, 1 GiB) to support DAX mappings. Metadata

is updated in-place with atomic instructions if possible. Otherwise, PMFS implements

fine-granular journaling with cache-line-sized log entries (64 bytes). Writes to file

data pages are protected with a copy-on-write mechanism.

Since PMFS was designed before hardware with support for PM was available, the

authors had to make assumptions about the interaction of atomic instructions with

PM [41, §3.2]. Besides 8-byte atomic updates, PMFS also uses cmpxchg16b for atomic

16-byte updates, and optionally transactional memory for atomic 64-byte updates.

Real hardware ended up guaranteeing atomicity only for 8-byte updates. In our

analysis in Chapter 10, we can therefore observe crash consistency bugs in two

places where PMFS uses cmpxchg16b to update multiple fields in the inode:

28

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

• File size (8 bytes) and modification timestamps (2 × 4 bytes)

• Root pointer and height of the B-Tree referencing the file data (both 8 bytes)

PMFS is used as the basis of multiple later research file systems. These file systems

inherit PMFS’s usage of cmpxchg16b. In the following, we introduce two such file

systems, WineFS and OdinFS.

WineFS

WineFS [66] improves the performance of memory-mapped files in aged file systems.

Repeated allocation and deletion over time leads to a fragmented PM area. Since PM

is byte-addressable and has a (mostly) uniform access latency, such fragmentation

usually does not have an effect on access performance. However, fragmentation

is relevant for memory-mapped files. If sufficiently large parts of the data on PM

are contiguous and aligned, the file system can employ hugepages when memory

mapping the file to a userspace process.

The authors of WineFS show that previous PM file systems suffer from reduced access

bandwidth once the file system cannot use hugepages anymore due to fragmentation.

They introduce an alignment-aware allocator that avoids fragmentation over time.

The authors evaluate the throughput as well as application benchmarks on aged file

systems. WineFS outperforms the other PM file systems in these benchmarks.

We analyze WineFS with Suvi in Chapter 10 and show that some but not all crash

consistency issues of PMFS are fixed in WineFS.

OdinFS

As we show in Section 2.1, Optane PM suffers from low bandwidth with parallel

accesses, as well as remote NUMA accesses. OdinFS [134] extends PMFS with a

delegation mechanism for accessing PM to mitigate these problems. For each NUMA

node, OdinFS runs a fixed number of delegation threads. Every read or write access

to PM is delegated to a thread on the same NUMA node as the data. OdinFS therefore

both limits the amount of threads that access PM in parallel, and prevents remote

NUMA access to PM.5

In Chapter 5, we discuss alternative approaches for mitigating performance loss

from parallel PM accesses. We show that although OdinFS’s delegation threads

ensure a constantly high PM bandwidth, they come with a high CPU cost, decreasing

the overall efficiency of the file system.

OdinFS additionally stripes data across all available NUMA nodes. It thereby spreads

the load evenly across the PM modules and allows higher parallelism, including for

large accesses from a single thread.

Since OdinFS inherits all metadata management from PMFS, we expect identical

crash consistency behavior. We therefore do not analyze OdinFS separately with Suvi.

2.3.2 Aerie

Aerie [118] was the first modern userspace PM file system. It introduces the concept

of a user-mode library file system with direct PM access in combination with a

5Note that although OdinFS might increase the number of remote DRAM accesses, these do not
hurt performance as much as remote PM accesses.

29

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

trusted file system service running partially in the kernel. The library file system

has direct read-only access to metadata and file data, as well as a write area for new

file data. To write a file, the library file system first writes the file data to PM, then

requests a metadata update from the trusted file system service. Aerie can delay

metadata updates, so file operations with outstanding metadata may be lost in the

event of a crash.

Aerie was implemented for x86 Linux systems, but predates support for PM in

processors and the Linux kernel. In contrast to PMFS, its artifact [1] was never

updated with support for real PM hardware and Linux DAX interfaces. It is therefore

not usable for performance comparisons or crash consistency testing.

Concepts from Aerie can be found in most later userspace file systems. We describe

some of them in the following sections.

2.3.3 NOVA, NOVA-Fortis, and Ziggurat

NOVA [125] is a log-structured file system for PM. Its primary goals are high

performance and strong consistency. NOVA is implemented as a Linux kernel file

system.

NOVA’s data layout is optimized for concurrent access by maintaining private data

structures for each CPU, including inode tables, journals, and free lists. Traditional

log-structured file systems maintain a global log containing all file system data,

allowing mostly linear write access to the storage media [106]. PM enables efficient

random access with small access sizes, allowing NOVA to maintain a private log

for each inode. This enables concurrent log operations on different inodes. For

operations involving multiple inodes, NOVA uses journaling.

To speed up file access, NOVA maintains volatile runtime data in DRAM, including

the file radix tree, the directory entry tree, and free lists. These data structures do

not require persistence and are always rebuilt during mounting.

NOVA does not use logging for all inode data. If possible, inode fields are updated

directly with 8-byte atomic store instructions (e.g., timestamps and log pointers).

File data is updated with copy-on-write, by writing the data to a new data page and

updating data pointers through the log.

NOVA-Fortis

NOVA-Fortis [126] extends NOVA with features for protecting the file system from

software and hardware faults. It implements consistent whole file system snapshots,

including for files that are DAX-mmapped during the snapshot operation.

NOVA-Fortis can handle PM media errors. All file system metadata and file data

in NOVA-Fortis is protected with a checksum. Using ECC, the PM hardware can

transparently correct certain media errors and detect others. The CPU communicates

detected errors via machine check exceptions (MCE). In case of an MCE or a checksum

mismatch, NOVA-Fortis recovers metadata from a replica and file data using RAID-4

parity. However, it cannot protect file data while it is DAX-mmapped and defers

responsibility for data protection to the userspace application.

30

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

NOVA and NOVA-Fortis were introduced before Optane PM was available. The authors

continued work on the artifact [6], updating it to Linux 5.1 and ensuring compatibility

with commercial Optane modules. In this thesis, we use NOVA as a baseline for a PM

file system without managed concurrency for write accesses in Chapter 5. We then

evaluate our mechanisms for limiting concurrency with NOVA. NOVA and NOVA-

Fortis are also part of our crash consistency analysis in Chapter 10.

Ziggurat

Ziggurat [132] extends NOVA with support for cross-device storage. In contrast to

other cross-device file systems that use PM as a cache for a disk file system (e.g.,

ZIL-PMEM or P2CACHE, both described below), Ziggurat prefers to place data in PM.

A synchronicity predictor decides whether new file data is placed on PM or a lower

tier. The predictor bases its decision on previous fsync() calls, the size of the

new data, and the size of previous accesses. Data placed in lower tiers is written

asynchronously using a page cache in DRAM. Ziggurat therefore does not implement

strong consistency for all writes. However, applications can request strong consis

tency by opening a file with the O_DIRECT flag.

Data placement in Ziggurat is not fixed. A migration thread can move hot data from

disk to PM and cold data from PM to disk. In particular, background migration is

helpful for small writes which are placed in PM at first, then later coalesced into a

large, sequential write to disk.

We were unable to analyze the crash consistency of Ziggurat with Suvi. Although

Ziggurat’s source code is published, we found that it is not in a usable state.

2.3.4 Strata and Assise

Strata [79] is the first modern PM-based cross-media file system. A userspace

component LibFS handles writes by logging directly to a private PM area mapped into

the process. The kernel component KernelFS then creates a digest of the userspace

log. This digest can then be placed either in PM or in lower storage tiers. Strata also

supports data migration between storage tiers based on access patterns.

Assise [25] is a distributed file system that builds on Strata. Assise uses Strata’s

design for node-local storage and extends it with a cache coherence layer CC-NVM for

replication. Using RDMA, Assise replicates the write log to different nodes, allowing

the file system to survive node failures.

LeBlanc et al. attempted to analyze Strata and Assise with Chipmunk, but learned

that neither artifact supports crash recovery [81, §4.1]. We therefore do not analyze

these file systems with Suvi.

2.3.5 SPMFS

SPMFS [128] is a userspace file system featuring PM bandwidth management.

It implements most file system operations in its userspace component, with a

kernel module handling some “complex” metadata operations as well as free space

management. Notably, the authors do not discuss security considerations in case

multiple processes share a file system.

31

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

SPMFS implements an I/O thread pool to limit parallel write accesses to PM.

Applications may not write to PM directly and insert their requests into a queue

instead. Based on a predictor, SPMFS then either handles the request synchronously

or asynchronously.6 Synchronous requests are immediately processed by an I/O

thread, with the application waiting for completion. Asynchronous requests are

inserted into a write cache in DRAM. Similar to the kernel’s page cache, SPMFS

can serve reads from the write cache and will write back data if fsync() is called.

SPMFS therefore implements delayed persistence by default, but applications can

request strong consistency with the O_SYNC flag.

The authors evaluate SPMFS’s PM bandwidth management by comparing the parallel

synchronous write throughput with and without the I/O thread pool [128, Fig. 6].

They show that the total bandwidth increases with the number of I/O threads and

does not decrease as much as the amount of threads increases.

In contrast to our analysis of similar mechanisms in Chapter 5, the authors of SPMFS

do not analyze the CPU efficiency of their approach. Since they did not publish any

source code, we cannot directly compare SPMFS to our approach.

2.3.6 Trio

Trio [133] is an architecture for secure userspace file systems. Its key feature is

an in-kernel access controller that mediates PM access to a userspace library file

system. If multiple processes want to access a shared file, the kernel controller

ensures exclusive write access. Once a process releases its write access to a file, a

verifier checks that the file’s metadata is consistent.

This design allows different file system implementations that agree on a core

metadata format as enforced by the verifier. Trio’s authors implement three library

file systems: a POSIX-compatible file system ArckFS, and two customized file systems

KVFS and FPFS with a key-value interface and with optimizations for deep directory

structures.

To limit parallel accesses to PM, ArckFS implements the delegation mechanism from

OdinFS [134]. For bulk data accesses, the library file system sends write requests

to in-kernel delegation threads. To reduce overhead, it performs small PM accesses

directly from userspace. Since the underlying mechanism is the same as in OdinFS,

we do not evaluate ArckFS in Chapter 5.

We attempted to analyze the crash consistency of ArckFS with Suvi, but found a

number of issues with the published artifact:

• ArckFS requires large amounts of PM and DRAM for statically-allocated metadata

Reducing the size of these allocations is not trivial because of implicit alignment

requirements.

• We ran into multiple bugs when accessing ArckFS from multiple sequential

processes like in shell scripts. Such a scenario does not come up in the authors’

evaluation since they only evaluated single long-running benchmark programs.

6The predictor appears very similar to the one originally introduced in Ziggurat [132], which we
describe above.

32

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

• Support for the POSIX API is incomplete. For example, ArckFS requires custom

functions for accessing directories instead of opendir() and readdir().

• ArckFS always formats the file system on mount. We removed this unconditional

formatting, but were unable to successfully remount an initialized (and properly

unmounted) file system.

These problems prevented us from successfully running Suvi’s test cases, making

a crash consistency analysis impossible.

2.3.7 P2CACHE

P2CACHE [84] is a PM-based cache designed to improve the performance of

traditional kernel file systems such as ext4. It sits between the VFS layer and the

file system and records all file system operations in a persistent write-ahead log.

Additionally, it caches all writes in DRAM to serve reads, similar to the page cache.

The authors evaluate P2CACHE on top of ext4, comparing with ext4, XFS, and NOVA.

They show that P2CACHE is significantly faster than the traditional Linux file systems

ext4 and XFS, both on an NVMe SSD and on PM. It also surpasses NOVA in some

benchmarks.

P2CACHE does not implement any PM bandwidth control. The authors show results

of a scalability benchmark [84, Fig. 10], but their evaluation system is not set up in

a way where Optane contention becomes an issue.7

The authors designed P2CACHE to support strong consistency. They developed a

custom crash consistency checker to check for crash consistency bugs [84, §4.1].

Unfortunately, these consistency checks were not part of the published artifacts and

therefore not reproduced in the artifact evaluation [84, §A.3].

We attempted to evaluate P2CACHE with Suvi, but found that the published artifact

does not support retaining any data and always formats the PM with an empty file

system on mount.

2.3.8 SlotFS

SlotFS [131] is a userspace log-structured file system. SlotFS improves upon prior

log-structured file systems such as NOVA by implementing scattered logging. Since

random access to PM is cheap, there is no need to keep a contiguous log. According

to the authors, scattered logging completely eliminates overhead from garbage

collection of log entries, as individual freed log entries can immediately be reused.

We attempted to evaluate the crash consistency of SlotFS with Suvi, but found a

number of issues with the published artifact that prevented an analysis:

• The required Linux kernel is unclear. According to the artifact description [131,

§A.2.3], SlotFS requires Linux kernel version 5.1.0 with patches for SplitFS [67] and

Hodor [52]. Hodor is a system for isolating components in a userspace process using

memory protection keys. SlotFS uses Hodor to isolate its library file system from

untrusted processes that access the file system. However, the Hodor patches are

only available for kernel version 4.15 or 5.4. We found that the published artifacts

do not actually use Hodor in any way, so we attempted evaluation without Hodor.

7The evaluation system has four Optane DIMMs attached to a 12-core CPU without hyperthreading.

33

2 Background – Persistent Memory and File Systems 2.3 PM File Systems

1. Ensure valid = 0

valid = 0

2. Write data

D
A
T
A

valid = 0

3. Set valid = 1

D
A
T
A

valid = 1

Figure 2.2: Steps when writing a journal entry. For crash consistency to hold, these

steps must not be reordered.

• The recovery code is disabled and the SlotFS initialization code always formats

the file system. We were able to remove the forced formatting.

• A routine performing cache flushes for a memory range with an optional memory

fence was disabled. This routine is used for some metadata updates (e.g., in inodes

and directory entries). We re-enabled the routine by removing an early return

statement.

• SlotFS expects a PM area with size 48 GiB by default, which is too large for an

analysis with crash images. It cannot automatically scale its metadata allocation

to smaller PM areas.

• We observed crashes when accessing the file system from multiple consecutive

processes, such as in shell scripts. SlotFS sets up a volatile shared memory area

that is retained across consecutive processes. Some retained state appears to

cause crashes.

Even with multiple fixes to the issues above, we were unable to run basic file system

tests on SlotFS without crashes. An analysis of crash consistency properties is

therefore not possible.

2.4 Crash Consistency
Crash-consistent software needs to control the order in which its writes reach non-

volatile memory. As motivating example, consider a journal as commonly used by

file systems or databases to perform complex updates atomically. For this example,

each journal entry contains arbitrary data, followed by a valid flag. Writing a journal

entry works in three steps, pictured in Figure 2.2:

1. Ensure that the valid flag is not set, for example by zero-initializing the journal

memory.

2. Write the data. There is no requirement for atomic writes so that an arbitrary

amount of data may be written.

3. Set the valid flag.

A recovery procedure would ignore journal entries that do not have the valid bit set.

For a crash-consistent and atomic journal, we therefore must ensure that valid is

only set if the data is written completely. In the following sections, we describe the

mechanisms available for persistent memory and NVMe to ensure such an ordering.

In Chapter 7, we introduce crash consistency testing.

34

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

Write Buffers

Persistent Memory

Store

Caches

Non-Temporal

Store

Which store instruction?

Weak ordering → fence

Volatile caches → clflush

Intra cache line ordering

Volatile write buffers → commit

Figure 2.3: Generic write path from store instruction to persistent memory.

Depending on ISA, choice of store instruction, and presence of volatile buffers,

different persistence primitives are necessary.

2.4.1 Crash Consistency for Persistent Memory

Since persistent memory is part of the CPU’s memory hierarchy, its crash consis

tency semantics are defined by the CPU’s instruction set architecture (ISA). The ISA

needs appropriate extensions to support PM, as control over when writes reach the

underlying memory is not necessary with volatile DRAM.

Figure 2.3 shows a generic memory write path and the persistence primitives that

may be necessary to ensure flushing volatile buffers and correct ordering. A normal

store instruction writes its data to the CPU’s cache hierarchy. The ISA may offer non-

temporal store instructions that skip the caches. These instructions may be weakly

ordered, meaning that the CPU may reorder them. For example, normal x86 stores

are strongly ordered (i.e., they will not be reordered), while non-temporal stores are

weakly ordered. For weakly ordered instructions, the programmer needs to insert

memory fence instructions to force a certain order.

For stores going to volatile CPU caches, the programmer needs to ensure that

modified cache lines reach persistent memory. ISAs offer cache line flush (e.g., x86

clflush) or write-back (e.g., x86 clwb) instructions for this purpose. Although

these instructions generally operate on full cache lines (usually 64 bytes), the

CPU microarchitecture might not guarantee atomic transfers of full cache lines to

persistent memory. In this case, knowing the ordering of writes within a cache line

is important. On systems with persistent caches, these steps are not necessary and

cache line flush instructions are optional.8

The memory controller finally collects flushed cache lines and non-temporal stores

in write buffers. The primary purpose of these buffers is to coalesce writes that are

smaller than what the underlying memory expects. If these write buffers are volatile,

an additional “commit” instruction is necessary that instructions the memory

controller to flush its buffers.

Table 2.3 shows an overview of these properties for x86 with and without eADR. We

discuss the properties and the persistence primitives in the following sections.

8Even with persistent caches, non-temporal stores may still offer better performance than cached
stores since they may reduce the number of requests to PM (see Section 3.3).

35

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

property x86 x86 with eADR

cached stores strong

non-temporal stores weak

caches volatile persistent

write buffers persistent

Table 2.3: Overview of ordering and persistence properties in x86 and ARM. ARM

supports processors with either persistent or volatile caches and write buffers.

Crash Consistency Primitives on x86

Normal stores to caches are strongly ordered in x86, so they will always reach the

caches in program order [61, Vol. 3A §9.2]. However, volatile caches do not guarantee

that stores reach persistent memory in a particular order. Cache line flush (clflush,

clflushopt) or write-back (clwb) instructions trigger an immediate flush of stores

to a particular cache line to memory. The write-back instruction clwb may leave the

line in the cache, allowing following reads to fetch the line from cache rather than

PM [61, Vol. 2]. Finally, wbinvd flushes all cache lines to memory, but may only be

used from kernel mode. Since wbinvd clears all cache lines, it has a big impact on

performance and is thus rarely useful for persistence.

Non-temporal (NT) stores offer an alternative to normal stores in combination with

cache flushes. NT stores are weakly ordered on x86 and require use of memory

fence instructions for ordering [61, Vol. 3A §9.2]. The primary fence instruction

for ordering stores for persistence is sfence [61, Vol. 2]. It ensures that all store

instructions before sfence have completed before any store instructions after

sfence are executed. sfence is the preferred instruction for ordering stores to

persistent memory since it does not enforce an ordering of other types of instructions.

However, any serializing instruction [61, Vol. 3A §9.3] (e.g., cpuid) may be used to

enforce ordering as well.

Similar to NT stores, the cache flush instructions clflushopt and clwb are also

weakly ordered [61, Vol. 2].9 The processor ensures that older writes to the cache line

finish first, but does not enforce an ordering with newer writes or other cache flushes.

These two instructions are thus also usually used in combination with sfence.

Although cache flushes operate on 64 byte cache lines and NT stores may have a

size of up to 64 bytes as well, Intel originally only guaranteed atomicity for aligned

8 byte stores [58]. On power failure, a cache line or large NT store might thus tear so

that only parts of it end up on persistent memory. Intel informally guaranteed intra

cache line ordering [109]: The order of 8 byte stores to a single cache line is always

preserved. The introduction of the movdir64b instruction, which copies 64 bytes

from one memory address to another, finally offers atomicity for larger 64 byte

writes [61, Vol. 2]. Since this instruction was only introduced recently with Sapphire

Rapids (2023), software written for Optane PM does not use it (see Section 2.1).

Originally, Intel added a pcommit instruction to x86 for flushing write buffers in

the memory controller (called Write Pending Queue) [108]. With the introduction of

Asynchronous DRAM Refresh (ADR), the need for this instruction disappeared. In

9Weak ordering is preferable for performance if multiple cache lines need to be flushed at once.

36

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

the event of a power failure, ADR ensures that the Write Pending Queue is flushed

to PM. Since all CPUs with support for persistent memory also had support for ADR,

pcommit was never supported.

x86 with eADR

With eADR, some Intel CPUs extended the persistence domain to include the caches

as well [59]. These CPUs guarantee that they flush any dirty cache lines to persistent

memory on power failure, effectively making the cache contents persistent.

Persistent caches simplify the programming model. Cache flush instructions are no

longer necessary. Reordering of stores is no longer a concern for strongly ordered

cached writes. Memory fences are therefore only needed for weakly ordered non-

temporal stores.

Although eADR eliminates an important source of crash consistency issues,

programmers still need to be careful. Misplaced memory fences with NT-stores lead

to invalid states. Even a program that only uses cached stores might exhibit crash

consistency bugs. Developers need to ensure that the application state stays valid

with every store. Additionally, compilers might emit stores in an unexpected order.

2.4.2 Crash Consistency for NVMe

The NVMe standard [4, 5] defines an interface for communication between the

operating system and a PCIe-attached non-volatile memory device. It is commonly

used for modern flash-based SSDs. In the following, we take a look at two NVMe

features which are critical for crash consistency. First, the asynchronous command

processing that allows arbitrary reordering of write commands. Second, its support

for a volatile write cache that requires Flush commands. In sum, we end up with

a crash consistency model for NVMe that shares similarities with the model for

persistent memory.

NVMe Command Processing

NVMe is an asynchronous protocol. The operating system communicates with the

NVMe device over ring buffers in main memory. Entries are written to the tail of the

ring buffer and consumed from the head. The operating system writes commands

into a submission queue and the device writes completions into a completion queue.

The complete process for one command is as follows [5, §3.3.1]. NVMe also specifies

variants of this protocol, for example to allow polling for completions instead of

interrupts.

1. The operating system writes a command into a submission queue and increments

the queue’s tail pointer.

2. The operating system notifies the device about the new entry by writing to the

Submission Queue Tail Doorbell, a memory-mapped device register.

3. The device consumes the command by reading it from the submission queue

and incrementing the queue’s head pointer.

4. The device processes the command.

5. The device writes a completion entry to the completion queue and increments

the queue’s tail pointer.

6. The device notifies the operating system by triggering an interrupt.

37

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

7. The operating system consumes the completion by reading it from the completion

queue and incrementing the queue’s head pointer.

8. The operating system notifies the device about the processed completion by

writing to the Completion Queue Head Doorbell.

By enqueuing multiple commands at once, the operating system can reduce overhead

from this protocol. Additionally, the SSD can then process the commands in an

order that fits its internal organization. NVMe allows arbitrary reordering for most

commands, including those that operate on the same data [5, §3.4.1].

NVMe I/O Commands

The NVMe specification defines two main commands, Read and Write, for accessing

data [4, §3.2]. These commands take two main arguments [4, §3.2.4, §3.2.6].

Data Pointer (DPTR) The DPTR field specifies where in physical memory the OS

receives data from Read or provides data for Write. It contains two physical region

page (PRP) entries. A PRP entry is a 64 bit pointer to either a single data page or

(for large transfers) to a page containing more PRP entries [5, §4.1.1].

Starting LBA (SLBA) The logical block address (LBA) that specifies where data is

read from or written to.

The data on an NVMe device is organized in fixed-size blocks. The block size is

configurable with the Format NVM admin command [5, §5.14]. Typical block sizes

are 512 bytes and 4096 bytes. A single Read or Write command can transfer multiple

blocks at once, up to a limit given by the NVMe controller [5, Fig. 276]. For example,

Presence of a volatile write cache is indicated with the Identify Controller NVMe

command. If bit 0 of field vwc (“Volatile Write Cache Present”) is set, then a

volatile write cache is present [5, Fig. 276].

The volatile write cache can be disabled with the Set Feature NVMe Command

(Dword 11 “Volatile Write Cache Enable (WCE)”) [5, §5.27.1.4].

Example nvme-cli [15] commands with shortened output that query presence

and status of the volatile write cache:

$ nvme id-ctrl /dev/nvme0

NVME Identify Controller:

[...]

mn : Samsung SSD 980 1TB

[...]

vwc : 0x7

[2:1] : 0x3 The Flush command supports NSID set to FFFFFFFFh

[0:0] : 0x1 Volatile Write Cache Present

[...]

$ nvme get-feature -H /dev/nvme0

[...]

get-feature:0x06 (Volatile Write Cache), Current value:0x00000001

 Volatile Write Cache Enable (WCE): Enabled

[...]

Listing 2.4: NVMe interfaces to check for presence of a volatile write cache.

38

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

a Samsung SSD 980 supports transfers of up to 512 blocks of 512 bytes, totalling

256 KiB per command.

Every data block on the SSD may have an additional metadata area that is transferred

separately from the main data [4, §5.8.3]. Metadata is necessary for end-to-end data

protection [4, §5.2]. Linux file systems do not directly make use of it. In this thesis,

we thus assume SSDs configured without metadata.

A number of additional NVMe commands may modify data on the SSD, such as

Write Zeroes and Copy. However, we found that Linux file systems do not use these

commands. We thus limit our analysis to Read and Write.

NVMe Volatile Write Cache and Flush Command

NVMe devices can have an optional volatile write cache to hide the high latency of

writes to their flash memory. Listing 2.4 shows NVMe management commands to

query presence and status of this volatile write cache. In the event of a crash, the

contents of the volatile write cache may be lost. For this reason, NVMe provides

a Flush command that instructs the SSD to write the contents of the cache to its

backing memory.

Thus, the operating system needs to issue Flush commands after writes and wait for

their completion before it can signal that a write has reached non-volatile memory

(e.g., as part of an fsync(2) system call). Since NVMe does not specify dependencies

between commands, special care is required to ensure that the Flush command

covers all writes as intended.

The flush applies to all commands […] completed by the controller prior to the

submission of the Flush command.

— NVMe Base Specification, Section 7.1 [5]

Figure 2.4 shows an example of this behavior. If the operating system submits the

Flush command together with the Write commands (a), the Flush does not apply to the

previous writes. A correct implementation (b) waits for completion entries before

submitting the Flush command.

commands

write 0

write 1

flush

completions

write 0

write 1

wait

commands

write 0

write 1

flush

completions

write 0

write 1

(a) without waiting for completions (b) with waiting for completions

Figure 2.4: NVMe Flush commands apply to all completed commands at time of

submission [5, §7.1]. The OS must wait for writes to complete before submitting a

Flush command.

39

2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

Manufacturer Toshiba Samsung Micron Samsung

Model XG5 SSD 99010 7300 PRO PM9A3

Type consumer consumer data center data center

Year 2017 2022 2019 2021

Has volatile write cache? yes yes no no

Block sizes [byte] 512, 4096 512 512, 4096 512, 4096

Metadata sizes [byte] 0 0 0, 8, 64 0

Max transfer size 256 KiB 256 KiB 16 KiB 2048 KiB

Atomic write size 16 KiB 512 KiB 1 block 512 KiB

Power-fail write size 1 block 1 block 1 block 1 block

Table 2.4: Comparison of NVMe parameters reported by NVMe SSDs.

NVMe Features in SSDs

We now take a look at how the NVMe features discussed here are supported by SSDs

in practice. Table 2.4 shows a comparison between four NVMe SSDs. Two NVMe

SSDs (Toshiba XG5 and Samsung SSD 990) are consumer models. The other two

(Micron 7300 PRO and Samsung PM9A3) are intended for data center applications.

We can see that the consumer SSDs in our set come with a volatile write cache,

whereas the data center SSDs do not have one.

The block size on Samsung’s consumer SSDs is limited to 512 bytes. The other SSDs

also support 4096 byte blocks. In our set of SSDs, only the Micron 7300 PRO supports

metadata.

The maximum transfer size per command ranges between 16 KiB and 2 MiB.

Samsung SSDs guarantee atomicity of writes up to 512 KiB in size with respect to

parallel commands (i.e., a parallel read command will either see all new blocks,

or none). However, none of the SSDs support power-fail atomicity for more than

one block.

As a consequence, file systems need to support a worst-case feature set that includes

a volatile write cache, 512 byte blocks and no power-fail atomicity for more than

one block. We assume this device model for Suvi in Chapter 7.

10Samsung’s older models SSD 970 (2018) and 980 (2020) have identical data.

40

Chapter 3

Motivation – Designing Data Struc

tures for PM

In this chapter, we examine the challenges of designing data structures for PM. As a

practical example, we will work with a PM ring buffer designed for use in an in-kernel

storage stack. This ring buffer design originated in Christian Schwarz’s master’s

thesis, “Low-Latency Synchronous IO for OpenZFS using Persistent Memory” [111].

It is part of ZIL-PMEM, which caches synchronous file system accesses to hide the

latency of the remaining asynchronous ZFS storage stack. We describe how ZIL-

PMEM builds on top of the PM ring buffer in Section 3.8.1.

The design of ZIL-PMEM’s ring buffer is relevant for this thesis, as it is a simple

example of multiple concepts discussed in the following chapters:

• It achieves a write bandwidth close to the raw PM write bandwidth.

• It implements concurrency control, limiting the number of parallel writers to PM.

• It supports strong consistency. Every log entry is immediately persisted.

We start with a full overview of the final ring buffer. In the following sections, we

discuss design parameters important for fast and correct PM usage. By comparing

these parameters in isolation, we aim to build an intuition for working with PM.

3.1 PM Ring Buffer Overview
Christian Schwarz set the following requirements for the design of the ring

buffer [111, §5.1]:

• Minimal overhead

• Scalability on multicore systems

• PM bandwidth management for efficient CPU use

• Detection of media errors with checksums

The ring buffer is used as a cache for asynchronous storage transactions. The

asynchronous storage stack handles all read operations through its DRAM page

cache. During regular operation, the PM ring buffer is therefore write-only. The

recovery process reads from the ring buffer only after a crash.

41

3 Motivation – Designing Data Structures for PM 3.1 PM Ring Buffer Overview

PM in Chunks

Chunk

Allocation

Free List Full List

Committers C1 C2

Figure 3.1: Overview of the ring buffer data structures. At runtime, each chunk is

either in one of the allocation lists or assigned to a committer. Committers additionally

store the offset to the free space within their chunk.

3.1.1 PM Organization and Runtime Data

Chunks

The PM ring buffer must support parallel write access. Because individual entries

are small and the raw write time is short, minimizing write contention is important.

The PM ring buffer achieves this by granting writers exclusive access to a large

chunk of PM.

The PM space is divided into chunks of arbitrary size. There should be at least

one chunk for each parallel writer, with additional chunks enabling asynchronous

garbage collection. The chunk size determines the maximum entry size, though

chunks should be sized to contain multiple entries to amortize the cost of garbage

collection. Our implementation creates a configurable number of equally sized

chunks spanning the entire PM space. ZIL-PMEM uses a fixed chunk size of 128 MiB,

which fits almost 30 000 write entries with 4 KiB data [111, §8.1]. The chunk

dimensions must be deterministic or stored externally, because the start and end

of a chunk cannot be determined from the data on PM.

A chunk is an allocation unit. As shown in Figure 3.1, each chunk has one of

three states:

Free. A chunk in the free list, ready for allocation. A free chunk always starts with

an invalid entry header.

Full. A chunk filled with valid entries. It is assigned to the full list. A full chunk is

returned to the free list once all its entries have been asynchronously persisted

to secondary storage.

Assigned to committer. Every committer owns exactly one chunk. Because a

committer has exclusive access to its chunk, it can append new entries without

locking.

A mutex protects concurrent access to the chunk allocation lists.

Entry Headers

The data within a chunk is organized in variable-length entries. Every entry starts

with a header containing the following fields:

42

3 Motivation – Designing Data Structures for PM 3.1 PM Ring Buffer Overview

Entry ID. Identifies each entry for testing purposes. Since the ring buffer can write

entries to multiple chunks in parallel, some kind of identifier is necessary if the

application needs to impose an order between entries.

Body length. Exact size of the body in bytes (excluding padding), used for reading

the body and finding the next entry.

Body checksum. Detects media errors within the body.

Header checksum. Indicates valid entry headers. Besides media errors, the header

checksum must also detect partially written entries.

ZIL-PMEM includes additional header fields (e.g., for garbage collection) [111,

§5.10], which our implementation does not need. Keeping separate header and body

checksums allows calculating the more expensive body checksum before holding

any locks that might be necessary to fill the header.

The entry header and body are padded with zero bytes to ensure alignment at

256 bytes. We demonstrate the need for such alignment in Section 3.5.

Committers

The committers manage concurrent access to the ring buffer. Each committer owns

a single chunk. It keeps track of the offset of the free space within that chunk.

A semaphore and a bitmap control the assignment of committers to writing threads.

We describe this process below.

3.1.2 Recovery

The recovery algorithm runs after a crash. It needs to discover all valid entries in

the chunks. Note that recovery requires no knowledge about the runtime data (i.e.,

free list and committers) before the crash. In particular, free chunks always start

with a zero entry header.

The recovery algorithm in pseudocode is shown in Figure 3.2.

3.1.3 Write Process

The complete process of writing a new entry to the PM ring buffer is as follows:

1. Prepare the entry header. This includes calculating the body checksum and then

the header checksum.

2. Obtain a committer, as described below.

for each chunk:

offset := 0

loop:

read header from chunk.start + offset

if header is zero or header has invalid checksum: break

check body checksum

yield entry to application

offset += len(header) + len(body) rounded up to 256

Figure 3.2: Algorithm for the ring buffer recovery procedure in pseudocode.

43

3 Motivation – Designing Data Structures for PM 3.1 PM Ring Buffer Overview

H body 0

next

H body 0 0

next

1. Allocate space and zero next header

H body 0 body 0

next

2. Write body

FENCE

H body H body 0

next

3. Write header

FENCE

Figure 3.3: Steps for writing a ring buffer entry to PM.

3. Obtain a free chunk if the committer’s current chunk does not have enough space

for the new entry.

4. Write to PM as shown in Figure 3.3. All write operations use either non-temporal

stores or cache flush instructions to ensure that data reaches PM. Fences ensure

the ordering of operations for crash consistency, which we discuss below.

1. Allocate space in the chunk and zero the next header (256-byte aligned).

2. Write the entry body. Fence.

3. Write the entry header. Fence.

5. Release the committer.

Committer Selection

The committer mechanism serves two purposes. First, it reduces lock contention in

the write path. Second, it limits the number of parallel writes going to PM. Optane

PM can handle between two and four committers per module (see Section 3.4).

Access to the committers is protected by a semaphore and a bitmap. The semaphore

is initialized with the number of available committers. The bitmap holds one bit for

each committer and is initialized to zero.

To obtain a committer, a thread first enters the semaphore. If all committers are

taken, the thread will block on the semaphore. The thread then atomically loads the

bitmap, toggles the first unset bit, and writes the bitmap back with a compare-and-

44

3 Motivation – Designing Data Structures for PM 3.1 PM Ring Buffer Overview

swap operation. If the write-back is successful, the thread has obtained the committer

at the index of the toggled bit. Otherwise, it retries by loading the new bitmap.

To release a committer, the thread atomically clears the corresponding bit in the

bitmap, then exits the semaphore.

Chunk Allocation

If the committer’s current chunk does not have enough space for the new entry,

it needs to obtain a new chunk from the free list and return its chunk to the full

list. Since committers might access these two allocation lists concurrently, they are

protected with a mutex. Contention at that mutex is unlikely as chunk allocation

does not happen very often.11

Besides the committers, background workers might also touch the allocation lists for

garbage collection. In ZIL-PMEM, once all entries in a full chunk have been written

to the ZFS file system, garbage collection is triggered [111, §5.12]. Our standalone

prototype triggers garbage collection if no free chunks are available.

To clear a full chunk, it is sufficient to overwrite the first entry header with zeroes.

The recovery will stop at a zero header (see Section 3.1.2) and the write path does

not make assumptions about previous PM contents.

Crash Consistency

The write operation must be atomic. If the system crashes during a write operation,

recovery must never pass an incomplete entry to the application. The PM ring buffer

achieves atomicity with two memory fences placed before and after writing the entry

header (step 3 of Figure 3.3).

If the system crashes before step 3, the header of the new entry is always zero.

Recovery will therefore stop at the zero header and will not attempt to read a

potentially incomplete body.

If the system crashes after step 3, the final fence ensures that both the new entry

header and the body have reached PM. The ring buffer can therefore guarantee to

applications that the written entry will not be lost in the event of a crash.

Finally, if the system crashes during step 3, we rely on the header checksum to detect

crashes. If the checksum is correct, the fence before step 3 ensures that the body is

complete and that the next entry header is zero. Otherwise, recovery will reject the

entry and will not process partially-written header fields.

Both fences are necessary for atomicity. If we remove the first fence, the recovery

might encounter a valid header with an incomplete body.12 Additionally, the next

entry header might not be zeroed out (step 1). Since chunk garbage collection does

not overwrite the complete chunk, recovery might encounter an old entry at that

location and yield such an entry to the application.

11Christian Schwarz calculates that ZIL-PMEM’s 128 MiB chunks require chunk allocation for
every 29 127th 4 KiB write entry [111, §8.1].

12The recovery will most likely reject the body based on the body checksum. However, with large
entries, collisions of basic checksums for error detection, such as CRC-32, become likely.

45

3 Motivation – Designing Data Structures for PM 3.1 PM Ring Buffer Overview

 pub trait PMAccess {

 /// Copy src to dst. Pad dst with 0 bytes if it is larger than src.

 /// dst must be a multiple of 64 bytes and aligned at 64 bytes.

 fn memcpy_to_pm(dst: &mut [u8], src: &[u8]);

 /// Store fence for draining PM writes.

 fn sfence() {

 unsafe { _mm_sfence() };

 }

 }

Listing 3.1: PMAccess trait for changing the instructions used for writing to PM.

If we remove the second fence, an entry might be lost in a crash until another entry

is written. We could therefore no longer guarantee to applications that their data is

immediately persisted.

3.2 Implementation and Evaluation Setup
We implement a standalone version of the PM ring buffer in Rust. The core ring

buffer implementation has approximately 300 lines of code. The source code is

available at https://github.com/lluchs/pm-ringbuf

Neither the Rust standard library nor the popular reimplementation parking_lot

provide semaphores. We therefore use semaphores from the C standard library for

the committer selection.

