
Efficient and Correct

Persistent Memory File Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Lukas Werling

Tag der mündlichen Prüfung: 12.12.2025

Erster Referent: Prof. Dr. Frank Bellosa

Zweiter Referent: Prof. Dr. Christian Dietrich



This document is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en


In memory of my grandma

Emma Westermann

1929 – 2026



4



Abstract

Persistent memory (PM) is a novel storage technology that enables byte-granular 

direct access from the CPU with low latency. Compared to traditional asynchronous 

block storage, this access paradigm allows file systems to offer stronger persistence 

guarantees at lower latency. However, it also introduces new challenges for perfor

mance, efficiency, and correctness. PM’s small atomic write size requires careful 

use of PM primitives to prevent data loss in the event of a crash. Overloading PM 

with parallel accesses results in expensive CPU stalls.

This thesis investigates the efficiency and correctness of PM file systems. First, 

we introduce efficiency metrics that quantify CPU time and energy cost per unit 

of storage access. We show that many existing PM file systems perform poorly 

under parallel load. To address PM overload, we design mitigation mechanisms that 

integrate with existing file systems and a monitoring technique to attribute direct-

access PM traffic to processes.

Second, to improve correctness, we present Suvi, an approach to black-box crash 

consistency testing for PM file systems. Suvi traces a file system’s PM and NVMe 

SSD accesses in a virtual machine and replays the trace with an accurate simulation 

of x86 store-order semantics. Suvi generates crash images using two heuristics to 

avoid combinatorial explosion, and then automatically analyzes the crash images 

to detect atomicity bugs.

Together, these contributions provide measurement tools, mitigation strategies, and 

testing infrastructure to make PM file systems more efficient and more reliable.
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Chapter 1

Introduction

1.1 Motivation for Persistent Memory
Modern systems have an increasing need for high-performance storage. Applications 

such as key-value stores [101], graph processing [64], and search indices [49, 51] 

require storage systems that can retrieve and modify data with minimal latency.

Traditional solid-state drives (SSDs) based on NVMe cannot properly fulfill this role. 

As both the SSDs and interconnects such as PCIe are getting faster, the relative 

overhead from storage accesses with NVMe increases. Approaches for kernel bypass 

can decrease this overhead [62, 83], but require exclusive device access for a single 

application.

Persistent memory (PM) offers a better solution. PM is byte-addressable and accessed 

directly from the CPU like main memory, but retains its contents while the system 

is powered off. PM therefore supports access with low latency, even for small access 

sizes. With regular paging, the operating system can offer direct PM access to 

userspace applications. In contrast to kernel bypass with NVMe, the operating system 

retains control over access permissions, allowing sharing of PM between multiple 

applications.

Intel Optane PM was the first widely-available commercial implementation of PM. 

Like DRAM, Optane modules come in the DIMM form factor and attach directly to 

the CPU’s memory controller. We base most of the analysis in this thesis on Intel 

Optane PM.

More recently, support for Compute Express Link (CXL) appeared in CPUs from 

multiple vendors, including Intel and AMD. With CXL, devices attached via a PCIe link 

can offer byte-addressable PM. We expect that most of the techniques we introduce 

for Optane PM in this thesis also apply to CXL-attached PM.

File systems provide structured and controlled access to storage devices. By targeting 

a common file system API, applications can store data without knowledge of the 

underlying storage technology. The file system controls access permissions and 

allows safe shared access to different applications. Although PM can be used without 

a file system, file systems remain valuable for these reasons.
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Most PM file systems offer direct access (DAX) to applications, a feature not found in 

regular file systems. With DAX, the file system provides memory mappings to a file’s 

PM pages. After establishing such a mapping, an application can read and write to 

PM without further involvement of the operating system, bypassing the kernel.

1.2 Challenges for PM File Systems
PM can offer its low latency thanks to its integration into the CPU’s memory hierarchy, 

allowing synchronous and direct access at byte granularity. In comparison, tradi

tional storage devices are accessed over an asynchronous protocol. The operating 

system submits requests for data blocks, which the storage device fulfills by copying 

the data to system memory and then signaling request completion. From blocks to 

bytes is a change of paradigm that introduces novel challenges in the design and 

implementation of file systems for performance, efficiency, and correctness.

A correct file system implementation should be crash-consistent. In the event of a 

crash, the file system’s data structures should remain consistent to avoid corrupted 

or lost files. Traditional storage devices support crash-consistent file system design 

by offering atomic block updates of typically 512 or 4096 bytes. In the event of a 

crash during a write operation, such a block is either written completely or not 

at all. With PM, the CPU’s memory write path offers a much smaller atomic write 

size of only 8 bytes. Additionally, PM file systems and applications need to manage 

volatile state in the write path (e.g., caches and write buffers) by introducing special 

instructions called PM primitives. Correct use of these PM primitives is challenging 

since they do not have a visible effect on the application data during runtime but 

are critical for consistency after a crash.

Synchronous access to PM from the CPU is essential for low latency but becomes 

expensive once the PM is under load and cannot answer requests immediately. On 

traditional storage devices with asynchronous access, the operating system can 

schedule other processes during the wait time or put the CPU in a low-power sleep 

state. This is not possible with PM, as individual PM accesses are not visible to the 

operating system. Instead, the CPU pipeline stalls during the wait time, wasting CPU 

time and energy.

This problem is amplified with Optane PM due to its sensitivity to parallel accesses. 

Because of internal caching structures, its total throughput declines under parallel 

load, as shown in Figure  1.1. Individual threads then experience a significant 

Figure 1.1:  Throughput and latency of 4 KiB writes to Optane PM.
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increase in access latency and, therefore, CPU stall cycles. To mitigate this problem, 

PM file systems and applications must limit parallel accesses to PM.

A secondary challenge follows from this requirement. After obtaining a direct PM 

mapping, applications can access PM without further involvement of the file system. 

This results in a situation in which neither the file system nor the application can 

manage parallel PM accesses. The file system does not have knowledge of application 

activity, and an application cannot know about the activity of other applications.

1.3 Measuring and Improving PM Efficiency
Since file systems act as an abstraction layer between applications and storage, they 

are responsible for ensuring that the storage is accessed as efficiently as possible 

for any given workload. For example, file systems for hard disks commonly reduce 

seeks by arranging related data blocks sequentially. Additionally, operating systems 

include I/O schedulers that can rearrange asynchronous requests to traditional 

storage devices. Similar I/O scheduling is not feasible for synchronously accessed PM.

In this thesis, we introduce approaches for measuring and improving the efficiency 

of PM file systems. Our efficiency metrics assign a specific cost (CPU time or energy) 

to accessing a certain amount of storage. We design the metrics so that they are 

independent of storage device throughput and CPU clock speed. We evaluate multiple 

file systems and find that most PM file systems do not access PM efficiently under a 

parallel write load.

We propose three mechanisms for improving the efficiency of PM file systems under 

parallel load. We design these mechanisms to be easily integrable into existing 

PM file systems. They include two software-based approaches for limiting parallel 

accesses and another approach based on hardware offloading. We show that these 

mechanisms are effective for improving PM file system efficiency. In combination 

with our efficiency metric, we expect future file system designs to incorporate 

efficient PM access into their designs.

Our efficiency metric and the mechanisms can only cover PM accesses over the file 

system API. Applications that access PM over DAX mappings cannot be covered. As 

discussed above, such applications should still avoid overloading PM with excessive 

parallel accesses. Effective limits require a global view of the volume of PM accesses 

from all concurrently running applications. Existing hardware and operating system 

mechanisms cannot provide this information with association to both applications 

and PM devices. We introduce a monitoring approach based on memory access 

instruction sampling that provides the required association. We show that our 

monitoring estimates PM write bandwidth accurately and with low latency.

We make the monitoring data available to applications via shared memory, allowing 

them to react immediately to overload situations. Using this monitoring data, we 

implement a policy based on core specialization that can limit the number of CPU 

cores stalling on PM accesses.
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Figure 1.2:  Suvi’s crash consistency testing pipeline.

1.4 PM File System Crash Consistency
The correct use of PM primitives is critical for PM file systems to ensure data con

sistency after a crash. In this thesis, we introduce Suvi, an approach for black-box 

crash consistency testing of PM file systems. As a black-box approach, Suvi places 

minimal requirements on the tested software and can analyze any PM file system 

running in a virtual machine. Rather than employing heuristics for bug detection, 

Suvi uses a record-and-replay approach that finds concrete witnesses for crash con

sistency bugs.

Suvi implements a crash consistency testing pipeline, shown in Figure 1.2, that 

traces PM accesses of a test case in a virtual machine. From the trace, it generates 

crash images that represent possible PM contents in the event of a crash. Finally, 

Suvi can automatically determine the crash atomicity of file system operations by 

analyzing the semantic state contained in the crash images.

Suvi innovates on previous approaches to crash consistency testing in multiple 

ways. It offers full-system tracing of PM and NVMe accesses using virtual machines 

with binary translation, allowing analysis of cross-media file systems that use 

these storage technologies. It includes an advanced PM simulation that models 

the ordering of x86 store instructions more precisely than other crash consistency 

testing approaches and supports both volatile and persistent caches. Two heuristics 

ensure efficient generation of crash images by avoiding a combinatorial explosion 

when there is a large number of PM stores. By using file system copy-on-write and 

a memoized hashing scheme, Suvi makes the analysis of large PM images feasible. 

Finally, Suvi’s analysis tools allow the automatic detection of crash consistency bugs 

and help developers identify the causes of such bugs.

1.5 Contributions
Our work presented in this thesis makes the following contributions:

• We introduce novel metrics for file system efficiency. The metrics measure the 

efficient use of CPU time and energy. We design them to be independent of both 

storage device throughput and CPU clock speed.

• We evaluate multiple file systems (PM and NVMe) with our metrics. Our results 

show that most PM file systems were not designed with efficiency in mind.

• We propose and evaluate measures improve the efficiency of PM file systems by 

mitigating PM overload.
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• We propose an approach for accounting userspace PM accesses that can associate 

throughput with both processes and PM devices. We evaluate the accuracy and 

overhead of our approach. Using the accounting data, we propose PM overload 

mitigation based on core specialization.

• We introduce Suvi, a comprehensive approach for black-box crash consistency 

testing of file systems based on virtual machines. In particular, Suvi encompasses:

‣ Support for analyzing cross-media file systems using PM and NVMe.

‣ An improved simulation of x86 PM crash consistency semantics. Compared to 

previous work, it models the interaction of x86 global store order with weakly 

ordered non-temporal stores more accurately.

‣ Simulation of both volatile and persistent caches.

‣ Two primary strategies for efficiently generating crash images: an improved 

heuristic based on post-failure read accesses and a strategy for fast analysis of 

logic bugs.

‣ A secondary heuristic for exploring crash states with weakly ordered non-

temporal stores.

‣ Novel handling of PM images through file system copy-on-write and memoized 

hashing, optimized for small modifications to large images.

‣ Automated analysis of test results for atomicity, including tools for pinpointing 

the root cause of bugs.

1.6 Student Theses and Publications
Parts of this thesis are based on previously published information. We supervised 

a number of student theses that contributed to this thesis:

• In his master’s thesis Low-Latency Synchronous IO For OpenZFS Using Persistent 

Memory [111], Christian Schwarz introduced ZIL-PMEM, a component for ZFS that 

logs synchronous writes on PM. The design and implementation of ZIL-PMEM 

motivate large parts of this thesis. We discuss ZIL-PMEM in Chapter 3, where we 

use a reimplementation of its low-level PM data structure to analyze Optane PM 

performance. Research in crash consistency testing that resulted in Vinter and 

Suvi was motivated by a desire to verify correctness of the implementation of 

ZIL-PMEM.

• With his master’s thesis Automatic Non-Volatile Memory Crash Consistency Testing for 

Full Systems [69], Samuel Kalbfleisch provided the basis for Vinter [68]. We build 

Suvi, as presented in this thesis, on a reimplementation of his Python prototype 

in the Rust programming language.

• In his bachelor’s thesis Reducing Synchronous Write Latency With a PMEM Write Cache 

in the Device Mapper Layer [32], Ilia Bozhinov adapts the PM data structure from ZIL-

PMEM for use as a generic block device write cache. We analyze his implementation 

in Chapter 4.

• Daniel Ritz designed and implemented a crash consistency tester for NVMe in 

his bachelor’s thesis Crash Consistency Testing for Block Based File Systems on NVMe 
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Drives [105]. Parts of his approach, especially for tracing NVMe commands, are 

part of Suvi’s support for NVMe.

• In his master’s thesis GPU4FS: A Graphics Processor-Accelerated File System [91], Peter 

Maucher explored implementing a complete file system on a GPU. His analysis 

of PM accesses from a GPU informed our discussion of memcpy offloading in 

Chapter 5.

• Thomas Schmidt explored performance counters for accounting PM usage in his 

master’s thesis Achieving Optimal Throughput for Persistent Memory with Per-Process 

Accounting [110]. His thesis included a userspace implementation of our idea for 

PEBS-based sampling, which failed to show useful results. For this reason, we 

created an independent kernelspace implementation for Chapter 6.

• In his bachelor’s thesis Crash Consistency Testing for Cross-Media File Systems using 

Persistent Memory and NVMe [123], Lucas Wäldele united Vinter and Daniel Ritz’s 

NVMe crash consistency tester. The major effort of this thesis was the implemen

tation of PM tracing on top of modern QEMU since Vinter’s PANDA-based tracer 

does not support NVMe. Suvi’s cross-media tracer evolved from his work.

• For his bachelor’s thesis Analyzing Persistent Memory Crash Consistency of WineFS with 

Vinter [119], Paul Wedeck designed and implemented multiple small improvements 

to Vinter that we integrated into Suvi. Most prominently, these include support 

for parallel analysis of multiple tests and parallel state extraction.

• Thomas-Christian Oder integrated Mumak’s [46] strategy for crash image gener

ation into Vinter in his bachelor’s thesis Fast Persistent Memory Crash Consistency 

Analysis based on Virtual Machines [99]. We adopt this strategy in Suvi as described 

in Chapter 8.

We previously presented parts of this thesis in the publications listed below. At 

USENIX ATC’22 [68] we introduced Vinter, an approach to PM crash consistency 

testing that provides the basis for Suvi. We later presented extensions to Vinter at 

FGBS’24 [121] that became part of Suvi, including cross-device analysis and faster 

crash image generation. At DIMES’23 [120], we presented our file system efficiency 

metric and mechanisms for improving the efficiency of PM file systems.

The remaining two publications are partially informed by the contributions of this 

thesis. With GPU4FS (FGBS’24 [90]), we take the idea of hardware offloading of PM 

accesses for efficiency further by moving the entire file system to the GPU. In our 

work on operating system support for CXL-based hybrid SSDs (DIMES’24 [50]), we 

evaluate efficiency using metrics from this thesis.

• Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. 2022. Vinter: Automatic 

Non-Volatile Memory Crash Consistency Testing for Full Systems. In 2022 USENIX 

Annual Technical Conference (USENIX ATC 22), 2022. 933–950. Retrieved from https://

www.usenix.org/conference/atc22/presentation/werling

• Lukas Werling, Yussuf Khalil, Peter Maucher, Thorsten Gröninger, and Frank 

Bellosa. 2023. Analyzing and Improving CPU and Energy Efficiency of PM File 

Systems. In Proceedings of the 1st Workshop on Disruptive Memory Systems, October 

2023. ACM, Koblenz Germany, 31–37. https://doi.org/10.1145/3609308.3625265
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• Lukas Werling, Thomas-Christian Oder, Lucas Wäldele, Daniel Ritz, and Frank 

Bellosa. 2024. Improvements in Crash Consistency Testing for Persistent Memory 

File Systems. In Tagungsband des FG-BS Frühjahrstreffens 2024, 2024. Gesellschaft 

für Informatik e.V., Bochum, Germany. https://doi.org/10.18420/FGBS2024F-01

• Peter Maucher, Lennard Kittner, Nico Rath, Gregor Lucka, Lukas Werling, Yussuf 

Khalil, Thorsten Gröninger, and Frank Bellosa. 2024. Full-Scale File System 

Acceleration on GPU. In Tagungsband des FG-BS Frühjahrstreffens 2024, 2024. https://

doi.org/10.18420/FGBS2024F-03

• Daniel Habicht, Yussuf Khalil, Lukas Werling, Thorsten Gröninger, and Frank 

Bellosa. 2024. Fundamental OS Design Considerations for CXL-based Hybrid 

SSDs. In Proceedings of the 2nd Workshop on Disruptive Memory Systems (DIMES '24), 

November 2024. Association for Computing Machinery, New York, NY, USA, 51–

59. https://doi.org/10.1145/3698783.3699380

1.7 Structure
The remainder of this work is structured into the following chapters:

Chapter 2 Background – Persistent Memory and File Systems (p. 21)

We first take a look at Intel Optane PM and how the Linux kernel supports PM, 

especially for use in file systems. We then give an overview of PM file systems that 

we evaluate for efficiency or crash consistency in later chapters.

Chapter 3 Motivation – Designing Data Structures for PM (p. 41)

We motivate our work in performance and crash consistency with a PM data structure 

for a file system.

Chapter 4 PM File System Efficiency (p. 55)

This chapter introduces our metrics for file system efficiency. We evaluate the 

metrics on multiple file systems and show that most PM file systems are not efficient 

under parallel accesses.

Chapter 5 PM File System Overload Mitigation (p. 73)

We then describe approaches for improving PM file system efficiency. We apply the 

approaches to a PM file system and compare their performance and efficiency.

Chapter 6 Userspace PM Access Accounting (p. 81)

The previous two chapters handled efficiency of PM access from the file system, 

which leaves out applications that map PM for direct access. In this chapter, we 

introduce an approach for accounting PM access from userspace applications with 

association of individual processes and PM devices.

Chapter 7 Crash Consistency Testing (p. 95)

We introduce fundamentals on crash consistency, discuss typical testing approaches, 

and review previous work.
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1 Introduction 1.7 Structure

Chapter 8 Suvi: Crash Consistency Testing for PM File Systems (p. 107)

We then present Suvi, our approach to crash consistency testing for file systems.

Chapter 9 Suvi: Implementation (p. 141)

We discuss details from Suvi’s implementation that are necessary for Suvi’s 

performance, including the tracer component, management of memory images, 

and parallelization.

Chapter 10 File System Testing with Suvi (p. 149)

We show how Suvi can test file systems in practice. We describe test selection, 

evaluate performance, and discuss analysis results.

Chapter 11 Conclusion (p. 159)

Finally, we conclude our work and discuss directions for future research.
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Chapter 2

Background – Persistent Memory and 

File Systems

The goal of this thesis is to improve the efficiency and correctness of PM file systems. 

In this chapter, we introduce the storage stack on which this thesis builds. This 

includes Optane PM modules, PM support in the Linux kernel, several research 

PM file systems, and the crash consistency semantics of PM on x86 CPUs and for 

NVMe SSDs.

2.1 Optane Persistent Memory
Intel Optane Persistent Memory are persistent memory modules in the DIMM form 

factor.

Intel released three generations of Optane memory, shown in Table  2.1. Each 

generation was released together with a CPU from Intel’s Scalable product line. 

Optane DIMMs of each generation were available in three sizes (128 GiB, 256 GiB, 

512 GiB). Optane 100 and 200 both use the DDR-T interface which has the same 

physical form factor as DDR4. Optane 300 uses DDR-T2 with the physical form 

factor of DDR5 DIMMs. First-generation Optane PM was introduced in 2019. Intel 

discontinued Optane before the release of the third generation in 2022 [89].

In this thesis, we evaluate with 128 GiB Optane 100 DIMMs on Cascade Lake systems 

(see Section 3.2 and Section 4.2.1 for detailed system overviews). We discuss Optane 

performance in Chapter 3.

Optane PM has two layers of configuration. The ipmctl [2] tool configures regions 

across one or more Optane modules. This tool is specific to Optane PM. On top 

of regions, the Linux kernel manages PM namespaces, which are configured with 

Generation Year Capacity [GiB] CPU Generation

100 [8] 2019 128, 256, 512 Cascade Lake SP

200 [9] 2020 128, 256, 512 Ice Lake SP

300 [10] 2023 128, 256, 512 Sapphire Rapids SP

Table 2.1:  Overview of Optane PM generations.
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Memory Mode AppDirect

CPU

Optane PM

DRAM

CPU

Optane PM DRAM

Figure 2.1:  Logical view of Optane PM configured in Memory Mode and AppDirect 

mode.

ndctl  [3]. Similar to partitions on block devices, namespaces allow separate 

management and configuration of parts of a PM region. Since namespaces are a 

concept by the Linux kernel, their use extends to other PM technologies. We discuss 

regions and namespace in more detail in the following sections.

2.1.1 Regions

A region spans one or more Optane modules connected to one CPU. Regions over 

multiple Optane modules are interleaved. The memory controller distributes accesses 

to an interleaved region over all modules. The interleaving size is 4  KiB  [127]. 

Accesses over a sufficiently large memory area (e.g., 16 KiB with four interleaved 

modules) can therefore use the combined throughput of all modules.

There are two modes for regions: Memory Mode and AppDirect mode, pictured in 

Figure 2.1. In Memory Mode, the configured Optane capacity appears to the system 

as regular, volatile main memory. The memory controller transparently uses its 

connected DRAM as a cache to hide high access latencies to Optane. In this mode, 

Optane is only used for its larger capacity compared to DRAM, not for its persistence. 

In this thesis, we focus on Optane as persistent memory and do not further discuss 

Memory Mode.

In AppDirect mode, the Optane region appears separately to the system. The 

system firmware communicates the PM areas with the e820 memory map [44]. 

In the memory map, persistent memory areas are marked as type 7. Linux does 

not use these areas as main memory. Instead, they are handled by the NVDIMM 

subsystem [11], which manages namespaces as described in the following section.

On Linux, the e820 memory map can be overwritten in the kernel command line 

with the memmap parameter [71]. For example, passing a parameter memmap=16G!2G 

marks 16 GiB of memory starting at offset 2 GiB (physical address 231) as persistent 

memory. This is useful for simulating PM on systems lacking real Optane memory. 

We use this parameter for file system tests in Suvi (Chapter 8).

Configuration

Optane regions are configured by the system firmware as part of the boot process. 

With commands as given below, ipmctl can create provisioning goals, which are 

applied by the firmware after a reboot [2].
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 SocketID | ISetID             | Type      | Capacity | Free  | HealthState

============================================================================

 0x0000   | 0x6e6dc3d053748888 | AppDirect | 504 GiB  | 0 GiB | Healthy

 0x0001   | 0x70efc3d0f3678888 | AppDirect | 504 GiB  | 0 GiB | Healthy

Listing 2.1:  Shortened output from ipmctl show -region with two interleaved 

regions with four Optane modules.

# Configure all PM in AppDirect mode with interleaving.

ipmctl create -goal PersistentMemoryType=AppDirect

# Configure all PM in AppDirect mode with separate regions per module.

ipmctl create -goal PersistentMemoryType=AppDirectNotInterleaved

ipmctl also includes commands for reading the state of individual modules and the 

currently active regions. Listing 2.1 shows example output for reading the currently 

configured regions.

2.1.2 Namespaces

PM namespaces are managed by the Linux kernel and are configured with the ndctl 

tool [3]. A namespace has a size and one of the following modes:

raw The namespace appears as a block device with no extra kernel support for 

atomicity or direct access. This mode is not commonly used.

sector The namespace appears as a block device, with the kernel providing atomic 

block (or sector) writes. We describe the underlying mechanism in Section 2.2.2.

fsdax The namespace appears as a block device, with kernel support for direct 

access (DAX). This mode is required for kernel PM file systems.

devdax The namespace appears as a special character device that allows mapping 

the underlying PM into userspace processes. This mode is usually used for 

userspace PM file systems. For higher-level userspace PM software, it is usually 

preferrable to obtain a DAX mapping from a PM file system, which simplifies 

access permissions.

For fsdax and devdax namespaces, the kernel needs to allocate memory manage

ment metadata for each 4 KiB physical page frame (struct page with a size of 

64 bytes [122]). A 128 GiB Optane module therefore requires 2 GiB of space for page 

metadata. The kernel can either allocate this metadata on PM (reducing the size of 

the namespace), or on regular main memory.

The Linux kernel can also use a devdax namespace as regular main memory. This 

can be configured with the daxctl tool [3]. In contrast to Optane’s Memory Mode, 

PM configured this way appears separately from the system’s DRAM as its own 

NUMA node.

2.1.3 Performance Counters

Performance counters are mechanisms that provide insight into how hardware 

components operate by counting specific events. There are two primary ways 

to obtain data on Optane operation: counters on the Optane modules and CPU 

performance counters with Optane events.

Optane Module Counters

Optane modules provide counters for four events [2].
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---DimmID=0x0001---

   MediaReads=0x00000000000000000000006ae129ca2c

   MediaWrites=0x00000000000000000000005404670098

   ReadRequests=0x00000000000000000000000b33bafaea

   WriteRequests=0x000000000000000000000044d83a57c5

   TotalMediaReads=0x000000000000000000000ac3809dcff0

   TotalMediaWrites=0x0000000000000000000008b300ca5010

   TotalReadRequests=0x00000000000000000000011b2ece5a75

   TotalWriteRequests=0x00000000000000000000055a55b71f0b

Listing 2.2:  Example output from ipmctl show -performance, showing on-DIMM 

performance counters.

MediaReads/MediaWrites count the number of 64 byte reads or writes to the media 

on the module.

ReadRequests/WriteRequests count the number of DDR-T read or write transac

tions (64 bytes).

All events are counted per DIMM since last boot and as lifetime total. These counters 

can be read with ipmctl. Listing 2.2 shows an example output. We analyze output 

from these counters in Chapter 3.

CPU Counters for PM

Intel Cascade Lake CPUs (the CPUs we use in this thesis) provide three types of 

counters that can count events associated with Optane [63, search for “PMM”]. On-

core events are counted within a core as part of instruction execution. There are only 

two on-core PM events that count L3 cache misses from load instructions, which 

are either fetched from local PM (MEM_LOAD_RETIRED.LOCAL_PMM) or from remote 

PM (MEM_LOAD_L3_MISS_RETIRED.REMOTE_PMM).

There are no on-core events for stores to PM. Since x86 CPUs have write-back caches, 

the CPU core writes only to its L1 cache when executing a store instruction. When a 

cache line is evicted from the L3 cache and the store reaches PM, there is no direct 

association with the original store instructions anymore. Similarly, non-temporal 

stores are handled by write-coalescing buffers.

The second type of counters are off-core response counters [61, Vol. 3B §20.3.8.3.1]. 

These counters count specific interactions between the on-core L2 cache and the L3 

cache or memory. The counted events are selected with a combination of a request 

type (e.g., data or code read, prefetches) and a supplier (e.g., L3 cache, DRAM, PM). 

Similar to the on-core counters, the off-core response counters cannot provide 

information about writes to PM.

Finally, uncore counters provide events from the memory controller [55, 60].1 The 

available events include commands issued to PM (e.g., reads and writes) and the state 

of read and write request queues. From the read and write command counts, the total 

read and write bandwidth to PM can be calculated: each command transfers 64 bytes.

1There are also uncore events for components other than the memory controller, but these are 
unrelated to PM.
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2.2 Linux File System Support for PM
This thesis deals with PM file systems in the Linux kernel. In this section, we therefore 

introduce the interfaces that Linux provides for PM access from both kernelspace 

and userspace.

The upstream Linux kernel [12] supports PM for file systems in two ways: a translation 

layer for traditional block-based file systems and DAX support in some file systems.

2.2.1 Accessing PM from the Kernel

A PM namespace configured as fsdax appears as a block device /dev/pmemX in a 

Linux system.2 The NVDIMM driver implements the block device access function 

pmem_submit_bio.3 It supports basic read and write requests, which are fulfilled 

with a memory copy routine. Writes to PM are performed with non-temporal stores 

on x86 (via memcpy_flushcache). The flags REQ_PREFLUSH and REQ_FUA trigger a 

memory fence before or after the operation.

Consequently, file systems using the block I/O layer in Linux (bio) do not require 

modifications to run on top of PM. However, there are two major differences 

compared to traditional block devices (e.g., those using SCSI or NVMe). First, this 

thin compatibility layer does not provide any crash consistency guarantees beyond 

those of the underlying PM. The Block Translation Table, described below, solves 

this problem by implementing atomicity for larger blocks.

Second, rather than submitting the I/O request to a device and waiting for the result, 

the compatibility layer performs a synchronous memory copy on the kernel thread 

that submitted the bio request. This has consequences for the performance and 

energy efficiency of file systems on top of PM, which we discuss in Chapter 5.

File systems that target PM specifically can obtain a pointer to the PM name

space to bypass the bio compatibility layer. The kernel provides the function 

dax_direct_access for this purpose. Listing 2.3 shows an example of how to use 

this function. PM file systems such as NOVA and PMFS (introduced below) obtain 

a PM pointer once during initialization and then access PM exclusively through 

that pointer.

2.2.2 Block Translation Table (BTT)

With the Block Translation Table (BTT) [72, 117], the kernel provides atomic block 

access to traditional file systems. These file systems expect atomicity for full block 

updates, which usually have a size of 512 bytes or 4 KiB. The BTT provides this block 

atomicity with an indirection layer that maps logical block addresses (LBA) to PM 

offsets. Every update to a logical block allocates a new data block on PM. A journal 

ensures that the mapping from the old to the new data block changes atomically.

The BTT is sufficient for using PM via arbitrary file systems, but it cannot provide 

direct access (DAX) to PM for userspace applications. For this reason, the Linux file 

system developers implemented DAX support in two traditional file systems, ext4 

and XFS [116].

2For example, an fsdax namespace called namespace1.0 appears as /dev/pmem1.

3File drivers/nvdimm/pmem.c [12]
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static int get_pm_pointer(

  struct block_device *bdev, /* input: handle to block device */

  void **pm_virt_addr,       /* output: virtual address */

  long *pm_size              /* output: size in bytes */

)

{

  pfn_t pfn;

  struct dax_device *dax_dev;

  int ret;

  /* Obtain handle to a DAX device. */

  dax_dev = fs_dax_get_by_bdev(bdev);

  if (!dax_dev) { return -EINVAL; }

  /* Obtain pointer to DAX area. */

  *pm_size = dax_direct_access(dax_dev,

    0, LONG_MAX / PAGE_SIZE, /* offset and maximum size */

    pm_virt_addr, &pfn       /* output: address and page frame number */

  ) * PAGE_SIZE;             /* return: number of pages */

  if (*pm_size <= 0) { return -EINVAL; }

  return 0; /* success */

}

Listing 2.3:  Example for how a file system can obtain a pointer to PM from a block 

device handle in Linux 5.15.4

2.2.3 Ext4 and XFS without BTT

Both ext4 and XFS implement journaling to protect metadata (and optionally file 

data) updates from crashes. Originally, ext4 implemented physical journaling with 

JBD2 [112]. Physical journaling takes place at the level of on-disk data blocks: Before 

overwriting a protected block, the file system stores a copy of either the old or the 

new block in the journal. After a crash, the file system recovers by copying the blocks 

in the journal to their intended disk locations.

In contrast, XFS employs logical journaling  [112]. The entries in a logical journal 

describe individual file system operations. A logical journal is therefore more 

compact than a physical journal, leading to better runtime performance. However, 

crash recovery is more complex than with a physical journal, since the file system 

needs to replay the operations in the journal. With FastCommit [112], ext4 now also 

performs logical journaling for certain file system operations (e.g., file creation and 

deletion, appending data to a file).

Both XFS and ext4 protect journal entries with checksums. The journals are therefore 

already sufficiently protected from partially-written blocks after a crash. Since 

neither file system relies on atomic block updates without journaling for metadata 

updates, it is safe to use ext4 and XFS on PM without the Block Translation Table.

Previous works have analyzed the behavior of these file systems on top of traditional 

block devices under crashes. Mohan et al.‘s CrashMonkey [93] found no crash con

sistency bugs in ext4 and XFS when injecting crashes at persistence points (i.e., 

4Note that although the parameters to these functions change over time, the overall process 
remains the same.
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fsync() or sync()). Jaffer et al. evaluated the behavior of ext4 under certain 

faults, including incompletely written blocks (“shorn writes”) [65]. They show that 

ext4 can recover from such faults, although with partial data loss in some cases. 

Consequently, ext4 and XFS were already well-equipped for handling crashes before 

the introduction of PM.

2.2.4 DAX Support

Without the indirection from the Block Translation Table, ext4 and XFS can hand 

out memory mappings to file data residing on PM to userspace applications. This 

feature is called DAX (for direct access) in Linux.

If the underlying device supports DAX and no conflicting file system features are 

enabled (e.g., file system encryption), a flag in the inode controls whether DAX-

mapping a file is allowed. Alternatively, the file system mount option dax=always 

overrides the inode flag and enables DAX for all files [73].

If a userspace process requests a shared memory mapping of a file with the DAX flag 

set, the file system will always map the file’s PM pages directly. A process can ensure 

that a mapping is a DAX mapping by calling mmap with the MAP_SYNC flag [13]. If the 

file’s DAX flag is not set, mmap would then return the EOPNOTSUPP error. Since the 

MAP_SYNC flag does not otherwise change the memory mapping, it is not possible 

to obtain a “traditional” mapping via the page cache for files that support DAX [50].

2.3 PM File Systems
PM’s byte-addressability provides new opportunities for file system design. PM file 

systems no longer need to organize their data in fixed-size blocks as dictated by the 

underlying block storage device. This allows file systems to offer crash consistency 

guarantees at a finer level of granularity.

In Table 2.2, we provide an overview of research PM file systems that are relevant 

for this thesis. We compare the following features:

Kernelspace/Userspace Whether the file system runs completely in kernelspace 

(K) or has a userspace component (U).

Cross-Media Whether the file system supports storing data on traditional block 

storage in addition to PM. This property is relevant for Suvi, which can test 

crash consistency properties of cross-media file systems.

PM Bandwidth Control Whether the file system actively limits its bandwidth when 

writing to PM. We propose mechanisms for PM bandwidth control in this thesis.

Strong Consistency We consider a file system to implement strong consistency if 

all individual file system operations are immediately and atomically persisted 

to PM. In contrast, traditional file systems implement delayed persistence and 

only guarantee that data is retained after a later call to fsync() [14]. Suvi can 

automatically test strong consistency properties of file systems.

Artifact Available Whether an artifact with the file system’s source code is publicly 

available. We need access to the source code in order to evaluate crash consis

tency with Suvi or to compare PM bandwidth control mechanisms.

We describe ZIL-PMEM in Chapter 3 and give a more detailed overview of the other 

file systems in the following sections.
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PMFS [41] 2014 K ✗ ✗ 🗸 🗸

Aerie [118] 2014 U ✗ ✗ ✗ ⚠️

NOVA [125] 2016 K ✗ ✗ 🗸 🗸

NOVA-Fortis [126] 2017 K ✗ ✗ 🗸 🗸

Strata [79] 2017 U 🗸 ✗ ⚠️ 🗸

Ziggurat [132] 2019 K 🗸 ✗ (🗸) ⚠️

SplitFS [67] 2019 U ✗ ✗ 🗸 🗸

WineFS [66] 2021 K ✗ ✗ 🗸 🗸

ZIL-PMEM [111] 2021 K 🗸 🗸 🗸 🗸

SPMFS [128] 2021 U ✗ 🗸 (🗸) ✗

OdinFS [134] 2022 K ✗ 🗸 🗸 🗸

Assise [25] 2022 U 🗸 ✗ ✗ 🗸

Trio [133] 2023 U ✗ 🗸 ⚠️ 🗸

P2CACHE [84] 2023 K 🗸 ✗ ⚠️ 🗸

SlotFS [131] 2023 U ✗ ✗ ⚠️ 🗸

Table 2.2:  Overview of research PM file systems with a comparison of features 

relevant for this thesis. ⚠️ denotes problems with the file system implementation’s 

crash consistency guarantees that are obvious without detailed analysis.

