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 a b s t r a c t

A quality attribute like confidentiality is critical to trustworthy software but unfortunately, very challenging to 
ensure. This is because modern software systems are complex and interconnected. Architecture-based confiden-
tiality analysis enables the early detection of violations, helping to mitigate risks before deployment. However, 
uncertainty in software systems and their environments complicates precise and comprehensive architectural 
analysis. Additionally, the complexity of software models and the exponential growth of uncertainty scenarios 
pose significant challenges for automated mitigation, often leaving software architects to resolve confidentiality 
violations manually, a process that is both time-intensive and error-prone.
 In this paper, we extend our machine-learning-based approach to mitigate confidentiality violations. Specif-
ically, we introduce a novel mitigation strategy inspired by TCP Congestion Control, as well as a strategy that 
capitalizes on clustering techniques to dynamically adjust batch sizes. Our evaluation on three real-world soft-
ware architectures demonstrates that our extended approach can mitigate confidentiality violations while out-
performing the state-of-the-art. Whereas previously the upper limit was 60 times runtime reduction, now we 
achieve 2298 times reduction, with the median being an elevenfold reduction. Our statistical analysis confirms 
that the added TCP-inspired strategy is significantly cheaper than the state-of-the-art baseline (Friedman test 
𝑝 = .025 and Nemenyi post hoc test 𝑝 = .039), while also having a strong practical impact (Kendall’s W = 0.721). 
This extended work deepens our understanding of the nature of uncertainty and also of the techniques optimally 
suited to mitigating the violations caused by uncertainties. It takes us one step closer to designing trustworthier 
systems.

1.  Introduction

In today’s digital landscape, software systems are becoming increas-
ingly interconnected and more complex, necessitating early and thor-
ough analysis to ensure security-critical quality attributes, such as au-
thenticity, integrity, and confidentiality. Confidentiality is especially as-
sociated with a sense of trust in software. Confidentiality guarantees that 
data is “accessible and interpretable only by authorized users within a 
specific context of use” (ISO/IEC, 2018). Moreover, the ISO/IEC defines 
trustworthiness (ISO/IEC, 2011) as a combination of security, safety, 
reliability, resilience, and privacy. Confidentiality is a critical part of 
security, and as such, goes a long way to making software trustworthy. 
Therefore, quality issues like confidentiality violations must be identi-
fied and also mitigated. However, maintaining confidentiality is increas-
ingly put at risk by such erratic and unpredictable factors as changes in 
user behavior or in the system environment, both of which may negate 
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the initial assumptions and conditions under which confidentiality mea-
sures were designed (Lehman and Fernáandez-Ramil, 2006; Hahner, 
2025). That unknowable deviation between design behavior and actual 
behavior is what we call uncertainty, much as do, too, researchers in 
self-adaptive systems, where uncertainty is defined as “any deviation of 
deterministic knowledge that may reduce the confidence of adaptation 
decisions made based on the knowledge” (Weyns, 2020).

The proactive approach of architecture-based confidentiality anal-
ysis enables software architects to detect potential confidentiality
violations before they occur in the deployed system. By reliably 
and automatically identifying issues early in the development pro-
cess, architecture-based confidentiality analysis ensures not just a level 
of trustworthiness but crucially as well, a necessary degree of cost-
efficiency, meaning, when issues are addressed earlier in the develop-
ment cycle, costs are lowered dramatically (Glinz, 2006; Boehm and 
Basili, 2001). Data flow and architectural diagrams assist in the early 
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identification of sources of uncertainty which may affect confidentiality 
(Schneider et al., 2024). Importantly, most sources of uncertainty can be 
addressed during the design phase (Hahner et al., 2023). For example, 
uncertainties about server deployment locations or about encryption ac-
tivation can influence data flow and compliance with confidentiality re-
quirements. Overall, analysis approaches based on software architecture 
effectively identify and express sources of uncertainty.

Notwithstanding, a significant challenge remains in assessing the im-
pact of uncertainty on confidentiality requirements, and this assessment 
is rendered all the more challenging by the complexity of modern soft-
ware systems and the numerous forms of uncertainty thus entailed (Hah-
ner, 2021). For instance, if it is uncertain where a server processing 
personal data is located, that may cause potential regulatory violations 
(e.g., under the GDPR (Union, 2016)). Moreover, multiple uncertainty 
sources can interact (Camara et al., 2024), resulting in previously unpre-
dicted uncertainty interactions. For example, missing encryption might 
cause a violation only if the database server is deployed outside of the 
European Union. Hence, it is insufficient to identify sources of uncer-
tainties or analyze their impact merely in isolation.