For the experiments below, we required different implementations of the PM access

functions and needed to vary the entry header alignment. We achieve both using Rust

generics. Since Rust performs monomorphization of generics at compile time [78], we

can switch implementations without runtime overhead or missed optimizations.

All PM access is encapsulated in a Rust trait, PMAccess, shown in Listing 3.1. We

implement this trait with non-temporal AVX-512 stores and with regular stores plus

cache line flushes. The sfence() function enables changing the fence instruction

from the default sfence. The entry header alignment is configured with a const

generic parameter [35], which sets the size in bytes.

We implement the benchmark using Criterion.rs [53]. Criterion is a library for

creating microbenchmarks. It invokes a user-defined benchmark function that

performs the operation under test for 𝑁 iterations. During a short warm-up period,

Criterion automatically determines a value for 𝑁 that ensures a low overhead from

the benchmark setup (e.g., measuring runtime). Criterion then performs multiple

measurements and calculates statistics such as the mean runtime per operation

and the standard deviation.

Since we evaluate parallel workloads, our benchmark functions start 𝑇 = 1..18

threads (based on the number of CPU cores) and waits for them to finish. Each

thread writes
𝑁

𝑇
 entries to the ring buffer, then exits. We calculate throughput from

the measured write latency and the constant entry size.

Table 3.1 shows the system configuration for the benchmarks in this chapter. We

configure the PM attached to the first CPU 4-way interleaved (pc62). In Section 3.4.1,

we compare non-interleaved PM (pc62-NI). We pin the benchmark process to the

46

https://github.com/lluchs/pm-ringbuf

3 Motivation – Designing Data Structures for PM 3.2 Implementation and Evaluation Setup

pc62 pc62-NI

Motherboard Supermicro X11DPU

CPU 2 × Intel Xeon Gold 5220 (18 × 2.2 GHz)

SMT Hyperthreading disabled

DRAM 12 × 32 GB DDR4 2666 MHz

PM 8 × 128 GB Intel Optane PM 100

PM Region 2 × 4-way interleaved 8 × non-interleaved

PM Namespace 1 devdax namespace on region 0

SSD Toshiba XG5 1 TB attached to CPU 1

Table 3.1: System configuration for the evaluation in this chapter.

first CPU so that PM accesses are local. For the NUMA experiments in Section 3.6,

we run another benchmark pinned to the second CPU (remote PM).

3.3 Memory Access Instructions
PM can be accessed with any CPU instruction that reads from or writes to memory.

Especially in file systems, however, most PM writes usually come from a simple

memcpy routine that copies file data or metadata blocks in bulk. Our PM ring buffer

writes exclusively to PM with memcpy. We therefore want to choose instructions

that provide maximum performance for memcpy.

In Figure 3.4, we compare non-temporal store instructions (movnt64) with regular

cached stores followed by a cache line flush instruction (clflushopt 13). We discuss

the different write paths with these two instructions in Section 2.4.1. In both cases,

we use AVX-512 instructions that write 64 bytes per instruction. We show the

throughput of pure memcpy to PM and of ring buffer writes.

Figure 3.4: pc62 Comparison of writing to PM and the ring buffer with non-temporal

store instructions (movnt64) and with regular stores followed by cache flushes

(mov64flush). We compare the throughput of a simple memcpy loop and of writing

entries to the ring buffer. Parallel writes to the ring buffer are not limited.

13x86 also includes the clwb instruction, which writes back a cache line without necessarily
evicting it from the cache. On the second-generation Intel Scalable processors used for the
benchmarks here, clwb has identical behavior to clflushopt.

47

3 Motivation – Designing Data Structures for PM 3.3 Memory Access Instructions

Instruction Media Reads Media Writes Read Requests Write Requests

17 M 17 M 0.0020 M 17 Mmovnt64

1 thread 1.0 GiB 1.0 GiB 120 KiB 1.0 GiB

30 M 17 M 12 M 17 Mmov64flush

1 thread 1.8 GiB 1.0 GiB 710 MiB 1.0 GiB

23 M 23 M 0.0050 M 17 Mmovnt64

16 threads 1.4 GiB 1.4 GiB 310 KiB 1.0 GiB

32 M 21 M 9.2 M 17 Mmov64flush

16 threads 1.9 GiB 1.3 GiB 560 MiB 1.0 GiB

Table 3.2: pc62 Results of on-DIMM performance counters for writing 1.0 GiB

of data to PM. For each counter, we list the raw value (in 64-byte blocks) and the

corresponding number of bytes. We observe read requests with mov64flush and a

larger number of media writes with 16 threads.

For memcpy, we observe a large difference in throughput. The implementation

with non-temporal instructions writes data at 4.3 GiB/s with a single thread and

shows the highest throughput of 7.5 GiB/s with two threads. With regular stores and

cache flushes, the single-thread throughput starts at only 1.4 GiB/s. It then ramps

up slowly, reaching a peak of 6 GiB/s at six threads.

We can understand this behavior by examining the on-DIMM performance counters.

We set up a test program that writes 1.0 GiB of data to PM and records the change in

the counters across all interleaved DIMMs. Table 3.2 shows the results. For the non-

temporal instructions with one thread, we see 17 million write requests that result

in 1.0 GiB of data read and written to the PM media. With cached stores, there are

an extra 12 million read requests, causing an additional 0.80 GiB of data to be read

from the PM media.

The reason for the additional reads lies in the processor’s cache coherence protocol.

Before a CPU core may write to a cache line in its private L1 or L2 caches, it needs

to load that cache line and invalidate it in all other private caches [95]. On Intel

processors, this event is called a Read For Ownership (RFO). If the data is not already

in the cache hierarchy, it is read from memory.

With both implementations, throughput decreases with more threads after the

peak. In our benchmark, we see identical throughput with more than ten threads.

In Table 3.2, we also show the PM performance counters at 16 threads. For the

same number of write requests, we now see 40% more media reads and writes

for movnt64. This indicates that the on-DIMM caching structures can no longer

coalesce the incoming parallel write requests, causing expensive read-modify-write

operations [124].

The ring buffer does additional work on top of the memcpy operation, including

committer selection and multiple memory fences. It also writes extra data for the

entry headers, which we do not count toward the throughput here. We therefore

expect to see lower throughput than for memcpy, as in Figure 3.4. This extra overhead,

48

3 Motivation – Designing Data Structures for PM 3.3 Memory Access Instructions

Figure 3.5: pc62 Throughput when writing to the ring buffer with different numbers

of committers. The test system has 18 CPU cores, and the PM is interleaved over

four modules.

however, also reduces the PM load at higher thread counts. For this reason, the

throughput decreases more slowly than for memcpy.

Based on these results, we prefer non-temporal store instructions for PM access

when possible. The following benchmarks all use movnt64 instructions.

3.4 Parallel Accesses
In the previous section, we saw that PM write throughput decreases with more

threads. To avoid such a decrease, the ring buffer includes a committer mechanism

that limits parallel writes to PM (see Section 3.1.3).

In Figure 3.5, we show the write throughput to the ring buffer with different numbers

of committers. Since our test system has 18 CPU cores, parallelism to PM is not

limited at 18 committers. We can see that the committer mechanism successfully

keeps the throughput stable with higher numbers of threads.

However, there is a noticeable overhead once there are more threads than commit

ters. Comparing the results for four and eight committers, we see that both reach

maximum throughput at four threads. At five threads, the throughput with four

committer slots drops by 11.2% and remains at that level. With eight committers,

we do not observe such a drop at nine threads, since even with the extra overhead

from committer contention, the available PM bandwidth remains the bottleneck.

We therefore recommend limiting parallelism to the highest number of threads that

can sustain the maximum bandwidth. In Chapter 5, we discuss more mechanisms

for limiting parallelism. Aside from throughput, we also introduce CPU efficiency

as a metric, for which a lower limit is an advantage.

3.4.1 Non-Interleaved Optane PM

The Optane PM in the rest of this chapter is configured as interleaved over four

modules. It can therefore handle a higher level of parallelism than a single module

can. In Figure 3.6, we repeat the committer benchmark with non-interleaved PM.

We see that for non-interleaved Optane PM, a single thread is sufficient to reach

a maximum bandwidth of 1.9 GiB/s for memcpy and 1.8 GiB/s with the ring buffer.

49

3 Motivation – Designing Data Structures for PM 3.4 Parallel Accesses

Figure 3.6: pc62-NI Throughput when writing to the ring buffer with different

numbers of committers, using non-interleaved Optane PM. We include memcpy

throughput for comparison.

With unrestricted parallelism (committers = 18), throughput decreases with more

than four threads. Both two and four committers keep the throughput stable. With

one committer, contention at the committer selection leads to unstable throughput.

Based on these results, we recommend limiting parallel access to non-interleaved

PM to two to four threads.

3.5 Alignment and Access Size
Optane PM has an internal access size of 256 bytes [124]. Writes smaller than

256 bytes require a read-modify-write operation in Optane’s caching structures,

which increases write latency. Our PM ring buffer avoids such operations by aligning

entry headers and bodies at 256 bytes. The header always has a fixed size of 256 bytes,

and the body is padded so that the next entry header starts at a 256-byte boundary.

We show the need for such padding by comparing the write throughput with a variant

that aligns at 64 bytes (a single cache line) instead of 256 bytes. We expect to see

extra latency with 64-byte alignment since the write path has two memory fences

that would wait for read-modify-write operations while writing the body (first fence)

and the header (second fence). Figure 3.7 shows the results.

Figure 3.7: pc62 Throughput when writing to the ring buffer (8 committers) with

different body sizes and header alignment. Error bars show standard deviation.

With 64-byte headers, throughput is 17.4% higher on average for 256-byte bodies.

50

3 Motivation – Designing Data Structures for PM 3.5 Alignment and Access Size

For a body size of 256 bytes, the total size of the ring buffer entry with 256-byte

alignment is 512 bytes. This is 60% larger than the total size of 320 bytes with 64-

byte alignment. However, we observe a 17.4% higher throughput with the larger

alignment. Consequently, writing more data to PM to avoid read-modify-write

operations is advantageous.

Note that the overall throughput with a smaller body decreases, since the relative

overhead from the crash-consistent write protocol increases. Additionally, we can

observe extra contention at the committer selection once the thread count is higher

than the number of committers.

With larger body sizes such as 4 KiB in the right plot in Figure 3.7, the difference in

throughput disappears. In this case, the cost of read-modify-write operations while

writing the header is overshadowed by the time required to write the body. Since

with a larger body the padding size is only a small fraction of the complete entry,

there is little benefit in omitting the padding.

3.6 NUMA
On systems with multiple CPUs, each CPU has only a part of the system memory

attached to its memory controller. The remaining memory is accessed over an

interconnect between the CPUs, which generally results in increased latency. This

situation is called Non-Uniform Memory Access (NUMA).

Remote PM accesses are especially expensive. We repeat the previous experiments

with the benchmark threads pinned to the second CPU. In Figure 3.8, we compare

throughput to local and remote PM as in Section 3.3. In general, the maximum

throughput to remote PM is lower than to local PM. Non-temporal stores continue to

be faster. With non-temporal stores, we observe a ramp-up to a maximum memcpy

throughput of 4.4 GiB at six threads. Remote accesses with regular stores behave more

similarly to local accesses, with a smaller increase up to 2.6 GiB at seven threads.

Overloading PM with parallel remote accesses is especially problematic. The

throughput drops to a stable level of only 0.33 GiB with non-temporal stores or

0.70 GiB with regular stores. Limiting parallel accesses is therefore important.

Figure 3.8: pc62 Comparison of writing to local and remote PM with different

instructions (see Figure 3.4). The throughput to remote PM is generally lower than

to local PM and suffers more from overload.

51

3 Motivation – Designing Data Structures for PM 3.6 NUMA

Figure 3.9: pc62 Comparison of committer counts to local and remote PM (see

Figure 3.5). The maximum parallelism to remote PM is slightly lower, with the

highest stable throughput at seven committers.

In Figure 3.9, we compare the committer mechanism for local and remote PM.

Since the maximum throughput to remote PM is achieved with only seven threads,

we include seven committers here as well. From the results, we can see that a

lower committer count is beneficial for remote PM accesses. Without a limit (18

committers), the throughput after nine threads is lower than with a single committer.

At seven committers, the throughput is not as stable as with local PM and decreases

to the same level as four committers at 18 threads.

Note that support for NUMA systems was not among the goals of the ring buffer. The

ring buffer could be extended to support NUMA by allocating chunks and committers

separately for each NUMA node. Entries would then always be placed on local PM.

We leave such an extension as future work.

In summary, it is best to avoid remote PM accesses, as they incur significant

penalties in latency and throughput. If they cannot be avoided (for example, when

an application’s data is distributed across all PM regions), then aggressive limits on

parallel accesses are necessary to ensure high performance.

3.7 Discussion
From the results in this chapter, we can infer the following recommendations for

PM applications. These recommendations match the best practices given by Yang

et al. [127].

Use non-temporal stores. Non-temporal stores avoid unnecessary reads from PM,

resulting in a higher throughput per thread.

Prefer writes aligned to 256 byte blocks. Writes smaller than 256 bytes cause

internal read-modify-write operations and decrease throughput.

Limit parallel PM accesses. At high levels of concurrency, overall throughput

decreases as more threads access PM in parallel.

Avoid remote NUMA accesses to PM. Remote PM accesses result in high latency

and low throughput compared to local accesses.

52

3 Motivation – Designing Data Structures for PM

3.8 PM Ring Buffer for File Systems
The PM ring buffer described in this chapter was integrated into two storage

systems as part of student theses. Christian Schwarz designed and implemented ZIL-

PMEM [111], a write cache for the ZFS file system. Ilia Bozhinov integrated the ring

buffer into a block device write cache via the Linux Device Mapper framework [32].

In this section, we briefly examine these two works to demonstrate the integration

of the ring buffer into larger storage systems. We compare the throughput and

efficiency of both systems in Chapter 4.

3.8.1 ZIL-PMEM: PM Write Cache for ZFS

ZFS [31] is a file system known for its advanced features, including volume manage

ment, data integrity checks with checksums, compression, encryption, snapshots,

and replication. It is a file system for block devices with no built-in support for PM.

ZFS collects modifications in transactions. Multiple transactions form a transaction

group that is asynchronously persisted to storage. To avoid high completion latency

for synchronous file system writes (e.g., files opened with O_SYNC or calls to fsync()),

ZFS implements a logical log called the ZFS Intent Log (ZIL). A synchronous file system

operation can return immediately once all relevant changes are recorded in the ZIL

and does not need to wait until the transaction group is persisted.

ZIL-PMEM [111] is a ZIL implementation specifically for PM. The PM ring buffer

described in this chapter provides the physical storage format for ZIL-PMEM. Due

to the committer mechanism, entries in the ring buffer are randomly distributed

across multiple chunks at runtime. Consequently, ZIL-PMEM requires additional

header fields in each entry to reconstruct the ZIL’s logical order during recovery. The

additional header fields include the transaction group, a generation number, and

a generation-scoped ID. The generation numbers encode dependencies among log

entries. In combination with the generation-scoped ID, they determine the replay

order of the log after a crash.

For garbage collection, ZIL-PMEM tracks the most recent transaction group of each

full chunk. Once a transaction group is persisted, all full chunks that do not have

any items belonging to future transaction groups are cleared and returned to the

free list.

In his evaluation, Christian Schwarz demonstrates up to 8× speedups of ZIL-PMEM

compared to upstream ZFS [111]. He shows that ZIL-PMEM works especially well

for small synchronous operations. He also verifies that ZIL-PMEM avoids excessive

CPU stalls due to overloaded PM, which we expand in this thesis in Chapter 4.

3.8.2 DPWC: Write Cache for Block Devices

The Device Mapper framework in the Linux kernel [74] allows extending the block

layer between file systems and storage devices with new functionality. Linux includes

Device Mapper modules that provide, among other functions, software RAID, integrity

checks, and encryption.

Similar to ZFS’s ZIL, dm-writecache is a module that stores a separate log for

modifications on a faster storage medium to speed up fsync() requests. Dm-

53

3 Motivation – Designing Data Structures for PM 3.8 PM Ring Buffer for File Systems

writecache is a module that caches modified blocks on a faster storage medium

(SSD or PM) with the goal of improving the performance of fsync() requests. Unlike

ZFS’s ZIL, dm-writecache does not implement a log of modifications. Instead, it

stores modified blocks in a red-black tree by their block address. The red-black

tree allows dm-writecache to retrieve modified blocks at runtime to service read

requests. Updates to the red-black tree are protected with a lock, which prevents

parallel writes and limits the maximum throughput.

DPWC [32] is a Device Mapper module that caches modified blocks in the PM ring

buffer described in this chapter. Unlike dm-writecache, it stores a log of modified

blocks and can handle parallel stores. In contrast to ZIL-PMEM’s logical log, dpwc

implements a physical log, as Device Mapper modules operate at the block layer.

Since the PM ring buffer is not intended to read entries at runtime (only during

recovery), dpwc cannot easily handle read requests for modified blocks. Instead, it

assumes that any recently modified blocks are in the page cache and blocks read

requests until the corresponding write has completed.

For garbage collection, dpwc does not have information on higher-level transactions,

such as ZFS’s transaction groups. Instead, dpwc physically organizes the ring buffer

chunks into multiple generations. A generation has a header with a generation ID

and multiple chunks. Only one generation is active at a time. If a committer cannot

allocate a new chunk from the current generation, the generation is closed and all

committers acquire new chunks from the next generation. Once all blocks from a

closed generation are written back, its chunks are cleared and the generation can

be reused.

Similar to ZIL-PMEM, dpwc uses a generation-scoped ID in the entry headers to

order entries for replay. After a crash, it finds all non-empty generations, orders

them by generation ID, then processes their entries. Since write requests at the block

layer are idempotent, dpwc does not need to consider the state of the underlying

storage for replay.

In his thesis, Ilia Bozhinov shows that dpwc can reach up to 2× speedup over dm-

writecache [32]. However, he also finds that dpwc’s coarse-grained garbage collection

generations can lead to extended periods of low throughput while all generations

are closed.

54

Chapter 4

PM File System Efficiency

Our analysis in Chapter 3 shows that Optane PM is very sensitive to parallel accesses.

When writing to PM in parallel, the overall throughput quickly peaks and then

decreases with more writers.

PM file systems face the same challenge indirectly. File systems themselves generally

have little parallel activity (e.g., background write-back, defragmentation, garbage

collection). However, they handle parallel requests from userspace applications,

which results in a parallel PM load. We argue that ensuring efficient access to the

underlying storage is the responsibility of the file system rather than the userspace

application.

Besides the reduced bandwidth, there is also a hidden cost associated with parallel

PM access. With more parallel PM accesses, the CPU is active for longer—more than

we would expect from other storage devices such as NVMe SSDs.

Figure 4.1: pc61 Comparison of throughput and CPU load with parallel writes to

an ext4 file system on top of PM and NVMe storage.

55

4 PM File System Efficiency 4.1 Metrics for File System Efficiency

Figure 4.1 shows two identical benchmarks writing to ext4 on top of PM and NVMe.

We plot the resulting bandwidth and the number of active CPU cores as reported

by the Linux scheduler (see Section 4.2.1). The bandwidth behaves similarly, with

a small increase at two jobs, after which it stagnates (NVMe) or decreases (PM).

However, there is a significant difference in CPU activity. With NVMe, CPU usage

rises slowly, with fewer than 1.5 active cores at eight jobs. Writing to PM, on the

other hand, generally requires one active core per job. Since these active cores do

not achieve higher bandwidth, the additional CPU work is effectively wasted. The

CPU cores spend more and more cycles stalling on PM accesses.

The reason for the difference in CPU activity is the different access modes. NVMe

is an asynchronous protocol.14 The CPU is active while the kernel handles NVMe

commands and completions. While the SSD transfers the data using DMA, the CPU

can sleep or run other tasks. In contrast, the CPU itself performs transfers to and

from PM and is active during the entire transfer.

This should be considered unexpected behavior for users of a file system. The file

system serves as an abstraction layer between applications and the underlying

storage. It provides a common interface so that unmodified applications can operate

with different storage media. An application cannot reasonably optimize for a storage

requirement such as limited parallelism, since it cannot know the activity of other

processes in the system. A PM file system should therefore ensure that it accesses

the underlying storage as efficiently as possible.

Efficient use of the CPU has not been a design goal of any of the PM file systems

described in Section 2.3. We argue that this is partly because there is no established

metric for the efficiency of a file system. Absolute numbers for CPU activity or power

consumption do not compare well. As an example, in Figure 4.1, we can see that at

1-2 jobs, ext4 on PM uses roughly double the number of CPU cores as ext4 on NVMe.

However, ext4 on PM also achieves a significantly higher bandwidth than on NVMe.

In this chapter, we propose measuring CPU time and energy per transferred GiB

as metrics for file system efficiency. We then compare this metric for several file

systems on PM and NVMe. We show that the CPU power consumption dominates the

energy efficiency for all file systems. The easy-to-measure CPU efficiency metric is

therefore a useful stand-in if full power measurents are not feasible. In the following

chapter, we then propose mechanisms to improve the efficiency of PM file systems.

We published parts of the work in this and the following chapter in “Analyzing and

Improving CPU and Energy Efficiency of PM File Systems” at DIMES’23 [120].

4.1 Metrics for File System Efficiency
We want to establish metrics that allow comparison of the efficiency of file systems.

We cover two separate goals, energy efficiency and CPU efficiency. Although this

thesis focuses on PM file systems, we ensure that the metric is compatible with all

types of underlying storage systems.

14We describe the NVMe protocol in more detail in Section 2.4.2.

56

4 PM File System Efficiency 4.1 Metrics for File System Efficiency

PSU

CPU

SSD

DRAMPM

Wallplug

ATX/EPS Power

RAPL CPU

RAPL DRAM

Figure 4.2: Overview of commonly-available energy measurement domains for ATX

systems. Wallplug and ATX/EPS measurements require extra hardware, whereas

the RAPL domains are provided by CPU performance counters.

4.1.1 Energy Efficiency

Energy efficiency covers the energy consumption of all devices in the system. For

power-constrained devices, efficient use of the available energy is important. It

improves the battery life of devices such as smartphones and laptops. For server

systems, which are the main target for Optane PM, better energy efficiency allows

reduced cooling and lowers the electricity bill.

However, measuring and comparing energy consumption comes with a set of

challenges. First, it is highly dependent on all hardware components. Comparisons

across different hardware configurations are usually not possible. Second, even

measurements on the same hardware may not be reproducible. Environmental

factors such as the ambient temperature can have an effect on the power consump

tion as fans need to spin faster.

Finally, most energy measurements require extra specialized hardware. Figure 4.2

shows commonly-available energy measurement domains. Without extra hardware,

modern Intel server platforms provide separate energy counters for the CPU and

memory DIMMs [57]. These counters do not include peripheral hardware such as

SSDs. They are therefore only useful for measurements of pure PM file systems.

The next larger domain are measurements at the power connectors between PSU and

the motherboard. There is off-the-shelf measurement hardware that can measure at

standard ATX power connectors, providing separate measurements per connector

and voltage [94]. At this level, the CPU, memory, and all peripherals are included.

However, it is generally not possible to attribute measurements to specific devices

since power distribution happens within the motherboard.

57

4 PM File System Efficiency 4.1 Metrics for File System Efficiency

Measuring at the motherboard connectors is preferable to wallplug measurements,

the largest domain. Wallplug measurements include the power supply unit (PSU)

and are therefore highly dependent on the PSU efficiency. We compare data from

the measurement domains from Figure 4.2 in Section 4.2.4.

The use of external measurement hardware also leads to a synchronization problem.

Since the measurement hardware runs independently from the system under test,

it is generally not possible to identify precisely where in the measurement data a

benchmark starts and ends.

Metric

With the challenges above in mind, we propose measuring an energy cost for a given

file system benchmark with the methodology below. This metric is exclusively

intended for comparisons of different file systems on a single system and therefore

can offer some flexibility in the measurement method. The benchmark can excercise

an arbitrary file system operation that reads or writes from the storage medium,

but is required to put a constant load on the system.

1. Choose a measurement domain that includes all devices used by the file system.

2. Measure the average power consumption during idle 𝑃idle.

3. Measure the average power consumption during benchmark 𝑃benchmark. Record

the amount of data read or written 𝑀 and the runtime of the benchmark 𝑡.

From the measured data, calculate the energy over idle 𝐸 as follows:

𝐸 = (𝑃benchmark − 𝑃idle) ⋅ 𝑡

We calculate 𝐸 via the average power values rather than direct energy measurements

to avoid synchronization problems. Since we assume a constant load from the

benchmark, we can cut away the beginning and the end of the measurement values

before calculating the average power.

With the energy over idle 𝐸 and the amount of transferred data 𝑀 , we propose

calculating the energy cost as follows:

Energy cost =
𝐸

𝑀
Unit:

J

GiB

The energy cost describes how much energy the storage stack, including the

benchmark program, file system, and storage hardware, requires for transferring a

given amount of data.

The energy cost can also be calculated from the average bandwidth 𝑟 =
𝑀

𝑡
:

Energy cost =
𝐸

𝑀
=

(𝑃benchmark − 𝑃idle) ⋅ 𝑡

𝑟 ⋅ 𝑡
=

𝑃benchmark − 𝑃idle

𝑟

4.1.2 CPU Efficiency

CPU efficiency is closely related to energy efficiency, as the CPU is often the largest

power consumer during a file system access (see our analysis in Section 4.2.4). Effi

cient use of the CPU therefore typically also implies efficient energy use. Measuring

CPU utilization does not present the challenges associated with measuring energy

58

4 PM File System Efficiency 4.1 Metrics for File System Efficiency

discussed above. This makes CPU efficiency an attractive alternative when energy

measurements are not feasible.

In addition to its connection to energy efficiency, CPU efficiency is important in its

own right. A file system that uses less CPU time leaves more CPU time available for

other applications.

We propose using CPU time as the basis for measuring CPU efficiency. CPU time is a

metric maintained by the operating system scheduler. The total CPU time is the sum

of the number of seconds each CPU core is active during a given time period. For

example, if an eight-core CPU is fully utilized for ten seconds, we would calculate a

CPU time of 80 seconds.

Using CPU time makes the metric more dependent on the speed of the underlying

storage device, rather than the CPU. This enhances the stability of the metric in the

presence of dynamic frequency scaling and improves comparability across different

systems. In contrast, using CPU cycles as a basis would always report worse CPU

efficiency on a higher-frequency CPU for PM, since a memory stall of the same wall

clock duration would account for more CPU cycles.

Metric

We propose the following method for measuring the CPU cost of a file system. An

arbitrary benchmark reading or writing to the file system is the basis for our mea

surements. Unlike for our energy efficiency metric, the benchmark is not required

to put a constant load on the system, since there is no synchronization problem

with reading CPU utilization. For our analysis below, we only use benchmarks with

constant load so that we can measure both metrics simultaneously.

1. Measure CPU time in an idle system over a timespan close to the benchmark

runtime. Verify that it is low.

2. Measure the total CPU time 𝑇 of the full system while the benchmark is running.

Record the amount of data 𝑀 that the benchmark reads or writes.

We then calculate the CPU cost as follows:

CPU cost =
𝑇

𝑀
Unit:

s

GiB

Note that we do not filter the CPU time measurements by process. File systems often

have worker threads that do not run in the context of a user process. Instead, we

require that the test system has no background activity during the benchmark.

4.2 Analyzing File System Efficiency

4.2.1 Measurement Setup

Table 4.1 shows the system configuration. Our evaluation system pc61 has two CPU

sockets, each equipped with an eight-core CPU, 64 GiB of DRAM, and 128 GiB of

Intel Optane PM.

For our benchmarks, we configure a non-interleaved region with the PM attached

to the first CPU. We create two namespaces of types fsdax and devdax in this region

59

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

pc61

Motherboard Supermicro X11DPi-NT

PSU Supermicro PWS-502-PQ (80 PLUS Bronze)

CPU 2 × Intel Xeon Silver 4215 (8 × 2.5 GHz)

SMT Hyperthreading disabled

DRAM 8 × 16 GiB DDR4 2666 MHz

PM 2 × 128 GiB Intel Optane PM 100

PM Region 2 × non-interleaved

PM Namespaces 1 fsdax and 1 devdax namespace on region 0

SSD 3 × Micron 7300 PRO 1 TB attached to CPU 0

Table 4.1: System configuration for the evaluation in this chapter.

(see Section 2.1). The in-kernel PM file systems use the fsdax namespace and the

userspace benchmarks use the devdax namespace.

We plug the three benchmark SSDs into a PCIe 3.0 x16 slot configured with x4x4x4x4

bifurcation via an adapter. These SSDs are exclusively used for benchmarks. The

system is installed on a separate M.2 SSD. The PCIe slot with the SSDs is also

connected to the first CPU. For all benchmarks, the first CPU is therefore the local

NUMA node and the second CPU the remote NUMA node.

CPU Load Measurements

We obtain data on CPU load from the Linux kernel by reading /proc/stat [16]. This

file contains counters measuring how much time each CPU spends in certain states.

For our analysis in this chapter, we consider the CPU active in the following states:

user Time spent in user mode. With our benchmark setup, this is almost exclusively

time spent by the fio benchmark.

sys Time spent in kernel mode. This includes most time spent in the file system.

irq Time spent in an interrupt handler. This counter is relevant for file systems on

NVMe SSDs, which signal completion using interrupts.

softirq Time spent in software interrupt handlers.

The remaining counters are irrelevant for our setup. Our benchmark does not create

low-priority tasks, so nice is always zero. steal and guest count time in virtualization

environments. Finally, iowait counts time a task waits for I/O complete and does not

indicate CPU activity.

Power Measurements

We measure the power consumption of our system in two ways: at the wallplug and

at the motherboard connectors.

For the wallplug measurements, we used a Rittal PDU managed [103]. We connect to

the PDU over HTTP to receive measurement data. The device gives us roughly one

measurement per second.

We attached a Powenetics V2 [94] measurement device between the PSU connectors

and the motherboard. Powenetics measures at a much higher resolution than the

60

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

PDU, giving us about 1000 readings per second. Powenetics communicates over USB,

presenting a serial port. Since reading data from Powenetics causes a noticeable

CPU load of about 5%, we provide the measurements over TCP from a separate

computer with a custom driver15. The driver downsamples the readings by taking

the average of voltage and current, yielding a measurement every 100 ms.

Powenetics provides separate measurements for the three voltage levels of the 24-

pin ATX connector and the two eight-pin EPS 12 V connectors [56] in our test system.

It measures voltage 𝑈 and current 𝐼 , from which we calculate power as 𝑃 = 𝑈 ⋅ 𝐼 .

Performance Counter Measurements

Our test system has Intel Cascade Lake processors. As part of the Running Average

Power Limit (RAPL) system, these processors provide two energy counters: one

for the CPU package and one for the memory DIMMs [57]. Intel’s documentation

refers to the memory counters as DRAM counters, but they include energy used by

Optane DIMMs.

The processor provides access to the energy counters via model-specific registers

(MSR). For our benchmarks, we access the counters with the sysfs interface provided

by the Linux powercap framework at /sys/class/powercap [75]. We read the

energy counters every 100 ms (same as Powenetics) and calculate power as 𝑃 =
Δ𝐸

Δ𝑡
.

On modern Intel processors, the energy counters are based on actual measurements

rather than estimates [37]. Alt et al. have evaluated their accuracy with Optane and

DRAM DIMMs using riser cards [24]. They found that the energy counters consistently

report a higher power consumption than measured at the DIMMs. They measured

an offset of 20% for idle DRAM that decreases to 10% under load. For Optane, they

measured an absolute offset of around 2-3 W for one DIMM. These measurements

were performed on a newer system (Ice Lake-SP with Optane 200). We still expect a

similar accuracy on our system.

4.2.2 File System Selection

For our evaluation, we choose file systems in two categories based on whether they

implement some form of PM bandwidth control (see Section 2.3). We limit our our

analysis to kernel file systems.

We select the following file systems without bandwidth control:

ext4 as an upstream Linux file system that supports both PM and traditional block

devices. We evaluate ext4 both on PM and on an NVMe SSD.

NOVA as a file system specifically designed for PM. [125]

We also include direct userspace access to PM in this category as a low-overhead

baseline (devdax).

In the second category with bandwidth control, we select the following file systems:

ZIL-PMEM and DPWC showing the efficiency of our PM ring buffer design

(Chapter 3). We configure DPWC as a write cache for one NVMe SSD with an

15https://github.com/KIT-OSGroup/powenetics-v2

61

https://github.com/KIT-OSGroup/powenetics-v2

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Option Value

ioengine sync or dev-dax

rw randwrite

sync 1

size 104857600 (100 MiB)

blocksize 16384 (16 KiB)

time_based 1

runtime 30 s

ramp_time 2 s

numjobs 1 to 8

numa_cpu_nodes 0 (local) or 1 (remote)

Table 4.2: The fio configuration for our benchmarks.

ext4 file system on top. For ZIL-PMEM, we provide three NVMe SSDs as backing

storage.

OdinFS with its delegation mechanism for PM writes. [134]

We do not include Trio [133] since it is a userspace file system that is challenging

to run (see Section 2.3.6). We expect Trio to perform similarly to OdinFS since it

inherits the delegation mechanism from OdinFS.

4.2.3 FIO Benchmark Setup

We use fio [27] version 3.40 as the benchmark program. Table 4.2 shows an overview

over the configuration. With these options, fio is set up to do 16 KiB writes to random

locations of a 100 MiB file per job. The files are opened with O_SYNC, meaning that

all writes are immediately persisted to storage [17]. For file system benchmarks, we

use the sync ioengine, which uses normal write(2) system calls. The devdax baseline

(see above) uses the dev-dax ioengine, which maps PM directly in userspace.

The benchmark is time-based and runs for 30 seconds after a two-second warmup

time. The warmup time ensures that we measure a steady load during the 30-second

benchmark time, without effects from initial page faults and cache misses. We set

up all external measurements (Section 4.2.1) after the warmup time. In the plots,

we show the mean bandwidth with standard deviation as reported by fio.

For every storage stack (i.e., a file system on PM or NVMe), we repeat the benchmark

for 1 to 8 parallel jobs pinned to either the local or the remote NUMA node. We

therefore end up with 16 runs per storage stack.

For the idle baseline, we do not run fio and just perform the external measurements

over 30 seconds.

Discussion

Our metric is agnostic regarding the underlying file system benchmark. We chose

these parameters for the analysis in this thesis because we are primarily interested

in overhead from parallel PM write accesses. In particular, we chose a relatively

62

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Figure 4.3: pc61 Power measurements of the idle system from the PSU-to-

motherboard connectors (24-pin ATX and two EPS 12 V) and the wallplug.

large access size of 128 KiB to reduce overhead from system calls and file system

processing other than the storage writes.

The parameters for file size and runtime are arbitrary and do not have a direct effect

on the benchmark results. As fio performs synchronous writes, neither the OS page

cache nor CPU caches are involved, even for small file sizes. The runtime needs to

be large enough for the external measurements (Section 4.2.1). Other than that, we

expect to measure a steady state that does not change over time.

4.2.4 Power Measurements

Our metric for energy efficiency requires choosing an appropriate energy measure

ment method (see Section 4.1.1). In this section, we analyze the available power

domains (wallplug, Powenetics, RAPL) for our evaluation platform. We choose power

measurements from Powenetics for the energy efficiency metric in this thesis.

Wallplug and Powenetics

Figure 4.3 shows a power measurement of the idle system over 30 seconds.

Powenetics provides separate measurements for the three voltage levels of the 24-

pin ATX connector and the two eight-pin EPS 12 V connectors [56]. It measures

voltage 𝑈 and current 𝐼 , from which we calculate power as 𝑃 = 𝑈 ⋅ 𝐼 . We then sum

all power values to obtain the total power.

The power measurements start just before the benchmark and end after the

benchmark finishes. In some benchmarks, the beginning of the measurements shows

influence from the benchmark preparations and the end captures a momentarily

idle system. To calculate an average power value, we therefore remove the first and

last seconds of measurements. On our test system, we measure an average idle

power of 100 W at the wallplug and 73 W at the motherboard connectors.

The power difference between wallplug and PSU output is due losses within the

power supply. According to the data sheet, the power supply in our test system has

an average efficiency of 84% [115]. We measure a slightly lower efficiency of 72%

63

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Figure 4.4: pc61 Power measurements of the system under load. The benchmark

is writing to PM in userspace with eight parallel jobs on the first CPU.

for the idle system and 81% under single-CPU load (see below). Power supplies with

higher ratings reach better efficiency. For example, with an 80 PLUS Gold rating, a

PSU must have an efficiency better than 90% at 20% load [34]. We therefore prefer

measurements from Powenetics to remove influence from PSU efficiency on the

results.

Our measurement of the idle system shows frequent changes in the 12 V connections.

Even on the idle system, there is a small amount of background load from the

benchmark runner recording sensors. This load causes the CPU to change its power

states, which we can observe at the 12 V connectors supplying the CPU.

With a constant load on the system during a benchmark, the power measurements

are more stable. We show an example of power measurements during a benchmark

in Figure 4.4. Under this particular load, we measure an average wallplug power of

180 W and 150 W at the motherboard connectors.

To obtain the power consumption of the benchmark, we subtract the average idle

power from the average power during the benchmark. For the example here, we

therefore calculate 150 W - 73 W = 74 W.

Note that even though there are two EPS 12 V connectors supplying the two CPUs,

we cannot measure each CPU individually. Even with only one CPU under load,

Powenetics reads identical current on both EPS connectors. This indicates that the

lines from the 12 V connectors are connected on the motherboard before the voltage

regulators of the two CPUs. We therefore have to rely on performance counters for

information about fine-grained power distribution.

Performance Counters

In Figure 4.5, we show the energy counter measurements in comparison with

the Powenetics and wallplug measurements discussed above. At idle, the energy

counters indicate a total power consumption of 39 W, which is 53% of the power

measured with Powenetics. Under single-socket load, this measurement rises to

110 W, or 74% of Powenetics. The absolute offset stays at around 38 W, which is

64

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Figure 4.5: pc61 Power measurements with the energy counters, in comparison

with external measurements from Powenetics (total) and at the wallplug.

likely power used by components not directly involved in the benchmark (e.g., SSDs

and NICs).