2.3.1 PMFS, WineFS, and OdinFS

PMFS [41] was the first file system designed for persistent memory in current x86 

systems and implemented as a Linux kernel file system. Its data layout is optimized 

for byte-addressable PM. In particular, its allocator manages data in blocks according 

to the processor’s page sizes (4 KiB, 2 MiB, 1 GiB) to support DAX mappings. Metadata 

is updated in-place with atomic instructions if possible. Otherwise, PMFS implements 

fine-granular journaling with cache-line-sized log entries (64 bytes). Writes to file 

data pages are protected with a copy-on-write mechanism.

Since PMFS was designed before hardware with support for PM was available, the 

authors had to make assumptions about the interaction of atomic instructions with 

PM [41, §3.2]. Besides 8-byte atomic updates, PMFS also uses cmpxchg16b for atomic 

16-byte updates, and optionally transactional memory for atomic 64-byte updates. 

Real hardware ended up guaranteeing atomicity only for 8-byte updates. In our 

analysis in Chapter 10, we can therefore observe crash consistency bugs in two 

places where PMFS uses cmpxchg16b to update multiple fields in the inode:
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• File size (8 bytes) and modification timestamps (2 × 4 bytes)

• Root pointer and height of the B-Tree referencing the file data (both 8 bytes)

PMFS is used as the basis of multiple later research file systems. These file systems 

inherit PMFS’s usage of cmpxchg16b. In the following, we introduce two such file 

systems, WineFS and OdinFS.

WineFS

WineFS [66] improves the performance of memory-mapped files in aged file systems. 

Repeated allocation and deletion over time leads to a fragmented PM area. Since PM 

is byte-addressable and has a (mostly) uniform access latency, such fragmentation 

usually does not have an effect on access performance. However, fragmentation 

is relevant for memory-mapped files. If sufficiently large parts of the data on PM 

are contiguous and aligned, the file system can employ hugepages when memory 

mapping the file to a userspace process.

The authors of WineFS show that previous PM file systems suffer from reduced access 

bandwidth once the file system cannot use hugepages anymore due to fragmentation. 

They introduce an alignment-aware allocator that avoids fragmentation over time. 

The authors evaluate the throughput as well as application benchmarks on aged file 

systems. WineFS outperforms the other PM file systems in these benchmarks.

We analyze WineFS with Suvi in Chapter 10 and show that some but not all crash 

consistency issues of PMFS are fixed in WineFS.

OdinFS

As we show in Section 2.1, Optane PM suffers from low bandwidth with parallel 

accesses, as well as remote NUMA accesses. OdinFS [134] extends PMFS with a 

delegation mechanism for accessing PM to mitigate these problems. For each NUMA 

node, OdinFS runs a fixed number of delegation threads. Every read or write access 

to PM is delegated to a thread on the same NUMA node as the data. OdinFS therefore 

both limits the amount of threads that access PM in parallel, and prevents remote 

NUMA access to PM.5

In Chapter 5, we discuss alternative approaches for mitigating performance loss 

from parallel PM accesses. We show that although OdinFS’s delegation threads 

ensure a constantly high PM bandwidth, they come with a high CPU cost, decreasing 

the overall efficiency of the file system.

OdinFS additionally stripes data across all available NUMA nodes. It thereby spreads 

the load evenly across the PM modules and allows higher parallelism, including for 

large accesses from a single thread.

Since OdinFS inherits all metadata management from PMFS, we expect identical 

crash consistency behavior. We therefore do not analyze OdinFS separately with Suvi.

2.3.2 Aerie

Aerie [118] was the first modern userspace PM file system. It introduces the concept 

of a user-mode library file system with direct PM access in combination with a 

5Note that although OdinFS might increase the number of remote DRAM accesses, these do not 
hurt performance as much as remote PM accesses.

29



2 Background – Persistent Memory and File Systems 2.3 PM File Systems

trusted file system service running partially in the kernel. The library file system 

has direct read-only access to metadata and file data, as well as a write area for new 

file data. To write a file, the library file system first writes the file data to PM, then 

requests a metadata update from the trusted file system service. Aerie can delay 

metadata updates, so file operations with outstanding metadata may be lost in the 

event of a crash.

Aerie was implemented for x86 Linux systems, but predates support for PM in 

processors and the Linux kernel. In contrast to PMFS, its artifact  [1] was never 

updated with support for real PM hardware and Linux DAX interfaces. It is therefore 

not usable for performance comparisons or crash consistency testing.

Concepts from Aerie can be found in most later userspace file systems. We describe 

some of them in the following sections.

2.3.3 NOVA, NOVA-Fortis, and Ziggurat

NOVA  [125] is a log-structured file system for PM. Its primary goals are high 

performance and strong consistency. NOVA is implemented as a Linux kernel file 

system.

NOVA’s data layout is optimized for concurrent access by maintaining private data 

structures for each CPU, including inode tables, journals, and free lists. Traditional 

log-structured file systems maintain a global log containing all file system data, 

allowing mostly linear write access to the storage media [106]. PM enables efficient 

random access with small access sizes, allowing NOVA to maintain a private log 

for each inode. This enables concurrent log operations on different inodes. For 

operations involving multiple inodes, NOVA uses journaling.

To speed up file access, NOVA maintains volatile runtime data in DRAM, including 

the file radix tree, the directory entry tree, and free lists. These data structures do 

not require persistence and are always rebuilt during mounting.

NOVA does not use logging for all inode data. If possible, inode fields are updated 

directly with 8-byte atomic store instructions (e.g., timestamps and log pointers). 

File data is updated with copy-on-write, by writing the data to a new data page and 

updating data pointers through the log.

NOVA-Fortis

NOVA-Fortis [126] extends NOVA with features for protecting the file system from 

software and hardware faults. It implements consistent whole file system snapshots, 

including for files that are DAX-mmapped during the snapshot operation.

NOVA-Fortis can handle PM media errors. All file system metadata and file data 

in NOVA-Fortis is protected with a checksum. Using ECC, the PM hardware can 

transparently correct certain media errors and detect others. The CPU communicates 

detected errors via machine check exceptions (MCE). In case of an MCE or a checksum 

mismatch, NOVA-Fortis recovers metadata from a replica and file data using RAID-4 

parity. However, it cannot protect file data while it is DAX-mmapped and defers 

responsibility for data protection to the userspace application.
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NOVA and NOVA-Fortis were introduced before Optane PM was available. The authors 

continued work on the artifact [6], updating it to Linux 5.1 and ensuring compatibility 

with commercial Optane modules. In this thesis, we use NOVA as a baseline for a PM 

file system without managed concurrency for write accesses in Chapter 5. We then 

evaluate our mechanisms for limiting concurrency with NOVA. NOVA and NOVA-

Fortis are also part of our crash consistency analysis in Chapter 10.

Ziggurat

Ziggurat [132] extends NOVA with support for cross-device storage. In contrast to 

other cross-device file systems that use PM as a cache for a disk file system (e.g., 

ZIL-PMEM or P2CACHE, both described below), Ziggurat prefers to place data in PM.

A synchronicity predictor decides whether new file data is placed on PM or a lower 

tier. The predictor bases its decision on previous fsync() calls, the size of the 

new data, and the size of previous accesses. Data placed in lower tiers is written 

asynchronously using a page cache in DRAM. Ziggurat therefore does not implement 

strong consistency for all writes. However, applications can request strong consis

tency by opening a file with the O_DIRECT flag.

Data placement in Ziggurat is not fixed. A migration thread can move hot data from 

disk to PM and cold data from PM to disk. In particular, background migration is 

helpful for small writes which are placed in PM at first, then later coalesced into a 

large, sequential write to disk.

We were unable to analyze the crash consistency of Ziggurat with Suvi. Although 

Ziggurat’s source code is published, we found that it is not in a usable state.

2.3.4 Strata and Assise

Strata  [79] is the first modern PM-based cross-media file system. A userspace 

component LibFS handles writes by logging directly to a private PM area mapped into 

the process. The kernel component KernelFS then creates a digest of the userspace 

log. This digest can then be placed either in PM or in lower storage tiers. Strata also 

supports data migration between storage tiers based on access patterns.

Assise [25] is a distributed file system that builds on Strata. Assise uses Strata’s 

design for node-local storage and extends it with a cache coherence layer CC-NVM for 

replication. Using RDMA, Assise replicates the write log to different nodes, allowing 

the file system to survive node failures.

LeBlanc et al. attempted to analyze Strata and Assise with Chipmunk, but learned 

that neither artifact supports crash recovery [81, §4.1]. We therefore do not analyze 

these file systems with Suvi.

2.3.5 SPMFS

SPMFS  [128] is a userspace file system featuring PM bandwidth management. 

It implements most file system operations in its userspace component, with a 

kernel module handling some “complex” metadata operations as well as free space 

management. Notably, the authors do not discuss security considerations in case 

multiple processes share a file system.
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SPMFS implements an I/O thread pool to limit parallel write accesses to PM. 

Applications may not write to PM directly and insert their requests into a queue 

instead. Based on a predictor, SPMFS then either handles the request synchronously 

or asynchronously.6 Synchronous requests are immediately processed by an I/O 

thread, with the application waiting for completion. Asynchronous requests are 

inserted into a write cache in DRAM. Similar to the kernel’s page cache, SPMFS 

can serve reads from the write cache and will write back data if fsync() is called. 

SPMFS therefore implements delayed persistence by default, but applications can 

request strong consistency with the O_SYNC flag.

The authors evaluate SPMFS’s PM bandwidth management by comparing the parallel 

synchronous write throughput with and without the I/O thread pool [128, Fig. 6]. 

They show that the total bandwidth increases with the number of I/O threads and 

does not decrease as much as the amount of threads increases.

In contrast to our analysis of similar mechanisms in Chapter 5, the authors of SPMFS 

do not analyze the CPU efficiency of their approach. Since they did not publish any 

source code, we cannot directly compare SPMFS to our approach.

2.3.6 Trio

Trio [133] is an architecture for secure userspace file systems. Its key feature is 

an in-kernel access controller that mediates PM access to a userspace library file 

system. If multiple processes want to access a shared file, the kernel controller 

ensures exclusive write access. Once a process releases its write access to a file, a 

verifier checks that the file’s metadata is consistent.

This design allows different file system implementations that agree on a core 

metadata format as enforced by the verifier. Trio’s authors implement three library 

file systems: a POSIX-compatible file system ArckFS, and two customized file systems 

KVFS and FPFS with a key-value interface and with optimizations for deep directory 

structures.

To limit parallel accesses to PM, ArckFS implements the delegation mechanism from 

OdinFS [134]. For bulk data accesses, the library file system sends write requests 

to in-kernel delegation threads. To reduce overhead, it performs small PM accesses 

directly from userspace. Since the underlying mechanism is the same as in OdinFS, 

we do not evaluate ArckFS in Chapter 5.

We attempted to analyze the crash consistency of ArckFS with Suvi, but found a 

number of issues with the published artifact:

• ArckFS requires large amounts of PM and DRAM for statically-allocated metadata 

Reducing the size of these allocations is not trivial because of implicit alignment 

requirements.

• We ran into multiple bugs when accessing ArckFS from multiple sequential 

processes like in shell scripts. Such a scenario does not come up in the authors’ 

evaluation since they only evaluated single long-running benchmark programs.

6The predictor appears very similar to the one originally introduced in Ziggurat [132], which we 
describe above.
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• Support for the POSIX API is incomplete. For example, ArckFS requires custom 

functions for accessing directories instead of opendir() and readdir().

• ArckFS always formats the file system on mount. We removed this unconditional 

formatting, but were unable to successfully remount an initialized (and properly 

unmounted) file system.

These problems prevented us from successfully running Suvi’s test cases, making 

a crash consistency analysis impossible.

2.3.7 P2CACHE

P2CACHE  [84] is a PM-based cache designed to improve the performance of 

traditional kernel file systems such as ext4. It sits between the VFS layer and the 

file system and records all file system operations in a persistent write-ahead log. 

Additionally, it caches all writes in DRAM to serve reads, similar to the page cache.

The authors evaluate P2CACHE on top of ext4, comparing with ext4, XFS, and NOVA. 

They show that P2CACHE is significantly faster than the traditional Linux file systems 

ext4 and XFS, both on an NVMe SSD and on PM. It also surpasses NOVA in some 

benchmarks.

P2CACHE does not implement any PM bandwidth control. The authors show results 

of a scalability benchmark [84, Fig. 10], but their evaluation system is not set up in 

a way where Optane contention becomes an issue.7

The authors designed P2CACHE to support strong consistency. They developed a 

custom crash consistency checker to check for crash consistency bugs [84, §4.1]. 

Unfortunately, these consistency checks were not part of the published artifacts and 

therefore not reproduced in the artifact evaluation [84, §A.3].

We attempted to evaluate P2CACHE with Suvi, but found that the published artifact 

does not support retaining any data and always formats the PM with an empty file 

system on mount.

2.3.8 SlotFS

SlotFS [131] is a userspace log-structured file system. SlotFS improves upon prior 

log-structured file systems such as NOVA by implementing scattered logging. Since 

random access to PM is cheap, there is no need to keep a contiguous log. According 

to the authors, scattered logging completely eliminates overhead from garbage 

collection of log entries, as individual freed log entries can immediately be reused.

We attempted to evaluate the crash consistency of SlotFS with Suvi, but found a 

number of issues with the published artifact that prevented an analysis:

• The required Linux kernel is unclear. According to the artifact description [131, 

§A.2.3], SlotFS requires Linux kernel version 5.1.0 with patches for SplitFS [67] and 

Hodor [52]. Hodor is a system for isolating components in a userspace process using 

memory protection keys. SlotFS uses Hodor to isolate its library file system from 

untrusted processes that access the file system. However, the Hodor patches are 

only available for kernel version 4.15 or 5.4. We found that the published artifacts 

do not actually use Hodor in any way, so we attempted evaluation without Hodor.

7The evaluation system has four Optane DIMMs attached to a 12-core CPU without hyperthreading.
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Figure 2.2:  Steps when writing a journal entry. For crash consistency to hold, these 

steps must not be reordered.

• The recovery code is disabled and the SlotFS initialization code always formats 

the file system. We were able to remove the forced formatting.

• A routine performing cache flushes for a memory range with an optional memory 

fence was disabled. This routine is used for some metadata updates (e.g., in inodes 

and directory entries). We re-enabled the routine by removing an early return 

statement.

• SlotFS expects a PM area with size 48 GiB by default, which is too large for an 

analysis with crash images. It cannot automatically scale its metadata allocation 

to smaller PM areas.

• We observed crashes when accessing the file system from multiple consecutive 

processes, such as in shell scripts. SlotFS sets up a volatile shared memory area 

that is retained across consecutive processes. Some retained state appears to 

cause crashes.

Even with multiple fixes to the issues above, we were unable to run basic file system 

tests on SlotFS without crashes. An analysis of crash consistency properties is 

therefore not possible.

2.4 Crash Consistency
Crash-consistent software needs to control the order in which its writes reach non-

volatile memory. As motivating example, consider a journal as commonly used by 

file systems or databases to perform complex updates atomically. For this example, 

each journal entry contains arbitrary data, followed by a valid flag. Writing a journal 

entry works in three steps, pictured in Figure 2.2:

1. Ensure that the valid flag is not set, for example by zero-initializing the journal 

memory.

2. Write the data. There is no requirement for atomic writes so that an arbitrary 

amount of data may be written.

3. Set the valid flag.

A recovery procedure would ignore journal entries that do not have the valid bit set. 

For a crash-consistent and atomic journal, we therefore must ensure that valid is 

only set if the data is written completely. In the following sections, we describe the 

mechanisms available for persistent memory and NVMe to ensure such an ordering. 

In Chapter 7, we introduce crash consistency testing.
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Caches
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Which store instruction?

Weak ordering → fence

Volatile caches → clflush

Intra cache line ordering

Volatile write buffers → commit

Figure 2.3:  Generic write path from store instruction to persistent memory. 

Depending on ISA, choice of store instruction, and presence of volatile buffers, 

different persistence primitives are necessary.

2.4.1 Crash Consistency for Persistent Memory

Since persistent memory is part of the CPU’s memory hierarchy, its crash consis

tency semantics are defined by the CPU’s instruction set architecture (ISA). The ISA 

needs appropriate extensions to support PM, as control over when writes reach the 

underlying memory is not necessary with volatile DRAM.

Figure 2.3 shows a generic memory write path and the persistence primitives that 

may be necessary to ensure flushing volatile buffers and correct ordering. A normal 

store instruction writes its data to the CPU’s cache hierarchy. The ISA may offer non-

temporal store instructions that skip the caches. These instructions may be weakly 

ordered, meaning that the CPU may reorder them. For example, normal x86 stores 

are strongly ordered (i.e., they will not be reordered), while non-temporal stores are 

weakly ordered. For weakly ordered instructions, the programmer needs to insert 

memory fence instructions to force a certain order.

For stores going to volatile CPU caches, the programmer needs to ensure that 

modified cache lines reach persistent memory. ISAs offer cache line flush (e.g., x86 

clflush) or write-back (e.g., x86 clwb) instructions for this purpose. Although 

these instructions generally operate on full cache lines (usually 64 bytes), the 

CPU microarchitecture might not guarantee atomic transfers of full cache lines to 

persistent memory. In this case, knowing the ordering of writes within a cache line 

is important. On systems with persistent caches, these steps are not necessary and 

cache line flush instructions are optional.8

The memory controller finally collects flushed cache lines and non-temporal stores 

in write buffers. The primary purpose of these buffers is to coalesce writes that are 

smaller than what the underlying memory expects. If these write buffers are volatile, 

an additional “commit” instruction is necessary that instructions the memory 

controller to flush its buffers.

Table 2.3 shows an overview of these properties for x86 with and without eADR. We 

discuss the properties and the persistence primitives in the following sections.

8Even with persistent caches, non-temporal stores may still offer better performance than cached 
stores since they may reduce the number of requests to PM (see Section 3.3).

35



2 Background – Persistent Memory and File Systems 2.4 Crash Consistency

property x86 x86 with eADR

cached stores strong

non-temporal stores weak

caches volatile persistent

write buffers persistent

Table 2.3:  Overview of ordering and persistence properties in x86 and ARM. ARM 

supports processors with either persistent or volatile caches and write buffers.

Crash Consistency Primitives on x86

Normal stores to caches are strongly ordered in x86, so they will always reach the 

caches in program order [61, Vol. 3A §9.2]. However, volatile caches do not guarantee 

that stores reach persistent memory in a particular order. Cache line flush (clflush, 

clflushopt) or write-back (clwb) instructions trigger an immediate flush of stores 

to a particular cache line to memory. The write-back instruction clwb may leave the 

line in the cache, allowing following reads to fetch the line from cache rather than 

PM [61, Vol. 2]. Finally, wbinvd flushes all cache lines to memory, but may only be 

used from kernel mode. Since wbinvd clears all cache lines, it has a big impact on 

performance and is thus rarely useful for persistence.

Non-temporal (NT) stores offer an alternative to normal stores in combination with 

cache flushes. NT stores are weakly ordered on x86 and require use of memory 

fence instructions for ordering [61, Vol. 3A §9.2]. The primary fence instruction 

for ordering stores for persistence is sfence [61, Vol. 2]. It ensures that all store 

instructions before sfence have completed before any store instructions after 

sfence are executed. sfence is the preferred instruction for ordering stores to 

persistent memory since it does not enforce an ordering of other types of instructions. 

However, any serializing instruction [61, Vol. 3A §9.3] (e.g., cpuid) may be used to 

enforce ordering as well.

Similar to NT stores, the cache flush instructions clflushopt and clwb are also 

weakly ordered [61, Vol. 2].9 The processor ensures that older writes to the cache line 

finish first, but does not enforce an ordering with newer writes or other cache flushes. 

These two instructions are thus also usually used in combination with sfence.

Although cache flushes operate on 64 byte cache lines and NT stores may have a 

size of up to 64 bytes as well, Intel originally only guaranteed atomicity for aligned 

8 byte stores [58]. On power failure, a cache line or large NT store might thus tear so 

that only parts of it end up on persistent memory. Intel informally guaranteed intra 

cache line ordering [109]: The order of 8 byte stores to a single cache line is always 

preserved. The introduction of the movdir64b instruction, which copies 64 bytes 

from one memory address to another, finally offers atomicity for larger 64 byte 

writes [61, Vol. 2]. Since this instruction was only introduced recently with Sapphire 

Rapids (2023), software written for Optane PM does not use it (see Section 2.1).

Originally, Intel added a pcommit instruction to x86 for flushing write buffers in 

the memory controller (called Write Pending Queue) [108]. With the introduction of 

Asynchronous DRAM Refresh (ADR), the need for this instruction disappeared. In 

9Weak ordering is preferable for performance if multiple cache lines need to be flushed at once.
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the event of a power failure, ADR ensures that the Write Pending Queue is flushed 

to PM. Since all CPUs with support for persistent memory also had support for ADR, 

pcommit was never supported.

x86 with eADR

With eADR, some Intel CPUs extended the persistence domain to include the caches 

as well [59]. These CPUs guarantee that they flush any dirty cache lines to persistent 

memory on power failure, effectively making the cache contents persistent.

Persistent caches simplify the programming model. Cache flush instructions are no 

longer necessary. Reordering of stores is no longer a concern for strongly ordered 

cached writes. Memory fences are therefore only needed for weakly ordered non-

temporal stores.

Although eADR eliminates an important source of crash consistency issues, 

programmers still need to be careful. Misplaced memory fences with NT-stores lead 

to invalid states. Even a program that only uses cached stores might exhibit crash 

consistency bugs. Developers need to ensure that the application state stays valid 

with every store. Additionally, compilers might emit stores in an unexpected order.

2.4.2 Crash Consistency for NVMe

The NVMe standard [4, 5] defines an interface for communication between the 

operating system and a PCIe-attached non-volatile memory device. It is commonly 

used for modern flash-based SSDs. In the following, we take a look at two NVMe 

features which are critical for crash consistency. First, the asynchronous command 

processing that allows arbitrary reordering of write commands. Second, its support 

for a volatile write cache that requires Flush commands. In sum, we end up with 

a crash consistency model for NVMe that shares similarities with the model for 

persistent memory.

NVMe Command Processing

NVMe is an asynchronous protocol. The operating system communicates with the 

NVMe device over ring buffers in main memory. Entries are written to the tail of the 

ring buffer and consumed from the head. The operating system writes commands 

into a submission queue and the device writes completions into a completion queue. 

The complete process for one command is as follows [5, §3.3.1]. NVMe also specifies 

variants of this protocol, for example to allow polling for completions instead of 

interrupts.

1. The operating system writes a command into a submission queue and increments 

the queue’s tail pointer.

2. The operating system notifies the device about the new entry by writing to the 

Submission Queue Tail Doorbell, a memory-mapped device register.

3. The device consumes the command by reading it from the submission queue 

and incrementing the queue’s head pointer.

4. The device processes the command.

5. The device writes a completion entry to the completion queue and increments 

the queue’s tail pointer.

6. The device notifies the operating system by triggering an interrupt.
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7. The operating system consumes the completion by reading it from the completion 

queue and incrementing the queue’s head pointer.

8. The operating system notifies the device about the processed completion by 

writing to the Completion Queue Head Doorbell.

By enqueuing multiple commands at once, the operating system can reduce overhead 

from this protocol. Additionally, the SSD can then process the commands in an 

order that fits its internal organization. NVMe allows arbitrary reordering for most 

commands, including those that operate on the same data [5, §3.4.1].

NVMe I/O Commands

The NVMe specification defines two main commands, Read and Write, for accessing 

data [4, §3.2]. These commands take two main arguments [4, §3.2.4, §3.2.6].

Data Pointer (DPTR) The DPTR field specifies where in physical memory the OS 

receives data from Read or provides data for Write. It contains two physical region 

page (PRP) entries. A PRP entry is a 64 bit pointer to either a single data page or 

(for large transfers) to a page containing more PRP entries [5, §4.1.1].

Starting LBA (SLBA) The logical block address (LBA) that specifies where data is 

read from or written to.

The data on an NVMe device is organized in fixed-size blocks. The block size is 

configurable with the Format NVM admin command [5, §5.14]. Typical block sizes 

are 512 bytes and 4096 bytes. A single Read or Write command can transfer multiple 

blocks at once, up to a limit given by the NVMe controller [5, Fig. 276]. For example, 

Presence of a volatile write cache is indicated with the Identify Controller NVMe 

command. If bit 0 of field vwc (“Volatile Write Cache Present”) is set, then a 

volatile write cache is present [5, Fig. 276].

The volatile write cache can be disabled with the Set Feature NVMe Command 

(Dword 11 “Volatile Write Cache Enable (WCE)”) [5, §5.27.1.4].

Example nvme-cli [15] commands with shortened output that query presence 

and status of the volatile write cache:

$ nvme id-ctrl /dev/nvme0

NVME Identify Controller:

[...]

mn        : Samsung SSD 980 1TB

[...]

vwc       : 0x7

[2:1] : 0x3   The Flush command supports NSID set to FFFFFFFFh

[0:0] : 0x1   Volatile Write Cache Present

[...]

$ nvme get-feature -H /dev/nvme0

[...]

get-feature:0x06 (Volatile Write Cache), Current value:0x00000001

        Volatile Write Cache Enable (WCE): Enabled

[...]

Listing 2.4:  NVMe interfaces to check for presence of a volatile write cache.
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a Samsung SSD 980 supports transfers of up to 512 blocks of 512 bytes, totalling 

256 KiB per command.

Every data block on the SSD may have an additional metadata area that is transferred 

separately from the main data [4, §5.8.3]. Metadata is necessary for end-to-end data 

protection [4, §5.2]. Linux file systems do not directly make use of it. In this thesis, 

we thus assume SSDs configured without metadata.

A number of additional NVMe commands may modify data on the SSD, such as 

Write Zeroes and Copy. However, we found that Linux file systems do not use these 

commands. We thus limit our analysis to Read and Write.

NVMe Volatile Write Cache and Flush Command

NVMe devices can have an optional volatile write cache to hide the high latency of 

writes to their flash memory. Listing 2.4 shows NVMe management commands to 

query presence and status of this volatile write cache. In the event of a crash, the 

contents of the volatile write cache may be lost. For this reason, NVMe provides 

a Flush command that instructs the SSD to write the contents of the cache to its 

backing memory.

Thus, the operating system needs to issue Flush commands after writes and wait for 

their completion before it can signal that a write has reached non-volatile memory 

(e.g., as part of an fsync(2) system call). Since NVMe does not specify dependencies 

between commands, special care is required to ensure that the Flush command 

covers all writes as intended.

The flush applies to all commands […] completed by the controller prior to the 

submission of the Flush command.

— NVMe Base Specification, Section 7.1 [5]

Figure 2.4 shows an example of this behavior. If the operating system submits the 

Flush command together with the Write commands (a), the Flush does not apply to the 

previous writes. A correct implementation (b) waits for completion entries before 

submitting the Flush command.

commands

write 0

write 1

flush

completions

write 0

write 1

wait

commands

write 0

write 1

flush

completions

write 0

write 1

(a) without waiting for completions (b) with waiting for completions

Figure 2.4:  NVMe Flush commands apply to all completed commands at time of 

submission [5, §7.1]. The OS must wait for writes to complete before submitting a 

Flush command.
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Manufacturer Toshiba Samsung Micron Samsung

Model XG5 SSD 99010 7300 PRO PM9A3

Type consumer consumer data center data center

Year 2017 2022 2019 2021

Has volatile write cache? yes yes no no

Block sizes [byte] 512, 4096 512 512, 4096 512, 4096

Metadata sizes [byte] 0 0 0, 8, 64 0

Max transfer size 256 KiB 256 KiB 16 KiB 2048 KiB

Atomic write size 16 KiB 512 KiB 1 block 512 KiB

Power-fail write size 1 block 1 block 1 block 1 block

Table 2.4:  Comparison of NVMe parameters reported by NVMe SSDs.

NVMe Features in SSDs

We now take a look at how the NVMe features discussed here are supported by SSDs 

in practice. Table 2.4 shows a comparison between four NVMe SSDs. Two NVMe 

SSDs (Toshiba XG5 and Samsung SSD 990) are consumer models. The other two 

(Micron 7300 PRO and Samsung PM9A3) are intended for data center applications.

We can see that the consumer SSDs in our set come with a volatile write cache, 

whereas the data center SSDs do not have one.

The block size on Samsung’s consumer SSDs is limited to 512 bytes. The other SSDs 

also support 4096 byte blocks. In our set of SSDs, only the Micron 7300 PRO supports 

metadata.

The maximum transfer size per command ranges between 16  KiB and 2  MiB. 

Samsung SSDs guarantee atomicity of writes up to 512 KiB in size with respect to 

parallel commands (i.e., a parallel read command will either see all new blocks, 

or none). However, none of the SSDs support power-fail atomicity for more than 

one block.

As a consequence, file systems need to support a worst-case feature set that includes 

a volatile write cache, 512 byte blocks and no power-fail atomicity for more than 

one block. We assume this device model for Suvi in Chapter 7.

10Samsung’s older models SSD 970 (2018) and 980 (2020) have identical data.
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Chapter 3

Motivation – Designing Data Struc

tures for PM

In this chapter, we examine the challenges of designing data structures for PM. As a 

practical example, we will work with a PM ring buffer designed for use in an in-kernel 

storage stack. This ring buffer design originated in Christian Schwarz’s master’s 

thesis, “Low-Latency Synchronous IO for OpenZFS using Persistent Memory” [111]. 

It is part of ZIL-PMEM, which caches synchronous file system accesses to hide the 

latency of the remaining asynchronous ZFS storage stack. We describe how ZIL-

PMEM builds on top of the PM ring buffer in Section 3.8.1.

The design of ZIL-PMEM’s ring buffer is relevant for this thesis, as it is a simple 

example of multiple concepts discussed in the following chapters:

• It achieves a write bandwidth close to the raw PM write bandwidth.

• It implements concurrency control, limiting the number of parallel writers to PM.

• It supports strong consistency. Every log entry is immediately persisted.

We start with a full overview of the final ring buffer. In the following sections, we 

discuss design parameters important for fast and correct PM usage. By comparing 

these parameters in isolation, we aim to build an intuition for working with PM.

3.1 PM Ring Buffer Overview
Christian Schwarz set the following requirements for the design of the ring 

buffer [111, §5.1]:

• Minimal overhead

• Scalability on multicore systems

• PM bandwidth management for efficient CPU use

• Detection of media errors with checksums

The ring buffer is used as a cache for asynchronous storage transactions. The 

asynchronous storage stack handles all read operations through its DRAM page 

cache. During regular operation, the PM ring buffer is therefore write-only. The 

recovery process reads from the ring buffer only after a crash.
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PM in Chunks

Chunk

Allocation

Free List Full List

Committers C1 C2

Figure 3.1:  Overview of the ring buffer data structures. At runtime, each chunk is 

either in one of the allocation lists or assigned to a committer. Committers additionally 

store the offset to the free space within their chunk.

3.1.1 PM Organization and Runtime Data

Chunks

The PM ring buffer must support parallel write access. Because individual entries 

are small and the raw write time is short, minimizing write contention is important. 

The PM ring buffer achieves this by granting writers exclusive access to a large 

chunk of PM.

The PM space is divided into chunks of arbitrary size. There should be at least 

one chunk for each parallel writer, with additional chunks enabling asynchronous 

garbage collection. The chunk size determines the maximum entry size, though 

chunks should be sized to contain multiple entries to amortize the cost of garbage 

collection. Our implementation creates a configurable number of equally sized 

chunks spanning the entire PM space. ZIL-PMEM uses a fixed chunk size of 128 MiB, 

which fits almost 30 000 write entries with 4  KiB data  [111, §8.1]. The chunk 

dimensions must be deterministic or stored externally, because the start and end 

of a chunk cannot be determined from the data on PM.

A chunk is an allocation unit. As shown in Figure  3.1, each chunk has one of 

three states:

Free. A chunk in the free list, ready for allocation. A free chunk always starts with 

an invalid entry header.

Full. A chunk filled with valid entries. It is assigned to the full list. A full chunk is 

returned to the free list once all its entries have been asynchronously persisted 

to secondary storage.

Assigned to committer. Every committer owns exactly one chunk. Because a 

committer has exclusive access to its chunk, it can append new entries without 

locking.

A mutex protects concurrent access to the chunk allocation lists.

Entry Headers

The data within a chunk is organized in variable-length entries. Every entry starts 

with a header containing the following fields:
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Entry ID. Identifies each entry for testing purposes. Since the ring buffer can write 

entries to multiple chunks in parallel, some kind of identifier is necessary if the 

application needs to impose an order between entries.

Body length. Exact size of the body in bytes (excluding padding), used for reading 

the body and finding the next entry.

Body checksum. Detects media errors within the body.

Header checksum. Indicates valid entry headers. Besides media errors, the header 

checksum must also detect partially written entries.

ZIL-PMEM includes additional header fields (e.g., for garbage collection)  [111, 

§5.10], which our implementation does not need. Keeping separate header and body 

checksums allows calculating the more expensive body checksum before holding 

any locks that might be necessary to fill the header.

The entry header and body are padded with zero bytes to ensure alignment at 

256 bytes. We demonstrate the need for such alignment in Section 3.5.

Committers

The committers manage concurrent access to the ring buffer. Each committer owns 

a single chunk. It keeps track of the offset of the free space within that chunk.

A semaphore and a bitmap control the assignment of committers to writing threads. 

We describe this process below.

3.1.2 Recovery

The recovery algorithm runs after a crash. It needs to discover all valid entries in 

the chunks. Note that recovery requires no knowledge about the runtime data (i.e., 

free list and committers) before the crash. In particular, free chunks always start 

with a zero entry header.

The recovery algorithm in pseudocode is shown in Figure 3.2.

3.1.3 Write Process

The complete process of writing a new entry to the PM ring buffer is as follows:

1. Prepare the entry header. This includes calculating the body checksum and then 

the header checksum.

2. Obtain a committer, as described below.

for each chunk:

offset := 0

loop:

read header from chunk.start + offset

if header is zero or header has invalid checksum: break

check body checksum

yield entry to application

offset += len(header) + len(body) rounded up to 256

Figure 3.2:  Algorithm for the ring buffer recovery procedure in pseudocode.
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H body 0

next

H body 0 0

next

1. Allocate space and zero next header

H body 0 body 0

next

2. Write body

FENCE

H body H body 0

next

3. Write header

FENCE

Figure 3.3:  Steps for writing a ring buffer entry to PM.

3. Obtain a free chunk if the committer’s current chunk does not have enough space 

for the new entry.

4. Write to PM as shown in Figure 3.3. All write operations use either non-temporal 

stores or cache flush instructions to ensure that data reaches PM. Fences ensure 

the ordering of operations for crash consistency, which we discuss below.

1. Allocate space in the chunk and zero the next header (256-byte aligned).

2. Write the entry body. Fence.

3. Write the entry header. Fence.

5. Release the committer.

Committer Selection

The committer mechanism serves two purposes. First, it reduces lock contention in 

the write path. Second, it limits the number of parallel writes going to PM. Optane 

PM can handle between two and four committers per module (see Section 3.4).

Access to the committers is protected by a semaphore and a bitmap. The semaphore 

is initialized with the number of available committers. The bitmap holds one bit for 

each committer and is initialized to zero.

To obtain a committer, a thread first enters the semaphore. If all committers are 

taken, the thread will block on the semaphore. The thread then atomically loads the 

bitmap, toggles the first unset bit, and writes the bitmap back with a compare-and-
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swap operation. If the write-back is successful, the thread has obtained the committer 

at the index of the toggled bit. Otherwise, it retries by loading the new bitmap.

To release a committer, the thread atomically clears the corresponding bit in the 

bitmap, then exits the semaphore.

Chunk Allocation

If the committer’s current chunk does not have enough space for the new entry, 

it needs to obtain a new chunk from the free list and return its chunk to the full 

list. Since committers might access these two allocation lists concurrently, they are 

protected with a mutex. Contention at that mutex is unlikely as chunk allocation 

does not happen very often.11

Besides the committers, background workers might also touch the allocation lists for 

garbage collection. In ZIL-PMEM, once all entries in a full chunk have been written 

to the ZFS file system, garbage collection is triggered [111, §5.12]. Our standalone 

prototype triggers garbage collection if no free chunks are available.