One attempt to analyze such quality attributes as confidentiality un-
der uncertainty is the Architecture-Based and Uncertainty-Aware Confi-
dentiality Analysis (ABUNAI) approach (Hahner, 2025). The ABUNAI 
approach (Hahner, 2025) provides a viable solution because it detects 
violations of confidentiality constraints that are caused, ultimately, by 
uncertainties existing in any relation to the system at all. ABUNAI can 
effectively identify confidentiality violations, even where multiple un-
certainty sources interact. Essentially, by expressing different scenario 
combinations as independent data flows, ABUNAI operationalizes un-
certainty so as to achieve maximal coverage of sources of uncertainty. 
The limitation of ABUNAI, however, is that it does not offer solutions 
to mitigate those violations (Seifermann et al., 2022; Peldszus et al., 
2019; Hahner, 2025). Consequently, software architects must resort to 
manually resolving each identified confidentiality violation, a process 
that is both labor-intensive and prone to human error, especially in 
large-scale systems (Xu and Zhou, 2015). Additionally, the exponen-
tial growth of possible combinations of uncertainty scenarios presents 
a major challenge for automated solutions. Exploring all possible con-
figurations quickly becomes computationally prohibitive, a known issue 
in the field of design space exploration (Koziolek et al., 2011; Koziolek, 
2011).

Our previous work (Niehues et al., 2025) addressed these shortcom-
ings and mitigated confidentiality violations using machine learning 
that (a) assessed uncertainty impact by a ranking algorithm and that 
(b) prevented violations by an automated mitigation mechanism that 
only focuses on the relevant uncertainties from (a). That approach en-
abled the effective maintenance of confidentiality requirements while 
also reducing analysis runtime by a factor of 60 compared to the state-of-
the-art method (Hahner, 2025). Nonetheless, our previous approach in-
curred considerable cost in runtime latencies, and worse, it disregarded 
the importance of uncertainty dynamics as well as the rapidity with 
which even small but redundant combinations will escalate the mitiga-
tion runtime.

In that previous work (Niehues et al., 2025), we employed fixed 
batch sizes to divide uncertainties into equal parts so that we could test 
all possible combinations within each batch. The method was definitely 
straightforward, but it failed to account for unique structural variations 
in the models, where dynamically adjusting batch sizes can yield better 
results. Also, as to the cost-inefficiency of our previous approach, we re-
quired unnecessary checks at the start of the process because we failed 
to appreciate how models often contain numerous uncertainties, several 
of which contribute to confidentiality violations. Consequently, when 
we tested scenarios where the number of uncertainties was insufficient, 
our approach was unable to consider all relevant uncertainties. Taken 
together, these shortcomings of our previous approach point the way 
forward to a comprehensive architecture-based analysis that leverages 
machine learning to efficiently mitigating violations in confidentiality.

The novel contributions of our extension here of Niehues et al. (2025) 
are as follows:
C1 Our extended approach adapts techniques from telematics to tackle 

the plethora of unnecessary combinations that impede the initializa-
tion of mitigation. To that end, we introduce a first new mitigation 
strategy inspired by TCP Congestion Control (Blanton et al., 2009). 
In TCP Congestion Control, window sizes grow exponentially until 
a threshold is reached, and we have adopted this same technique to 
enable faster mitigation of all confidentiality violations caused by 
uncertainties.

C2 Our extended approach adapts batch sizing dynamically and so is 
able to ensure a more coherent and effective mitigation process. To 
that end, we introduce a second new mitigation strategy. It uses clus-
tering techniques — as opposed to arbitrary fixed slices — to adjust 
batch sizes based on the input model dynamically.

C3 An enhanced evaluation provides statistical significance for the state-
of-the-art performance of our extended approach. We found a sig-
nificant difference (Friedman test 𝑝 = .025) between our strategies 
and the baseline and as well, a strong practical impact (Kendall’s W 
= 0.721). Further, our new strategy in C1 proved to be significantly 
faster than the baseline (Nimenyi post hoc test 𝑝 = .039).