Looking at the power increase from idle to the benchmark in Figure 4.5, we observe

+70 W with the energy counters and +74 W with Powenetics. The devdax benchmark

(writing to PM from userspace) therefore almost exclusively uses extra power for

CPU and memory.

As a comparison, we show power used by ext4 on PM and on NVMe in Figure 4.6.

We can see that the overall power consumption with NVMe is lower. The Powenetics

measurements show regular short spikes, likely due to regular file system or SSD

activity.16 In Table 4.3, we show the increase of power over the idle system. We can

Figure 4.6: pc61 Comparison of power used by ext4 on PM and on NVMe. The

benchmark is writing with eight jobs.

16The energy counter measurements are not frequent enough to capture the spikes, so we cannot
use them to attribute the activity to either SSD or CPU. We do not measure more frequently to avoid
extra CPU activity.

65

4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Measurement PM NVMe

Package 0 38 W 52% 13 W 39%

Package 1 18 W 24% 6.0 W 19%

DIMMs 0 11 W 15% 3.7 W 12%

DIMMs 1 3.1 W 4.2% 3.1 W 9.6%

Total Counters 71 W 95% 25 W 79%

Powenetics 75 W 100% 32 W 100%

Table 4.3: pc61 Increase of power over the idle system measured by energy counters

and Powenetics with ext4 writing to PM and to NVMe with eight jobs. The percentages

are relative to the increase measured with Powenetics.

see that ext4 on PM has a very similar power consumption as the userspace devdax

benchmark shown above. The increase of the power measured with the energy

counters is 95% of the increase measured with Powenetics. The majority of this

increase comes from the CPU packages (75%).

With ext4 on NVMe, we expect to see extra power consumption by the NVMe SSD,

which is not measured by the energy counters. Indeed, we see that the counter total

increase is only 79% of Powenetics. Even with NVMe, the power consumption of

the CPU packages make up the majority of the increase at 58%. This underlines the

importance of measuring and optimizing CPU time when file system efficiency is

a goal.

4.3 Evaluation
We evaluate our metrics on a selection of kernel PM file systems (see Section 2.3). We

analyze file systems with and without management of parallel accesses separately.

4.3.1 ext4 and NOVA

In Figure 4.7 (page 68), we show results for ext4 on PM and NOVA as examples of

file systems that do not limit parallel accesses to PM. Other file systems without

such limits, such as PMFS and WineFS, have very similar behavior and results. We

therefore do not show data from these file systems. As comparison, we include ext4

on NVMe for a traditional block-based storage system, and devdax for userspace PM

access.

Local Access

We first discuss access from the local NUMA node (left column). It is immediately

apparent that the lower overhead of userspace access translates to higher bandwidth

and better efficiency: devdax bandwidth is on average 8.3% higher than NOVA

bandwidth, with 8.6% lower energy cost and 6.1% lower CPU cost.

Comparing NOVA and ext4, we see a slightly higher bandwidth for NOVA (0.18% on

average). Although the absolute power consumption for NOVA in consistently higher

than for ext4, the energy cost is equal. This highlights the value of our metrics:

NOVA’s lower overhead and higher bandwidth leads to a higher power consumption,

but does not imply a lower efficiency than ext4.

66

4 PM File System Efficiency 4.3 Evaluation

The the bandwidth decreases as more jobs access the file systems. The CPU cost

therefore increases proportionally faster than the number of jobs: For a 8× increase

in jobs from one to eight, the CPU cost of NOVA increases 9.1×. Similarly, while the

power consumption of NOVA from one to eight jobs increases by 13%, the energy

cost increases by 58%.

Remote Access

For accesses from the remote NUMA node (right column in Figure 4.7), we observe

extreme drops in bandwidth with more than three jobs, as discussed before in

Section 3.4. With userspace access (devdax), the bandwidth at lower job counts

starts higher compared to the file systems, but then decreases faster with higher job

counts. At 6 jobs, we see a devdax throughput of only 77 MiB/s. The lower overhead

of DAX access therefore also leads to a more extreme overload situation compared

to access from the file system.

The power graph for the remote NUMA node shows a notable difference to local

accesses: Between four and six jobs, the overall power consumption rises more

slowly. This indicates that the extra CPU cores the additional jobs are running on

consume less power than for local accesses. Since the additional jobs cause major

CPU stalls across all cores, it is likely that the CPU can save power by disabling

execution units. As the bandwidth stabilizes with more than 6 jobs, the overall power

consumption rises again as more cores are activated.

Due to the extreme drop in bandwidth, both energy and CPU cost rise quickly. It

is therefore important to avoid this situation for both performance and efficiency

reasons. In Chapter 5, we introduce approaches to this end designed for addition

on top of existing PM file systems like NOVA.

67

4 PM File System Efficiency 4.3 Evaluation

Figure 4.7: pc61 Comparison of efficiency of 16 KiB synchronous writes. This figure

shows PM file systems that do not limit parallel accesses. As comparison, devdax

shows efficiency of direct access from userspace.

68

4 PM File System Efficiency 4.3 Evaluation

4.3.2 OdinFS, ZIL-PMEM, and DPWC

In Figure 4.8 (page 71), we show results for file systems that limit parallel accesses to

PM: OdinFS, ZIL-PMEM, and DPWC. We set an identical limit of three parallel writers

for these systems.

OdinFS [134] has a delegation mechanism for PM accesses (see Section 2.3.1). By

delegating to a limited number of threads, parallel accesses are limited. Additionally,

the delegation mechanism avoids remote NUMA accesses by pinning the delegation

threads to PM-local CPUs. We set up OdinFS without striping across NUMA nodes,

since we want to evaluate only its ability to limit parallel PM accesses.

ZIL-PMEM and DPWC build on the PM ring buffer we describe in Chapter 3. We

describe these file systems in more detail in Section 3.8. They limit parallel accesses

with a committer mechanism. Every write access to the ring buffer requires acquiring

a committer, which are limited (see Section 3.1.3). In contrast to OdinFS, the

committers only function as a lock and do not mitigate expensive remote NUMA

accesses. Both ZIL-PMEM and DPWC are cross-media storage systems. We set up

ZFS with ZIL-PMEM backed by three NVMe SSDs.17 DPWC is a device mapper module

that works in the Linux block layer. We set it up with one NVMe SSD as origin device

and with an ext4 file system on top.

As comparison for the cross-media file systems, we also include data from ext4 on

one NVMe SSD.

Local Access

Again, we start by analyzing access from the local NUMA node (left column in

Figure 4.8). The different bandwidth levels are explained by the different backing

storage devices. DPWC is backed by PM and one NVMe SSD. At high levels of

parallelism, its bandwidth is close to ext4 directly on NVMe. At fewer jobs, it

can sustain this bandwidth since it provides the NVMe SSD with asynchronous

requests at a higher queue depth than is possible for plain ext4. ZIL-PMEM reaches a

bandwidth closer to the maximum PM bandwidth since the combined bandwidth of

its three NVMe SSDs exceeds the PM bandwidth. Finally, OdinFS reaches the highest

bandwidth as a PM-only file system.

Comparing ZIL-PMEM and OdinFS between three and seven jobs, we can see that

ZIL-PMEM’s bandwidth is close (4.6% lower on average). However, it requires almost

a quarter less CPU time per GiB. This translates to a 4.2% lower overall power

consumption, even though ZIL-PMEM also keeps three NVMe SSDs active. We discuss

OdinFS’s high CPU cost in comparison with our mitigations in Section 5.3.

Comparing the two PM ring buffer implementations ZIL-PMEM and DPWC, we can

see higher CPU and energy costs from DPWC at lower bandwidth. The primary

difference is where the PM ring buffer is integrated into the storage system. For

DPWC, a write request goes through the full processing in ext4 before reaching

DPWC as individual block I/O requests. ZIL-PMEM, in constrast, short-circuits ZFS’s

regular processing for synchronous accesses like in our benchmark. The processing

for the NVMe write can then happen in the background, and gains efficiency by

batching.

17This setup matches the setup in Christian Schwarz’s thesis [111].

69

4 PM File System Efficiency 4.3 Evaluation

Note that we see high CPU and energy costs for all file systems at low job counts

compared to NOVA and ext4 on PM (Figure 4.7). For ZIL-PMEM and DPWC, this is

likely due to extra work for the NVMe access. However, even OdinFS requires 40

% more energy per GiB than NOVA at one job. This shows that countermeasures

against expensive parallel accesses can have a significant cost and motivates a need

for monitoring efficiency.

Looking at ext4 on NVMe, we note that while its CPU cost is relatively stable between

1.4 s and 1.9 s, it is 69% higher than ext4 on PM at one job. As long as PM is not

overloadad, the CPU time required to manage NVMe commands and completions

for a certain amount of data therefore exceeds the CPU time required to copy the

data to PM. The overall power consumption of ext4 on NVMe shows a counter-

intuitive behavior: As more jobs write to the file system, the power consumption

decreases. A possible explanation for this behavior is that with a larger volume of

NVMe commands, the completions can be batched and therefore processed more

efficiently. Since this thesis focusses on PM file systems, we do not analyze this

anomaly in more detail. The two cross-media file systems that also access NVMe

SSDs do not exhibit any drops in power consumption for local PM accesses.

Remote Access

For file system access from the remote NUMA node (right column in Figure 4.8),

we can see that OdinFS’s delegation works as intended: The bandwidth with two or

more jobs is identical to local accesses.

The committer mechanism in the PM ring buffer successfully keeps the bandwidth

stable, but at a lower level compared to local accesses. We can see that ZIL-PMEM

suffers more from remote accesses than DPWC, confirming that the NVMe bandwidth

available to DPWC is the limiting factor for local accesses.

The CPU and energy costs for remote accesses are very similar to those with local

accesses, with some minor shifts especially for ZIL-PMEM due to lower bandwidth.

For DPWC, a drop in overall power appears with more than five jobs, which likely

mirrors the behavior seen with ext4 on NVMe.

70

4 PM File System Efficiency 4.3 Evaluation

Figure 4.8: pc61 Comparison of efficiency of 16 KiB synchronous writes. This figure

shows PM file systems with mechanisms that limit parallel accesses, and ext4 on

NVMe as comparison.

71

4 PM File System Efficiency

4.4 Discussion
We introduced metrics for energy and CPU efficiency and methodologies for

measuring them. Our analysis of existing PM file systems has shown that efficiency

is usually not a primary concern. Even for file systems that limit parallel accesses,

the CPU and energy efficiency results were often counterintuitive. We expect that

our metrics will provide a basis for future energy-efficient file system design.

We highlight the importance of bandwidth-independent metrics. The file systems in

our test set exhibited a wide range of write bandwidths between 0.5 and 1.2 GiB/s. At

higher write bandwidths, the rate of file system calls, and therefore CPU utilization,

always increases, which makes direct comparison based on CPU utilization or power

draw difficult. For this reason, we designed our metrics based on the amount of

written data. In this way, we always analyze the same number of file system calls,

independent of bandwidth.

A major challenge for improving the energy efficiency of file systems is the limited

set of tools available for power measurement. We observed counterintuitive power

measurements for some benchmarks, where total power consumption decreases

at higher load. However, neither built-in performance counters nor external probes

can provide fine-grained measurements that would allow attribution of such power

savings to specific hardware components. Future server platforms should support

efficiency improvement efforts by including more power-measurement domains.

72

Chapter 5

PM File System Overload Mitigation

In the previous chapter, we defined metrics for energy and CPU efficiency of file

systems. Our analysis demonstrated that PM file systems commonly do not limit

parallel accesses to PM. When under a parallel load, these file systems overload the

PM DIMMs, which leads to excessive CPU stalls and declining total bandwidth. These

PM file systems therefore waste energy and CPU resources.

In this chapter, we propose three mechanisms to mitigate such behavior. Rather

than designing a PM data structure from the ground around efficient PM access

like our PM ring buffer (Chapter 3), we aim for mechanisms that are simple to add

to existing PM file systems. The key insight is that PM file systems generally use a

simple memcpy routine for copying file data to PM. This routine contributes most

PM write bandwidth.

We integrate our mechanisms into the NOVA file system [125] and compare their

performance and efficiency with OdinFS [134] and ZIL-PMEM [111], both of which

already limit PM parallelism. We show that effective parallelism limits are possible

without a major redesign of the file system write path.

5.1 Design and Implementation
We design our PM overload mitigation as a replacement for a memcpy routine. To

facilitate integration with existing file systems, its API is a single function with a

signature matching the Linux kernel memcpy functions:

int ep_write_pmem(void *dst, const void *src, size_t len)

It copies len bytes from src to dst using non-temporal instructions. It returns 0

on success or an error code otherwise. All three mechanisms share this function,

with a kernel module option selecting one at runtime.

The central idea for all mechanisms is to make synchronous access asynchronous.

Rather than wasting active CPU time with stalls, calls to ep_write_pmem should

block in an overload situation and allow the scheduler to run other tasks.

Note that it is not required for the file systemto perform all PM accesses with our

memcpy function. To be effective, our function only needs to handle the bandwidth-

73

5 PM File System Overload Mitigation 5.1 Design and Implementation

(a) Semaphore

write()

down(sem)

memcpy(...)

up(sem)

FS

write() write()

PM

FS

DMA Engine

FS

workqueue

(b) Workqueue (c) DMA

pages

Figure 5.1: Mechanisms for mitigating PM overload in kernel file systems by replacing

memcpy.

intensive copying of user data. The file system may still perform its metadata updates

directly, as these generally constitute only a small fraction of the bandwidth to PM.

Figure 5.1 shows an overview of the three mechanisms—Semaphore, Worker, and

DMA—which we describe in the following sections.

5.1.1 Semaphore

A semaphore is a synchronization primitive that limits the number of tasks accessing

a resource simultaneously. By protecting the memcpy function with a semaphore,

only a limited number of tasks can access PM simultaneously.

Semaphores are a very simple mechanism for preventing PM overload. Listing 5.1

shows the full implementation of our semaphore-based PM overload mitigation for

the Linux kernel.

In order to improve CPU utilization, the semaphore must be blocking: If a task cannot

enter the semaphore, it must release the CPU to other tasks. The semaphores in the

Linux kernel18 fulfill this property. They are implemented with a spinlock protecting

a count and a wait list. Entering the semaphore with down() decreases the count,

and leaving the semaphore with up() increments the count. If a task cannot enter

the semaphore (i.e., the count is zero), it adds itself to the wait list and sleeps. A task

leaving the semaphore wakes the oldest task in the wait list.

static int ep_write_pmem_memcpy_sem(void *dst, const void *src, size_t len)

{

 down(&memcpy_sem); /* enter the semaphore */

 __copy_from_user_inatomic_nocache(dst, src, len); /* memcpy */

 up(&memcpy_sem); /* exit the semaphore */

 return 0;

}

Listing 5.1: Using a semaphore in the Linux kernel to protect memcpy.

18Implemented in kernel/locking/semaphore.c

74

5 PM File System Overload Mitigation 5.1 Design and Implementation

5.1.2 Workqueue

A workqueue is a mechanism for performing concurrent work. It is organized around

a synchronized queue of work items, which are arbitrary structures defining a unit of

work. Any task may enqueue a work item into the queue. Worker threads dequeue

items from the workqueue, perform the work, and mark the item as finished.

We propose using a workqueue to perform the memcpy to PM operations asynchro

nously. By limiting the number of workers, we limit the maximum amount of

parallelism to PM. A workqueue can also mitigate expensive remote NUMA accesses

to PM by pinning the worker threads to the same node as the PM.

We implement this mechanism based on Linux’s workqueue API [54]. The work

items capture the three parameters to memcpy (destination and source pointers,

and length). The destination pointer always refers to PM mapped in the kernel

address space and can be passed directly to the workers. In contrast, the source

pointer can refer to the user address space, which is not mapped in the worker

threads. Therefore, it is first necessary to obtain kernel mappings to any user pages

with get_user_pages() [36] and pass those mappings to the worker. The workers

then copy the data from each mapping to PM, since the kernel mappings are not

necessarily contiguous. Source pointers refering to the kernel address space are

passed and handled directly.

A call to ep_write_pmem() creates and enqueues a work item, then blocks until

the work is completed. The workqueue improves CPU utilization, since other tasks

may execute while a memcpy operation is waiting in the queue.

Since creating mappings and work items introduces overhead for each copy

operation, we handle copy operations smaller than a 4 KiB page synchronously

without the workqueue.

5.1.3 DMA

The workqueue improves CPU efficiency by performing memcpy operations asyn

chronously with a limited number of workers. However, the workers each still occupy

a CPU core for just a memcpy loop. We can further reduce the CPU utilization by

offloading the workers to dedicated hardware.

Such hardware is available in modern Intel processors as Intel I/OAT [62]. The I/

OAT hardware is connected over PCIe and can perform operations like memcpy or

memset with DMA. The Linux kernel provides the DMA Engine API for working with

I/OAT and similar hardware [76].

Before enqueueing a DMA memcpy operation, we need to make the source and

destination memory ranges available to the DMA hardware. As with the workqueue,

source pages in userspace must be resolved and pinned first. If the source address

is not from userspace (i.e., the file system is copying internal data), we fall back

to a direct memcpy because the kernel does not allow DMA to most of its address

space. The source and destination pages are then mapped into the DMA hardware’s

address space.

The I/OAT hardware provides multiple channels that can execute operations

in parallel. We limit parallelism to PM by using a limited number of channels.

75

5 PM File System Overload Mitigation 5.1 Design and Implementation

After mapping all pages, ep_write_pmem() obtains a channel (protected with a

semaphore) and enqueues memcpy operations for each source and destination

page. It then waits for the DMA operations to complete before unmapping the pages

and returning.

The DMA mechanism improves CPU efficiency by blocking both when no DMA

channel is available, and during the actual memcpy operation. However, there is

extra overhead for setting up the DMA transfer. We therefore only use DMA for copies

that have a size of at least one page (4 KiB).

5.2 File System Integration
To integrate our mechanisms into a file system, we need to identify and replace

the function that copies file data from userspace to PM. As all three approaches

share a common API, we only need to perform this replacement once. We describe

integration into NOVA, PMFS, and WineFS, which are file systems that do not limit

parallel PM accesses.

NOVA and WineFS use a local helper function to copy data to PM. In NOVA,

this function is called memcpy_to_pmem_nocache()19, and in PMFS, it is called

memcpy_to_nvmm()20. In both file systems, these helpers call the kernel memcpy

function __copy_from_user_inatomic_nocache(), whose signature and usage

match our ep_write_pmem() function. This makes the integration a single-line

change in the file system.

PMFS does not provide such a local helper function. Instead, it calls the aforemen

tioned memcpy function directly in multiple places. We therefore need to replace

all of these calls.

Since these three file systems exhibit very similar performance in our benchmark,

we evaluate only NOVA in the following section.

5.3 Evaluation
We integrate our approaches into the NOVA file system as described above and

compare them with OdinFS and ext4 on NVMe. In Figure 5.2 (page 78), we evaluate

scalability under parallel access as in Chapter 4.

Since some mitigations have a high cost per access, we additionally compare different

access sizes with a fixed number of jobs in Figure 5.3 (page 79). For this benchmark,

we set the workqueue to always copy via a worker, even when the access size is

smaller than 4 KiB, to show the real overhead of this mechanism. We include devdax

to compare userspace access without per-access overhead.

5.3.1 Semaphore

The semaphore is a good solution for local PM access. Throughout our scalability

benchmark in Figure 5.2, NOVA/Semaphore shows the highest bandwidth (tied with

OdinFS) at the lowest energy and CPU cost.

19located in fs/nova/nova.h

20located in fs/winefs/xip.c

76

5 PM File System Overload Mitigation 5.3 Evaluation

However, the semaphore cannot mitigate expensive remote NUMA accesses. On

average, we observe a 32% lower bandwidth from the remote NUMA node compared

to local access. However, it can still keep a steady bandwidth with increasingly

parallel file system accesses.

At small access sizes below 1 KiB (Figure 5.3), we observe a lower bandwidth with the

semaphore than with unmodified NOVA. For these access sizes, the threads enter

the semaphore more frequently, creating additional overhead from contention.

5.3.2 Workqueue

The workqueue variant is similar in approach to the delegation mechanism in

OdinFS. However, there are significant differences in performance and efficiency.

For the 16 KiB access size shown in Figure 5.2, NOVA/Workqueue shows equal

performance to OdinFS for three and four local jobs. With fewer or more jobs, the

bandwidth of NOVA/Workqueue drops. However, NOVA/Workqueue consistently

requires less power than OdinFS, making it more efficient when the bandwidth is

sufficiently high. It shows a smaller or equal energy cost up to five jobs and a smaller

CPU cost up to six jobs.

The reason for this disparity lies in the notification mechanisms used by Linux

workqueues and OdinFS. OdinFS uses busy waiting to wait for the delegated PM

write to complete. This strategy ensures low latency but wastes CPU time and power.

In contrast, Linux workqueues block the calling thread while waiting for a work

item, which releases the CPU for other tasks. This strategy reduces CPU time and

saves power but increases latency, which is why the bandwidth below three jobs

suffers.

The drop in bandwidth with five or more jobs is explained by contention at workqueue

submission. At larger access sizes and high job counts (not shown in figures), we

observe reduced contention and improved bandwidth.

In the access size comparison in Figure 5.3, NOVA/Workqueue suffers most from

access sizes under 4 KiB. For every access, it must resolve at least one 4 KiB page,

which significantly increases the overhead for accesses smaller than one page.

Therefore, such accesses are performed directly, without indirection via the worker.

For remote NUMA jobs, NOVA/Workqueue reaches higher bandwidth than NOVA/

Semaphore, since it performs the PM accesses locally. However, it still suffers from

higher latency and contention, as discussed above. Compared to OdinFS, both CPU

and energy costs are consistently either better or equal, since OdinFS’s busy waiting

appears costlier at more than five remote jobs.

77

5 PM File System Overload Mitigation 5.3 Evaluation

Figure 5.2: pc61 Multicore scalability comparison of our strategies to manage

parallel PM accesses, with fio synchronous 16 KiB writes (see Section 4.2.3).

78

5 PM File System Overload Mitigation 5.3 Evaluation

Figure 5.3: pc61 Access size comparison for software-based strategies to manage

parallel PM accesses. We configure four fio jobs and power-of-two access sizes.

79

5 PM File System Overload Mitigation 5.3 Evaluation

Figure 5.4: Write bandwidth to DRAM and PM from a GPU at increasing levels of

parallelism. The observed bandwidth with I/OAT matches the GPU bandwidth.

5.3.3 DMA

DMA offloading with I/OAT cannot reach the expected performance in our bench

marks (Figure 5.2, page 78). The bandwidth of NOVA/DMA peaks at 0.77 GiB/s,

around half of the bandwidth of a regular NOVA in this benchmark. We confirm

that this behavior is not a problem with our implementation by repeating the same

benchmark on DRAM instead of PM. With this setup, we observe a bandwidth

exceeding 5 GiB/s, which confirms that our implementation is not the bottleneck.

To better understand DMA transfers to PM, we create a benchmark that writes to PM

and DRAM from a GPU. By varying the number of SIMD lanes available to the GPU

program, we can control the amount of parallelism of the write accesses. Figure 5.4

shows the results. At the number of SIMD lanes required for maximum bandwidth

to DRAM, PM is already overloaded. Maximum bandwidth to PM would therefore

require reducing parallel transfers.

These observations from GPU transfers provide a likely explanation for the I/OAT

behavior. We assume that the I/OAT hardware is tuned for DRAM transfers and would

require adjustment for better performance to PM. The low bandwidth is therefore

not a general problem with our approach.

5.4 Discussion
The main goal of the design and implementation of the mitigation mechanisms

here is to demonstrate that making a PM file system CPU and energy efficient PM is

always viable, even if efficiency was not a requirement of the original design.

Our prototype therefore comes with a number of limitations. There is only a global

limit to parallelism (i.e., one semaphore, one set of workers). Since a PM-equipped

system can have multiple independent regions (different NUMA nodes or non-

interleaved DIMMs), there should be separate limits per region.

Our goal in this thesis is efficiency under load. We therefore focus our implementation

and evaluation on throughput under load. While the PM is not overloaded, copying

data asynchronously to PM increases latency significantly. For this reason, a full

implementation should take the current load to PM into account and should always

copy synchronously during light load.

80

Chapter 6

Userspace PM Access Accounting

In the previous chapters, we have established that parallel PM access can lead to

wasted CPU time and energy. In particular, parallel writes to PM lead to reduced

bandwidth (Chapter 3), which is not handled well by most PM file systems (Chapter 4).

To improve CPU and energy efficiency, we propose mechanisms for kernel PM file

systems (Chapter 5).

However, these mechanisms can only manage file system accesses via the system

call interface. For DAX mappings, the kernel file system only manages creation of

the mapping. The userspace process then reads or writes directly to PM, without

further kernel involvement.

DAX mappings prevent effective management of parallel PM accesses. Neither the

kernel nor userspace processes have enough information on global PM usage, as

shown in Figure 6.1. The kernel can easily track any accesses via its system call

interface, but cannot account for accesses to DAX mappings. A userspace process

can manage parallel accesses to its own DAX mappings, but lacks information about

other processes accessing PM. Consequently, even when all PM programs in a system

implement best practices and avoid parallel writes, PM will still be overloaded when

multiple PM-accessing processes are scheduled at the same time.

We argue that this means a loss of control for the operating system. In the presence

of DAX mappings, the kernel is lacking critical information to schedule the available

resources among ready processes. With PM, this is especially important since

P1

Kernel

P3

PM

P2

write()

FSDAX DAX

Figure 6.1: In a system with processes accessing PM over DAX mappings, neither

the kernel nor the processes can limit parallel PM accesses, since they have no

information on PM activity of other processes.

81

6 Userspace PM Access Accounting 6.1 Requirements

overload leads to reduced performance for the whole system: Processes working

with PM experience low throughput, while other processes receive less CPU time as

the CPU is busy stalling on PM accesses.

In this chapter, we design and implement a mechanism to restore insight of the kernel

into DAX mappings. As the hardware does not provide appropriate performance

counters for this purpose, our mechanism works by sampling memory access

instructions. We then propose using the accounting information for core specialization,

which mitigates PM overload from parallel access.

6.1 Requirements
We define the following requirements for an accounting mechanism:

process association It must be possible to account bandwidth to individual

processes. Without process association, it would be impossible to identify and

throttle processes that overload PM.

device association It must be possible to distinguish bandwidth to different PM

devices. A system may have multiple PM regions on separate PM modules. If one

PM device is overloaded, there is no need to throttle traffic to other PM devices.

low latency The latency between a PM access and measuring the access must be

low. If the latency is too high, effective mitigations are impossible.

low overhead The measurements should not introduce overhead on the measured

processes or the system as a whole.

high accuracy The total measured bandwidth should be close to the real bandwidth

at the device.

6.2 Accounting with Performance Counters
As described in Section 2.1.3, systems with Optane PM have three types of perfor

mance counters with PM events: on-core, off-core response, and uncore. These

performance counters cannot satisfy all of the requirements we set above. Table 6.1

shows an overview of the counters and fullfilled requirements. We discuss read and

write accesses separately.

6.2.1 Read Accesses

For read accesses, there are two relevant on-core counter events that count L3 cache

misses serviced from local or remote PM.21 Since these events are counted separately

for each core, they are always associated with the process currently running on that

core. Reading these counter is fast via model-specific registers (MSR). The latency

and overhead therefore both depend on the sampling interval. A smaller sampling

interval leads to smaller latency, but higher overhead.

There are two problems with these counters. First, they can only distinguish reads

to local and remote PM. We therefore cannot associate the counts with individual PM

devices. This problem is solved with the PEBS sampling we propose in the following

section.

21MEM_LOAD_RETIRED.LOCAL_PMM and MEM_LOAD_L3_MISS_RETIRED.REMOTE_PMM, see Sec
tion 2.1.3.

82

6 Userspace PM Access Accounting 6.2 Accounting with Performance Counters

access type read write

counter type on-core uncore Optane module

events L3 misses serviced

from local or remote

PM

Number of write

commands to PM

Write requests

process assoc. 🗸 ✗ ✗

device assoc. ✗ ✗ 🗸

low latency 🗸 🗸 ✗

low overhead 🗸 🗸 🗸

high accuracy ✗ 🗸 🗸

Table 6.1: Requirements fullfilled by performance counters for accounting read

and write accesses to PM.

Second, their accuracy is limited by the prefetcher. The prefetcher may read addi

tional data from PM, reducing the number of counted cache misses. The measured

value is therefore a lower bound for the actual read traffic to PM. This problem

could be solved by counting prefetch events with off-core response counters (see

Section 2.1.3). However, these counters suffer from the same device association

problem above, but do not support PEBS.

6.2.2 Write Accesses

For write accesses to PM, we identify two useable counters: uncore counters and

counters on the Optane modules.

The uncore counters are located at the memory controller. They therefore measure

PM accesses with high accuracy. The same trade-off between latency and overhead

as with counters for read accesses applies. Uncore counters do not provide any

association with the core causing the access. Thus, we cannot use them for per-

process accounting. Just like with the read counters, we also can only distinguish

writes to local and remote PM, but not to individual PM modules.

Alternatively, we could use the write request counters on the Optane modules. Since

these counters are located on the modules, we obtain per-device counts with high

accuracy. However, these counters are not made for high-frequency measurements.

On our systems, ipmctl requires approximately 40 ms per Optane module to read

the performance counters. Finally, the Optane modules cannot know which process

caused a write request, either.

Our PEBS-based sampling provides both process and device association at config

urable latency, albeit with reduced accuracy.

6.3 Approach: Sampling Memory Instructions
Regular performance counters cannot provide device and process association, which

is necessary for managing parallel write bandwidth to PM. We therefore propose

using PEBS to sample load and store instructions, as shown in Figure 6.2. PEBS

sampling is local to a core, which provides process association. From the samples,

83

6 Userspace PM Access Accounting 6.3 Approach: Sampling Memory Instructions

Instructions
DRAM

PM2

PM1Samples

7 * 16 bytes

to PM1

7 * 8 bytes

to DRAM

7 * 32 bytes

to PM2

7 * 8 bytes

to DRAM

Figure 6.2: Overview of our sampling approach. The CPU periodically (here: every

seventh instruction) writes a memory instruction sample. Based on the sampled

information, we estimate the number of accessed bytes for the whole sampling

period.

we obtain the accessed address for device association and the instruction type to

estimate bandwidth.

In the following, we first describe PEBS, then how we use it to estimate bandwidth.

Finally, we discuss limitations of this approach.

6.3.1 Processor Event Based Sampling (PEBS)

Processor Event Based Sampling (PEBS) is a feature of Intel processors for sampling

the processor state at certain performance counter events [61, Vol. 3B §20.3.1.1.1].

When a PEBS-enabled performance counter overflows, the processor arms the PEBS

hardware. At the next monitored event, the armed PEBS hardware writes a PEBS

record with the current processor state to a memory buffer. A PEBS record contains

all integer registers (including the instruction pointer) and optionally the virtual

address of memory access instructions [61, Vol. 3B §20.3.8.1.1]. After writing a

PEBS record, the processor resets the performance counter to a configurable value,

allowing control over the sampling interval. When the memory buffer with PEBS

records is full, the processor triggers an interrupt, which prevents missing samples

due to overflows.

Only a small subset of performance counter events, called precise events, may be

used for PEBS [61, Vol. 3B §20.3.8.1.2]. For our purpose of tracking PM accesses,

two precise events are relevant:

MEM_INST_RETIRED Counts all instructions that access memory. Can be further

filtered by loads or stores. We propose using this counter to sample stores (sub-

event ALL_STORES).

MEM_LOAD_RETIRED Counts all instructions that load from memory. Can be further

filtered by cache hits or misses for all layers. We propose using this counter to

sample loads that miss the L3 cache (sub-event L3_MISS).

The processor also provides precise events for loads to local and remote PM. These

events could provide higher accuracy if there is no need for accounting DRAM reads.

6.3.2 Bandwidth Estimation

To estimate a per-device bandwidth, we need to know which device was accessed

and how much data was accessed. We assume that the PEBS samples are uniformly

picked from the monitored instructions. Thus, by scaling measurements from the

84

6 Userspace PM Access Accounting 6.3 Approach: Sampling Memory Instructions

Virtual Address

Instruction Pointer
Decode

Instruction

M
E
M
_
I
N
S
T
_
R
E
T
I
R
E
D

Access Size

Memory Device
Address

Translation

Figure 6.3: Overview of our handling of PEBS samples.

sampled instructions by the sampling interval, we obtain approximations of the real

values over time.

As shown in Figure 6.3, we determine the memory device from the virtual address

and the access size from the instruction pointer. With a regular address translation

of the accessed address, we obtain a physical address. We can then look up the

physical address in the physical address ranges of the PM devices.

For the access size, we need to read and decode the instruction at the recorded

instruction pointer.22 The size of the instruction’s operands determines the access

size.

From the access size 𝑆 (bytes) and the sampling interval 𝐼 (number of instructions)

we calculate the number of accessed bytes 𝐴 = 𝑆 ⋅ 𝐼 and the bandwidth 𝐵 =
Δ𝐴

Δ𝑡
. For

each process and memory device, we provide a counter of written bytes (Σ𝐴) and let

consumers of these counters calculate the bandwidth.

6.3.3 Limitations

While sampling memory accesses with PEBS provides a bandwidth estimation for

each process and device, it comes with limitations regarding latency, overhead, and

accuracy.

The estimation latency is controlled by the sampling interval. A smaller sampling

interval reduces the estimation latency. However, since PEBS samples from all

memory access instruction, we have to observe multiple samples before we can

expect a useful estimate. For example, if 10% of an application’s memory instructions

access PM, only every 10th PEBS record indicates a PM access. When such an

application starts running, it can therefore take up to 10 sampling intervals before

we detect any PM accesses. Additionally, samples may be processed in batches,

further increasing the latency.

Compared to regular performance counters, PEBS introduces additional overhead

from recording PEBS samples and processing the sample buffer. Akiyama and

Hirofuchi [23] estimate 200-300 ns of CPU overhead for each recorded PEBS sample.

Additionally, they observe cache pollution from the samples, which can cause

additional cache conflicts for cache-sensitive applications. Overhead from sample

processing depends on the sampling interval (how many samples are produced) and

22A PEBS record contains two instruction pointers: of the instruction that triggered the event,
and of the following instruction. We need the former instruction pointer here.

85

6 Userspace PM Access Accounting 6.3 Approach: Sampling Memory Instructions

the PEBS buffer size (how often are samples processed). We evaluate the overhead

from sample processing in our prototype below.

There are multiple sources of inaccuracy. For loads, the limitation regarding

prefetching discussed in Section 6.2.1 applies.

We cannot detect stores that overwrite dirty cache lines. In such a case, the previous

store to that cache line has not caused a memory access, resulting in an overestimated

write bandwidth. When using PM for persistence, cache flushes are necessary for

crash consistency. We therefore assume that stores never overwrite dirty cache

lines and are always immediately flushed to memory.

The performance counter for store instructions also counts cache flush instructions

such as clwb. This introduces an accounting error for workloads that include cache

flush instructions, as there are now two instructions for one memory access. We only

count proper store instructions and ignore cache line flushes. In Section 6.6.1, we

evaluate the accounting error from cache line flush instructions. We leave heuristics

for correcting this error as future work.

Finally, PEBS may show a bias in which instructions are sampled. Yi et al. describe

the shadow effect [129]: After a performance counter overflow, there is a delay before

the PEBS hardware is armed. Any events during this delay are hidden from sampling.

If there are long-running instructions such as memory fences, the PEBS hardware

is more likely armed during such longer instructions. It will therefore sample

instructions immediately after long-running instructions with a higher likelyhood.

Such a bias can cause estimation errors.

6.4 Implementation
We implement a prototype of PEBS-based write bandwidth estimation as a Linux

kernel module. It sets up PEBS directly by writing to model-specific registers since

Linux’s perf_event API [18] is not designed for use from a kernel module. To allow

controlling latency and sampling overhead, the PEBS buffer size and the sampling

interval are configurable as module options.

The module processes PEBS samples either when the PEBS buffer is full (via the

interrupt) or on task switch. It finds PM ranges based on the kernel’s iomem ranges

after a software page table walk. The prototype only distinguishes accesses to PM and

DRAM, but could support fine-granular counters for separate PM address ranges.

To determine the memory access size, it uses the Zydis disassembler library [30],

which provides the size of decoded operands.

The module makes the counters available over multiple interfaces. The per-task

counters are stored in struct task_struct. Additional files in procfs allow reading

their values from userspace.

For low-latency monitoring and control, the module additionally provides a shared

memory buffer with the counters of currently-running tasks. Userspace applications

can memory-map this file and read the current counters for each CPU core.

86

6 Userspace PM Access Accounting 6.4 Implementation

PM Thread

Other Thread

Core SpecializationRegular Scheduling

Figure 6.4: Core specialization can reduce PM overload by identifying threads

accessing PM and pinning them to a subset of the available cores. By reducing stall

cycles from the PM threads, this strategy makes more CPU time available to other

non-PM threads.

6.5 Scheduling
PM bandwidth and parallelism management are highly dependent on the application.

Since a scheduling mechanism can only control a process’s CPU activity as a whole,

any process throttling for PM accesses also throttles other work in that process

unrelated to PM access. PM applications should therefore directly use the accounting

information and apply targeted throttling of their PM accesses accordingly.

Nevertheless, we now propose a generic scheduling approach for mitigating

slowdown and CPU stalls from parallel PM accesses in userspace applications. The

idea is to employ core specialization, as illustrated in Figure 6.4. In a PM overload

situation (left), threads accessing PM are scheduled on multiple cores at the same

time. These threads saturate the available PM bandwidth, and their PM accesses

stall the cores. They therefore also reduce the available CPU time for other processes

that do not access PM.