To clear a full chunk, it is sufficient to overwrite the first entry header with zeroes. 

The recovery will stop at a zero header (see Section 3.1.2) and the write path does 

not make assumptions about previous PM contents.

Crash Consistency

The write operation must be atomic. If the system crashes during a write operation, 

recovery must never pass an incomplete entry to the application. The PM ring buffer 

achieves atomicity with two memory fences placed before and after writing the entry 

header (step 3 of Figure 3.3).

If the system crashes before step 3, the header of the new entry is always zero. 

Recovery will therefore stop at the zero header and will not attempt to read a 

potentially incomplete body.

If the system crashes after step 3, the final fence ensures that both the new entry 

header and the body have reached PM. The ring buffer can therefore guarantee to 

applications that the written entry will not be lost in the event of a crash.

Finally, if the system crashes during step 3, we rely on the header checksum to detect 

crashes. If the checksum is correct, the fence before step 3 ensures that the body is 

complete and that the next entry header is zero. Otherwise, recovery will reject the 

entry and will not process partially-written header fields.

Both fences are necessary for atomicity. If we remove the first fence, the recovery 

might encounter a valid header with an incomplete body.12 Additionally, the next 

entry header might not be zeroed out (step 1). Since chunk garbage collection does 

not overwrite the complete chunk, recovery might encounter an old entry at that 

location and yield such an entry to the application.

11Christian Schwarz calculates that ZIL-PMEM’s 128 MiB chunks require chunk allocation for 
every 29 127th 4 KiB write entry [111, §8.1].

12The recovery will most likely reject the body based on the body checksum. However, with large 
entries, collisions of basic checksums for error detection, such as CRC-32, become likely.
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  pub trait PMAccess {

      /// Copy src to dst. Pad dst with 0 bytes if it is larger than src.

      /// dst must be a multiple of 64 bytes and aligned at 64 bytes.

      fn memcpy_to_pm(dst: &mut [u8], src: &[u8]);

      /// Store fence for draining PM writes.

      fn sfence() {

          unsafe { _mm_sfence() };

      }

  }

Listing 3.1:  PMAccess trait for changing the instructions used for writing to PM.

If we remove the second fence, an entry might be lost in a crash until another entry 

is written. We could therefore no longer guarantee to applications that their data is 

immediately persisted.

3.2 Implementation and Evaluation Setup
We implement a standalone version of the PM ring buffer in Rust. The core ring 

buffer implementation has approximately 300 lines of code. The source code is 

available at https://github.com/lluchs/pm-ringbuf

Neither the Rust standard library nor the popular reimplementation parking_lot 

provide semaphores. We therefore use semaphores from the C standard library for 

the committer selection.

For the experiments below, we required different implementations of the PM access 

functions and needed to vary the entry header alignment. We achieve both using Rust 

generics. Since Rust performs monomorphization of generics at compile time [78], we 

can switch implementations without runtime overhead or missed optimizations.

All PM access is encapsulated in a Rust trait, PMAccess, shown in Listing 3.1. We 

implement this trait with non-temporal AVX-512 stores and with regular stores plus 

cache line flushes. The sfence() function enables changing the fence instruction 

from the default sfence. The entry header alignment is configured with a const 

generic parameter [35], which sets the size in bytes.

We implement the benchmark using Criterion.rs  [53]. Criterion is a library for 

creating microbenchmarks. It invokes a user-defined benchmark function that 

performs the operation under test for 𝑁  iterations. During a short warm-up period, 

Criterion automatically determines a value for 𝑁  that ensures a low overhead from 

the benchmark setup (e.g., measuring runtime). Criterion then performs multiple 

measurements and calculates statistics such as the mean runtime per operation 

and the standard deviation.

Since we evaluate parallel workloads, our benchmark functions start 𝑇 = 1..18 

threads (based on the number of CPU cores) and waits for them to finish. Each 

thread writes 
𝑁

𝑇
 entries to the ring buffer, then exits. We calculate throughput from 

the measured write latency and the constant entry size.

Table 3.1 shows the system configuration for the benchmarks in this chapter. We 

configure the PM attached to the first CPU 4-way interleaved (pc62). In Section 3.4.1, 

we compare non-interleaved PM (pc62-NI). We pin the benchmark process to the 
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pc62 pc62-NI

Motherboard Supermicro X11DPU

CPU 2 × Intel Xeon Gold 5220 (18 × 2.2 GHz)

SMT Hyperthreading disabled

DRAM 12 × 32 GB DDR4 2666 MHz

PM 8 × 128 GB Intel Optane PM 100

PM Region 2 × 4-way interleaved 8 × non-interleaved

PM Namespace 1 devdax namespace on region 0

SSD Toshiba XG5 1 TB attached to CPU 1

Table 3.1:  System configuration for the evaluation in this chapter.

first CPU so that PM accesses are local. For the NUMA experiments in Section 3.6, 

we run another benchmark pinned to the second CPU (remote PM).

3.3 Memory Access Instructions
PM can be accessed with any CPU instruction that reads from or writes to memory. 

Especially in file systems, however, most PM writes usually come from a simple 

memcpy routine that copies file data or metadata blocks in bulk. Our PM ring buffer 

writes exclusively to PM with memcpy. We therefore want to choose instructions 

that provide maximum performance for memcpy.

In Figure 3.4, we compare non-temporal store instructions (movnt64) with regular 

cached stores followed by a cache line flush instruction (clflushopt 13). We discuss 

the different write paths with these two instructions in Section 2.4.1. In both cases, 

we use AVX-512 instructions that write 64  bytes per instruction. We show the 

throughput of pure memcpy to PM and of ring buffer writes.

Figure 3.4:  pc62  Comparison of writing to PM and the ring buffer with non-temporal 

store instructions (movnt64) and with regular stores followed by cache flushes 

(mov64flush). We compare the throughput of a simple memcpy loop and of writing 

entries to the ring buffer. Parallel writes to the ring buffer are not limited.

13x86 also includes the clwb instruction, which writes back a cache line without necessarily 
evicting it from the cache. On the second-generation Intel Scalable processors used for the 
benchmarks here, clwb has identical behavior to clflushopt.
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Instruction Media Reads Media Writes Read Requests Write Requests

17 M 17 M 0.0020 M 17 Mmovnt64

1 thread 1.0 GiB 1.0 GiB 120 KiB 1.0 GiB

30 M 17 M 12 M 17 Mmov64flush

1 thread 1.8 GiB 1.0 GiB 710 MiB 1.0 GiB

23 M 23 M 0.0050 M 17 Mmovnt64

16 threads 1.4 GiB 1.4 GiB 310 KiB 1.0 GiB

32 M 21 M 9.2 M 17 Mmov64flush

16 threads 1.9 GiB 1.3 GiB 560 MiB 1.0 GiB

Table 3.2:  pc62  Results of on-DIMM performance counters for writing 1.0 GiB 

of data to PM. For each counter, we list the raw value (in 64-byte blocks) and the 

corresponding number of bytes. We observe read requests with mov64flush and a 

larger number of media writes with 16 threads.

For memcpy, we observe a large difference in throughput. The implementation 

with non-temporal instructions writes data at 4.3 GiB/s with a single thread and 

shows the highest throughput of 7.5 GiB/s with two threads. With regular stores and 

cache flushes, the single-thread throughput starts at only 1.4 GiB/s. It then ramps 

up slowly, reaching a peak of 6 GiB/s at six threads.

We can understand this behavior by examining the on-DIMM performance counters. 

We set up a test program that writes 1.0 GiB of data to PM and records the change in 

the counters across all interleaved DIMMs. Table 3.2 shows the results. For the non-

temporal instructions with one thread, we see 17 million write requests that result 

in 1.0 GiB of data read and written to the PM media. With cached stores, there are 

an extra 12 million read requests, causing an additional 0.80 GiB of data to be read 

from the PM media.

The reason for the additional reads lies in the processor’s cache coherence protocol. 

Before a CPU core may write to a cache line in its private L1 or L2 caches, it needs 

to load that cache line and invalidate it in all other private caches [95]. On Intel 

processors, this event is called a Read For Ownership (RFO). If the data is not already 

in the cache hierarchy, it is read from memory.

With both implementations, throughput decreases with more threads after the 

peak. In our benchmark, we see identical throughput with more than ten threads. 

In Table 3.2, we also show the PM performance counters at 16 threads. For the 

same number of write requests, we now see 40% more media reads and writes 

for movnt64. This indicates that the on-DIMM caching structures can no longer 

coalesce the incoming parallel write requests, causing expensive read-modify-write 

operations [124].

The ring buffer does additional work on top of the memcpy operation, including 

committer selection and multiple memory fences. It also writes extra data for the 

entry headers, which we do not count toward the throughput here. We therefore 

expect to see lower throughput than for memcpy, as in Figure 3.4. This extra overhead, 
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Figure 3.5:  pc62  Throughput when writing to the ring buffer with different numbers 

of committers. The test system has 18 CPU cores, and the PM is interleaved over 

four modules.

however, also reduces the PM load at higher thread counts. For this reason, the 

throughput decreases more slowly than for memcpy.

Based on these results, we prefer non-temporal store instructions for PM access 

when possible. The following benchmarks all use movnt64 instructions.

3.4 Parallel Accesses
In the previous section, we saw that PM write throughput decreases with more 

threads. To avoid such a decrease, the ring buffer includes a committer mechanism 

that limits parallel writes to PM (see Section 3.1.3).

In Figure 3.5, we show the write throughput to the ring buffer with different numbers 

of committers. Since our test system has 18 CPU cores, parallelism to PM is not 

limited at 18 committers. We can see that the committer mechanism successfully 

keeps the throughput stable with higher numbers of threads.

However, there is a noticeable overhead once there are more threads than commit

ters. Comparing the results for four and eight committers, we see that both reach 

maximum throughput at four threads. At five threads, the throughput with four 

committer slots drops by 11.2% and remains at that level. With eight committers, 

we do not observe such a drop at nine threads, since even with the extra overhead 

from committer contention, the available PM bandwidth remains the bottleneck.

We therefore recommend limiting parallelism to the highest number of threads that 

can sustain the maximum bandwidth. In Chapter 5, we discuss more mechanisms 

for limiting parallelism. Aside from throughput, we also introduce CPU efficiency 

as a metric, for which a lower limit is an advantage.

3.4.1 Non-Interleaved Optane PM

The Optane PM in the rest of this chapter is configured as interleaved over four 

modules. It can therefore handle a higher level of parallelism than a single module 

can. In Figure 3.6, we repeat the committer benchmark with non-interleaved PM.

We see that for non-interleaved Optane PM, a single thread is sufficient to reach 

a maximum bandwidth of 1.9 GiB/s for memcpy and 1.8 GiB/s with the ring buffer. 
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Figure 3.6:  pc62-NI  Throughput when writing to the ring buffer with different 

numbers of committers, using non-interleaved Optane PM. We include memcpy 

throughput for comparison.

With unrestricted parallelism (committers = 18), throughput decreases with more 

than four threads. Both two and four committers keep the throughput stable. With 

one committer, contention at the committer selection leads to unstable throughput.

Based on these results, we recommend limiting parallel access to non-interleaved 

PM to two to four threads.

3.5 Alignment and Access Size
Optane PM has an internal access size of 256 bytes  [124]. Writes smaller than 

256 bytes require a read-modify-write operation in Optane’s caching structures, 

which increases write latency. Our PM ring buffer avoids such operations by aligning 

entry headers and bodies at 256 bytes. The header always has a fixed size of 256 bytes, 

and the body is padded so that the next entry header starts at a 256-byte boundary.

We show the need for such padding by comparing the write throughput with a variant 

that aligns at 64 bytes (a single cache line) instead of 256 bytes. We expect to see 

extra latency with 64-byte alignment since the write path has two memory fences 

that would wait for read-modify-write operations while writing the body (first fence) 

and the header (second fence). Figure 3.7 shows the results.

Figure 3.7:  pc62  Throughput when writing to the ring buffer (8 committers) with 

different body sizes and header alignment. Error bars show standard deviation. 

With 64-byte headers, throughput is 17.4% higher on average for 256-byte bodies.
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For a body size of 256 bytes, the total size of the ring buffer entry with 256-byte 

alignment is 512 bytes. This is 60% larger than the total size of 320 bytes with 64-

byte alignment. However, we observe a 17.4% higher throughput with the larger 

alignment. Consequently, writing more data to PM to avoid read-modify-write 

operations is advantageous.

Note that the overall throughput with a smaller body decreases, since the relative 

overhead from the crash-consistent write protocol increases. Additionally, we can 

observe extra contention at the committer selection once the thread count is higher 

than the number of committers.

With larger body sizes such as 4 KiB in the right plot in Figure 3.7, the difference in 

throughput disappears. In this case, the cost of read-modify-write operations while 

writing the header is overshadowed by the time required to write the body. Since 

with a larger body the padding size is only a small fraction of the complete entry, 

there is little benefit in omitting the padding.

3.6 NUMA
On systems with multiple CPUs, each CPU has only a part of the system memory 

attached to its memory controller. The remaining memory is accessed over an 

interconnect between the CPUs, which generally results in increased latency. This 

situation is called Non-Uniform Memory Access (NUMA).

Remote PM accesses are especially expensive. We repeat the previous experiments 

with the benchmark threads pinned to the second CPU. In Figure 3.8, we compare 

throughput to local and remote PM as in Section 3.3. In general, the maximum 

throughput to remote PM is lower than to local PM. Non-temporal stores continue to 

be faster. With non-temporal stores, we observe a ramp-up to a maximum memcpy 

throughput of 4.4 GiB at six threads. Remote accesses with regular stores behave more 

similarly to local accesses, with a smaller increase up to 2.6 GiB at seven threads.

Overloading PM with parallel remote accesses is especially problematic. The 

throughput drops to a stable level of only 0.33 GiB with non-temporal stores or 

0.70 GiB with regular stores. Limiting parallel accesses is therefore important.

Figure 3.8:  pc62  Comparison of writing to local and remote PM with different 

instructions (see Figure 3.4). The throughput to remote PM is generally lower than 

to local PM and suffers more from overload.
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Figure 3.9:  pc62  Comparison of committer counts to local and remote PM (see 

Figure 3.5). The maximum parallelism to remote PM is slightly lower, with the 

highest stable throughput at seven committers.

In Figure 3.9, we compare the committer mechanism for local and remote PM. 

Since the maximum throughput to remote PM is achieved with only seven threads, 

we include seven committers here as well. From the results, we can see that a 

lower committer count is beneficial for remote PM accesses. Without a limit (18 

committers), the throughput after nine threads is lower than with a single committer. 

At seven committers, the throughput is not as stable as with local PM and decreases 

to the same level as four committers at 18 threads.

Note that support for NUMA systems was not among the goals of the ring buffer. The 

ring buffer could be extended to support NUMA by allocating chunks and committers 

separately for each NUMA node. Entries would then always be placed on local PM. 

We leave such an extension as future work.

In summary, it is best to avoid remote PM accesses, as they incur significant 

penalties in latency and throughput. If they cannot be avoided (for example, when 

an application’s data is distributed across all PM regions), then aggressive limits on 

parallel accesses are necessary to ensure high performance.

3.7 Discussion
From the results in this chapter, we can infer the following recommendations for 

PM applications. These recommendations match the best practices given by Yang 

et al. [127].

Use non-temporal stores. Non-temporal stores avoid unnecessary reads from PM, 

resulting in a higher throughput per thread.

Prefer writes aligned to 256 byte blocks. Writes smaller than 256 bytes cause 

internal read-modify-write operations and decrease throughput.

Limit parallel PM accesses. At high levels of concurrency, overall throughput 

decreases as more threads access PM in parallel.

Avoid remote NUMA accesses to PM. Remote PM accesses result in high latency 

and low throughput compared to local accesses.
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3.8 PM Ring Buffer for File Systems
The PM ring buffer described in this chapter was integrated into two storage 

systems as part of student theses. Christian Schwarz designed and implemented ZIL-

PMEM [111], a write cache for the ZFS file system. Ilia Bozhinov integrated the ring 

buffer into a block device write cache via the Linux Device Mapper framework [32].

In this section, we briefly examine these two works to demonstrate the integration 

of the ring buffer into larger storage systems. We compare the throughput and 

efficiency of both systems in Chapter 4.

3.8.1 ZIL-PMEM: PM Write Cache for ZFS

ZFS [31] is a file system known for its advanced features, including volume manage

ment, data integrity checks with checksums, compression, encryption, snapshots, 

and replication. It is a file system for block devices with no built-in support for PM.

ZFS collects modifications in transactions. Multiple transactions form a transaction 

group that is asynchronously persisted to storage. To avoid high completion latency 

for synchronous file system writes (e.g., files opened with O_SYNC or calls to fsync()), 

ZFS implements a logical log called the ZFS Intent Log (ZIL). A synchronous file system 

operation can return immediately once all relevant changes are recorded in the ZIL 

and does not need to wait until the transaction group is persisted.

ZIL-PMEM [111] is a ZIL implementation specifically for PM. The PM ring buffer 

described in this chapter provides the physical storage format for ZIL-PMEM. Due 

to the committer mechanism, entries in the ring buffer are randomly distributed 

across multiple chunks at runtime. Consequently, ZIL-PMEM requires additional 

header fields in each entry to reconstruct the ZIL’s logical order during recovery. The 

additional header fields include the transaction group, a generation number, and 

a generation-scoped ID. The generation numbers encode dependencies among log 

entries. In combination with the generation-scoped ID, they determine the replay 

order of the log after a crash.

For garbage collection, ZIL-PMEM tracks the most recent transaction group of each 

full chunk. Once a transaction group is persisted, all full chunks that do not have 

any items belonging to future transaction groups are cleared and returned to the 

free list.

In his evaluation, Christian Schwarz demonstrates up to 8× speedups of ZIL-PMEM 

compared to upstream ZFS [111]. He shows that ZIL-PMEM works especially well 

for small synchronous operations. He also verifies that ZIL-PMEM avoids excessive 

CPU stalls due to overloaded PM, which we expand in this thesis in Chapter 4.

3.8.2 DPWC: Write Cache for Block Devices

The Device Mapper framework in the Linux kernel [74] allows extending the block 

layer between file systems and storage devices with new functionality. Linux includes 

Device Mapper modules that provide, among other functions, software RAID, integrity 

checks, and encryption.

Similar to ZFS’s ZIL, dm-writecache is a module that stores a separate log for 

modifications on a faster storage medium to speed up fsync() requests. Dm-
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writecache is a module that caches modified blocks on a faster storage medium 

(SSD or PM) with the goal of improving the performance of fsync() requests. Unlike 

ZFS’s ZIL, dm-writecache does not implement a log of modifications. Instead, it 

stores modified blocks in a red-black tree by their block address. The red-black 

tree allows dm-writecache to retrieve modified blocks at runtime to service read 

requests. Updates to the red-black tree are protected with a lock, which prevents 

parallel writes and limits the maximum throughput.

DPWC [32] is a Device Mapper module that caches modified blocks in the PM ring 

buffer described in this chapter. Unlike dm-writecache, it stores a log of modified 

blocks and can handle parallel stores. In contrast to ZIL-PMEM’s logical log, dpwc 

implements a physical log, as Device Mapper modules operate at the block layer.

Since the PM ring buffer is not intended to read entries at runtime (only during 

recovery), dpwc cannot easily handle read requests for modified blocks. Instead, it 

assumes that any recently modified blocks are in the page cache and blocks read 

requests until the corresponding write has completed.

For garbage collection, dpwc does not have information on higher-level transactions, 

such as ZFS’s transaction groups. Instead, dpwc physically organizes the ring buffer 

chunks into multiple generations. A generation has a header with a generation ID 

and multiple chunks. Only one generation is active at a time. If a committer cannot 

allocate a new chunk from the current generation, the generation is closed and all 

committers acquire new chunks from the next generation. Once all blocks from a 

closed generation are written back, its chunks are cleared and the generation can 

be reused.

Similar to ZIL-PMEM, dpwc uses a generation-scoped ID in the entry headers to 

order entries for replay. After a crash, it finds all non-empty generations, orders 

them by generation ID, then processes their entries. Since write requests at the block 

layer are idempotent, dpwc does not need to consider the state of the underlying 

storage for replay.

In his thesis, Ilia Bozhinov shows that dpwc can reach up to 2× speedup over dm-

writecache [32]. However, he also finds that dpwc’s coarse-grained garbage collection 

generations can lead to extended periods of low throughput while all generations 

are closed.
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Chapter 4

PM File System Efficiency

Our analysis in Chapter 3 shows that Optane PM is very sensitive to parallel accesses. 

When writing to PM in parallel, the overall throughput quickly peaks and then 

decreases with more writers.

PM file systems face the same challenge indirectly. File systems themselves generally 

have little parallel activity (e.g., background write-back, defragmentation, garbage 

collection). However, they handle parallel requests from userspace applications, 

which results in a parallel PM load. We argue that ensuring efficient access to the 

underlying storage is the responsibility of the file system rather than the userspace 

application.

Besides the reduced bandwidth, there is also a hidden cost associated with parallel 

PM access. With more parallel PM accesses, the CPU is active for longer—more than 

we would expect from other storage devices such as NVMe SSDs.

Figure 4.1:  pc61  Comparison of throughput and CPU load with parallel writes to 

an ext4 file system on top of PM and NVMe storage.

55



4 PM File System Efficiency 4.1 Metrics for File System Efficiency

Figure 4.1 shows two identical benchmarks writing to ext4 on top of PM and NVMe. 

We plot the resulting bandwidth and the number of active CPU cores as reported 

by the Linux scheduler (see Section 4.2.1). The bandwidth behaves similarly, with 

a small increase at two jobs, after which it stagnates (NVMe) or decreases (PM). 

However, there is a significant difference in CPU activity. With NVMe, CPU usage 

rises slowly, with fewer than 1.5 active cores at eight jobs. Writing to PM, on the 

other hand, generally requires one active core per job. Since these active cores do 

not achieve higher bandwidth, the additional CPU work is effectively wasted. The 

CPU cores spend more and more cycles stalling on PM accesses.

The reason for the difference in CPU activity is the different access modes. NVMe 

is an asynchronous protocol.14 The CPU is active while the kernel handles NVMe 

commands and completions. While the SSD transfers the data using DMA, the CPU 

can sleep or run other tasks. In contrast, the CPU itself performs transfers to and 

from PM and is active during the entire transfer.

This should be considered unexpected behavior for users of a file system. The file 

system serves as an abstraction layer between applications and the underlying 

storage. It provides a common interface so that unmodified applications can operate 

with different storage media. An application cannot reasonably optimize for a storage 

requirement such as limited parallelism, since it cannot know the activity of other 

processes in the system. A PM file system should therefore ensure that it accesses 

the underlying storage as efficiently as possible.

Efficient use of the CPU has not been a design goal of any of the PM file systems 

described in Section 2.3. We argue that this is partly because there is no established 

metric for the efficiency of a file system. Absolute numbers for CPU activity or power 

consumption do not compare well. As an example, in Figure 4.1, we can see that at 

1-2 jobs, ext4 on PM uses roughly double the number of CPU cores as ext4 on NVMe. 

However, ext4 on PM also achieves a significantly higher bandwidth than on NVMe.

In this chapter, we propose measuring CPU time and energy per transferred GiB 

as metrics for file system efficiency. We then compare this metric for several file 

systems on PM and NVMe. We show that the CPU power consumption dominates the 

energy efficiency for all file systems. The easy-to-measure CPU efficiency metric is 

therefore a useful stand-in if full power measurents are not feasible. In the following 

chapter, we then propose mechanisms to improve the efficiency of PM file systems.

We published parts of the work in this and the following chapter in “Analyzing and 

Improving CPU and Energy Efficiency of PM File Systems” at DIMES’23 [120].

4.1 Metrics for File System Efficiency
We want to establish metrics that allow comparison of the efficiency of file systems. 

We cover two separate goals, energy efficiency and CPU efficiency. Although this 

thesis focuses on PM file systems, we ensure that the metric is compatible with all 

types of underlying storage systems.

14We describe the NVMe protocol in more detail in Section 2.4.2.
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PSU

CPU

SSD

DRAMPM

Wallplug

ATX/EPS Power

RAPL CPU

RAPL DRAM

Figure 4.2:  Overview of commonly-available energy measurement domains for ATX 

systems. Wallplug and ATX/EPS measurements require extra hardware, whereas 

the RAPL domains are provided by CPU performance counters.

4.1.1 Energy Efficiency

Energy efficiency covers the energy consumption of all devices in the system. For 

power-constrained devices, efficient use of the available energy is important. It 

improves the battery life of devices such as smartphones and laptops. For server 

systems, which are the main target for Optane PM, better energy efficiency allows 

reduced cooling and lowers the electricity bill.

However, measuring and comparing energy consumption comes with a set of 

challenges. First, it is highly dependent on all hardware components. Comparisons 

across different hardware configurations are usually not possible. Second, even 

measurements on the same hardware may not be reproducible. Environmental 

factors such as the ambient temperature can have an effect on the power consump

tion as fans need to spin faster.

Finally, most energy measurements require extra specialized hardware. Figure 4.2 

shows commonly-available energy measurement domains. Without extra hardware, 

modern Intel server platforms provide separate energy counters for the CPU and 

memory DIMMs [57]. These counters do not include peripheral hardware such as 

SSDs. They are therefore only useful for measurements of pure PM file systems.

The next larger domain are measurements at the power connectors between PSU and 

the motherboard. There is off-the-shelf measurement hardware that can measure at 

standard ATX power connectors, providing separate measurements per connector 

and voltage [94]. At this level, the CPU, memory, and all peripherals are included. 

However, it is generally not possible to attribute measurements to specific devices 

since power distribution happens within the motherboard.
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Measuring at the motherboard connectors is preferable to wallplug measurements, 

the largest domain. Wallplug measurements include the power supply unit (PSU) 

and are therefore highly dependent on the PSU efficiency. We compare data from 

the measurement domains from Figure 4.2 in Section 4.2.4.

The use of external measurement hardware also leads to a synchronization problem. 

Since the measurement hardware runs independently from the system under test, 

it is generally not possible to identify precisely where in the measurement data a 

benchmark starts and ends.

Metric

With the challenges above in mind, we propose measuring an energy cost for a given 

file system benchmark with the methodology below. This metric is exclusively 

intended for comparisons of different file systems on a single system and therefore 

can offer some flexibility in the measurement method. The benchmark can excercise 

an arbitrary file system operation that reads or writes from the storage medium, 

but is required to put a constant load on the system.

1. Choose a measurement domain that includes all devices used by the file system.

2. Measure the average power consumption during idle 𝑃idle.

3. Measure the average power consumption during benchmark 𝑃benchmark. Record 

the amount of data read or written 𝑀  and the runtime of the benchmark 𝑡.

From the measured data, calculate the energy over idle 𝐸 as follows:

𝐸 = (𝑃benchmark − 𝑃idle) ⋅ 𝑡

We calculate 𝐸 via the average power values rather than direct energy measurements 

to avoid synchronization problems. Since we assume a constant load from the 

benchmark, we can cut away the beginning and the end of the measurement values 

before calculating the average power.

With the energy over idle 𝐸 and the amount of transferred data 𝑀 , we propose 

calculating the energy cost as follows:

Energy cost =
𝐸

𝑀
Unit:

J

GiB

The energy cost describes how much energy the storage stack, including the 

benchmark program, file system, and storage hardware, requires for transferring a 

given amount of data.

The energy cost can also be calculated from the average bandwidth 𝑟 =
𝑀

𝑡
:

Energy cost =
𝐸

𝑀
=

(𝑃benchmark − 𝑃idle) ⋅ 𝑡

𝑟 ⋅ 𝑡
=

𝑃benchmark − 𝑃idle

𝑟

4.1.2 CPU Efficiency

CPU efficiency is closely related to energy efficiency, as the CPU is often the largest 

power consumer during a file system access (see our analysis in Section 4.2.4). Effi

cient use of the CPU therefore typically also implies efficient energy use. Measuring 

CPU utilization does not present the challenges associated with measuring energy 
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discussed above. This makes CPU efficiency an attractive alternative when energy 

measurements are not feasible.

In addition to its connection to energy efficiency, CPU efficiency is important in its 

own right. A file system that uses less CPU time leaves more CPU time available for 

other applications.

We propose using CPU time as the basis for measuring CPU efficiency. CPU time is a 

metric maintained by the operating system scheduler. The total CPU time is the sum 

of the number of seconds each CPU core is active during a given time period. For 

example, if an eight-core CPU is fully utilized for ten seconds, we would calculate a 

CPU time of 80 seconds.

Using CPU time makes the metric more dependent on the speed of the underlying 

storage device, rather than the CPU. This enhances the stability of the metric in the 

presence of dynamic frequency scaling and improves comparability across different 

systems. In contrast, using CPU cycles as a basis would always report worse CPU 

efficiency on a higher-frequency CPU for PM, since a memory stall of the same wall 

clock duration would account for more CPU cycles.

Metric

We propose the following method for measuring the CPU cost of a file system. An 

arbitrary benchmark reading or writing to the file system is the basis for our mea

surements. Unlike for our energy efficiency metric, the benchmark is not required 

to put a constant load on the system, since there is no synchronization problem 

with reading CPU utilization. For our analysis below, we only use benchmarks with 

constant load so that we can measure both metrics simultaneously.

1. Measure CPU time in an idle system over a timespan close to the benchmark 

runtime. Verify that it is low.

2. Measure the total CPU time 𝑇  of the full system while the benchmark is running. 

Record the amount of data 𝑀  that the benchmark reads or writes.

We then calculate the CPU cost as follows:

CPU cost =
𝑇

𝑀
Unit:

s

GiB

Note that we do not filter the CPU time measurements by process. File systems often 

have worker threads that do not run in the context of a user process. Instead, we 

require that the test system has no background activity during the benchmark.

4.2 Analyzing File System Efficiency

4.2.1 Measurement Setup

Table 4.1 shows the system configuration. Our evaluation system pc61 has two CPU 

sockets, each equipped with an eight-core CPU, 64 GiB of DRAM, and 128 GiB of 

Intel Optane PM.

For our benchmarks, we configure a non-interleaved region with the PM attached 

to the first CPU. We create two namespaces of types fsdax and devdax in this region 
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pc61

Motherboard Supermicro X11DPi-NT

PSU Supermicro PWS-502-PQ (80 PLUS Bronze)

CPU 2 × Intel Xeon Silver 4215 (8 × 2.5 GHz)

SMT Hyperthreading disabled

DRAM 8 × 16 GiB DDR4 2666 MHz

PM 2 × 128 GiB Intel Optane PM 100

PM Region 2 × non-interleaved

PM Namespaces 1 fsdax and 1 devdax namespace on region 0

SSD 3 × Micron 7300 PRO 1 TB attached to CPU 0

Table 4.1:  System configuration for the evaluation in this chapter.

(see Section 2.1). The in-kernel PM file systems use the fsdax namespace and the 

userspace benchmarks use the devdax namespace.

We plug the three benchmark SSDs into a PCIe 3.0 x16 slot configured with x4x4x4x4 

bifurcation via an adapter. These SSDs are exclusively used for benchmarks. The 

system is installed on a separate M.2 SSD. The PCIe slot with the SSDs is also 

connected to the first CPU. For all benchmarks, the first CPU is therefore the local 

NUMA node and the second CPU the remote NUMA node.

CPU Load Measurements

We obtain data on CPU load from the Linux kernel by reading /proc/stat [16]. This 

file contains counters measuring how much time each CPU spends in certain states.

For our analysis in this chapter, we consider the CPU active in the following states:

user Time spent in user mode. With our benchmark setup, this is almost exclusively 

time spent by the fio benchmark.

sys Time spent in kernel mode. This includes most time spent in the file system.

irq Time spent in an interrupt handler. This counter is relevant for file systems on 

NVMe SSDs, which signal completion using interrupts.

softirq Time spent in software interrupt handlers.

The remaining counters are irrelevant for our setup. Our benchmark does not create 

low-priority tasks, so nice is always zero. steal and guest count time in virtualization 

environments. Finally, iowait counts time a task waits for I/O complete and does not 

indicate CPU activity.

Power Measurements

We measure the power consumption of our system in two ways: at the wallplug and 

at the motherboard connectors.

For the wallplug measurements, we used a Rittal PDU managed [103]. We connect to 

the PDU over HTTP to receive measurement data. The device gives us roughly one 

measurement per second.

We attached a Powenetics V2 [94] measurement device between the PSU connectors 

and the motherboard. Powenetics measures at a much higher resolution than the 
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PDU, giving us about 1000 readings per second. Powenetics communicates over USB, 

presenting a serial port. Since reading data from Powenetics causes a noticeable 

CPU load of about 5%, we provide the measurements over TCP from a separate 

computer with a custom driver15. The driver downsamples the readings by taking 

the average of voltage and current, yielding a measurement every 100 ms.

Powenetics provides separate measurements for the three voltage levels of the 24-

pin ATX connector and the two eight-pin EPS 12 V connectors [56] in our test system. 

It measures voltage 𝑈  and current 𝐼 , from which we calculate power as 𝑃 = 𝑈 ⋅ 𝐼 .

Performance Counter Measurements

Our test system has Intel Cascade Lake processors. As part of the Running Average 

Power Limit (RAPL) system, these processors provide two energy counters: one 

for the CPU package and one for the memory DIMMs [57]. Intel’s documentation 

refers to the memory counters as DRAM counters, but they include energy used by 

Optane DIMMs.

The processor provides access to the energy counters via model-specific registers 

(MSR). For our benchmarks, we access the counters with the sysfs interface provided 

by the Linux powercap framework at /sys/class/powercap  [75]. We read the 

energy counters every 100 ms (same as Powenetics) and calculate power as 𝑃 =
Δ𝐸

Δ𝑡
.

On modern Intel processors, the energy counters are based on actual measurements 

rather than estimates [37]. Alt et al. have evaluated their accuracy with Optane and 

DRAM DIMMs using riser cards [24]. They found that the energy counters consistently 

report a higher power consumption than measured at the DIMMs. They measured 

an offset of 20% for idle DRAM that decreases to 10% under load. For Optane, they 

measured an absolute offset of around 2-3 W for one DIMM. These measurements 

were performed on a newer system (Ice Lake-SP with Optane 200). We still expect a 

similar accuracy on our system.

4.2.2 File System Selection

For our evaluation, we choose file systems in two categories based on whether they 

implement some form of PM bandwidth control (see Section 2.3). We limit our our 

analysis to kernel file systems.

We select the following file systems without bandwidth control:

ext4 as an upstream Linux file system that supports both PM and traditional block 

devices. We evaluate ext4 both on PM and on an NVMe SSD.

NOVA as a file system specifically designed for PM. [125]

We also include direct userspace access to PM in this category as a low-overhead 

baseline (devdax).

In the second category with bandwidth control, we select the following file systems:

ZIL-PMEM and DPWC showing the efficiency of our PM ring buffer design 

(Chapter 3). We configure DPWC as a write cache for one NVMe SSD with an 

15https://github.com/KIT-OSGroup/powenetics-v2
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Option Value

ioengine sync or dev-dax

rw randwrite

sync 1

size 104857600 (100 MiB)

blocksize 16384 (16 KiB)

time_based 1

runtime 30 s

ramp_time 2 s

numjobs 1 to 8

numa_cpu_nodes 0 (local) or 1 (remote)

Table 4.2:  The fio configuration for our benchmarks.

ext4 file system on top. For ZIL-PMEM, we provide three NVMe SSDs as backing 

storage.

OdinFS with its delegation mechanism for PM writes. [134]

We do not include Trio [133] since it is a userspace file system that is challenging 

to run (see Section 2.3.6). We expect Trio to perform similarly to OdinFS since it 

inherits the delegation mechanism from OdinFS.

4.2.3 FIO Benchmark Setup

We use fio [27] version 3.40 as the benchmark program. Table 4.2 shows an overview 

over the configuration. With these options, fio is set up to do 16 KiB writes to random 

locations of a 100 MiB file per job. The files are opened with O_SYNC, meaning that 

all writes are immediately persisted to storage [17]. For file system benchmarks, we 

use the sync ioengine, which uses normal write(2) system calls. The devdax baseline 

(see above) uses the dev-dax ioengine, which maps PM directly in userspace.