The paper is organized as follows. Section 2 describes the founda-
tions for this work and Section 3 introduces a running example. In Sec-
tion 4, we provide an overview of our extended approach, and this sets 
the stage for the uncertainty ranking in Section 5 and for the mitiga-
tion of violations in Section 6. We evaluate our work in Section 7, and 
discuss the results and broader implications in Section 8. Finally, we 
present related work in Section 9 and conclude in Section 10.

2.  Foundations

This section outlines the foundations essential for understanding the 
contributions of this work. It covers the syntax of Data Flow Diagrams
(DFDs), its application in confidentiality analysis, the role of uncertainty 
in software architecture, and the machine learning techniques employed 
to address constraint violations in uncertain systems.

2.1.  DFDs and confidentiality analysis

DeMarco (1978) introduced DFDs to visually represent how data 
moves through a system, including its processing steps. A network of 
nodes and flows represents the data movement through a system, where 
nodes correspond to entities like processes, data stores, or external en-
tities. System analysts widely use DFDs because they clearly and simply 
describe how a system processes data using a network of data transform-
ers (Larsen et al., 1994; Schneider et al., 2024).

The classic DFD model lacks the expressiveness required for ad-
vanced applications like detecting data flow constraint violations or 
addressing non-functional attributes such as access control and hard-
ware constraints. To address this, Seifermann et al. (2022) introduced 
an improved DFD metamodel with structures for security properties and 
resource allocations, enabling automatic constraint checks and greater 
system complexity representation.

To address rule explosion and performance bottlenecks with large 
systems, Boltz et al. (2023) developed an improved DFD-based model. 
Their method leverages Transposed Flow Graphs (TFGs), which are di-
rected and acyclic graphs that trace the flow of data through the system 
from many sources to one sink enabling efficient constraint checking. 
This model includes the following key elements:

Nodes are categorized into external nodes (data sources/sinks), pro-
cess nodes (which modify and forward data), and store nodes (which 
store and emit data). Flows represent data transfer between nodes. La-
bels are used to annotate node data characteristics (e.g. Encrypted or 
Personal), which propagate through the DFD and are critical for as-
sessing confidentiality. Behaviors define how data is processed at each 
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node, with assignments and pins that specify input/output operations. 
Assignments forward data or modify properties by adding or removing
labels.

By augmenting traditional DFDs with these features, the Data Flow 
Analysis (DFA) can check complex requirements such as access control, 
geographical data restrictions, and hardware-related constraints and de-
tect violations (Boltz et al., 2023). As such an analysis either finds con-
fidentiality violations or does not, we consider confidentiality a strictly 
binary attribute.

2.2.  Uncertainty in software architecture

Uncertainty is defined as “any deviation of deterministic knowledge 
that may reduce the confidence of adaptation decisions made based on 
the knowledge” (Weyns, 2020). Uncertainty in software systems arises 
from incomplete or ambiguous information about the system’s design or 
operation and can impact various aspects of system behavior, including 
security, performance, and reliability (Walker et al., 2003). In the con-
text of this work, we address uncertainties in software architecture mod-
els and their influence on confidentiality. Here, we focus on software-
architectural uncertainty that resolves the lastest during the deployment 
and can effectively be addressed using architectural approaches (Hahner 
et al., 2023).

Hahner et al. (2023) proposed a classification of architectural uncer-
tainty that can be applied to DFDs to model the impact of uncertainty 
on data flow and constraint violations. The classification identifies dif-
ferent types of uncertainties, each related to architectural elements in 
the DFD: Behavior uncertainties relate to the specific actions or functions 
process nodes perform. For example, there may be uncertainty regard-
ing whether a node will apply encryption or simply forward the incom-
ing data. Node uncertainties describe the properties of external nodes. 
For instance, it may be uncertain whether a database server is deployed 
within or outside the European Union. Flow uncertainties affect the pos-
sible routes that data may take through the system, including potential 
variations in the data pathway. For example, there may be uncertainty 
about whether data will bypass certain nodes or flow through additional 
processing stages.