Our approach introduces a monitor process that reads the accounting information

for all currently running threads. If the threads saturate the available PM bandwidth,

the monitor enables core specialization. It pins all threads that access PM to a subset

of the cores. The result is shown on the right side of Figure 6.4: The PM threads share

a single core (red) and therefore can no longer overload PM. Even though each PM

thread has less CPU time available due to the restriction to the specialized cores,

they now make more progress since the number of CPU stall cycles is reduced. All

other threads (grey) are rebalanced to the remaining cores by the scheduler. These

threads now have more CPU time available since they no longer need to share time

with the stalling PM threads.

If the monitor detects that a pinned thread no longer accesses PM, it reverts the

pinning. Once the number of active PM threads falls below a threshold, the monitor

stops core specialization and allows PM threads to run on all cores again.

The primary challenge with this approach is choosing the number of specialized

PM cores. If the number is too large, the PM threads are still able to overload PM

with their parallel accesses. A number too low could take CPU time away from PM

threads that do not exclusively access PM. The accounting data alone does not allow

detection of whether a thread uses little PM bandwidth due to stalls or because it is

87

6 Userspace PM Access Accounting 6.5 Scheduling

performing other work. The approach therefore requires fine-tuning according to

the expected workloads.

6.6 Evaluation
Our evaluation aims to answer the following questions:

• Can the accounting mechanism accurately detect the number of bytes written by

an application?

• What is the trade-off between performance overhead for the application and the

latency of the accounting?

• Can our scheduling approach based on core specialization prevent PM overload?

We choose prime numbers as PEBS sampling intervals to avoid repeated sampling

of the same instruction in a loop smaller than the sampling interval. In the following,

we compare three PEBS sampling intervals: 1999, 4999, and 9973.

6.6.1 Accuracy

We evaluate the accuracy of the accounting mechanism with a microbenchmark

that writes a fixed amount of data to PM. We then compare the accounting result

with the actual number of written bytes. The microbenchmark is implemented as

a memset loop that uses one specific instruction to write sequentially to PM. We

test non-temporal store instructions and regular (temporal) store instructions with

multiple access sizes. For the regular stores, we also test flushing each written cache

line (64 bytes) with a clwb instruction. We run the microbenchmark with multiple

PEBS sampling intervals (see above) and parallel threads (1 to 8).

In the implementation of the microbenchmark, we ensure that the core memset

loop contains only memory accesses writing to PM, as shown in Listing 6.1. The

benchmark therefore verifies that our measurement method does not introduce

any inherent inaccuracy.

Figure 6.5 shows the results. The accuracy for store instructions without cache

flushes is very high, with a maximum error of approximately 0.5% for 8 byte

temporal stores.

For the benchmarks that include cache line flush instructions, we see a larger

error. Smaller access sizes of 8 and 16 bytes are overestimated by 11% and 24%,

00: lea (%rdi,%rcx,1),%rax

04: movntdq %xmm0,(%rax)

08: add $0x10,%rcx

0c: cmp %rsi,%rcx

0f: jb 00

00: lea (%rdi,%rcx,1),%rax

04: movdqu %xmm0,(%rax)

08: movdqu %xmm0,0x10(%rax)

0d: movdqu %xmm0,0x20(%rax)

12: movdqu %xmm0,0x30(%rax)

17: clwb (%rax)

1b: add $0x40,%rcx

1f: cmp %rsi,%rcx

22: jb 00

(a) Non-temporal stores with access

size 16 bytes

(b) Temporal stores with access size

16 bytes and clwb

Listing 6.1: Disassembly of the memset loop writing to PM. All store instructions

write to PM.

88

6 Userspace PM Access Accounting 6.6 Evaluation

Figure 6.5: pc61 Boxplot of the accounting error for a userspace write benchmark

with different instruction types and access sizes. The benchmark writes with one

to eight threads, and the accounting uses a PEBS sampling interval of 1999, 4999,

and 9973. The whiskers show the minimum and maximum values.

respectively (median). This overestimation is explained by the additional clwb

instructions, which are less likely to be sampled due to the shadow effect (see

Section 6.3.3). Since the clwb instruction takes longer than the small memory

accesses, the store instruction after clwb is sampled more often. 11% and 20% of

the instructions are clwb instructions in our benchmark with access sizes of 8 and

16 bytes, respectively, which matches the observed error.

With larger access sizes of 32 and 64 bytes, the runtime of the store instructions

increases, and the shadow effect reverses. At 32 bytes, we observe roughly equal

numbers of store instructions and clwb instructions, resulting in a medium

underestimation of 5.1%. With 64 byte store instructions, there are equal numbers

of stores and cache line flushes. However, the clwb instructions are now sampled

more often than the store instructions, resulting in a large underestimation of 90%.

6.6.2 Overhead and Latency

To measure overhead and latency, we instrument the kernel module. We capture

measurements of the runtime of PEBS event processing and timestamps when

events are processed. As the accounting target, we run a fio devdax benchmark that

writes to PM from userspace (see Section 4.2.3). With fio, we observe a mix of PM

and DRAM events.

There are two parameters that control overhead and latency. The sampling interval

controls how often events are sampled by the PEBS hardware. A higher sampling

interval reduces the number of events and therefore decreases the overhead but

increases the latency. The PEBS buffer size controls how many events are collected

for batch processing. A larger buffer reduces the overhead by reducing the number

of PEBS interrupts but increases the latency, as multiple events need to be collected.

Overhead

Figure 6.6 shows the processing time for individual events as well as totals for fio

writing 1 GiB of data to PM. The sampling interval has little effect on the per-event

processing time. However, processing events in batches improves the processing

89

6 Userspace PM Access Accounting 6.6 Evaluation

Figure 6.6: pc61 Processing time per event (left) and per GiB written by a fio

benchmark (right).

time slightly, likely due to better cache utilization: From a buffer size of one event

to two events, the processing time decreases by 4.7%, up to 15% at 16 events.

For the total processing time for writing 1 GiB, the sampling interval has a much

larger effect than the buffer size. From sampling interval 1999 to 4999, the average

processing time decreases by 59%, and another 49% from 4999 to 9973. This inverse

proportionality arises since a larger sampling interval results in fewer events per GiB.

Latency

In Figure 6.7, we plot density distributions of the latency between processing two

batches of PEBS events. We show latency for all PEBS events (i.e., PM and DRAM) in

the left column, and latency after filtering for PM events in the right column.

We first discuss the results for a buffer size of one event (bottom row). The observed

latencies for all PEBS events (left column) are approximately proportional to the

sampling interval, with distributions centered around median latencies of 56 μs,

Figure 6.7: pc61 Density distribution of event latency for PEBS buffer sizes 1 and

2 (rows). The left column shows the distribution for any event and the right column

shows only PM events.

90

6 Userspace PM Access Accounting 6.6 Evaluation

Figure 6.8: pc61 Bandwidth and CPU cost of a fio devdax benchmark. We compare

devdax as the baseline with enabled accounting (EPA devdax) and with core special

ization (EPA+pin devdax).

150 μs, and 300 μs for the sampling intervals 1999, 4999, and 9973. After filtering

for PM events, a new pattern emerges. Secondary peaks are now visible at multiples

of the latency at the primary peak, which follows from the filtering: If an event is a

DRAM event, another PM event can appear earliest after one sampling period.

Batching events with a buffer size of two events (top row) doubles the observed

latencies, with new median latencies of 120 μs, 300 μs, and 590 μs. However, since

there are now two events in each batch, there is a higher likelyhood of observing at

least one PM event in every batch. The secondary latency peaks for the PM events

therefore disappear in the top right plot.

Given these results, we recommend a buffer size of one event and controlling the

latency/overhead tradeoff only by choosing a sampling interval. The sampling

interval is roughly proportional to both processing time per GiB of written data and

latency. In contrast, a larger buffer size increases latency proportionally, but has

only a minor effect on processing time.

6.6.3 Scheduling

We evaluate our scheduling based on core specialization with the fio devdax

benchmark (see Section 4.2.3). In Figure 6.8, we compare three configurations:

plain fio without accounting or scheduling (devdax), fio with accounting but no

scheduling (EPA devdax), and fio with accounting and scheduling (EPA+pin devdax).

For the accounting, we set a sampling interval of 9973 and a buffer size of one event.

We configure our scheduling to pin PM-heavy processes to two cores and record fio

bandwidth and CPU cost (see Chapter 4).

Comparing devdax with and without accounting, we observe that the accounting

has no noticeable effect on the bandwidth or the CPU cost. This is consistent with

our previous measurements, as the expected overhead is less than 50 ms per GiB

(Figure 6.6).

The automatic pinning achieves the intended result. The total bandwidth remains

stable after five jobs, whereas it drops without our scheduling. Since the pinned fio

jobs run only on two CPUs, our approach also effectively limits the CPU cost.

91

6 Userspace PM Access Accounting

6.7 Related Work
Multiple previous works have proposed using PEBS to monitor memory accesses.

Nonell et al. [97] show that monitoring load addresses with PEBS is feasible in an HPC

environment. They evaluate very small sampling intervals (64 to 256) with larger

PEBS buffers (32 KiB, fitting 170 samples), showing a maximum overhead of 10%.

They propose using the PEBS data to detect access patterns and steer allocations in

heterogeneous-memory HPC systems.

HeMem [102] uses PEBS to inform tiered memory management. HeMem samples

memory load and store instructions to track per-page access counts and classify

pages as hot or cold for tiering. In contrast to our approach, HeMem does not estimate

bandwidth from the samples.

As an alternative to PM monitoring with PEBS, Dicio [100] uses performance counters

for write pending queue delay to detect PM overload. In contrast to our approach,

Dicio cannot attribute this overload to specific processes. Instead, it distinguishes

between latency-critical and best-effort jobs. In an overload situation, all best-effort

jobs are throttled to ensure sufficient bandwidth for the latency-critical jobs.

Finally, Gottschlag et al. [47] use core specialization to isolate AVX-512 workloads.

When executing AVX-512 instructions, some CPUs reduce their frequency, which

can slow down unrelated processes. The core specialization therefore isolates the

frequency reduction to specific cores. This is in contrast to our approach, where

core specialization reduces load at PM as a shared resource.

6.8 Discussion
Once the operating system hands out a DAX mapping to a userspace application,

it cannot control access to this mapping anymore. This is problematic for PM

mappings, since PM suffers from overload if too many threads access it in parallel.

In this chapter, we propose an approach for monitoring access to DAX mappings

by sampling memory access instructions. We show that our approach can mitigate

parallel PM accesses with automatic core specialization.

Our approach fulfills the requirements set in Section 6.1. PEBS samples are collected

for each CPU core, allowing association with individual processes and threads. By

translating virtual addresses, the approach can associate memory accesses with an

arbitrary number of memory devices based on their physical address ranges.

Our evaluation shows that the choice of sampling interval can effectively control the

latency–overhead trade-off. At an event latency of under 500 μs, an overhead of less

than 50 ms per GiB of data written to PM can be expected.

The primary challenge for the accuracy of our approach is the CPU caches. Since

PEBS sampling occurs at the CPU core, there is no way to detect whether a store

remains in the CPU caches or is immediately flushed to memory. Further, cache-

line flush instructions are hard to account for, since they are not uniformly sampled

by the PEBS hardware.

As future work, we expect that future (CXL) memory devices could support the

operating system in providing more accurate accounting mechanisms with lower

92

6 Userspace PM Access Accounting 6.8 Discussion

overhead. At the device level, there is no risk of inaccuracy due to CPU caches.

However, the challenge of providing process association remains. We propose that

future PM devices allow associating device memory ranges with address space

identifiers and provide counters for read and write accesses for each address

space. The operating system could then provide accounting information as in this

chapter by arming and reading the on-device counters when mapping pages and

scheduling processes.

93

6 Userspace PM Access Accounting 6.8 Discussion

94

Chapter 7

Crash Consistency Testing

Achieving crash consistency in persistent memory applications is difficult. As

discussed in Section 2.4, the developer must carefully insert cache line flush and

memory fence instructions. These instructions do not affect the correct operation

of the application during normal runtime. Rather, they have a visible effect only in

the event of a crash.

Crash consistency testing tools allow developers to verify the crash behavior of their

applications. In this chapter, we review previous work on crash consistency testing.

In particular, we describe the crash consistency pipeline that multiple previous

works implement. Suvi, the crash consistency tester we introduce in Chapter 8, also

builds on top of this pipeline. Finally, we describe crash consistency testing tools

related to Suvi.

7.1 Failure Points and Crash Images
An application is crash-consistent if it never produces inconsistent PM contents

in the event of a crash. To test applications for this property, we need to consider

where in the program code the application could crash (failure points) and what the

PM at these points might contain (crash images).

Since the time of a crash cannot be predicted or controlled, we need to consider

every instruction of the program as a potential failure point for testing. However, we

can reduce the number of failure points for testing by combining equivalent points.

Instructions other than PM primitives or those writing to PM do not directly change

PM contents. Testing failures at these instructions will always yield the same results

as testing at adjacent PM primitives or PM stores. Note that we cannot generally

detect such instructions statically, since the addresses of memory accesses or cache

flushes are calculated at runtime.

Crash consistency testing approaches that consider reordered PM modifications

(e.g., due to out-of-order execution or caches; see Section 2.4) can further reduce

failure points to ordering points. These are instructions, such as memory fences, that

act as a barrier for out-of-order execution.

At the failure points, a crash consistency tester verifies that no inconsistent PM

states are possible based on PM modifications that are not completely persisted (i.e.,

95

7 Crash Consistency Testing 7.1 Failure Points and Crash Images

flushed from caches and ordered with a fence). To confirm crash consistency bugs,

it can generate crash images as witnesses. A crash image represents possible PM

contents at a failure point. It is constructed by combining the fully-persisted PM

contents with in-flight modifications at the failure point. We discuss crash image

generation in Suvi in Section 8.2.

We distinguish two types of crash images. A complete crash image is a crash image that

includes all in-flight modifications at the failure point. There is always exactly one

complete crash image at every failure point. A partial crash image is a crash image

that contains only a subset of in-flight modifications. If there is more than one PM

modification at a failure point, multiple partial crash images may exist. Note that

neither complete nor partial crash images are unique and may appear at multiple

failure points.

To check a crash image for consistency, its contents need to be recovered by the PM

application.

7.2 Types of Crash Consistency Bugs
We distinguish three types of crash consistency bugs: logic bugs, missing flushes,

and ordering bugs. Discussing these types separately is useful because they require

different strategies for detection.

7.2.1 Logic Bugs

A PM application has a logic bug if a broken PM state appears when modifications

are applied in strict program order. Such a bug appears regardless of the use of

PM primitives. They are not caused by missing cache flushes or memory fence

instructions [81].

Figure 7.1 shows an example of a logic bug in a file system.23 The rename file system

operation should replace the destination file atomically if it exists [14]. A broken

implementation might remove the destination file first and then perform the rename

operation. If protected by a lock, such an implementation would behave correctly

at runtime but would produce an invalid crash state in which the destination file is

missing.

LeBlanc et al. identify logic bugs as the most common type of bug in PM file

systems [81]. To detect logic bugs, it is necessary to examine the semantic state

stored on PM rather than only analyze the use of PM primitives.

function rename_replace(old, new)

remove(new)

rename(old, new)

rename_replace(A, B)

initial state 1

💥
state 2

A, B A B

Figure 7.1: Pseudocode example of a logic bug in a PM file system. The function

should atomically replace file new with old, but an intermediate state exists where

new does not exist.

23We found a similar logic bug in NOVA’s rename function with Vinter [68].

96

7 Crash Consistency Testing 7.2 Types of Crash Consistency Bugs

7.2.2 Missing Flush

PM applications need to use cache flushes or non-temporal store instructions to

ensure that their modifications reach PM. If a modification is missing a flush, it may

remain in the volatile CPU caches and will be lost in the event of a crash.

An unflushed modification is not necessarily a correctness bug, since PM applica

tions can use PM to store transient data. However, given the lower performance

of PM compared to DRAM, using PM for transient data could still be considered a

performance bug.

Missing flushes can be detected with approaches such as symbolic execution [96]

or trace analysis [46, 86]. These approaches cannot determine whether the missing

flush constitutes a correctness bug. In Vinter and Suvi, we detect correctness bugs

due to missing flushes by checking whether multiple semantic states are possible

after an operation.

7.2.3 Ordering Bug

Modifications may not reach PM in the order of the program’s store instructions. As

described in Section 2.4.1, there are multiple sources of reordering. The cache can

write back cache lines in an unpredictable order due to conflicts. Store instructions

(e.g., non-temporal stores on x86) may be weakly ordered and thus subject to

reordering by the CPU. PM programs need to use memory fences to enforce a specific

ordering.

An ordering bug arises when memory fences are missing in a way that allows broken

states on PM. Figure 7.2 shows an example where fences are critical to avoid an

ordering bug. Since the valid flag protects accesses to the data, it must not be set to

1 while the data is not completely written.

There are multiple approaches for finding ordering bugs in PM applications. An

obvious, but often impractical idea is to generate crash images with all possible

orderings of in-flight modifications. This approach suffers from combinatorial

explosion: For 𝑁 independent writes, there are 2𝑁 possible crash images. Crash con

sistency testing tools that generate crash images to detect ordering bugs therefore

need a strategy for reducing the search space.

Alternative approaches that do not rely on testing crash images include manual

annotation of persistence checks (PMTest [86]) or detecting dependencies between

modifications and the recovery code (XFDetector [85]).

F
E
N
C
E

F
E
N
C
E

1. Ensure valid = 0

valid = 0

2. Write data

D
A
T
A

valid = 0

3. Set valid = 1

D
A
T
A

valid = 1

Figure 7.2: Steps when writing a journal entry (compare Section 2.4). Without

separating the modifications to the data and the valid flag with fences, we would

encounter an ordering bug.

97

7 Crash Consistency Testing 7.2 Types of Crash Consistency Bugs

PM Program

Test Case

Trace Analysis

Crash Image

Generator
TesterTracer

Bugs

Trace Crash

Images

Trace PM Sim.

Figure 7.3: Components of a generic crash consistency testing pipeline. Variants of

such a pipeline are found in most crash consistency testing tools.

7.2.4 Performance Bugs

Use of PM primitives can have an effect on performance. For example, memory

fences act as a barrier to out-of-order execution, stall the CPU pipeline and reduce

utilization of the core’s execution units. Application developers therefore generally

want to avoid unnecessary PM primitives. Since extra cache flushes or memory

fences do not affect the crash consistency of PM applications, we categorize these

cases as performance bugs.

Detection of performance bugs in previous work is generally restricted to simple

cases [45, 46, 85, 96]. These include cache flushes for cache lines without modifica

tions and memory fences without any pending stores to PM. However, the testing

tools cannot confirm whether these extra instructions actually harm performance.

7.3 Crash Consistency Testing Pipeline
A crash consistency testing pipeline has three primary stages, as shown in Figure 7.3.

The tracer performs a dynamic analysis of the tested application and creates a

trace of PM accesses and crash consistency primitives. The crash image generator

replays the trace, keeping track of PM contents and in-flight modifications. At failure

points in the trace, it generates crash images. The tester checks the crash images

for inconsistencies, usually by running a recovery program.

Besides the analysis based on crash images, crash consistency testing tools can

also analyze the trace directly for potential bugs. Trace analysis directly yields bug

reports from patterns in the trace or based on the PM and cache simulation during

replay. Since it does not use crash images as witnesses of a broken PM state, trace

analysis can generally only hint at bugs, but not confirm them.

We describe the crash consistency testing tools in the following section in terms of

the crash consistency pipeline in Figure 7.3. The authors of the tools might use other

terms (e.g., replayer instead of crash image generator) or combine some stages (e.g.,

crash image generator and tester).

7.4 Tracing Approaches
There are multiple approaches for tracing memory accesses and PM primitives. They

differ in how much overhead they cause and how much manual work is required

from the developer to set up tracing. Table 7.1 shows an overview of the approaches.

98

7 Crash Consistency Testing 7.4 Tracing Approaches

Approach black-box overhead risk of user error

Binary Translation 🗸 high none

Compiler Instrumentation 🗸 medium none

Function Tracing ✗ low medium

Manual Annotation ✗ low high

Table 7.1: Comparison of tracing approaches.

7.4.1 Binary Translation

A virtual machine (VM) with binary translation works by translating each instruction

from the source ISA to the host ISA. Virtualization with binary translation is possible

at the level of processes or for a full system. The primary purpose of such VMs is

to run programs compiled for a different ISA than the host ISA (e.g., x86 programs

on an ARM CPU). By inserting hooks into specific instructions during translation,

binary translation allows inspecting and tracing the execution of the VM.

Binary translation allows for black-box testing. It works with unmodified binaries.

As all instructions are translated, a tracer based on binary translation is guaranteed

to detect and trace all PM accesses and crash consistency primitives. However,

modifications may be necessary if the program uses instructions that are not

supported by the emulator. For example, QEMU [28] does not support AVX-512

instructions, so these instructions need to be replaced for testing.24

The main drawback of binary translation is its high overhead.25 Every instruction

needs to be translated, not just traced instructions. To detect PM accesses, every

memory access instruction needs instrumentation.

Examples of emulators with full system virtualization usable for tracing are

QEMU [28] and PANDA [38]. Intel Pin [88] implements userspace binary translation.

7.4.2 Compiler Instrumentation

The compiler can insert tracing hooks while compiling a program. This approach is

similar to binary translation in that tracing is applied automatically at the instruction

level. It therefore enables black-box testing with no risk of user error.

Compiler instrumentation introduces less overhead than binary translation since

the binary does not run in a virtualized environment, avoiding the need to rewrite

all instructions. Additionally, all instrumentation occurs statically at compile time.

However, the compiler in general cannot detect whether a memory access targets

PM or DRAM. It therefore must insert hooks for all memory accesses.

The main drawback of compiler instrumentation is that it is less generic than binary

translation. The target program must be available as source code in a programming

language supported by the compiler.

Witcher [45] is an example of a PM crash consistency testing approach that uses an

LLVM compiler pass to instrument programs for tracing.

24PM software often assumes that AVX-512 is available since it is supported by all CPUs that work
with Optane PM (see Section 2.1).

25Previous works have estimated an overhead between 5x and 20x [104].

99

7 Crash Consistency Testing 7.4 Tracing Approaches

7.4.3 Manual Annotation

Manual annotation allows the most flexibility and lowest overhead for tracing.

The developer manually inserts calls in the PM application to trace PM events.

Consequently, there is no unnecessary instrumentation. Support for both kernel

and userspace software is possible. Tracing high-level abstractions is possible, for

example PMDK transactions [19].

However, manual annotations carry a high risk of user error. There is no guarantee

that the annotations match the actual application behavior. Additionally, fully

annotating a PM application requires a large amount of effort from the developer.

PMTest [86] is a crash consistency testing tool that relies on manual annotation. We

describe it in Section 7.5.2.

7.4.4 Function Tracing

Function tracing instruments a program at the level of functions. Such instrumen

tation is possible with low overhead using mechanisms such as Linux Kprobes [70]

and Uprobes [40]. This approach is especially useful if the PM program uses an

abstraction layer such as PMDK [19] for accessing PM.

The primary challenge with this approach is translating high-level traced functions

to low-level PM primitives. Depending on the functions, this translation can require

considerable manual effort and carries a high risk of errors.

Chipmunk [81] is a crash consistency testing tool based on function tracing. It is

designed for testing PM file systems, where no common abstraction layer for PM

access exists. We describe its tracing approach in more detail in Section 7.5.6.

7.5 Crash Consistency Testing Tools
We now examine previous approaches to crash consistency testing of PM file systems.

Figure 7.4 shows a timeline of PM file systems and the crash consistency testing tools

that were evaluated on these file systems. Section 2.3 provides an overview of the

PM file systems. We describe previous approaches to crash consistency testing that

support file systems or that introduced ideas adopted in Suvi. Table 7.2 compares

the pipeline stages of these crash consistency testing tools. We describe each tool

in more detail in the following sections.

Kernelspace

Cross-Media

(PM+NVMe)

Userspace

File Systems

Other

F
il

e
 S

ys
te

m
s

C
C

 T
o

o
ls

year2014 15 16 17 18 19 20 21 22 23 24

PMFS

Yat

NOVA
N.-Fortis

Strata

SplitFS

Assise

PMTest

XFDetector
Witcher

Vinter
Chipmunk

Mumak

WineFS

ZIL-PMEM

OdinFS

Trio

Suvi

Ziggurat

Figure 7.4: Timeline of PM file systems and crash consistency (CC) testing tools.

Underlines indicate the file systems each tool was evaluated on.

100

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

Tracer
Tool

Crash

Images
Tester

Trace

AnalysisApproach K

Yat [80] hardware VM 🗸
random

subsets

run recovery,

fsck
-

PMTest [86]
manual

annotation
🗸 - -

manual che-

cking rules

XFDetector [85]
binary

translation
✗ no subsets run recovery

post-failure

reads

Witcher [45]
compiler

pass
✗

likely-

correctness

output

equivalence

performance

bugs

Vinter [68]
binary

translation
🗸

reads

heuristic

check unique

states
-

Chipmunk [81]
function

tracing
🗸

function

coalescing

oracle state

comparison
-

Mumak [46]
binary

translation
✗

deduplication

by stack trace

check

recovery

detect

patterns

Table 7.2: Comparison of crash consistency testing tools. Column “K” indicates

kernel support; these tools were used to test PM file systems.

7.5.1 Yat

Yat [80] was the first crash consistency testing tool for PM file systems. It was

specifically developed for testing PMFS [41]. Yat introduces the basic crash consis

tency testing pipeline, consisting of a record phase (called tracer in this thesis) and

a replay phase combining crash image generation and testing of images.

Yat was introduced long before real systems with PM were on the horizon. Its PM

model therefore included a pm_wbarrier instruction (later called pcommit, see

Section 2.4.1) for flushing data between the memory controller and the PM modules.

Compared to Suvi, it implements a simpler crash consistency model that does not

take global store order into account.

Yat’s record phase runs the test case in Intel’s internal hypervisor. Like Suvi, it

therefore has full support for kernelspace file systems. Unlike Suvi, Yat’s tracing is

not based on binary translation. The hypervisor is based on hardware virtualization

and traces memory accesses with page table permissions and exceptions. For tracing

cache flush and pm_wbarrier instructions, it requires recompilation of the traced

software to insert illegal instructions.

Yat’s replay phase generates crash images at every pm_wbarrier instruction by

selecting subsets of active writes. To combat combinatorial explosion, it implements

a simple heuristic that coalesces adjacent writes to the same cache line into a single,

atomic write. This heuristic is aimed at memcpy loops but may cause false negatives.

If the number of subsets is still too large, Yat selects a limited number of random

subsets.

101

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

Yat tests each crash image by loading it in the VM, running the recovery, and verifying

consistency with an fsck application. In contrast to Suvi and other later crash con

sistency testers, it does not compare the output state across different crash images.

The authors used Yat to test PMFS during its development. They do not describe the

test cases they used for the record phase.

7.5.2 PMTest

PMTest [86] is a crash consistency testing tool based on manual annotation. At each

PM access, cache flush, and memory fence, the developer needs to insert calls into

PMTest’s library. In addition, PMTest needs checking rules in the application under

test. These rules assert a particular state about PM objects, such as persistence or

ordering with other objects. The PMTest library serializes each PM access, cache

flush, memory fence, and checking rule as a trace entry.

When running an annotated application, the PMTest library passes trace entries

to the PMTest checking engine running in the same process via shared memory.

PMTest also supports kernelspace PM applications. In this case, the kernel library

passes trace entries to a userspace PMTest checking engine via a FIFO.

The checking engine processes the trace entries with multiple worker threads. It

replays the PM accesses to shadow memory while keeping track of the persistence

status of all modified addresses. When encountering a checking rule, the checking

engine verifies the assertion. If any assertion fails, PMTest yields a bug.

We categorize PMTest as a form of trace analysis. Even though it replays the trace

while keeping track of PM contents, it never yields crash images.

PMTest is relevant to this thesis since the authors demonstrate its use on PMFS [41].

However, we argue that PMTest’s required manual annotation by the file system

developer is error-prone and may lead to missed bugs. Later approaches to crash

consistency checking, including Suvi, feature black-box testing and automatic bug

detection.

7.5.3 XFDetector

XFDetector [85] is a crash consistency testing tool that introduces the concept of post-

failure tracing. It detects bug by matching read accesses of the post-failure recovery

procedure with pre-failure writes, cache flushes, and fences.

XFDetector’s tracer is based on userspace binary translation with Intel Pin [88]. It

therefore does not support testing kernelspace PM file systems. In addition to low-

level tracing of PM accesses, cache flushes, and fences, XFDetector can also trace

PMDK [19] library calls. The tracer is used both for pre-failure tracing of the test

case, and for post-failure tracing of a recovery procedure.

XFDetector generates one crash image containing all modifications at each failure

point. The developer needs to manually annotate a region of interest, in which

XFDetector automatically inserts failure points before every ordering point (fences

or PMDK writeback functions). In addition, the developer can annotate additional

failure points.

102

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

For each crash image, XFDetector creates a post-failure trace of the application’s

recovery program. It then performs trace analysis with both the pre-failure and the

post-failure trace. For every read access in the post-failure trace, it checks for cross-

failure races with writes in the pre-failure trace. XFDetector replays both traces while

tracking the persistence state of all modified memory locations. If a value read in

the post-failure trace was not properly persisted in the pre-failure trace, then the

application has a cross-failure race. However, not all cross-failure races are bugs.

XFDetector requires manual annotation of commit variables, for which cross-failure

races are allowed since they protect other data.26

While XFDetector cannot test PM file systems, its idea of post-failure tracing was

influential for Vinter’s reads heuristic (described below), which Suvi inherits.

7.5.4 Witcher

Witcher [45] is a crash consistency testing tool that introduced likely-correctness

conditions for crash image generation and output equivalence checking for testing crash

images.

Witcher’s tracing is implemented as an LLVM compiler pass that creates an instru

mented binary. Besides memory accesses, cache flushes, and fences, Witcher also

traces control flow instructions.

To generate crash images, Witcher first analyzes data and control dependencies with

static analysis of the program binary (during instrumentation) and with dynamic

trace analysis. Based on these dependencies, Witcher infers likely persistence

orderings between memory locations. Witcher’s authors call the set of inferred

persistence orderings for the whole trace likely-correctness conditions. In contrast to

the other approaches we describe here, Witcher requires test cases that not only

write to PM, but also read the data back, so that the trace contains appropriate data

and control dependencies.

Witcher then replays the trace while keeping track of PM contents. If a PM state at a

fence could violate a likely-correctness condition, Witcher yields a crash image that

includes the violating modifications. However, such a violation is not always a bug.

To confirm a bug, Witcher performs output equivalence checking. The authors imple

ment this check specifically for testing durable linearizability in key-value stores. It

requires two oracles. The first oracle records the output of the test case (i.e., a query

of the key-value store) without a crash, and the second oracle records the output

with the crashing operation rolled back. Witcher reports a bug if the output from

the recovered crash image does not match the output of one of the oracles.

Witcher also implements trace analysis for performance bugs. It detects unnecessary

flushes and fences.

Although Witcher’s output equivalence checking is limited to key-value stores, it

has inspired similar mechanisms for confirming crash consistency bugs in later

approaches for testing file systems. Vinter and Suvi confirm atomicity bugs by

identifying unique states for each operation. Chipmunk implements an oracle for

file system operations.

26See our example in Section 2.4, where the “valid” flag is a commit variable.

103

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

7.5.5 Vinter

Vinter [68] is our original approach to black-box crash consistency testing of PM

file systems. It originated from the master’s thesis of Samuel Kalbfleisch [69]. We

extend Vinter to Suvi in this thesis.

Vinter’s tracer is based on full system emulation with binary translation. It uses

PANDA [38], which offers hooks for memory accesses and arbitrary instructions.

Compared to Yat [80], Vinter does not require manual annotation of cache flushes

and memory fences and can trace unmodified file systems. Vinter’s tracer can

optionally capture stack traces for each trace entry, which help with debugging.

Similar to previous works, Vinter generates crash images by replaying the trace

and generating subsets at each fence. To avoid combinatorial explosion, Vinter

introduces a heuristic based on recovery reads. Like XFDetector [85], it performs

post-failure tracing with a fully-persisted crash image (i.e., including all current

modifications). Vinter then only considers modified cache lines that were read post-

failure for generating crash images with subsets. We improve this heuristic for Suvi

and describe it in more detail in Section 8.4.1.

Vinter’s tester loads crash images, runs recovery, and extracts a semantic state from

the file system. It then automatically detects two crash consistency properties,

single final state and atomicity, based on the number of unique semantic states.

Unlike Witcher’s output equivalence checking [45], Vinter does not require oracles

to discover states for comparison. Its crash image generation in combination with

a separate state extraction program guarantees that the initial and final states are

among the set of states for an operation. In Section 8.6, we describe this approach

in more detail and extend it with additional automatic reporting.

Vinter tests file systems with a set of 16 manually-written test cases, each covering

a basic file system operation. These test cases include traced hypercalls to delimit

the tested operation from setup code.

7.5.6 Chipmunk

Chipmunk [81] is a crash consistency testing tool specifically for file systems.

Chipmunk uses function-level instrumentation to trace PM accesses. It hooks into

the file system’s helper functions for writing data to PM using Kprobes [70] and

Uprobes [40]. For each of these functions, the developer needs to write handlers that

create appropriate trace entries.

Although this approach to tracing does not require any modifications to the tested file

systems, it requires in-depth knowledge of the tested file system and considerable

manual effort from the developer. As an example, the tracing code for NOVA has

around 1400 lines of code [82, chipmunk/loggers/logger-nova.c]. It traces four

functions (non-temporal memcpy and memset, helper functions for cache flushes

and memory fences). The tracing function for memcpy encodes that the underlying

Linux implementation does not properly flush some unaligned accesses, which is a

detail that the NOVA developers originally missed [68, §5.3.1]. In contrast, tracing

with binary translation as in Vinter and Suvi does not require such knowledge.

104

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

Chipmunk’s crash image generation is similar to previous works. It replays the trace,

reconstructs PM contents, and creates images with a subset of in-flight modifications.

Chipmunk reduces the search space by coalescing multiple writes originating from

the same traced function (e.g., a call to memcpy). Otherwise, it caps the number of

writes considered for subsets.

To test crash images, Chipmunk mounts the file system and compares its contents to

an oracle. The oracle runs the original test case and records the file system contents

at each system call. If the file system contents of the crash image do not match the

contents given by the oracle, Chipmunk reports a bug.

Chipmunk features automatic workload generation using ACE [93] and Syzkaller [7].

With ACE, the authors generated all workloads consisting of up to two file system

calls, and a subset of workloads with three calls. Syzkaller automatically generates

random system call sequences guided by code coverage information. For Chipmunk,

the authors restricted Syzkaller to generate sequences of file system operations.

Compared to Vinter and Suvi, Chipmunk achieves higher coverage of test cases with

its automatic workload generation. Vinter and Suvi do not require a separate oracle

for comparing file system states. Instead, they rely on hypercalls in the manually-

written test case that mark the start and end of the tested operations.

7.5.7 Mumak

Mumak [46] is a crash consistency testing tool focused on fast black-box analysis.

Mumak’s tracing uses binary translation of userspace software with Intel Pin [88]. It

traces PM accesses, flushes, and fences. For each failure point (flushes and fences),

Mumak also records a stack trace and inserts it into a failure point tree. The failure

point tree represents all code paths that lead to failure points (the leaves of the tree).

When replaying the trace, Mumak only generates a crash image if the corresponding

leaf in the failure point tree has not been visited yet. It therefore deduplicates failure

points by stack trace. The crash images always contain all modifications. Mumak

does not generate images with subsets. However, it inserts failure points at cache

flushes in addition to fences.

Compared to most previous approaches to crash image generation, Mumak therefore

significantly reduces the required effort: It generates crash images at fewer failure

points due to deduplication, and it generates exactly one crash image per failure

point.

Mumak tests crash images by running a recovery program, reporting a bug if the

recovery fails. It does not consider the image’s semantic state.

Since Mumak generates and tests fewer images with its testing pipeline, there is

a high chance of missing bugs. For this reason, Mumak’s authors propose trace

analysis to detect patterns of PM misuse. However, in contrast to the testing pipeline,

trace analysis cannot confirm that a detected pattern actually is a bug in the tested

application.

In Section 8.4.3, we adopt Mumak’s approach for Suvi, allowing fast crash consis

tency testing of PM file systems.

105

7 Crash Consistency Testing 7.5 Crash Consistency Testing Tools

106

Chapter 8

Suvi: Crash Consistency Testing for

PM File Systems

In this chapter, we introduce Suvi, our approach to crash consistency testing for PM

file systems. As discussed in Chapter 7, there are different types of PM software, which

may exhibit different types of crash consistency bugs. Suvi features a testing pipeline

with replaceable yet interoperable components. Table 8.1 shows an overview of

these components. We examine each of these components in the following sections.

An important goal of Suvi is the ability to test unmodified software. Any modification

for testing, such as inserting trace points or compiling a special configuration of

kernel components for userspace testing, might change the analysis (see Section 7.4).

Suvi’s tracer enables black-box testing by observing the execution of a file system in

a virtual machine. The file system’s underlying storage medium dictates the choice

of tracer. For PM tracing, Suvi needs to insert hooks into all instructions that access

PM or affect instruction ordering. The PM tracer is thus based on binary translation.

In contrast, the hypervisor provides NVMe as an emulated device. The NVMe hooks

are therefore placed in the hypervisor and work with hardware-accelerated VMs

as well.

The crash image generator combines stores to PM to form crash images. Crash

images are possible contents of the PM after a crash, according to the platform’s

crash consistency semantics. The primary challenge of the crash image generator

is combinatorial explosion. With a large number of pending store operations, it is not

feasible to generate all possible crash images. Suvi’s two crash image generator

Tracer Crash Image Generator Tester

• PM only

(binary translation)

• NVMe only

(hardware-accelerated)

• NVMe and PM

(binary translation)

Suvi-Fast Fast crash

image generation

(finds logic bugs)

Suvi-Reads Heuristic-

based crash image

generation (finds

ordering bugs)

• Semantic state extrac

tion and analysis

• Trace analysis

Table 8.1: Suvi's pipeline options

107

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

algorithms aim to reduce the search space without missing images that exhibit bugs.

