The Journal of Systems and Software 235 (2026) 112761

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

journal homepage: www.elsevier.com/locate/jss

Mitigation strategies for confidentiality violations in software architecture
using ranked feature importance

Nils Niehues

a* Sebastian Hahner

2 Robert Heinrich (2P

A KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131, Karlsruhe, Germany
b Institute of Software Engineering and Programming Languages, Ulm University, Albert-Einstein-Allee 11, 89069, Ulm, Germany

ARTICLE INFO

Editor: Prof Raffaela Mirandola

Keywords:

Software architecture
Confidentiality
Uncertainty

Machine learning
Data flow analysis

ABSTRACT

A quality attribute like confidentiality is critical to trustworthy software but unfortunately, very challenging to
ensure. This is because modern software systems are complex and interconnected. Architecture-based confiden-
tiality analysis enables the early detection of violations, helping to mitigate risks before deployment. However,
uncertainty in software systems and their environments complicates precise and comprehensive architectural
analysis. Additionally, the complexity of software models and the exponential growth of uncertainty scenarios
pose significant challenges for automated mitigation, often leaving software architects to resolve confidentiality
violations manually, a process that is both time-intensive and error-prone.

In this paper, we extend our machine-learning-based approach to mitigate confidentiality violations. Specif-
ically, we introduce a novel mitigation strategy inspired by TCP Congestion Control, as well as a strategy that
capitalizes on clustering techniques to dynamically adjust batch sizes. Our evaluation on three real-world soft-
ware architectures demonstrates that our extended approach can mitigate confidentiality violations while out-
performing the state-of-the-art. Whereas previously the upper limit was 60 times runtime reduction, now we
achieve 2298 times reduction, with the median being an elevenfold reduction. Our statistical analysis confirms
that the added TCP-inspired strategy is significantly cheaper than the state-of-the-art baseline (Friedman test
p = .025 and Nemenyi post hoc test p = .039), while also having a strong practical impact (Kendall’s W = 0.721).
This extended work deepens our understanding of the nature of uncertainty and also of the techniques optimally
suited to mitigating the violations caused by uncertainties. It takes us one step closer to designing trustworthier
systems.

1. Introduction

the initial assumptions and conditions under which confidentiality mea-
sures were designed (Lehman and Ferndandez-Ramil, 2006; Hahner,

In today’s digital landscape, software systems are becoming increas-
ingly interconnected and more complex, necessitating early and thor-
ough analysis to ensure security-critical quality attributes, such as au-
thenticity, integrity, and confidentiality. Confidentiality is especially as-
sociated with a sense of trust in software. Confidentiality guarantees that
data is “accessible and interpretable only by authorized users within a
specific context of use” (ISO/IEC, 2018). Moreover, the ISO/IEC defines
trustworthiness (ISO/IEC, 2011) as a combination of security, safety,
reliability, resilience, and privacy. Confidentiality is a critical part of
security, and as such, goes a long way to making software trustworthy.
Therefore, quality issues like confidentiality violations must be identi-
fied and also mitigated. However, maintaining confidentiality is increas-
ingly put at risk by such erratic and unpredictable factors as changes in
user behavior or in the system environment, both of which may negate

* Corresponding author.

2025). That unknowable deviation between design behavior and actual
behavior is what we call uncertainty, much as do, too, researchers in
self-adaptive systems, where uncertainty is defined as “any deviation of
deterministic knowledge that may reduce the confidence of adaptation
decisions made based on the knowledge” (Weyns, 2020).

The proactive approach of architecture-based confidentiality anal-
ysis enables software architects to detect potential confidentiality
violations before they occur in the deployed system. By reliably
and automatically identifying issues early in the development pro-
cess, architecture-based confidentiality analysis ensures not just a level
of trustworthiness but crucially as well, a necessary degree of cost-
efficiency, meaning, when issues are addressed earlier in the develop-
ment cycle, costs are lowered dramatically (Glinz, 2006; Boehm and
Basili, 2001). Data flow and architectural diagrams assist in the early

E-mail addresses: nils.nichues@kit.edu (N. Niehues), sebastian.hahner@kit.edu (S. Hahner), robert.heinrich@uni-ulm.de (R. Heinrich).

https://doi.org/10.1016/j.jss.2025.112761

Received 3 March 2025; Received in revised form 28 November 2025; Accepted 22 December 2025

Available online 26 December 2025

0164-1212/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0009-0006-4295-7232

$p = .025$

$p = .039$

$= 0.721$

$p = .025$

$= 0.721$

$p = .039$

$hasDataLabel$

$hasNodeLabel$

\begin {align}&hasDataLabel(Personal) \land \neg hasNodeLabel(nonEU) \\ &hasDataLabel(Personal) \land hasDataLabel(Sanizited)\end {align}

$2^4=16$

4

$2^4=16$

e^{-r}

r

k

$k=8$

$\textit {Precision@K} = \frac {TP}{TP + FP} \in [0,1]$

\begin {align*}&DataLabel(entrypoint) \implies DataLabel(encrypted_connection)\\ &NodeLabel(internal) \implies DataLabel(encrypted_connection)\\ &NodeLabel(local_logging) \implies NodeLabel(internal)\end {align*}

\begin {align*}&NodeLabel(internal) \implies DataLabel(auth_request)\\ &NodeLabel(login_attempts_reg) \implies NodeLabel(auth_server)\\ &DataLabel(entrypoint) \implies DataLabel(encrypted_connection)\\ &NodeLabel(local_logging) \implies NodeLabel(internal)\end {align*}

\begin {align*}&NodeLabel(nonEU) \implies \neg DataLabel(Personal)\\ &NodeLabel(Processable) \implies \neg DataLabel(Encrypted)\\ &NodeLabel(Develop) \implies \neg DataLabel(Personal)\end {align*}

0.025

0.721

$\alpha = 0.05$

$p = .039$

$\alpha = 0.05$

$p = .025$

$= 0.721$

$p = .039$

https://orcid.org/0000-0003-3450-0508
https://orcid.org/0000-0003-0779-9444
mailto:nils.niehues@kit.edu
mailto:sebastian.hahner@kit.edu
mailto:robert.heinrich@uni-ulm.de
https://doi.org/10.1016/j.jss.2025.112761
https://doi.org/10.1016/j.jss.2025.112761
http://creativecommons.org/licenses/by/4.0/

N. Niehues et al.

identification of sources of uncertainty which may affect confidentiality
(Schneider et al., 2024). Importantly, most sources of uncertainty can be
addressed during the design phase (Hahner et al., 2023). For example,
uncertainties about server deployment locations or about encryption ac-
tivation can influence data flow and compliance with confidentiality re-
quirements. Overall, analysis approaches based on software architecture
effectively identify and express sources of uncertainty.

Notwithstanding, a significant challenge remains in assessing the im-
pact of uncertainty on confidentiality requirements, and this assessment
is rendered all the more challenging by the complexity of modern soft-
ware systems and the numerous forms of uncertainty thus entailed (Hah-
ner, 2021). For instance, if it is uncertain where a server processing
personal data is located, that may cause potential regulatory violations
(e.g., under the GDPR (Union, 2016)). Moreover, multiple uncertainty
sources can interact (Camara et al., 2024), resulting in previously unpre-
dicted uncertainty interactions. For example, missing encryption might
cause a violation only if the database server is deployed outside of the
European Union. Hence, it is insufficient to identify sources of uncer-
tainties or analyze their impact merely in isolation.

One attempt to analyze such quality attributes as confidentiality un-
der uncertainty is the Architecture-Based and Uncertainty-Aware Confi-
dentiality Analysis (ABUNAI) approach (Hahner, 2025). The ABUNAI
approach (Hahner, 2025) provides a viable solution because it detects
violations of confidentiality constraints that are caused, ultimately, by
uncertainties existing in any relation to the system at all. ABUNAI can
effectively identify confidentiality violations, even where multiple un-
certainty sources interact. Essentially, by expressing different scenario
combinations as independent data flows, ABUNAI operationalizes un-
certainty so as to achieve maximal coverage of sources of uncertainty.
The limitation of ABUNAI, however, is that it does not offer solutions
to mitigate those violations (Seifermann et al., 2022; Peldszus et al.,
2019; Hahner, 2025). Consequently, software architects must resort to
manually resolving each identified confidentiality violation, a process
that is both labor-intensive and prone to human error, especially in
large-scale systems (Xu and Zhou, 2015). Additionally, the exponen-
tial growth of possible combinations of uncertainty scenarios presents
a major challenge for automated solutions. Exploring all possible con-
figurations quickly becomes computationally prohibitive, a known issue
in the field of design space exploration (Koziolek et al., 2011; Koziolek,
2011).

Our previous work (Niehues et al., 2025) addressed these shortcom-
ings and mitigated confidentiality violations using machine learning
that (a) assessed uncertainty impact by a ranking algorithm and that
(b) prevented violations by an automated mitigation mechanism that
only focuses on the relevant uncertainties from (a). That approach en-
abled the effective maintenance of confidentiality requirements while
also reducing analysis runtime by a factor of 60 compared to the state-of-
the-art method (Hahner, 2025). Nonetheless, our previous approach in-
curred considerable cost in runtime latencies, and worse, it disregarded
the importance of uncertainty dynamics as well as the rapidity with
which even small but redundant combinations will escalate the mitiga-
tion runtime.

In that previous work (Niehues et al., 2025), we employed fixed
batch sizes to divide uncertainties into equal parts so that we could test
all possible combinations within each batch. The method was definitely
straightforward, but it failed to account for unique structural variations
in the models, where dynamically adjusting batch sizes can yield better
results. Also, as to the cost-inefficiency of our previous approach, we re-
quired unnecessary checks at the start of the process because we failed
to appreciate how models often contain numerous uncertainties, several
of which contribute to confidentiality violations. Consequently, when
we tested scenarios where the number of uncertainties was insufficient,
our approach was unable to consider all relevant uncertainties. Taken
together, these shortcomings of our previous approach point the way
forward to a comprehensive architecture-based analysis that leverages
machine learning to efficiently mitigating violations in confidentiality.

The Journal of Systems & Software 235 (2026) 112761

The novel contributions of our extension here of Niehues et al. (2025)
are as follows:

C1 Our extended approach adapts techniques from telematics to tackle
the plethora of unnecessary combinations that impede the initializa-
tion of mitigation. To that end, we introduce a first new mitigation
strategy inspired by TCP Congestion Control (Blanton et al., 2009).
In TCP Congestion Control, window sizes grow exponentially until
a threshold is reached, and we have adopted this same technique to
enable faster mitigation of all confidentiality violations caused by
uncertainties.

C2 Our extended approach adapts batch sizing dynamically and so is
able to ensure a more coherent and effective mitigation process. To
that end, we introduce a second new mitigation strategy. It uses clus-
tering techniques — as opposed to arbitrary fixed slices — to adjust
batch sizes based on the input model dynamically.

C3 An enhanced evaluation provides statistical significance for the state-
of-the-art performance of our extended approach. We found a sig-
nificant difference (Friedman test p = .025) between our strategies
and the baseline and as well, a strong practical impact (Kendall’s W
= 0.721). Further, our new strategy in C1 proved to be significantly
faster than the baseline (Nimenyi post hoc test p = .039).

The paper is organized as follows. Section 2 describes the founda-
tions for this work and Section 3 introduces a running example. In Sec-
tion 4, we provide an overview of our extended approach, and this sets
the stage for the uncertainty ranking in Section 5 and for the mitiga-
tion of violations in Section 6. We evaluate our work in Section 7, and
discuss the results and broader implications in Section 8. Finally, we
present related work in Section 9 and conclude in Section 10.