Hahner (2025) models these uncertainties in DFDs using the 
Architecture-Based and Uncertainty-Aware Confidentiality Analysis
(ABUNAI) approach, which analyzes combinations of uncertainty sce-
narios to identify confidentiality violations. This helps to identify risks 
and violations earlier in the design process and providing the fundamen-
tals for this work.

2.3.  Machine learning techniques

This work employs different supervised and unsupervised machine 
learning techniques to analyze the impact of different uncertainties on 
data flows and identify patterns that could lead to confidentiality vio-
lations. The goal is to detect violations and understand their underly-
ing causes, helping to prioritize uncertainties for resolution. This sec-
tion provides a short overview of the utilized techniques. Exploratory 
Factor Analysis (EFA) simplifies complex datasets by uncovering latent 
factors underlying variable relationships (Hooper, 2012; Yong et al., 
2013). Principal Component Analysis (PCA) reduces dimensionality by 
transforming variables into orthogonal components, revealing primary 
variance sources (Abdi and Williams, 2010). Random Forests (RF) im-
proves predictive accuracy through an ensemble of decision trees, espe-
cially in high-dimensional data (Breiman, 2001). Linear Regression (LR) 
and Logistic Regression (LGR) model relationships between inputs and 
outcomes, offering interpretable coefficients and binary classification, 
respectively (Su et al., 2012; Nick and Campbell, 2007). Linear Discrim-
inant Analysis (LDA) enhances class separation by projecting data into 
lower-dimensional space (Balakrishnama and Ganapathiraju, 1998).

Fig. 1. Running example of a simple online shop.

3.  Running example

We illustrate the application and impact of our mitigation approach 
with a simplified model of an online shop. Fig. 1 shows the architecture 
model consisting of the user, two software components, and two data 
storages and has been used in similar work (Hahner et al., 2024). The 
User sends data to the Online Shop component, which directs it to the 
Database Service. The Database Service stores data on either the Cloud 
Service or the On-Premise Server. We identified four uncertainties in this 
online shop, depicted by dotted cycles with a question mark.

U1 The user input may contain either public or personal data
U2 The data might get sanitized or forwarded unfiltered
U3 It is unclear on which server the data will be stored
U4 The location of the cloud server is unclear, e.g., inside or outside the 

European Union.

We define two confidentiality requirements for our model: personal data 
shall never leave the European Union and shall always be sanitized. Vi-
olations of these requirements could lead to data breaches or regulatory 
non-compliance.

We use the predicates ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙 and ℎ𝑎𝑠𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙 to tag each 
data flow and component with specific characteristics, verifying compli-
ance with confidentiality requirements: Using these predicates, we can 
formalize our constraints: 

ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙) ∧ ¬ℎ𝑎𝑠𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑛𝑜𝑛𝐸𝑈 ) (1)
ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙) ∧ ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑆𝑎𝑛𝑖𝑧𝑖𝑡𝑒𝑑) (2)

Depending on the configuration of our model, both are violated. The 
first is violated if the user inputs personal data that flows to the cloud 
server with a non-EU location. The second is violated if the user inputs 
personal data that is not sanitized at the processing node

To automatically modify the model without violating constraints, 
one could try all combinations of uncertainty values and check for con-
straint violations in each resulting model.

As displayed in Table 1, this leads to an exponentially increasing 
number of configurations that need to be checked, with two options for 
four uncertainties sources being 24 = 16. We found a solution if one of 
these configurations does not violate the given constraints.

When looking at the table, one might notice that certain uncertain-
ties, such as the nature of user input, have a more significant impact on 
the outcome. For example, if the input is public, a violation is avoided 
regardless of other settings. Therefore it makes sense to try variations of 
the important uncertainties first to reduce the complexity and runtime.