The first algorithm, Suvi-Fast, does not combine subsets of pending stores. Instead,

it generates images with stores strictly in program order, which is sufficient for

finding logic bugs. The second algorithm, Suvi-Reads, aims to find ordering bugs

and thus must consider subsets of pending stores. It reduces the search space with

a heuristic tailored to common PM access patterns, such as journaling.

Finally, the tester examines crash images to detect crash consistency violations. It

loads each crash image in a virtual machine, then runs recovery code and a state-

extraction program that prints a serialized representation of the state on PM. By

examining unique states, the tester can automatically detect intermediate states

that must not appear for atomic operations.

Suvi also implements a simple trace analysis. It can detect patterns in the trace that

indicate certain bugs, including performance bugs and missing flushes.

8.1 Tracer
The first stage of Suvi’s crash consistency analysis is to observe a workload’s

interaction with persistent storage. The resulting artifact is a trace file that later

stages use for their analysis.

We identify a number of requirements for the tracer:

Black-box testing. We want to test unmodified applications. In particular, we do

not want to require a manual definition of tracing points from the application

developer. See Section 7.4 for a discussion of tracing approaches.

Kernel-mode software. Suvi is an approach for testing file systems, which are often

implemented as a kernel component. The tracer, therefore, needs to support

tracing code running in kernel mode.

Performance. The tracer should not unnecessarily slow down the workload, as a

faster tracer allows testing more test cases.

Debugging metadata. Besides the storage-access trace, we want to capture

additional information that helps later analysis stages or the developer in

understanding found bugs.

We also identify non-goals:

Multicore testing. Suvi is not a tool for detecting race conditions and other multicore

correctness issues. We assume that the tested software is already free from race

conditions as a prerequisite for crash consistency.

Figure 8.1 shows a high-level overview of the tracer design. The tracer plugin,

running in the hypervisor, receives PM and NVMe events and serializes them into a

trace file. Collection of PM and NVMe events is independent of each other and can

be enabled separately. In the following sections, we have a detailed look at these

tracing approaches.

108

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

QEMU

NVMe

events

PM
events

Trace

VM

NVMe

Device

Tracer

Plugin

Figure 8.1: Overview of the tracer. Hooks in the VM’s translated code capture PM

events, and hooks in the virtual NVMe device capture NVMe events. The tracer plugin

receives these events and serializes them into a trace file.

binary

translation

source instruction target instruction Tracer Plugin

mov [rdx], rax Hook

⋯

⋯

Hook Function

• check address

• create trace entry

Figure 8.2: The PM tracer works by inserting hooks into the translated code. In this

example, the emulator translates a mov instruction with a hook that calls into the

tracer plugin.

8.1.1 PM Tracing

The CPU accesses PM directly with load and store instructions. Additional ordering

instructions, such as cache line flushes and memory fences, ensure that stores reach

PM in a particular order. Correct ordering is critical for achieving crash consistency.

Suvi’s PM tracer uses virtual machines with dynamic binary translation to trace

these instructions. With binary translation, Suvi can perform black-box analysis of

unmodified applications.

Figure 8.2 shows an overview of the tracer. With dynamic binary translation, an

emulator translates instructions from a source ISA to a target ISA. This translation

provides the possibility to insert additional code and to hook relevant instructions.

The hooked instructions fall into three categories, as shown in Table 8.2: write, cache

flush, and memory fence. The hook functions collect parameters from the hooked

instruction and create a trace entry if the instruction is relevant. Write and cache

flush events are relevant when the memory mapped at their associated address is

PM. We do not trace fences if there are no other traced events since the last fence.

For write events, the trace contains the physical address of the store instruction,

the number of written bytes, the written bytes, and whether the instruction was

non-temporal. On x86, the written data has a size of 1 to 64 bytes, depending on the

instruction and the register it references. The exact instruction does not matter for

the analysis. We only need to identify non-temporal instructions that do not write

to the CPU caches. The tracer also optionally supports read events with similar

109

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

properties. One of Suvi’s crash image generation algorithms, Suvi-Reads, uses read

events for its heuristic (see Section 8.4.1). Otherwise, the tracer does not record reads.

The flush events are more complex since the underlying x86 instructions differ

slightly in their semantics.27 For this reason, we store the assembler mnemonic in

addition to the physical address of the flush. The crash image generator can then

use this information to simulate the behavior of the respective instruction.

Finally, fence events do not carry any additional information for the crash image

generator. The tracer still records the mnemonic to aid users in understanding

the trace.

Metadata

For all event types, the tracer records metadata. Metadata is not required for detection

of crash consistency bugs but is useful for users of Suvi debugging crash consisten

cy violations. Suvi records the following metadata for PM traces:

Program counter. The program counter is stored in the x86 register rip. Since

reading a VM register is cheap, the tracer includes the program counter for

every PM trace entry.

Stacktraces. For all event types, the tracer can optionally record a stacktrace by

following frame pointers. The frame pointers form a chain on the stack with the

initial pointer stored in the rbp register on x86 [87]. The tracer can therefore

follow the frame pointers without any knowledge about the running application,

in contrast to more advanced stack unwinding techniques such as DWARF [42].

Compilers often omit frame pointers to improve performance [48]. However,

they are always enabled in the Linux kernel, making them available for our

file system analysis. Since unwinding the stack with frame pointers requires

multiple VM memory accesses, recording stacktraces slows down the tracer.

Users can therefore enable stacktraces if needed.

Besides their use for debugging, stacktraces are required for Suvi-Fast, one of Suvi’s

crash image generation algorithms (see Section 8.4.3).

8.1.2 NVMe Tracing

NVMe is an asynchronous, command-based protocol. The operating system writes

commands into a ring buffer and then waits until the NVMe device writes a

corresponding completion into another ring buffer. An NVMe tracer thus needs to

capture these commands and completions. We describe the relevant parts of NVMe

in Section 2.4.2.

Since Suvi runs its test cases in a virtual machine, the operating system interacts with

a virtual NVMe device that is part of the hypervisor. As discussed in Section 2.4.2,

we configure a “worst-case” NVMe device with a volatile write cache, a block size of

512 bytes, and a maximum power-fail atomicity of one block. Suvi’s NVMe tracer

uses hooks in this virtual NVMe device to assemble trace entries (Figure 8.3).

27cflushopt and clwb are weakly ordered, whereas clflush is strongly ordered. See
Section 2.4.1.

110

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

Type Parameters and Filters Example x86 Instructions

write

(read)

• Physical address: u64

filter: within PM area

• Size: 20 to 26 bytes

• Data: [u8]

• Non-Temporal: bool

mov (temporal)

movnt (non-temporal)

cache flush • Physical address: u64

filter: within PM area

• Mnemonic:

(clflush/clflushopt/

clwb)

clflush

clflushopt

clwb

memory

fence

• filter: have writes since last

fence

sfence

mfence

Table 8.2: Overview of PM trace entry types.

command

completion

VM virtual NVMe device Tracer Plugin

N
V

M
e

 r
in

g
b

u
fs

Hooks

• command

• I/O

• completion

Hook Functions

• collect command,

data, completion

• create trace entry

Figure 8.3: The NVMe tracer uses hooks in the request handling of a virtual NVMe

device. These hooks call into the tracer plugin, which assembles a trace entry for

each request.

The NVMe trace has three events named read, write, and flush, listed in Table 8.3.

They correspond to NVMe commands with the same names. As with the PM trace,

only write and flush commands are relevant for crash consistency testing.

A write event includes the offset of the write on the SSD, the size of the write, and

the written data. The offset is traced as a byte offset and is always a multiple of the

SSD block size.

Similar to the PM tracer, the NVMe tracer can optionally trace read events with the

same properties.

The flush events do not require any additional data, since NVMe flush commands

apply to the whole SSD and are not scoped to specific addresses.

Type Parameters and Filters

write

read

• Offset in bytes: u64

• Size in bytes: u64

• Data: [u8]

flush no parameters

Table 8.3: Overview of NVMe trace entry types.

111

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

The NVMe specification includes more commands that modify data, for example

Write Zeroes. As discussed in Section 2.4.2, Linux file systems do not use these

commands. Suvi thus does not trace them. However, our approach permits tracing

additional NVMe commands if necessary.

8.1.3 Hypercalls

Suvi treats the test VM as a black box and does not know which programs or

operations are running in the VM. However, tests need to communicate some

information to indicate the current state of the test (i.e., whether it is running or an

error has occurred) and to distinguish different test phases. The tracer provides a

hypercall mechanism for this purpose.

Suvi supports four kinds of hypercalls:

Start. Indicates the start of the test case. To reduce tracing overhead during VM

startup, the tracer starts tracing events only after this hypercall.

Success or Fail. Indicates that the test case finished successfully or encountered

an error. The tracer expects one of these hypercalls as a signal to stop the VM.

Checkpoint <ID>. A test case can use checkpoints to separate different operations

within the test. The checkpoints are numbered. The checkpoint hypercall carries

the checkpoint identifier as an additional argument.

Listing 8.1 shows an example of how these hypercalls are used within a test case.

8.1.4 Discussion

Suvi’s tracer enables black-box testing of unmodified PM file systems, including

userspace and kernelspace software. The primary challenge is performance, since

binary translation introduces a large overhead compared to native execution. In

Section 9.1, we discuss how we ensure that the tracing routines add as little overhead

as possible on top of the binary translation.

The NVMe tracer does not require binary translation, since its hooks are located in

the hypervisor’s virtual NVMe device. However, this property introduces a different

limitation. NVMe is an asynchronous protocol that allows implementations freedom

hypercall start

try:

 # Set up test environment by initializing and mounting the file system.

 mkfs /dev/pmem0

 mount /dev/pmem0 /mnt

 hypercall checkpoint 1

 test_operation_1 /mnt # First operation between checkpoints 1 and 2

 hypercall checkpoint 2

 test_operation_2 /mnt # Second operation between checkpoints 2 and 3

 hypercall checkpoint 3

 # End of test: indicate success.

 hypercall success

catch:

 # If any previous operation failed, communicate test failure.

 hypercall fail

Listing 8.1: Pseudo-code example of a test case using hypercalls to communicate

its state with Suvi.

112

8 Suvi: Crash Consistency Testing for PM File Systems 8.1 Tracer

Persistent Memory

Cache (volatile)

Images

Trace

write

flush

fence

write

flush

fence

Figure 8.4: The crash image generator replays the trace and keeps track of volatile

data in caches and persisted data in PM. At certain points, it generates crash images

by combining PM contents with volatile data. A colored square represents a unit of

data that can be written atomically.

in how they process commands. In particular, an SSD may delay and reorder

commands. Since our approach hooks a virtual NVMe device, it does not explore

this freedom. QEMU’s NVMe device, as used by Suvi’s implementation, processes

commands synchronously and in order. Therefore, Suvi cannot detect bugs that

stem from improper sequencing of NVMe commands and completions.

8.2 Crash Image Generator
Suvi’s crash image generator takes a trace file and replays its entries while keeping

track of the contents of non-volatile memory (both PM and NVMe) as well as caches.

Its output is crash images, which are potential contents of the non-volatile memory

in the event of a crash at a certain point in the trace.

Figure 8.4 shows an example. The trace starts with a write of three data units (blue

squares, second row), followed by flush and fence operations. At this point, Suvi treats

these writes as volatile. Due to out-of-order execution and spurious cache flushes,

a subset of the writes according to the system’s crash consistency semantics may

reach PM in the event of a crash. The resulting crash images are thus a combination

of PM contents (orange squares, first row) and a subset of the new writes. After the

fence, all flushed writes move to PM and are safe in the event of a crash.

In the following sections, we first describe Suvi’s underlying model for generating PM

crash images. This model describes how to replay the trace and defines the search

space for crash images. We then describe Suvi’s algorithms for efficient crash image

generation. Suvi-Reads efficiently explores fine-granular reorderings of writes and

allows detection of misuse of PM primitives. It works by analyzing read accesses of

a recovery procedure. Suvi-Fast allows a fast analysis for logic bugs by generating

fewer crash images. For cross-media file systems, we then describe how to generate

NVMe crash images and how to combine these with PM crash images.

8.2.1 Model Goals

We set the following goals for the PM and NVMe simulation:

Accuracy. The model should be as accurate as possible with respect to the specified

hardware behavior. In particular, it should not generate crash images that are

impossible according to the specification.

113

8 Suvi: Crash Consistency Testing for PM File Systems 8.2 Crash Image Generator

Fast trace processing. Individual trace entries should be efficient to process. For

example, the initialization of a NOVA file system of size 5 MiB results in a trace

containing around 300 000 entries.

Fast crash image generation. The internal state of the crash image generator

should allow fast combination of pending writes into crash images.

8.2.2 Crash Image Metadata

The tester, Suvi’s final testing pipeline stage, must be able to associate crash images

with a specific failure point. This is necessary, for instance, to analyze crash states

for each logical operation in the test (indicated by checkpoints in the trace). Suvi

therefore stores crash metadata with every crash image.

The crash metadata contains the following information:

• A cryptographic hash of the crash image data, uniquely identifying the image.

• Results from Suvi-Reads (Section 8.4.1): Which cache lines in the image were

modified and read by the recovery?

• A list of failure points at which this crash image was generated.

A failure point is identified with the following information:

• The location of the failure point in the trace.

• The current checkpoint identifier (Section 8.1.3).

• Information on how the crash image generator created the image, which is one of

the following:

‣ Nothing. No pending writes were included.

‣ Everything. All pending writes were included.

‣ Subset. A strict subset of the pending writes was included. This case includes

all information on how the subset was chosen. For PM images, this includes the

subset of cache lines, the write limit for ordered stores, and whether NT stores

were applied.

Line N

Line M

flushed

index

Persistent Memory

Image

NT Store
Map of dirty

cache lines
Cached Store

Cache Flush

set

Fence
apply stores

..
.

Figure 8.5: Suvi’s simulation of the PM write path. Stores are collected per cache

line. A flush sets an index in that cache line to mark all previous stores as flushed.

A fence applies all flushed or non-temporal stores to the PM image.

114

8 Suvi: Crash Consistency Testing for PM File Systems

8.3 PM Crash Image Model
Suvi needs to keep track of all stores that are not yet fully persisted and that may

be lost in the event of a crash. The instruction set architecture provides certain

guarantees about the ordering and behavior of such stores. We introduced these

semantics in Section 2.4.1. We now translate these semantics into a model that

satisfies the goals given above. We first introduce our model for systems with volatile

caches, then extend it to support systems with persistent caches (eADR).

8.3.1 Trace Replay

Figure 8.5 shows the main components and their interaction with trace entries.

Persistent memory is simulated with an in-memory image (i.e., a byte array). All

data in this image is fully persisted and survives crashes.

Store commands in the trace are not directly applied to the PM image, since they

might be lost after a crash. Suvi places them into a map of dirty cache lines. Each

dirty cache line maintains a list of stores and a flushed index into this list to track

cache flushes.

A cache flush instruction (clwb or clflushopt) marks all preceding stores to a

cache line as flushed by setting the flushed index to the length of the list of stores.

Note that Suvi’s model does not support the older clflush instruction, which has

additional ordering properties compared to clflushopt (see Section 2.4.1). These

ordering properties make clflush execute slower than clflushopt, which is why

PM software generally does not use this instruction.

Finally, a memory fence (sfence) clears all flushed and non-temporal stores from

the dirty cache lines and applies them to the PM image. If the line contained only

NT stores or if all cached stores were flushed, it is then removed from the map of

dirty cache lines. Otherwise, cached stores without a flush remain, and the flushed

index for this line is reset to zero.

The model as described so far can accurately replay the trace while keeping track of

dirty cache lines and PM contents. It is sufficient for basic crash image generation

and for detecting some types of bugs. For example, the PM image is a valid crash

image after processing each fence. Any dirty cache lines remaining after replay

indicate that the application is missing cache flush instructions. We now augment

additional information to this model to enable generation of valid crash images at

any position in the trace.

8.3.2 Failure Points

A failure point is a position in the trace for which Suvi generates crash images.

These crash images simulate a failure occurring at that position in the trace. Since

crashes can occur at any moment, we want to achieve a full coverage of failure

points. However, generating crash images after every trace entry would produce

many redundant images. Due to instruction reordering and CPU caches, the amount

of volatile data increases with every store command in the trace. Therefore, the set

of possible crash images also grows with every store command.

115

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

Memory fences are ordering points where the CPU halts execution until previous

memory accesses have completed. The amount of volatile data can thus shrink at

memory fences. To avoid missing crash images, it is necessary to generate images

before every memory fence.

With these observations in mind, we design Suvi to generate crash images only at

memory fences. By keeping track of dependencies between store entries, we ensure

that the crash images generated at the fence include all crash images that would be

generated for failure points since the previous fence. In the following, we describe

these dependencies as well as our data model for working with them.

For the detection of the single final state property (see Section 8.6.2), the tester

needs to determine the application state at the beginning and end of each operation

in the test. Suvi’s heuristics can decide to skip crash image generation at regular

failure points (see Section 8.4). We therefore introduce additional failure points at

each checkpoint that are never skipped.

8.3.3 Global Store Ordering

Regular stores on x86 are strongly ordered, even if they target different cache lines.

Since Suvi’s model collects stores per cache line, it needs to retain information about

global store order separately. Suvi therefore keeps a global counter of all regular

stores and includes its current value for each store. For crash image generation,

Suvi can collect stores from the dirty cache lines and restore the global ordering

with the store counters.

In addition to counter values in each store, Suvi also keeps track of the store counter

value at the last memory fence instruction. The fence counter ensures that Suvi

always includes unflushed but fenced stores in later crash images.

As an alternative design, we might consider keeping a global list of stores instead

of lists per cache line. Such a global list would preserve store ordering without

additional effort. However, this design would make cache-line-scoped operations,

such as cache flushes, more expensive to process, since they would need to scan

the global list to find stores to the same cache line. We therefore decided to collect

stores per cache line.

8.3.4 Mixed Non-Temporal and Cached Stores

In contrast to regular stores to caches, non-temporal stores are weakly ordered

and thus do not follow a global order. However, as discussed in Section 2.4.1, non-

temporal stores are ordered with other stores going to the same cache line. A cache

line receiving both types of stores thus restricts the global order of non-temporal

stores to that line.

Suvi models a sequence of stores with three kinds of elements.

Cached Store. A single regular store to the cache. Carries a write counter value for

global ordering.

NT Stores. One or more non-temporal stores, coalesced into a single entry. These

stores were not preceded by cached stores since the last memory fence. Their

earliest appearance relative to stores to other cache lines is thus not restricted.

116

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

(a) Dirty Cache Lines C1 C5 NT NT C3 C2 C4+NT

(b) Global Store Order NT NT C1 C2 C3 C4+NT C5

Active NT Ranges

(c) Stores with subset NT C1 C3 C5

(blue and green)

Figure 8.6: Example of how cached and non-temporal stores are handled when

generating crash images. The cached stores with write counters (C1-C5) and non-

temporal stores (NT) from four dirty cache lines (a) are collected into a sorted list

(b). While walking the list, the crash image generator keeps track of active NT stores

to each cache line. This process is repeated for subsets of the dirty cache lines, as

in (c).

However, their latest appearance may be restricted by following cached stores

to the same cache line.

Cached then NT. The final entry type is a combination of the other two: a single

cached store followed by one or more non-temporal stores. This entry type

restricts the earliest appearance of the non-temporal stores. They may appear

only after the preceding cached store.

Although a sequence of cached and non-temporal stores to a single cache line could

be tracked as separate items, Suvi requires the combined item to establish a global

ordering for these stores. We describe this process first for volatile caches and then

extend it for persistent caches.

8.3.5 Crash Images with Volatile Caches

The goal of crash image generation is to generate images that include a valid subset

of stores to dirty cache lines. The algorithm therefore needs to take all ordering

constraints into account.

We illustrate the process with an example shown in Figure 8.6. In the top row (a), it

shows four dirty cache lines that have received five strongly ordered cached stores

(C1 to C5) and three weakly ordered NT stores.

There are two ways to choose a subset of stores. First, by selecting a subset of dirty

cache lines. This method simulates cache eviction. Only lines evicted from caches

(e.g., due to a conflict) end up on PM. Similarly, a line receiving non-temporal stores

might be lost in the write-combining buffer. For example, in Figure 8.6, we might

decide to include only stores from the blue and green cache lines (C1, C5, green

NT, C3).

Second, we can form a valid store subset by choosing a prefix of stores according

to their global order, as tracked by the store counter values. It is important to take

the global order into account instead of deciding on prefixes per cache line. For

example, in Figure 8.6, if we decide to include store C5 from the first cache line, we

must also include stores C2 to C4 and the green NT store from the other cache lines.

117

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

Suvi’s crash image generation combines these two ways of forming subsets. We

describe the selection of a store prefix here, and discuss forming subsets of dirty

cache lines in Section 8.4.1. As an optimization, Suvi only performs the store prefix

selection once, but simultaneously applies stores to multiple PM images according

to the selected cache line subsets. We walk through an example with cache line

subsets below.

Suvi collects all current stores in a list and sorts the list by the stores’ store counters.

Weakly ordered non-temporal stores do not carry a write counter and sort before all

regular stores, since they could appear before them. Combined “cached then NT”

stores are sorted according to the cached store’s write counter. Row (b) of Figure 8.6

shows the resulting sorted list for all cache lines, and row (c) for the blue and green

cache lines.

Suvi then walks through this list. If it encounters a non-temporal store (either

standalone or combined), it stores it in a map (cache line number → NT store). If it

encounters a regular store, it checks the map for a previous NT store to the same

line. If there is one, Suvi removes that NT store from the map and applies it to the PM

images according to the cache line subsets. Finally, Suvi always applies the cached

store immediately to the PM images, since its global order is fixed.

With this strategy, the map of NT stores keeps track of the non-temporal stores that

are active (i.e., could be part of a crash image). The lines and arrows in Figure 8.6

indicate the ranges in which the non-temporal stores are part of the map.

After each regular store that has not been fenced yet (i.e., its store counter value is

higher than that of the previous fence), Suvi can emit crash images. The first crash

image is the current state of the PM image. Second, Suvi applies all active NT stores

from the map to a clone of the PM image.28 This forms the second crash image. If

there are only non-temporal stores without regular stores, Suvi generates crash

images after collecting all of them.

Going back to the earlier example, Table 8.4 shows how the list of stores is processed.

Consider the row with store C3. When looking up its cache line in the map of NT

stores, Suvi finds the green NT store. Suvi applies that store (and C3) to the crash

image and removes it from the map. The stores C1, C2, green NT, and C3 are then

applied to the PM image and are thus part of the first crash image. The map of non-

temporal stores contains only the yellow NT store. The second crash image therefore

also includes that store.

The need for combined “cached then NT” items follows from this algorithm. These

items must be sorted correctly with the preceding regular store. A separate NT item

with a store counter would not work, as crash images generated at the previous store

already need to include the NT store.

Note that Table 8.4 does not show the selection of cache line subsets, which occurs

independently of determining the store prefixes. Given a set of stores (one row in

the table), Suvi yields multiple crash images in which only the stores to a subset of

the cache lines are included.

28We discuss partial application of NT stores below.

118

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

Stores NT Map Store Prefixes

1 NT NT -

2 NT NT NT - NT NT

3 C1 NT NT C1 … NT NT

4 C2 NT NT C1 C2 … NT NT

5 C3 NT C1 C2 NT C3 … NT

6 C4+NT NT +NT C1 C2 NT C3 C4+ … NT +NT

7 C5 NT +NT C1 C2 NT C3 C4+ C5 … NT +NT

Table 8.4: Visualization of the crash image generation algorithm for the stores from

Figure 8.6 (b). The algorithm processes the stores sequentially (top to bottom) and

generates store prefixes with NT stores (right) and without NT stores (left).

Stores Subset without NT Subset with NT

1 NT -

-
2 NT NT

3 C1
C1 C1 NT

4 C2

5 C3
C1 NT C3

6 C4+NT
-

7 C5 C1 NT C3 C5

Table 8.5: Visualization of crash images generated for a subset with the blue and

green cache lines. At every step in Table 8.4, blue and green stores are applied to

two subset PM images with and without trailing NT stores.

In Table 8.5, we show an example for one subset consisting of the blue and green

cache lines. For every store prefix in Table 8.4, the stores to the blue cache line (C1

and C5) and the green cache line (NT and C3) are applied to PM images and yielded

as crash images. This process occurs simultaneously for multiple cache line subsets.

8.3.6 Crash Images with Persistent Caches (eADR)

We now extend the algorithm above for crash images on systems with persistent

caches. Recall that for volatile caches, Suvi chooses both a subset of dirty cache

lines and a prefix of stores according to their global order. With persistent caches,

all dirty cache lines are always present in all crash images. Consequently, Suvi does

not choose subsets for applying regular stores and works with all dirty cache lines.

However, the CPU collects non-temporal stores in its write-combining buffers. Even

with eADR, these buffers are not persistent (see Section 2.4.1). Choosing subsets is

thus still necessary for non-temporal stores.

119

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

Action Volatile Caches Persistent Caches

Subsets for regular

stores

Yes, based on lines from

heuristic

No, use stores from all

dirty lines with regular

stores

Emit crash images At regular store, if it was

not fenced before

At regular store, if its line

was selected by heuristic

Include NT stores All collected NT stores For each subset of dirty

lines with NT stores

Table 8.6: Differences in the crash image generation algorithm for volatile and

persistent caches.

On the other hand, subsetting by selecting a prefix of ordered stores is still valid with

persistent caches. This is therefore the primary way of generating crash images for

systems with persistent caches.

Table 8.6 shows a summary of adjustments for persistent caches. The algorithm

does not use the subsets indicated by the heuristic and collects stores from all dirty

cache lines that have at least one regular store. It then processes the sorted list of

stores identically, applying cached stores and tracking active non-temporal stores

in a map. When encountering a regular store, Suvi emits a crash image only if the

store was to a line indicated by the heuristic (see Section 8.4.1). Suvi thus avoids

creating crash images that are unlikely to be interesting.

Suvi then generates subsets of all lines with active non-temporal stores. For each

subset of lines, it applies the non-temporal stores to those lines on a clone of the PM

image at that point and emits the resulting image.

Stores NT Map Crash Images with NT Subsets

NT NT -

NT NT NT NT NT NT NT

C1 NT NT C1 C1 NT C1 NT C1 NT NT

⋮

Table 8.7: Excerpt of crash image generation with persistent caches for the stores

from Figure 8.6 (b). Cache line subsets are generated only for non-temporal stores.

Crash Images with Partial NT Stores

First Cache Line NT1 NT12 NT123 NT1 NT12 NT123

Second Cache Line NT1 NT1 NT1 NT12 NT12 NT12

Table 8.8: Crash images with partial application of NT stores for two cache lines. The

first cache line contains three NT stores, and the second contains two NT stores. The

NT stores are ordered per cache line but may be interleaved between cache lines.

120

8 Suvi: Crash Consistency Testing for PM File Systems 8.3 PM Crash Image Model

8.3.7 Partial Application of Non-Temporal Stores

The algorithm described so far only implements partial application of temporal

stores. Since temporal stores have a global order across all cache lines, generating

crash images with a subset of these stores is feasible.

In contrast, there is no such ordering between non-temporal stores to different

cache lines. Consequently, arbitrary interleavings of prefixes of the stores going to

individual cache lines are possible, as illustrated in Table 8.8. This makes crash

image generation with partial non-temporal stores more expensive than with only

partial temporal stores.

Suvi avoids generating an excessive number of crash images by always including

all pending non-temporal stores for a given subset of cache lines. After analysis has

finished, a heuristic can detect failure points where pending non-temporal stores

had a direct effect on the discovered states. Suvi can then repeat the crash image

generation and explore crash images with a subset of non-temporal stores at these

failure points. We describe this heuristic in Section 8.4.2.

8.4 PM Crash Image Heuristics
In the previous section, we described how to replay the trace and how to generate

valid crash images from the replay state. The remaining challenge is that generating

all possible crash images is only feasible if the number of dirty cache lines is small.

For 𝑁 dirty cache lines, there are 2𝑁 cache line subsets. We therefore need a way

to reduce the set of dirty cache lines before passing it to the crash image generator.

Suvi implements three heuristics (Suvi-Reads, Suvi-NT, and Suvi-Fast) for this

purpose, which are described in the following sections.

Suvi-Reads allows efficient exploration of the possible crash states by filtering the

set of dirty cache lines based on the behavior of the program’s recovery procedure.

Suvi-Reads therefore can discover misuse of crash consistency primitives, such as

missing fence instructions.

Suvi-NT addresses the problem that unconstrained non-temporal stores pose to the

crash image generation algorithm. By detecting failure points where non-temporal

stores have an immediate effect on the resulting semantic state, Suvi-NT allows

exploration of more crash images that have a high likelihood of exposing bugs.

Finally, Suvi-Fast focuses on rapid detection of logic bugs. Logic bugs are defects

that appear even if all stores are applied according to program order. There is

therefore no need to generate crash images based on subsets of cache lines. Suvi-

Fast therefore accelerates crash image generation and enables the analysis of more

complex test cases.

8.4.1 Suvi-Reads: Efficient Exploration of Crash States

The goal of Suvi-Reads is to reduce the set of dirty cache lines passed to the

crash image generation algorithm. It achieves this by leveraging program behavior

commonly found in PM applications.

The CPU architecture only guarantees crash atomicity of writes up to 8 bytes in size

(see Section 2.4.1). Applications need to use patterns such as journaling to persist

121

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

valid = 1 valid = 0

Journal entry

valid = 0

D
A
T
A

dirty

cache

lines

Recovery

check valid

read data discard entry

Figure 8.7: Situation when generating crash images after a journal entry’s data field

has been written. A recovery procedure will read the journal entry’s data only if it

is marked as valid. Consequently, subsets of dirty cache lines in the data area will

never result in new crash states.

larger amounts of data atomically. Figure 8.7 shows a situation in the middle of a

journaling operation. The journal entry’s data field has been written, but the entry

has not yet been marked valid. At that point, Suvi would observe a large number of

dirty cache lines, depending on the size of the journal entry. Generating all possible

subsets of these cache lines is likely infeasible.

After a crash and restart of an application employing journaling, a recovery procedure

inspects each journal entry. Invalid entries are discarded, since their data field

might be incomplete. Only if a journal entry is marked valid is its data field read and

applied to the application state.

Therefore, there is no point in generating cache line subsets of a journal entry’s data

field. Recovery always discards the entry (as long as the valid field is set separately)

and never reads the data. Suvi-Reads thus needs to detect this recovery behavior to

avoid generating crash images with invalid journaling data.

Vinter-Heuristic: Observing Recovery Behavior

Suvi extends the heuristic introduced for Vinter [68] (called Vinter-Heuristic in the

following). We first describe Vinter-Heuristic in its original form, then extend it to

Suvi-Reads by addressing a limitation that could lead to false negatives.

Vinter-Heuristic is based on the idea of post-failure tracing, as originally proposed for

XFDetector [85]. In contrast to XFDetector, Vinter-Heuristic uses the tracing results

only as input to its crash image generation and does not directly derive bugs from

them. We describe XFDetector in Section 7.5.3.

Tracer

Recovery

>_

P
M

C
a

c
h

e

Im
a

g
e

R
e

a
d

 l
in

e
s

S
e

t
o

f
li

n
e

s

∩∪

Figure 8.8: Vinter-Heuristic loads a fully persisted image (PM ∪ dirty cache lines)

into the tracer and executes a recovery procedure. Its output is the intersection of

the dirty cache lines and the lines read by the recovery procedure.

122

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

Figure 8.8 shows an overview of the process. Vinter-Heuristic creates a fully persisted

image by applying all dirty cache lines to a clone of the current PM state. It then loads

the resulting image into the tracer. In contrast to regular pre-failure tracing, the tracer

now traces read rather than write accesses. The tracer executes a recovery procedure

on the image. The recovery procedure needs to load the image and perform crash

recovery if necessary. Finally, it should access all reachable state contained in the

image by running the program used for state extraction (see Section 8.6).

After tracing finishes, the access trace contains every load instruction to the PM

image. Assuming that the state extraction program accesses the complete state

contained in the PM image, we now know exactly which parts of the image are

relevant for crash images. We could omit all parts of the image not referenced by the

trace without affecting the extracted state. Note that Suvi still generates only crash

images that could occur according to its PM model. It does not remove any data that

cannot be lost in a real crash.

As discussed above, the goal of Vinter-Heuristic is to reduce the set of dirty cache

lines to make subset generation feasible. Vinter-Heuristic thus calculates the set of

cache lines that the recovery accessed in the trace. It then removes any lines that

were not dirty. The result is therefore all dirty cache lines that were read by the

recovery procedure.

Suvi then uses this set for crash image generation (see Section 8.2). With volatile

caches, only subsets from these lines will be generated. Consequently, dirty cache

lines that were not accessed by the recovery will not appear in the generated crash

images.

With persistent caches, Suvi will similarly use the heuristic result for non-temporal

stores. In contrast, all cached stores need to be included in the crash images. Suvi

still uses the lines from the heuristic to decide whether to generate a crash image at

a certain store. If a store accesses a cache line that is not read by the recovery, Suvi

does not create a crash image for that store.

Limitations of Vinter-Heuristic

Vinter-Heuristic makes certain assumptions about the behavior of the PM appli

cation. If the application violates these assumptions, applying the heuristic may

result in false negatives, since crash images exhibiting a bug might not be generated.

The key property is that the post-failure tracing uses a fully persisted image as its

basis. If the set of lines read by the recovery is smaller with the fully persisted image

than with intermediate images, the heuristic might miss important lines.

Consider the journaling example from Figure 8.7. So far, we have considered only

the process of writing new journal entries. With new entries, setting the valid bit

extends the set of lines read by the recovery. If the data field is modified at the same

time (i.e., without a flush and fence), appropriate crash images will be produced,

including partially written data.

In contrast, removing a journal entry by setting its valid bit to 0 shrinks the set of

lines read by recovery. If the application modifies the data field at the same time, for

example, to remove sensitive data from the journal, there will be no crash images

containing this data. Figure 8.9 shows this situation.

123

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

1. Valid journal entry

valid = 1

D
A
T
A

2. Set valid = 0

valid = 0

D
A
T
A

3. Overwrite data

valid = 0

D
A
T
A

Figure 8.9: Steps performed when invalidating a journal entry. The fields read by

the recovery process are marked in red. A missing fence between steps 2 and 3

could result in partially overwritten, yet still valid, crash images. However, Vinter-

Heuristic will not include modifications to the data field in crash images and thus

might miss bugs.

Tracer

Recovery

>_

P
M

C
a

c
h

e

Im
a

g
e

R
e

a
d

 l
in

e
s

p
re

vi
o

u
s

∪ ∩∪
Current fence

Previous fence Tracer

>_

∪

C
o

rr
e

c
te

d
 s

e
t

∪

Figure 8.10: Suvi-Reads extends Vinter-Heuristic by detecting when the set of read

lines shrinks. It keeps the previous heuristic tracing result and restores any lines

that disappeared.

Suvi-Reads: Mitigating False Negatives

We now describe Suvi-Reads, our extension of Vinter-Heuristic that mitigates the

limitation described above. The main insight is that situations as in Figure 8.9 can

be detected by comparing the results from previous invocations of the heuristic.

Figure 8.10 shows an example of this process. At the current fence, the blue cache

lines are overwritten. Some of these lines no longer appear in the recovery trace.

Suvi-Reads corrects this by taking the previous recovery trace and adding its lines

to the set of lines yielded from the current trace.

In the example, Suvi-Reads adds two additional cache lines (blue) to the set of

read lines at the current fence. Since these cache lines are dirty, they end up in the

corrected set and are used for crash image generation. Remember that the heuristic

operates on sets of cache line numbers, regardless of the contents of these cache

lines. The colors in the figures serve only to illustrate where the modifications occur.

124

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

PM

Cache

Image

1 2

Figure 8.11: Sample replay (from left to right) that discovers identical fully persisted

images in two different situations. Each column shows the state of PM and caches

at a fence, as well as the resulting fully persisted image.

Reusing Heuristic Results

It is possible to encounter identical fully-persisted crash images at different fences.

The fully-persisted crash image is the input for the the recovery procedure. We

assume a deterministic recovery procedure that always yields the same output for

a given input. Suvi can therefore reuse the previous result without rerunning the

recovery.

However, it might still be necessary to evaluate subsets, since the crash images also

depend on the previous PM contents. Figure 8.11 shows an example.

The first duplicate image at (1) is a typical situation for an application that is missing

a cache flush. The contents written to one cache line stay in the cache. There were

no other writes, so the fully persisted image remains the same. Subset generation

could be skipped without missing any crash images.

This is not the case at the second duplicate image. At fence (2), the PM contents

are different and would appear in crash images that include a subset of the cache

contents. Skipping subset generation at this fence would therefore lead to missed

crash images.

With these two cases in mind, we choose to have Suvi always generate subsets

when encountering a duplicate fully persisted image. This strategy avoids missing

crash images in situations such as at fence (2). It is possible to detect situations

such as at fence (1), where the full replay state is a subset of the state at a previous

fence. However, we find that since missing cache flush instructions are usually

unintended, the amount of volatile data in the caches is small, making subset

generation inexpensive.

This choice differs from Vinter. Vinter skips subset generation entirely when

encountering a duplicate fully persisted image.

8.4.2 Suvi-NT: Detecting NT-Dependent Semantic States

Generating crash images with partial prefixes of non-temporal stores is expensive,

as described in Section 8.3. Arbitrary interleavings of the individual stores to each

cache line are possible (see Table 8.8), creating a large search space. Suvi therefore

by default only generates crash images with either none or all NT stores to a cache

line. This strategy keeps the search space manageable but may lead to missed

crash states.

Suvi-NT is a heuristic that detects failure points where partial application of non-

temporal stores may yield additional crash states. In contrast to Suvi-Reads, Suvi-NT

125

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

Trace

⋮

NT store: line A, offset 0, abcdefgh

NT store: line A, offset 8, 12345678

Fence

⋮

Semantic State at Fence

File

⋮

abcdefgh

12345678

⋮

Figure 8.12: Example of a state that has a direct dependency on NT stores. Because

stores to the file data appear immediately at the subsequent fence, omitting the

second store would yield a different semantic state.

cannot run during crash image generation, since it requires information from

semantic state extraction. For this reason, Suvi-NT has separate analysis and crash

image generation phases. The analysis phase runs as part of the tester. If it detects

any problematic failure points, the crash image generation can be repeated with

this information.