The benchmark is time-based and runs for 30 seconds after a two-second warmup 

time. The warmup time ensures that we measure a steady load during the 30-second 

benchmark time, without effects from initial page faults and cache misses. We set 

up all external measurements (Section 4.2.1) after the warmup time. In the plots, 

we show the mean bandwidth with standard deviation as reported by fio.

For every storage stack (i.e., a file system on PM or NVMe), we repeat the benchmark 

for 1 to 8 parallel jobs pinned to either the local or the remote NUMA node. We 

therefore end up with 16 runs per storage stack.

For the idle baseline, we do not run fio and just perform the external measurements 

over 30 seconds.

Discussion

Our metric is agnostic regarding the underlying file system benchmark. We chose 

these parameters for the analysis in this thesis because we are primarily interested 

in overhead from parallel PM write accesses. In particular, we chose a relatively 
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Figure 4.3:  pc61  Power measurements of the idle system from the PSU-to-

motherboard connectors (24-pin ATX and two EPS 12 V) and the wallplug.

large access size of 128 KiB to reduce overhead from system calls and file system 

processing other than the storage writes.

The parameters for file size and runtime are arbitrary and do not have a direct effect 

on the benchmark results. As fio performs synchronous writes, neither the OS page 

cache nor CPU caches are involved, even for small file sizes. The runtime needs to 

be large enough for the external measurements (Section 4.2.1). Other than that, we 

expect to measure a steady state that does not change over time.

4.2.4 Power Measurements

Our metric for energy efficiency requires choosing an appropriate energy measure

ment method (see Section 4.1.1). In this section, we analyze the available power 

domains (wallplug, Powenetics, RAPL) for our evaluation platform. We choose power 

measurements from Powenetics for the energy efficiency metric in this thesis.

Wallplug and Powenetics

Figure  4.3 shows a power measurement of the idle system over 30 seconds. 

Powenetics provides separate measurements for the three voltage levels of the 24-

pin ATX connector and the two eight-pin EPS 12 V connectors [56]. It measures 

voltage 𝑈  and current 𝐼 , from which we calculate power as 𝑃 = 𝑈 ⋅ 𝐼 . We then sum 

all power values to obtain the total power.

The power measurements start just before the benchmark and end after the 

benchmark finishes. In some benchmarks, the beginning of the measurements shows 

influence from the benchmark preparations and the end captures a momentarily 

idle system. To calculate an average power value, we therefore remove the first and 

last seconds of measurements. On our test system, we measure an average idle 

power of 100 W at the wallplug and 73 W at the motherboard connectors.

The power difference between wallplug and PSU output is due losses within the 

power supply. According to the data sheet, the power supply in our test system has 

an average efficiency of 84% [115]. We measure a slightly lower efficiency of 72% 

63



4 PM File System Efficiency 4.2 Analyzing File System Efficiency

Figure 4.4:  pc61  Power measurements of the system under load. The benchmark 

is writing to PM in userspace with eight parallel jobs on the first CPU.

for the idle system and 81% under single-CPU load (see below). Power supplies with 

higher ratings reach better efficiency. For example, with an 80 PLUS Gold rating, a 

PSU must have an efficiency better than 90% at 20% load [34]. We therefore prefer 

measurements from Powenetics to remove influence from PSU efficiency on the 

results.

Our measurement of the idle system shows frequent changes in the 12 V connections. 

Even on the idle system, there is a small amount of background load from the 

benchmark runner recording sensors. This load causes the CPU to change its power 

states, which we can observe at the 12 V connectors supplying the CPU.

With a constant load on the system during a benchmark, the power measurements 

are more stable. We show an example of power measurements during a benchmark 

in Figure 4.4. Under this particular load, we measure an average wallplug power of 

180 W and 150 W at the motherboard connectors.

To obtain the power consumption of the benchmark, we subtract the average idle 

power from the average power during the benchmark. For the example here, we 

therefore calculate 150 W - 73 W = 74 W.

Note that even though there are two EPS 12 V connectors supplying the two CPUs, 

we cannot measure each CPU individually. Even with only one CPU under load, 

Powenetics reads identical current on both EPS connectors. This indicates that the 

lines from the 12 V connectors are connected on the motherboard before the voltage 

regulators of the two CPUs. We therefore have to rely on performance counters for 

information about fine-grained power distribution.

Performance Counters

In Figure  4.5, we show the energy counter measurements in comparison with 

the Powenetics and wallplug measurements discussed above. At idle, the energy 

counters indicate a total power consumption of 39 W, which is 53% of the power 

measured with Powenetics. Under single-socket load, this measurement rises to 

110 W, or 74% of Powenetics. The absolute offset stays at around 38 W, which is 
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Figure 4.5:  pc61  Power measurements with the energy counters, in comparison 

with external measurements from Powenetics (total) and at the wallplug.

likely power used by components not directly involved in the benchmark (e.g., SSDs 

and NICs).

Looking at the power increase from idle to the benchmark in Figure 4.5, we observe 

+70 W with the energy counters and +74 W with Powenetics. The devdax benchmark 

(writing to PM from userspace) therefore almost exclusively uses extra power for 

CPU and memory.

As a comparison, we show power used by ext4 on PM and on NVMe in Figure 4.6. 

We can see that the overall power consumption with NVMe is lower. The Powenetics 

measurements show regular short spikes, likely due to regular file system or SSD 

activity.16 In Table 4.3, we show the increase of power over the idle system. We can 

Figure 4.6:  pc61  Comparison of power used by ext4 on PM and on NVMe. The 

benchmark is writing with eight jobs.

16The energy counter measurements are not frequent enough to capture the spikes, so we cannot 
use them to attribute the activity to either SSD or CPU. We do not measure more frequently to avoid 
extra CPU activity.
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Measurement PM NVMe

Package 0 38 W  52% 13 W  39%

Package 1 18 W  24% 6.0 W  19%

DIMMs 0 11 W  15% 3.7 W  12%

DIMMs 1 3.1 W  4.2% 3.1 W  9.6%

Total Counters 71 W  95% 25 W  79%

Powenetics 75 W  100% 32 W  100%

Table 4.3:  pc61  Increase of power over the idle system measured by energy counters 

and Powenetics with ext4 writing to PM and to NVMe with eight jobs. The percentages 

are relative to the increase measured with Powenetics.

see that ext4 on PM has a very similar power consumption as the userspace devdax 

benchmark shown above. The increase of the power measured with the energy 

counters is 95% of the increase measured with Powenetics. The majority of this 

increase comes from the CPU packages (75%).

With ext4 on NVMe, we expect to see extra power consumption by the NVMe SSD, 

which is not measured by the energy counters. Indeed, we see that the counter total 

increase is only 79% of Powenetics. Even with NVMe, the power consumption of 

the CPU packages make up the majority of the increase at 58%. This underlines the 

importance of measuring and optimizing CPU time when file system efficiency is 

a goal.

4.3 Evaluation
We evaluate our metrics on a selection of kernel PM file systems (see Section 2.3). We 

analyze file systems with and without management of parallel accesses separately.

4.3.1 ext4 and NOVA

In Figure 4.7 (page 68), we show results for ext4 on PM and NOVA as examples of 

file systems that do not limit parallel accesses to PM. Other file systems without 

such limits, such as PMFS and WineFS, have very similar behavior and results. We 

therefore do not show data from these file systems. As comparison, we include ext4 

on NVMe for a traditional block-based storage system, and devdax for userspace PM 

access.

Local Access

We first discuss access from the local NUMA node (left column). It is immediately 

apparent that the lower overhead of userspace access translates to higher bandwidth 

and better efficiency: devdax bandwidth is on average 8.3% higher than NOVA 

bandwidth, with 8.6% lower energy cost and 6.1% lower CPU cost.

Comparing NOVA and ext4, we see a slightly higher bandwidth for NOVA (0.18% on 

average). Although the absolute power consumption for NOVA in consistently higher 

than for ext4, the energy cost is equal. This highlights the value of our metrics: 

NOVA’s lower overhead and higher bandwidth leads to a higher power consumption, 

but does not imply a lower efficiency than ext4.
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The the bandwidth decreases as more jobs access the file systems. The CPU cost 

therefore increases proportionally faster than the number of jobs: For a 8× increase 

in jobs from one to eight, the CPU cost of NOVA increases 9.1×. Similarly, while the 

power consumption of NOVA from one to eight jobs increases by 13%, the energy 

cost increases by 58%.

Remote Access

For accesses from the remote NUMA node (right column in Figure 4.7), we observe 

extreme drops in bandwidth with more than three jobs, as discussed before in 

Section 3.4. With userspace access (devdax), the bandwidth at lower job counts 

starts higher compared to the file systems, but then decreases faster with higher job 

counts. At 6 jobs, we see a devdax throughput of only 77 MiB/s. The lower overhead 

of DAX access therefore also leads to a more extreme overload situation compared 

to access from the file system.

The power graph for the remote NUMA node shows a notable difference to local 

accesses: Between four and six jobs, the overall power consumption rises more 

slowly. This indicates that the extra CPU cores the additional jobs are running on 

consume less power than for local accesses. Since the additional jobs cause major 

CPU stalls across all cores, it is likely that the CPU can save power by disabling 

execution units. As the bandwidth stabilizes with more than 6 jobs, the overall power 

consumption rises again as more cores are activated.

Due to the extreme drop in bandwidth, both energy and CPU cost rise quickly. It 

is therefore important to avoid this situation for both performance and efficiency 

reasons. In Chapter 5, we introduce approaches to this end designed for addition 

on top of existing PM file systems like NOVA.
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Figure 4.7:  pc61  Comparison of efficiency of 16 KiB synchronous writes. This figure 

shows PM file systems that do not limit parallel accesses. As comparison, devdax 

shows efficiency of direct access from userspace.
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4.3.2 OdinFS, ZIL-PMEM, and DPWC

In Figure 4.8 (page 71), we show results for file systems that limit parallel accesses to 

PM: OdinFS, ZIL-PMEM, and DPWC. We set an identical limit of three parallel writers 

for these systems.

OdinFS [134] has a delegation mechanism for PM accesses (see Section 2.3.1). By 

delegating to a limited number of threads, parallel accesses are limited. Additionally, 

the delegation mechanism avoids remote NUMA accesses by pinning the delegation 

threads to PM-local CPUs. We set up OdinFS without striping across NUMA nodes, 

since we want to evaluate only its ability to limit parallel PM accesses.

ZIL-PMEM and DPWC build on the PM ring buffer we describe in Chapter 3. We 

describe these file systems in more detail in Section 3.8. They limit parallel accesses 

with a committer mechanism. Every write access to the ring buffer requires acquiring 

a committer, which are limited (see Section  3.1.3). In contrast to OdinFS, the 

committers only function as a lock and do not mitigate expensive remote NUMA 

accesses. Both ZIL-PMEM and DPWC are cross-media storage systems. We set up 

ZFS with ZIL-PMEM backed by three NVMe SSDs.17 DPWC is a device mapper module 

that works in the Linux block layer. We set it up with one NVMe SSD as origin device 

and with an ext4 file system on top.

As comparison for the cross-media file systems, we also include data from ext4 on 

one NVMe SSD.

Local Access

Again, we start by analyzing access from the local NUMA node (left column in 

Figure 4.8). The different bandwidth levels are explained by the different backing 

storage devices. DPWC is backed by PM and one NVMe SSD. At high levels of 

parallelism, its bandwidth is close to ext4 directly on NVMe. At fewer jobs, it 

can sustain this bandwidth since it provides the NVMe SSD with asynchronous 

requests at a higher queue depth than is possible for plain ext4. ZIL-PMEM reaches a 

bandwidth closer to the maximum PM bandwidth since the combined bandwidth of 

its three NVMe SSDs exceeds the PM bandwidth. Finally, OdinFS reaches the highest 

bandwidth as a PM-only file system.

Comparing ZIL-PMEM and OdinFS between three and seven jobs, we can see that 

ZIL-PMEM’s bandwidth is close (4.6% lower on average). However, it requires almost 

a quarter less CPU time per GiB. This translates to a 4.2% lower overall power 

consumption, even though ZIL-PMEM also keeps three NVMe SSDs active. We discuss 

OdinFS’s high CPU cost in comparison with our mitigations in Section 5.3.

Comparing the two PM ring buffer implementations ZIL-PMEM and DPWC, we can 

see higher CPU and energy costs from DPWC at lower bandwidth. The primary 

difference is where the PM ring buffer is integrated into the storage system. For 

DPWC, a write request goes through the full processing in ext4 before reaching 

DPWC as individual block I/O requests. ZIL-PMEM, in constrast, short-circuits ZFS’s 

regular processing for synchronous accesses like in our benchmark. The processing 

for the NVMe write can then happen in the background, and gains efficiency by 

batching.

17This setup matches the setup in Christian Schwarz’s thesis [111].
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Note that we see high CPU and energy costs for all file systems at low job counts 

compared to NOVA and ext4 on PM (Figure 4.7). For ZIL-PMEM and DPWC, this is 

likely due to extra work for the NVMe access. However, even OdinFS requires 40

% more energy per GiB than NOVA at one job. This shows that countermeasures 

against expensive parallel accesses can have a significant cost and motivates a need 

for monitoring efficiency.

Looking at ext4 on NVMe, we note that while its CPU cost is relatively stable between 

1.4 s and 1.9 s, it is 69% higher than ext4 on PM at one job. As long as PM is not 

overloadad, the CPU time required to manage NVMe commands and completions 

for a certain amount of data therefore exceeds the CPU time required to copy the 

data to PM. The overall power consumption of ext4 on NVMe shows a counter-

intuitive behavior: As more jobs write to the file system, the power consumption 

decreases. A possible explanation for this behavior is that with a larger volume of 

NVMe commands, the completions can be batched and therefore processed more 

efficiently. Since this thesis focusses on PM file systems, we do not analyze this 

anomaly in more detail. The two cross-media file systems that also access NVMe 

SSDs do not exhibit any drops in power consumption for local PM accesses.

Remote Access

For file system access from the remote NUMA node (right column in Figure 4.8), 

we can see that OdinFS’s delegation works as intended: The bandwidth with two or 

more jobs is identical to local accesses.

The committer mechanism in the PM ring buffer successfully keeps the bandwidth 

stable, but at a lower level compared to local accesses. We can see that ZIL-PMEM 

suffers more from remote accesses than DPWC, confirming that the NVMe bandwidth 

available to DPWC is the limiting factor for local accesses.

The CPU and energy costs for remote accesses are very similar to those with local 

accesses, with some minor shifts especially for ZIL-PMEM due to lower bandwidth. 

For DPWC, a drop in overall power appears with more than five jobs, which likely 

mirrors the behavior seen with ext4 on NVMe.
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Figure 4.8:  pc61  Comparison of efficiency of 16 KiB synchronous writes. This figure 

shows PM file systems with mechanisms that limit parallel accesses, and ext4 on 

NVMe as comparison.
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4.4 Discussion
We introduced metrics for energy and CPU efficiency and methodologies for 

measuring them. Our analysis of existing PM file systems has shown that efficiency 

is usually not a primary concern. Even for file systems that limit parallel accesses, 

the CPU and energy efficiency results were often counterintuitive. We expect that 

our metrics will provide a basis for future energy-efficient file system design.

We highlight the importance of bandwidth-independent metrics. The file systems in 

our test set exhibited a wide range of write bandwidths between 0.5 and 1.2 GiB/s. At 

higher write bandwidths, the rate of file system calls, and therefore CPU utilization, 

always increases, which makes direct comparison based on CPU utilization or power 

draw difficult. For this reason, we designed our metrics based on the amount of 

written data. In this way, we always analyze the same number of file system calls, 

independent of bandwidth.

A major challenge for improving the energy efficiency of file systems is the limited 

set of tools available for power measurement. We observed counterintuitive power 

measurements for some benchmarks, where total power consumption decreases 

at higher load. However, neither built-in performance counters nor external probes 

can provide fine-grained measurements that would allow attribution of such power 

savings to specific hardware components. Future server platforms should support 

efficiency improvement efforts by including more power-measurement domains.
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Chapter 5

PM File System Overload Mitigation

In the previous chapter, we defined metrics for energy and CPU efficiency of file 

systems. Our analysis demonstrated that PM file systems commonly do not limit 

parallel accesses to PM. When under a parallel load, these file systems overload the 

PM DIMMs, which leads to excessive CPU stalls and declining total bandwidth. These 

PM file systems therefore waste energy and CPU resources.

In this chapter, we propose three mechanisms to mitigate such behavior. Rather 

than designing a PM data structure from the ground around efficient PM access 

like our PM ring buffer (Chapter 3), we aim for mechanisms that are simple to add 

to existing PM file systems. The key insight is that PM file systems generally use a 

simple memcpy routine for copying file data to PM. This routine contributes most 

PM write bandwidth.

We integrate our mechanisms into the NOVA file system [125] and compare their 

performance and efficiency with OdinFS [134] and ZIL-PMEM [111], both of which 

already limit PM parallelism. We show that effective parallelism limits are possible 

without a major redesign of the file system write path.

5.1 Design and Implementation
We design our PM overload mitigation as a replacement for a memcpy routine. To 

facilitate integration with existing file systems, its API is a single function with a 

signature matching the Linux kernel memcpy functions:

int ep_write_pmem(void *dst, const void *src, size_t len)

It copies len bytes from src to dst using non-temporal instructions. It returns 0 

on success or an error code otherwise. All three mechanisms share this function, 

with a kernel module option selecting one at runtime.

The central idea for all mechanisms is to make synchronous access asynchronous. 

Rather than wasting active CPU time with stalls, calls to ep_write_pmem should 

block in an overload situation and allow the scheduler to run other tasks.

Note that it is not required for the file systemto perform all PM accesses with our 

memcpy function. To be effective, our function only needs to handle the bandwidth-
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(a) Semaphore
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Figure 5.1: Mechanisms for mitigating PM overload in kernel file systems by replacing 

memcpy.

intensive copying of user data. The file system may still perform its metadata updates 

directly, as these generally constitute only a small fraction of the bandwidth to PM.

Figure 5.1 shows an overview of the three mechanisms—Semaphore, Worker, and 

DMA—which we describe in the following sections.

5.1.1 Semaphore

A semaphore is a synchronization primitive that limits the number of tasks accessing 

a resource simultaneously. By protecting the memcpy function with a semaphore, 

only a limited number of tasks can access PM simultaneously.

Semaphores are a very simple mechanism for preventing PM overload. Listing 5.1 

shows the full implementation of our semaphore-based PM overload mitigation for 

the Linux kernel.

In order to improve CPU utilization, the semaphore must be blocking: If a task cannot 

enter the semaphore, it must release the CPU to other tasks. The semaphores in the 

Linux kernel18 fulfill this property. They are implemented with a spinlock protecting 

a count and a wait list. Entering the semaphore with down() decreases the count, 

and leaving the semaphore with up() increments the count. If a task cannot enter 

the semaphore (i.e., the count is zero), it adds itself to the wait list and sleeps. A task 

leaving the semaphore wakes the oldest task in the wait list.

static int ep_write_pmem_memcpy_sem(void *dst, const void *src, size_t len)

{

  down(&memcpy_sem); /* enter the semaphore */

  __copy_from_user_inatomic_nocache(dst, src, len); /* memcpy */

  up(&memcpy_sem);   /* exit the semaphore */

  return 0;

}

Listing 5.1:  Using a semaphore in the Linux kernel to protect memcpy.

18Implemented in kernel/locking/semaphore.c
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5.1.2 Workqueue

A workqueue is a mechanism for performing concurrent work. It is organized around 

a synchronized queue of work items, which are arbitrary structures defining a unit of 

work. Any task may enqueue a work item into the queue. Worker threads dequeue 

items from the workqueue, perform the work, and mark the item as finished.

We propose using a workqueue to perform the memcpy to PM operations asynchro

nously. By limiting the number of workers, we limit the maximum amount of 

parallelism to PM. A workqueue can also mitigate expensive remote NUMA accesses 

to PM by pinning the worker threads to the same node as the PM.

We implement this mechanism based on Linux’s workqueue API [54]. The work 

items capture the three parameters to memcpy (destination and source pointers, 

and length). The destination pointer always refers to PM mapped in the kernel 

address space and can be passed directly to the workers. In contrast, the source 

pointer can refer to the user address space, which is not mapped in the worker 

threads. Therefore, it is first necessary to obtain kernel mappings to any user pages 

with get_user_pages() [36] and pass those mappings to the worker. The workers 

then copy the data from each mapping to PM, since the kernel mappings are not 

necessarily contiguous. Source pointers refering to the kernel address space are 

passed and handled directly.

A call to ep_write_pmem() creates and enqueues a work item, then blocks until 

the work is completed. The workqueue improves CPU utilization, since other tasks 

may execute while a memcpy operation is waiting in the queue.

Since creating mappings and work items introduces overhead for each copy 

operation, we handle copy operations smaller than a 4 KiB page synchronously 

without the workqueue.

5.1.3 DMA

The workqueue improves CPU efficiency by performing memcpy operations asyn

chronously with a limited number of workers. However, the workers each still occupy 

a CPU core for just a memcpy loop. We can further reduce the CPU utilization by 

offloading the workers to dedicated hardware.

Such hardware is available in modern Intel processors as Intel I/OAT [62]. The I/

OAT hardware is connected over PCIe and can perform operations like memcpy or 

memset with DMA. The Linux kernel provides the DMA Engine API for working with 

I/OAT and similar hardware [76].

Before enqueueing a DMA memcpy operation, we need to make the source and 

destination memory ranges available to the DMA hardware. As with the workqueue, 

source pages in userspace must be resolved and pinned first. If the source address 

is not from userspace (i.e., the file system is copying internal data), we fall back 

to a direct memcpy because the kernel does not allow DMA to most of its address 

space. The source and destination pages are then mapped into the DMA hardware’s 

address space.

The I/OAT hardware provides multiple channels that can execute operations 

in parallel. We limit parallelism to PM by using a limited number of channels. 
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After mapping all pages, ep_write_pmem() obtains a channel (protected with a 

semaphore) and enqueues memcpy operations for each source and destination 

page. It then waits for the DMA operations to complete before unmapping the pages 

and returning.

The DMA mechanism improves CPU efficiency by blocking both when no DMA 

channel is available, and during the actual memcpy operation. However, there is 

extra overhead for setting up the DMA transfer. We therefore only use DMA for copies 

that have a size of at least one page (4 KiB).

5.2 File System Integration
To integrate our mechanisms into a file system, we need to identify and replace 

the function that copies file data from userspace to PM. As all three approaches 

share a common API, we only need to perform this replacement once. We describe 

integration into NOVA, PMFS, and WineFS, which are file systems that do not limit 

parallel PM accesses.

NOVA and WineFS use a local helper function to copy data to PM. In NOVA, 

this function is called memcpy_to_pmem_nocache()19, and in PMFS, it is called 

memcpy_to_nvmm()20. In both file systems, these helpers call the kernel memcpy 

function __copy_from_user_inatomic_nocache(), whose signature and usage 

match our ep_write_pmem() function. This makes the integration a single-line 

change in the file system.

PMFS does not provide such a local helper function. Instead, it calls the aforemen

tioned memcpy function directly in multiple places. We therefore need to replace 

all of these calls.

Since these three file systems exhibit very similar performance in our benchmark, 

we evaluate only NOVA in the following section.

5.3 Evaluation
We integrate our approaches into the NOVA file system as described above and 

compare them with OdinFS and ext4 on NVMe. In Figure 5.2 (page 78), we evaluate 

scalability under parallel access as in Chapter 4.

Since some mitigations have a high cost per access, we additionally compare different 

access sizes with a fixed number of jobs in Figure 5.3 (page 79). For this benchmark, 

we set the workqueue to always copy via a worker, even when the access size is 

smaller than 4 KiB, to show the real overhead of this mechanism. We include devdax 

to compare userspace access without per-access overhead.

5.3.1 Semaphore

The semaphore is a good solution for local PM access. Throughout our scalability 

benchmark in Figure 5.2, NOVA/Semaphore shows the highest bandwidth (tied with 

OdinFS) at the lowest energy and CPU cost.

19located in fs/nova/nova.h

20located in fs/winefs/xip.c
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However, the semaphore cannot mitigate expensive remote NUMA accesses. On 

average, we observe a 32% lower bandwidth from the remote NUMA node compared 

to local access. However, it can still keep a steady bandwidth with increasingly 

parallel file system accesses.

At small access sizes below 1 KiB (Figure 5.3), we observe a lower bandwidth with the 

semaphore than with unmodified NOVA. For these access sizes, the threads enter 

the semaphore more frequently, creating additional overhead from contention.

5.3.2 Workqueue

The workqueue variant is similar in approach to the delegation mechanism in 

OdinFS. However, there are significant differences in performance and efficiency. 

For the 16 KiB access size shown in Figure 5.2, NOVA/Workqueue shows equal 

performance to OdinFS for three and four local jobs. With fewer or more jobs, the 

bandwidth of NOVA/Workqueue drops. However, NOVA/Workqueue consistently 

requires less power than OdinFS, making it more efficient when the bandwidth is 

sufficiently high. It shows a smaller or equal energy cost up to five jobs and a smaller 

CPU cost up to six jobs.

The reason for this disparity lies in the notification mechanisms used by Linux 

workqueues and OdinFS. OdinFS uses busy waiting to wait for the delegated PM 

write to complete. This strategy ensures low latency but wastes CPU time and power. 

In contrast, Linux workqueues block the calling thread while waiting for a work 

item, which releases the CPU for other tasks. This strategy reduces CPU time and 

saves power but increases latency, which is why the bandwidth below three jobs 

suffers.

The drop in bandwidth with five or more jobs is explained by contention at workqueue 

submission. At larger access sizes and high job counts (not shown in figures), we 

observe reduced contention and improved bandwidth.

In the access size comparison in Figure 5.3, NOVA/Workqueue suffers most from 

access sizes under 4 KiB. For every access, it must resolve at least one 4 KiB page, 

which significantly increases the overhead for accesses smaller than one page. 

Therefore, such accesses are performed directly, without indirection via the worker.

For remote NUMA jobs, NOVA/Workqueue reaches higher bandwidth than NOVA/

Semaphore, since it performs the PM accesses locally. However, it still suffers from 

higher latency and contention, as discussed above. Compared to OdinFS, both CPU 

and energy costs are consistently either better or equal, since OdinFS’s busy waiting 

appears costlier at more than five remote jobs.
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5 PM File System Overload Mitigation 5.3 Evaluation

Figure 5.2:  pc61  Multicore scalability comparison of our strategies to manage 

parallel PM accesses, with fio synchronous 16 KiB writes (see Section 4.2.3).
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Figure 5.3:  pc61  Access size comparison for software-based strategies to manage 

parallel PM accesses. We configure four fio jobs and power-of-two access sizes.
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Figure 5.4:  Write bandwidth to DRAM and PM from a GPU at increasing levels of 

parallelism. The observed bandwidth with I/OAT matches the GPU bandwidth.

5.3.3 DMA

DMA offloading with I/OAT cannot reach the expected performance in our bench

marks (Figure  5.2, page  78). The bandwidth of NOVA/DMA peaks at 0.77 GiB/s, 

around half of the bandwidth of a regular NOVA in this benchmark. We confirm 

that this behavior is not a problem with our implementation by repeating the same 

benchmark on DRAM instead of PM. With this setup, we observe a bandwidth 

exceeding 5 GiB/s, which confirms that our implementation is not the bottleneck.

To better understand DMA transfers to PM, we create a benchmark that writes to PM 

and DRAM from a GPU. By varying the number of SIMD lanes available to the GPU 

program, we can control the amount of parallelism of the write accesses. Figure 5.4 

shows the results. At the number of SIMD lanes required for maximum bandwidth 

to DRAM, PM is already overloaded. Maximum bandwidth to PM would therefore 

require reducing parallel transfers.

These observations from GPU transfers provide a likely explanation for the I/OAT 

behavior. We assume that the I/OAT hardware is tuned for DRAM transfers and would 

require adjustment for better performance to PM. The low bandwidth is therefore 

not a general problem with our approach.

5.4 Discussion
The main goal of the design and implementation of the mitigation mechanisms 

here is to demonstrate that making a PM file system CPU and energy efficient PM is 

always viable, even if efficiency was not a requirement of the original design.

Our prototype therefore comes with a number of limitations. There is only a global 

limit to parallelism (i.e., one semaphore, one set of workers). Since a PM-equipped 

system can have multiple independent regions (different NUMA nodes or non-

interleaved DIMMs), there should be separate limits per region.

Our goal in this thesis is efficiency under load. We therefore focus our implementation 

and evaluation on throughput under load. While the PM is not overloaded, copying 

data asynchronously to PM increases latency significantly. For this reason, a full 

implementation should take the current load to PM into account and should always 

copy synchronously during light load.
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Chapter 6

Userspace PM Access Accounting

In the previous chapters, we have established that parallel PM access can lead to 

wasted CPU time and energy. In particular, parallel writes to PM lead to reduced 

bandwidth (Chapter 3), which is not handled well by most PM file systems (Chapter 4). 

To improve CPU and energy efficiency, we propose mechanisms for kernel PM file 

systems (Chapter 5).

However, these mechanisms can only manage file system accesses via the system 

call interface. For DAX mappings, the kernel file system only manages creation of 

the mapping. The userspace process then reads or writes directly to PM, without 

further kernel involvement.

DAX mappings prevent effective management of parallel PM accesses. Neither the 

kernel nor userspace processes have enough information on global PM usage, as 

shown in Figure 6.1. The kernel can easily track any accesses via its system call 

interface, but cannot account for accesses to DAX mappings. A userspace process 

can manage parallel accesses to its own DAX mappings, but lacks information about 

other processes accessing PM. Consequently, even when all PM programs in a system 

implement best practices and avoid parallel writes, PM will still be overloaded when 

multiple PM-accessing processes are scheduled at the same time.

We argue that this means a loss of control for the operating system. In the presence 

of DAX mappings, the kernel is lacking critical information to schedule the available 

resources among ready processes. With PM, this is especially important since 

P1

Kernel

P3

PM

P2

write()

FSDAX DAX

Figure 6.1:  In a system with processes accessing PM over DAX mappings, neither 

the kernel nor the processes can limit parallel PM accesses, since they have no 

information on PM activity of other processes.
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overload leads to reduced performance for the whole system: Processes working 

with PM experience low throughput, while other processes receive less CPU time as 

the CPU is busy stalling on PM accesses.

In this chapter, we design and implement a mechanism to restore insight of the kernel 

into DAX mappings. As the hardware does not provide appropriate performance 

counters for this purpose, our mechanism works by sampling memory access 

instructions. We then propose using the accounting information for core specialization, 

which mitigates PM overload from parallel access.

6.1 Requirements
We define the following requirements for an accounting mechanism:

process association It must be possible to account bandwidth to individual 

processes. Without process association, it would be impossible to identify and 

throttle processes that overload PM.

device association It must be possible to distinguish bandwidth to different PM 

devices. A system may have multiple PM regions on separate PM modules. If one 

PM device is overloaded, there is no need to throttle traffic to other PM devices.

low latency The latency between a PM access and measuring the access must be 

low. If the latency is too high, effective mitigations are impossible.

low overhead The measurements should not introduce overhead on the measured 

processes or the system as a whole.

high accuracy The total measured bandwidth should be close to the real bandwidth 

at the device.

6.2 Accounting with Performance Counters
As described in Section 2.1.3, systems with Optane PM have three types of perfor

mance counters with PM events: on-core, off-core response, and uncore. These 

performance counters cannot satisfy all of the requirements we set above. Table 6.1 

shows an overview of the counters and fullfilled requirements. We discuss read and 

write accesses separately.

6.2.1 Read Accesses

For read accesses, there are two relevant on-core counter events that count L3 cache 

misses serviced from local or remote PM.21 Since these events are counted separately 

for each core, they are always associated with the process currently running on that 

core. Reading these counter is fast via model-specific registers (MSR). The latency 

and overhead therefore both depend on the sampling interval. A smaller sampling 

interval leads to smaller latency, but higher overhead.

There are two problems with these counters. First, they can only distinguish reads 

to local and remote PM. We therefore cannot associate the counts with individual PM 

devices. This problem is solved with the PEBS sampling we propose in the following 

section.

21MEM_LOAD_RETIRED.LOCAL_PMM and MEM_LOAD_L3_MISS_RETIRED.REMOTE_PMM, see Sec
tion 2.1.3.
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access type read write

counter type on-core uncore Optane module

events L3 misses serviced 

from local or remote 

PM

Number of write 

commands to PM

Write requests

process assoc. 🗸 ✗ ✗

device assoc. ✗ ✗ 🗸

low latency 🗸 🗸 ✗

low overhead 🗸 🗸 🗸

high accuracy ✗ 🗸 🗸

Table 6.1:  Requirements fullfilled by performance counters for accounting read 

and write accesses to PM.

Second, their accuracy is limited by the prefetcher. The prefetcher may read addi

tional data from PM, reducing the number of counted cache misses. The measured 

value is therefore a lower bound for the actual read traffic to PM. This problem 

could be solved by counting prefetch events with off-core response counters (see 

Section 2.1.3). However, these counters suffer from the same device association 

problem above, but do not support PEBS.

6.2.2 Write Accesses

For write accesses to PM, we identify two useable counters: uncore counters and 

counters on the Optane modules.

The uncore counters are located at the memory controller. They therefore measure 

PM accesses with high accuracy. The same trade-off between latency and overhead 

as with counters for read accesses applies. Uncore counters do not provide any 

association with the core causing the access. Thus, we cannot use them for per-

process accounting. Just like with the read counters, we also can only distinguish 

writes to local and remote PM, but not to individual PM modules.

Alternatively, we could use the write request counters on the Optane modules. Since 

these counters are located on the modules, we obtain per-device counts with high 

accuracy. However, these counters are not made for high-frequency measurements. 

On our systems, ipmctl requires approximately 40 ms per Optane module to read 

the performance counters. Finally, the Optane modules cannot know which process 

caused a write request, either.

Our PEBS-based sampling provides both process and device association at config

urable latency, albeit with reduced accuracy.

6.3 Approach: Sampling Memory Instructions
Regular performance counters cannot provide device and process association, which 

is necessary for managing parallel write bandwidth to PM. We therefore propose 

using PEBS to sample load and store instructions, as shown in Figure 6.2. PEBS 

sampling is local to a core, which provides process association. From the samples, 
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Instructions
DRAM

PM2

PM1Samples

7 * 16 bytes

to PM1

7 * 8 bytes

to DRAM

7 * 32 bytes

to PM2

7 * 8 bytes

to DRAM

Figure 6.2:  Overview of our sampling approach. The CPU periodically (here: every 

seventh instruction) writes a memory instruction sample. Based on the sampled 

information, we estimate the number of accessed bytes for the whole sampling 

period.

we obtain the accessed address for device association and the instruction type to 

estimate bandwidth.

In the following, we first describe PEBS, then how we use it to estimate bandwidth. 

Finally, we discuss limitations of this approach.

6.3.1 Processor Event Based Sampling (PEBS)

Processor Event Based Sampling (PEBS) is a feature of Intel processors for sampling 

the processor state at certain performance counter events [61, Vol. 3B §20.3.1.1.1]. 

When a PEBS-enabled performance counter overflows, the processor arms the PEBS 

hardware. At the next monitored event, the armed PEBS hardware writes a PEBS 

record with the current processor state to a memory buffer. A PEBS record contains 

all integer registers (including the instruction pointer) and optionally the virtual 

address of memory access instructions [61, Vol. 3B §20.3.8.1.1]. After writing a 

PEBS record, the processor resets the performance counter to a configurable value, 

allowing control over the sampling interval. When the memory buffer with PEBS 

records is full, the processor triggers an interrupt, which prevents missing samples 

due to overflows.

Only a small subset of performance counter events, called precise events, may be 

used for PEBS [61, Vol. 3B §20.3.8.1.2]. For our purpose of tracking PM accesses, 

two precise events are relevant:

MEM_INST_RETIRED Counts all instructions that access memory. Can be further 

filtered by loads or stores. We propose using this counter to sample stores (sub-

event ALL_STORES).