In complex models with multiple uncertainties, prioritizing them 
manually is impractical, tedious, and error-prone, which motivates our 
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Table 1 
All possible combinations for the given uncertainties.
 Input  Processing  Deployment  Location  Violation
 Personal  Sanitized  On Premise  EU  False
 Personal  Sanitized  On Premise  non EU  False
 Personal  Sanitized  Cloud  EU  False
 Personal  Sanitized  Cloud  non EU  True
 Personal  Unfiltered  On Premise  EU  True
 Personal  Unfiltered  On Premise  non EU  True
 Personal  Unfiltered  Cloud  EU  True
 Personal  Unfiltered  Cloud  non EU  True
 Public  Sanitized  On Premise  EU  False
 Public  Sanitized  On Premise  non EU  False
 Public  Sanitized  Cloud  EU  False
 Public  Sanitized  Cloud  non EU  False
 Public  Unfiltered  On Premise  EU  False
 Public  Unfiltered  On Premise  non EU  False
 Public  Unfiltered  Cloud  EU  False
 Public  Unfiltered  Cloud  non EU  False

machine-learning approach to efficiently identify important uncertain-
ties based on existing violations, making it suitable for scalable applica-
tions in complex models. While checking 16 combinations for 4 uncer-
tainties by hand may be doable, checking 1024 for 10 is not.

4.  An approach to rank and mitigate confidentiality violations

This paper extends our previous approach (Niehues et al., 2025) for 
analyzing and adjusting DFDs to ensure compliance with confidentiality 
constraints while also accounting for uncertainties in the model. In this 
section, we provide an overview of our extended approach. As illustrated 
in Fig. 2, our extended approach focuses on identifying and addressing 
uncertainties that could lead to confidentiality breaches. Our approach 
systematically detects and configures valid scenarios within the input 
model. By modifying only the necessary uncertainties to achieve com-
pliance, we maintain the integrity of the original model as much as pos-
sible while also optimizing the analysis runtime.

In the first part of our approach, we pinpoint uncertainties that cause 
constraint violations. To achieve this, we implement a machine-learning 
ranking system that distinguishes relevant uncertainties from those that 
do not affect confidentiality. We begin the approach by transforming the 
output of an uncertainty-aware confidentiality analysis into categorical 
training data, which highlights the effects of various modeled scenar-
ios on constraint violations. We then apply a range of machine learning 
techniques—both unsupervised and supervised—including EFA, PCA, 
RF, LR, LGR and LDA, to rank uncertainties based on their potential 
to cause violations. This ranking helps prioritize uncertainties in subse-
quent steps.

In the second part of our approach, we iteratively mitigate these 
ranked uncertainties by systematically testing combinations of scenar-
ios to resolve constraint violations while minimizing disruption to the 
model. We use a greedy approach to apply various mitigation strategies, 
ranging from modifying single uncertainties to testing broader subsets, 
to find configurations that best satisfy confidentiality constraints. This 
iterative refinement ensures a balance between runtime efficiency and 
minimal impact on the original model structure, adjusting only the most 
critical uncertainties for achieving compliance.

In cases like the running example where multiple solutions are possi-
ble, the approach further optimizes for solutions that modify the fewest 
number of uncertainties. By exploring alternative configurations that 
leave as many uncertainties as possible intact, we aim to retain the flex-
ibility of the original DFD, while complying with confidentiality con-
straints.

This combined method offers an advancement by enabling auto-
mated, efficient mitigation of confidentiality violations within uncertain 
DFDs.

Fig. 2. Simplified pipeline of the approach, where blue denotes automatic ac-
tivities and orange denotes semi-automatic activities. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)

5.  Ranking uncertainties based on constraint violations

In our previous work (Niehues et al., 2025), we introduced an ap-
proach for ranking uncertainties by analyzing their impact on constraint 
violations using ranked feature importance. This approach begins with 
methods for generating training data tailored for ranking purposes. 
Next, we apply techniques to assess the importance of uncertainties, fol-
lowed by a strategy to aggregate rankings across multiple constraints. 
Each step leverages machine learning to systematically prioritize uncer-
tainties with the greatest potential impact on confidentiality or other 
constraints.

5.1.  Generating training data for ranking uncertainties

To begin, we use Transposed Flow Graphs (TFGs) to generate train-
ing data for uncertainty ranking. Each TFG represents a unique combi-
nation of uncertainty scenarios that is checked by ABUNAI to determine 
whether a confidentiality violation occurs (Hahner, 2025). For each con-
straint here, we generate separate training data automatically. Thus, 
the uncertainties themselves do need to be specified manually, but the 
training-data generation is fully automated via ABUNAI. For example, 
only 4 uncertainties require specifying in our running example, and the 
24 = 16 TFGs are generated automatically by ABUNAI. Next, each TFG as 
well as its violation status are automatically translated into categorical 
data which are input-ready for the machine learning techniques. Each 
row corresponds to a TFG, while each column corresponds to a specific 
uncertainty scenario. To maintain a consistent tabular format, we use 
placeholder values for missing uncertainties wherever a TFG does not 
flow through all uncertainty sources. This structured approach allows 
for machine learning models to process data even when some uncer-
tainties are absent in specific scenarios. To balance the dataset, we in-
clude both TFGs that cause confidentiality violations and TFGs that do 
not. This improves the model’s ability to identify critical uncertainties 
by reducing the noise from irrelevant configurations.