2. Foundations

This section outlines the foundations essential for understanding the
contributions of this work. It covers the syntax of Data Flow Diagrams
(DFDs), its application in confidentiality analysis, the role of uncertainty
in software architecture, and the machine learning techniques employed
to address constraint violations in uncertain systems.

2.1. DFDs and confidentiality analysis

DeMarco (1978) introduced DFDs to visually represent how data
moves through a system, including its processing steps. A network of
nodes and flows represents the data movement through a system, where
nodes correspond to entities like processes, data stores, or external en-
tities. System analysts widely use DFDs because they clearly and simply
describe how a system processes data using a network of data transform-
ers (Larsen et al., 1994; Schneider et al., 2024).

The classic DFD model lacks the expressiveness required for ad-
vanced applications like detecting data flow constraint violations or
addressing non-functional attributes such as access control and hard-
ware constraints. To address this, Seifermann et al. (2022) introduced
an improved DFD metamodel with structures for security properties and
resource allocations, enabling automatic constraint checks and greater
system complexity representation.

To address rule explosion and performance bottlenecks with large
systems, Boltz et al. (2023) developed an improved DFD-based model.
Their method leverages Transposed Flow Graphs (TFGs), which are di-
rected and acyclic graphs that trace the flow of data through the system
from many sources to one sink enabling efficient constraint checking.
This model includes the following key elements:

Nodes are categorized into external nodes (data sources/sinks), pro-
cess nodes (which modify and forward data), and store nodes (which
store and emit data). Flows represent data transfer between nodes. La-
bels are used to annotate node data characteristics (e.g. Encrypted or
Personal), which propagate through the DFD and are critical for as-
sessing confidentiality. Behaviors define how data is processed at each

N. Niehues et al.

node, with assignments and pins that specify input/output operations.
Assignments forward data or modify properties by adding or removing
labels.

By augmenting traditional DFDs with these features, the Data Flow
Analysis (DFA) can check complex requirements such as access control,
geographical data restrictions, and hardware-related constraints and de-
tect violations (Boltz et al., 2023). As such an analysis either finds con-
fidentiality violations or does not, we consider confidentiality a strictly
binary attribute.

2.2. Uncertainty in software architecture

Uncertainty is defined as “any deviation of deterministic knowledge
that may reduce the confidence of adaptation decisions made based on
the knowledge” (Weyns, 2020). Uncertainty in software systems arises
from incomplete or ambiguous information about the system’s design or
operation and can impact various aspects of system behavior, including
security, performance, and reliability (Walker et al., 2003). In the con-
text of this work, we address uncertainties in software architecture mod-
els and their influence on confidentiality. Here, we focus on software-
architectural uncertainty that resolves the lastest during the deployment
and can effectively be addressed using architectural approaches (Hahner
et al., 2023).

Hahner et al. (2023) proposed a classification of architectural uncer-
tainty that can be applied to DFDs to model the impact of uncertainty
on data flow and constraint violations. The classification identifies dif-
ferent types of uncertainties, each related to architectural elements in
the DFD: Behavior uncertainties relate to the specific actions or functions
process nodes perform. For example, there may be uncertainty regard-
ing whether a node will apply encryption or simply forward the incom-
ing data. Node uncertainties describe the properties of external nodes.
For instance, it may be uncertain whether a database server is deployed
within or outside the European Union. Flow uncertainties affect the pos-
sible routes that data may take through the system, including potential
variations in the data pathway. For example, there may be uncertainty
about whether data will bypass certain nodes or flow through additional
processing stages.

Hahner (2025) models these uncertainties in DFDs using the
Architecture-Based and Uncertainty-Aware Confidentiality Analysis
(ABUNALI) approach, which analyzes combinations of uncertainty sce-
narios to identify confidentiality violations. This helps to identify risks
and violations earlier in the design process and providing the fundamen-
tals for this work.

2.3. Machine learning techniques

This work employs different supervised and unsupervised machine
learning techniques to analyze the impact of different uncertainties on
data flows and identify patterns that could lead to confidentiality vio-
lations. The goal is to detect violations and understand their underly-
ing causes, helping to prioritize uncertainties for resolution. This sec-
tion provides a short overview of the utilized techniques. Exploratory
Factor Analysis (EFA) simplifies complex datasets by uncovering latent
factors underlying variable relationships (Hooper, 2012; Yong et al.,
2013). Principal Component Analysis (PCA) reduces dimensionality by
transforming variables into orthogonal components, revealing primary
variance sources (Abdi and Williams, 2010). Random Forests (RF) im-
proves predictive accuracy through an ensemble of decision trees, espe-
cially in high-dimensional data (Breiman, 2001). Linear Regression (LR)
and Logistic Regression (LGR) model relationships between inputs and
outcomes, offering interpretable coefficients and binary classification,
respectively (Su et al., 2012; Nick and Campbell, 2007). Linear Discrim-
inant Analysis (LDA) enhances class separation by projecting data into
lower-dimensional space (Balakrishnama and Ganapathiraju, 1998).

The Journal of Systems & Software 235 (2026) 112761

it ? % U1: User Input ;'(9 \; U2: Data Processing
N 4 . e

~ - . .
- ~ -

E :: Database E

Service

N Online
Shop

: 79 N el
U3: Deployment -\\ ? ”,4 «deploy»

. -
~a
S
N

i q

Cloud Service l‘,

'
L] ’
,

On Premise Server

U4: Provider Trustworthiness

Fig. 1. Running example of a simple online shop.

3. Running example

We illustrate the application and impact of our mitigation approach
with a simplified model of an online shop. Fig. 1 shows the architecture
model consisting of the user, two software components, and two data
storages and has been used in similar work (Hahner et al., 2024). The
User sends data to the Online Shop component, which directs it to the
Database Service. The Database Service stores data on either the Cloud
Service or the On-Premise Server. We identified four uncertainties in this
online shop, depicted by dotted cycles with a question mark.

Ul The user input may contain either public or personal data

U2 The data might get sanitized or forwarded unfiltered

U3 It is unclear on which server the data will be stored

U4 The location of the cloud server is unclear, e.g., inside or outside the
European Union.

We define two confidentiality requirements for our model: personal data
shall never leave the European Union and shall always be sanitized. Vi-
olations of these requirements could lead to data breaches or regulatory
non-compliance.

We use the predicates hasDataLabel and hasNodeLabel to tag each
data flow and component with specific characteristics, verifying compli-
ance with confidentiality requirements: Using these predicates, we can
formalize our constraints:

hasDataLabel(Personal) A ~hasN odeLabel(nonEU) D
hasDataLabel(Personal) A has DataLabel(S anizited) 2

Depending on the configuration of our model, both are violated. The
first is violated if the user inputs personal data that flows to the cloud
server with a non-EU location. The second is violated if the user inputs
personal data that is not sanitized at the processing node

To automatically modify the model without violating constraints,
one could try all combinations of uncertainty values and check for con-
straint violations in each resulting model.

As displayed in Table 1, this leads to an exponentially increasing
number of configurations that need to be checked, with two options for
four uncertainties sources being 2* = 16. We found a solution if one of
these configurations does not violate the given constraints.

When looking at the table, one might notice that certain uncertain-
ties, such as the nature of user input, have a more significant impact on
the outcome. For example, if the input is public, a violation is avoided
regardless of other settings. Therefore it makes sense to try variations of
the important uncertainties first to reduce the complexity and runtime.

In complex models with multiple uncertainties, prioritizing them
manually is impractical, tedious, and error-prone, which motivates our

N. Niehues et al.

Table 1

All possible combinations for the given uncertainties.
Input Processing Deployment Location Violation
Personal Sanitized On Premise EU False
Personal Sanitized On Premise non EU False
Personal Sanitized Cloud EU False
Personal Sanitized Cloud non EU True
Personal Unfiltered On Premise EU True
Personal Unfiltered On Premise non EU True
Personal Unfiltered Cloud EU True
Personal Unfiltered Cloud non EU True
Public Sanitized On Premise EU False
Public Sanitized On Premise non EU False
Public Sanitized Cloud EU False
Public Sanitized Cloud non EU False
Public Unfiltered On Premise EU False
Public Unfiltered On Premise non EU False
Public Unfiltered Cloud EU False
Public Unfiltered Cloud non EU False

machine-learning approach to efficiently identify important uncertain-
ties based on existing violations, making it suitable for scalable applica-
tions in complex models. While checking 16 combinations for 4 uncer-
tainties by hand may be doable, checking 1024 for 10 is not.

4. An approach to rank and mitigate confidentiality violations

This paper extends our previous approach (Niehues et al., 2025) for
analyzing and adjusting DFDs to ensure compliance with confidentiality
constraints while also accounting for uncertainties in the model. In this
section, we provide an overview of our extended approach. As illustrated
in Fig. 2, our extended approach focuses on identifying and addressing
uncertainties that could lead to confidentiality breaches. Our approach
systematically detects and configures valid scenarios within the input
model. By modifying only the necessary uncertainties to achieve com-
pliance, we maintain the integrity of the original model as much as pos-
sible while also optimizing the analysis runtime.

In the first part of our approach, we pinpoint uncertainties that cause
constraint violations. To achieve this, we implement a machine-learning
ranking system that distinguishes relevant uncertainties from those that
do not affect confidentiality. We begin the approach by transforming the
output of an uncertainty-aware confidentiality analysis into categorical
training data, which highlights the effects of various modeled scenar-
ios on constraint violations. We then apply a range of machine learning
techniques—both unsupervised and supervised—including EFA, PCA,
RF, LR, LGR and LDA, to rank uncertainties based on their potential
to cause violations. This ranking helps prioritize uncertainties in subse-
quent steps.

In the second part of our approach, we iteratively mitigate these
ranked uncertainties by systematically testing combinations of scenar-
ios to resolve constraint violations while minimizing disruption to the
model. We use a greedy approach to apply various mitigation strategies,
ranging from modifying single uncertainties to testing broader subsets,
to find configurations that best satisfy confidentiality constraints. This
iterative refinement ensures a balance between runtime efficiency and
minimal impact on the original model structure, adjusting only the most
critical uncertainties for achieving compliance.

In cases like the running example where multiple solutions are possi-
ble, the approach further optimizes for solutions that modify the fewest
number of uncertainties. By exploring alternative configurations that
leave as many uncertainties as possible intact, we aim to retain the flex-
ibility of the original DFD, while complying with confidentiality con-
straints.

This combined method offers an advancement by enabling auto-
mated, efficient mitigation of confidentiality violations within uncertain
DFDs.

The Journal of Systems & Software 235 (2026) 112761

Rank
scenarios

i

Generate
training data

All combinations
checked?

Model contains
violations?

Try next
combination

Mitigation
successful

Mitigation
failed

Fig. 2. Simplified pipeline of the approach, where blue denotes automatic ac-
tivities and orange denotes semi-automatic activities. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)

5. Ranking uncertainties based on constraint violations

In our previous work (Niehues et al., 2025), we introduced an ap-
proach for ranking uncertainties by analyzing their impact on constraint
violations using ranked feature importance. This approach begins with
methods for generating training data tailored for ranking purposes.
Next, we apply techniques to assess the importance of uncertainties, fol-
lowed by a strategy to aggregate rankings across multiple constraints.
Each step leverages machine learning to systematically prioritize uncer-
tainties with the greatest potential impact on confidentiality or other
constraints.