MEM_LOAD_RETIRED Counts all instructions that load from memory. Can be further 

filtered by cache hits or misses for all layers. We propose using this counter to 

sample loads that miss the L3 cache (sub-event L3_MISS).

The processor also provides precise events for loads to local and remote PM. These 

events could provide higher accuracy if there is no need for accounting DRAM reads.

6.3.2 Bandwidth Estimation

To estimate a per-device bandwidth, we need to know which device was accessed 

and how much data was accessed. We assume that the PEBS samples are uniformly 

picked from the monitored instructions. Thus, by scaling measurements from the 
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Figure 6.3:  Overview of our handling of PEBS samples.

sampled instructions by the sampling interval, we obtain approximations of the real 

values over time.

As shown in Figure 6.3, we determine the memory device from the virtual address 

and the access size from the instruction pointer. With a regular address translation 

of the accessed address, we obtain a physical address. We can then look up the 

physical address in the physical address ranges of the PM devices.

For the access size, we need to read and decode the instruction at the recorded 

instruction pointer.22 The size of the instruction’s operands determines the access 

size.

From the access size 𝑆 (bytes) and the sampling interval 𝐼  (number of instructions) 

we calculate the number of accessed bytes 𝐴 = 𝑆 ⋅ 𝐼  and the bandwidth 𝐵 =
Δ𝐴

Δ𝑡
. For 

each process and memory device, we provide a counter of written bytes (Σ𝐴) and let 

consumers of these counters calculate the bandwidth.

6.3.3 Limitations

While sampling memory accesses with PEBS provides a bandwidth estimation for 

each process and device, it comes with limitations regarding latency, overhead, and 

accuracy.

The estimation latency is controlled by the sampling interval. A smaller sampling 

interval reduces the estimation latency. However, since PEBS samples from all 

memory access instruction, we have to observe multiple samples before we can 

expect a useful estimate. For example, if 10% of an application’s memory instructions 

access PM, only every 10th PEBS record indicates a PM access. When such an 

application starts running, it can therefore take up to 10 sampling intervals before 

we detect any PM accesses. Additionally, samples may be processed in batches, 

further increasing the latency.

Compared to regular performance counters, PEBS introduces additional overhead 

from recording PEBS samples and processing the sample buffer. Akiyama and 

Hirofuchi [23] estimate 200-300 ns of CPU overhead for each recorded PEBS sample. 

Additionally, they observe cache pollution from the samples, which can cause 

additional cache conflicts for cache-sensitive applications. Overhead from sample 

processing depends on the sampling interval (how many samples are produced) and 

22A PEBS record contains two instruction pointers: of the instruction that triggered the event, 
and of the following instruction. We need the former instruction pointer here.
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the PEBS buffer size (how often are samples processed). We evaluate the overhead 

from sample processing in our prototype below.

There are multiple sources of inaccuracy. For loads, the limitation regarding 

prefetching discussed in Section 6.2.1 applies.

We cannot detect stores that overwrite dirty cache lines. In such a case, the previous 

store to that cache line has not caused a memory access, resulting in an overestimated 

write bandwidth. When using PM for persistence, cache flushes are necessary for 

crash consistency. We therefore assume that stores never overwrite dirty cache 

lines and are always immediately flushed to memory.

The performance counter for store instructions also counts cache flush instructions 

such as clwb. This introduces an accounting error for workloads that include cache 

flush instructions, as there are now two instructions for one memory access. We only 

count proper store instructions and ignore cache line flushes. In Section 6.6.1, we 

evaluate the accounting error from cache line flush instructions. We leave heuristics 

for correcting this error as future work.

Finally, PEBS may show a bias in which instructions are sampled. Yi et al. describe 

the shadow effect [129]: After a performance counter overflow, there is a delay before 

the PEBS hardware is armed. Any events during this delay are hidden from sampling. 

If there are long-running instructions such as memory fences, the PEBS hardware 

is more likely armed during such longer instructions. It will therefore sample 

instructions immediately after long-running instructions with a higher likelyhood. 

Such a bias can cause estimation errors.

6.4 Implementation
We implement a prototype of PEBS-based write bandwidth estimation as a Linux 

kernel module. It sets up PEBS directly by writing to model-specific registers since 

Linux’s perf_event API [18] is not designed for use from a kernel module. To allow 

controlling latency and sampling overhead, the PEBS buffer size and the sampling 

interval are configurable as module options.

The module processes PEBS samples either when the PEBS buffer is full (via the 

interrupt) or on task switch. It finds PM ranges based on the kernel’s iomem ranges 

after a software page table walk. The prototype only distinguishes accesses to PM and 

DRAM, but could support fine-granular counters for separate PM address ranges. 

To determine the memory access size, it uses the Zydis disassembler library [30], 

which provides the size of decoded operands.

The module makes the counters available over multiple interfaces. The per-task 

counters are stored in struct task_struct. Additional files in procfs allow reading 

their values from userspace.

For low-latency monitoring and control, the module additionally provides a shared 

memory buffer with the counters of currently-running tasks. Userspace applications 

can memory-map this file and read the current counters for each CPU core.
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PM Thread

Other Thread

Core SpecializationRegular Scheduling

Figure 6.4:  Core specialization can reduce PM overload by identifying threads 

accessing PM and pinning them to a subset of the available cores. By reducing stall 

cycles from the PM threads, this strategy makes more CPU time available to other 

non-PM threads.

6.5 Scheduling
PM bandwidth and parallelism management are highly dependent on the application. 

Since a scheduling mechanism can only control a process’s CPU activity as a whole, 

any process throttling for PM accesses also throttles other work in that process 

unrelated to PM access. PM applications should therefore directly use the accounting 

information and apply targeted throttling of their PM accesses accordingly.

Nevertheless, we now propose a generic scheduling approach for mitigating 

slowdown and CPU stalls from parallel PM accesses in userspace applications. The 

idea is to employ core specialization, as illustrated in Figure 6.4. In a PM overload 

situation (left), threads accessing PM are scheduled on multiple cores at the same 

time. These threads saturate the available PM bandwidth, and their PM accesses 

stall the cores. They therefore also reduce the available CPU time for other processes 

that do not access PM.

Our approach introduces a monitor process that reads the accounting information 

for all currently running threads. If the threads saturate the available PM bandwidth, 

the monitor enables core specialization. It pins all threads that access PM to a subset 

of the cores. The result is shown on the right side of Figure 6.4: The PM threads share 

a single core (red) and therefore can no longer overload PM. Even though each PM 

thread has less CPU time available due to the restriction to the specialized cores, 

they now make more progress since the number of CPU stall cycles is reduced. All 

other threads (grey) are rebalanced to the remaining cores by the scheduler. These 

threads now have more CPU time available since they no longer need to share time 

with the stalling PM threads.

If the monitor detects that a pinned thread no longer accesses PM, it reverts the 

pinning. Once the number of active PM threads falls below a threshold, the monitor 

stops core specialization and allows PM threads to run on all cores again.

The primary challenge with this approach is choosing the number of specialized 

PM cores. If the number is too large, the PM threads are still able to overload PM 

with their parallel accesses. A number too low could take CPU time away from PM 

threads that do not exclusively access PM. The accounting data alone does not allow 

detection of whether a thread uses little PM bandwidth due to stalls or because it is 
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performing other work. The approach therefore requires fine-tuning according to 

the expected workloads.

6.6 Evaluation
Our evaluation aims to answer the following questions:

• Can the accounting mechanism accurately detect the number of bytes written by 

an application?

• What is the trade-off between performance overhead for the application and the 

latency of the accounting?

• Can our scheduling approach based on core specialization prevent PM overload?

We choose prime numbers as PEBS sampling intervals to avoid repeated sampling 

of the same instruction in a loop smaller than the sampling interval. In the following, 

we compare three PEBS sampling intervals: 1999, 4999, and 9973.

6.6.1 Accuracy

We evaluate the accuracy of the accounting mechanism with a microbenchmark 

that writes a fixed amount of data to PM. We then compare the accounting result 

with the actual number of written bytes. The microbenchmark is implemented as 

a memset loop that uses one specific instruction to write sequentially to PM. We 

test non-temporal store instructions and regular (temporal) store instructions with 

multiple access sizes. For the regular stores, we also test flushing each written cache 

line (64 bytes) with a clwb instruction. We run the microbenchmark with multiple 

PEBS sampling intervals (see above) and parallel threads (1 to 8).

In the implementation of the microbenchmark, we ensure that the core memset 

loop contains only memory accesses writing to PM, as shown in Listing 6.1. The 

benchmark therefore verifies that our measurement method does not introduce 

any inherent inaccuracy.

Figure 6.5 shows the results. The accuracy for store instructions without cache 

flushes is very high, with a maximum error of approximately 0.5% for 8  byte 

temporal stores.

For the benchmarks that include cache line flush instructions, we see a larger 

error. Smaller access sizes of 8 and 16 bytes are overestimated by 11% and 24%, 

00:  lea     (%rdi,%rcx,1),%rax

04:  movntdq %xmm0,(%rax)

08:  add     $0x10,%rcx

0c:  cmp     %rsi,%rcx

0f:  jb      00

00:  lea    (%rdi,%rcx,1),%rax

04:  movdqu %xmm0,(%rax)

08:  movdqu %xmm0,0x10(%rax)

0d:  movdqu %xmm0,0x20(%rax)

12:  movdqu %xmm0,0x30(%rax)

17:  clwb   (%rax)

1b:  add    $0x40,%rcx

1f:  cmp    %rsi,%rcx

22:  jb     00

(a) Non-temporal stores with access 

size 16 bytes

(b) Temporal stores with access size 

16 bytes and clwb

Listing 6.1:  Disassembly of the memset loop writing to PM. All store instructions 

write to PM.
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Figure 6.5:  pc61  Boxplot of the accounting error for a userspace write benchmark 

with different instruction types and access sizes. The benchmark writes with one 

to eight threads, and the accounting uses a PEBS sampling interval of 1999, 4999, 

and 9973. The whiskers show the minimum and maximum values.

respectively (median). This overestimation is explained by the additional clwb 

instructions, which are less likely to be sampled due to the shadow effect (see 

Section 6.3.3). Since the clwb instruction takes longer than the small memory 

accesses, the store instruction after clwb is sampled more often. 11% and 20% of 

the instructions are clwb instructions in our benchmark with access sizes of 8 and 

16 bytes, respectively, which matches the observed error.

With larger access sizes of 32 and 64 bytes, the runtime of the store instructions 

increases, and the shadow effect reverses. At 32 bytes, we observe roughly equal 

numbers of store instructions and clwb instructions, resulting in a medium 

underestimation of 5.1%. With 64 byte store instructions, there are equal numbers 

of stores and cache line flushes. However, the clwb instructions are now sampled 

more often than the store instructions, resulting in a large underestimation of 90%.

6.6.2 Overhead and Latency

To measure overhead and latency, we instrument the kernel module. We capture 

measurements of the runtime of PEBS event processing and timestamps when 

events are processed. As the accounting target, we run a fio devdax benchmark that 

writes to PM from userspace (see Section 4.2.3). With fio, we observe a mix of PM 

and DRAM events.

There are two parameters that control overhead and latency. The sampling interval 

controls how often events are sampled by the PEBS hardware. A higher sampling 

interval reduces the number of events and therefore decreases the overhead but 

increases the latency. The PEBS buffer size controls how many events are collected 

for batch processing. A larger buffer reduces the overhead by reducing the number 

of PEBS interrupts but increases the latency, as multiple events need to be collected.

Overhead

Figure 6.6 shows the processing time for individual events as well as totals for fio 

writing 1 GiB of data to PM. The sampling interval has little effect on the per-event 

processing time. However, processing events in batches improves the processing 
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Figure 6.6:  pc61  Processing time per event (left) and per GiB written by a fio 

benchmark (right).

time slightly, likely due to better cache utilization: From a buffer size of one event 

to two events, the processing time decreases by 4.7%, up to 15% at 16 events.

For the total processing time for writing 1 GiB, the sampling interval has a much 

larger effect than the buffer size. From sampling interval 1999 to 4999, the average 

processing time decreases by 59%, and another 49% from 4999 to 9973. This inverse 

proportionality arises since a larger sampling interval results in fewer events per GiB.

Latency

In Figure 6.7, we plot density distributions of the latency between processing two 

batches of PEBS events. We show latency for all PEBS events (i.e., PM and DRAM) in 

the left column, and latency after filtering for PM events in the right column.

We first discuss the results for a buffer size of one event (bottom row). The observed 

latencies for all PEBS events (left column) are approximately proportional to the 

sampling interval, with distributions centered around median latencies of 56 μs, 

Figure 6.7:  pc61  Density distribution of event latency for PEBS buffer sizes 1 and 

2 (rows). The left column shows the distribution for any event and the right column 

shows only PM events.
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Figure 6.8:  pc61  Bandwidth and CPU cost of a fio devdax benchmark. We compare 

devdax as the baseline with enabled accounting (EPA devdax) and with core special

ization (EPA+pin devdax).

150 μs, and 300 μs for the sampling intervals 1999, 4999, and 9973. After filtering 

for PM events, a new pattern emerges. Secondary peaks are now visible at multiples 

of the latency at the primary peak, which follows from the filtering: If an event is a 

DRAM event, another PM event can appear earliest after one sampling period.

Batching events with a buffer size of two events (top row) doubles the observed 

latencies, with new median latencies of 120 μs, 300 μs, and 590 μs. However, since 

there are now two events in each batch, there is a higher likelyhood of observing at 

least one PM event in every batch. The secondary latency peaks for the PM events 

therefore disappear in the top right plot.

Given these results, we recommend a buffer size of one event and controlling the 

latency/overhead tradeoff only by choosing a sampling interval. The sampling 

interval is roughly proportional to both processing time per GiB of written data and 

latency. In contrast, a larger buffer size increases latency proportionally, but has 

only a minor effect on processing time.

6.6.3 Scheduling

We evaluate our scheduling based on core specialization with the fio devdax 

benchmark (see Section 4.2.3). In Figure 6.8, we compare three configurations: 

plain fio without accounting or scheduling (devdax), fio with accounting but no 

scheduling (EPA devdax), and fio with accounting and scheduling (EPA+pin devdax). 

For the accounting, we set a sampling interval of 9973 and a buffer size of one event. 

We configure our scheduling to pin PM-heavy processes to two cores and record fio 

bandwidth and CPU cost (see Chapter 4).

Comparing devdax with and without accounting, we observe that the accounting 

has no noticeable effect on the bandwidth or the CPU cost. This is consistent with 

our previous measurements, as the expected overhead is less than 50 ms per GiB 

(Figure 6.6).

The automatic pinning achieves the intended result. The total bandwidth remains 

stable after five jobs, whereas it drops without our scheduling. Since the pinned fio 

jobs run only on two CPUs, our approach also effectively limits the CPU cost.
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6.7 Related Work
Multiple previous works have proposed using PEBS to monitor memory accesses.

Nonell et al. [97] show that monitoring load addresses with PEBS is feasible in an HPC 

environment. They evaluate very small sampling intervals (64 to 256) with larger 

PEBS buffers (32 KiB, fitting 170 samples), showing a maximum overhead of 10%. 

They propose using the PEBS data to detect access patterns and steer allocations in 

heterogeneous-memory HPC systems.

HeMem [102] uses PEBS to inform tiered memory management. HeMem samples 

memory load and store instructions to track per-page access counts and classify 

pages as hot or cold for tiering. In contrast to our approach, HeMem does not estimate 

bandwidth from the samples.

As an alternative to PM monitoring with PEBS, Dicio [100] uses performance counters 

for write pending queue delay to detect PM overload. In contrast to our approach, 

Dicio cannot attribute this overload to specific processes. Instead, it distinguishes 

between latency-critical and best-effort jobs. In an overload situation, all best-effort 

jobs are throttled to ensure sufficient bandwidth for the latency-critical jobs.

Finally, Gottschlag et al. [47] use core specialization to isolate AVX-512 workloads. 

When executing AVX-512 instructions, some CPUs reduce their frequency, which 

can slow down unrelated processes. The core specialization therefore isolates the 

frequency reduction to specific cores. This is in contrast to our approach, where 

core specialization reduces load at PM as a shared resource.

6.8 Discussion
Once the operating system hands out a DAX mapping to a userspace application, 

it cannot control access to this mapping anymore. This is problematic for PM 

mappings, since PM suffers from overload if too many threads access it in parallel. 

In this chapter, we propose an approach for monitoring access to DAX mappings 

by sampling memory access instructions. We show that our approach can mitigate 

parallel PM accesses with automatic core specialization.

Our approach fulfills the requirements set in Section 6.1. PEBS samples are collected 

for each CPU core, allowing association with individual processes and threads. By 

translating virtual addresses, the approach can associate memory accesses with an 

arbitrary number of memory devices based on their physical address ranges.

Our evaluation shows that the choice of sampling interval can effectively control the 

latency–overhead trade-off. At an event latency of under 500 μs, an overhead of less 

than 50 ms per GiB of data written to PM can be expected.

The primary challenge for the accuracy of our approach is the CPU caches. Since 

PEBS sampling occurs at the CPU core, there is no way to detect whether a store 

remains in the CPU caches or is immediately flushed to memory. Further, cache-

line flush instructions are hard to account for, since they are not uniformly sampled 

by the PEBS hardware.

As future work, we expect that future (CXL) memory devices could support the 

operating system in providing more accurate accounting mechanisms with lower 
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overhead. At the device level, there is no risk of inaccuracy due to CPU caches. 

However, the challenge of providing process association remains. We propose that 

future PM devices allow associating device memory ranges with address space 

identifiers and provide counters for read and write accesses for each address 

space. The operating system could then provide accounting information as in this 

chapter by arming and reading the on-device counters when mapping pages and 

scheduling processes.
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Chapter 7

Crash Consistency Testing

Achieving crash consistency in persistent memory applications is difficult. As 

discussed in Section 2.4, the developer must carefully insert cache line flush and 

memory fence instructions. These instructions do not affect the correct operation 

of the application during normal runtime. Rather, they have a visible effect only in 

the event of a crash.

Crash consistency testing tools allow developers to verify the crash behavior of their 

applications. In this chapter, we review previous work on crash consistency testing. 

In particular, we describe the crash consistency pipeline that multiple previous 

works implement. Suvi, the crash consistency tester we introduce in Chapter 8, also 

builds on top of this pipeline. Finally, we describe crash consistency testing tools 

related to Suvi.

7.1 Failure Points and Crash Images
An application is crash-consistent if it never produces inconsistent PM contents 

in the event of a crash. To test applications for this property, we need to consider 

where in the program code the application could crash (failure points) and what the 

PM at these points might contain (crash images).

Since the time of a crash cannot be predicted or controlled, we need to consider 

every instruction of the program as a potential failure point for testing. However, we 

can reduce the number of failure points for testing by combining equivalent points. 

Instructions other than PM primitives or those writing to PM do not directly change 

PM contents. Testing failures at these instructions will always yield the same results 

as testing at adjacent PM primitives or PM stores. Note that we cannot generally 

detect such instructions statically, since the addresses of memory accesses or cache 

flushes are calculated at runtime.

Crash consistency testing approaches that consider reordered PM modifications 

(e.g., due to out-of-order execution or caches; see Section 2.4) can further reduce 

failure points to ordering points. These are instructions, such as memory fences, that 

act as a barrier for out-of-order execution.

At the failure points, a crash consistency tester verifies that no inconsistent PM 

states are possible based on PM modifications that are not completely persisted (i.e., 
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flushed from caches and ordered with a fence). To confirm crash consistency bugs, 

it can generate crash images as witnesses. A crash image represents possible PM 

contents at a failure point. It is constructed by combining the fully-persisted PM 

contents with in-flight modifications at the failure point. We discuss crash image 

generation in Suvi in Section 8.2.

We distinguish two types of crash images. A complete crash image is a crash image that 

includes all in-flight modifications at the failure point. There is always exactly one 

complete crash image at every failure point. A partial crash image is a crash image 

that contains only a subset of in-flight modifications. If there is more than one PM 

modification at a failure point, multiple partial crash images may exist. Note that 

neither complete nor partial crash images are unique and may appear at multiple 

failure points.

To check a crash image for consistency, its contents need to be recovered by the PM 

application.

7.2 Types of Crash Consistency Bugs
We distinguish three types of crash consistency bugs: logic bugs, missing flushes, 

and ordering bugs. Discussing these types separately is useful because they require 

different strategies for detection.

7.2.1 Logic Bugs

A PM application has a logic bug if a broken PM state appears when modifications 

are applied in strict program order. Such a bug appears regardless of the use of 

PM primitives. They are not caused by missing cache flushes or memory fence 

instructions [81].

Figure 7.1 shows an example of a logic bug in a file system.23 The rename file system 

operation should replace the destination file atomically if it exists [14]. A broken 

implementation might remove the destination file first and then perform the rename 

operation. If protected by a lock, such an implementation would behave correctly 

at runtime but would produce an invalid crash state in which the destination file is 

missing.

LeBlanc et al. identify logic bugs as the most common type of bug in PM file 

systems [81]. To detect logic bugs, it is necessary to examine the semantic state 

stored on PM rather than only analyze the use of PM primitives.

function rename_replace(old, new)

remove(new)

rename(old, new)

rename_replace(A, B)

initial state 1

💥
state 2

A, B A B

Figure 7.1:  Pseudocode example of a logic bug in a PM file system. The function 

should atomically replace file new with old, but an intermediate state exists where 

new does not exist.

23We found a similar logic bug in NOVA’s rename function with Vinter [68].
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7.2.2 Missing Flush

PM applications need to use cache flushes or non-temporal store instructions to 

ensure that their modifications reach PM. If a modification is missing a flush, it may 

remain in the volatile CPU caches and will be lost in the event of a crash.

An unflushed modification is not necessarily a correctness bug, since PM applica

tions can use PM to store transient data. However, given the lower performance 

of PM compared to DRAM, using PM for transient data could still be considered a 

performance bug.

Missing flushes can be detected with approaches such as symbolic execution [96] 

or trace analysis [46, 86]. These approaches cannot determine whether the missing 

flush constitutes a correctness bug. In Vinter and Suvi, we detect correctness bugs 

due to missing flushes by checking whether multiple semantic states are possible 

after an operation.

7.2.3 Ordering Bug

Modifications may not reach PM in the order of the program’s store instructions. As 

described in Section 2.4.1, there are multiple sources of reordering. The cache can 

write back cache lines in an unpredictable order due to conflicts. Store instructions 

(e.g., non-temporal stores on x86) may be weakly ordered and thus subject to 

reordering by the CPU. PM programs need to use memory fences to enforce a specific 

ordering.

An ordering bug arises when memory fences are missing in a way that allows broken 

states on PM. Figure 7.2 shows an example where fences are critical to avoid an 

ordering bug. Since the valid flag protects accesses to the data, it must not be set to 

1 while the data is not completely written.

There are multiple approaches for finding ordering bugs in PM applications. An 

obvious, but often impractical idea is to generate crash images with all possible 

orderings of in-flight modifications. This approach suffers from combinatorial 

explosion: For 𝑁  independent writes, there are 2𝑁  possible crash images. Crash con

sistency testing tools that generate crash images to detect ordering bugs therefore 

need a strategy for reducing the search space.

Alternative approaches that do not rely on testing crash images include manual 

annotation of persistence checks (PMTest [86]) or detecting dependencies between 

modifications and the recovery code (XFDetector [85]).
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Figure 7.2:  Steps when writing a journal entry (compare Section 2.4). Without 

separating the modifications to the data and the valid flag with fences, we would 

encounter an ordering bug.
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PM Program

Test Case

Trace Analysis

Crash Image

Generator
TesterTracer

Bugs

Trace Crash

Images

Trace PM Sim.

Figure 7.3:  Components of a generic crash consistency testing pipeline. Variants of 

such a pipeline are found in most crash consistency testing tools.

7.2.4 Performance Bugs

Use of PM primitives can have an effect on performance. For example, memory 

fences act as a barrier to out-of-order execution, stall the CPU pipeline and reduce 

utilization of the core’s execution units. Application developers therefore generally 

want to avoid unnecessary PM primitives. Since extra cache flushes or memory 

fences do not affect the crash consistency of PM applications, we categorize these 

cases as performance bugs.

Detection of performance bugs in previous work is generally restricted to simple 

cases [45, 46, 85, 96]. These include cache flushes for cache lines without modifica

tions and memory fences without any pending stores to PM. However, the testing 

tools cannot confirm whether these extra instructions actually harm performance.

7.3 Crash Consistency Testing Pipeline
A crash consistency testing pipeline has three primary stages, as shown in Figure 7.3. 

The tracer performs a dynamic analysis of the tested application and creates a 

trace of PM accesses and crash consistency primitives. The crash image generator 

replays the trace, keeping track of PM contents and in-flight modifications. At failure 

points in the trace, it generates crash images. The tester checks the crash images 

for inconsistencies, usually by running a recovery program.

Besides the analysis based on crash images, crash consistency testing tools can 

also analyze the trace directly for potential bugs. Trace analysis directly yields bug 

reports from patterns in the trace or based on the PM and cache simulation during 

replay. Since it does not use crash images as witnesses of a broken PM state, trace 

analysis can generally only hint at bugs, but not confirm them.

We describe the crash consistency testing tools in the following section in terms of 

the crash consistency pipeline in Figure 7.3. The authors of the tools might use other 

terms (e.g., replayer instead of crash image generator) or combine some stages (e.g., 

crash image generator and tester).

7.4 Tracing Approaches
There are multiple approaches for tracing memory accesses and PM primitives. They 

differ in how much overhead they cause and how much manual work is required 

from the developer to set up tracing. Table 7.1 shows an overview of the approaches.
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Approach black-box overhead risk of user error

Binary Translation 🗸 high none

Compiler Instrumentation 🗸 medium none

Function Tracing ✗ low medium

Manual Annotation ✗ low high

Table 7.1:  Comparison of tracing approaches.

7.4.1 Binary Translation

A virtual machine (VM) with binary translation works by translating each instruction 

from the source ISA to the host ISA. Virtualization with binary translation is possible 

at the level of processes or for a full system. The primary purpose of such VMs is 

to run programs compiled for a different ISA than the host ISA (e.g., x86 programs 

on an ARM CPU). By inserting hooks into specific instructions during translation, 

binary translation allows inspecting and tracing the execution of the VM.

Binary translation allows for black-box testing. It works with unmodified binaries. 

As all instructions are translated, a tracer based on binary translation is guaranteed 

to detect and trace all PM accesses and crash consistency primitives. However, 

modifications may be necessary if the program uses instructions that are not 

supported by the emulator. For example, QEMU [28] does not support AVX-512 

instructions, so these instructions need to be replaced for testing.24

The main drawback of binary translation is its high overhead.25 Every instruction 

needs to be translated, not just traced instructions. To detect PM accesses, every 

memory access instruction needs instrumentation.

Examples of emulators with full system virtualization usable for tracing are 

QEMU [28] and PANDA [38]. Intel Pin [88] implements userspace binary translation.

7.4.2 Compiler Instrumentation

The compiler can insert tracing hooks while compiling a program. This approach is 

similar to binary translation in that tracing is applied automatically at the instruction 

level. It therefore enables black-box testing with no risk of user error.

Compiler instrumentation introduces less overhead than binary translation since 

the binary does not run in a virtualized environment, avoiding the need to rewrite 

all instructions. Additionally, all instrumentation occurs statically at compile time. 

However, the compiler in general cannot detect whether a memory access targets 

PM or DRAM. It therefore must insert hooks for all memory accesses.

The main drawback of compiler instrumentation is that it is less generic than binary 

translation. The target program must be available as source code in a programming 

language supported by the compiler.

Witcher [45] is an example of a PM crash consistency testing approach that uses an 

LLVM compiler pass to instrument programs for tracing.

24PM software often assumes that AVX-512 is available since it is supported by all CPUs that work 
with Optane PM (see Section 2.1).

25Previous works have estimated an overhead between 5x and 20x [104].

99



7 Crash Consistency Testing 7.4 Tracing Approaches

7.4.3 Manual Annotation

Manual annotation allows the most flexibility and lowest overhead for tracing. 

The developer manually inserts calls in the PM application to trace PM events. 

Consequently, there is no unnecessary instrumentation. Support for both kernel 

and userspace software is possible. Tracing high-level abstractions is possible, for 

example PMDK transactions [19].

However, manual annotations carry a high risk of user error. There is no guarantee 

that the annotations match the actual application behavior. Additionally, fully 

annotating a PM application requires a large amount of effort from the developer.

PMTest [86] is a crash consistency testing tool that relies on manual annotation. We 

describe it in Section 7.5.2.

7.4.4 Function Tracing

Function tracing instruments a program at the level of functions. Such instrumen

tation is possible with low overhead using mechanisms such as Linux Kprobes [70] 

and Uprobes [40]. This approach is especially useful if the PM program uses an 

abstraction layer such as PMDK [19] for accessing PM.

The primary challenge with this approach is translating high-level traced functions 

to low-level PM primitives. Depending on the functions, this translation can require 

considerable manual effort and carries a high risk of errors.

Chipmunk [81] is a crash consistency testing tool based on function tracing. It is 

designed for testing PM file systems, where no common abstraction layer for PM 

access exists. We describe its tracing approach in more detail in Section 7.5.6.

7.5 Crash Consistency Testing Tools
We now examine previous approaches to crash consistency testing of PM file systems. 

Figure 7.4 shows a timeline of PM file systems and the crash consistency testing tools 

that were evaluated on these file systems. Section 2.3 provides an overview of the 

PM file systems. We describe previous approaches to crash consistency testing that 

support file systems or that introduced ideas adopted in Suvi. Table 7.2 compares 

the pipeline stages of these crash consistency testing tools. We describe each tool 

in more detail in the following sections.
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Figure 7.4:  Timeline of PM file systems and crash consistency (CC) testing tools. 

Underlines indicate the file systems each tool was evaluated on.
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Tracer
Tool

Crash 

Images
Tester

Trace 

AnalysisApproach K

Yat [80] hardware VM 🗸
random 

subsets

run recovery, 

fsck
-

PMTest [86]
manual 

annotation
🗸 - -

manual che-

cking rules

XFDetector [85]
binary 

translation
✗ no subsets run recovery

post-failure 

reads

Witcher [45]
compiler 

pass
✗

likely-

correctness

output 

equivalence

performance 

bugs

Vinter [68]
binary 

translation
🗸

reads 

heuristic

check unique 

states
-

Chipmunk [81]
function 

tracing
🗸

function 

coalescing

oracle state 

comparison
-

Mumak [46]
binary 

translation
✗

deduplication 

by stack trace

check 

recovery

detect 

patterns

Table 7.2:  Comparison of crash consistency testing tools. Column “K” indicates 

kernel support; these tools were used to test PM file systems.

7.5.1 Yat

Yat  [80] was the first crash consistency testing tool for PM file systems. It was 

specifically developed for testing PMFS [41]. Yat introduces the basic crash consis

tency testing pipeline, consisting of a record phase (called tracer in this thesis) and 

a replay phase combining crash image generation and testing of images.

Yat was introduced long before real systems with PM were on the horizon. Its PM 

model therefore included a pm_wbarrier instruction (later called pcommit, see 

Section 2.4.1) for flushing data between the memory controller and the PM modules. 

Compared to Suvi, it implements a simpler crash consistency model that does not 

take global store order into account.

Yat’s record phase runs the test case in Intel’s internal hypervisor. Like Suvi, it 

therefore has full support for kernelspace file systems. Unlike Suvi, Yat’s tracing is 

not based on binary translation. The hypervisor is based on hardware virtualization 

and traces memory accesses with page table permissions and exceptions. For tracing 

cache flush and pm_wbarrier instructions, it requires recompilation of the traced 

software to insert illegal instructions.

Yat’s replay phase generates crash images at every pm_wbarrier instruction by 

selecting subsets of active writes. To combat combinatorial explosion, it implements 

a simple heuristic that coalesces adjacent writes to the same cache line into a single, 

atomic write. This heuristic is aimed at memcpy loops but may cause false negatives. 

If the number of subsets is still too large, Yat selects a limited number of random 

subsets.
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Yat tests each crash image by loading it in the VM, running the recovery, and verifying 

consistency with an fsck application. In contrast to Suvi and other later crash con

sistency testers, it does not compare the output state across different crash images.

The authors used Yat to test PMFS during its development. They do not describe the 

test cases they used for the record phase.

7.5.2 PMTest

PMTest [86] is a crash consistency testing tool based on manual annotation. At each 

PM access, cache flush, and memory fence, the developer needs to insert calls into 

PMTest’s library. In addition, PMTest needs checking rules in the application under 

test. These rules assert a particular state about PM objects, such as persistence or 

ordering with other objects. The PMTest library serializes each PM access, cache 

flush, memory fence, and checking rule as a trace entry.

When running an annotated application, the PMTest library passes trace entries 

to the PMTest checking engine running in the same process via shared memory. 

PMTest also supports kernelspace PM applications. In this case, the kernel library 

passes trace entries to a userspace PMTest checking engine via a FIFO.

The checking engine processes the trace entries with multiple worker threads. It 

replays the PM accesses to shadow memory while keeping track of the persistence 

status of all modified addresses. When encountering a checking rule, the checking 

engine verifies the assertion. If any assertion fails, PMTest yields a bug.

We categorize PMTest as a form of trace analysis. Even though it replays the trace 

while keeping track of PM contents, it never yields crash images.

PMTest is relevant to this thesis since the authors demonstrate its use on PMFS [41]. 

However, we argue that PMTest’s required manual annotation by the file system 

developer is error-prone and may lead to missed bugs. Later approaches to crash 

consistency checking, including Suvi, feature black-box testing and automatic bug 

detection.

7.5.3 XFDetector

XFDetector [85] is a crash consistency testing tool that introduces the concept of post-

failure tracing. It detects bug by matching read accesses of the post-failure recovery 

procedure with pre-failure writes, cache flushes, and fences.

XFDetector’s tracer is based on userspace binary translation with Intel Pin [88]. It 

therefore does not support testing kernelspace PM file systems. In addition to low-

level tracing of PM accesses, cache flushes, and fences, XFDetector can also trace 

PMDK [19] library calls. The tracer is used both for pre-failure tracing of the test 

case, and for post-failure tracing of a recovery procedure.

XFDetector generates one crash image containing all modifications at each failure 

point. The developer needs to manually annotate a region of interest, in which 

XFDetector automatically inserts failure points before every ordering point (fences 

or PMDK writeback functions). In addition, the developer can annotate additional 

failure points.
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For each crash image, XFDetector creates a post-failure trace of the application’s 

recovery program. It then performs trace analysis with both the pre-failure and the 

post-failure trace. For every read access in the post-failure trace, it checks for cross-

failure races with writes in the pre-failure trace. XFDetector replays both traces while 

tracking the persistence state of all modified memory locations. If a value read in 

the post-failure trace was not properly persisted in the pre-failure trace, then the 

application has a cross-failure race. However, not all cross-failure races are bugs. 

XFDetector requires manual annotation of commit variables, for which cross-failure 

races are allowed since they protect other data.26

While XFDetector cannot test PM file systems, its idea of post-failure tracing was 

influential for Vinter’s reads heuristic (described below), which Suvi inherits.

7.5.4 Witcher

Witcher [45] is a crash consistency testing tool that introduced likely-correctness 

conditions for crash image generation and output equivalence checking for testing crash 

images.

Witcher’s tracing is implemented as an LLVM compiler pass that creates an instru

mented binary. Besides memory accesses, cache flushes, and fences, Witcher also 

traces control flow instructions.

To generate crash images, Witcher first analyzes data and control dependencies with 

static analysis of the program binary (during instrumentation) and with dynamic 

trace analysis. Based on these dependencies, Witcher infers likely persistence 

orderings between memory locations. Witcher’s authors call the set of inferred 

persistence orderings for the whole trace likely-correctness conditions. In contrast to 

the other approaches we describe here, Witcher requires test cases that not only 

write to PM, but also read the data back, so that the trace contains appropriate data 

and control dependencies.

Witcher then replays the trace while keeping track of PM contents. If a PM state at a 

fence could violate a likely-correctness condition, Witcher yields a crash image that 

includes the violating modifications. However, such a violation is not always a bug.