Table 2 presents the categorical training data derived from trans-
forming TFGs of our running example (Section 3). Since the cloud 
server’s location is irrelevant if we store data on the on-premise server, 
these scenarios are marked with -. The example consists of 4 uncertainty 
sources, each with 2 scenarios, and we check both constraints on each 
scenario combination. These results are shown in columns C1 and C2 of 
Table 2.

5.2.  Ranking uncertainties for importance

Using machine learning, we can prioritize uncertainties by analyz-
ing how their different scenarios influence constraint violations. To de-
rive rankings, we employ both unsupervised and supervised learning 
approaches.

Unsupervised Approaches rely on identifying underlying patterns 
in TFG-based training data. Techniques such as PCA and EFA are use-
ful for reducing data complexity while still retaining the most critical 
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Table 2 
Training data for Fig. 1, where U stands 
for uncertainty, C for constraint, S for sce-
nario and - for irrelevant.
 U1  U2  U3  U4  C1  C2
 S1  S1  S1  –  False  False
 S1  S1  S1  –  False  False
 S1  S1  S2  S1  False  False
 S1  S1  S2  S2  True  False
 S1  S2  S1  –  False  True
 S1  S2  S1  –  False  True
 S1  S2  S2  S1  False  True
 S1  S2  S2  S2  True  True
 S2  S1  S1  –  False  False
 S2  S1  S1  –  False  False
 S2  S1  S2  S1  False  False
 S2  S1  S2  S2  False  False
 S2  S2  S1  –  False  False
 S2  S2  S1  –  False  False
 S2  S2  S2  S1  False  False
 S2  S2  S2  S2  False  False

variables (Abdi and Williams, 2010; Williams et al., 2010). PCA pri-
oritizes uncertainties, which explain the highest variance in the data, 
generating components emphasizing highly correlated variables. EFA, 
on the other hand, focuses on latent factors that reveal relationships be-
tween uncertainties. Both approaches rank uncertainties by the degree 
to which they correlate with key data patterns, derived from component 
or factor loadings (as outlined in Algorithm 1). This method is effective 
for uncovering those subtle patterns across TFGs which might influence 
constraint violations.

Algorithm 1 Ranking unsupervised.
function RankUnsupervised(data_rows)
 ranking ← {}
 result ← CreateComponents(data_rows)
 components ← result.Components
 loadings ← components.Loadings
 for 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ∈ 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠 do
 continue for Constraint violated column
 ranking[loading.Name] ← sum(loading.Values)
 end for
 return SortDictDescending(ranking)
end function

Supervised Approaches provide direct insight into the relationship 
between uncertainties and violations by assessing confidentiality viola-
tions in different scenarios. Techniques such as LDA, RF, LR, LGR are 
applied to classify TFGs according to violation status (Linardatos et al., 
2020). Each technique assesses the importance of an uncertainty based 
on its impact on the prediction outcome. For instance, LDA calculates 
linear discriminants that separate violation and non-violation cases, 
with coefficients indicating the influence of each uncertainty (Balakr-
ishnama and Ganapathiraju, 1998). In contrast, Random Forests mea-
sure variable importance through mean decreases in impurity across 
decision trees, capturing both individual and combined effects of uncer-
tainties (imp, 2024; Breiman, 2001). As illustrated in Algorithm 2, this 
approach for deriving feature importance from each model provides a 
foundation for ranking uncertainties by their contribution to constraint 
violations.