5.1. Generating training data for ranking uncertainties

To begin, we use Transposed Flow Graphs (TFGs) to generate train-
ing data for uncertainty ranking. Each TFG represents a unique combi-
nation of uncertainty scenarios that is checked by ABUNAI to determine
whether a confidentiality violation occurs (Hahner, 2025). For each con-
straint here, we generate separate training data automatically. Thus,
the uncertainties themselves do need to be specified manually, but the
training-data generation is fully automated via ABUNAL For example,
only 4 uncertainties require specifying in our running example, and the
2% = 16 TFGs are generated automatically by ABUNALI Next, each TFG as
well as its violation status are automatically translated into categorical
data which are input-ready for the machine learning techniques. Each
row corresponds to a TFG, while each column corresponds to a specific
uncertainty scenario. To maintain a consistent tabular format, we use
placeholder values for missing uncertainties wherever a TFG does not
flow through all uncertainty sources. This structured approach allows
for machine learning models to process data even when some uncer-
tainties are absent in specific scenarios. To balance the dataset, we in-
clude both TFGs that cause confidentiality violations and TFGs that do
not. This improves the model’s ability to identify critical uncertainties
by reducing the noise from irrelevant configurations.

Table 2 presents the categorical training data derived from trans-
forming TFGs of our running example (Section 3). Since the cloud
server’s location is irrelevant if we store data on the on-premise server,
these scenarios are marked with -. The example consists of 4 uncertainty
sources, each with 2 scenarios, and we check both constraints on each
scenario combination. These results are shown in columns C1 and C2 of
Table 2.

5.2. Ranking uncertainties for importance

Using machine learning, we can prioritize uncertainties by analyz-
ing how their different scenarios influence constraint violations. To de-
rive rankings, we employ both unsupervised and supervised learning
approaches.

Unsupervised Approaches rely on identifying underlying patterns
in TFG-based training data. Techniques such as PCA and EFA are use-
ful for reducing data complexity while still retaining the most critical

N. Niehues et al.

Table 2

Training data for Fig. 1, where U stands
for uncertainty, C for constraint, S for sce-
nario and - for irrelevant.

Ul U2 U3 U4 cC1 Cc2
S1 S1 S1 - False False
S1 S1 S1 - False False

S1 S1 S2 S1 False False
S1 S1 S2 S2 True False
S1 S2 S1 - False True
S1 S2 S1 - False True
S1 S2 S2 S1 False True
S1 S2 S2 S2 True True
S2 S1 S1 - False False
S2 S1 S1 - False False
S2 S1 S2 S1 False False
S2 S1 S2 S2 False False
S2 S2 S1 - False False
S2 S2 S1 - False False
S2 S2 S2 S1 False False
S2 S2 S2 S2 False False

variables (Abdi and Williams, 2010; Williams et al., 2010). PCA pri-
oritizes uncertainties, which explain the highest variance in the data,
generating components emphasizing highly correlated variables. EFA,
on the other hand, focuses on latent factors that reveal relationships be-
tween uncertainties. Both approaches rank uncertainties by the degree
to which they correlate with key data patterns, derived from component
or factor loadings (as outlined in Algorithm 1). This method is effective
for uncovering those subtle patterns across TFGs which might influence
constraint violations.

Algorithm 1 Ranking unsupervised.

function RANKUNSUPERVISED(data_rows)
ranking < {}
result « CREATECOMPONENTS(data_rows)
components « result.Components
loadings < components.Loadings
for loading € loadings do
continue for Constraint violated column
ranking[loading.Name] « suM(loading.Values)
end for
return SORTDICTDESCENDING(ranking)
end function

Supervised Approaches provide direct insight into the relationship
between uncertainties and violations by assessing confidentiality viola-
tions in different scenarios. Techniques such as LDA, RF, LR, LGR are
applied to classify TFGs according to violation status (Linardatos et al.,
2020). Each technique assesses the importance of an uncertainty based
on its impact on the prediction outcome. For instance, LDA calculates
linear discriminants that separate violation and non-violation cases,
with coefficients indicating the influence of each uncertainty (Balakr-
ishnama and Ganapathiraju, 1998). In contrast, Random Forests mea-
sure variable importance through mean decreases in impurity across
decision trees, capturing both individual and combined effects of uncer-
tainties (imp, 2024; Breiman, 2001). As illustrated in Algorithm 2, this
approach for deriving feature importance from each model provides a
foundation for ranking uncertainties by their contribution to constraint
violations.

To illustrate the ranking result, we use logistic regression to rank
the training data for the running example shown in Table 2. Table 3
shows the importance of uncertainties for the individual constraints. In
Table 3a, U4 is the most important uncertainty for constraint 1, which
makes sense since deploying the cloud server inside the EU will never
lead to a violation. Similarly, Table 3b shows that U1 and U2 are equally

The Journal of Systems & Software 235 (2026) 112761

Algorithm 2 Ranking supervised.

1: function RANKSUPERVISED(data_rows)

2: model « SupervisedMachineLearningTechnique()

3 FITMODEL(model, data_rows)

4 feature_imporances < model.Feature_importances
5: feature_names < data_rows.Column_names
6.
7

: return {feature_names, feature_imporances}
: end function

Table 3
Individual importance of uncer-
tainties for the running example.

Uncertainty Importance
(a) Constraint 1.

U4 0.6307
U1 0.5836
U3 0.5713
U2 0.5000
(b) Constraint 2.

U1 0.6250
U2 0.6250
U3 0.5000
U4 0.5000

important for constraint 2 because only combinations of these two can
lead to a sanitization violation.

5.3. Aggregation of rankings for multiple constraints

In systems with multiple constraints (such as the running example)
each constraint might yield a different ranking for the same set of un-
certainties. Therefore, we construct an overall ranking by aggregating
rankings from individual constraints. To this end, we focus only on the
uncertainties globally impacting confidentiality violations. Specifically,
to normalize each constraint-specific ranking, we sum all rankings and
divide by the total, ensuring that all scores range from 0 to 1. This
normalization maintains comparability across constraints which exhibit
varying levels of severity in violations. We evaluated several aggrega-
tion methods and found that each offers unique benefits:

5.3.1. Simple summation

This method sums the normalized scores of each constraint-specific
ranking, producing a cumulative score. While straightforward in the ex-
ecution, this approach inflates uncertainties that, in truth, are not crit-
ical to any specific violation because only moderately important across
multiple constraints.

5.3.2. Exponential decay

Applying e™" to the summative rank r of each uncertainty reduces
the impact of lower-ranked uncertainties. This approach emphasizes the
top-ranked uncertainties of each constraint, thus providing a clearer fo-
cus on the most significant factors.

5.3.3. Top-3 emphasis

To highlight only the most critical uncertainties, scores are assigned
to only the top-three-ranked uncertainties for each constraint, setting
all others to zero. Clearly, this approach risks missing lower-ranked yet
impactful uncertainties, but as a result, the approach also reduces noise
from uncertainties with minimal contributions to constraint violations.

Top-3 Emphasis unifies constraint-specific rankings to identify, across
complex models, the uncertainties with the greatest potential for miti-
gating violations in confidentiality or compliance. While the respective
optimal aggregation strategy depends on the structure of the DFD and

N. Niehues et al.

Table 4
Aggregated importance of uncer-
tainties for the running example.

Uncertainty Importance
U1 1.3678
U4 1.0000
U2 0.3678
U3 0.1353

also on the nature of the constraints, our evaluation shows that expo-
nential decay results in the overall best rankings. To illustrate the aggre-
gation, we use the individual importance from the running example (as
in Table 3) but aggregated using exponential decay. The results (shown
in Table 4) confirm that U1 has the most impactful importance because
it can lead to violations of both constraints.

6. Mitigation strategies

We mitigate confidentiality violations by configuring the software
architecture to use a combination of uncertainty scenarios that com-
ply with confidentiality requirements. Our approach aims to find a
violation-free model by generating and evaluating new models in which
high-ranking uncertainties are iteratively combined and tried out. We it-
eratively replace uncertainties with their concrete scenarios to produce
new model variations. We then check each model for confidentiality vi-
olations. If we discover a violation-free model, the mitigation is success-
ful, and the approach terminates. If not, the approach continues, using
other uncertainties in the ranking until no further options are available.
We want to note, though, that our approach fails if no combination of
uncertainty scenarios satisfies all confidentiality requirements. The cho-
sen mitigation strategy determines how many uncertainties we use per
model generation. In our previous work (Niehues et al., 2025), we pre-
sented the Depth-First-Search strategy, the incremental increase strategy
and fixed subset strategies. This paper extends these with the Fast Start
strategy (Section 6.3) and the Clustering strategy (Section 6.5).

6.1. Depth-first-search strategy

The simplest strategy involves trying all combinations of uncertain-
ties ranked by appearance in the TFGs, allowing a straightforward anal-
ysis without additional overhead. This depth-first-search strategy often
works well for small models, as it avoids the time-consuming task of
generating training data and ranking the importance of uncertainties.
However, this strategy may lead to exponentially increasing runtime if
critical uncertainties appear closer to the end of the TFG. In such cases,
delays are significant, as more extensive analysis is required to evaluate
later uncertainties in the sequence. The DFS strategy serves as a baseline
for our evaluation.

6.2. Incremental increase strategy

In this strategy, uncertainties are iteratively included in small incre-
ments: First, only the scenarios of the top-ranked uncertainty are consid-
ered, then the combination of the top two, then the top three, adding one
uncertainty per iteration. We generate and analyze a new model variant
for each unique scenario combination of these uncertainties. For the run-
ning example, we would check all scenario combinations for {U1}, then
{U1,U4}, then {U1,U4,U2} and finally {U1,U4,U2,U3}. Using the public
data scenario for U1 already satisfies all constraints, so we can stop after
the first iteration. This strategy is efficient when constraint violations are
caused by a few high-ranking uncertainties. However, frequently gen-
erating and evaluating models may increase runtime compared to other
strategies.

The Journal of Systems & Software 235 (2026) 112761

16 1

14 A

12

10 A

Uncertainties

1 2 3 4 5 6 7 8 9
Iteration

10 11 12

Fig. 3. Combined uncertainties per iteration in the Fast Start approach, with
exponential growth up to a threshold, followed by incremental increases.

6.3. Fast start strategy

This strategy extends the incremental increase and is inspired by
the TCP Congestion Control (Blanton et al., 2009). In the first phase, we
increase the amount of combined uncertainties exponentially until we
reach a threshold. We use half of the total number of uncertainties as
the threshold. Afterward, we continue to include uncertainties incre-
mentally. As before, we halt the approach when we find a valid config-
uration. Fig. 3 shows an example for 16 uncertainties with a threshold
of 8.

The main drawback of the Incremental Increase strategy is that when
numerous uncertainties cause constraint violations, many unnecessary
model variants are generated early in the approach. The Fast Start strat-
egy mitigates this inefficiency by leveraging the fact that small uncer-
tainty combinations can be evaluated quickly. By initially growing expo-
nentially, we rapidly approach a meaningful threshold before switching
to incremental increases. This balances computational efficiency with
the need to explore impactful uncertainty combinations while minimiz-
ing redundant evaluations.