The key idea of Suvi-NT’s analysis is to identify semantic states that have a direct

dependency on non-temporal stores. If the inclusion of a non-temporal store results

in a change in the semantic state, it is likely that applying a prefix of the non-temporal

stores will result in a new semantic state.

Figure 8.12 shows an example where this is the case. An application has issued a

file write of size 16 bytes with the data abcdefgh12345678. The file system uses

two non-temporal store instructions to store the file data to PM. The semantic

states extracted from the crash images at the following fence immediately include

this file data. Since both non-temporal stores write to the same cache line, there

are no cache line subsets that would select only one of these stores. Suvi would

therefore not generate a crash state with only the first store and would consider the

operation atomic.

Ordered stores: NT C1 C2

Crash Images Semantic States

C1

C1 NT

C1 C2

C1 C2 NT

State 1

State 2

not NT-dependent

NT-dependent

Figure 8.13: Example of detecting NT-dependent semantic states. State 2 and its

originating crash are NT-dependent because all originating crash images include

NT stores. Refer to Table 8.4 for an explanation of this visualization of the crash

image generation algorithm.

126

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

Suvi-NT’s analysis phase operates as follows. For each semantic state, Suvi-NT

collects all originating crash images and their failure points. From the crash metadata

(see Section 8.6.1), it determines whether all crash images at a particular failure

point include NT stores. If that is the case, Suvi-NT outputs the originating crash at

this failure point as NT-dependent. Figure 8.13 shows an example of this process.

The resulting list of NT-dependent crashes serves as the input for Suvi-NT’s crash

image generation phase. When the crash image generator reaches a crash point

in the list, it generates additional crash images with prefixes of the non-temporal

stores to each cache line, as shown in Table 8.8. Since Suvi generates additional

images only according to the heuristic, spending additional time exploring these

combinations is acceptable.

8.4.3 Suvi-Fast: Fast Crash Image Generation for Logic Bugs

We have now seen how Suvi-Reads can make crash image generation feasible when

there is a large number of dirty cache lines. However, even with the reduced set of

lines from Suvi-Reads, a large number of images may be generated.

Such an effort is not always necessary to detect bugs. Exploring store reorderings is

important to detect misuse of PM primitives, such as a missing memory fence. Logic

bugs, in contrast, do not require this effort. These bugs occur when the program

temporarily reaches an invalid state during runtime. For logic bugs, generating only

a fully persisted image is therefore sufficient.

Mumak [46] is a crash consistency testing tool for userspace software. It uses a testing

pipeline similar to Suvi’s but traces userspace applications with dynamic binary

instrumentation rather than virtual machines. Mumak’s differentiating feature is

its deduplication of crash points based on stack traces, allowing fast crash image

generation. Suvi-Fast adopts this strategy for Suvi, allowing a fast analysis of kernel

file systems. We describe Mumak in more detail in Section 7.5.7.

Table 8.9 summarizes the differences in crash image generation between Suvi-

Reads and Suvi-Fast. As discussed above, Suvi-Fast does not explore subsets of

stores. At each crash point, it generates only a crash image that includes all pending

stores. To ensure more fine-grained steps between images, Suvi-Fast and Mumak

Suvi-Reads Suvi-Fast

failure points • memory fences (with full

coverage of failure points

since previous fence)

• cache flushes

• memory fences

failure point filter none one crash image per

unique stacktrace

crash image contents • no in-flight stores

• all stores

• subset of stores with

Suvi-Reads heuristic

• all stores

Table 8.9: Comparison of crash image generation with Suvi-Reads and Suvi-Fast.

127

8 Suvi: Crash Consistency Testing for PM File Systems 8.4 PM Crash Image Heuristics

also generate crash images at each cache-flush instruction.29

In addition to generating fewer crash images per failure point, Suvi-Fast also

generates crash images at fewer failure points. It identifies unique failure points by

deduplicating them based on their stack trace. As described in Section 8.1.1, Suvi’s

tracer can optionally record stack traces for each trace entry. For Suvi-Fast, these

stack traces are mandatory. As proposed by Mumak’s authors, Suvi-Fast records all

failure points in a failure point tree. The program counter at the failure point forms

the leaf in the tree, and each entry of the stack trace forms the inner nodes. Failure

points are inserted into the tree by walking from the root and creating nodes if

necessary. If no new nodes are inserted, the failure point has already been visited,

and Suvi-Fast will not generate another crash image.

Discussion

Crash image generation with Suvi-Fast is superficially similar to the crash image

generation algorithm for persistent caches described in Section 8.3. In both cases,

cached stores are always applied to the crash images in program order. The difference

lies in the handling of non-temporal stores. With Suvi-Fast, the non-temporal stores

are also applied strictly in program order. Otherwise, Suvi generates subsets for

these stores.

Although Suvi-Fast reduces the amount of work performed by the crash image

generator, its requirement for stack traces increases the amount of work in the

tracer. The total time advantage compared to Suvi-Reads is therefore not obvious.

If a particular test case already generates few crash images with Suvi-Reads, the

cost of recording stack traces may outweigh the faster crash image generation with

Suvi-Fast. We analyze the performance of Suvi-Fast in Section 10.3.1.

8.5 Cross-Media Crash Images
So far, we have described our approach for generating PM crash images. We now

extend this approach to support cross-media file systems that store data on both

PM and NVMe. We first describe how Suvi generates NVMe crash images, then how

it combines the PM and NVMe images to cross-media crash images.

8.5.1 NVMe Crash Images

Suvi’s strategy for generating NVMe crash images largely follows the approach for

PM crash images. Since the crash consistency model for NVMe is simpler than for

PM, there are some simplifications. As we discuss in Section 2.4.2, the two primary

commands relevant for crash consistency are Write and Flush. A Write updates one or

more data block, and a Flush ensures that all previously completed Write commands

are persisted on the SSD.

29These additional explicit failure points are not useful for Suvi-Reads, since the crash images its
subset algorithm discovers include the crash images generated there. As discussed in Section 8.3,
Suvi’s subset generation covers all possible failure points since the previous memory fence.

128

8 Suvi: Crash Consistency Testing for PM File Systems 8.5 Cross-Media Crash Images

dirty blocks

Persistent Image

Write

apply stores
Flush

split blocks

Figure 8.14: Suvi’s simulation of the NVMe write path. Written blocks are collected

individually into a list. A Flush command clears the list and applies it to the persistent

image.

Trace Replay

Individual NVMe Write commands do not have any ordering constraints. For NVMe

replay, it is therefore sufficient to keep track of the fully persisted memory image

plus a list of current Write commands, as illustrated in Figure 8.14.

A single NVMe Write command can contain multiple blocks. Since atomicity is only

guaranteed at the granularity of blocks, Suvi splits each Write command in the trace

into its blocks and appends these to the list of dirty blocks. When encountering a

Flush command, Suvi drains the list and applies each Write to the memory image.

Failure Points and Crash Images

Due to a lack of other ordering constraints, Suvi treats every Flush command as

a failure point to generate crash images. At these failure points, any combination

of dirty blocks with the base persistent image is a valid crash image. Suvi always

generates two basic crash images: one that includes all dirty blocks, and another

with no dirty blocks. Finally, Suvi generates images with random subsets of the dirty

blocks. Since it is infeasible to generate all possible subsets, Suvi only generates

images with random subsets up to a fixed maximum number.

Heuristics

Suvi does not implement any heuristics for generating NVMe crash images. We

found that Suvi’s heuristics for PM crash images are not a great fit for generating

NVMe crash images.

Suvi-Reads traces read accesses from a recovery procedure and generates crash

images from subsets of these accesses. Although it is possible to adapt this approach

for NVMe crash image generation, we found that it does not sufficiently reduce

the search space in practice. The reason for this difference is in the usual access

strategy. A PM file system usually organizes its data structures on PM for direct

access. Therefore, it recovers and reads data with targeted accesses of individual

metadata fields.

In contrast, a classic file system works with an asynchronous block interface. For

performance and simpler access, it is beneficial to load metadata in batches (e.g.,

the full superblock structure or the entire journal). Applying Suvi-Reads to NVMe,

we therefore observe file systems always reading most of the dirty blocks.

Suvi-Fast is the second heuristic that reduces the number of generated crash images

by deduplication based on stack traces. Our approach to NVMe tracing works by

hooking the virtual NVMe device in the hypervisor. At this location, we cannot

129

8 Suvi: Crash Consistency Testing for PM File Systems 8.5 Cross-Media Crash Images

PM

NVMeT
ra

c
e F

F

F

PM

NVMeR
e

o
rd

e
r

P
e

ri
o

d
s

1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.15: Suvi’s tracer records a combined PM and NVMe trace, but the PM and

NVMe failure points (F) do not necessarily coincide. This results in overlapping

reordering periods for the PM and NVMe writes (squares).

capture stack traces for Suvi-Fast. Additionally, we do not expect such stack traces

to be as useful for NVMe as for PM due to the abstraction from the block layer.

8.5.2 Combined Crash Images

So far, we have described how Suvi generates PM-only and NVMe-only crash images.

For testing cross-media file system, we need combined crash images with both PM

and NVMe data. Combining the crash images is challenging for two reasons.

First, NVMe and PM failure points (PM fences and NVMe Flush commands) may

be at different positions in the trace. In such cases, is not clear whether they can

be reordered. Figure 8.15 shows an example. The NVMe reordering period for the

NVMe Flush at position 7 extends to before the PM fence at position 4. However, we

cannot know whether the file system enforces that the Flush (7) happens after the

fence (4).

Second, combining an arbitrary number of PM crash images 𝑃 with an arbitrary

number of NVMe crash images 𝑁 results in 𝑃 ⋅ 𝑁 combined crash images. Analysis

of cross-media file systems might therefore require smaller cutoffs for both PM and

NVMe crash images to avoid excessive analysis time.

We solve these challenges in Suvi with insight from the NVMe driver implementation

in Linux. We find that all interaction with the NVMe submission and completion

queues involves instructions that act as fences for PM access. Therefore, a situation

as shown in Figure 8.15, where an NVMe Flush is not accompanied by a PM fence, is

not possible in practice.

With this observation in mind, we design Suvi to combine PM and NVMe crash

images as follows. At each PM and NVMe failure point, Suvi generates the two basic

crash images (all current writes, no current writes, which might be identical if there

are no writes) for both PM and NVMe. It then generates additional images with

subsets for either PM or NVMe according to the current failure point. Finally, Suvi

combines all PM and NVMe images, resulting in 𝑃 or 2𝑃 combined images at a PM

failure point, and 𝑁 or 2𝑁 combined images a NVMe failure point.

130

8 Suvi: Crash Consistency Testing for PM File Systems 8.5 Cross-Media Crash Images

8.5.3 Discussion

Although Suvi could be used to analyze NVMe-only file systems, this is not a goal of

our design. As PM is directly accessed with load and store instructions, black box

testing with virtual machines is beneficial as it avoids errors (see Section 7.4).

In contrast, classic file systems generally work with abstract block devices. For

example, the block layer in the Linux kernel translates generic block I/O requests

into device commands such as NVMe or SCSI [33]. This makes the block layer the

ideal level of abstraction for analyzing classic file systems. CrashMonkey [93] is an

approach for crash consistency testing that hooks into the Linux block layer.

We believe that our strategy for combining PM and NVMe crash images strikes a

good balance between crash state exploration and efficiency. Since every NVMe

command is always accompanied by PM fences, generating and combining subset

images for both PM and NVMe is unlikely to discover new crash states.

However, since our approach is based on recording and replaying a single execution

of the test case, it cannot detect freedom in the asynchronous NVMe command

processing. Going back to the example in Figure 8.15, it is impossible to detect

whether the file system waits for the Flush command (7) to complete before issuing

PM writes 8 and 10. Such a detection would require recording the test case multiple

times with variations in timing, which is out of scope for Suvi.

8.6 Tester
The tester is the final stage of Suvi’s pipeline. Its goal is to check whether any

generated crash images exhibit crash consistency bugs.

Suvi’s pipeline can automatically detect the following types of bugs:

Recovery crashes The application might encounter an error while recovering a

crash image. We consider it a bug if the application crashes or otherwise aborts

the recovery.

Multiple final states At the end of every PM operation, all important data should

be fully persisted on PM. If Suvi detects multiple application states at the end

of an operation, we consider it a bug. By inspecting the application state, Suvi

does not flag cases in which applications store temporary data in PM.

Atomicity violations Finally, Suvi can detect operations that exhibit intermediate

user-visible states.

Suvi can detect these bugs in a black box fashion, without understanding the

structure or contents of the application’s crash images or the state contained in

these images. Suvi relies on a test-specific state extraction program that reads the

user-visible state from the crash images. The second step, state analysis, then detects

the bugs above from the extracted states. We describe these steps in detail in the

following sections.

8.6.1 State Extraction

The crash image generator yields a set of crash images. As Suvi treats the tested

application as a black box, there is no way to detect bugs directly from the crash

images. With state extraction, Suvi allows the tested application to perform recovery

131

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

VM

State Extraction

>_

C
ra

sh
Im

a
g

e

S
ta

te

Figure 8.16: A state extraction program specific to the tested application runs in

the virtual machine. It performs crash recovery on the input image and serializes

the resulting application state.

on each crash image and prints a normalized representation of the user-visible state

contained in the image.

The underlying process is very simple, as shown in Figure 8.16. Suvi loads each

crash image into a virtual machine running a state extraction program. It then reads

the output and stores it as the state of the image.

However, there is complexity in the following questions, which are addressed in the

following sections:

• How are the resulting states associated with crash images and failure points?

• Which properties are necessary for the representation of the extracted state?

• How is the state of a file system extracted?

To detect errors during crash image recovery, the state extraction runs in a virtual

machine provided by the tracer. Memory access tracing is disabled. The tester

expects the state extraction program to report success or failure with a hypercall

(Section 8.1.3) and records the result.

State Metadata

How are the resulting states associated with crash images and failure points?

For the state analysis, the origin of a crash state is critical. Suvi must be able to

associate a particular state with the failure points that lead to that state. For example,

in test cases with multiple file system operations, we want Suvi to analyze the crash

consistency properties of each operation.

With every crash image, the crash image generator stores metadata that associates

the image with a particular failure point (see Section 8.2.2). The tester extends this

metadata during state extraction by adding an association from the extracted state

to the originating crash image.

The complete metadata forms a tree for each unique state, as shown in Figure 8.17.

Requirements for State Representation

Which properties are necessary for the representation of the extracted state?

The tester detects crash consistency bugs by comparing the extracted states. As Suvi

treats the tested application as a black box, it cannot have any knowledge about the

structure or content of the extracted states. The tester therefore relies on a simple

byte-wise comparison of the extracted states to detect equivalent states. We derive

the following requirements from this approach:

132

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

State

Crash

Image

Crash

Image

Crash

Image

Failure

Point

Failure

Point

Failure

Point

Failure

Point

Failure

Point

Figure 8.17: Structure of the metadata tree originating from a single semantic state.

The state originates from one or more crash images, which in turn originate from

one or more failure points.

First, the extracted state must contain only user-visible state. Using the identity

function as the state extraction program (i.e., passing through the crash image

without changes) would clearly provide a complete representation of the state

contained in a crash image. However, such a representation is not useful for further

analysis. To implement crash-atomic operations on PM, applications must first write

new data without modifying the application’s visible state. Only after everything has

been written to PM can the application make the new data visible. Consequently,

states where the new data is partially written but not yet visible are equivalent to the

user, but the tester would not detect these images as equivalent since their crash

images differ.

Second, the extracted state must be serialized to a normalized, deterministic format.

For example, the order of entries in a hash map is often non-deterministic or even

actively randomized [20, 26]. Two hash maps with identical contents might therefore

serialize to different representations if a consistent ordering is not enforced.

Finally, although not required for Suvi’s analysis, we found that a human-readable

format is beneficial for debugging. If Suvi detects an atomicity violation, the first

debugging step is always to develop an understanding of the states that Suvi

discovered. A human-readable format makes such an analysis easy and avoids the

need to load each state (or crash image) in another interactive VM. We describe the

debugging process in more detail in the following section.

State Extraction for File Systems

How is the state of a file system extracted?

Since Suvi’s primary testing targets are file systems, we now describe our approach

to state extraction for a file system. Most operating systems provide a standardized

interface for accessing different file system implementations. On Linux and other

Unix-like operating systems, this interface conforms to the POSIX standard [14]. We

therefore define the user-visible file system state as all state that can be discovered

through the POSIX file system API. The relevant POSIX functions for reading the file

system are:

• opendir() and readdir() for traversing directories

133

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

{

 "/mnt": {

 "typeflag": "D",

 "st_ino": 1,

 "st_mode": 16877,

 "st_nlink": 2,

 "st_uid": 0,

 "st_gid": 0,

 "st_size": 4096,

 "st_blocks": 0,

 "st_atim_sec": 1738581554,

 "st_atim_nsec": 0,

 "st_mtim_sec": 1738581555,

 "st_mtim_nsec": 0,

 "st_ctim_sec": 1738581555,

 "st_ctim_nsec": 0

 },

 "/mnt/myfile": {

 "typeflag": "F",

 "content": "test",

 "st_ino": 33,

 "st_mode": 33188,

 "st_nlink": 1,

 "st_uid": 0,

 "st_gid": 0,

 "st_size": 4,

 "st_blocks": 8,

 "st_atim_sec": 1738581555,

 "st_atim_nsec": 0,

 "st_mtim_sec": 1738581555,

 "st_mtim_nsec": 0,

 "st_ctim_sec": 1738581555,

 "st_ctim_nsec": 0

 }

}

Listing 8.2: Example fs-dump output from a folder with a single file.

• lstat() for reading metadata of discovered files (including directories and

symlinks)

• open() and read() for reading contents of regular files

• readlink() for reading symbolic link targets

We design a tool, fs-dump, that uses these functions to traverse a directory tree. For

each discovered file, directory, or symbolic link, it records the metadata returned

by lstat(). For files and symlinks, fs-dump also records the file contents and link

targets. fs-dump collects this data in a map indexed by the full path of each file.

Finally, it serializes the data to JSON and prints the result. Listing 8.2 shows an

example of the resulting output.

fs-dump satisfies the properties given in the previous section:

• Since the POSIX API is used for reading the file system state, all state discovered

by fs-dump is user-visible.30

• Deterministic output is ensured by sorting the keys in the JSON serialization.

• The JSON is formatted with appropriate whitespace to make it human-readable.

Single Final State Atomic

States

Images

during operation

1 2 3 1 2

final fence

Figure 8.18: The tester detects single final state and atomicity of an operation by

counting unique states at the final fence or during the entire operation.

30A file system might, however, offer access to additional state through non-standard APIs. A file-
system-specific state extraction tool would be required to test such APIs.

134

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

8.6.2 State Analysis

We now describe how the tester can detect single final state and atomicity violations

given a list of extracted states along with their metadata. Figure 8.18 shows a high-

level overview of the approach. Using the crash metadata associated with the crash

images, the tester discovers states that were generated during the test operation.

By counting the number of unique states at the final fence or during the entire

operation, the tester detects crash consistency as follows:

Single Final State An operation has a single final state if exactly one unique state

has been extracted from images generated at the last fence of the operation.

Atomic An operation is atomic if it has a single final state and at most two unique

states in total.

Suvi follows the definitions of these two properties as introduced for Vinter [68].

Analysis Algorithm

We now describe the algorithm that checks the two crash consistency properties.

Since tests delimit individual (file system) operations with checkpoints, the tester

starts by collecting states for each checkpoint into the following data structures:

type CheckpointID = i64

struct CheckpointFP {

trace_id: u64

states: Set<State>

}

let checkpoint_states: Map<CheckpointID → Set<State>> ←

collect states discovered from checkpoint N to N+1

let checkpoint_fp: Map<CheckpointID → CheckpointFP> ←

find earliest failure point of checkpoint N

The crash metadata forms trees with the states at the root (see Figure 8.17). The

current checkpoint ID is part of the failure-point metadata (see Section 8.2.2). For

each state, the tester therefore traverses all failure points and inserts the state into

the appropriate sets in checkpoint_states. Additionally, it finds the earliest failure

point for each checkpoint by comparing the trace_id and collects the states at that

failure point.

for each checkpoint_id within analysis range {

let is_single_final_state: bool ←

checkpoint_fp[checkpoint_id + 1].states.len() = 1

let is_atomic: bool ←

is_single_final_state and checkpoint_states[checkpoint_id].len() ≤ 2

print is_single_final_state, is_atomic

}

135

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

Test: ​test_hello-world

Command: hypercall checkpoint 0 && sync &&
 hypercall checkpoint 1 && touch /mnt/myfile && sync &&
 hypercall checkpoint 2 && echo HelloWorld > /mnt/myfile &&
 hypercall checkpoint 3 && sync &&
 hypercall checkpoint 4

Checkpoint 1 -> 2:
Trace entries 295565 -> 295691
2 states: ​c1s0, ​c1s1
Single final state: ​c1s1
atomic

Checkpoint 2 -> 3:
Trace entries 295691 -> 300021
3 states: ​c1s1, ​c2s0, ​c2s1
2 ​final states: ​c2s1, ​c2s0
Dirty cache lines at checkpoint: 46848
not atomic

Checkpoint 3 -> 4:
Trace entries 300021 -> 300022
2 states: ​c2s0, ​c2s1
2 ​final states: ​c2s1, ​c2s0
Dirty cache lines at checkpoint: 46848
(atomic)

0 NT-dependent states

Listing 8.3: Example output from the tester analyzing the “hello-world” test result

for NOVA.

Once the maps are populated, the tester can determine the crash consistency

properties for each checkpoint.

• The operation between checkpoints N and N+1 has a single final state if exactly

one state is discovered at the first failure point of checkpoint N+1.

• The operation is atomic if it has a single final state and at most two states are

discovered between checkpoints N and N+1.

Output

Listing 8.3 shows an example of the tester’s output. After a header showing the test

name and the test command, the tester prints the following information for each

checkpoint within the analysis range defined for the test:

• A list of discovered states.

• A list of final states.

• Whether the operation is atomic.

The name of each state corresponds to a file created by the state extraction step,

allowing manual inspection of these states. Suvi assigns these names using the

checkpoint ID and a counter based on when the state was first discovered. A state

name is printed in green if it originated from at least one fully persisted crash image,

and otherwise in purple. The presence of purple states hints at a misuse of PM

primitives in the tested application, since such states would never appear during

the regular runtime of the application.

To aid with debugging detected crash consistency bugs, the tester can optionally

print the following information:

• Line-by-line diffs of the discovered states (Listing 8.4 (a)).

• The locations of the checkpoints in the trace, allowing a trace analysis for this

checkpoint (Section 8.7.1).

136

8 Suvi: Crash Consistency Testing for PM File Systems 8.6 Tester

2 ​final states: ​ ​c2s1, ​c2s0
--- c2s0.txt ​
+++ c2s1.txt ​
@@ -21,3 +21,3 @@
 "typeflag": "F",
- "content": "HelloWorld\n",
+ "content": "HelloWor\u0000\u0000\u0000",
 "st_ino": 33,

c2s0 at fences:
 ​300017
 ​300021
 ​300022
c2s1 at fences:
 ​300017 (dirty lines: 46848)
 300021
 300022

(a) Line-by-line diff between the two final states. (b) Failure points where the two

final states were discovered.

Listing 8.4: Additional optional output from the tester analyzing the “hello-world”

test result for NOVA.

• In the case of a single final state violation, the dirty cache lines at the checkpoint.

• The failure points from which each state originated (Listing 8.4 (b)).

The final line shows the results from Suvi-NT, which we describe in Section 8.4.2.

8.7 Trace Analysis
Suvi implements two types of trace analysis. The first type, which we call trace

debugging, provides tools that give Suvi’s users a better understanding of the results

of the crash consistency testing pipeline.

The second type, which we call trace heuristics, detects patterns in the trace that

suggest a crash consistency bug.

8.7.1 Trace Debugging

We introduce Suvi’s trace debugging by continuing the analysis of the “hello-world”

test on the NOVA file system. As shown in Listing 8.3, Suvi’s testing pipeline detected

multiple final states. This problem occurs when modified data remains in the caches

at the end of an operation. A user who is debugging this problem therefore wants to

understand where this data originates and where a cache flush must be introduced.

Filtering Trace Entries by Cache Line

Suvi provides the set of dirty cache lines for a single final state violation. We introduce

a command to print all trace entries that access these cache lines, as well as relevant

memory fences and hypercalls.

Listing 8.5 shows the output for the dirty cache line of the NOVA “hello-world” test

case. We can see two phases. First, NOVA writes zero to each byte of the cache line

followed by a cache line flush. Then, it writes “HelloWorld⏎”31 to the cache line

with an eight byte non-temporal store and three regular single byte stores. Since

these regular stores are not followed by a cache line flush, they remain in the caches

and cause the single final state violation. A user of Suvi can now examine the stack

traces associated with these Write entries in the trace to determine where a cache

line flush needs to be introduced.

Understanding Suvi’s PM Simulation

From the trace output alone, it is not always obvious how Suvi discovered a particular

crash image. For instance, in our NOVA test case, there are three store instructions, so

31The ⏎ symbol indicates a newline character.

137

8 Suvi: Crash Consistency Testing for PM File Systems 8.7 Trace Analysis

 0 ​Hypercall start 0
 295564 ​Hypercall checkpoint 0
 295565 ​Hypercall checkpoint 1
 295691 ​Hypercall checkpoint 2
 295784 ​Write ​ ​0x2dc00b size 1
 00 .
 295785 ​Write ​ ​0x2dc00c size 1
 00 .

 [... 50 Write entries skipped ...]

 295836 ​Write ​ ​0x2dc03f size 1
 00 .
 299869 ​Flush ​ ​0x2dc00b clwb
 299933 ​NT-Write ​0x2dc000 size 8
 48 65 6c 6c 6f 57 6f 72 HelloWor
 299934 ​Write ​ ​0x2dc008 size 1
 6c l
 299935 ​Write ​ ​0x2dc009 size 1
 64 d
 299936 ​Write ​ ​0x2dc00a size 1
 0a .
 299937 ​Fence sfence
 300021 ​Hypercall checkpoint 3
 300022 ​Hypercall checkpoint 4
 300023 ​Hypercall success 0

Listing 8.5: Shortened output from Suvi’s read-trace command analyzing accesses to

the unflushed cache line of the “hello-world” test on NOVA. For each trace entry, Suvi

prints the entry’s index, its type, and any additional information. In particular, for

Write entries, the destination address, the size, and the written data (as hexadecimal

bytes and ASCII) are printed.

we might expect three unique states with partial file data. However, Suvi discovered

only two final states.32 We therefore introduce a command that annotates the trace

with the state of Suvi’s PM simulation.

Listing 8.6 shows the output for the first fence where the broken state c2s1 was

discovered, as indicated by the tester (see Listing 8.4 (b)). We can see that the three

store instructions writing the “ld⏎” of “HelloWorld⏎” are still part of the volatile state

fence id 300017
 line 14019
 offset 8 counter 4332 data ​________________40c02d0000000000________________
__
 Flush

 line 46848
 offset 8 counter 4260 data ​________________6c______________________________
__
 offset 9 counter 4261 data ​________________6c64____________________________
__
 offset 10 counter 4262 data ​________________6c640a__________________________
__

Listing 8.6: Shortened output from Suvi’s process-trace command. It shows the

state of Suvi’s PM simulation at a particular failure point (see Section 8.3). For each

store to a cache line, the output shows the offset within the cache line, the internal

store counter for tracking the global store order, and the volatile contents of the

cache line after the store. The current store is marked in red. The blue background

indicates that this part of the cache line was read by the recovery for Suvi-Reads

(see Section 8.4.1).

32Vinter’s PM simulation was less accurate than Suvi’s and generated invalid crash images with
a subset of these store instructions, resulting in four final states. [68, §5.3.1]

138

8 Suvi: Crash Consistency Testing for PM File Systems 8.7 Trace Analysis

(compare Listing 8.5). The eight-byte write updates a pointer33, making all changes

to the file visible atomically. Since both the pointer update and the previous stores

to the file contents use regular (temporal) store instructions, the instruction set

architecture guarantees a global ordering between these stores (see Section 2.4.1).

Suvi tracks this ordering with the counter printed in Listing 8.6. As the pointer

update is ordered after the stores to the file contents, states with only a prefix of

these stores are not possible. Either both cache lines are included in the image

with all writes (resulting in state c2s0), or at least one of the cache lines is missing

(resulting in truncated file contents or the original file).

8.7.2 Trace Heuristics

Suvi adapts its trace heuristics from previous work [46]. It detects the following

patterns in the trace:

Redundant flush or fence. A flush or fence instruction that does not have any

preceding stores to PM. This is a performance bug and does not indicate a crash

consistency issue.

Missing flush or fence. Reported when there are stores that have not received a

flush and fence at the end of the trace.

Overwrite without flush or fence. Reported when a store instruction overwrites a

preceding store that did not receive a flush and fence.

Unordered flushes. Reported when there are multiple flush instructions between

two fences.

These heuristics can only hint at potential bugs arising from misuse of PM primitives.

In particular, unordered flushes frequently arise when a PM application needs to

persist data larger than one cache line. The trace heuristics cannot detect whether

such a persist operation is, for example, protected by a journal. However, the trace

heuristics are useful in conjunction with Suvi’s crash image generator heuristics:

After a first analysis with Suvi-Fast, the trace heuristics can identify tests that

warrant further analysis with Suvi-Reads.

33The stack trace associated with that store points to the function nova_update_tail, which
updates the tail pointer of an inode log. In NOVA, each inode has its own journal [125].

139

8 Suvi: Crash Consistency Testing for PM File Systems 8.7 Trace Analysis

140

Chapter 9

Suvi: Implementation

Suvi is implemented in approximately 10 000 lines of Rust code. Its source code is

available at https://github.com/lluchs/suvi

In this chapter, we describe details from Suvi’s implementation. We first describe

Suvi’s two implementations of the tracer component. Then we take a look at two

implementation details that are critical for Suvi’s performance: memory images

and parallelization.

9.1 Tracer
Suvi implements two tracers with different features, one based on PANDA and one

on plain QEMU. We describe the differences between these implementations below.

In Section 10.3.2, we compare the performance of the tracer implementations.

Both implementations use a similar architecture. Our tracing code is compiled as a

shared library, which is linked into the emulator. The emulator provides hooks for

memory accesses and other instructions, which call into our library during guest

code execution. While the guest is paused, our library can then inspect guest CPU

registers, translate memory addresses, and access guest memory to assemble a

trace entry (see Section 8.1).

We ensure that the guest execution is blocked as little as possible by passing the trace

entries to a separate thread for output. This thread then serializes the trace entry

and writes it to a compressed output file. The guest execution continues immediately

without waiting for expensive I/O system calls.

9.1.1 PANDA

PANDA [38] is a fork of QEMU with additional features focused on reverse engineering.

It runs virtual machines with binary translation and allows interaction with the

guest code through two APIs, plugin and libpanda.

First, plugins built with the plugin API are linked into PANDA and allow direct access

to the guest state, including instruction hooks. Suvi’s PANDA tracer is built on top

of panda-rs, a Rust adapter for PANDA’s plugin API [92].

Second, libpanda provides an API for configuring and running a PANDA instance

and then interacting with it. We use its Python API to launch PANDA, to load and

141

https://github.com/lluchs/suvi

9 Suvi: Implementation 9.1 Tracer

store PM snapshots, and to interact with the guest over a serial device. Although

libpanda can also install hooks, we opt for a Rust plugin for memory and instruction

tracing due to its lower overhead.

The primary limitation of PANDA is the age of the underlying codebase. PANDA was

forked from QEMU 2.9.1, released in 2017 [107]. Since this version of QEMU does

not include support for NVMe devices, we needed a different approach for tracing

cross-media file systems.

9.1.2 QEMU

Current versions of QEMU include support for TCG plugins [29], which allow hooking

into QEMU’s emulation backend called Tiny Code Generator (TCG). These plugins are

linked into QEMU and allow interaction similar to PANDA plugins, although with

limited functionality.

We build Suvi’s QEMU tracer based on QEMU version 8.0. QEMU required patches to

add missing functions to the TCG plugin API. In particular, we needed to introduce

functions for reading and writing guest memory. Additionally, QEMU’s code gener

ation translates cache line flush instructions to NOPs, which discards the address

parameter. To trace these instructions with the address, we modified their code

generation to trigger a memory access.

For NVMe tracing, we introduced hooks into QEMU’s virtual NVMe device. These

hooks call into our tracer plugin. Every NVMe trace entry requires information

from multiple hooks, since an NVMe command is processed in multiple steps. A

hook in the NVMe request handler provides the NVMe request with its arguments,

a hook in the DMA handler provides the data for write commands, and a hook in the

completion handler detects command completion. Each hook passes a message to

the output thread, which assembles a trace entry.

9.2 Memory Images
The primary challenge for performance in the crash image generator is handling

memory images. Depending on the file system under test, Suvi deals with memory

images that have a size of up to hundreds of MiB.

Suvi’s memory images need to support the following operations:

• Clone the image for independent mutation. Since the crash image generator

applies different subsets of writes to a base image, it is not possible to mutate a

single image sequentially.

• Persist the image to a file. Suvi decouples crash image generation and analysis,

which allows parallel analysis.

• Calculate a hash of the image contents. Suvi uses these hashes to determine

whether it has generated an image before.

We implement efficient support for these operations with two key ideas: copy-on-

write files and partial hash pre-calculation.

142

9 Suvi: Implementation 9.2 Memory Images

9.2.1 File System Copy-on-Write

Some modern Linux file systems, including btrfs and XFS, support sharing data

blocks between multiple files. Unlike hard links, modifications to such files remain

private through a copy-on-write mechanism. File copies with shared data blocks are

created with the FICLONE ioctl [21]. They are commonly referred to as reflink copies.

Our strategy in Suvi is to use memory-mapped temporary files as memory images.

For reflink copies to work, these temporary files must be located on the same file

system as the output directory. To clone an image, Suvi creates and maps a new

temporary file that shares the data blocks from the original image. To persist an

image, Suvi performs a reflink copy of the image’s data blocks into the destination file.

Compared to a regular memory buffer, this strategy has two advantages. First, it

avoids copying data as much as possible. Both the clone and the persist operations

only need to copy file metadata. Only modifications to the images require a copy-

on-write operation for that part of the file.

Second, the strategy saves space by sharing file blocks in the output. Since crash

images often differ by only a few bytes, most file data within the crash image files

is shared.

9.2.2 Hash Memoization

Suvi needs to calculate a hash of each memory image before persisting it to detect

whether it has already discovered an identical crash image. This calculation is

expensive for large images. Additionally, with the copy-on-write strategy above,

reading the entire freshly mapped image causes expensive page faults.

We reduce this cost by using a hash function based on Merkle trees, which allows

reuse of previously calculated intermediate values. We choose BLAKE3 [98] as the

hash function. As shown in Figure 9.1, BLAKE3 splits its input into chunks of size

1024 bytes, then recursively hashes pairs of chunks until it reaches the root of

the tree.

For each memory image, Suvi memoizes a configurable level (counted from the

leaves) of this tree. When modifying the memory image, Suvi invalidates the

corresponding intermediate hash value via a bitmap. A later hash calculation must

re-calculate the intermediate values and then finalize the hash.

Memory

Image

H12 H34 H56 H78

H1234 H5678

H12345678

Level 1

Level 2

Level 3

8 KiB

128 B

64 B

32 B

Figure 9.1: BLAKE3 splits the memory image into chunks of 1 KiB and hashes pairs

of chunks recursively. The root of the tree is the final hash value. The right side

shows the total size of each level. Every intermediate value has a size of 32 bytes.

143

9 Suvi: Implementation 9.2 Memory Images

The choice of level is a trade-off between how much data of the memory image must

be read and how large the memory overhead from the cached hash values is. For

example, at level 5, each intermediate hash value corresponds to 25 = 32 chunks or

32 KiB of data. Re-calculating one intermediate value therefore requires accessing

eight 4 KiB pages. For a 100 MiB memory image, the intermediate hash values need

100 KiB, and the bitmap needs 400 bytes of memory. We evaluate this trade-off

below.

9.2.3 Evaluation

We evaluate the performance of the memory images with microbenchmarks that

exercise the individual operations. We compare our implementation based on

memory-mapped files (mmap) with a simple implementation based on Rust vectors

(Vec). Rust vectors are dynamically allocated managed arrays. The clone operation

allocates a new vector and copies the data, and the persist operation writes the data

to the destination file.

We run the benchmarks on pc62 , which we describe in Section 3.2. We set up an

XFS file system on the SSD to hold the memory-mapped files. Note that Suvi does

not use Optane PM for tracing or the memory images.

We evaluate memory images of size 5 MiB and 100 MiB, which is a typical range for

the file system images we test in Suvi. For example, we test PMFS and NOVA with

5 MiB images.

Memory-mapped images

Figure 9.2 compares the clone and persist operations of the two implementations.

Both operations are significantly faster with the mmap implementation. Cloning a

5 MiB mmap image requires 56 μs, which is 88% faster than the Vec implementation.

On 100 MiB images, mmap clone is 90% faster than Vec clone. The persist operation

is 96% faster on 5 MiB images and 97% faster on 100 MiB images.

With the reads heuristic, we typically observe 26% more calls to clone than to persist,

since each unique image is only persisted once. If Suvi generates 100 crash images

with size 100 MiB (i.e., 100 calls to persist and 126 calls to clone), the mmap images

save 10 s of time in the crash image generator.

Figure 9.2: pc62 Comparison of clone and persist operations on memory images

with size 5 MiB and 100 MiB.

144

9 Suvi: Implementation 9.2 Memory Images

Figure 9.3: pc62 Evaluation of memoization levels for a benchmark that clones

a memory image, modifies one byte, then calculates the hash. The bar at 0 shows

runtime without any memoization.

Hash Memoization

We evaluate memoized hashing with a benchmark that clones a memory image,

overwrites and invalidates one byte, and then calculates the hash. The benchmark

includes a clone operation because the reduction of page faults for the mmap images

is a major advantage of memoization and because this combination matches usage

in Suvi.