To confirm a bug, Witcher performs output equivalence checking. The authors imple

ment this check specifically for testing durable linearizability in key-value stores. It 

requires two oracles. The first oracle records the output of the test case (i.e., a query 

of the key-value store) without a crash, and the second oracle records the output 

with the crashing operation rolled back. Witcher reports a bug if the output from 

the recovered crash image does not match the output of one of the oracles.

Witcher also implements trace analysis for performance bugs. It detects unnecessary 

flushes and fences.

Although Witcher’s output equivalence checking is limited to key-value stores, it 

has inspired similar mechanisms for confirming crash consistency bugs in later 

approaches for testing file systems. Vinter and Suvi confirm atomicity bugs by 

identifying unique states for each operation. Chipmunk implements an oracle for 

file system operations.

26See our example in Section 2.4, where the “valid” flag is a commit variable.
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7.5.5 Vinter

Vinter [68] is our original approach to black-box crash consistency testing of PM 

file systems. It originated from the master’s thesis of Samuel Kalbfleisch [69]. We 

extend Vinter to Suvi in this thesis.

Vinter’s tracer is based on full system emulation with binary translation. It uses 

PANDA [38], which offers hooks for memory accesses and arbitrary instructions. 

Compared to Yat [80], Vinter does not require manual annotation of cache flushes 

and memory fences and can trace unmodified file systems. Vinter’s tracer can 

optionally capture stack traces for each trace entry, which help with debugging.

Similar to previous works, Vinter generates crash images by replaying the trace 

and generating subsets at each fence. To avoid combinatorial explosion, Vinter 

introduces a heuristic based on recovery reads. Like XFDetector [85], it performs 

post-failure tracing with a fully-persisted crash image (i.e., including all current 

modifications). Vinter then only considers modified cache lines that were read post-

failure for generating crash images with subsets. We improve this heuristic for Suvi 

and describe it in more detail in Section 8.4.1.

Vinter’s tester loads crash images, runs recovery, and extracts a semantic state from 

the file system. It then automatically detects two crash consistency properties, 

single final state and atomicity, based on the number of unique semantic states. 

Unlike Witcher’s output equivalence checking [45], Vinter does not require oracles 

to discover states for comparison. Its crash image generation in combination with 

a separate state extraction program guarantees that the initial and final states are 

among the set of states for an operation. In Section 8.6, we describe this approach 

in more detail and extend it with additional automatic reporting.

Vinter tests file systems with a set of 16 manually-written test cases, each covering 

a basic file system operation. These test cases include traced hypercalls to delimit 

the tested operation from setup code.

7.5.6 Chipmunk

Chipmunk [81] is a crash consistency testing tool specifically for file systems.

Chipmunk uses function-level instrumentation to trace PM accesses. It hooks into 

the file system’s helper functions for writing data to PM using Kprobes [70] and 

Uprobes [40]. For each of these functions, the developer needs to write handlers that 

create appropriate trace entries.

Although this approach to tracing does not require any modifications to the tested file 

systems, it requires in-depth knowledge of the tested file system and considerable 

manual effort from the developer. As an example, the tracing code for NOVA has 

around 1400 lines of code [82, chipmunk/loggers/logger-nova.c]. It traces four 

functions (non-temporal memcpy and memset, helper functions for cache flushes 

and memory fences). The tracing function for memcpy encodes that the underlying 

Linux implementation does not properly flush some unaligned accesses, which is a 

detail that the NOVA developers originally missed [68, §5.3.1]. In contrast, tracing 

with binary translation as in Vinter and Suvi does not require such knowledge.
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Chipmunk’s crash image generation is similar to previous works. It replays the trace, 

reconstructs PM contents, and creates images with a subset of in-flight modifications. 

Chipmunk reduces the search space by coalescing multiple writes originating from 

the same traced function (e.g., a call to memcpy). Otherwise, it caps the number of 

writes considered for subsets.

To test crash images, Chipmunk mounts the file system and compares its contents to 

an oracle. The oracle runs the original test case and records the file system contents 

at each system call. If the file system contents of the crash image do not match the 

contents given by the oracle, Chipmunk reports a bug.

Chipmunk features automatic workload generation using ACE [93] and Syzkaller [7]. 

With ACE, the authors generated all workloads consisting of up to two file system 

calls, and a subset of workloads with three calls. Syzkaller automatically generates 

random system call sequences guided by code coverage information. For Chipmunk, 

the authors restricted Syzkaller to generate sequences of file system operations.

Compared to Vinter and Suvi, Chipmunk achieves higher coverage of test cases with 

its automatic workload generation. Vinter and Suvi do not require a separate oracle 

for comparing file system states. Instead, they rely on hypercalls in the manually-

written test case that mark the start and end of the tested operations.

7.5.7 Mumak

Mumak [46] is a crash consistency testing tool focused on fast black-box analysis.

Mumak’s tracing uses binary translation of userspace software with Intel Pin [88]. It 

traces PM accesses, flushes, and fences. For each failure point (flushes and fences), 

Mumak also records a stack trace and inserts it into a failure point tree. The failure 

point tree represents all code paths that lead to failure points (the leaves of the tree).

When replaying the trace, Mumak only generates a crash image if the corresponding 

leaf in the failure point tree has not been visited yet. It therefore deduplicates failure 

points by stack trace. The crash images always contain all modifications. Mumak 

does not generate images with subsets. However, it inserts failure points at cache 

flushes in addition to fences.

Compared to most previous approaches to crash image generation, Mumak therefore 

significantly reduces the required effort: It generates crash images at fewer failure 

points due to deduplication, and it generates exactly one crash image per failure 

point.

Mumak tests crash images by running a recovery program, reporting a bug if the 

recovery fails. It does not consider the image’s semantic state.

Since Mumak generates and tests fewer images with its testing pipeline, there is 

a high chance of missing bugs. For this reason, Mumak’s authors propose trace 

analysis to detect patterns of PM misuse. However, in contrast to the testing pipeline, 

trace analysis cannot confirm that a detected pattern actually is a bug in the tested 

application.

In Section 8.4.3, we adopt Mumak’s approach for Suvi, allowing fast crash consis

tency testing of PM file systems.
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Chapter 8

Suvi: Crash Consistency Testing for 

PM File Systems

In this chapter, we introduce Suvi, our approach to crash consistency testing for PM 

file systems. As discussed in Chapter 7, there are different types of PM software, which 

may exhibit different types of crash consistency bugs. Suvi features a testing pipeline 

with replaceable yet interoperable components. Table 8.1 shows an overview of 

these components. We examine each of these components in the following sections.

An important goal of Suvi is the ability to test unmodified software. Any modification 

for testing, such as inserting trace points or compiling a special configuration of 

kernel components for userspace testing, might change the analysis (see Section 7.4). 

Suvi’s tracer enables black-box testing by observing the execution of a file system in 

a virtual machine. The file system’s underlying storage medium dictates the choice 

of tracer. For PM tracing, Suvi needs to insert hooks into all instructions that access 

PM or affect instruction ordering. The PM tracer is thus based on binary translation. 

In contrast, the hypervisor provides NVMe as an emulated device. The NVMe hooks 

are therefore placed in the hypervisor and work with hardware-accelerated VMs 

as well.

The crash image generator combines stores to PM to form crash images. Crash 

images are possible contents of the PM after a crash, according to the platform’s 

crash consistency semantics. The primary challenge of the crash image generator 

is combinatorial explosion. With a large number of pending store operations, it is not 

feasible to generate all possible crash images. Suvi’s two crash image generator 

Tracer Crash Image Generator Tester

• PM only

(binary translation)

• NVMe only

(hardware-accelerated)

• NVMe and PM

(binary translation)

Suvi-Fast Fast crash 

image generation 

(finds logic bugs)

Suvi-Reads Heuristic-

based crash image 

generation (finds 

ordering bugs)

• Semantic state extrac

tion and analysis

• Trace analysis

Table 8.1: Suvi's pipeline options
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algorithms aim to reduce the search space without missing images that exhibit bugs. 

The first algorithm, Suvi-Fast, does not combine subsets of pending stores. Instead, 

it generates images with stores strictly in program order, which is sufficient for 

finding logic bugs. The second algorithm, Suvi-Reads, aims to find ordering bugs 

and thus must consider subsets of pending stores. It reduces the search space with 

a heuristic tailored to common PM access patterns, such as journaling.

Finally, the tester examines crash images to detect crash consistency violations. It 

loads each crash image in a virtual machine, then runs recovery code and a state-

extraction program that prints a serialized representation of the state on PM. By 

examining unique states, the tester can automatically detect intermediate states 

that must not appear for atomic operations.

Suvi also implements a simple trace analysis. It can detect patterns in the trace that 

indicate certain bugs, including performance bugs and missing flushes.

8.1 Tracer
The first stage of Suvi’s crash consistency analysis is to observe a workload’s 

interaction with persistent storage. The resulting artifact is a trace file that later 

stages use for their analysis.

We identify a number of requirements for the tracer:

Black-box testing. We want to test unmodified applications. In particular, we do 

not want to require a manual definition of tracing points from the application 

developer. See Section 7.4 for a discussion of tracing approaches.

Kernel-mode software. Suvi is an approach for testing file systems, which are often 

implemented as a kernel component. The tracer, therefore, needs to support 

tracing code running in kernel mode.

Performance. The tracer should not unnecessarily slow down the workload, as a 

faster tracer allows testing more test cases.

Debugging metadata. Besides the storage-access trace, we want to capture 

additional information that helps later analysis stages or the developer in 

understanding found bugs.

We also identify non-goals:

Multicore testing. Suvi is not a tool for detecting race conditions and other multicore 

correctness issues. We assume that the tested software is already free from race 

conditions as a prerequisite for crash consistency.

Figure  8.1 shows a high-level overview of the tracer design. The tracer plugin, 

running in the hypervisor, receives PM and NVMe events and serializes them into a 

trace file. Collection of PM and NVMe events is independent of each other and can 

be enabled separately. In the following sections, we have a detailed look at these 

tracing approaches.
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QEMU

NVMe

events

PM
events

Trace

VM

NVMe

Device

Tracer

Plugin

Figure 8.1:  Overview of the tracer. Hooks in the VM’s translated code capture PM 

events, and hooks in the virtual NVMe device capture NVMe events. The tracer plugin 

receives these events and serializes them into a trace file.

binary

translation

source instruction target instruction Tracer Plugin

mov [rdx], rax Hook

⋯

⋯

Hook Function

• check address

• create trace entry

Figure 8.2:  The PM tracer works by inserting hooks into the translated code. In this 

example, the emulator translates a mov instruction with a hook that calls into the 

tracer plugin.

8.1.1 PM Tracing

The CPU accesses PM directly with load and store instructions. Additional ordering 

instructions, such as cache line flushes and memory fences, ensure that stores reach 

PM in a particular order. Correct ordering is critical for achieving crash consistency.

Suvi’s PM tracer uses virtual machines with dynamic binary translation to trace 

these instructions. With binary translation, Suvi can perform black-box analysis of 

unmodified applications.

Figure 8.2 shows an overview of the tracer. With dynamic binary translation, an 

emulator translates instructions from a source ISA to a target ISA. This translation 

provides the possibility to insert additional code and to hook relevant instructions.

The hooked instructions fall into three categories, as shown in Table 8.2: write, cache 

flush, and memory fence. The hook functions collect parameters from the hooked 

instruction and create a trace entry if the instruction is relevant. Write and cache 

flush events are relevant when the memory mapped at their associated address is 

PM. We do not trace fences if there are no other traced events since the last fence.

For write events, the trace contains the physical address of the store instruction, 

the number of written bytes, the written bytes, and whether the instruction was 

non-temporal. On x86, the written data has a size of 1 to 64 bytes, depending on the 

instruction and the register it references. The exact instruction does not matter for 

the analysis. We only need to identify non-temporal instructions that do not write 

to the CPU caches. The tracer also optionally supports read events with similar 
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properties. One of Suvi’s crash image generation algorithms, Suvi-Reads, uses read 

events for its heuristic (see Section 8.4.1). Otherwise, the tracer does not record reads.

The flush events are more complex since the underlying x86 instructions differ 

slightly in their semantics.27 For this reason, we store the assembler mnemonic in 

addition to the physical address of the flush. The crash image generator can then 

use this information to simulate the behavior of the respective instruction.

Finally, fence events do not carry any additional information for the crash image 

generator. The tracer still records the mnemonic to aid users in understanding 

the trace.

Metadata

For all event types, the tracer records metadata. Metadata is not required for detection 

of crash consistency bugs but is useful for users of Suvi debugging crash consisten

cy violations. Suvi records the following metadata for PM traces:

Program counter. The program counter is stored in the x86 register rip. Since 

reading a VM register is cheap, the tracer includes the program counter for 

every PM trace entry.

Stacktraces. For all event types, the tracer can optionally record a stacktrace by 

following frame pointers. The frame pointers form a chain on the stack with the 

initial pointer stored in the rbp register on x86 [87]. The tracer can therefore 

follow the frame pointers without any knowledge about the running application, 

in contrast to more advanced stack unwinding techniques such as DWARF [42]. 

Compilers often omit frame pointers to improve performance [48]. However, 

they are always enabled in the Linux kernel, making them available for our 

file system analysis. Since unwinding the stack with frame pointers requires 

multiple VM memory accesses, recording stacktraces slows down the tracer. 

Users can therefore enable stacktraces if needed.

Besides their use for debugging, stacktraces are required for Suvi-Fast, one of Suvi’s 

crash image generation algorithms (see Section 8.4.3).

8.1.2 NVMe Tracing

NVMe is an asynchronous, command-based protocol. The operating system writes 

commands into a ring buffer and then waits until the NVMe device writes a 

corresponding completion into another ring buffer. An NVMe tracer thus needs to 

capture these commands and completions. We describe the relevant parts of NVMe 

in Section 2.4.2.

Since Suvi runs its test cases in a virtual machine, the operating system interacts with 

a virtual NVMe device that is part of the hypervisor. As discussed in Section 2.4.2, 

we configure a “worst-case” NVMe device with a volatile write cache, a block size of 

512 bytes, and a maximum power-fail atomicity of one block. Suvi’s NVMe tracer 

uses hooks in this virtual NVMe device to assemble trace entries (Figure 8.3).

27cflushopt and clwb are weakly ordered, whereas clflush is strongly ordered. See 
Section 2.4.1.
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Type Parameters and Filters Example x86 Instructions

write

(read)

• Physical address: u64

filter: within PM area

• Size: 20 to 26 bytes

• Data: [u8]

• Non-Temporal: bool

mov (temporal)

movnt (non-temporal)

cache flush • Physical address: u64

filter: within PM area

• Mnemonic:

(clflush/clflushopt/

clwb)

clflush

clflushopt

clwb

memory 

fence

• filter: have writes since last 

fence

sfence

mfence

Table 8.2: Overview of PM trace entry types.
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Hooks

• command

• I/O

• completion

Hook Functions

• collect command, 

data, completion

• create trace entry

Figure 8.3:  The NVMe tracer uses hooks in the request handling of a virtual NVMe 

device. These hooks call into the tracer plugin, which assembles a trace entry for 

each request.

The NVMe trace has three events named read, write, and flush, listed in Table 8.3. 

They correspond to NVMe commands with the same names. As with the PM trace, 

only write and flush commands are relevant for crash consistency testing.

A write event includes the offset of the write on the SSD, the size of the write, and 

the written data. The offset is traced as a byte offset and is always a multiple of the 

SSD block size.

Similar to the PM tracer, the NVMe tracer can optionally trace read events with the 

same properties.

The flush events do not require any additional data, since NVMe flush commands 

apply to the whole SSD and are not scoped to specific addresses.

Type Parameters and Filters

write

read

• Offset in bytes: u64

• Size in bytes: u64

• Data: [u8]

flush no parameters

Table 8.3: Overview of NVMe trace entry types.
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The NVMe specification includes more commands that modify data, for example 

Write Zeroes. As discussed in Section 2.4.2, Linux file systems do not use these 

commands. Suvi thus does not trace them. However, our approach permits tracing 

additional NVMe commands if necessary.

8.1.3 Hypercalls

Suvi treats the test VM as a black box and does not know which programs or 

operations are running in the VM. However, tests need to communicate some 

information to indicate the current state of the test (i.e., whether it is running or an 

error has occurred) and to distinguish different test phases. The tracer provides a 

hypercall mechanism for this purpose.

Suvi supports four kinds of hypercalls:

Start. Indicates the start of the test case. To reduce tracing overhead during VM 

startup, the tracer starts tracing events only after this hypercall.

Success or Fail. Indicates that the test case finished successfully or encountered 

an error. The tracer expects one of these hypercalls as a signal to stop the VM.

Checkpoint <ID>. A test case can use checkpoints to separate different operations 

within the test. The checkpoints are numbered. The checkpoint hypercall carries 

the checkpoint identifier as an additional argument.

Listing 8.1 shows an example of how these hypercalls are used within a test case.

8.1.4 Discussion

Suvi’s tracer enables black-box testing of unmodified PM file systems, including 

userspace and kernelspace software. The primary challenge is performance, since 

binary translation introduces a large overhead compared to native execution. In 

Section 9.1, we discuss how we ensure that the tracing routines add as little overhead 

as possible on top of the binary translation.

The NVMe tracer does not require binary translation, since its hooks are located in 

the hypervisor’s virtual NVMe device. However, this property introduces a different 

limitation. NVMe is an asynchronous protocol that allows implementations freedom 

hypercall start

try:

  # Set up test environment by initializing and mounting the file system.

  mkfs /dev/pmem0

  mount /dev/pmem0 /mnt

  hypercall checkpoint 1

  test_operation_1 /mnt # First operation between checkpoints 1 and 2

  hypercall checkpoint 2

  test_operation_2 /mnt # Second operation between checkpoints 2 and 3

  hypercall checkpoint 3

  # End of test: indicate success.

  hypercall success

catch:

  # If any previous operation failed, communicate test failure.

  hypercall fail

Listing 8.1:  Pseudo-code example of a test case using hypercalls to communicate 

its state with Suvi.
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Persistent Memory

Cache (volatile)

Images

Trace

write

flush

fence

write

flush

fence

Figure 8.4:  The crash image generator replays the trace and keeps track of volatile 

data in caches and persisted data in PM. At certain points, it generates crash images 

by combining PM contents with volatile data. A colored square represents a unit of 

data that can be written atomically.

in how they process commands. In particular, an SSD may delay and reorder 

commands. Since our approach hooks a virtual NVMe device, it does not explore 

this freedom. QEMU’s NVMe device, as used by Suvi’s implementation, processes 

commands synchronously and in order. Therefore, Suvi cannot detect bugs that 

stem from improper sequencing of NVMe commands and completions.

8.2 Crash Image Generator
Suvi’s crash image generator takes a trace file and replays its entries while keeping 

track of the contents of non-volatile memory (both PM and NVMe) as well as caches. 

Its output is crash images, which are potential contents of the non-volatile memory 

in the event of a crash at a certain point in the trace.

Figure 8.4 shows an example. The trace starts with a write of three data units (blue 

squares, second row), followed by flush and fence operations. At this point, Suvi treats 

these writes as volatile. Due to out-of-order execution and spurious cache flushes, 

a subset of the writes according to the system’s crash consistency semantics may 

reach PM in the event of a crash. The resulting crash images are thus a combination 

of PM contents (orange squares, first row) and a subset of the new writes. After the 

fence, all flushed writes move to PM and are safe in the event of a crash.

In the following sections, we first describe Suvi’s underlying model for generating PM 

crash images. This model describes how to replay the trace and defines the search 

space for crash images. We then describe Suvi’s algorithms for efficient crash image 

generation. Suvi-Reads efficiently explores fine-granular reorderings of writes and 

allows detection of misuse of PM primitives. It works by analyzing read accesses of 

a recovery procedure. Suvi-Fast allows a fast analysis for logic bugs by generating 

fewer crash images. For cross-media file systems, we then describe how to generate 

NVMe crash images and how to combine these with PM crash images.

8.2.1 Model Goals

We set the following goals for the PM and NVMe simulation:

Accuracy. The model should be as accurate as possible with respect to the specified 

hardware behavior. In particular, it should not generate crash images that are 

impossible according to the specification.
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Fast trace processing. Individual trace entries should be efficient to process. For 

example, the initialization of a NOVA file system of size 5 MiB results in a trace 

containing around 300 000 entries.

Fast crash image generation. The internal state of the crash image generator 

should allow fast combination of pending writes into crash images.

8.2.2 Crash Image Metadata

The tester, Suvi’s final testing pipeline stage, must be able to associate crash images 

with a specific failure point. This is necessary, for instance, to analyze crash states 

for each logical operation in the test (indicated by checkpoints in the trace). Suvi 

therefore stores crash metadata with every crash image.

The crash metadata contains the following information:

• A cryptographic hash of the crash image data, uniquely identifying the image.

• Results from Suvi-Reads (Section 8.4.1): Which cache lines in the image were 

modified and read by the recovery?

• A list of failure points at which this crash image was generated.

A failure point is identified with the following information:

• The location of the failure point in the trace.

• The current checkpoint identifier (Section 8.1.3).

• Information on how the crash image generator created the image, which is one of 

the following:

‣ Nothing. No pending writes were included.

‣ Everything. All pending writes were included.

‣ Subset. A strict subset of the pending writes was included. This case includes 

all information on how the subset was chosen. For PM images, this includes the 

subset of cache lines, the write limit for ordered stores, and whether NT stores 

were applied.

Line N

Line M

flushed

index

Persistent Memory

Image

NT Store
Map of dirty

cache lines
Cached Store

Cache Flush

set

Fence
apply stores

..
.

Figure 8.5:  Suvi’s simulation of the PM write path. Stores are collected per cache 

line. A flush sets an index in that cache line to mark all previous stores as flushed. 

A fence applies all flushed or non-temporal stores to the PM image.
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8.3 PM Crash Image Model
Suvi needs to keep track of all stores that are not yet fully persisted and that may 

be lost in the event of a crash. The instruction set architecture provides certain 

guarantees about the ordering and behavior of such stores. We introduced these 

semantics in Section 2.4.1. We now translate these semantics into a model that 

satisfies the goals given above. We first introduce our model for systems with volatile 

caches, then extend it to support systems with persistent caches (eADR).

8.3.1 Trace Replay

Figure 8.5 shows the main components and their interaction with trace entries. 

Persistent memory is simulated with an in-memory image (i.e., a byte array). All 

data in this image is fully persisted and survives crashes.

Store commands in the trace are not directly applied to the PM image, since they 

might be lost after a crash. Suvi places them into a map of dirty cache lines. Each 

dirty cache line maintains a list of stores and a flushed index into this list to track 

cache flushes.

A cache flush instruction (clwb or clflushopt) marks all preceding stores to a 

cache line as flushed by setting the flushed index to the length of the list of stores. 

Note that Suvi’s model does not support the older clflush instruction, which has 

additional ordering properties compared to clflushopt (see Section 2.4.1). These 

ordering properties make clflush execute slower than clflushopt, which is why 

PM software generally does not use this instruction.

Finally, a memory fence (sfence) clears all flushed and non-temporal stores from 

the dirty cache lines and applies them to the PM image. If the line contained only 

NT stores or if all cached stores were flushed, it is then removed from the map of 

dirty cache lines. Otherwise, cached stores without a flush remain, and the flushed 

index for this line is reset to zero.

The model as described so far can accurately replay the trace while keeping track of 

dirty cache lines and PM contents. It is sufficient for basic crash image generation 

and for detecting some types of bugs. For example, the PM image is a valid crash 

image after processing each fence. Any dirty cache lines remaining after replay 

indicate that the application is missing cache flush instructions. We now augment 

additional information to this model to enable generation of valid crash images at 

any position in the trace.

8.3.2 Failure Points

A failure point is a position in the trace for which Suvi generates crash images. 

These crash images simulate a failure occurring at that position in the trace. Since 

crashes can occur at any moment, we want to achieve a full coverage of failure 

points. However, generating crash images after every trace entry would produce 

many redundant images. Due to instruction reordering and CPU caches, the amount 

of volatile data increases with every store command in the trace. Therefore, the set 

of possible crash images also grows with every store command.
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Memory fences are ordering points where the CPU halts execution until previous 

memory accesses have completed. The amount of volatile data can thus shrink at 

memory fences. To avoid missing crash images, it is necessary to generate images 

before every memory fence.

With these observations in mind, we design Suvi to generate crash images only at 

memory fences. By keeping track of dependencies between store entries, we ensure 

that the crash images generated at the fence include all crash images that would be 

generated for failure points since the previous fence. In the following, we describe 

these dependencies as well as our data model for working with them.

For the detection of the single final state property (see Section 8.6.2), the tester 

needs to determine the application state at the beginning and end of each operation 

in the test. Suvi’s heuristics can decide to skip crash image generation at regular 

failure points (see Section 8.4). We therefore introduce additional failure points at 

each checkpoint that are never skipped.

8.3.3 Global Store Ordering

Regular stores on x86 are strongly ordered, even if they target different cache lines. 

Since Suvi’s model collects stores per cache line, it needs to retain information about 

global store order separately. Suvi therefore keeps a global counter of all regular 

stores and includes its current value for each store. For crash image generation, 

Suvi can collect stores from the dirty cache lines and restore the global ordering 

with the store counters.

In addition to counter values in each store, Suvi also keeps track of the store counter 

value at the last memory fence instruction. The fence counter ensures that Suvi 

always includes unflushed but fenced stores in later crash images.

As an alternative design, we might consider keeping a global list of stores instead 

of lists per cache line. Such a global list would preserve store ordering without 

additional effort. However, this design would make cache-line-scoped operations, 

such as cache flushes, more expensive to process, since they would need to scan 

the global list to find stores to the same cache line. We therefore decided to collect 

stores per cache line.

8.3.4 Mixed Non-Temporal and Cached Stores

In contrast to regular stores to caches, non-temporal stores are weakly ordered 

and thus do not follow a global order. However, as discussed in Section 2.4.1, non-

temporal stores are ordered with other stores going to the same cache line. A cache 

line receiving both types of stores thus restricts the global order of non-temporal 

stores to that line.

Suvi models a sequence of stores with three kinds of elements.

Cached Store. A single regular store to the cache. Carries a write counter value for 

global ordering.

NT Stores. One or more non-temporal stores, coalesced into a single entry. These 

stores were not preceded by cached stores since the last memory fence. Their 

earliest appearance relative to stores to other cache lines is thus not restricted. 
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(a) Dirty Cache Lines C1 C5 NT NT C3 C2 C4+NT

(b) Global Store Order NT NT C1 C2 C3 C4+NT C5

Active NT Ranges

(c) Stores with subset NT C1 C3 C5

(blue and green)

Figure 8.6:  Example of how cached and non-temporal stores are handled when 

generating crash images. The cached stores with write counters (C1-C5) and non-

temporal stores (NT) from four dirty cache lines (a) are collected into a sorted list 

(b). While walking the list, the crash image generator keeps track of active NT stores 

to each cache line. This process is repeated for subsets of the dirty cache lines, as 

in (c).

However, their latest appearance may be restricted by following cached stores 

to the same cache line.

Cached then NT. The final entry type is a combination of the other two: a single 

cached store followed by one or more non-temporal stores. This entry type 

restricts the earliest appearance of the non-temporal stores. They may appear 

only after the preceding cached store.

Although a sequence of cached and non-temporal stores to a single cache line could 

be tracked as separate items, Suvi requires the combined item to establish a global 

ordering for these stores. We describe this process first for volatile caches and then 

extend it for persistent caches.

8.3.5 Crash Images with Volatile Caches

The goal of crash image generation is to generate images that include a valid subset 

of stores to dirty cache lines. The algorithm therefore needs to take all ordering 

constraints into account.

We illustrate the process with an example shown in Figure 8.6. In the top row (a), it 

shows four dirty cache lines that have received five strongly ordered cached stores 

(C1 to C5) and three weakly ordered NT stores.

There are two ways to choose a subset of stores. First, by selecting a subset of dirty 

cache lines. This method simulates cache eviction. Only lines evicted from caches 

(e.g., due to a conflict) end up on PM. Similarly, a line receiving non-temporal stores 

might be lost in the write-combining buffer. For example, in Figure 8.6, we might 

decide to include only stores from the blue and green cache lines (C1, C5, green 

NT, C3).

Second, we can form a valid store subset by choosing a prefix of stores according 

to their global order, as tracked by the store counter values. It is important to take 

the global order into account instead of deciding on prefixes per cache line. For 

example, in Figure 8.6, if we decide to include store C5 from the first cache line, we 

must also include stores C2 to C4 and the green NT store from the other cache lines.
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Suvi’s crash image generation combines these two ways of forming subsets. We 

describe the selection of a store prefix here, and discuss forming subsets of dirty 

cache lines in Section 8.4.1. As an optimization, Suvi only performs the store prefix 

selection once, but simultaneously applies stores to multiple PM images according 

to the selected cache line subsets. We walk through an example with cache line 

subsets below.

Suvi collects all current stores in a list and sorts the list by the stores’ store counters. 

Weakly ordered non-temporal stores do not carry a write counter and sort before all 

regular stores, since they could appear before them. Combined “cached then NT” 

stores are sorted according to the cached store’s write counter. Row (b) of Figure 8.6 

shows the resulting sorted list for all cache lines, and row (c) for the blue and green 

cache lines.

Suvi then walks through this list. If it encounters a non-temporal store (either 

standalone or combined), it stores it in a map (cache line number → NT store). If it 

encounters a regular store, it checks the map for a previous NT store to the same 

line. If there is one, Suvi removes that NT store from the map and applies it to the PM 

images according to the cache line subsets. Finally, Suvi always applies the cached 

store immediately to the PM images, since its global order is fixed.

With this strategy, the map of NT stores keeps track of the non-temporal stores that 

are active (i.e., could be part of a crash image). The lines and arrows in Figure 8.6 

indicate the ranges in which the non-temporal stores are part of the map.

After each regular store that has not been fenced yet (i.e., its store counter value is 

higher than that of the previous fence), Suvi can emit crash images. The first crash 

image is the current state of the PM image. Second, Suvi applies all active NT stores 

from the map to a clone of the PM image.28 This forms the second crash image. If 

there are only non-temporal stores without regular stores, Suvi generates crash 

images after collecting all of them.

Going back to the earlier example, Table 8.4 shows how the list of stores is processed. 

Consider the row with store C3. When looking up its cache line in the map of NT 

stores, Suvi finds the green NT store. Suvi applies that store (and C3) to the crash 

image and removes it from the map. The stores C1, C2, green NT, and C3 are then 

applied to the PM image and are thus part of the first crash image. The map of non-

temporal stores contains only the yellow NT store. The second crash image therefore 

also includes that store.

The need for combined “cached then NT” items follows from this algorithm. These 

items must be sorted correctly with the preceding regular store. A separate NT item 

with a store counter would not work, as crash images generated at the previous store 

already need to include the NT store.

Note that Table 8.4 does not show the selection of cache line subsets, which occurs 

independently of determining the store prefixes. Given a set of stores (one row in 

the table), Suvi yields multiple crash images in which only the stores to a subset of 

the cache lines are included.

28We discuss partial application of NT stores below.
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# Stores NT Map Store Prefixes

1 NT NT -

2 NT NT NT - NT NT

3 C1 NT NT C1 … NT NT

4 C2 NT NT C1 C2 … NT NT

5 C3 NT C1 C2 NT C3 … NT

6 C4+NT NT +NT C1 C2 NT C3 C4+ … NT +NT

7 C5 NT +NT C1 C2 NT C3 C4+ C5 … NT +NT

Table 8.4:  Visualization of the crash image generation algorithm for the stores from 

Figure 8.6 (b). The algorithm processes the stores sequentially (top to bottom) and 

generates store prefixes with NT stores (right) and without NT stores (left).

# Stores Subset without NT Subset with NT

1 NT -

-
2 NT NT

3 C1
C1 C1 NT

4 C2

5 C3
C1 NT C3

6 C4+NT
-

7 C5 C1 NT C3 C5

Table 8.5:  Visualization of crash images generated for a subset with the blue and 

green cache lines. At every step in Table 8.4, blue and green stores are applied to 

two subset PM images with and without trailing NT stores.

In Table 8.5, we show an example for one subset consisting of the blue and green 

cache lines. For every store prefix in Table 8.4, the stores to the blue cache line (C1 

and C5) and the green cache line (NT and C3) are applied to PM images and yielded 

as crash images. This process occurs simultaneously for multiple cache line subsets.

8.3.6 Crash Images with Persistent Caches (eADR)

We now extend the algorithm above for crash images on systems with persistent 

caches. Recall that for volatile caches, Suvi chooses both a subset of dirty cache 

lines and a prefix of stores according to their global order. With persistent caches, 

all dirty cache lines are always present in all crash images. Consequently, Suvi does 

not choose subsets for applying regular stores and works with all dirty cache lines. 

However, the CPU collects non-temporal stores in its write-combining buffers. Even 

with eADR, these buffers are not persistent (see Section 2.4.1). Choosing subsets is 

thus still necessary for non-temporal stores.
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Action Volatile Caches Persistent Caches

Subsets for regular 

stores

Yes, based on lines from 

heuristic

No, use stores from all 

dirty lines with regular 

stores

Emit crash images At regular store, if it was 

not fenced before

At regular store, if its line 

was selected by heuristic

Include NT stores All collected NT stores For each subset of dirty 

lines with NT stores

Table 8.6:  Differences in the crash image generation algorithm for volatile and 

persistent caches.

On the other hand, subsetting by selecting a prefix of ordered stores is still valid with 

persistent caches. This is therefore the primary way of generating crash images for 

systems with persistent caches.

Table 8.6 shows a summary of adjustments for persistent caches. The algorithm 

does not use the subsets indicated by the heuristic and collects stores from all dirty 

cache lines that have at least one regular store. It then processes the sorted list of 

stores identically, applying cached stores and tracking active non-temporal stores 

in a map. When encountering a regular store, Suvi emits a crash image only if the 

store was to a line indicated by the heuristic (see Section 8.4.1). Suvi thus avoids 

creating crash images that are unlikely to be interesting.

Suvi then generates subsets of all lines with active non-temporal stores. For each 

subset of lines, it applies the non-temporal stores to those lines on a clone of the PM 

image at that point and emits the resulting image.

Stores NT Map Crash Images with NT Subsets

NT NT -

NT NT NT NT NT NT NT

C1 NT NT C1 C1 NT C1 NT C1 NT NT

⋮

Table 8.7:  Excerpt of crash image generation with persistent caches for the stores 

from Figure 8.6 (b). Cache line subsets are generated only for non-temporal stores.

Crash Images with Partial NT Stores

First Cache Line NT1 NT12 NT123 NT1 NT12 NT123

Second Cache Line NT1 NT1 NT1 NT12 NT12 NT12

Table 8.8:  Crash images with partial application of NT stores for two cache lines. The 

first cache line contains three NT stores, and the second contains two NT stores. The 

NT stores are ordered per cache line but may be interleaved between cache lines.
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8.3.7 Partial Application of Non-Temporal Stores

The algorithm described so far only implements partial application of temporal 

stores. Since temporal stores have a global order across all cache lines, generating 

crash images with a subset of these stores is feasible.

In contrast, there is no such ordering between non-temporal stores to different 

cache lines. Consequently, arbitrary interleavings of prefixes of the stores going to 

individual cache lines are possible, as illustrated in Table 8.8. This makes crash 

image generation with partial non-temporal stores more expensive than with only 

partial temporal stores.

Suvi avoids generating an excessive number of crash images by always including 

all pending non-temporal stores for a given subset of cache lines. After analysis has 

finished, a heuristic can detect failure points where pending non-temporal stores 

had a direct effect on the discovered states. Suvi can then repeat the crash image 

generation and explore crash images with a subset of non-temporal stores at these 

failure points. We describe this heuristic in Section 8.4.2.

8.4 PM Crash Image Heuristics
In the previous section, we described how to replay the trace and how to generate 

valid crash images from the replay state. The remaining challenge is that generating 

all possible crash images is only feasible if the number of dirty cache lines is small. 