6.4. Fixed subset strategies

With a good ranking, we can assume that constraint-causing uncer-
tainties will likely appear in the top-ranked portion. Therefore, a subset-
based strategy can improve efficiency by reducing redundant combina-
tion checks. In this strategy, uncertainties are split into varying amounts
of batches, for example, into four, three, or two batches. We evaluate
each subset by testing all scenario combinations within that batch un-
til we find a violation-free model, allowing the approach to halt early.
If we do not find a solution within the current batch, we include the
next subset, expanding the pool of uncertainties to test additional com-
binations. When using two batches for the running example, we would
check all scenario combinations for {U1,U4}, and then {U1,U4,U2,U3}.
As we can satisfy all constraints within the first batch, we can stop the
approach. This strategy performs efficiently when there are many viola-
tions causing uncertainties that appear high in the ranking. However, if
some of these uncertainties rank lower than half, the runtime increases
as more subsets are evaluated.

N. Niehues et al.
6.5. Clustering strategy

This strategy extends the fixed subset strategy by dynamically de-
termining batch sizes based on the importance of uncertainties using
clustering. Specifically, we apply k-means clustering (Kodinariya et al.,
2013) on the uncertainty importance scores to form clusters, which are
then processed similarly to fixed batches.

To determine the optimal number of clusters (k), we use the Sil-
houette coefficient, which measures how well the clusters align with
uncertainty importance (Kodinariya et al., 2013). We tested values of k
ranging from 2 to 8, and our experiments indicated that k = 8 provided
the best results for our evaluation scenarios.

By dynamically adjusting batch sizes based on model-specific un-
certainty importance, this approach combines the advantages of batch-
based testing while ensuring better alignment with the given model’s
structure.

6.6. Optimizing modified uncertainties

We defined an additional approach displayed in Algorithm 3 to min-
imize unnecessary uncertainty modifications that refines the model by
merging versions that differ by only a single uncertainty. The algo-
rithm works in combination with the previous strategies and returns
a list of relevant scenarios, marks irrelevant uncertainties. It is espe-
cially useful for architects who want to retain as much modeled un-
certainty as possible. The algorithm identifies and merges models that
differ by one uncertainty, reducing unnecessary modifications. If two
models contain all possible scenarios of a particular source, the algo-
rithm marks that source as irrelevant for constraint violations. Other-
wise, the algorithm merges the models to include the scenarios used for
that source. We iterate the approach until no further optimizations are
possible.

Algorithm 3 Optimize amount of uncertaintes.

1: function SIMPLIFYMITIGATION(models :
ioAmounts : List of Integer)

List of String, scenar-

2: newModels < models
3: changeHappened « true
4 while changeHappened do
5: changeHappened « false
6: for all pairs of models (m;, m;) in newModels do
7: if models differ by one uncertainty « then
8: mergedModel « m; Um;
9: if mergedModel satisfies scenarios then
10: u « irrelevant
11: end if
12: newModels < newModels U mergedModel
13: newModels < newModels \m; \ m;
14: changeHappened « true
15: end if
16: end for
17: end while
18: return newModels

19: end function

Through these strategies, the mitigation approach offers flexible
ways to reduce runtime and ensure minimal alterations to the model,
balancing effectiveness and efficiency based on the specific characteris-
tics of each ranked uncertainty.

7. Evaluation

Our evaluation aims to assess whether the proposed mitigation ap-
proach can accurately identify relevant uncertainties and repair confi-
dentiality violations while scaling well with an increasing number of

The Journal of Systems & Software 235 (2026) 112761

uncertainties. To answer this, we ran exhaustive experiments on three
software architecture models. In this section, we present our plan, de-
sign, and results. To close out the section, we cover any possible threats
to validity.

7.1. Goal, questions, and metrics

We use a Goal-Question-Metric (GQM) plan (Basili and Weiss, 1984;
Basili, 1992) to structure the evaluation. To enhance validity, we align
our plan with related work (Hahner et al., 2023b,a) and use well-known
metrics (Kar et al., 2015).

Our Goal is to evaluate the quality of our mitigation approach com-
pared to existing approaches (Hahner et al., 2023b,a). We ask the fol-
lowing questions:

Q1 How precisely do the proposed ranker and aggregation strategies
identify relevant uncertainties?

Q2 How effective is the automatic mitigation in repairing confidentiality
violations?

Q3 How scalable are the refactored mitigation strategies?

Q4 How scalable are the new proposed mitigation strategies?

Question Q1 investigates the precision of the ranking and aggrega-
tion strategies. We evaluate and compare all previously introduced rank-
ing strategies, i.e., Exploratory Factor Analysis (EFA), Principal Com-
ponent Analysis (PCA), Random Forests (RF), Linear Regression (LR),
Logistic Regression (LGR), and Linear Discriminant Analysis (LDA), see
Section 2. Furthermore, we consider the three aggregation strategies
introduced in Section 5, i.e., simple summation (SUM), exponential de-
cay (EXP), and top-3 emphasis (Top3). To assess the ranking results,
we apply the often used Precision@K (M1.1) metric that measures “the
number of relevant items at the top k positions of a ranked list” (Kar
et al.,, 2015). An uncertainty is relevant, i.e., a true positive (TP) if it
causes a confidentiality violation. Otherwise, it is irrelevant, i.e., a false
positive (FP). For instance, Uncertainty U1 in our running example is al-
ways relevant as it affects both confidentiality requirements regardless
of the other uncertainties. We calculate Precision@K = 7 PT+PFP € [0,1]
with K being the rank of the last relevant uncertainty. Otherwise,
the ranking could ignore relevant uncertainties and negatively impact
the recall, which shall be avoided in confidentiality analysis (Hahner
et al., 2023b). Put simply, we investigate how many irrelevant uncer-
tainties were ranked among all relevant uncertainties, where lower is
better.

Question Q2 investigates the effectiveness of our automatic mitiga-
tion in producing repaired models without confidentiality violations.
To answer this question, we compare the number of confidentiality vi-
olations before the mitigation (M2.1) and after the mitigation (M2.2).
Trivially, the mitigation shall remove identified confidentiality viola-
tions without reintroducing new violations. Thus, lower is better.

Finally, with questions Q3 and Q4 we investigate the scalability of
the mitigation. We consider the mitigation strategies that determine
how uncertainties are selected for the mitigation, i.e., incremental in-
crease (INCREASE), Fast Start (FASTSTART), fixed subsets splitting the
relevant uncertainties into two halves (HALF), or four quarters (QUAR-
TER) and clustering. (CLUSTER), see Section 6. We compare these strate-
gies against each other and against Depth-First-Search (BRUTE), repre-
senting the baseline of the ABUNAI approach. Here, we want to asses
which strategy is expedient and whether we can outperform the state
of the art. We measure the runtime (M3.1) of the approach for ris-
ing numbers of relevant and irrelevant uncertainties to evaluate the
scalability.

7.2. Scenarios

We selected three diverse software architectures in the form of DFDs
as evaluation scenarios. They differ in size (5 to 18 nodes), interconnect-
edness, and the number of uncertainties (7 to 21), representing a range

N. Niehues et al.

’ movie_catalog_service external website

!

ratings_data_service

movie_info_service

discovery_server

Fig. 4. Spring boot architecture.

github_repository

config_service

customer_service store_service

account_service

’ foodtray_service

<N

item_service J price_service

discovery_service

Fig. 5. Tap and eat architecture.

of real-world architectures. These systems also span varied technolog-
ical and functional domains, including open-source microservices and
secure online banking. This heterogeneity demonstrates the applicabil-
ity of our approach to a broad spectrum of architectures with similar
characteristics.

Spring Boot. Kothagal (2024) created this open-source microservice ar-
chitecture, and Schneider et al. (2023) derived its DFD representation.
The model is shown in Fig. 4 and contains 5 nodes representing 1 user
interface, 3 internal services and 1 data storage. The nodes are con-
nected by 6 edges. The model contains 7 uncertainties, and 3 out of
those cause confidentiality violations. For this model we check the fol-
lowing constraints (Niehues et al., 2024):

DataLabel(entrypoint) => DataLabel(encrypted_connection)
NodeLabel(internal) => DataLabel(encrypted_connection)
NodelLabel(local_logging) =—> NodeLabel(internal)

Tap and Eat. Ferrater (2024) created this open-source architecture, and
Schneider et al. (2023) derived its DFD. The model is shown in Fig. 5
and displays a microservice architecture containing 9 nodes represent-
ing 8 internal services and 1 data storage. The nodes are connected by
16 edges. The model contains 21 uncertainties, and 4 out of those cause
confidentiality violations. For this model we check the following con-
straints (Niehues et al., 2024):

NodeLabel(internal) => DataLabel(auth_request)
NodeLabel(login_attempts_reg) —> NodeLabel(auth_server)
DataLabel(entrypoint) => DataLabel(encrypted_connection)
NodeLabel(local_logging) => NodeLabel(internal)

Online Banking. The last model is our own creation and displays an
online banking architecture. The model is shown in Fig. 6 and consists
of 18 nodes representing 2 external actors, 3 user interfaces, 10 internal
services and 3 data storages. The nodes are connected by 20 edges. The
model contains 9 uncertainties, and 3 out of those cause confidentiality
violations. For this model we check the following constraints:

NodeLabel(nonEU) => —DataLabel(Personal)

The Journal of Systems & Software 235 (2026) 112761

NodeLabel(Processable) => —DataLabel(Encrypted)
NodeLabel(Develop) => —DataLabel(Personal)

7.3. Design

To evaluate the precision of our ranking, we created reference rank-
ings. To that end, we manually examined the evaluation scenarios and
identified the relevant uncertainties, which make our true positives.
Each author, independently of one another, assessed which uncertain-
ties were responsible for the observed confidentiality violations. Next,
all authors compared assessments. In all cases, the authors arrived at the
same conclusions because the violating uncertainties will be self-evident
to any researcher with expertise in software architecture and confiden-
tiality. Next, on the basis of the reference rankings, our automatic miti-
gation was executed with different combinations of uncertainty ranker
and aggregation strategies and calculated the Precision@K score.

To evaluate the effectiveness of our automatic mitigation approach,
we employed the ABUNAI framework (Hahner, 2025). The analysis
takes a DFDs and a list of constraints as input and automatically checks
for violations and their locations. We use the output of this analysis to
measure the number of confidentiality violations detected both before
and after applying our mitigation.

To evaluate the scalability of our approach, we manually scaled the
evaluation scenarios. We iteratively duplicated subgraphs to scale the
Spring Boot and Online Banking model up, which increased the nodes
and uncertainty counts. Conversely, to scale the Tap and Eat model
down, we removed subgraphs step by step. We measured the mitigation
runtime in milliseconds on an Apple M3 Pro-CPU with 18 Gigabytes of
RAM for every evaluation scenario and scaling step.

7.4. Results

7.4.1. Ranking of uncertainties

We evaluated every uncertainty ranker on every aggregation strat-
egy. In this way, we obtained a total of 54 Precision@XK scores, or 18
for the Spring Boot model (see Fig. 7a), 18 for the Tap and Eat model
(see Fig. 7b), and 18 for the Online Banking model (see Fig. 7c). In the
figures, each bar represents a Precision@K value ranging from 0 to 1,
where 1 indicates a perfect score.

Across all evaluation scenarios, supervised rankers consistently out-
performed unsupervised rankers. Specifically, Logistic Regression and
Random Forest were the top-performing rankers; moreover, the Expo-
nential and Top3 aggregation strategies, when combined with Logistic
Regression, consistently produce perfect rankings across all models. In
contrast, unsupervised rankers, such as EFA and PCA, underperformed,
especially in models with high variance among uncertainties.

All in all, our combination of logistic regression with exponential
decay achieved a perfect ranking of uncertainties across all evaluation
scenarios.

7.4.2. Effectiveness of our mitigation

To evaluate the effectiveness of our automatic mitigation approach,
we employed ABUNAI on three evaluation scenarios and then measured
the number of confidentiality violations detected both before and after
applying our mitigation.