In Figure 9.3, we compare different memoization levels, including no memoization

(shown as level 0). Any memoization level yields a large speedup compared with

a regular hash calculation that always reads the entire buffer. Lower memoization

levels reduce the amount of data that must be rehashed but increase the size of the

memoized hash values that must be copied.

For the 100 MiB image size, there is a large variance in runtime between the different

memoization levels. These results are stable for multiple iterations within one

benchmark run (i.e., cloning and hashing one origin image multiple times) but differ

between benchmark runs. We attribute this to how the XFS file system allocates the

blocks of the origin image file, which affects the performance of the clone operation

and the resulting page faults.

With 5 MiB images, there is less variance. The runtime for levels one to six is

consistently low, with a small decrease between four and six. At levels higher than

six, the runtime rises because the cost of recalculation outweighs the savings from

copying less memoized data.

Based on these results, memoization levels between four and six provide good

performance, especially for small 5 MiB images. We chose level five for Suvi.

9.3 Parallelization
There are two opportunities for parallelization in Suvi, as shown in Figure 9.4: the

state extraction within a test and the entire pipeline across multiple tests.

Within the testing pipeline, the tracer and the crash image generator must run

strictly sequentially. The state extraction, in contrast, is trivially parallelizable. Each

145

9 Suvi: Implementation 9.3 Parallelization

Tracer

Crash Image

Generator

State

Extraction
...

Test 1

...

Test N

... time

Figure 9.4: Parallel execution in Suvi during state extraction and across multiple

tests.

instance extracts the state of one crash image, which is independent of all other

crash images.

Similarly, multiple invocations of Suvi’s pipeline on different tests are independent

and can be executed in parallel. However, combining these parallelization opportu

nities can easily result in resource exhaustion if multiple Suvi pipelines run parallel

state extraction at the same time.

We solve this problem by running the pipeline stages as separate jobs in a shared

thread pool. The tracer and crash image generator make up one job per test. For

the state extraction, each instance extracting one crash image runs in a separate

job. This allows parallel execution of all pipeline stages without exceeding resource

limits.

9.3.1 Discussion

Suvi’s strategy for parallelization achieves good resource utilization when enough

tests (≥ number of CPU cores) are analyzed in parallel. However, Suvi’s runtime for

analyzing a single test is dominated by the sequential tracer and crash image gener

ator stages. There are two opportunities to improve parallel resource optimization

within the Suvi pipeline, as shown in Figure 9.5.

First, rather than running the pipeline stages strictly in sequence, Suvi could trigger

state extraction immediately as it discovers new crash images (Figure 9.5 (a)). We

do not implement this approach for Suvi, since it introduces additional complexity

while often gaining little time. Assuming that state extraction takes similar time

for all crash images, the extraction of the final generated image determines when

the pipeline finishes. However, if there are fewer crash images than CPU cores, the

Tracer

Crash Image

Generator

State

Extraction

time

(a) immediate

state extraction

(b) parallel crash

image generation

Figure 9.5: Opportunities for improving parallel resource utilization for a single test.

146

9 Suvi: Implementation 9.3 Parallelization

separate state extraction phase takes just as long, since all states are then extracted

in parallel. For example, when analyzing the NOVA file system, all except two of

Suvi’s regular test cases have fewer than 36 crash images and can be processed in

parallel on our test machine with 36 CPU cores.

Second, the crash image generator itself could be parallelized (Figure 9.5 (b)). By

duplicating the state of the PM simulation at each fence, Suvi could continue trace

replay in one thread while generating crash images in another. The primary time gain

would stem from Suvi-Reads (see Section 8.4.1), since multiple recovery traces could

run in parallel. We do not implement this approach either due to the high additional

complexity. Duplicating the state of the crash image generator is additional work

that would slow down the common case of parallel test execution. Additionally, Suvi

includes an alternative heuristic, Suvi-Fast, that minimizes time spent generating

crash images.

147

9 Suvi: Implementation 9.3 Parallelization

148

Chapter 10

File System Testing with Suvi

In this section, we discuss using Suvi to analyze crash consistency of PM file systems.

We first describe the virtual machines with the test environment, then the file system

test cases. We evaluate Suvi’s performance and discuss the analysis results.

10.1 Virtual Machine Setup
Suvi analyzes file systems running in a virtual machine. Rather than using a virtual

machine image of a regular Linux distribution, we create minimal environments for

our file system tests. This approach has two advantages. First, a minimal environment

reduces the resources necessary for running the virtual machine. Most drivers and

services that are included in generic images are not needed for the file system tests,

but increase boot times and memory utilization. Second, since we precisely control

each component that is part of the virtual machine, we improve reproducibility of

the test results.

With direct Linux boot, QEMU supports starting a Linux kernel without the usual

firmware startup. We provide QEMU with a Linux kernel image and an initramfs

image. QEMU loads both files into the guest memory and then runs the kernel

entrypoint. As part of its boot procedure, the kernel extracts the initramfs image

into an in-memory root file system. Finally, Linux runs the init program contained

in the image. The initramfs image is immutable. Any changes to the root file system

in the guest are lost once the virtual machine terminates.

We prepare an initramfs based on BusyBox [22], which is a collection of common

Unix command-line tools in a single executable. Besides BusyBox, the initramfs

contains file system administration tools such as mkfs and our fs-dump tool for

state extraction (see Section 8.6.1). The init process starts a POSIX shell that waits

for input from the serial device. Once the shell is ready, Suvi sends commands over

the serial device that contain the test case, run file system recovery, or the state ex

traction program.

We ensure reproducible test environments by building the Linux kernels and

initramfs images with Nix [39]. This is particularly important for older research file

systems such as PMFS which do not build with modern toolchains.

149

10 File System Testing with Suvi

10.2 Test Cases
Suvi includes two types of test cases. First, manually-written test cases originally

written for Vinter, which we extend. Second, automatically-generated sequences of

file system operations.

10.2.1 Vinter Test Cases

Suvi primarily uses the 16 hand-written test cases inherited from Vinter [68].

These test cases are implemendet as short shell scripts and cover most POSIX

file system operations. For Suvi, we modify some of the test cases so that every

checkpoint contains at most one file system operation. These modifications enable

fully automatic testing, including reporting results. Further, we introduce two

additional test cases that cover the truncate and fallocate operations.

There are the following test cases:

Test Name Tested Operations

Hello World create file, write to file

append append data to file

atime read file, updating its access time

ctime/mtime delete file from directory, which updates the directory’s

modification timestamp

chmod change file access mode

chown change file owner

link create and remove a hard link

symlink create a symlink

mkdir/rmdir create and remove a directory

rename: overwrite rename a file, atomically overwrite target

rename: directory rename a directory with contents

rename: long name rename a file to a long name

touch create a file, then update its accessed and modification

timestamps

long name create a file with a long name, then write to it

unlink remove a file

update write to the middle of a file

fallocate increase file size with fallocate, then write to the allocated

space

truncate reduce file size with truncate

150

10 File System Testing with Suvi 10.2 Test Cases

10.2.2 Automatic Test Case Generation

Besides manually-written test cases, Suvi also supports automatically generated

test cases with ACE. Originally introduced with CrashMonkey [93] and extended for

Chipmunk [81], ACE is an approach for automatically generating short sequences

of file system operations.

ACE chooses a fixed-length sequence of file system operations from a pre-defined

set. For each operation, it then randomly selects appropriate parameters. Most file

system operations have dependencies. For example, a file must exist before it can

be deleted. As final step, ACE resolves these dependencies by inserting additional

operations.

ACE outputs tests in a high-level language called J-lang. For CrashMonkey and

Chipmunk, the authors convert the J-lang tests to C++ source code, which is then

compiled and executed.

We adapt ACE for Suvi as follows. We modify the test case generation to insert

checkpoints around the last operation of the generated sequence. Suvi will therefore

test atomicity only of the last operation in the sequence. This avoids duplicate work,

since earlier operations are already covered by shorter test sequences. Generating

and compiling C++ code from the J-lang files is not a good fit for Suvi, since it runs

tests in a minimal virtual machine without a complete userspace. Instead, we build

a J-lang interpreter that reads and directly executes file system commands.

We exhausively generate and analyze tests with a sequence length of one (seq1) and

two (seq2).

10.3 Performance
The performance of a crash consistency testing system is important for two reasons.

First, faster analysis allows processing more test cases over time and therefore

achieving higher test coverage. Second, once a bug is identified, the testing tool

should be fast enough for interactive use on a small test set for debugging.

In this section, we examine Suvi’s performance when analyzing file systems. We

focus on the following questions:

• How does the analysis performance of Suvi’s heuristics, Suvi-Reads and Suvi-

Fast, compare?

• How do the two tracers based on PANDA and QEMU compare?

• How large is Suvi’s speedup from parallelization?

We base the following analysis on performance data from analyzing the NOVA file

system with 1515 seq2 tests generated with ACE (see Section 10.2.2).

10.3.1 Heuristics

In Figure 10.1, we compare the median sequential runtime of Suvi with Suvi-Reads

and Suvi-Fast. Both heuristics aim to avoid combinatorial explosion in the crash

image generator. Suvi-Reads traces read accesses during file system recovery, and

Suvi-Fast deduplicates failure points by stack trace. See Section 8.4 for a detailed

description of these heuristics.

151

10 File System Testing with Suvi 10.3 Performance

Figure 10.1: pc62 Comparison of analysis times for Suvi’s heuristics (Suvi-Reads

and Suvi-Fast) with the PANDA tracer. Median sequential execution times for the

ACE seq2 tests on NOVA.

The runtime differs significantly in the tracer and the crash image generator. Suvi-

Fast requires collecting stack traces during tracing, which introduces a tracing

overhead of 71%. While the core of the crash image generator (i.e., PM simulation

and writing crash images) takes less than one second for both Suvi-Reads and Suvi-

Fast, the recovery tracing for Suvi-Reads takes a significant amount of time. In

total, tracing and crash image generation finish 57% faster with Suvi-Fast than with

Suvi-Reads.

For both heuristics, the state extraction requires the largest amount of time, which

scales linearly with the number of crash images. As Suvi-Fast generates fewer crash

images than Suvi-Reads, we observe a slightly smaller state extraction time.

The time shown for state extraction in Figure 10.1 is for sequential execution. The

tests generate 10 crash images on average. Assuming that there are enough CPU

cores to extract all states in parallel, the state extraction finishes in 2.1 seconds.

10.3.2 Tracer Implementations

In Figure 10.2, we compare the QEMU and PANDA tracers. We can see that the QEMU

tracer is significantly slower than PANDA. There is a slowdown of 2.4× for tracing

the test case, of 5.8× for recovery tracing, and of 2.9× for state extraction.

QEMU and PANDA use different approaches for hooking instructions and accessing

guest state. While PANDA has hooks within the core emulation logic and allows

direct access to the internal guest CPU state, QEMU’s TCG plugins insert additional

instructions into the TCG stream and provide a limited plugin API for guest state

access [43]. We assume that these differences, combined with the relative novelty of

TCG plugins, lead to higher overhead for tracing with TCG plugins than with PANDA.

For this reason, we recommend using the QEMU tracer only for analyzing cross-

media file systems, since the PANDA tracer does not support NVMe devices.

152

10 File System Testing with Suvi 10.3 Performance

Figure 10.2: pc62 Comparison of analysis times for Suvi’s tracer implementations

(QEMU and PANDA) with Suvi-Reads. Median sequential execution times for the

ACE seq2 tests on NOVA.

10.3.3 Parallelization

We evaluate our strategy for parallel test execution in Suvi (see Section 9.3) by

comparing the real runtime with the sum of the runtime of all pipeline stages. The

parallel analysis with PANDA and Suvi-Reads finished in 55 minutes. Compared to a

sequential runtime of 1968 minutes, this is a 35.9× speedup. The other configurations

(QEMU, Suvi-Fast) show similar speedup. This is close to the maximum possible

parallel speedup on our test system with 36 cores, indicating that our approach to

parallelization is successful.

We evaluate speedup for running a single test case by running the “Hello World”

test with PANDA and Suvi-Reads. Suvi generates 28 crash images for this test and

finishes analysis in 25 seconds. Compared to a sequential runtime of 107 seconds,

this is a 4.3× speedup. As we discuss in Section 9.3, the lower speedup for a single

test is expected since only state extraction is run in parallel.

10.4 Results
We analyze the file systems NOVA, NOVA-Fortis, PMFS, WineFS, and ZIL-PMEM with

Suvi. This thesis presents the first analysis of ZIL-PMEM, while the other file systems

have previously been analyzed with Vinter [68] and Chipmunk [81].

Table 10.1 shows an overview of the analysis results. We discuss these results in

more detail in the following sections.

Since all tests update timestamps, we only note an atomicity violation due to inatomic

timestamp updates for the ctime/mtime test.

10.4.1 NOVA and NOVA-Fortis

Suvi identifies problems in multiple tests, including multiple final states and

atomicity violations, and state extraction errors. We identify three root causes.

First, NOVA uses a memcpy function provided by the Linux kernel that uses non-

temporal store instructions. Since non-temporal store instructions require an

alignment of at least eight bytes, this memcpy function writes any remaining

153

10 File System Testing with Suvi 10.4 Results

Test

N
O

V
A

N
O

V
A

-F
o

rt
is

P
M

F
S

W
in

e
F

S

Z
IL

-P
M

E
M

Hello World S W 🗸 🗸 🗸

append 🗸 🗸 🗸 🗸 🗸

atime 🗸 🗸 🗸 🗸 🗸

ctime/mtime 🗸 E A A A

chmod 🗸 🗸 🗸 🗸 🗸

chown 🗸 🗸 🗸 🗸 🗸

link A E 🗸 🗸 🗸

symlink S S 🗸 🗸 🗸

mkdir/rmdir 🗸 E C 🗸 🗸

rename: overwrite A E C 🗸 🗸

rename: directory A E 🗸 🗸 🗸

rename: long name E E 🗸 🗸 🗸

touch 🗸 W 🗸 🗸 🗸

long name E W 🗸 🗸 🗸

unlink 🗸 🗸 C 🗸 🗸

update A E 🗸 A 🗸

fallocate 🗸 🗸 🗸 🗸 🗸

truncate 🗸 E C 🗸 🗸

Legend

🗸 Atomic

A Atomicity violation

S Multiple final states

E State extraction error

W Write error after recovery

C Recovery crash

Table 10.1: Analysis results of testing PM file systems with the Vinter test cases (see

Section 10.2.1).

unaligned bytes with regular store instructions, but does not flush these bytes from

the caches.

These unflushed bytes result in multiple final states in Suvi’s analysis. For the “Hello

World” test, we observe one extra state with truncated file contents. We show Suvi’s

analysis output for this test case in more detail in Section 8.6.2. Similarly, Suvi

detects truncated symlink targets and file names, which causes state extraction

errors.

This bug is one where Suvi’s improved PM simulation results in different results.

When analyzing this bug with Vinter, we discussed additional states where some,

but not all of the unaligned bytes are present [68, §5.3.1]. Suvi correctly does not

generate these states. As the file only appears after a later metadata update, x86

global store order enforces that all previous regular stores must have finished.

Second, NOVA does not update the hard link counter atomically as new hard links

are created.

Third, rename operations have a logic bug that makes them inatomic. NOVA first

removes the old source and target directory entries before creating a new entry for

154

10 File System Testing with Suvi 10.4 Results

the rename target. Suvi therefore discovers states during rename operations where

the file is missing completely.

NOVA-Fortis extends NOVA with data protection mechanisms, including checksums

and error correcting codes. These features allow NOVA-Fortis to recover some

missing unaligned bytes, like in the “Hello World” test. However, symlinks are not

protected and show the same multiple final states as with NOVA.

With NOVA-Fortis, several tests report errors during state extraction or failing write

operations after recovery. The root cause for these issues is that NOVA-Fortis does

not always update checksums atomically. Files with a partially-written checksum

report errors during read and write operations after recovery.

10.4.2 PMFS and WineFS

As we describe in Section 2.3.1, PMFS uses cmpxchg16b for atomic 16-byte updates,

which actual PM hardware does not support. In our analysis with Suvi, this shows in

inatomic timestamp updates and data loss in truncate operations. These problems

are shared with WineFS, which builds on PMFS.

PMFS has another problem where certain updates to the filesystem super block

trigger an assertion during recovery. Such a file system is then broken and cannot

be mounted anymore. This bug was fixed in WineFS.

As detected by the “update” test, WineFS introduced an atomicity bug with write

operations. PMFS performs a write that overwrites existing file data byte-by-byte

rather than replacing the data atomically.

10.4.3 ZIL-PMEM

ZIL-PMEM is the only cross-media file system in our test set, which we test with

the QEMU tracer (see Section 9.1). We do not find any crash consistency bugs in

ZIL-PMEM.

The only problems that Suvi reports are by design of ZFS’s ZIL recovery. When

the recovery modifies a file with logged updates, it also updates the modification

timestamp of that file to the time of recovery. We do not consider this a crash con

sistency bug, since the file system is not wrong in noting that a modification was

performed at recovery time.

10.5 Persistent Caches
The file systems analyzed in the previous section were designed for PM systems

with volatile caches. With eADR, some PM systems have persistent caches, which

eliminates the need for cache flushes (see Section 2.4.1). However, even with

persistent caches, crash consistency remains a challenge. Non-temporal stores

remain weakly ordered and require memory fences. Finally, intermittent invalid

states can occur during regular execution as a result of logic bugs.

We assess the effect of persistent caches on file system crash consistency by

repeating the file system tests from the previous section with Suvi’s eADR mode

(see Section 8.3.6). In Table 10.2, we highlight tests where the results improve with

persistent caches.

155

10 File System Testing with Suvi 10.5 Persistent Caches

Test

N
O

V
A

N
O

V
A

-F
o

rt
is

P
M

F
S

W
in

e
F

S

Z
IL

-P
M

E
M

write 🗸 🗸 🗸 🗸 🗸

ctime/mtime 🗸 E A A A

link A E 🗸 🗸 🗸

symlink 🗸 🗸 🗸 🗸 🗸

mkdir/rmdir 🗸 E C 🗸 🗸

rename: overwrite A E C 🗸 🗸

rename: directory A E 🗸 🗸 🗸

rename: long name A E 🗸 🗸 🗸

touch 🗸 🗸 🗸 🗸 🗸

long name 🗸 🗸 🗸 🗸 🗸

unlink 🗸 🗸 C 🗸 🗸

update 🗸 🗸 🗸 A 🗸

truncate 🗸 E C 🗸 🗸

Legend

🗸 Atomic

A Atomicity violation

E State extraction error

C Recovery crash

Table 10.2: Analysis results of testing PM file systems with persistent caches (eADR).

We only include tests that had failures with volatile caches and show identical results

in a lighter color.

Only NOVA and NOVA-Fortis show different results. With persistent caches, the

missing cache flush in the memcpy function for unaligned data is no longer

necessary. Test failures that originate from that bug therefore disappear.

All other bugs remain with persistent caches, including atomicity bugs in NOVA and

WineFS, state extraction errors in NOVA-Fortis, and crashes in PMFS.

10.6 Discussion
Short and simple tests are often sufficient for finding crash consistency bugs in PM

file systems. Since these file systems promise crash-atomic file system operations

at low latency, their designs often include complex protocols for updating metadata.

If there are bugs in these update protocols, Suvi’s record-and-replay approach can

usually discover them from a single execution.

Persistent caches with eADR solve few real-world crash consistency bugs. Correct

use of memory fences remains necessary for weakly-ordered NT stores, which are

often preferable for performance (see Section 3.3). Additionally, logic bugs constitute

the majority of the crash consistency bugs that we observe.

The testing effort with Suvi is low. Running Suvi on the manually written Vinter test

cases takes only a few minutes. With the aid of Suvi’s tools for state analysis and

trace debugging, an initial analysis of a file system takes less than one hour.

156

10 File System Testing with Suvi 10.6 Discussion

Still, we observe that crash consistency is not an evaluated goal of recent research file

systems. As we describe in Section 2.3, the implementations of recently published

file systems have major issues that are apparent without using a crash consisten

cy testing tool. We hope that our research motivates future file system researchers

and developers to properly implement and evaluate the crash consistency of their

file systems.

157

10 File System Testing with Suvi 10.6 Discussion

158

Chapter 11

Conclusion

Persistent memory (PM) offers new opportunities for file systems by enabling direct

access to storage with low latency, but it also introduces challenges for file system

design and implementation. In particular, synchronous and fine-grained access to

PM differs significantly from traditional asynchronous block interfaces to storage.

In this thesis, we addressed two such challenges, with consequences for efficiency

and correctness.

As a first challenge, we identified efficiency problems caused by synchronous access

to PM from the CPU. If PM accesses are delayed due to overload, the CPU stalls,

wasting CPU time and energy. With Intel Optane PM, such overload arises quickly

under parallel load. PM software must therefore limit parallelism when accessing

PM. However, CPU and energy efficiency are rarely explicit goals for PM file systems.

In Chapter 4, we introduced efficiency metrics that capture the CPU and energy cost

of accessing data from a file system. We evaluated these metrics on multiple PM

file systems, and found that most PM file systems do not limit parallel access to PM.

These file systems therefore waste CPU time and energy under parallel load.

Beyond quantifying problematic behavior, our work also enables efficiency compar

isons between different file systems. For file systems that include measures to limit

parallel PM access, we found that higher throughput does not always imply better

efficiency. We expect that our work will enable future file systems to include CPU

and energy efficiency among their goals.

We then proposed measures to mitigate PM overload from parallel accesses. In

Chapter 5, we described three approaches for controlling parallelism within PM file

systems. The key idea of these approaches is to eliminate expensive on-CPU waiting

by blocking processes during overload and allowing other processes to run.

Userspace processes can also access PM directly by requesting a memory mapping

to PM from the file system. After providing such a mapping, the operating system has

no further insight into or control over direct PM accesses. In Chapter 6, we proposed

an approach for accounting direct PM accesses with association to individual

processes. We showed that our appproach provides accurate throughput estimates

at low latency. With the accounting information, the operating system can detect

and mitigate PM overload from userspace accesses. We introduced a scheduling

159

11 Conclusion 11.1 Outlook

approach that performs automatic core specialization for PM processes and showed

that this approach can prevent PM overload.

The second challenge for PM file systems is correctness in the presence of crashes.

Volatile data in the CPU’s write path is lost in the event of a crash, which can

lead to data corruption. PM applications must therefore carefully manage their

modifications through the use of PM primitives such as cache flushes and memory

fences.

In Chapter 8 of this thesis, we introduced Suvi, an approach to crash consisten

cy testing for PM file systems. Suvi is a black-box testing approach that traces the

PM interaction of a file system in a virtual machine. Suvi then replays the trace,

simulates the PM write path, and generates crash images, which represent possible

PM contents in the event of a crash. From the crash images, Suvi can automatically

detect crash consistency bugs such as atomicity violations.

Suvi improves upon previous approaches to crash consistency testing in multiple

ways. It supports crash consistency testing for cross-media file systems by tracing

and simulating NVMe storage devices. It uses an improved simulation of x86 crash

consistency semantics that models x86 global store order more accurately than

previous works. Suvi includes three heuristics for fast and targeted crash image

generation. Our strategy for managing memory images allows Suvi to handle large

crash images efficiently. Finally, Suvi’s analysis tools provide automatic detection

of atomicity bugs and assist in determining their root cause.

In Chapter 10, we analyzed multiple PM file systems with Suvi using both manually-

written and automatically-generated test cases. Finally, we discussed several bugs

that Suvi detected in these file systems.

In combination, the contributions of this thesis provide a foundation for more correct

and more efficient future PM file systems.

11.1 Outlook
This thesis was largely motivated by, and evaluated on, Intel Optane PM. Even

though Intel canceled its Optane PM product line, we expect that the contributions

of this thesis will remain relevant for future PM technologies. In particular, the CXL

interface, supported by modern Intel and AMD server systems, allows independent

development of new PM technologies.

Analysis of CXL devices has shown that performance degradation due to overload

remains a concern [114]. Our metrics for file system efficiency can guide the design

and implementation of future CXL-based PM file systems.

In Chapter 5, we explored DMA offloading as a mitigation for parallel PM accesses.

Upcoming CXL-based hybrid SSDs can natively provide an asynchronous DMA

interface as an alternative to synchronous direct access [113, 130]. However,

managing these two access modes from the operating system remains an active

area of research [50, 77].

In the area of PM access accounting, CXL enables new opportunities by allowing

innovation at the device level. With support from the CXL device, more accurate

160

11 Conclusion 11.1 Outlook

accounting at lower overhead becomes possible. We outline such an approach in

Section 6.8.

Finally, crash consistency testing continues to be important for CXL-based PM

applications and file systems. The crash consistency semantics of x86 systems do

not change with CXL. Therefore, Suvi can be used to analyze future PM file systems

for CXL systems.

161

11 Conclusion 11.1 Outlook

162

References

[1] 2014. peichen-cs/aerie. Retrieved June 18, 2025 from https://github.com/

peichen-cs/aerie

[2] 2021. IPMCTL User Guide. Retrieved August 4, 2025 from https://docs.pmem.

io/ipmctl-user-guide

[3] 2022. NDCTL User Guide. Retrieved August 4, 2025 from https://docs.pmem.

io/ndctl-user-guide

[4] 2023. NVM Express NVM Command Set Specification 1.0d. Retrieved from

https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-

Set-Specification-1.0d-2023.12.28-Ratified.pdf

[5] 2024. NVM Express Base Specification 2.0d. Retrieved from https://

nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0

d-2024.01.11-Ratified.pdf

[6] 2025. NVSL/linux-nova. Retrieved June 12, 2025 from https://github.com/

NVSL/linux-nova

[7] 2025. google/syzkaller. Retrieved August 12, 2025 from https://github.com/

google/syzkaller

[8] Intel® Optane™ Persistent Memory 100 Series Product Specifications.

Retrieved August 4, 2025 from https://www.intel.com/content/www/us/en/

products/sku/series/190349/intel-optane-persistent-memory-100-series.

html

[9] Intel® Optane™ Persistent Memory 200 Series Product Specifications.

Retrieved August 4, 2025 from https://www.intel.com/content/www/us/en/

products/sku/series/203877/intel-optane-persistent-memory-200-series.

html

[10] Intel® Optane™ Persistent Memory 300 Series Product Specifications.

Retrieved August 4, 2025 from https://www.intel.com/content/www/us/en/

products/sku/series/213689/intel-optane-persistent-memory-300-series.

html

[11] Linux NVDIMM documentation. Retrieved August 5, 2025 from https://

nvdimm.docs.kernel.org/

[12] The Linux Kernel Archives. Retrieved May 20, 2025 from https://kernel.org/

163

https://github.com/peichen-cs/aerie
https://github.com/peichen-cs/aerie
https://docs.pmem.io/ipmctl-user-guide
https://docs.pmem.io/ipmctl-user-guide
https://docs.pmem.io/ndctl-user-guide
https://docs.pmem.io/ndctl-user-guide
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://github.com/NVSL/linux-nova
https://github.com/NVSL/linux-nova
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.intel.com/content/www/us/en/products/sku/series/190349/intel-optane-persistent-memory-100-series.html
https://www.intel.com/content/www/us/en/products/sku/series/190349/intel-optane-persistent-memory-100-series.html
https://www.intel.com/content/www/us/en/products/sku/series/190349/intel-optane-persistent-memory-100-series.html
https://www.intel.com/content/www/us/en/products/sku/series/203877/intel-optane-persistent-memory-200-series.html
https://www.intel.com/content/www/us/en/products/sku/series/203877/intel-optane-persistent-memory-200-series.html
https://www.intel.com/content/www/us/en/products/sku/series/203877/intel-optane-persistent-memory-200-series.html
https://www.intel.com/content/www/us/en/products/sku/series/213689/intel-optane-persistent-memory-300-series.html
https://www.intel.com/content/www/us/en/products/sku/series/213689/intel-optane-persistent-memory-300-series.html
https://www.intel.com/content/www/us/en/products/sku/series/213689/intel-optane-persistent-memory-300-series.html
https://nvdimm.docs.kernel.org/
https://nvdimm.docs.kernel.org/
https://kernel.org/

References

[13] mmap(2) - Linux manual page. Retrieved June 3, 2025 from https://man7.

org/linux/man-pages/man2/mmap.2.html

[14] POSIX.1-2024. Retrieved from https://pubs.opengroup.org/onlinepubs/

9799919799/

[15] nvme-cli: NVMe management command line interface. Retrieved August 22,

2024 from https://github.com/linux-nvme/nvme-cli

[16] proc_stat(5) - Linux manual page. Retrieved July 18, 2025 from https://www.

man7.org/linux/man-pages/man5/proc_stat.5.html

[17] open(2) - Linux manual page. Retrieved July 30, 2025 from https://man7.org/

linux/man-pages/man2/open.2.html

[18] perf_event_open(2) - Linux manual page. Retrieved August 8, 2025 from

https://man7.org/linux/man-pages/man2/perf_event_open.2.html

[19] PMDK: Persistent Memory Development Kit. Retrieved August 11, 2025 from

https://github.com/pmem/pmdk

[20] What's New In Python 3.3. Retrieved from https://docs.python.org/3/

whatsnew/3.3.html

[21] ioctl_ficlonerange(2) - Linux manual page. Retrieved from https://man7.org/

linux/man-pages/man2/ioctl_ficlone.2.html

[22] BusyBox. Retrieved from https://busybox.net/

[23] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Evaluation

of Intel PEBS Overhead for Online System-Noise Analysis. In Proceedings of the

7th International Workshop on Runtime and Operating Systems for Supercomputers

ROSS 2017, June 2017. ACM, Washingon DC USA, 1–8. https://doi.org/10.1145/

3095770.3095773

[24] Lukas Alt, Anara Kozhokanova, Thomas Ilsche, Christian Terboven, and

Matthias S. Mueller. 2024. An Experimental Setup to Evaluate RAPL Energy

Counters for Heterogeneous Memory. In Proceedings of the 15th ACM/SPEC

International Conference on Performance Engineering, May 2024. ACM, London

United Kingdom, 71–82. https://doi.org/10.1145/3629526.3645052

[25] Thomas E Anderson, Simon Peter, Marco Canini, Jongyul Kim, Dejan Kostic,

Youngjin Kwon, Waleed Reda, Henry N Schuh, and Emmett Witchel. 2022.

Assise: Performance and Availability via Client-local NVM in a Distributed File

System. 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20) (November 2022), 1011–1027. Retrieved from https://www.usenix.

org/conference/osdi20/presentation/anderson

[26] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-

Input PRF. Progress in Cryptology - INDOCRYPT 2012 7668, 489–508. https://doi.

org/10.1007/978-3-642-34931-7_28

[27] Jens Axboe. Flexible I/O Tester. Retrieved July 30, 2025 from https://github.

com/axboe/fio

164

https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://pubs.opengroup.org/onlinepubs/9799919799/
https://pubs.opengroup.org/onlinepubs/9799919799/
https://github.com/linux-nvme/nvme-cli
https://www.man7.org/linux/man-pages/man5/proc_stat.5.html
https://www.man7.org/linux/man-pages/man5/proc_stat.5.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://github.com/pmem/pmdk
https://docs.python.org/3/whatsnew/3.3.html
https://docs.python.org/3/whatsnew/3.3.html
https://man7.org/linux/man-pages/man2/ioctl_ficlone.2.html
https://man7.org/linux/man-pages/man2/ioctl_ficlone.2.html
https://busybox.net/
https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1145/3629526.3645052
https://www.usenix.org/conference/osdi20/presentation/anderson
https://www.usenix.org/conference/osdi20/presentation/anderson
https://doi.org/10.1007/978-3-642-34931-7_28
https://github.com/axboe/fio
https://github.com/axboe/fio

References

[28] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In

Proceedings of the annual conference on USENIX Annual Technical Conference (ATEC

'05), April 2005. USENIX Association, USA, 41.

[29] Alex Bennée. 2022. QEMU TCG Plugins. Retrieved from https://qemu.eu/doc/

8.0/devel/tcg-plugins.html

[30] Florian Bernd and Joel Höner. zydis | The ultimate X86 & X86-64 disassembler

library. Retrieved from https://zydis.re/

[31] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum.

2003. The Zettabyte File System. (2003).

[32] Ilia Bozhinov. 2022. Reducing Synchronous Write Latency With a PMEM Write

Cache in the Device Mapper Layer. Doctoral dissertation. Retrieved from

https://os.itec.kit.edu/downloads/2022_BA_Bozhinov_DMWriteCache.pdf

[33] Neil Brown. 2017. A block layer introduction part 1: the bio layer. LWN.net

(October 2017). Retrieved October 9, 2025 from https://lwn.net/Articles/

736534/

[34] CLEAResult. 80 PLUS certification specifications and ratings. Retrieved July

17, 2025 from https://www.clearesult.com/80plus/program-details#program-

details-table

[35] The const generics project group. 2021. Const generics MVP hits beta!.

Retrieved August 4, 2025 from https://blog.rust-lang.org/2021/02/26/const-

generics-mvp-beta/

[36] Jonathan Corbet. 2019. Some slow progress on get_user_pages(). LWN.net

(April 2019). Retrieved August 1, 2025 from https://lwn.net/Articles/784574/

[37] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A Validation

of DRAM RAPL Power Measurements. In Proceedings of the Second International

Symposium on Memory Systems, October 2016. ACM, Alexandria VA USA, 455–

470. https://doi.org/10.1145/2989081.2989088

[38] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan

Whelan. 2015. Repeatable Reverse Engineering with PANDA. In Proceedings of

the 5th Program Protection and Reverse Engineering Workshop, December 2015.

ACM, Los Angeles CA USA, 1–11. https://doi.org/10.1145/2843859.2843867

[39] Eelco Dolstra. 2006. The purely functional software deployment model.

Doctoral dissertation. Retrieved from https://edolstra.github.io/pubs/phd-

thesis.pdf

[40] Srikar Dronamraju. Uprobe-tracer: Uprobe-based Event Tracing — The Linux

Kernel documentation. Retrieved from https://www.kernel.org/doc/html/v6.

12/trace/uprobetracer.html

[41] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,

Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software for

Persistent Memory. In Proceedings of the Ninth European Conference on Computer

Systems (EuroSys '14), 2014. ACM, New York, NY, USA, 15:1–15:15. https://doi.

org/10.1145/2592798.2592814

165

https://qemu.eu/doc/8.0/devel/tcg-plugins.html
https://qemu.eu/doc/8.0/devel/tcg-plugins.html
https://zydis.re/
https://os.itec.kit.edu/downloads/2022_BA_Bozhinov_DMWriteCache.pdf
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://www.clearesult.com/80plus/program-details#program-details-table
https://www.clearesult.com/80plus/program-details#program-details-table
https://blog.rust-lang.org/2021/02/26/const-generics-mvp-beta/
https://blog.rust-lang.org/2021/02/26/const-generics-mvp-beta/
https://lwn.net/Articles/784574/
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2843859.2843867
https://edolstra.github.io/pubs/phd-thesis.pdf
https://edolstra.github.io/pubs/phd-thesis.pdf
https://www.kernel.org/doc/html/v6.12/trace/uprobetracer.html
https://www.kernel.org/doc/html/v6.12/trace/uprobetracer.html
https://doi.org/10.1145/2592798.2592814

References

[42] Michael J Eager. 2012. Introduction to the DWARF Debugging Format. Retrieved

from https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf

[43] Andrew Fasano. 2022. TCG Plugins vs PANDA Plugins. Retrieved from https://

github.com/panda-re/panda/wiki/TCG-Plugins-vs-PANDA-Plugins

[44] UEFI Forum. 2025. Advanced Configuration and Power Interface (ACPI)

Specification. Retrieved from https://uefi.org/sites/default/files/resources/

ACPI_Spec_6.6.pdf

[45] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail,

Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021. Witcher: Systematic

Crash Consistency Testing for Non-Volatile Memory Key-Value Stores. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,

October 2021. ACM, Virtual Event Germany, 100–115. https://doi.org/10.1145/

3477132.3483556

[46] João Gonçalves, Miguel Matos, and Rodrigo Rodrigues. 2023. Mumak: Efficient

and Black-Box Bug Detection for Persistent Memory. In Proceedings of the

Eighteenth European Conference on Computer Systems, May 2023. ACM, Rome

Italy, 734–750. https://doi.org/10.1145/3552326.3587447

[47] Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. 2020. Automatic

Core Specialization for AVX-512 Applications. In Proceedings of the 13th ACM

International Systems and Storage Conference, May 2020. ACM, Haifa Israel, 25–

35. https://doi.org/10.1145/3383669.3398282

[48] Brendan Gregg. 2024. The Return of the Frame Pointers. Retrieved March 7,

2025 from https://www.brendangregg.com/blog/2024-03-17/the-return-of-

the-frame-pointers.html

[49] Hao Guo and Youyou Lu. 2025. Achieving Low-Latency Graph-Based Vector

Search via Aligning Best-First Search Algorithm with SSD. In 19th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 25), 2025.