For 𝑁  dirty cache lines, there are 2𝑁  cache line subsets. We therefore need a way 

to reduce the set of dirty cache lines before passing it to the crash image generator. 

Suvi implements three heuristics (Suvi-Reads, Suvi-NT, and Suvi-Fast) for this 

purpose, which are described in the following sections.

Suvi-Reads allows efficient exploration of the possible crash states by filtering the 

set of dirty cache lines based on the behavior of the program’s recovery procedure. 

Suvi-Reads therefore can discover misuse of crash consistency primitives, such as 

missing fence instructions.

Suvi-NT addresses the problem that unconstrained non-temporal stores pose to the 

crash image generation algorithm. By detecting failure points where non-temporal 

stores have an immediate effect on the resulting semantic state, Suvi-NT allows 

exploration of more crash images that have a high likelihood of exposing bugs.

Finally, Suvi-Fast focuses on rapid detection of logic bugs. Logic bugs are defects 

that appear even if all stores are applied according to program order. There is 

therefore no need to generate crash images based on subsets of cache lines. Suvi-

Fast therefore accelerates crash image generation and enables the analysis of more 

complex test cases.

8.4.1 Suvi-Reads: Efficient Exploration of Crash States

The goal of Suvi-Reads is to reduce the set of dirty cache lines passed to the 

crash image generation algorithm. It achieves this by leveraging program behavior 

commonly found in PM applications.

The CPU architecture only guarantees crash atomicity of writes up to 8 bytes in size 

(see Section 2.4.1). Applications need to use patterns such as journaling to persist 
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valid = 1 valid = 0

Journal entry

valid = 0

D
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dirty

cache

lines

Recovery
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read data discard entry

Figure 8.7:  Situation when generating crash images after a journal entry’s data field 

has been written. A recovery procedure will read the journal entry’s data only if it 

is marked as valid. Consequently, subsets of dirty cache lines in the data area will 

never result in new crash states.

larger amounts of data atomically. Figure 8.7 shows a situation in the middle of a 

journaling operation. The journal entry’s data field has been written, but the entry 

has not yet been marked valid. At that point, Suvi would observe a large number of 

dirty cache lines, depending on the size of the journal entry. Generating all possible 

subsets of these cache lines is likely infeasible.

After a crash and restart of an application employing journaling, a recovery procedure 

inspects each journal entry. Invalid entries are discarded, since their data field 

might be incomplete. Only if a journal entry is marked valid is its data field read and 

applied to the application state.

Therefore, there is no point in generating cache line subsets of a journal entry’s data 

field. Recovery always discards the entry (as long as the valid field is set separately) 

and never reads the data. Suvi-Reads thus needs to detect this recovery behavior to 

avoid generating crash images with invalid journaling data.

Vinter-Heuristic: Observing Recovery Behavior

Suvi extends the heuristic introduced for Vinter [68] (called Vinter-Heuristic in the 

following). We first describe Vinter-Heuristic in its original form, then extend it to 

Suvi-Reads by addressing a limitation that could lead to false negatives.

Vinter-Heuristic is based on the idea of post-failure tracing, as originally proposed for 

XFDetector [85]. In contrast to XFDetector, Vinter-Heuristic uses the tracing results 

only as input to its crash image generation and does not directly derive bugs from 

them. We describe XFDetector in Section 7.5.3.
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Figure 8.8:  Vinter-Heuristic loads a fully persisted image (PM ∪ dirty cache lines) 

into the tracer and executes a recovery procedure. Its output is the intersection of 

the dirty cache lines and the lines read by the recovery procedure.
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Figure 8.8 shows an overview of the process. Vinter-Heuristic creates a fully persisted 

image by applying all dirty cache lines to a clone of the current PM state. It then loads 

the resulting image into the tracer. In contrast to regular pre-failure tracing, the tracer 

now traces read rather than write accesses. The tracer executes a recovery procedure 

on the image. The recovery procedure needs to load the image and perform crash 

recovery if necessary. Finally, it should access all reachable state contained in the 

image by running the program used for state extraction (see Section 8.6).

After tracing finishes, the access trace contains every load instruction to the PM 

image. Assuming that the state extraction program accesses the complete state 

contained in the PM image, we now know exactly which parts of the image are 

relevant for crash images. We could omit all parts of the image not referenced by the 

trace without affecting the extracted state. Note that Suvi still generates only crash 

images that could occur according to its PM model. It does not remove any data that 

cannot be lost in a real crash.

As discussed above, the goal of Vinter-Heuristic is to reduce the set of dirty cache 

lines to make subset generation feasible. Vinter-Heuristic thus calculates the set of 

cache lines that the recovery accessed in the trace. It then removes any lines that 

were not dirty. The result is therefore all dirty cache lines that were read by the 

recovery procedure.

Suvi then uses this set for crash image generation (see Section 8.2). With volatile 

caches, only subsets from these lines will be generated. Consequently, dirty cache 

lines that were not accessed by the recovery will not appear in the generated crash 

images.

With persistent caches, Suvi will similarly use the heuristic result for non-temporal 

stores. In contrast, all cached stores need to be included in the crash images. Suvi 

still uses the lines from the heuristic to decide whether to generate a crash image at 

a certain store. If a store accesses a cache line that is not read by the recovery, Suvi 

does not create a crash image for that store.

Limitations of Vinter-Heuristic

Vinter-Heuristic makes certain assumptions about the behavior of the PM appli

cation. If the application violates these assumptions, applying the heuristic may 

result in false negatives, since crash images exhibiting a bug might not be generated. 

The key property is that the post-failure tracing uses a fully persisted image as its 

basis. If the set of lines read by the recovery is smaller with the fully persisted image 

than with intermediate images, the heuristic might miss important lines.

Consider the journaling example from Figure 8.7. So far, we have considered only 

the process of writing new journal entries. With new entries, setting the valid bit 

extends the set of lines read by the recovery. If the data field is modified at the same 

time (i.e., without a flush and fence), appropriate crash images will be produced, 

including partially written data.

In contrast, removing a journal entry by setting its valid bit to 0 shrinks the set of 

lines read by recovery. If the application modifies the data field at the same time, for 

example, to remove sensitive data from the journal, there will be no crash images 

containing this data. Figure 8.9 shows this situation.
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Figure 8.9:  Steps performed when invalidating a journal entry. The fields read by 

the recovery process are marked in red. A missing fence between steps 2 and 3 

could result in partially overwritten, yet still valid, crash images. However, Vinter-

Heuristic will not include modifications to the data field in crash images and thus 

might miss bugs.
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Figure 8.10:  Suvi-Reads extends Vinter-Heuristic by detecting when the set of read 

lines shrinks. It keeps the previous heuristic tracing result and restores any lines 

that disappeared.

Suvi-Reads: Mitigating False Negatives

We now describe Suvi-Reads, our extension of Vinter-Heuristic that mitigates the 

limitation described above. The main insight is that situations as in Figure 8.9 can 

be detected by comparing the results from previous invocations of the heuristic.

Figure 8.10 shows an example of this process. At the current fence, the blue cache 

lines are overwritten. Some of these lines no longer appear in the recovery trace. 

Suvi-Reads corrects this by taking the previous recovery trace and adding its lines 

to the set of lines yielded from the current trace.

In the example, Suvi-Reads adds two additional cache lines (blue) to the set of 

read lines at the current fence. Since these cache lines are dirty, they end up in the 

corrected set and are used for crash image generation. Remember that the heuristic 

operates on sets of cache line numbers, regardless of the contents of these cache 

lines. The colors in the figures serve only to illustrate where the modifications occur.
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PM

Cache

Image

1 2

Figure 8.11:  Sample replay (from left to right) that discovers identical fully persisted 

images in two different situations. Each column shows the state of PM and caches 

at a fence, as well as the resulting fully persisted image.

Reusing Heuristic Results

It is possible to encounter identical fully-persisted crash images at different fences. 

The fully-persisted crash image is the input for the the recovery procedure. We 

assume a deterministic recovery procedure that always yields the same output for 

a given input. Suvi can therefore reuse the previous result without rerunning the 

recovery.

However, it might still be necessary to evaluate subsets, since the crash images also 

depend on the previous PM contents. Figure 8.11 shows an example.

The first duplicate image at (1) is a typical situation for an application that is missing 

a cache flush. The contents written to one cache line stay in the cache. There were 

no other writes, so the fully persisted image remains the same. Subset generation 

could be skipped without missing any crash images.

This is not the case at the second duplicate image. At fence (2), the PM contents 

are different and would appear in crash images that include a subset of the cache 

contents. Skipping subset generation at this fence would therefore lead to missed 

crash images.

With these two cases in mind, we choose to have Suvi always generate subsets 

when encountering a duplicate fully persisted image. This strategy avoids missing 

crash images in situations such as at fence (2). It is possible to detect situations 

such as at fence (1), where the full replay state is a subset of the state at a previous 

fence. However, we find that since missing cache flush instructions are usually 

unintended, the amount of volatile data in the caches is small, making subset 

generation inexpensive.

This choice differs from Vinter. Vinter skips subset generation entirely when 

encountering a duplicate fully persisted image.

8.4.2 Suvi-NT: Detecting NT-Dependent Semantic States

Generating crash images with partial prefixes of non-temporal stores is expensive, 

as described in Section 8.3. Arbitrary interleavings of the individual stores to each 

cache line are possible (see Table 8.8), creating a large search space. Suvi therefore 

by default only generates crash images with either none or all NT stores to a cache 

line. This strategy keeps the search space manageable but may lead to missed 

crash states.

Suvi-NT is a heuristic that detects failure points where partial application of non-

temporal stores may yield additional crash states. In contrast to Suvi-Reads, Suvi-NT 
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Trace

⋮

NT store: line A, offset 0, abcdefgh

NT store: line A, offset 8, 12345678
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⋮

Semantic State at Fence

File

⋮
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12345678

⋮

Figure 8.12:  Example of a state that has a direct dependency on NT stores. Because 

stores to the file data appear immediately at the subsequent fence, omitting the 

second store would yield a different semantic state.

cannot run during crash image generation, since it requires information from 

semantic state extraction. For this reason, Suvi-NT has separate analysis and crash 

image generation phases. The analysis phase runs as part of the tester. If it detects 

any problematic failure points, the crash image generation can be repeated with 

this information.

The key idea of Suvi-NT’s analysis is to identify semantic states that have a direct 

dependency on non-temporal stores. If the inclusion of a non-temporal store results 

in a change in the semantic state, it is likely that applying a prefix of the non-temporal 

stores will result in a new semantic state.

Figure 8.12 shows an example where this is the case. An application has issued a 

file write of size 16 bytes with the data abcdefgh12345678. The file system uses 

two non-temporal store instructions to store the file data to PM. The semantic 

states extracted from the crash images at the following fence immediately include 

this file data. Since both non-temporal stores write to the same cache line, there 

are no cache line subsets that would select only one of these stores. Suvi would 

therefore not generate a crash state with only the first store and would consider the 

operation atomic.

Ordered stores: NT C1 C2

Crash Images Semantic States

C1

C1 NT

C1 C2

C1 C2 NT

State 1

State 2

not NT-dependent

NT-dependent

Figure 8.13:  Example of detecting NT-dependent semantic states. State 2 and its 

originating crash are NT-dependent because all originating crash images include 

NT stores. Refer to Table 8.4 for an explanation of this visualization of the crash 

image generation algorithm.
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Suvi-NT’s analysis phase operates as follows. For each semantic state, Suvi-NT 

collects all originating crash images and their failure points. From the crash metadata 

(see Section 8.6.1), it determines whether all crash images at a particular failure 

point include NT stores. If that is the case, Suvi-NT outputs the originating crash at 

this failure point as NT-dependent. Figure 8.13 shows an example of this process.

The resulting list of NT-dependent crashes serves as the input for Suvi-NT’s crash 

image generation phase. When the crash image generator reaches a crash point 

in the list, it generates additional crash images with prefixes of the non-temporal 

stores to each cache line, as shown in Table 8.8. Since Suvi generates additional 

images only according to the heuristic, spending additional time exploring these 

combinations is acceptable.

8.4.3 Suvi-Fast: Fast Crash Image Generation for Logic Bugs

We have now seen how Suvi-Reads can make crash image generation feasible when 

there is a large number of dirty cache lines. However, even with the reduced set of 

lines from Suvi-Reads, a large number of images may be generated.

Such an effort is not always necessary to detect bugs. Exploring store reorderings is 

important to detect misuse of PM primitives, such as a missing memory fence. Logic 

bugs, in contrast, do not require this effort. These bugs occur when the program 

temporarily reaches an invalid state during runtime. For logic bugs, generating only 

a fully persisted image is therefore sufficient.

Mumak [46] is a crash consistency testing tool for userspace software. It uses a testing 

pipeline similar to Suvi’s but traces userspace applications with dynamic binary 

instrumentation rather than virtual machines. Mumak’s differentiating feature is 

its deduplication of crash points based on stack traces, allowing fast crash image 

generation. Suvi-Fast adopts this strategy for Suvi, allowing a fast analysis of kernel 

file systems. We describe Mumak in more detail in Section 7.5.7.

Table 8.9 summarizes the differences in crash image generation between Suvi-

Reads and Suvi-Fast. As discussed above, Suvi-Fast does not explore subsets of 

stores. At each crash point, it generates only a crash image that includes all pending 

stores. To ensure more fine-grained steps between images, Suvi-Fast and Mumak 

Suvi-Reads Suvi-Fast

failure points • memory fences (with full 

coverage of failure points 

since previous fence)

• cache flushes

• memory fences

failure point filter none one crash image per 

unique stacktrace

crash image contents • no in-flight stores

• all stores

• subset of stores with 

Suvi-Reads heuristic

• all stores

Table 8.9:  Comparison of crash image generation with Suvi-Reads and Suvi-Fast.
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also generate crash images at each cache-flush instruction.29

In addition to generating fewer crash images per failure point, Suvi-Fast also 

generates crash images at fewer failure points. It identifies unique failure points by 

deduplicating them based on their stack trace. As described in Section 8.1.1, Suvi’s 

tracer can optionally record stack traces for each trace entry. For Suvi-Fast, these 

stack traces are mandatory. As proposed by Mumak’s authors, Suvi-Fast records all 

failure points in a failure point tree. The program counter at the failure point forms 

the leaf in the tree, and each entry of the stack trace forms the inner nodes. Failure 

points are inserted into the tree by walking from the root and creating nodes if 

necessary. If no new nodes are inserted, the failure point has already been visited, 

and Suvi-Fast will not generate another crash image.

Discussion

Crash image generation with Suvi-Fast is superficially similar to the crash image 

generation algorithm for persistent caches described in Section 8.3. In both cases, 

cached stores are always applied to the crash images in program order. The difference 

lies in the handling of non-temporal stores. With Suvi-Fast, the non-temporal stores 

are also applied strictly in program order. Otherwise, Suvi generates subsets for 

these stores.

Although Suvi-Fast reduces the amount of work performed by the crash image 

generator, its requirement for stack traces increases the amount of work in the 

tracer. The total time advantage compared to Suvi-Reads is therefore not obvious. 

If a particular test case already generates few crash images with Suvi-Reads, the 

cost of recording stack traces may outweigh the faster crash image generation with 

Suvi-Fast. We analyze the performance of Suvi-Fast in Section 10.3.1.

8.5 Cross-Media Crash Images
So far, we have described our approach for generating PM crash images. We now 

extend this approach to support cross-media file systems that store data on both 

PM and NVMe. We first describe how Suvi generates NVMe crash images, then how 

it combines the PM and NVMe images to cross-media crash images.

8.5.1 NVMe Crash Images

Suvi’s strategy for generating NVMe crash images largely follows the approach for 

PM crash images. Since the crash consistency model for NVMe is simpler than for 

PM, there are some simplifications. As we discuss in Section 2.4.2, the two primary 

commands relevant for crash consistency are Write and Flush. A Write updates one or 

more data block, and a Flush ensures that all previously completed Write commands 

are persisted on the SSD.

29These additional explicit failure points are not useful for Suvi-Reads, since the crash images its 
subset algorithm discovers include the crash images generated there. As discussed in Section 8.3, 
Suvi’s subset generation covers all possible failure points since the previous memory fence.
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dirty blocks

Persistent Image

Write

apply stores
Flush

split blocks

Figure 8.14:  Suvi’s simulation of the NVMe write path. Written blocks are collected 

individually into a list. A Flush command clears the list and applies it to the persistent 

image.

Trace Replay

Individual NVMe Write commands do not have any ordering constraints. For NVMe 

replay, it is therefore sufficient to keep track of the fully persisted memory image 

plus a list of current Write commands, as illustrated in Figure 8.14.

A single NVMe Write command can contain multiple blocks. Since atomicity is only 

guaranteed at the granularity of blocks, Suvi splits each Write command in the trace 

into its blocks and appends these to the list of dirty blocks. When encountering a 

Flush command, Suvi drains the list and applies each Write to the memory image.

Failure Points and Crash Images

Due to a lack of other ordering constraints, Suvi treats every Flush command as 

a failure point to generate crash images. At these failure points, any combination 

of dirty blocks with the base persistent image is a valid crash image. Suvi always 

generates two basic crash images: one that includes all dirty blocks, and another 

with no dirty blocks. Finally, Suvi generates images with random subsets of the dirty 

blocks. Since it is infeasible to generate all possible subsets, Suvi only generates 

images with random subsets up to a fixed maximum number.

Heuristics

Suvi does not implement any heuristics for generating NVMe crash images. We 

found that Suvi’s heuristics for PM crash images are not a great fit for generating 

NVMe crash images.

Suvi-Reads traces read accesses from a recovery procedure and generates crash 

images from subsets of these accesses. Although it is possible to adapt this approach 

for NVMe crash image generation, we found that it does not sufficiently reduce 

the search space in practice. The reason for this difference is in the usual access 

strategy. A PM file system usually organizes its data structures on PM for direct 

access. Therefore, it recovers and reads data with targeted accesses of individual 

metadata fields.

In contrast, a classic file system works with an asynchronous block interface. For 

performance and simpler access, it is beneficial to load metadata in batches (e.g., 

the full superblock structure or the entire journal). Applying Suvi-Reads to NVMe, 

we therefore observe file systems always reading most of the dirty blocks.

Suvi-Fast is the second heuristic that reduces the number of generated crash images 

by deduplication based on stack traces. Our approach to NVMe tracing works by 

hooking the virtual NVMe device in the hypervisor. At this location, we cannot 
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Figure 8.15:  Suvi’s tracer records a combined PM and NVMe trace, but the PM and 

NVMe failure points (F) do not necessarily coincide. This results in overlapping 

reordering periods for the PM and NVMe writes (squares).

capture stack traces for Suvi-Fast. Additionally, we do not expect such stack traces 

to be as useful for NVMe as for PM due to the abstraction from the block layer.

8.5.2 Combined Crash Images

So far, we have described how Suvi generates PM-only and NVMe-only crash images. 

For testing cross-media file system, we need combined crash images with both PM 

and NVMe data. Combining the crash images is challenging for two reasons.

First, NVMe and PM failure points (PM fences and NVMe Flush commands) may 

be at different positions in the trace. In such cases, is not clear whether they can 

be reordered. Figure 8.15 shows an example. The NVMe reordering period for the 

NVMe Flush at position 7 extends to before the PM fence at position 4. However, we 

cannot know whether the file system enforces that the Flush (7) happens after the 

fence (4).

Second, combining an arbitrary number of PM crash images 𝑃 with an arbitrary 

number of NVMe crash images 𝑁  results in 𝑃 ⋅ 𝑁  combined crash images. Analysis 

of cross-media file systems might therefore require smaller cutoffs for both PM and 

NVMe crash images to avoid excessive analysis time.

We solve these challenges in Suvi with insight from the NVMe driver implementation 

in Linux. We find that all interaction with the NVMe submission and completion 

queues involves instructions that act as fences for PM access. Therefore, a situation 

as shown in Figure 8.15, where an NVMe Flush is not accompanied by a PM fence, is 

not possible in practice.

With this observation in mind, we design Suvi to combine PM and NVMe crash 

images as follows. At each PM and NVMe failure point, Suvi generates the two basic 

crash images (all current writes, no current writes, which might be identical if there 

are no writes) for both PM and NVMe. It then generates additional images with 

subsets for either PM or NVMe according to the current failure point. Finally, Suvi 

combines all PM and NVMe images, resulting in 𝑃 or 2𝑃 combined images at a PM 

failure point, and 𝑁  or 2𝑁  combined images a NVMe failure point.
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8.5.3 Discussion

Although Suvi could be used to analyze NVMe-only file systems, this is not a goal of 

our design. As PM is directly accessed with load and store instructions, black box 

testing with virtual machines is beneficial as it avoids errors (see Section 7.4).

In contrast, classic file systems generally work with abstract block devices. For 

example, the block layer in the Linux kernel translates generic block I/O requests 

into device commands such as NVMe or SCSI [33]. This makes the block layer the 

ideal level of abstraction for analyzing classic file systems. CrashMonkey [93] is an 

approach for crash consistency testing that hooks into the Linux block layer.

We believe that our strategy for combining PM and NVMe crash images strikes a 

good balance between crash state exploration and efficiency. Since every NVMe 

command is always accompanied by PM fences, generating and combining subset 

images for both PM and NVMe is unlikely to discover new crash states.

However, since our approach is based on recording and replaying a single execution 

of the test case, it cannot detect freedom in the asynchronous NVMe command 

processing. Going back to the example in Figure 8.15, it is impossible to detect 

whether the file system waits for the Flush command (7) to complete before issuing 

PM writes 8 and 10. Such a detection would require recording the test case multiple 

times with variations in timing, which is out of scope for Suvi.

8.6 Tester
The tester is the final stage of Suvi’s pipeline. Its goal is to check whether any 

generated crash images exhibit crash consistency bugs.

Suvi’s pipeline can automatically detect the following types of bugs:

Recovery crashes The application might encounter an error while recovering a 

crash image. We consider it a bug if the application crashes or otherwise aborts 

the recovery.

Multiple final states At the end of every PM operation, all important data should 

be fully persisted on PM. If Suvi detects multiple application states at the end 

of an operation, we consider it a bug. By inspecting the application state, Suvi 

does not flag cases in which applications store temporary data in PM.

Atomicity violations Finally, Suvi can detect operations that exhibit intermediate 

user-visible states.

Suvi can detect these bugs in a black box fashion, without understanding the 

structure or contents of the application’s crash images or the state contained in 

these images. Suvi relies on a test-specific state extraction program that reads the 

user-visible state from the crash images. The second step, state analysis, then detects 

the bugs above from the extracted states. We describe these steps in detail in the 

following sections.

8.6.1 State Extraction

The crash image generator yields a set of crash images. As Suvi treats the tested 

application as a black box, there is no way to detect bugs directly from the crash 

images. With state extraction, Suvi allows the tested application to perform recovery 
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Figure 8.16:  A state extraction program specific to the tested application runs in 

the virtual machine. It performs crash recovery on the input image and serializes 

the resulting application state.

on each crash image and prints a normalized representation of the user-visible state 

contained in the image.

The underlying process is very simple, as shown in Figure 8.16. Suvi loads each 

crash image into a virtual machine running a state extraction program. It then reads 

the output and stores it as the state of the image.

However, there is complexity in the following questions, which are addressed in the 

following sections:

• How are the resulting states associated with crash images and failure points?

• Which properties are necessary for the representation of the extracted state?

• How is the state of a file system extracted?

To detect errors during crash image recovery, the state extraction runs in a virtual 

machine provided by the tracer. Memory access tracing is disabled. The tester 

expects the state extraction program to report success or failure with a hypercall 

(Section 8.1.3) and records the result.

State Metadata

How are the resulting states associated with crash images and failure points?

For the state analysis, the origin of a crash state is critical. Suvi must be able to 

associate a particular state with the failure points that lead to that state. For example, 

in test cases with multiple file system operations, we want Suvi to analyze the crash 

consistency properties of each operation.

With every crash image, the crash image generator stores metadata that associates 

the image with a particular failure point (see Section 8.2.2). The tester extends this 

metadata during state extraction by adding an association from the extracted state 

to the originating crash image.

The complete metadata forms a tree for each unique state, as shown in Figure 8.17.

Requirements for State Representation

Which properties are necessary for the representation of the extracted state?

The tester detects crash consistency bugs by comparing the extracted states. As Suvi 

treats the tested application as a black box, it cannot have any knowledge about the 

structure or content of the extracted states. The tester therefore relies on a simple 

byte-wise comparison of the extracted states to detect equivalent states. We derive 

the following requirements from this approach:
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Figure 8.17:  Structure of the metadata tree originating from a single semantic state. 

The state originates from one or more crash images, which in turn originate from 

one or more failure points.

First, the extracted state must contain only user-visible state. Using the identity 

function as the state extraction program (i.e., passing through the crash image 

without changes) would clearly provide a complete representation of the state 

contained in a crash image. However, such a representation is not useful for further 

analysis. To implement crash-atomic operations on PM, applications must first write 

new data without modifying the application’s visible state. Only after everything has 

been written to PM can the application make the new data visible. Consequently, 

states where the new data is partially written but not yet visible are equivalent to the 

user, but the tester would not detect these images as equivalent since their crash 

images differ.

Second, the extracted state must be serialized to a normalized, deterministic format. 

For example, the order of entries in a hash map is often non-deterministic or even 

actively randomized [20, 26]. Two hash maps with identical contents might therefore 

serialize to different representations if a consistent ordering is not enforced.

Finally, although not required for Suvi’s analysis, we found that a human-readable 

format is beneficial for debugging. If Suvi detects an atomicity violation, the first 

debugging step is always to develop an understanding of the states that Suvi 

discovered. A human-readable format makes such an analysis easy and avoids the 

need to load each state (or crash image) in another interactive VM. We describe the 

debugging process in more detail in the following section.

State Extraction for File Systems

How is the state of a file system extracted?

Since Suvi’s primary testing targets are file systems, we now describe our approach 

to state extraction for a file system. Most operating systems provide a standardized 

interface for accessing different file system implementations. On Linux and other 

Unix-like operating systems, this interface conforms to the POSIX standard [14]. We 

therefore define the user-visible file system state as all state that can be discovered 

through the POSIX file system API. The relevant POSIX functions for reading the file 

system are:

• opendir() and readdir() for traversing directories
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{

  "/mnt": {

    "typeflag": "D",

    "st_ino": 1,

    "st_mode": 16877,

    "st_nlink": 2,

    "st_uid": 0,

    "st_gid": 0,

    "st_size": 4096,

    "st_blocks": 0,

    "st_atim_sec": 1738581554,

    "st_atim_nsec": 0,

    "st_mtim_sec": 1738581555,

    "st_mtim_nsec": 0,

    "st_ctim_sec": 1738581555,

    "st_ctim_nsec": 0

  },

  "/mnt/myfile": {

    "typeflag": "F",

    "content": "test",

    "st_ino": 33,

    "st_mode": 33188,

    "st_nlink": 1,

    "st_uid": 0,

    "st_gid": 0,

    "st_size": 4,

    "st_blocks": 8,

    "st_atim_sec": 1738581555,

    "st_atim_nsec": 0,

    "st_mtim_sec": 1738581555,

    "st_mtim_nsec": 0,

    "st_ctim_sec": 1738581555,

    "st_ctim_nsec": 0

  }

}

Listing 8.2:  Example fs-dump output from a folder with a single file.

• lstat() for reading metadata of discovered files (including directories and 

symlinks)

• open() and read() for reading contents of regular files

• readlink() for reading symbolic link targets

We design a tool, fs-dump, that uses these functions to traverse a directory tree. For 

each discovered file, directory, or symbolic link, it records the metadata returned 

by lstat(). For files and symlinks, fs-dump also records the file contents and link 

targets. fs-dump collects this data in a map indexed by the full path of each file. 

Finally, it serializes the data to JSON and prints the result. Listing 8.2 shows an 

example of the resulting output.

fs-dump satisfies the properties given in the previous section:

• Since the POSIX API is used for reading the file system state, all state discovered 

by fs-dump is user-visible.30

• Deterministic output is ensured by sorting the keys in the JSON serialization.

• The JSON is formatted with appropriate whitespace to make it human-readable.

Single Final State Atomic

States

Images

during operation

1 2 3 1 2

final fence

Figure 8.18:  The tester detects single final state and atomicity of an operation by 

counting unique states at the final fence or during the entire operation.

30A file system might, however, offer access to additional state through non-standard APIs. A file-
system-specific state extraction tool would be required to test such APIs.
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8.6.2 State Analysis

We now describe how the tester can detect single final state and atomicity violations 

given a list of extracted states along with their metadata. Figure 8.18 shows a high-

level overview of the approach. Using the crash metadata associated with the crash 

images, the tester discovers states that were generated during the test operation. 

By counting the number of unique states at the final fence or during the entire 

operation, the tester detects crash consistency as follows:

Single Final State An operation has a single final state if exactly one unique state 

has been extracted from images generated at the last fence of the operation.

Atomic An operation is atomic if it has a single final state and at most two unique 

states in total.

Suvi follows the definitions of these two properties as introduced for Vinter [68].

Analysis Algorithm

We now describe the algorithm that checks the two crash consistency properties.

Since tests delimit individual (file system) operations with checkpoints, the tester 

starts by collecting states for each checkpoint into the following data structures:

type CheckpointID = i64

struct CheckpointFP {

trace_id: u64

states: Set<State>

}

let checkpoint_states: Map<CheckpointID → Set<State>> ←

collect states discovered from checkpoint N to N+1

let checkpoint_fp: Map<CheckpointID → CheckpointFP> ←

find earliest failure point of checkpoint N

The crash metadata forms trees with the states at the root (see Figure 8.17). The 

current checkpoint ID is part of the failure-point metadata (see Section 8.2.2). For 

each state, the tester therefore traverses all failure points and inserts the state into 

the appropriate sets in checkpoint_states. Additionally, it finds the earliest failure 

point for each checkpoint by comparing the trace_id and collects the states at that 

failure point.

for each checkpoint_id within analysis range {

let is_single_final_state: bool ←

checkpoint_fp[checkpoint_id + 1].states.len() = 1

let is_atomic: bool ←

is_single_final_state and checkpoint_states[checkpoint_id].len() ≤ 2

print is_single_final_state, is_atomic

}
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Test: ​test_hello-world

Command: hypercall checkpoint 0 && sync && 
         hypercall checkpoint 1 && touch /mnt/myfile && sync && 
         hypercall checkpoint 2 && echo HelloWorld > /mnt/myfile && 
         hypercall checkpoint 3 && sync && 
         hypercall checkpoint 4

Checkpoint 1 -> 2:
Trace entries 295565 -> 295691
2 states: ​c1s0, ​c1s1
Single final state: ​c1s1
atomic

Checkpoint 2 -> 3:
Trace entries 295691 -> 300021
3 states: ​c1s1, ​c2s0, ​c2s1
2 ​final states: ​c2s1, ​c2s0
Dirty cache lines at checkpoint: 46848
not atomic

Checkpoint 3 -> 4:
Trace entries 300021 -> 300022
2 states: ​c2s0, ​c2s1
2 ​final states: ​c2s1, ​c2s0
Dirty cache lines at checkpoint: 46848
(atomic)

0 NT-dependent states

Listing 8.3:  Example output from the tester analyzing the “hello-world” test result 

for NOVA.

Once the maps are populated, the tester can determine the crash consistency 

properties for each checkpoint.

• The operation between checkpoints N and N+1 has a single final state if exactly 

one state is discovered at the first failure point of checkpoint N+1.

• The operation is atomic if it has a single final state and at most two states are 

discovered between checkpoints N and N+1.

Output

Listing 8.3 shows an example of the tester’s output. After a header showing the test 

name and the test command, the tester prints the following information for each 

checkpoint within the analysis range defined for the test:

• A list of discovered states.

• A list of final states.

• Whether the operation is atomic.

The name of each state corresponds to a file created by the state extraction step, 

allowing manual inspection of these states. Suvi assigns these names using the 

checkpoint ID and a counter based on when the state was first discovered. A state 

name is printed in green if it originated from at least one fully persisted crash image, 

and otherwise in purple. The presence of purple states hints at a misuse of PM 

primitives in the tested application, since such states would never appear during 

the regular runtime of the application.

To aid with debugging detected crash consistency bugs, the tester can optionally 

print the following information:

• Line-by-line diffs of the discovered states (Listing 8.4 (a)).

• The locations of the checkpoints in the trace, allowing a trace analysis for this 

checkpoint (Section 8.7.1).
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2 ​final states: ​ ​c2s1, ​c2s0
--- c2s0.txt  ​
+++ c2s1.txt  ​
@@ -21,3 +21,3 @@
     "typeflag": "F",
-    "content": "HelloWorld\n",
+    "content": "HelloWor\u0000\u0000\u0000",
     "st_ino": 33,

c2s0 at fences:
  ​300017
  ​300021
  ​300022
c2s1 at fences:
  ​300017 (dirty lines: 46848)
  300021
  300022

(a) Line-by-line diff between the two final states. (b) Failure points where the two 

final states were discovered.

Listing 8.4:  Additional optional output from the tester analyzing the “hello-world” 

test result for NOVA.

• In the case of a single final state violation, the dirty cache lines at the checkpoint.

• The failure points from which each state originated (Listing 8.4 (b)).

The final line shows the results from Suvi-NT, which we describe in Section 8.4.2.

8.7 Trace Analysis
Suvi implements two types of trace analysis. The first type, which we call trace 

debugging, provides tools that give Suvi’s users a better understanding of the results 

of the crash consistency testing pipeline.

The second type, which we call trace heuristics, detects patterns in the trace that 

suggest a crash consistency bug.

8.7.1 Trace Debugging

We introduce Suvi’s trace debugging by continuing the analysis of the “hello-world” 

test on the NOVA file system. As shown in Listing 8.3, Suvi’s testing pipeline detected 

multiple final states. This problem occurs when modified data remains in the caches 

at the end of an operation. A user who is debugging this problem therefore wants to 

understand where this data originates and where a cache flush must be introduced.

Filtering Trace Entries by Cache Line

Suvi provides the set of dirty cache lines for a single final state violation. We introduce 

a command to print all trace entries that access these cache lines, as well as relevant 

memory fences and hypercalls.

Listing 8.5 shows the output for the dirty cache line of the NOVA “hello-world” test 

case. We can see two phases. First, NOVA writes zero to each byte of the cache line 

followed by a cache line flush. Then, it writes “HelloWorld⏎”31 to the cache line 

with an eight byte non-temporal store and three regular single byte stores. Since 

these regular stores are not followed by a cache line flush, they remain in the caches 

and cause the single final state violation. A user of Suvi can now examine the stack 

traces associated with these Write entries in the trace to determine where a cache 

line flush needs to be introduced.

Understanding Suvi’s PM Simulation

From the trace output alone, it is not always obvious how Suvi discovered a particular 

crash image. For instance, in our NOVA test case, there are three store instructions, so 

31The ⏎ symbol indicates a newline character.

137



8 Suvi: Crash Consistency Testing for PM File Systems 8.7 Trace Analysis

         0 ​Hypercall start 0
    295564 ​Hypercall checkpoint 0
    295565 ​Hypercall checkpoint 1
    295691 ​Hypercall checkpoint 2
    295784 ​Write   ​ ​0x2dc00b size 1
           00   .
    295785 ​Write   ​ ​0x2dc00c size 1
           00   .

    [... 50 Write entries skipped ...]

    295836 ​Write   ​ ​0x2dc03f size 1
           00   .
    299869 ​Flush   ​ ​0x2dc00b clwb
    299933 ​NT-Write ​0x2dc000 size 8
           48 65 6c 6c 6f 57 6f 72   HelloWor
    299934 ​Write   ​ ​0x2dc008 size 1
           6c   l
    299935 ​Write   ​ ​0x2dc009 size 1
           64   d
    299936 ​Write   ​ ​0x2dc00a size 1
           0a   .
    299937 ​Fence sfence
    300021 ​Hypercall checkpoint 3
    300022 ​Hypercall checkpoint 4
    300023 ​Hypercall success 0

Listing 8.5:  Shortened output from Suvi’s read-trace command analyzing accesses to 

the unflushed cache line of the “hello-world” test on NOVA. For each trace entry, Suvi 

prints the entry’s index, its type, and any additional information. In particular, for 

Write entries, the destination address, the size, and the written data (as hexadecimal 

bytes and ASCII) are printed.

we might expect three unique states with partial file data. However, Suvi discovered 

only two final states.32 We therefore introduce a command that annotates the trace 

with the state of Suvi’s PM simulation.