Table 5 summarizes our results. Prior to mitigation, the Spring Boot
model exhibited 3 confidentiality violations, the Tap and Eat model 9
violations, and the Online Banking Model 4 violations. After applying
our mitigation approach, all models demonstrated zero confidentiality
violations. Thus, our results confirm the effectiveness of our approach
in mitigating confidentiality violations.

7.4.3. Scalability of our mitigation
To provide a broader set of data points for evaluating scalability,
we modified the models by duplicating or removing subgraphs, thereby

N. Niehues et al.

customer

The Journal of Systems & Software 235 (2026) 112761

bank_clerk

get_fond_data

y

show_balance I— transfer_money request_account_state

change_cc_limt |

change_settings process_loan_offer fond_data_response

\ /

N

customer_banking data

customer_settings_data

bank_clerk_view

LN

| show_account_state | | balance_response |

| developer_view |

customer_view |

Fig. 6. Online banking architecture.

Precision@K
Precision@K

EFA

Precision@K

PCA RF LR LGR LDA EFA. PCA RF LR LGR LDA EFA. PCA RF LR LGR LDA
Ranker Type Ranker Type Ranker Type
(a) Spring Boot (b) Tap and Eat (c) Online Banking
Fig. 7. Precision@K for different uncertainty rankers and aggregation strategies.
Table 5

Confidentiality violations identified be-
fore and after mitigation.

Before After
Spring Boot Model 3 0
Tap and Eat Model 9 0
Online Banking Model 4 0

yielding models with uncertainty counts ranging from 7 to 22. To pre-
serve model behavior and structure, we maintained a proportional dis-
tribution of relevant to total uncertainties. For each uncertainty level,
we executed the mitigation approach multiple times and then recorded
the average runtime in milliseconds on a logarithmic scale. Fig. 8 shows
our results both for the refactored strategies of Niehues et al. (2025) and
also for our two new strategies.

The baseline depth-first search (BRUTE) exhibits exponential growth
in runtime as uncertainties increase in number. In the Online Banking
model, to resolve the 22 uncertainties, the baseline takes 5356 seconds
— that is, 1 h 30 minutes — and so represents the worst case, while our
new Fast Start strategy, by contrast, resolves in just 2 seconds. Overall,
our mitigation strategies consistently maintain runtimes near 1 second,
even for the largest models, and no strategy ever exceeds 10 seconds
runtime.

However, our strategies do introduce some overhead by using ma-
chine learning for the uncertainty ranking. Consequently, for models
with low uncertainty (e.g., fewer than 14 uncertainties), the runtime of
the baseline may outperform the runtimes of our strategies.

7.4.4. Statistical analysis

Based on the scalability results shown in Section 7.4.3, we propose
the following hypothesis:

N. Niehues et al.

The Journal of Systems & Software 235 (2026) 112761

105{ @ BRUTE e BRUTE
QUATER QUATER
e HALF e HALF
e CLUSTER .| e clster
10¢] © FAST 10°1 "o FAST
g e INCREASING g o INCREASING
(0] (V]
£ £
€ 10° A IS
3 3
o 4
102<
102<

e BRUTE
QUATER

106{ @ HALF
e CLUSTER
e FAST

'g 5 e INCREASING

10° A

4]

£

€

S 104

o

103 4

T T

10 14 18
Total Uncertainties

10

(a) Spring Boot

Total Uncertainties

(b) Tap and Eat

T T T

14 18 21

14 18
Total Uncertainties

22

(c) Online Banking

Fig. 8. Runtime scalability for different mitigation strategies.

Hypothesis: Our mitigation strategies outperform the depth-first
search baseline when there are at least 14 uncertainties.

To test this hypothesis, we conducted the Friedman test to assess
whether there are statistically significant differences among strategies.
The test yielded a p-value of 0.025 and a Kendall’s W of 0.721. Those
results indicate a significant difference and a strong effect size, and so
we conclude that the null hypothesis is rejected.

Next, we proceeded with a Nemenyi post hoc test. We treated strate-
gies as groups, we treated runtime as the target metric, and we treated
evaluation scenarios across different amounts of uncertainty as blocks.
Table 6 summarizes all resulting p-values. We set the significance level
to @ = 0.05 and found that the Fast Start strategy significantly outper-
forms the depth-first search baseline (p =.039). However, under the
a = 0.05 threshold, no other pairwise differences were statistically sig-
nificant, neither against the baseline nor between any of the other pairs.

All in all, on smaller models, our mitigation approaches may
underperform the baseline because of the overhead introduced by
the machine-learning techniques. Yet, as the number of uncertain-
ties reaches 14, our mitigation approach outperforms the baseline, as
demonstrated on a logarithmic scale in Fig. 9. Our approaches achieve
a median elevenfold runtime reduction; moreover, using our new Fast
Start strategy, our approaches achieve a maximum of a 2298-fold run-
time reduction on the Online Banking model with 22 uncertainties.

7.5. Threats to validity

We structure the discussion of threats to validity based on the guide-
lines by Runeson and Host (2009).

Table 6
Nemenyi Post-hoc p-values.
Brute Quarter Half Cluster Fast Increasing

Brute 1.000 0.985 0.596 0.995 0.039 0.206
Quarter 0.985 1.000 0.937 1.000 0.206 0.596
Half 0.596 0.937 1.000 0.894 0.765 0.985
Cluster 0.995 1.000 0.894 1.000 0.154 0.507
Fast 0.039 0.206 0.765 0.154 1.000 0.985
Increasing 0.206 0.596 0.985 0.507 0.985 1.000

10

8

103 4 [¢)
c
2
2 10%-
Q
4
[}
£
€ 10! 4
=
[
N
o
1Sy
o
T 1004
[}
[T

10—1-

Fig. 9. Factor of runtime reduction for models with at least 14 uncertainties.

Internal validity. One threat is the accuracy of the model-based con-
fidentiality analysis (Hahner et al., 2023a) used to assess confidential-
ity violations in the repaired models. Wrong results would negatively
affect the correctness of our results. However, as this analysis has al-
ready been comprehensively evaluated, we consider this threat to be
negligible. Another threat is the subjectivity of our manual identifica-
tion of relevant uncertainties in the evaluation scenarios. To mitigate
this, each author independently assessed which parts were responsible
for the confidentiality violations, and then all authors compared results.
We consistently reached the same conclusions, since the problematic
elements were largely self-evident to anyone familiar with confidential-
ity requirements. Note, too, that this manual assessment is only one
part of our evaluation of the quality of the ranking; the assessment does
not reflect on the ability of our approach to mitigate confidentiality vi-
olations. Therefore, any possible impact of this threat is even further
limited.

External validity. The choice of cases and evaluation scenarios can
limit the generalizability of our results. To address this, we choose mod-
els from diverse backgrounds, with the two from Schneider et al. (2023)
being derived from real-world open-source projects.

Construct validity. We applied a GQM plan with well-known met-
rics such as Precision@K. Last, we involved multiple researchers in
the process to enhance the reliability of our results and minimize
the bias in annotating our models. Every step in our process is

N. Niehues et al.

deterministic, given the same input model. Therefore, the only vari-
ance in our runtime measurements stems from differing CPU loads.
To reduce this variability, we averaged runtimes from twelve runs
per measurement. Last, we provide supplemental material as data set
(Niehues et al., 2025) to address the availability of evolution arti-
facts in software architecture research (Konersmann et al., 2022). This
includes all code artifacts, results, and instructions on reproducing
them.

8. Discussion
8.1. Confidentiality for trustworthier software

Here we revisit four sets of our results, in order to draw out exactly
how these help our extended approach to contribute to trustworthier
software.

First, one set of results on ranking uncertainties which cause viola-
tions (detailed in Section 7.4.1) shows that supervised machine learning
techniques produce better rankings than unsupervised techniques. We
infer that supervised rankers align so well with this prediction task that
they are capable of capturing more effectively the relevant uncertain-
ties. On the other hand, unsupervised rankers appear to rely too heavily
on shared variance, which can introduce noise when unrelated variables
correlate with the target constraints. Therefore, supervised techniques
are better at identifying relevant uncertainties than unsupervised tech-
niques.

Second, another set of results on ranking uncertainties (again, de-
tailed in Section 7.4.1) shows that across all models, the Exponential ag-
gregation performs best, while the Sum method performs worst. The Ex-
ponential method possesses the ability to reduce noise by weighting un-
certainties exponentially. Conversely, the Sum method underperforms,
likely because it evenly distributes importance and thus introduces ran-
dom noise and reduces precision. Therefore, exponential decay is better
suited to aggregate individual importance than just summing up impor-
tance, constraint by constraint.

Third, one set of results on scalability (detailed in Section 7.4.3)
shows that our mitigation strategies, when compared against the depth-
first search baseline ABUNAI (Hahner, 2025), are much faster, and in
the case of the Fast Start strategy, even significantly faster. We attribute
this considerable gain in efficiency to the effective ranking of uncer-
tainties. Effective rankings allow our strategies to consider only those
scenario combinations which are necessary to mitigate confidentiality
violations. In contrast, the baseline ABUNAI must first inspect many un-
necessary combinations before it gets to the root of the problem and
mitigates the violations. Therefore, trying exclusively combinations of
the relevant uncertainties is faster than trying combinations based on
appearance in the model.

Lastly, another set of results on scalability (again, detailed in Sec-
tion 7.4.3) shows that with our extension, we can reduce the runtime
compared to the baseline by a factor of up to 2298 times. In Niehues
et al. (2025), we had achieved merely a 60-fold reduction on the same
model with the same amount of uncertainties. We explain this extraor-
dinary improvement in two ways. First, we meticulously improved our
prototype to increase code quality, to remove redundant operations, and
to make it more efficient. Second, the newly added Fast Start strategy,
which is based on the TCP Congestion Control, is not only the fastest
strategy, but also significantly faster than the baseline with a p value
below 0.05 and Kendall’s W of 0.721 (i.e., a strong impact). Therefore,
by polishing the prototype and also by developing more advanced mit-
igation strategies, we transformed our previous work through dramatic
improvement in runtime.

In sum, this extension of our previous work (Niehues et al., 2025)
is a significant contribution both specifically to the mitigation of con-
fidentiality violations and generally to the trustworthiness of software
architectures.

11

The Journal of Systems & Software 235 (2026) 112761

8.2. Discrete quality attributes for trustworthier software

Trustworthiness is “The degree to which a system deserves to be
trusted based on the qualities of security, safety, reliability, resilience,
and privacy” (ISO/IEC, 2011). Clearly, trustworthiness will be strongly
influenced by confidentiality, because this attribute is an integral part of
security. However, confidentiality is just one among a number of addi-
tional relevant quality attributes. For example, the attributes integrity,
authenticity, and privacy will all influence trustworthiness too, and in-
terestingly, the ways that they influence trustworthiness may prove to
be similar or even identical to how confidentiality influences trustwor-
thiness. The reason is that attributes like integrity, authenticity, and
privacy are binary in nature and thus lack gradients for incremental im-
provement. In contrast to a continuous attribute like reliability, binary
attributes like these are harder to optimize for efficiently because they
are discrete (Aspvall and Stone, 1980; Lenstra, 1983). Therefore the dis-
creteness of an attribute actually presents a major challenge for viola-
tions mitigation generally, and thus impinges upon the trustworthiness
of the software.