Retrieved from https://www.usenix.org/conference/osdi25/presentation/guo

[50] Daniel Habicht, Yussuf Khalil, Lukas Werling, Thorsten Gröninger, and Frank

Bellosa. 2024. Fundamental OS Design Considerations for CXL-based Hybrid

SSDs. In Proceedings of the 2nd Workshop on Disruptive Memory Systems (DIMES

'24), November 2024. Association for Computing Machinery, New York, NY,

USA, 51–59. https://doi.org/10.1145/3698783.3699380

[51] Adnan Hasnat and Shoaib Akram. 2025. SPIRIT: Scalable and Persistent In-

Memory Indices for Real-Time Search. ACM Transactions on Architecture and

Code Optimization 22, 1 (March 2025), 1–26. https://doi.org/10.1145/3703351

[52] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,

Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process isola

tion for High-Throughput data plane libraries. In 2019 USENIX annual technical

conference (USENIX ATC 19), July 2019. USENIX Association, Renton, WA, 489–

504. Retrieved from http://www.usenix.org/conference/atc19/presentation/

hedayati-hodor

166

https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://github.com/panda-re/panda/wiki/TCG-Plugins-vs-PANDA-Plugins
https://github.com/panda-re/panda/wiki/TCG-Plugins-vs-PANDA-Plugins
https://uefi.org/sites/default/files/resources/ACPI_Spec_6.6.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6.6.pdf
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3552326.3587447
https://doi.org/10.1145/3383669.3398282
https://www.brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html
https://www.brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html
https://www.usenix.org/conference/osdi25/presentation/guo
https://doi.org/10.1145/3698783.3699380
https://doi.org/10.1145/3703351
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor

References

[53] Brook Heisler. Criterion.rs. Retrieved August 4, 2025 from https://bheisler.

github.io/criterion.rs/book/

[54] Tejun Heo and Florian Mickler. 2010. Workqueue — The Linux Kernel docu

mentation. Retrieved August 1, 2025 from https://www.kernel.org/doc/html/

v6.12/core-api/workqueue.html

[55] Intel. 2017. Intel® Xeon® Processor Scalable Memory Family Uncore Perfor

mance Monitoring Reference Manual. Retrieved August 5, 2025 from

https://www.intel.com/content/www/us/en/content-details/671389/intel-

xeon-processor-scalable-memory-family-uncore-performance-monitoring-

reference-manual.html

[56] Intel. 2018. Power Supply Design Guide for Desktop Platform Form Fac

tors. Retrieved July 17, 2025 from https://www.intel.com/content/dam/

www/public/us/en/documents/design-guides/resellers-power-supply-design-

guide-changes.pdf

[57] Intel. 2019. Second Generation Intel® Xeon® Scalable Processors Datasheet,

Volume Two: Registers. (April 2019). Retrieved from https://www.intel.

com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-

scalable-datasheet-vol-2.pdf

[58] Intel. 2020. Persistent Memory FAQ. Retrieved from https://www.intel.com/

content/www/us/en/developer/articles/troubleshooting/persistent-memory-

faq.html

[59] Intel. 2021. eADR: New Opportunities for Persistent Memory Applications.

Retrieved from https://www.intel.com/content/www/us/en/developer/articles/

technical/eadr-new-opportunities-for-persistent-memory-applications.html

[60] Intel. 2021. 3rd Gen Intel® Xeon® Processor Scalable Family, Codename Ice

Lake Uncore Performance Monitoring Reference Manual. Retrieved August

5, 2025 from https://www.intel.com/content/www/us/en/content-details/

679093/3rd-gen-intel-xeon-processor-scalable-family-codename-ice-lake-

uncore-performance-monitoring-reference-manual.html

[61] Intel. 2024. Intel® 64 and IA-32 Architectures Software Developer's Manual Combined

Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4.

[62] Intel. Fast memcpy with SPDK and Intel® I/OAT DMA Engine. Retrieved August

2, 2025 from https://www.intel.com/content/www/us/en/developer/articles/

technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html

[63] Intel. Perfmon Events for 2nd Generation Intel® Xeon® Processor Scalable

Family based on Cascade Lake. Retrieved August 5, 2025 from https://

perfmon-events.intel.com/cascadelake_server.html

[64] Abdullah Al Raqibul Islam and Dong Dai. 2023. DGAP: Efficient Dynamic Graph

Analysis on Persistent Memory. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, November 2023.

ACM, Denver CO USA, 1–13. https://doi.org/10.1145/3581784.3607106

167

https://bheisler.github.io/criterion.rs/book/
https://bheisler.github.io/criterion.rs/book/
https://www.kernel.org/doc/html/v6.12/core-api/workqueue.html
https://www.kernel.org/doc/html/v6.12/core-api/workqueue.html
https://www.intel.com/content/www/us/en/content-details/671389/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/671389/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/671389/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/resellers-power-supply-design-guide-changes.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/resellers-power-supply-design-guide-changes.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/resellers-power-supply-design-guide-changes.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-2.pdf
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/content-details/679093/3rd-gen-intel-xeon-processor-scalable-family-codename-ice-lake-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/679093/3rd-gen-intel-xeon-processor-scalable-family-codename-ice-lake-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/679093/3rd-gen-intel-xeon-processor-scalable-family-codename-ice-lake-uncore-performance-monitoring-reference-manual.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://perfmon-events.intel.com/cascadelake_server.html
https://perfmon-events.intel.com/cascadelake_server.html
https://doi.org/10.1145/3581784.3607106

References

[65] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. 2019.

Evaluating File System Reliability on Solid State Drives. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), 2019. 783–798. Retrieved May 22, 2025

from https://www.usenix.org/conference/atc19/presentation/jaffer

[66] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad Shir

wadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chidambaram. 2021.

WineFS: a hugepage-aware file system for persistent memory that ages

gracefully. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems

Principles CD-ROM, October 2021. ACM, Virtual Event Germany, 804–818.

https://doi.org/10.1145/3477132.3483567

[67] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh

Kolli, and Vijay Chidambaram. 2019. SplitFS: reducing software overhead in

file systems for persistent memory. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, October 2019. ACM, Huntsville Ontario Canada,

494–508. https://doi.org/10.1145/3341301.3359631

[68] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. 2022. Vinter: Automatic

Non-Volatile Memory Crash Consistency Testing for Full Systems. In 2022

USENIX Annual Technical Conference (USENIX ATC 22), 2022. 933–950. Retrieved

from https://www.usenix.org/conference/atc22/presentation/werling

[69] Samuel Kalbfleisch. 2021. Automatic Non-Volatile Memory Crash Consistency

Testing for Full Systems. Doctoral dissertation.

[70] Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. Kernel

Probes (Kprobes) — The Linux Kernel documentation. Retrieved from https://

www.kernel.org/doc/html/v6.12/trace/kprobes.html

[71] The kernel development community. The kernel's command-line parameters

— The Linux Kernel documentation. Retrieved August 5, 2025 from https://

www.kernel.org/doc/html/v6.12/admin-guide/kernel-parameters.html

[72] The kernel development community. BTT - Block Translation Table — The

Linux Kernel documentation. Retrieved June 2, 2025 from https://www.

kernel.org/doc/html/v6.12/driver-api/nvdimm/btt.html

[73] The kernel development community. Direct Access for files — The Linux

Kernel documentation. Retrieved June 2, 2025 from https://www.kernel.org/

doc/html/v6.12/filesystems/dax.html

[74] The kernel development community. Device Mapper — The Linux Kernel

documentation. Retrieved August 3, 2025 from https://www.kernel.org/doc/

html/v6.12/admin-guide/device-mapper/index.html

[75] The kernel development community. Power Capping Framework — The Linux

Kernel documentation. Retrieved July 21, 2025 from https://www.kernel.org/

doc/html/v6.12/power/powercap/powercap.html

[76] The kernel development community. DMAEngine documentation — The Linux

Kernel documentation. Retrieved August 2, 2025 from https://www.kernel.

org/doc/html/v6.12/driver-api/dmaengine/index.html

168

https://www.usenix.org/conference/atc19/presentation/jaffer
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/atc22/presentation/werling
https://www.kernel.org/doc/html/v6.12/trace/kprobes.html
https://www.kernel.org/doc/html/v6.12/trace/kprobes.html
https://www.kernel.org/doc/html/v6.12/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v6.12/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v6.12/driver-api/nvdimm/btt.html
https://www.kernel.org/doc/html/v6.12/driver-api/nvdimm/btt.html
https://www.kernel.org/doc/html/v6.12/filesystems/dax.html
https://www.kernel.org/doc/html/v6.12/filesystems/dax.html
https://www.kernel.org/doc/html/v6.12/admin-guide/device-mapper/index.html
https://www.kernel.org/doc/html/v6.12/admin-guide/device-mapper/index.html
https://www.kernel.org/doc/html/v6.12/power/powercap/powercap.html
https://www.kernel.org/doc/html/v6.12/power/powercap/powercap.html
https://www.kernel.org/doc/html/v6.12/driver-api/dmaengine/index.html
https://www.kernel.org/doc/html/v6.12/driver-api/dmaengine/index.html

References

[77] Yussuf Khalil, Daniel Habicht, Pascal Ellinger, Frank Bellosa, Javier González,

Adam Manzanares, and Vivek Shah. 2025. Transparent DAX Mappings:

Towards Automatic Kernel Bypass with CXL-Based Hybrid SSDs. In Proceedings

of the 3rd Workshop on Disruptive Memory Systems (DIMES '25), October 2025.

Association for Computing Machinery, New York, NY, USA, 54–62. https://doi.

org/10.1145/3764862.3768178

[78] Steve Klabnik, Carol Nichols, and Chris Krycho. 2025. The Rust Programming

Language. Retrieved from https://doc.rust-lang.org/stable/book/

[79] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,

and Thomas Anderson. 2017. Strata: A Cross Media File System. In Proceedings

of the 26th Symposium on Operating Systems Principles, October 2017. ACM,

Shanghai China, 460–477. https://doi.org/10.1145/3132747.3132770

[80] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and Jeff

Jackson. 2014. Yat: A Validation Framework for Persistent Memory Software.

In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014. 433–438.

Retrieved January 30, 2024 from https://www.usenix.org/conference/atc14/

technical-sessions/presentation/lantz

[81] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James Bornholt,

and Vijay Chidambaram. 2023. Chipmunk: Investigating Crash-Consistency

in Persistent-Memory File Systems. In Proceedings of the Eighteenth European

Conference on Computer Systems (EuroSys '23), May 2023. Association for

Computing Machinery, New York, NY, USA, 718–733. https://doi.org/10.1145/

3552326.3567498

[82] Hayley LeBlanc. 2023. utsaslab/chipmunk: Tool for checking crash-consis

tency for persistent-memory file systems (EuroSys 23). Retrieved August 12,

2025 from https://github.com/utsaslab/chipmunk

[83] Endian Li, Shushu Yi, Li Peng, Qiao Li, Diyu Zhou, Zhenlin Wang, Xiaolin Wang,

Bo Mao, Yingwei Luo, Ke Zhou, and Jie Zhang. 2025. SPDK+: Low Latency or

High Power Efficiency? We Take Both. In Proceedings of the 17th ACM Workshop

on Hot Topics in Storage and File Systems, July 2025. ACM, Boston MA USA, 17–

23. https://doi.org/10.1145/3736548.3737824

[84] Zhen Lin, Lingfeng Xiang, Jia Rao, and Hui Lu. 2023. P2CACHE: Exploring

tiered memory for In-Kernel file systems caching. In 2023 USENIX annual

technical conference (USENIX ATC 23), July 2023. USENIX Association, Boston,

MA, 801–815. Retrieved from https://www.usenix.org/conference/atc23/

presentation/lin

[85] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh

Kolli, and Samira Khan. 2020. Cross-Failure Bug Detection in Persistent

Memory Programs. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS '20), March 2020. Association for Computing Machinery, Lausanne,

Switzerland, 1187–1202. https://doi.org/10.1145/3373376.3378452

[86] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.

2019. PMTest: A Fast and Flexible Testing Framework for Persistent Memory

169

https://doi.org/10.1145/3764862.3768178
https://doc.rust-lang.org/stable/book/
https://doi.org/10.1145/3132747.3132770
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1145/3552326.3567498
https://doi.org/10.1145/3552326.3567498
https://github.com/utsaslab/chipmunk
https://doi.org/10.1145/3736548.3737824
https://www.usenix.org/conference/atc23/presentation/lin
https://www.usenix.org/conference/atc23/presentation/lin
https://doi.org/10.1145/3373376.3378452

References

Programs. In Proceedings of the Twenty-Fourth International Conference on Archi

tectural Support for Programming Languages and Operating Systems, April 2019.

ACM, Providence RI USA, 411–425. https://doi.org/10.1145/3297858.3304015

[87] H.J. Lu, Michael Matz, Milind Girkar, Jan Hubička, Andreas Jaeger, and Mark

Mitchell. 2025. System V Application Binary Interface AMD64 Architecture

Processor Supplement (With LP64 and ILP32 Programming Models) Version

1.0. Retrieved from https://gitlab.com/x86-psABIs/x86-64-ABI

[88] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

building customized program analysis tools with dynamic instrumentation.

ACM SIGPLAN Notices 40, 6 (June 2005), 190–200. https://doi.org/10.1145/

1064978.1065034

[89] Tobias Mann. 2022. Why Intel killed its Optane memory business. Retrieved

August 4, 2025 from https://www.theregister.com/2022/07/29/intel_optane_

memory_dead/

[90] Peter Maucher, Lennard Kittner, Nico Rath, Gregor Lucka, Lukas Werling,

Yussuf Khalil, Thorsten Gröninger, and Frank Bellosa. 2024. Full-Scale File

System Acceleration on GPU. In Tagungsband des FG-BS Frühjahrstreffens 2024,

2024. https://doi.org/10.18420/FGBS2024F-03

[91] Peter Maucher. 2022. GPU4FS: A Graphics Processor-Accelerated File System.

Master's thesis. Retrieved from https://os.itec.kit.edu/downloads/2022_MA_

Maucher_GPU4FS.pdf

[92] Jordan McLeod. 2020. Whole-System Emulation and Analysis with Rust and

PANDA. Retrieved from https://panda-re.mit.edu/blog/panda-rs/

[93] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and

Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with Bounded

Black-Box Crash Testing. 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18) (October 2018), 33–50. Retrieved from https://

www.usenix.org/conference/osdi18/presentation/mohan

[94] Aris Mpitziopoulos. 2023. Powenetics V2 - Power Measurements Device -

Review. Retrieved July 16, 2025 from https://hwbusters.com/psus/powenetics-

v2-power-measurements-device-review/

[95] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2020.

A Primer on Memory Consistency and Cache Coherence. Springer International

Publishing, Cham. https://doi.org/10.1007/978-3-031-01764-3

[96] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon

Peter, and Baris Kasikci. 2020. AGAMOTTO: How Persistent is your Persistent

Memory Application?. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20), 2020. 1047–1064. Retrieved January 30, 2024

from https://www.usenix.org/conference/osdi20/presentation/neal

[97] Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Dominique

Martinet, Vicenç Beltran Querol, and Yutaka Ishikawa. 2018. On the Applic

ability of PEBS based Online Memory Access Tracking for Heterogeneous

170

https://doi.org/10.1145/3297858.3304015
https://gitlab.com/x86-psABIs/x86-64-ABI
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://www.theregister.com/2022/07/29/intel_optane_memory_dead/
https://www.theregister.com/2022/07/29/intel_optane_memory_dead/
https://doi.org/10.18420/FGBS2024F-03
https://os.itec.kit.edu/downloads/2022_MA_Maucher_GPU4FS.pdf
https://os.itec.kit.edu/downloads/2022_MA_Maucher_GPU4FS.pdf
https://panda-re.mit.edu/blog/panda-rs/
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/mohan
https://hwbusters.com/psus/powenetics-v2-power-measurements-device-review/
https://hwbusters.com/psus/powenetics-v2-power-measurements-device-review/
https://doi.org/10.1007/978-3-031-01764-3
https://www.usenix.org/conference/osdi20/presentation/neal

References

Memory Management at Scale. In Proceedings of the Workshop on Memory Centric

High Performance Computing, November 2018. ACM, Dallas TX USA, 50–57.

https://doi.org/10.1145/3286475.3286477

[98] Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-

O'Hearn. 2021. BLAKE3: one function, fast everywhere. Retrieved from https://

blake3.io/

[99] Thomas-Christian Oder. 2023. Fast Persistent Memory Crash Consistency

Analysis based on Virtual Machines. Bachelor Thesis. Retrieved from https://

os.itec.kit.edu/downloads/2023_BA_Oder_Fast_Crash_Consistency.pdf

[100] Jinyoung Oh and Youngjin Kwon. 2021. Persistent memory aware perfor

mance isolation with dicio. In Proceedings of the 12th ACM SIGOPS Asia-Pacific

Workshop on Systems (APSys '21), August 2021. Association for Computing

Machinery, New York, NY, USA, 97–105. https://doi.org/10.1145/3476886.

3477517

[101] Shweta Pandey and Arkaprava Basu. 2025. H-Rocks: CPU-GPU accelerated

Heterogeneous RocksDB on Persistent Memory. Proceedings of the ACM on

Management of Data 3, 1 (February 2025), 1–28. https://doi.org/10.1145/

3709694

[102] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter.

2021. HeMem: Scalable Tiered Memory Management for Big Data Applications

and Real NVM. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles CD-ROM, October 2021. ACM, Virtual Event Germany, 392–

407. https://doi.org/10.1145/3477132.3483550

[103] Rittal. 7979402 PDU managed. Retrieved July 17, 2025 from https://www.

rittal.com/de-de/products/PG20231215POW101/PG20240419STR003/PRO

115366?variantId=7979402

[104] Marc Rittinghaus. 2019. SimuBoost: Scalable Parallelization of Func

tional System Simulation. Doctoral dissertation. https://doi.org/10.5445/

IR/1000097700

[105] Daniel Ritz. 2022. Crash Consistency Testing for Block Based File Systems

on NVMe Drives. Bachelor Thesis. Retrieved from https://os.itec.kit.edu/

downloads/2022_BA_Ritz_NVMe_Crash_Consistency.pdf

[106] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implemen

tation of a log-structured file system. ACM Trans. Comput. Syst. 10, 1 (February

1992), 26–52. https://doi.org/10.1145/146941.146943

[107] Michael Roth. 2017. [Qemu-stable] [ANNOUNCE] QEMU 2.9.1 Stable released.

Retrieved from https://mail.gnu.org/archive/html/qemu-stable/2017-09/msg

00019.html

[108] Andy M. Rudoff. 2016. Deprecating the PCOMMIT Instruction. Retrieved

from https://www.intel.com/content/www/us/en/developer/articles/technical/

deprecate-pcommit-instruction.html

171

https://doi.org/10.1145/3286475.3286477
https://blake3.io/
https://blake3.io/
https://os.itec.kit.edu/downloads/2023_BA_Oder_Fast_Crash_Consistency.pdf
https://os.itec.kit.edu/downloads/2023_BA_Oder_Fast_Crash_Consistency.pdf
https://doi.org/10.1145/3476886.3477517
https://doi.org/10.1145/3476886.3477517
https://doi.org/10.1145/3709694
https://doi.org/10.1145/3709694
https://doi.org/10.1145/3477132.3483550
https://www.rittal.com/de-de/products/PG20231215POW101/PG20240419STR003/PRO115366?variantId=7979402
https://www.rittal.com/de-de/products/PG20231215POW101/PG20240419STR003/PRO115366?variantId=7979402
https://www.rittal.com/de-de/products/PG20231215POW101/PG20240419STR003/PRO115366?variantId=7979402
https://doi.org/10.5445/IR/1000097700
https://doi.org/10.5445/IR/1000097700
https://os.itec.kit.edu/downloads/2022_BA_Ritz_NVMe_Crash_Consistency.pdf
https://os.itec.kit.edu/downloads/2022_BA_Ritz_NVMe_Crash_Consistency.pdf
https://doi.org/10.1145/146941.146943
https://mail.gnu.org/archive/html/qemu-stable/2017-09/msg00019.html
https://mail.gnu.org/archive/html/qemu-stable/2017-09/msg00019.html
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html

References

[109] Andy Rudoff. 2020. Re: 8 byte atomicity & larger store operations. Retrieved

from https://groups.google.com/g/pmem/c/6_5daOuEI00/m/nY_mtKd0CAAJ

[110] Thomas Schmidt. 2022. Achieving Optimal Throughput for Persistent Memory

with Per-Process Accounting. Master's thesis. Retrieved from https://os.itec.

kit.edu/downloads/2022_MA_Schmidt_PMEM_Accounting.pdf

[111] Christian Schwarz. 2021. Low-Latency Synchronous IO For OpenZFS Using

Persistent Memory. Retrieved from https://os.itec.kit.edu/downloads/2021_

MA_Schwarz_SyncIOForZFS.pdf

[112] Harshad Shirwadkar, Saurabh Kadekodi, and Theodore Tso. 2024. FastCom

mit: resource-efficient, performant and cost-effective file system journaling.

In 2024 USENIX Annual Technical Conference (USENIX ATC 24), 2024. 157–

171. Retrieved May 22, 2025 from https://www.usenix.org/conference/atc24/

presentation/shirwadkar

[113] Mohammadreza Soltaniyeh, Gongjin Sun, Xuebin Yao, Amir Beygi, Ramdas

Kachare, Dongwan Zhao, Hingkwan Huen, Andrew Chang, Senthil Muruge

sapandian, and Caroline Kahn. 2025. Revisiting Memory Hierarchies with

CMM-H: Use Device-side Caching to Integrate DRAM and SSD for a Hybrid

CXL Memory. In Proceedings of the 17th ACM Workshop on Hot Topics in Storage and

File Systems (HotStorage '25), July 2025. Association for Computing Machinery,

New York, NY, USA, 45–51. https://doi.org/10.1145/3736548.3737828

[114] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and

Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine CXL-Ready

Systems and Devices. Retrieved August 14, 2023 from https://arxiv.org/abs/

2303.15375v3

[115] Supermicro. 2010. PWS-502-PQ 80 PLUS Verification and Testing Report.

Retrieved July 17, 2025 from https://store.supermicro.com/us_en/pub/media/

wysiwyg/productspecs/PWS-502-PQ/SUPER_MICRO_PWS-502-PQ_ECOS_

1906_500W_Report.pdf

[116] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,

and Geoff Peck. 1996. Scalability in the XFS File System. In Proceedings of the

USENIX 1996 Annual Technical Conference, January 1996. USENIX Association,

San Diego, California.

[117] Vishal Verma. 2014. Using the Block Translation Table for sector atomicity.

Retrieved May 20, 2025 from https://pmem.io/blog/2014/09/using-the-block-

translation-table-for-sector-atomicity/

[118] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan

Varadarajan, Prashant Saxena, and Michael M. Swift. 2014. Aerie: Flexible

File-system Interfaces to Storage-class Memory. In Proceedings of the Ninth

European Conference on Computer Systems (EuroSys '14), 2014. ACM, New York,

NY, USA, 14:1–14:14. https://doi.org/10.1145/2592798.2592810

[119] Paul Wedeck. 2023. Analyzing Persistent Memory Crash Consistency of

WineFS with Vinter. Bachelor Thesis. Retrieved from https://os.itec.kit.edu/

downloads/2023_BA_Wedeck_WineFS_Analysis.pdf

172

https://groups.google.com/g/pmem/c/6_5daOuEI00/m/nY_mtKd0CAAJ
https://os.itec.kit.edu/downloads/2022_MA_Schmidt_PMEM_Accounting.pdf
https://os.itec.kit.edu/downloads/2022_MA_Schmidt_PMEM_Accounting.pdf
https://os.itec.kit.edu/downloads/2021_MA_Schwarz_SyncIOForZFS.pdf
https://os.itec.kit.edu/downloads/2021_MA_Schwarz_SyncIOForZFS.pdf
https://www.usenix.org/conference/atc24/presentation/shirwadkar
https://www.usenix.org/conference/atc24/presentation/shirwadkar
https://doi.org/10.1145/3736548.3737828
https://arxiv.org/abs/2303.15375v3
https://arxiv.org/abs/2303.15375v3
https://store.supermicro.com/us_en/pub/media/wysiwyg/productspecs/PWS-502-PQ/SUPER_MICRO_PWS-502-PQ_ECOS_1906_500W_Report.pdf
https://store.supermicro.com/us_en/pub/media/wysiwyg/productspecs/PWS-502-PQ/SUPER_MICRO_PWS-502-PQ_ECOS_1906_500W_Report.pdf
https://store.supermicro.com/us_en/pub/media/wysiwyg/productspecs/PWS-502-PQ/SUPER_MICRO_PWS-502-PQ_ECOS_1906_500W_Report.pdf
https://pmem.io/blog/2014/09/using-the-block-translation-table-for-sector-atomicity/
https://pmem.io/blog/2014/09/using-the-block-translation-table-for-sector-atomicity/
https://doi.org/10.1145/2592798.2592810
https://os.itec.kit.edu/downloads/2023_BA_Wedeck_WineFS_Analysis.pdf
https://os.itec.kit.edu/downloads/2023_BA_Wedeck_WineFS_Analysis.pdf

References

[120] Lukas Werling, Yussuf Khalil, Peter Maucher, Thorsten Gröninger, and Frank

Bellosa. 2023. Analyzing and Improving CPU and Energy Efficiency of PM File

Systems. In Proceedings of the 1st Workshop on Disruptive Memory Systems, October

2023. ACM, Koblenz Germany, 31–37. https://doi.org/10.1145/3609308.

3625265

[121] Lukas Werling, Thomas-Christian Oder, Lucas Wäldele, Daniel Ritz, and Frank

Bellosa. 2024. Improvements in Crash Consistency Testing for Persistent

Memory File Systems. In Tagungsband des FG-BS Frühjahrstreffens 2024, 2024.

Gesellschaft für Informatik e.V., Bochum, Germany. https://doi.org/10.18420/

FGBS2024F-01

[122] Matthew Wilcox. 2020. struct page, the Linux physical page frame data

structure. Retrieved August 5, 2025 from https://blogs.oracle.com/linux/post/

struct-page-the-linux-physical-page-frame-data-structure

[123] Lucas Wäldele. 2023. Crash Consistency Testing for Cross-Media File Systems

using Persistent Memory and NVMe. Bachelor Thesis. Retrieved from https://

os.itec.kit.edu/downloads/2023_BA_W%C3%A4ldele_Cross-Media_Crash_

Consistency.pdf

[124] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.

Characterizing the Performance of Intel Optane Persistent Memory: A Close

Look at its On-DIMM Buffering. In Proceedings of the Seventeenth European

Conference on Computer Systems (EuroSys '22), March 2022. Association for

Computing Machinery, New York, NY, USA, 488–505. https://doi.org/10.1145/

3492321.3519556

[125] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for

Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File

and Storage Technologies (FAST 16), 2016. 323–338. Retrieved January 7, 2019

from https://www.usenix.org/node/194455

[126] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit

Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. 2017.

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System. In

Proceedings of the 26th Symposium on Operating Systems Principles (SOSP '17), 2017.

ACM, New York, NY, USA, 478–496. https://doi.org/10.1145/3132747.3132761

[127] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven

Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable

Persistent Memory. In 18th USENIX Conference on File and Storage Technologies

(FAST 20), February 2020. USENIX Association, Santa Clara, CA, 169–182.

Retrieved from https://www.usenix.org/conference/fast20/presentation/yang

[128] Yang Yang, Qiang Cao, Jie Yao, Yuanyuan Dong, and Weikang Kong. 2021.

SPMFS: A Scalable Persistent Memory File System on Optane Persistent

Memory. In 50th International Conference on Parallel Processing (ICPP 2021),

August 2021. Association for Computing Machinery, New York, NY, USA, 1–

10. https://doi.org/10.1145/3472456.3472503

[129] Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen. 2020. On the precision

of precise event based sampling. In Proceedings of the 11th ACM SIGOPS Asia-

173

https://doi.org/10.1145/3609308.3625265
https://doi.org/10.1145/3609308.3625265
https://doi.org/10.18420/FGBS2024F-01
https://doi.org/10.18420/FGBS2024F-01
https://blogs.oracle.com/linux/post/struct-page-the-linux-physical-page-frame-data-structure
https://blogs.oracle.com/linux/post/struct-page-the-linux-physical-page-frame-data-structure
https://os.itec.kit.edu/downloads/2023_BA_W%C3%A4ldele_Cross-Media_Crash_Consistency.pdf
https://os.itec.kit.edu/downloads/2023_BA_W%C3%A4ldele_Cross-Media_Crash_Consistency.pdf
https://os.itec.kit.edu/downloads/2023_BA_W%C3%A4ldele_Cross-Media_Crash_Consistency.pdf
https://doi.org/10.1145/3492321.3519556
https://doi.org/10.1145/3492321.3519556
https://www.usenix.org/node/194455
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.1145/3472456.3472503

References

Pacific Workshop on Systems, August 2020. ACM, Tsukuba Japan, 98–105. https://

doi.org/10.1145/3409963.3410490

[130] Jianping Zeng, Shuyi Pei, Da Zhang, Yuchen Zhou, Amir Beygi, Xuebin Yao,

Ramdas Kachare, Tong Zhang, Zongwang Li, Marie Nguyen, Rekha Pitchu

mani, Yang Soek Ki, and Changhee Jung. 2025. Performance Characterizations

and Usage Guidelines of Samsung CXL Memory Module Hybrid Prototype.

https://doi.org/10.48550/arXiv.2503.22017

[131] Yifeng Zhang, Yanqi Pan, Hao Huang, Yuchen Shan, and Wen Xia. 2025.

Overcoming the Last Mile between Log-Structured File Systems and Persistent

Memory via Scatter Logging. In Proceedings of the Twentieth European Conference

on Computer Systems, March 2025. ACM, Rotterdam Netherlands, 1009–1025.

https://doi.org/10.1145/3689031.3717488

[132] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat:

a tiered file system for Non-Volatile main memories and disks. In 17th USENIX

conference on file and storage technologies (FAST 19), February 2019. USENIX

Association, Boston, MA, 207–219. Retrieved from https://www.usenix.org/

conference/fast19/presentation/zheng

[133] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian Zhang, Sudarsun Kannan,

and Sanidhya Kashyap. 2023. Enabling High-Performance and Secure User

space NVM File Systems with the Trio Architecture. In Proceedings of the 29th

Symposium on Operating Systems Principles (SOSP '23), October 2023. Association

for Computing Machinery, New York, NY, USA, 150–165. https://doi.org/10.

1145/3600006.3613171

[134] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and

Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance with Opportunistic

Delegation. In 16th USENIX Symposium on Operating Systems Design and Imple

mentation (OSDI 22), 2022. 179–193. Retrieved from https://www.usenix.org/

conference/osdi22/presentation/zhou-diyu

174

https://doi.org/10.1145/3409963.3410490
https://doi.org/10.48550/arXiv.2503.22017
https://doi.org/10.1145/3689031.3717488
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng
https://doi.org/10.1145/3600006.3613171
https://doi.org/10.1145/3600006.3613171
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation for Persistent Memory
	1.2 Challenges for PM File Systems
	1.3 Measuring and Improving PM Efficiency
	1.4 PM File System Crash Consistency
	1.5 Contributions
	1.6 Student Theses and Publications
	1.7 Structure

	2 Background – Persistent Memory and File Systems
	2.1 Optane Persistent Memory
	2.1.1 Regions
	2.1.1.1 Configuration

	2.1.2 Namespaces
	2.1.3 Performance Counters
	2.1.3.1 Optane Module Counters
	2.1.3.2 CPU Counters for PM

	2.2 Linux File System Support for PM
	2.2.1 Accessing PM from the Kernel
	2.2.2 Block Translation Table (BTT)
	2.2.3 Ext4 and XFS without BTT
	2.2.4 DAX Support

	2.3 PM File Systems
	2.3.1 PMFS, WineFS, and OdinFS
	2.3.1.1 WineFS
	2.3.1.2 OdinFS

	2.3.2 Aerie
	2.3.3 NOVA, NOVA-Fortis, and Ziggurat
	2.3.3.1 NOVA-Fortis
	2.3.3.2 Ziggurat

	2.3.4 Strata and Assise
	2.3.5 SPMFS
	2.3.6 Trio
	2.3.7 P2CACHE
	2.3.8 SlotFS

	2.4 Crash Consistency
	2.4.1 Crash Consistency for Persistent Memory
	2.4.1.1 Crash Consistency Primitives on x86
	2.4.1.2 x86 with eADR

	2.4.2 Crash Consistency for NVMe
	2.4.2.1 NVMe Command Processing
	2.4.2.2 NVMe I/O Commands
	2.4.2.3 NVMe Volatile Write Cache and Flush Command
	2.4.2.4 NVMe Features in SSDs

	3 Motivation – Designing Data Structures for PM
	3.1 PM Ring Buffer Overview
	3.1.1 PM Organization and Runtime Data
	3.1.1.1 Chunks
	3.1.1.2 Entry Headers
	3.1.1.3 Committers

	3.1.2 Recovery
	3.1.3 Write Process
	3.1.3.1 Committer Selection
	3.1.3.2 Chunk Allocation
	3.1.3.3 Crash Consistency

	3.2 Implementation and Evaluation Setup
	3.3 Memory Access Instructions
	3.4 Parallel Accesses
	3.4.1 Non-Interleaved Optane PM

	3.5 Alignment and Access Size
	3.6 NUMA
	3.7 Discussion
	3.8 PM Ring Buffer for File Systems
	3.8.1 ZIL-PMEM: PM Write Cache for ZFS
	3.8.2 DPWC: Write Cache for Block Devices

	4 PM File System Efficiency
	4.1 Metrics for File System Efficiency
	4.1.1 Energy Efficiency
	4.1.1.1 Metric

	4.1.2 CPU Efficiency
	4.1.2.1 Metric

	4.2 Analyzing File System Efficiency
	4.2.1 Measurement Setup
	4.2.1.1 CPU Load Measurements
	4.2.1.2 Power Measurements
	4.2.1.3 Performance Counter Measurements

	4.2.2 File System Selection
	4.2.3 FIO Benchmark Setup
	4.2.3.1 Discussion

	4.2.4 Power Measurements
	4.2.4.1 Wallplug and Powenetics
	4.2.4.2 Performance Counters

	4.3 Evaluation
	4.3.1 ext4 and NOVA
	4.3.1.1 Local Access
	4.3.1.2 Remote Access

	4.3.2 OdinFS, ZIL-PMEM, and DPWC
	4.3.2.1 Local Access
	4.3.2.2 Remote Access

	4.4 Discussion

	5 PM File System Overload Mitigation
	5.1 Design and Implementation
	5.1.1 Semaphore
	5.1.2 Workqueue
	5.1.3 DMA

	5.2 File System Integration
	5.3 Evaluation
	5.3.1 Semaphore
	5.3.2 Workqueue
	5.3.3 DMA

	5.4 Discussion

	6 Userspace PM Access Accounting
	6.1 Requirements
	6.2 Accounting with Performance Counters
	6.2.1 Read Accesses
	6.2.2 Write Accesses

	6.3 Approach: Sampling Memory Instructions
	6.3.1 Processor Event Based Sampling (PEBS)
	6.3.2 Bandwidth Estimation
	6.3.3 Limitations

	6.4 Implementation
	6.5 Scheduling
	6.6 Evaluation
	6.6.1 Accuracy
	6.6.2 Overhead and Latency
	6.6.2.1 Overhead
	6.6.2.2 Latency

	6.6.3 Scheduling

	6.7 Related Work
	6.8 Discussion

	7 Crash Consistency Testing
	7.1 Failure Points and Crash Images
	7.2 Types of Crash Consistency Bugs
	7.2.1 Logic Bugs
	7.2.2 Missing Flush
	7.2.3 Ordering Bug
	7.2.4 Performance Bugs

	7.3 Crash Consistency Testing Pipeline
	7.4 Tracing Approaches
	7.4.1 Binary Translation
	7.4.2 Compiler Instrumentation
	7.4.3 Manual Annotation
	7.4.4 Function Tracing

	7.5 Crash Consistency Testing Tools
	7.5.1 Yat
	7.5.2 PMTest
	7.5.3 XFDetector
	7.5.4 Witcher
	7.5.5 Vinter
	7.5.6 Chipmunk
	7.5.7 Mumak

	8 Suvi: Crash Consistency Testing for PM File Systems
	8.1 Tracer
	8.1.1 PM Tracing
	8.1.1.1 Metadata

	8.1.2 NVMe Tracing
	8.1.3 Hypercalls
	8.1.4 Discussion

	8.2 Crash Image Generator
	8.2.1 Model Goals
	8.2.2 Crash Image Metadata

	8.3 PM Crash Image Model
	8.3.1 Trace Replay
	8.3.2 Failure Points
	8.3.3 Global Store Ordering
	8.3.4 Mixed Non-Temporal and Cached Stores
	8.3.5 Crash Images with Volatile Caches
	8.3.6 Crash Images with Persistent Caches (eADR)
	8.3.7 Partial Application of Non-Temporal Stores

	8.4 PM Crash Image Heuristics
	8.4.1 Suvi-Reads: Efficient Exploration of Crash States
	8.4.1.1 Vinter-Heuristic: Observing Recovery Behavior
	8.4.1.2 Limitations of Vinter-Heuristic
	8.4.1.3 Suvi-Reads: Mitigating False Negatives
	8.4.1.4 Reusing Heuristic Results

	8.4.2 Suvi-NT: Detecting NT-Dependent Semantic States
	8.4.3 Suvi-Fast: Fast Crash Image Generation for Logic Bugs
	8.4.3.1 Discussion

	8.5 Cross-Media Crash Images
	8.5.1 NVMe Crash Images
	8.5.1.1 Trace Replay
	8.5.1.2 Failure Points and Crash Images
	8.5.1.3 Heuristics

	8.5.2 Combined Crash Images
	8.5.3 Discussion

	8.6 Tester
	8.6.1 State Extraction
	8.6.1.1 State Metadata
	8.6.1.2 Requirements for State Representation
	8.6.1.3 State Extraction for File Systems

	8.6.2 State Analysis
	8.6.2.1 Analysis Algorithm
	8.6.2.2 Output

	8.7 Trace Analysis
	8.7.1 Trace Debugging
	8.7.1.1 Filtering Trace Entries by Cache Line
	8.7.1.2 Understanding Suvi's PM Simulation

	8.7.2 Trace Heuristics

	9 Suvi: Implementation
	9.1 Tracer
	9.1.1 PANDA
	9.1.2 QEMU

	9.2 Memory Images
	9.2.1 File System Copy-on-Write
	9.2.2 Hash Memoization
	9.2.3 Evaluation
	9.2.3.1 Memory-mapped images
	9.2.3.2 Hash Memoization

	9.3 Parallelization
	9.3.1 Discussion

	10 File System Testing with Suvi
	10.1 Virtual Machine Setup
	10.2 Test Cases
	10.2.1 Vinter Test Cases
	10.2.2 Automatic Test Case Generation

	10.3 Performance
	10.3.1 Heuristics
	10.3.2 Tracer Implementations
	10.3.3 Parallelization

	10.4 Results
	10.4.1 NOVA and NOVA-Fortis
	10.4.2 PMFS and WineFS
	10.4.3 ZIL-PMEM

	10.5 Persistent Caches
	10.6 Discussion

	11 Conclusion
	11.1 Outlook

	References