Listing 8.6 shows the output for the first fence where the broken state c2s1 was 

discovered, as indicated by the tester (see Listing 8.4 (b)). We can see that the three 

store instructions writing the “ld⏎” of “HelloWorld⏎” are still part of the volatile state 

fence id 300017
  line 14019
    offset  8 counter 4332 data ​________________40c02d0000000000________________
________________________________________________________________________________
    Flush
    
  line 46848
    offset  8 counter 4260 data ​________________6c______________________________
________________________________________________________________________________
    offset  9 counter 4261 data ​________________6c64____________________________
________________________________________________________________________________
    offset 10 counter 4262 data ​________________6c640a__________________________
________________________________________________________________________________

Listing 8.6:  Shortened output from Suvi’s process-trace command. It shows the 

state of Suvi’s PM simulation at a particular failure point (see Section 8.3). For each 

store to a cache line, the output shows the offset within the cache line, the internal 

store counter for tracking the global store order, and the volatile contents of the 

cache line after the store. The current store is marked in red. The blue background 

indicates that this part of the cache line was read by the recovery for Suvi-Reads 

(see Section 8.4.1).

32Vinter’s PM simulation was less accurate than Suvi’s and generated invalid crash images with 
a subset of these store instructions, resulting in four final states. [68, §5.3.1]
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(compare Listing 8.5). The eight-byte write updates a pointer33, making all changes 

to the file visible atomically. Since both the pointer update and the previous stores 

to the file contents use regular (temporal) store instructions, the instruction set 

architecture guarantees a global ordering between these stores (see Section 2.4.1). 

Suvi tracks this ordering with the counter printed in Listing 8.6. As the pointer 

update is ordered after the stores to the file contents, states with only a prefix of 

these stores are not possible. Either both cache lines are included in the image 

with all writes (resulting in state c2s0), or at least one of the cache lines is missing 

(resulting in truncated file contents or the original file).

8.7.2 Trace Heuristics

Suvi adapts its trace heuristics from previous work [46]. It detects the following 

patterns in the trace:

Redundant flush or fence. A flush or fence instruction that does not have any 

preceding stores to PM. This is a performance bug and does not indicate a crash 

consistency issue.

Missing flush or fence. Reported when there are stores that have not received a 

flush and fence at the end of the trace.

Overwrite without flush or fence. Reported when a store instruction overwrites a 

preceding store that did not receive a flush and fence.

Unordered flushes. Reported when there are multiple flush instructions between 

two fences.

These heuristics can only hint at potential bugs arising from misuse of PM primitives. 

In particular, unordered flushes frequently arise when a PM application needs to 

persist data larger than one cache line. The trace heuristics cannot detect whether 

such a persist operation is, for example, protected by a journal. However, the trace 

heuristics are useful in conjunction with Suvi’s crash image generator heuristics: 

After a first analysis with Suvi-Fast, the trace heuristics can identify tests that 

warrant further analysis with Suvi-Reads.

33The stack trace associated with that store points to the function nova_update_tail, which 
updates the tail pointer of an inode log. In NOVA, each inode has its own journal [125].
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Chapter 9

Suvi: Implementation

Suvi is implemented in approximately 10 000 lines of Rust code. Its source code is 

available at https://github.com/lluchs/suvi

In this chapter, we describe details from Suvi’s implementation. We first describe 

Suvi’s two implementations of the tracer component. Then we take a look at two 

implementation details that are critical for Suvi’s performance: memory images 

and parallelization.

9.1 Tracer
Suvi implements two tracers with different features, one based on PANDA and one 

on plain QEMU. We describe the differences between these implementations below. 

In Section 10.3.2, we compare the performance of the tracer implementations.

Both implementations use a similar architecture. Our tracing code is compiled as a 

shared library, which is linked into the emulator. The emulator provides hooks for 

memory accesses and other instructions, which call into our library during guest 

code execution. While the guest is paused, our library can then inspect guest CPU 

registers, translate memory addresses, and access guest memory to assemble a 

trace entry (see Section 8.1).

We ensure that the guest execution is blocked as little as possible by passing the trace 

entries to a separate thread for output. This thread then serializes the trace entry 

and writes it to a compressed output file. The guest execution continues immediately 

without waiting for expensive I/O system calls.

9.1.1 PANDA

PANDA [38] is a fork of QEMU with additional features focused on reverse engineering. 

It runs virtual machines with binary translation and allows interaction with the 

guest code through two APIs, plugin and libpanda.

First, plugins built with the plugin API are linked into PANDA and allow direct access 

to the guest state, including instruction hooks. Suvi’s PANDA tracer is built on top 

of panda-rs, a Rust adapter for PANDA’s plugin API [92].

Second, libpanda provides an API for configuring and running a PANDA instance 

and then interacting with it. We use its Python API to launch PANDA, to load and 
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store PM snapshots, and to interact with the guest over a serial device. Although 

libpanda can also install hooks, we opt for a Rust plugin for memory and instruction 

tracing due to its lower overhead.

The primary limitation of PANDA is the age of the underlying codebase. PANDA was 

forked from QEMU 2.9.1, released in 2017 [107]. Since this version of QEMU does 

not include support for NVMe devices, we needed a different approach for tracing 

cross-media file systems.

9.1.2 QEMU

Current versions of QEMU include support for TCG plugins [29], which allow hooking 

into QEMU’s emulation backend called Tiny Code Generator (TCG). These plugins are 

linked into QEMU and allow interaction similar to PANDA plugins, although with 

limited functionality.

We build Suvi’s QEMU tracer based on QEMU version 8.0. QEMU required patches to 

add missing functions to the TCG plugin API. In particular, we needed to introduce 

functions for reading and writing guest memory. Additionally, QEMU’s code gener

ation translates cache line flush instructions to NOPs, which discards the address 

parameter. To trace these instructions with the address, we modified their code 

generation to trigger a memory access.

For NVMe tracing, we introduced hooks into QEMU’s virtual NVMe device. These 

hooks call into our tracer plugin. Every NVMe trace entry requires information 

from multiple hooks, since an NVMe command is processed in multiple steps. A 

hook in the NVMe request handler provides the NVMe request with its arguments, 

a hook in the DMA handler provides the data for write commands, and a hook in the 

completion handler detects command completion. Each hook passes a message to 

the output thread, which assembles a trace entry.

9.2 Memory Images
The primary challenge for performance in the crash image generator is handling 

memory images. Depending on the file system under test, Suvi deals with memory 

images that have a size of up to hundreds of MiB.

Suvi’s memory images need to support the following operations:

• Clone the image for independent mutation. Since the crash image generator 

applies different subsets of writes to a base image, it is not possible to mutate a 

single image sequentially.

• Persist the image to a file. Suvi decouples crash image generation and analysis, 

which allows parallel analysis.

• Calculate a hash of the image contents. Suvi uses these hashes to determine 

whether it has generated an image before.

We implement efficient support for these operations with two key ideas: copy-on-

write files and partial hash pre-calculation.
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9.2.1 File System Copy-on-Write

Some modern Linux file systems, including btrfs and XFS, support sharing data 

blocks between multiple files. Unlike hard links, modifications to such files remain 

private through a copy-on-write mechanism. File copies with shared data blocks are 

created with the FICLONE ioctl [21]. They are commonly referred to as reflink copies.

Our strategy in Suvi is to use memory-mapped temporary files as memory images. 

For reflink copies to work, these temporary files must be located on the same file 

system as the output directory. To clone an image, Suvi creates and maps a new 

temporary file that shares the data blocks from the original image. To persist an 

image, Suvi performs a reflink copy of the image’s data blocks into the destination file.

Compared to a regular memory buffer, this strategy has two advantages. First, it 

avoids copying data as much as possible. Both the clone and the persist operations 

only need to copy file metadata. Only modifications to the images require a copy-

on-write operation for that part of the file.

Second, the strategy saves space by sharing file blocks in the output. Since crash 

images often differ by only a few bytes, most file data within the crash image files 

is shared.

9.2.2 Hash Memoization

Suvi needs to calculate a hash of each memory image before persisting it to detect 

whether it has already discovered an identical crash image. This calculation is 

expensive for large images. Additionally, with the copy-on-write strategy above, 

reading the entire freshly mapped image causes expensive page faults.

We reduce this cost by using a hash function based on Merkle trees, which allows 

reuse of previously calculated intermediate values. We choose BLAKE3 [98] as the 

hash function. As shown in Figure 9.1, BLAKE3 splits its input into chunks of size 

1024 bytes, then recursively hashes pairs of chunks until it reaches the root of 

the tree.

For each memory image, Suvi memoizes a configurable level (counted from the 

leaves) of this tree. When modifying the memory image, Suvi invalidates the 

corresponding intermediate hash value via a bitmap. A later hash calculation must 

re-calculate the intermediate values and then finalize the hash.

Memory

Image

H12 H34 H56 H78

H1234 H5678

H12345678

Level 1

Level 2

Level 3

8 KiB

128 B

64 B

32 B

Figure 9.1:  BLAKE3 splits the memory image into chunks of 1 KiB and hashes pairs 

of chunks recursively. The root of the tree is the final hash value. The right side 

shows the total size of each level. Every intermediate value has a size of 32 bytes.
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The choice of level is a trade-off between how much data of the memory image must 

be read and how large the memory overhead from the cached hash values is. For 

example, at level 5, each intermediate hash value corresponds to 25 = 32 chunks or 

32 KiB of data. Re-calculating one intermediate value therefore requires accessing 

eight 4 KiB pages. For a 100 MiB memory image, the intermediate hash values need 

100 KiB, and the bitmap needs 400 bytes of memory. We evaluate this trade-off 

below.

9.2.3 Evaluation

We evaluate the performance of the memory images with microbenchmarks that 

exercise the individual operations. We compare our implementation based on 

memory-mapped files (mmap) with a simple implementation based on Rust vectors 

(Vec). Rust vectors are dynamically allocated managed arrays. The clone operation 

allocates a new vector and copies the data, and the persist operation writes the data 

to the destination file.

We run the benchmarks on pc62 , which we describe in Section 3.2. We set up an 

XFS file system on the SSD to hold the memory-mapped files. Note that Suvi does 

not use Optane PM for tracing or the memory images.

We evaluate memory images of size 5 MiB and 100 MiB, which is a typical range for 

the file system images we test in Suvi. For example, we test PMFS and NOVA with 

5 MiB images.

Memory-mapped images

Figure 9.2 compares the clone and persist operations of the two implementations. 

Both operations are significantly faster with the mmap implementation. Cloning a 

5 MiB mmap image requires 56 μs, which is 88% faster than the Vec implementation. 

On 100 MiB images, mmap clone is 90% faster than Vec clone. The persist operation 

is 96% faster on 5 MiB images and 97% faster on 100 MiB images.

With the reads heuristic, we typically observe 26% more calls to clone than to persist, 

since each unique image is only persisted once. If Suvi generates 100 crash images 

with size 100 MiB (i.e., 100 calls to persist and 126 calls to clone), the mmap images 

save 10 s of time in the crash image generator.

Figure 9.2:  pc62  Comparison of clone and persist operations on memory images 

with size 5 MiB and 100 MiB.
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Figure 9.3:  pc62  Evaluation of memoization levels for a benchmark that clones 

a memory image, modifies one byte, then calculates the hash. The bar at 0 shows 

runtime without any memoization.

Hash Memoization

We evaluate memoized hashing with a benchmark that clones a memory image, 

overwrites and invalidates one byte, and then calculates the hash. The benchmark 

includes a clone operation because the reduction of page faults for the mmap images 

is a major advantage of memoization and because this combination matches usage 

in Suvi.

In Figure 9.3, we compare different memoization levels, including no memoization 

(shown as level 0). Any memoization level yields a large speedup compared with 

a regular hash calculation that always reads the entire buffer. Lower memoization 

levels reduce the amount of data that must be rehashed but increase the size of the 

memoized hash values that must be copied.

For the 100 MiB image size, there is a large variance in runtime between the different 

memoization levels. These results are stable for multiple iterations within one 

benchmark run (i.e., cloning and hashing one origin image multiple times) but differ 

between benchmark runs. We attribute this to how the XFS file system allocates the 

blocks of the origin image file, which affects the performance of the clone operation 

and the resulting page faults.

With 5  MiB images, there is less variance. The runtime for levels one to six is 

consistently low, with a small decrease between four and six. At levels higher than 

six, the runtime rises because the cost of recalculation outweighs the savings from 

copying less memoized data.

Based on these results, memoization levels between four and six provide good 

performance, especially for small 5 MiB images. We chose level five for Suvi.

9.3 Parallelization
There are two opportunities for parallelization in Suvi, as shown in Figure 9.4: the 

state extraction within a test and the entire pipeline across multiple tests.

Within the testing pipeline, the tracer and the crash image generator must run 

strictly sequentially. The state extraction, in contrast, is trivially parallelizable. Each 
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Tracer

Crash Image

Generator

State

Extraction
...

Test 1

...

Test N

... time

Figure 9.4:  Parallel execution in Suvi during state extraction and across multiple 

tests.

instance extracts the state of one crash image, which is independent of all other 

crash images.

Similarly, multiple invocations of Suvi’s pipeline on different tests are independent 

and can be executed in parallel. However, combining these parallelization opportu

nities can easily result in resource exhaustion if multiple Suvi pipelines run parallel 

state extraction at the same time.

We solve this problem by running the pipeline stages as separate jobs in a shared 

thread pool. The tracer and crash image generator make up one job per test. For 

the state extraction, each instance extracting one crash image runs in a separate 

job. This allows parallel execution of all pipeline stages without exceeding resource 

limits.

9.3.1 Discussion

Suvi’s strategy for parallelization achieves good resource utilization when enough 

tests (≥ number of CPU cores) are analyzed in parallel. However, Suvi’s runtime for 

analyzing a single test is dominated by the sequential tracer and crash image gener

ator stages. There are two opportunities to improve parallel resource optimization 

within the Suvi pipeline, as shown in Figure 9.5.

First, rather than running the pipeline stages strictly in sequence, Suvi could trigger 

state extraction immediately as it discovers new crash images (Figure 9.5 (a)). We 

do not implement this approach for Suvi, since it introduces additional complexity 

while often gaining little time. Assuming that state extraction takes similar time 

for all crash images, the extraction of the final generated image determines when 

the pipeline finishes. However, if there are fewer crash images than CPU cores, the 

Tracer

Crash Image

Generator

State

Extraction

time

(a) immediate

state extraction

(b) parallel crash

image generation

Figure 9.5:  Opportunities for improving parallel resource utilization for a single test.
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separate state extraction phase takes just as long, since all states are then extracted 

in parallel. For example, when analyzing the NOVA file system, all except two of 

Suvi’s regular test cases have fewer than 36 crash images and can be processed in 

parallel on our test machine with 36 CPU cores.

Second, the crash image generator itself could be parallelized (Figure 9.5 (b)). By 

duplicating the state of the PM simulation at each fence, Suvi could continue trace 

replay in one thread while generating crash images in another. The primary time gain 

would stem from Suvi-Reads (see Section 8.4.1), since multiple recovery traces could 

run in parallel. We do not implement this approach either due to the high additional 

complexity. Duplicating the state of the crash image generator is additional work 

that would slow down the common case of parallel test execution. Additionally, Suvi 

includes an alternative heuristic, Suvi-Fast, that minimizes time spent generating 

crash images.
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Chapter 10

File System Testing with Suvi

In this section, we discuss using Suvi to analyze crash consistency of PM file systems. 

We first describe the virtual machines with the test environment, then the file system 

test cases. We evaluate Suvi’s performance and discuss the analysis results.

10.1 Virtual Machine Setup
Suvi analyzes file systems running in a virtual machine. Rather than using a virtual 

machine image of a regular Linux distribution, we create minimal environments for 

our file system tests. This approach has two advantages. First, a minimal environment 

reduces the resources necessary for running the virtual machine. Most drivers and 

services that are included in generic images are not needed for the file system tests, 

but increase boot times and memory utilization. Second, since we precisely control 

each component that is part of the virtual machine, we improve reproducibility of 

the test results.

With direct Linux boot, QEMU supports starting a Linux kernel without the usual 

firmware startup. We provide QEMU with a Linux kernel image and an initramfs 

image. QEMU loads both files into the guest memory and then runs the kernel 

entrypoint. As part of its boot procedure, the kernel extracts the initramfs image 

into an in-memory root file system. Finally, Linux runs the init program contained 

in the image. The initramfs image is immutable. Any changes to the root file system 

in the guest are lost once the virtual machine terminates.

We prepare an initramfs based on BusyBox [22], which is a collection of common 

Unix command-line tools in a single executable. Besides BusyBox, the initramfs 

contains file system administration tools such as mkfs and our fs-dump tool for 

state extraction (see Section 8.6.1). The init process starts a POSIX shell that waits 

for input from the serial device. Once the shell is ready, Suvi sends commands over 

the serial device that contain the test case, run file system recovery, or the state ex

traction program.

We ensure reproducible test environments by building the Linux kernels and 

initramfs images with Nix [39]. This is particularly important for older research file 

systems such as PMFS which do not build with modern toolchains.
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10.2 Test Cases
Suvi includes two types of test cases. First, manually-written test cases originally 

written for Vinter, which we extend. Second, automatically-generated sequences of 

file system operations.

10.2.1 Vinter Test Cases

Suvi primarily uses the 16 hand-written test cases inherited from Vinter  [68]. 

These test cases are implemendet as short shell scripts and cover most POSIX 

file system operations. For Suvi, we modify some of the test cases so that every 

checkpoint contains at most one file system operation. These modifications enable 

fully automatic testing, including reporting results. Further, we introduce two 

additional test cases that cover the truncate and fallocate operations.

There are the following test cases:

Test Name Tested Operations

Hello World create file, write to file

append append data to file

atime read file, updating its access time

ctime/mtime delete file from directory, which updates the directory’s 

modification timestamp

chmod change file access mode

chown change file owner

link create and remove a hard link

symlink create a symlink

mkdir/rmdir create and remove a directory

rename: overwrite rename a file, atomically overwrite target

rename: directory rename a directory with contents

rename: long name rename a file to a long name

touch create a file, then update its accessed and modification 

timestamps

long name create a file with a long name, then write to it

unlink remove a file

update write to the middle of a file

fallocate increase file size with fallocate, then write to the allocated 

space

truncate reduce file size with truncate
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10.2.2 Automatic Test Case Generation

Besides manually-written test cases, Suvi also supports automatically generated 

test cases with ACE. Originally introduced with CrashMonkey [93] and extended for 

Chipmunk [81], ACE is an approach for automatically generating short sequences 

of file system operations.

ACE chooses a fixed-length sequence of file system operations from a pre-defined 

set. For each operation, it then randomly selects appropriate parameters. Most file 

system operations have dependencies. For example, a file must exist before it can 

be deleted. As final step, ACE resolves these dependencies by inserting additional 

operations.

ACE outputs tests in a high-level language called J-lang. For CrashMonkey and 

Chipmunk, the authors convert the J-lang tests to C++ source code, which is then 

compiled and executed.

We adapt ACE for Suvi as follows. We modify the test case generation to insert 

checkpoints around the last operation of the generated sequence. Suvi will therefore 

test atomicity only of the last operation in the sequence. This avoids duplicate work, 

since earlier operations are already covered by shorter test sequences. Generating 

and compiling C++ code from the J-lang files is not a good fit for Suvi, since it runs 

tests in a minimal virtual machine without a complete userspace. Instead, we build 

a J-lang interpreter that reads and directly executes file system commands.

We exhausively generate and analyze tests with a sequence length of one (seq1) and 

two (seq2).

10.3 Performance
The performance of a crash consistency testing system is important for two reasons. 

First, faster analysis allows processing more test cases over time and therefore 

achieving higher test coverage. Second, once a bug is identified, the testing tool 

should be fast enough for interactive use on a small test set for debugging.

In this section, we examine Suvi’s performance when analyzing file systems. We 

focus on the following questions:

• How does the analysis performance of Suvi’s heuristics, Suvi-Reads and Suvi-

Fast, compare?

• How do the two tracers based on PANDA and QEMU compare?

• How large is Suvi’s speedup from parallelization?

We base the following analysis on performance data from analyzing the NOVA file 

system with 1515 seq2 tests generated with ACE (see Section 10.2.2).

10.3.1 Heuristics

In Figure 10.1, we compare the median sequential runtime of Suvi with Suvi-Reads 

and Suvi-Fast. Both heuristics aim to avoid combinatorial explosion in the crash 

image generator. Suvi-Reads traces read accesses during file system recovery, and 

Suvi-Fast deduplicates failure points by stack trace. See Section 8.4 for a detailed 

description of these heuristics.
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Figure 10.1:  pc62  Comparison of analysis times for Suvi’s heuristics (Suvi-Reads 

and Suvi-Fast) with the PANDA tracer. Median sequential execution times for the 

ACE seq2 tests on NOVA.

The runtime differs significantly in the tracer and the crash image generator. Suvi-

Fast requires collecting stack traces during tracing, which introduces a tracing 

overhead of 71%. While the core of the crash image generator (i.e., PM simulation 

and writing crash images) takes less than one second for both Suvi-Reads and Suvi-

Fast, the recovery tracing for Suvi-Reads takes a significant amount of time. In 

total, tracing and crash image generation finish 57% faster with Suvi-Fast than with 

Suvi-Reads.

For both heuristics, the state extraction requires the largest amount of time, which 

scales linearly with the number of crash images. As Suvi-Fast generates fewer crash 

images than Suvi-Reads, we observe a slightly smaller state extraction time.

The time shown for state extraction in Figure 10.1 is for sequential execution. The 

tests generate 10 crash images on average. Assuming that there are enough CPU 

cores to extract all states in parallel, the state extraction finishes in 2.1 seconds.

10.3.2 Tracer Implementations

In Figure 10.2, we compare the QEMU and PANDA tracers. We can see that the QEMU 

tracer is significantly slower than PANDA. There is a slowdown of 2.4× for tracing 

the test case, of 5.8× for recovery tracing, and of 2.9× for state extraction.

QEMU and PANDA use different approaches for hooking instructions and accessing 

guest state. While PANDA has hooks within the core emulation logic and allows 

direct access to the internal guest CPU state, QEMU’s TCG plugins insert additional 

instructions into the TCG stream and provide a limited plugin API for guest state 

access [43]. We assume that these differences, combined with the relative novelty of 

TCG plugins, lead to higher overhead for tracing with TCG plugins than with PANDA.

For this reason, we recommend using the QEMU tracer only for analyzing cross-

media file systems, since the PANDA tracer does not support NVMe devices.
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Figure 10.2:  pc62  Comparison of analysis times for Suvi’s tracer implementations 

(QEMU and PANDA) with Suvi-Reads. Median sequential execution times for the 

ACE seq2 tests on NOVA.

10.3.3 Parallelization

We evaluate our strategy for parallel test execution in Suvi (see Section 9.3) by 

comparing the real runtime with the sum of the runtime of all pipeline stages. The 

parallel analysis with PANDA and Suvi-Reads finished in 55 minutes. Compared to a 

sequential runtime of 1968 minutes, this is a 35.9× speedup. The other configurations 

(QEMU, Suvi-Fast) show similar speedup. This is close to the maximum possible 

parallel speedup on our test system with 36 cores, indicating that our approach to 

parallelization is successful.

We evaluate speedup for running a single test case by running the “Hello World” 

test with PANDA and Suvi-Reads. Suvi generates 28 crash images for this test and 

finishes analysis in 25 seconds. Compared to a sequential runtime of 107 seconds, 

this is a 4.3× speedup. As we discuss in Section 9.3, the lower speedup for a single 

test is expected since only state extraction is run in parallel.

10.4 Results
We analyze the file systems NOVA, NOVA-Fortis, PMFS, WineFS, and ZIL-PMEM with 

Suvi. This thesis presents the first analysis of ZIL-PMEM, while the other file systems 

have previously been analyzed with Vinter [68] and Chipmunk [81].

Table 10.1 shows an overview of the analysis results. We discuss these results in 

more detail in the following sections.

Since all tests update timestamps, we only note an atomicity violation due to inatomic 

timestamp updates for the ctime/mtime test.

10.4.1 NOVA and NOVA-Fortis

Suvi identifies problems in multiple tests, including multiple final states and 

atomicity violations, and state extraction errors. We identify three root causes.

First, NOVA uses a memcpy function provided by the Linux kernel that uses non-

temporal store instructions. Since non-temporal store instructions require an 

alignment of at least eight bytes, this memcpy function writes any remaining 
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Hello World S W 🗸 🗸 🗸

append 🗸 🗸 🗸 🗸 🗸

atime 🗸 🗸 🗸 🗸 🗸

ctime/mtime 🗸 E A A A

chmod 🗸 🗸 🗸 🗸 🗸

chown 🗸 🗸 🗸 🗸 🗸

link A E 🗸 🗸 🗸

symlink S S 🗸 🗸 🗸

mkdir/rmdir 🗸 E C 🗸 🗸

rename: overwrite A E C 🗸 🗸

rename: directory A E 🗸 🗸 🗸

rename: long name E E 🗸 🗸 🗸

touch 🗸 W 🗸 🗸 🗸

long name E W 🗸 🗸 🗸

unlink 🗸 🗸 C 🗸 🗸

update A E 🗸 A 🗸

fallocate 🗸 🗸 🗸 🗸 🗸

truncate 🗸 E C 🗸 🗸

Legend

🗸 Atomic

A Atomicity violation

S Multiple final states

E State extraction error

W Write error after recovery

C Recovery crash

Table 10.1:  Analysis results of testing PM file systems with the Vinter test cases (see 

Section 10.2.1).

unaligned bytes with regular store instructions, but does not flush these bytes from 

the caches.

These unflushed bytes result in multiple final states in Suvi’s analysis. For the “Hello 

World” test, we observe one extra state with truncated file contents. We show Suvi’s 

analysis output for this test case in more detail in Section 8.6.2. Similarly, Suvi 

detects truncated symlink targets and file names, which causes state extraction 

errors.

This bug is one where Suvi’s improved PM simulation results in different results. 

When analyzing this bug with Vinter, we discussed additional states where some, 

but not all of the unaligned bytes are present [68, §5.3.1]. Suvi correctly does not 

generate these states. As the file only appears after a later metadata update, x86 

global store order enforces that all previous regular stores must have finished.

Second, NOVA does not update the hard link counter atomically as new hard links 

are created.

Third, rename operations have a logic bug that makes them inatomic. NOVA first 

removes the old source and target directory entries before creating a new entry for 
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the rename target. Suvi therefore discovers states during rename operations where 

the file is missing completely.

NOVA-Fortis extends NOVA with data protection mechanisms, including checksums 

and error correcting codes. These features allow NOVA-Fortis to recover some 

missing unaligned bytes, like in the “Hello World” test. However, symlinks are not 

protected and show the same multiple final states as with NOVA.

With NOVA-Fortis, several tests report errors during state extraction or failing write 

operations after recovery. The root cause for these issues is that NOVA-Fortis does 

not always update checksums atomically. Files with a partially-written checksum 

report errors during read and write operations after recovery.

10.4.2 PMFS and WineFS

As we describe in Section 2.3.1, PMFS uses cmpxchg16b for atomic 16-byte updates, 

which actual PM hardware does not support. In our analysis with Suvi, this shows in 

inatomic timestamp updates and data loss in truncate operations. These problems 

are shared with WineFS, which builds on PMFS.

PMFS has another problem where certain updates to the filesystem super block 

trigger an assertion during recovery. Such a file system is then broken and cannot 

be mounted anymore. This bug was fixed in WineFS.

As detected by the “update” test, WineFS introduced an atomicity bug with write 

operations. PMFS performs a write that overwrites existing file data byte-by-byte 

rather than replacing the data atomically.

10.4.3 ZIL-PMEM

ZIL-PMEM is the only cross-media file system in our test set, which we test with 

the QEMU tracer (see Section 9.1). We do not find any crash consistency bugs in 

ZIL-PMEM.

The only problems that Suvi reports are by design of ZFS’s ZIL recovery. When 

the recovery modifies a file with logged updates, it also updates the modification 

timestamp of that file to the time of recovery. We do not consider this a crash con

sistency bug, since the file system is not wrong in noting that a modification was 

performed at recovery time.

10.5 Persistent Caches
The file systems analyzed in the previous section were designed for PM systems 

with volatile caches. With eADR, some PM systems have persistent caches, which 

eliminates the need for cache flushes (see Section  2.4.1). However, even with 

persistent caches, crash consistency remains a challenge. Non-temporal stores 

remain weakly ordered and require memory fences. Finally, intermittent invalid 

states can occur during regular execution as a result of logic bugs.

We assess the effect of persistent caches on file system crash consistency by 

repeating the file system tests from the previous section with Suvi’s eADR mode 

(see Section 8.3.6). In Table 10.2, we highlight tests where the results improve with 

persistent caches.
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write 🗸 🗸 🗸 🗸 🗸

ctime/mtime 🗸 E A A A

link A E 🗸 🗸 🗸

symlink 🗸 🗸 🗸 🗸 🗸

mkdir/rmdir 🗸 E C 🗸 🗸

rename: overwrite A E C 🗸 🗸

rename: directory A E 🗸 🗸 🗸

rename: long name A E 🗸 🗸 🗸

touch 🗸 🗸 🗸 🗸 🗸

long name 🗸 🗸 🗸 🗸 🗸

unlink 🗸 🗸 C 🗸 🗸

update 🗸 🗸 🗸 A 🗸

truncate 🗸 E C 🗸 🗸

Legend

🗸 Atomic

A Atomicity violation

E State extraction error

C Recovery crash

Table 10.2:  Analysis results of testing PM file systems with persistent caches (eADR). 

We only include tests that had failures with volatile caches and show identical results 

in a lighter color.

Only NOVA and NOVA-Fortis show different results. With persistent caches, the 

missing cache flush in the memcpy function for unaligned data is no longer 

necessary. Test failures that originate from that bug therefore disappear.

All other bugs remain with persistent caches, including atomicity bugs in NOVA and 

WineFS, state extraction errors in NOVA-Fortis, and crashes in PMFS.

10.6 Discussion
Short and simple tests are often sufficient for finding crash consistency bugs in PM 

file systems. Since these file systems promise crash-atomic file system operations 

at low latency, their designs often include complex protocols for updating metadata. 

If there are bugs in these update protocols, Suvi’s record-and-replay approach can 

usually discover them from a single execution.

Persistent caches with eADR solve few real-world crash consistency bugs. Correct 

use of memory fences remains necessary for weakly-ordered NT stores, which are 

often preferable for performance (see Section 3.3). Additionally, logic bugs constitute 

the majority of the crash consistency bugs that we observe.

The testing effort with Suvi is low. Running Suvi on the manually written Vinter test 

cases takes only a few minutes. With the aid of Suvi’s tools for state analysis and 

trace debugging, an initial analysis of a file system takes less than one hour.
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Still, we observe that crash consistency is not an evaluated goal of recent research file 

systems. As we describe in Section 2.3, the implementations of recently published 

file systems have major issues that are apparent without using a crash consisten

cy testing tool. We hope that our research motivates future file system researchers 

and developers to properly implement and evaluate the crash consistency of their 

file systems.
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Chapter 11

Conclusion

Persistent memory (PM) offers new opportunities for file systems by enabling direct 

access to storage with low latency, but it also introduces challenges for file system 

design and implementation. In particular, synchronous and fine-grained access to 

PM differs significantly from traditional asynchronous block interfaces to storage. 

In this thesis, we addressed two such challenges, with consequences for efficiency 

and correctness.

As a first challenge, we identified efficiency problems caused by synchronous access 

to PM from the CPU. If PM accesses are delayed due to overload, the CPU stalls, 

wasting CPU time and energy. With Intel Optane PM, such overload arises quickly 

under parallel load. PM software must therefore limit parallelism when accessing 

PM. However, CPU and energy efficiency are rarely explicit goals for PM file systems.

In Chapter 4, we introduced efficiency metrics that capture the CPU and energy cost 

of accessing data from a file system. We evaluated these metrics on multiple PM 

file systems, and found that most PM file systems do not limit parallel access to PM. 

These file systems therefore waste CPU time and energy under parallel load.

Beyond quantifying problematic behavior, our work also enables efficiency compar

isons between different file systems. For file systems that include measures to limit 

parallel PM access, we found that higher throughput does not always imply better 

efficiency. We expect that our work will enable future file systems to include CPU 

and energy efficiency among their goals.

We then proposed measures to mitigate PM overload from parallel accesses. In 

Chapter 5, we described three approaches for controlling parallelism within PM file 

systems. The key idea of these approaches is to eliminate expensive on-CPU waiting 

by blocking processes during overload and allowing other processes to run.

Userspace processes can also access PM directly by requesting a memory mapping 

to PM from the file system. After providing such a mapping, the operating system has 

no further insight into or control over direct PM accesses. In Chapter 6, we proposed 

an approach for accounting direct PM accesses with association to individual 

processes. We showed that our appproach provides accurate throughput estimates 

at low latency. With the accounting information, the operating system can detect 

and mitigate PM overload from userspace accesses. We introduced a scheduling 
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approach that performs automatic core specialization for PM processes and showed 

that this approach can prevent PM overload.

The second challenge for PM file systems is correctness in the presence of crashes. 

Volatile data in the CPU’s write path is lost in the event of a crash, which can 

lead to data corruption. PM applications must therefore carefully manage their 

modifications through the use of PM primitives such as cache flushes and memory 

fences.

In Chapter 8 of this thesis, we introduced Suvi, an approach to crash consisten

cy testing for PM file systems. Suvi is a black-box testing approach that traces the 

PM interaction of a file system in a virtual machine. Suvi then replays the trace, 

simulates the PM write path, and generates crash images, which represent possible 

PM contents in the event of a crash. From the crash images, Suvi can automatically 

detect crash consistency bugs such as atomicity violations.

Suvi improves upon previous approaches to crash consistency testing in multiple 

ways. It supports crash consistency testing for cross-media file systems by tracing 

and simulating NVMe storage devices. It uses an improved simulation of x86 crash 

consistency semantics that models x86 global store order more accurately than 

previous works. Suvi includes three heuristics for fast and targeted crash image 

generation. Our strategy for managing memory images allows Suvi to handle large 

crash images efficiently. Finally, Suvi’s analysis tools provide automatic detection 

of atomicity bugs and assist in determining their root cause.

In Chapter 10, we analyzed multiple PM file systems with Suvi using both manually-

written and automatically-generated test cases. Finally, we discussed several bugs 

that Suvi detected in these file systems.

In combination, the contributions of this thesis provide a foundation for more correct 

and more efficient future PM file systems.

11.1 Outlook
This thesis was largely motivated by, and evaluated on, Intel Optane PM. Even 

though Intel canceled its Optane PM product line, we expect that the contributions 

of this thesis will remain relevant for future PM technologies. In particular, the CXL 

interface, supported by modern Intel and AMD server systems, allows independent 

development of new PM technologies.

Analysis of CXL devices has shown that performance degradation due to overload 

remains a concern [114]. Our metrics for file system efficiency can guide the design 

and implementation of future CXL-based PM file systems.

In Chapter 5, we explored DMA offloading as a mitigation for parallel PM accesses. 

Upcoming CXL-based hybrid SSDs can natively provide an asynchronous DMA 

interface as an alternative to synchronous direct access  [113, 130]. However, 

managing these two access modes from the operating system remains an active 

area of research [50, 77].

In the area of PM access accounting, CXL enables new opportunities by allowing 

innovation at the device level. With support from the CXL device, more accurate 
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accounting at lower overhead becomes possible. We outline such an approach in 

Section 6.8.

Finally, crash consistency testing continues to be important for CXL-based PM 

applications and file systems. The crash consistency semantics of x86 systems do 

not change with CXL. Therefore, Suvi can be used to analyze future PM file systems 

for CXL systems.
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