Our approach promises to deliver effective application also to other
discrete quality attributes because our mitigation of confidentiality vi-
olations is agnostic to concrete components, to their behavior, and to
the rules imposed on them. As long as (1) a model and (2) the uncer-
tainties of that model and (3) the constraints in the underlying analysis
are all well-defined, then our approach can use those outputs to rank
uncertainties and combine the uncertainty scenarios for our violations
mitigation. That, of course, is a noteworthy advance on ensuring gener-
ally — beyond just confidentiality — greater trustworthiness in software
systems.

Our approach, again, should apply to any discrete quality attribute
when these two prerequisites are met, namely, that the quality attribute be
constrainable in a formal way and also that there be an analysis which
identifies violations of the constraints under uncertainty. Such an anal-
ysis can be either sourced from related work or built as an adaptation
of our confidentiality analysis here. If the analysis is adapted from this
work, the DFD metamodel only needs to be adjusted to incorporate the
additional properties and behaviors of whichever quality attribute is
under analysis. For example, if the quality attribute for analysis is in-
tegrity, then the DFD will need to be made capable of saving hashes for
data sent between nodes. This way, the analysis of integrity can now
verify whether the data was changed between the source node and the
sink node. Such a step in analysis is all that should be needed to mitigate
violations of any discrete quality attribute just as effectively as we have
demonstrated that our approach mitigates violations in confidentiality
constraints.

We look forward to future work in this direction. We first plan to
extend our approach to the attributes of authenticity, integrity and
privacy. Advances here should help achieving generally trustworthier
software.

9. Related work

In this paper, we consider uncertainty within the software architec-
ture to enable the automated repair of confidentiality violations. We
identify three areas of work related to this paper. First, work from the
field of software architecture research that deals with uncertainty, which
is often related to self-adaptive systems (Hezavehi et al., 2021; Weyns,
2020; Weyns et al., 2023). Second, approaches to confidentiality analy-
sis at design time that enable the early identification of confidentiality
violations (Seifermann et al., 2022; Boltz et al., 2023, 2020, 2024), also
while considering uncertainty (Hahner et al., 2023b,a). Third, using ma-
chine learning to mitigate security issues (Ahsan et al., 2022; Kronjee
et al., 2018; Steenhoek et al., 2024). We summarize these research di-
rections in the following.

N. Niehues et al.

Architectural analysis and mitigation under uncertainty. Numerous papers
aim to understand better the representation and impact of uncertainty
on architectural models. Troya et al. (2021) performed a survey to in-
vestigate the representation of uncertainty in models and found that
modeling uncertainty as variation models and scenarios is common, es-
pecially in design space exploration. Andersson et al. (2009) support
this view by presenting modeling dimensions of self-adaptive systems,
as does the recently proposed OMG PSUM standard (Group, 2023). Re-
searchers have proposed numerous classifications (Perez-Palacin and
Mirandola, 2014; Mahdavi-Hezavehi et al., 2017; Ramirez et al., 2012)
to investigate the nature of uncertainty, including some focused on
security-related fields like access control (Bures et al., 2020) and confi-
dentiality (Hahner et al., 2023). Comprehensive frameworks have been
researched to investigate uncertainty in software systems, e.g., RELAX
(Whittle et al., 2009), Rainbow (Garlan et al., 2004), PerOpteryx (Kozi-
olek et al., 2011), ArcheOpterix (Aleti et al., 2009), GuideArch (Esfahani
et al., 2013), and DeTUM (Famelis and Chechik, 2019). Here, Heza-
vehi et al. (2021) and Sobhy et al. (2021) recently conducted surveys
and found that addressing uncertainty in design time is expedient and
mitigation should be systematically considered. However, most exist-
ing approaches focus only on analysis rather than mitigation and do
not explicitly support confidentiality. This can severely limit their ap-
plicability (Walter et al., 2022b; Hahner et al., 2023a) to identify and re-
pair confidentiality violations under uncertainty. Researchers have high-
lighted the challenge of creating comprehensive end-to-end approaches
(Weyns et al., 2023). Here, especially considering multiple uncertainty
sources and their interactions is considered to be challenging (Camara
et al., 2022; Camara et al., 2024). The work presented in this paper
addresses this gap by considering both the analysis and the mitiga-
tion of uncertainty at design time, which is tailored to confidentiality
violations.

Architecture-based confidentiality analysis. Numerous approaches have
been proposed to identify confidentiality violations using the architec-
tural abstraction, e.g., data flow-based confidentiality analysis (Seifer-
mann et al., 2022, 2021; Boltz et al., 2023), or architecture-based access
control analysis (Walter et al., 2022b, 2023). Furthermore, broader ap-
proaches to model-based security analysis, e.g. UMLsec (Jiirjens, 2002),
or SecDFD (Tuma et al., 2019; Peldszus et al., 2019). Despite focussing
on security, these approaches lack support for confidentiality or auto-
mated model repair. More recently, uncertainty-aware confidentiality
analysis has been proposed, e.g., by extending the PerOpteryx frame-
work (Walter et al., 2022a), by tracing uncertainty in data flow dia-
grams (Hahner et al., 2023a), or by combining data flow analysis with
fuzzy inference to represent uncertainty (Boltz et al., 2022). Hahner
et al. (2023b) proposed an uncertainty impact analysis to predict un-
certainty’s potential impact on software architectures’ confidentiality.
However, these approaches only focus on analyzing software archi-
tectures without considering mitigating confidentiality violations. The
work presented in this paper addresses this by combining analysis and
mitigation into one comprehensive approach.

Machine learning addressing security. More recently, machine learning
has been used more thoroughly to address security issues such as confi-
dentiality violations. Ahsan et al. (2022) give an overview of common
security threats and which machine learning techniques can be used to
mitigate them, e.g., deep learning or reinforcement learning. One exam-
ple is the work of Kronjee et al. (2018), who extract security-related fea-
tures from source code to use in models like decision trees and random
forests. Another recently proposed approach by Steenhoek et al. (2024)
proposed combining classical program analysis, such as data flow analy-
sis, with deep learning to increase the accuracy while reducing the run-
time. Although applying machine learning seems to be expedient, these
approaches lack the required explainability (Hahner et al., 2024; Bersani
et al., 2023) of issues to software engineers and the abstraction of the

12

The Journal of Systems & Software 235 (2026) 112761

software architecture. Choosing the right abstraction and representa-
tion to investigate confidentiality greatly impacts the understandability
of security experts (Schneider et al., 2024). Furthermore, only consid-
ering source code in the analysis limits the applicability at design time,
which is required for early mitigation to minimize costs (Boehm and
Basili, 2001). We address this by incorporating machine learning into
data flow analysis at design time and using this abstraction to enhance
the explainability of identified and repaired confidentiality violations.

10. Conclusion

In this paper, we contribute a novel, scalable solution for mitigating
confidentiality violations in software architectures under uncertainty,
underlining the benefits of combining architecture-based analysis with
machine learning techniques to support secure software development.

The approach proposed here extends our previous machine-learning-
based approach for mitigating confidentiality violations in software ar-
chitectures (Niehues et al., 2025). Specifically, our extension here ad-
vances beyond the original because we introduce two major new strate-
gies. First, we take inspiration from TCP Congestion Control and so
are able to significantly accelerate the identification of critical uncer-
tainties. Second, we now make allowance for the dynamics of uncer-
tainty sources and so develop a clustering-based technique for adjust-
ing batch sizes dynamically to the structure of the input model. Taken
together, these changes over our previous approach deepen our un-
derstanding about the nature of uncertainty and so, too, about those
techniques optimally suited to mitigating the violations caused by
uncertainties.

The evaluation in this work is much more rigorous than in Niehues
et al. (2025) because we increased the amount of data points and also
conducted a thorough statistical analysis (including the Friedman test
and the Nemenyi post hoc test). Our previous work (Niehues et al., 2025)
achieved a mere 60 times mitigation runtime reduction over the state-
of-the-art. This extension of that work, on the other hand, has a median
reduction that is elevenfold but achieves an impressive maximum of
2298 times runtime reduction on the same model with the same level of
uncertainty. This big advance over the state-of-the-art was made possi-
ble by our two new strategies and as well by our careful polishing of
the prototype. Moreover, we obtain significantly faster mitigation times
compared to the state-of-the art baseline, when at least 14 uncertainties
are present. We found a significant difference (Friedman test p = .025)
between our strategies and the baseline and as well, a strong practical
impact (Kendall’s W = 0.721). Further, our new TCP-inspired strategy
proved to be significantly faster than the baseline (Nemenyi post hoc
test p = .039).

Our novel automatic mitigation succeeds in advancing existing anal-
ysis frameworks beyond just the identification of confidentiality viola-
tions so that now we can truly assist software architects in efficiently
addressing confidentiality challenges at design time. Our approach au-
tomates uncertainty prioritization and resolution, thereby enhancing
the scalability of confidentiality maintenance in complex systems to
ensure that data protection measures are more manageable and reli-
able. That is clearly a step forward in trustworthier software gener-
ally. Additionally, our extended approach opens the door to similar ap-
proaches to violations mitigation for other quality attributes which are
discrete like confidentiality. A promising direction for future work is
to extend these ideas to attributes such as authenticity, integrity, and
privacy.

Future work might also attempt to automatically generate scenar-
ios using machine learning trained on real-world software architectures.
That would help to further reduce the manual effort of software archi-
tects. Additionally, we plan to explore combining SAT solvers with fine-
grained cost estimation, in order to identify a configuration that satis-
fies all confidentiality requirements while minimizing the cost of the
mitigation.

N. Niehues et al.
CRediT authorship contribution statement

Nils Niehues: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Methodology, Investigation, Data
curation, Conceptualization; Sebastian Hahner: Writing — original
draft, Supervision, Software, Methodology; Robert Heinrich: Writing
- review & editing, Writing — original draft, Supervision.

Data availability

I have provided supplementary material hosted on zenodo that in-
cludes artefacts and results.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by the topic Engineering Secure Sys-
tems of the Helmholtz Association (HGF) and by KASTEL Security Re-
search Labs, the BMBF (German Federal Ministry of Education and
Research) grant number 16KISA086 (ANYMOS), and the NextGenera-
tionEU project by the European Union (EU). This paper has been edited
by our textician, Daniel Shea. We would like to thank Benjamin Arp.

References

Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley Interdiscip. Rev. Com-
put. Stat. 2 (4), 433-459.

Ahsan, M., Nygard, K.E., Gomes, R., Chowdhury, M.M., Rifat, N., Connolly, J.F., 2022. Cy-
bersecurity threats and their mitigation approaches using machine learning-a review.
J. Cybersecur. Priv. 2 (3), 527-555.

Aleti, A., Bjornander, S., Grunske, L., Meedeniya, ., et al., 2009. Archeopterix: an ex-
tendable tool for architecture optimization of AADL models. In: 2009 ICSE Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, pp. 61-71.
https://doi.org/10.1109/MOMPES.2009.5069138

Andersson, J., de Lemos, R., Malek, S., Weyns, D., et al., 2009. Modeling dimensions of
self-adaptive software systems. In: Cheng, B. H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (Eds.), Software Engineering for Self-Adaptive Systems. Springer, pp.
27-47. https://doi.org/10.1007/978-3-642-02161-9 2

Aspvall, B., Stone, R.E., 1980. Khachiyan’S linear programming algorithm. J. Algo. 1 (1),
1-13.

Balakrishnama, S., Ganapathiraju, A., 1998. Linear discriminant analysis-a brief tutorial.
Institute for Signal and information Processing 18 (1998), 1-8.

Basili, V.R., 1992. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Technical Report. USA.

Basili, V.R., Weiss, D.M., 1984. A methodology for collecting valid software engineering
data. IEEE Trans. Software Eng. SE-10 (6), 728-738. https://doi.org/10.1109/TSE.
1984.5010301

Bersani, M.M., Camilli, M., Lestingi, L., Mirandola, R., Rossi, M., Scandurra, P., et al., 2023.
A conceptual framework for explainability requirements in software-intensive systems.
In: 2023 IEEE 31St International Requirements Engineering Conference Workshops
(REW). IEEE, pp. 309-315. https://doi.org/10.1109/REW57809.2023.00059

Blanton, E., Paxson, D.V., Allman, M., 2009. TCP Congestion Control. RFC 5681. https:
//doi.org/10.17487 /RFC5681

Boehm, B., Basili, V.R., 2001. Software defect reduction top 10 list 34 (1), 135-137. Con-
ference Name: Computer. https://doi.org/10.1109/2.962984

Boltz, N., Hahner, S., Gerking, C., Heinrich, R., 2023. An extensible framework for
architecture-based data flow analysis for information security. In: European Confer-
ence on Software Architecture. Springer, pp. 342-358.

Boltz, N., Hahner, S., Walter, M., Seifermann, S., Heinrich, R., Bures, T., Hnetynka, P.,
et al., 2022. Handling environmental uncertainty in design time access control analy-
sis. In: 2022 48th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA). IEEE, pp. 382-389. https://doi.org/10.1109/SEAA56994.2022.00067

Boltz, N., Schmid, L., Taghavi, B., Gerking, C., Heinrich, R., et al., 2024. Modeling
and analyzing zero trust architectures regarding performance and security. In: Gal-
ster, M., Scandurra, P., Mikkonen, T., Oliveira Antonino, P., Nakagawa, E.Y., Navarro,
E. (Eds.), Software Architecture. Springer Nature Switzerland, pp. 253-269. https:
//doi.org/10.1007/978-3-031-70797-1_17

Boltz, N., Walter, M., Heinrich, R., et al., 2020. Context-based confidentiality analysis
for industrial IoT. In: 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 589-596. https://doi.org/10.1109/SEAA51224.
2020.00096

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5-32.

13

The Journal of Systems & Software 235 (2026) 112761

Bures, T., Hnetynka, P., Heinrich, R., Seifermann, S., Walter, M., et al., 2020. Capturing
dynamicity and uncertainty in security and trust via situational patterns. In: Margaria,
T., Steffen, B. (Eds.), Leveraging Applications of Formal Methods, Verification and
Validation: Engineering Principles. Springer International Publishing, pp. 295-310.
https://doi.org/10.1007/978-3-030-61470-6_18

Camara, J., Hahner, S., Perez-Palacin, D., Vallecillo, A., Acosta, M., Bencomo, N., Cali-
nescu, R., Gerasimou, S., et al., 2024. Uncertainty flow diagrams: towards a system-
atic representation of uncertainty propagation and interaction in adaptive systems. In:
Proceedings of the 19th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. Association for Computing Machinery, pp. 37-43.
https://doi.org/10.1145/3643915.3644084

Cémara, J., Troya, J., Vallecillo, A., Bencomo, N., Calinescu, R., Cheng, B. H.C., Garlan, D.,
Schmerl, B., et al., 2022. The uncertainty interaction problem in self-adaptive systems
21 (4), 1277-1294. https://doi.org/10.1007/s10270-022-01037-6

DeMarco, T., 1979. Structured analysis and system specification. Pioneers and Their Con-
tributions to Software Engineering. Prentice-Hall. 255-288.

Esfahani, N., Malek, S., Razavi, K., et al., 2013. Guidearch: guiding the exploration of
architectural solution space under uncertainty. In: 2013 35th International Confer-
ence on Software Engineering (ICSE), pp. 43-52. ISSN: 1558-1225. https://doi.org/
10.1109/ICSE.2013.6606550

Famelis, M., Chechik, M., 2019. Managing design-time uncertainty 18 (2), 1249-1284.
https://doi.org/10.1007/s10270-017-0594-9

Ferrater, J., 2024. Tap-and-eat-microservices. Accessed: 2024-11-16. https://github.com/
jferrater/Tap-And-Eat-MicroServices.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenkiste, P., 2004. Rainbow:
architecture-based self-adaptation with reusable infrastructure 37 (10), 46-54. https:
//doi.org/10.1109/MC.2004.175

Glinz, M., 2006. Requirements engineering i. Nicht funktionale Anforderungen. Univer-
sitdt Ziirich, Institut fiir Informatik, Ziirich.

Group, O.M., 2023. Precise semantics for uncertainty modeling (PSUM), version 1.0 beta
2. https://www.omg.org/spec/PSUM/1.0/Beta2/PDF.

Hahner, S., 2021. Dealing with uncertainty in architectural confidentiality analysis. In:
Proceedings of the Software Engineering 2021 Satellite Events. Gesellschaft fiir Infor-
matik, pp. 1-6.

Hahner, S., 2025. Architecture-Based and Uncertainty-Aware Confidentiality Analysis.
Ph.D. thesis. Karlsruher Institut fiir Technologie (KIT). https://doi.org/10.5445/IR/
1000178700

Hahner, S., Bitschi, T., Walter, M., Bures, T., Hnétynka, P., Heinrich, R., et al., 2023a.
Model-based confidentiality analysis under uncertainty. In: 2023 IEEE 20th Interna-
tional Conference on Software Architecture Companion (ICSA-C). IEEE, pp. 256-263.
https://doi.org/10.1109/ICSA-C57050.2023.00062

Hahner, S., Heinrich, R., Reussner, R., et al., 2023b. Architecture-based uncertainty im-
pact analysis to ensure confidentiality. In: 2023 IEEE/ACM 18th Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE/ACM, pp.
126-132. ISSN: 2157-2321. https://doi.org/10.1109/SEAMS59076.2023.00026

Hahner, S., Niehues, N., Boltz, N., Fuksa, M., Heinrich, R., 2024. Arc®n: a collaborative
uncertainty catalog to address the awareness problem of model-based confidentiality
analysis. In: ACM/IEEE 27th International Conference on Model Driven Engineering
Languages and Systems (MODELS Companion ’24). ACM. https://doi.org/10.1145/
3652620.3688556

Hahner, S., Seifermann, S., Heinrich, R., Reussner, R., et al., 2023. A classification
of software-architectural uncertainty regarding confidentiality. In: E-Business and
Telecommunications. Springer Nature Switzerland, pp. 139-160. https://doi.org/10.
1007/978-3-031-36840-0_8

Hezavehi, S.M., Weyns, D., Avgeriou, P., Calinescu, R., Mirandola, R., Perez-Palacin, D.,
2021. Uncertainty in self-adaptive systems: a research community perspective 15 (4).
https://doi.org/10.1145/3487921

Hooper, D., 2012. Exploratory factor analysis.

Imp, 2024. Feature importances with a forest of trees. https://scikit-learn.org/stable/
auto_examples/ensemble/plot_forest importances.html. Accessed: 2024-08-12.

ISO/IEC, M., 2011. Systems and software engineering-systems and software quality re-
quirements and evaluation (SQuaRE)-system and software quality models.

ISO/IEC, 2018. ISO/IEC 27000:2018(e) information technology - security techniques -
information security management systems - overview and vocabulary.

Jiirjens, J., 2002. UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (Eds.), UML 2002 - the Unified Modeling Language.
Springer Berlin Heidelberg. Vol. 2460, pp. 412-425. Series Title: Lecture Notes in Com-
puter Science. https://doi.org/10.1007/3-540-45800-X_32

Kar, P., Narasimhan, H., Jain, P., 2015. Surrogate functions for maximizing precision at the
top. In: Bach, F., Blei, D. (Eds.), Proceedings of the 32Nd International Conference on
Machine Learning. PMLR, Lille, France, pp. 189-198. https://proceedings.mlr.press/
v37/kar15.html.

Kodinariya, T.M., Makwana, P.R., et al., 2013. Review on determining number of cluster
in k-means clustering. Int. J. 1 (6), 90-95.

Konersmann, M., Kaplan, A., Kiihn, T., Heinrich, R., Koziolek, A., Reussner, R., Jiir-
jens, J., al Doori, M., Boltz, N., Ehl, M., Fuchs, D., Groser, K., Hahner, S., Keim,
J., Lohr, M., Saglam, T., Schulz, S., Toberg, J.-P., et al., 2022. Evaluation methods
and replicability of software architecture research objects. In: 2022 IEEE 19th In-
ternational Conference on Software Architecture (ICSA). IEEE, pp. 157-168. https:
//doi.org/10.1109/ICSA53651.2022.00023

Kothagal, K., 2024. Spring boot microservices workshop. Accessed: 2024-11-16. https:
//github.com/koushikkothagal/spring-boot-microservices-workshop.

Koziolek, A., Koziolek, H., Reussner, R., et al., 2011. Peropteryx: automated application
of tactics in multi-objective software architecture optimization. In: Proceedings of the
Joint ACM SIGSOFT Conference — QoSA and ACM SIGSOFT Symposium — ISARCS on
Quality of Software Architectures — QoSA and Architecting Critical Systems — ISARCS.

http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0003
https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0008
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/REW57809.2023.00059
https://doi.org/10.1109/REW57809.2023.00059
https://doi.org/10.17487/RFC5681
https://doi.org/10.17487/RFC5681
https://doi.org/10.17487/RFC5681
https://doi.org/10.17487/RFC5681
https://doi.org/10.1109/2.962984
https://doi.org/10.1109/2.962984
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0013
https://doi.org/10.1109/SEAA56994.2022.00067
https://doi.org/10.1109/SEAA56994.2022.00067
https://doi.org/10.1007/978-3-031-70797-1_17
https://doi.org/10.1007/978-3-031-70797-1_17
https://doi.org/10.1007/978-3-031-70797-1_17
https://doi.org/10.1007/978-3-031-70797-1_17
https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1109/SEAA51224.2020.00096
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0017
https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1145/3643915.3644084
https://doi.org/10.1145/3643915.3644084
https://doi.org/10.1007/s10270-022-01037-6
https://doi.org/10.1007/s10270-022-01037-6
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0021
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1007/s10270-017-0594-9
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0026
https://www.omg.org/spec/PSUM/1.0/Beta2/PDF
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0028
https://doi.org/10.5445/IR/1000178700
https://doi.org/10.5445/IR/1000178700
https://doi.org/10.5445/IR/1000178700
https://doi.org/10.5445/IR/1000178700
https://doi.org/10.1109/ICSA-C57050.2023.00062
https://doi.org/10.1109/ICSA-C57050.2023.00062
https://doi.org/10.1109/SEAMS59076.2023.00026
https://doi.org/10.1109/SEAMS59076.2023.00026
https://doi.org/10.1145/3652620.3688556
https://doi.org/10.1145/3652620.3688556
https://doi.org/10.1145/3652620.3688556
https://doi.org/10.1145/3652620.3688556
https://doi.org/10.1007/978-3-031-36840-0_8
https://doi.org/10.1007/978-3-031-36840-0_8
https://doi.org/10.1007/978-3-031-36840-0_8
https://doi.org/10.1007/978-3-031-36840-0_8
https://doi.org/10.1145/3487921
https://doi.org/10.1145/3487921
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0035
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_32
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0038
https://proceedings.mlr.press/v37/kar15.html
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0038
https://proceedings.mlr.press/v37/kar15.html
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0039
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1109/ICSA53651.2022.00023
https://github.com/koushikkothagal/spring-boot-microservices-workshop
https://github.com/koushikkothagal/spring-boot-microservices-workshop

N. Niehues et al.

Association for Computing Machinery, pp. 33-42. https://doi.org/10.1145/2000259.
2000267

Koziolek, A., 2011. Automated improvement of software architecture models for perfor-
mance and other quality attributes. https://doi.org/10.5445/IR /1000024955

Kronjee, J., Hommersom, A., Vranken, H., 2018. Discovering software vulnerabilities us-
ing data-flow analysis and machine learning. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security. Association for Computing Ma-
chinery, pp. 1-10. https://doi.org/10.1145/3230833.3230856

Larsen, P.G., Plat, N., Toetenel, H., 1994. A formal semantics of data flow diagrams. Formal
Asp. Comput. 6, 586-606.

Lehman, M., Ferndandez-Ramil, J.C., 2006. Software evolution. Softw. Evol. Feedback:
Theory pract. , 7.

Lenstra, Jr, HW., 1983. Integer programming with a fixed number of variables. Math.
Oper. Res. 8 (4), 538-548.

Linardatos, P., Papastefanopoulos, V., Kotsiantis, S., 2020. Explainable ai: a review of
machine learning interpretability methods. Entropy 23 (1), 18.

Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D., et al., 2017. A classification framework of
uncertainty in architecture-based self- adaptive systems with multiple quality require-
ments , 33.

Nick, T.G., Campbell, K.M., 2007. Logistic regression. Topics in biostatistics , 273-301.

Niehues, N., Arp, B., Hiiller, T., Schwickerath, F., Boltz, N., Hahner, S., 2024. Integrating
security-enriched data flow diagrams into architecture-based confidentiality analysis.
Gesellschaft fiir Informatik e.V. https://dl.gi.de/handle/20.500.12116,/45546.

Niehues, N., Hahner, S., Heinrich, R., 2025. An architecture-based approach to mitigate
confidentiality violations using machine learning. In: Proceedings of the 22Nd IEEE
International Conference on Software Architecture (ICSA), p. 12. https://doi.org/10.
5445/1IR/1000178568

Niehues, N., Hahner, S., Heinrich, R. (2025). Supplementary material for “Mitigation
strategies for confidentiality violations in software architecture using ranked feature
importance”.

Peldszus, S., Tuma, K., Struber, D., Jurjens, J., Scandariato, R., 2019. Secure data-flow
compliance checks between models and code based on automated mappings. IEEE,
pp. 23-33. https://doi.org/10.1109/MODELS.2019.00-18

Perez-Palacin, D., Mirandola, R., 2014. Uncertainties in the modeling of self-adaptive sys-
tems: a taxonomy and an example of availability evaluation. In: Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering. Association for
Computing Machinery, pp. 3-14. https://doi.org/10.1145/2568088.2568095

Ramirez, A.J., Jensen, A.C., Cheng, B. H.C., et al., 2012. A taxonomy of uncertainty for
dynamically adaptive systems. In: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 99-108. ISSN:
2157-2321. https://doi.org/10.1109/SEAMS.2012.6224396

Runeson, P., Host, M., 2009. Guidelines for conducting and reporting case study research
in software engineering 14 (2), 131.

Schneider, S., Ferreyra, N. E.D., Quéval, P.-J., Simhandl, G., Zdun, U., Scandariato, R.,
et al., 2024. How dataflow diagrams impact software security analysis: an empirical
experiment. 2401.04446 [cs]. http://arxiv.org/abs/2401.04446.

Schneider, S., Ozen, T., Chen, M., Scandariato, R., et al., 2023. Microsecend: a dataset
of security-enriched dataflow diagrams for microservice applications. In: 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), pp.
125-129. ISSN: 2574-3864. https://doi.org/10.1109/MSR59073.2023.00030

Seifermann, S., Heinrich, R., Werle, D., Reussner, R., et al., 2022. Detecting violations
of access control and information flow policies in data flow diagrams 184, 111138.
https://doi.org/10.1016/j.js5.2021.111138

Seifermann, S., Walter, M., Hahner, S., Heinrich, R., Reussner, R., et al., 2021. Identifying
confidentiality violations in architectural design using palladio. In: Companion Pro-
ceedings of the 15th European Conference on Software Architecture (ECSA-C). CEUR
Workshop Proceedings, pp. 1-4.

14

The Journal of Systems & Software 235 (2026) 112761

Sobhy, D., Bahsoon, R., Minku, L., Kazman, R., et al., 2021. Evaluation of software archi-
tectures under uncertainty: a systematic literature review , 50.

Steenhoek, B., Gao, H., Le, W., et al., 2024. Dataflow analysis-inspired deep learning
for efficient vulnerability detection. In: Proceedings of the 46th IEEE/ACM Interna-
tional Conference on Software Engineering. ACM, pp. 1-13. https://doi.org/10.1145/
3597503.3623345

Su, X., Yan, X., Tsai, C.-L., 2012. Linear regression. Wiley Interdiscip. Rev. Comput. Stat.
4 (3), 275-294.

Troya, J., Moreno, N., Bertoa, M.F., Vallecillo, A., et al., 2021. Uncertainty represen-
tation in software models: a survey 20 (4), 1183-1213. https://doi.org/10.1007/
$10270-020-00842-1

Tuma, K., Scandariato, R., Balliu, M., 2019. Flaws in flows: unveiling design flaws via
information flow analysis. In: 2019 IEEE International Conference on Software Archi-
tecture (ICSA). IEEE, pp. 191-200. https://doi.org/10.1109/ICSA.2019.00028

Union, C. o.E., 2016. REGULATION (EU) 2016/679 (general data protection regulation).
https://eur-lex.europa.eu/eli/reg/2016,/679/2016-05-04.

Walker, W.E., Harremoés, P., Rotmans, J., Van Der Sluijs, J.P., Van Asselt, M. B.A.,
Janssen, P., Krayer von Krauss, M.P., 2003. Defining uncertainty: a conceptual ba-
sis for uncertainty management in model-based decision support. Integrated Asse. 4
1), 5-17.

Walter, M., Hahner, S., Seifermann, S., Bures, T., Hnetynka, P., Pacovsky, J., Heinrich,
R., et al.,, 2022a. Architectural optimization for confidentiality under structural un-
certainty. In: Software Architecture. Springer International Publishing, pp. 309-332.
https://doi.org/10.1007/978-3-031-15116-3_14

Walter, M., Heinrich, R., Reussner, R., 2022b. Architectural attack propagation analysis
for identifying confidentiality issues. In: 2022 IEEE 19th International Conference on
Software Architecture (ICSA). Institute of Electrical and Electronics Engineers (IEEE),
p. 12 S. https://doi.org/10.1109/I1CSA53651.2022.00009

Walter, M., Heinrich, R., Reussner, R., et al., 2023. Architecture-based attack path analysis
for identifying potential security incidents. In: Tekinerdogan, B., Trubiani, C., Tiber-
macine, C., Scandurra, P., Cuesta, C.E. (Eds.), Software Architecture. Springer Nature
Switzerland, pp. 37-53. https://doi.org/10.1007/978-3-031-42592-9 3

Weyns, D., 2020. An introduction to self-adaptive systems: A contemporary software en-
gineering perspective. John Wiley & Sons. https://doi.org/10.1002/9781119574910.

Weyns, D., Calinescu, R., Mirandola, R., Tei, K., Acosta, M., Bennaceur, A., Boltz, N.,
Bures, T., Camara, J., Diaconescu, A., Engels, G., Gerasimou, S., Gerostathopoulos,
1., Getir Yaman, S., Grassi, V., Hahner, S., Letier, E., Litoiu, M., Marsso, L., Musil, A.,
Musil, J., Nunes Rodrigues, G., Perez-Palacin, D., Quin, F., Scandurra, P., Vallecillo, A.,
Zisman, A, et al., 2023. Towards a research agenda for understanding and managing
uncertainty in self-adaptive systems 48 (4), 20-36. https://doi.org/10.1145/3617946.
3617951

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H.C., Bruel, J.-M., 2009. Re-
lax: incorporating uncertainty into the specification of self-adaptive systems.
In: 2009 17th IEEE International Requirements Engineering Conference. IEEE,
pp. 79-88.

Williams, B., Onsman, A., Brown, T., 2010. Exploratory factor analysis: a five-step guide
for novices. Australasian journal of paramedicine 8, 1-13.

Xu, T., Zhou, Y., 2015. Systems approaches to tackling configuration errors: a survey. ACM
Comput. Surv. 47 (4), 70:1-70:41. https://doi.org/10.1145/2791577

Yong, A.G., Pearce, S., et al., 2013. A beginner’s guide to factor analysis: focusing on
exploratory factor analysis. Tutor. Quant. Methods Psychol. 9 (2), 79-94.

https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.5445/IR/1000024955
https://doi.org/10.5445/IR/1000024955
https://doi.org/10.1145/3230833.3230856
https://doi.org/10.1145/3230833.3230856
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0049
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0050
https://dl.gi.de/handle/20.500.12116/45546
https://doi.org/10.5445/IR/1000178568
https://doi.org/10.5445/IR/1000178568
https://doi.org/10.5445/IR/1000178568
https://doi.org/10.5445/IR/1000178568
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1109/SEAMS.2012.6224396
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0055
http://arxiv.org/abs/2401.04446
https://doi.org/10.1109/MSR59073.2023.00030
https://doi.org/10.1109/MSR59073.2023.00030
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1016/j.jss.2021.111138
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0060
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0060
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0062
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0062
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0066
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0066
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0066
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0066
https://doi.org/10.1007/978-3-031-15116-3_14
https://doi.org/10.1007/978-3-031-15116-3_14
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1007/978-3-031-42592-9_3
https://doi.org/10.1007/978-3-031-42592-9_3
https://doi.org/10.1002/9781119574910
https://doi.org/10.1002/9781119574910
https://doi.org/10.1145/3617946.3617951
https://doi.org/10.1145/3617946.3617951
https://doi.org/10.1145/3617946.3617951
https://doi.org/10.1145/3617946.3617951
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0073
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0073
https://doi.org/10.1145/2791577
https://doi.org/10.1145/2791577
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0075
http://refhub.elsevier.com/S0164-1212(25)00430-3/sbref0075

	Mitigation strategies for confidentiality violations in software architecture using ranked feature importance
	1 Introduction
	2 Foundations
	2.1 DFD and confidentiality analysis
	2.2 Uncertainty in software architecture
	2.3 Machine learning techniques

	3 Running example
	4 An approach to rank and mitigate confidentiality violations
	5 Ranking uncertainties based on constraint violations
	5.1 Generating training data for ranking uncertainties
	5.2 Ranking uncertainties for importance
	5.3 Aggregation of rankings for multiple constraints
	5.3.1 Simple summation
	5.3.2 Exponential decay
	5.3.3 Top-3 emphasis

	6 Mitigation strategies
	6.1 Depth-first-search strategy
	6.2 Incremental increase strategy
	6.3 Fast start strategy
	6.4 Fixed subset strategies
	6.5 Clustering strategy
	6.6 Optimizing modified uncertainties

	7 Evaluation
	7.1 Goal, questions, and metrics
	7.2 Scenarios
	7.3 Design
	7.4 Results
	7.4.1 Ranking of uncertainties
	7.4.2 Effectiveness of our mitigation
	7.4.3 Scalability of our mitigation
	7.4.4 Statistical analysis

	7.5 Threats to validity

	8 Discussion
	8.1 Confidentiality for trustworthier software
	8.2 Discrete quality attributes for trustworthier software

	9 Related work
	10 Conclusion