To illustrate the ranking result, we use logistic regression to rank 
the training data for the running example shown in Table 2. Table 3 
shows the importance of uncertainties for the individual constraints. In 
Table 3a, U4 is the most important uncertainty for constraint 1, which 
makes sense since deploying the cloud server inside the EU will never 
lead to a violation. Similarly, Table 3b shows that U1 and U2 are equally 

Algorithm 2 Ranking supervised.
1: function RankSupervised(data_rows)
2:  model ← SupervisedMachineLearningTechnique()
3:  fitModel(model, data_rows)
4:  feature_imporances ← model.Feature_importances
5:  feature_names ← data_rows.Column_names
6:  return {feature_names, feature_imporances}
7: end function

Table 3 
Individual importance of uncer-
tainties for the running example.

 Uncertainty  Importance
 (a) Constraint 1.
 U4  0.6307
 U1  0.5836
 U3  0.5713
 U2  0.5000
 (b) Constraint 2.
 U1  0.6250
 U2  0.6250
 U3  0.5000
 U4  0.5000

important for constraint 2 because only combinations of these two can 
lead to a sanitization violation.

5.3.  Aggregation of rankings for multiple constraints

In systems with multiple constraints (such as the running example) 
each constraint might yield a different ranking for the same set of un-
certainties. Therefore, we construct an overall ranking by aggregating 
rankings from individual constraints. To this end, we focus only on the 
uncertainties globally impacting confidentiality violations. Specifically, 
to normalize each constraint-specific ranking, we sum all rankings and 
divide by the total, ensuring that all scores range from 0 to 1. This 
normalization maintains comparability across constraints which exhibit 
varying levels of severity in violations. We evaluated several aggrega-
tion methods and found that each offers unique benefits:

5.3.1.  Simple summation
This method sums the normalized scores of each constraint-specific 

ranking, producing a cumulative score. While straightforward in the ex-
ecution, this approach inflates uncertainties that, in truth, are not crit-
ical to any specific violation because only moderately important across 
multiple constraints.

5.3.2.  Exponential decay
Applying 𝑒−𝑟 to the summative rank 𝑟 of each uncertainty reduces 

the impact of lower-ranked uncertainties. This approach emphasizes the 
top-ranked uncertainties of each constraint, thus providing a clearer fo-
cus on the most significant factors.

5.3.3.  Top-3 emphasis
To highlight only the most critical uncertainties, scores are assigned 

to only the top-three-ranked uncertainties for each constraint, setting 
all others to zero. Clearly, this approach risks missing lower-ranked yet 
impactful uncertainties, but as a result, the approach also reduces noise 
from uncertainties with minimal contributions to constraint violations.

Top-3 Emphasis unifies constraint-specific rankings to identify, across 
complex models, the uncertainties with the greatest potential for miti-
gating violations in confidentiality or compliance. While the respective 
optimal aggregation strategy depends on the structure of the DFD and 
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Table 4 
Aggregated importance of uncer-
tainties for the running example.
    Uncertainty  Importance 
  U1  1.3678  
  U4  1.0000  
  U2  0.3678  
  U3  0.1353  

also on the nature of the constraints, our evaluation shows that expo-
nential decay results in the overall best rankings. To illustrate the aggre-
gation, we use the individual importance from the running example (as 
in Table 3) but aggregated using exponential decay. The results (shown 
in Table 4) confirm that U1 has the most impactful importance because 
it can lead to violations of both constraints.

6.  Mitigation strategies

We mitigate confidentiality violations by configuring the software 
architecture to use a combination of uncertainty scenarios that com-
ply with confidentiality requirements. Our approach aims to find a 
violation-free model by generating and evaluating new models in which 
high-ranking uncertainties are iteratively combined and tried out. We it-
eratively replace uncertainties with their concrete scenarios to produce 
new model variations. We then check each model for confidentiality vi-
olations. If we discover a violation-free model, the mitigation is success-
ful, and the approach terminates. If not, the approach continues, using 
other uncertainties in the ranking until no further options are available. 
We want to note, though, that our approach fails if no combination of 
uncertainty scenarios satisfies all confidentiality requirements. The cho-
sen mitigation strategy determines how many uncertainties we use per 
model generation. In our previous work (Niehues et al., 2025), we pre-
sented the Depth-First-Search strategy, the incremental increase strategy 
and fixed subset strategies. This paper extends these with the Fast Start
strategy (Section 6.3) and the Clustering strategy (Section 6.5).

6.1.  Depth-first-search strategy

The simplest strategy involves trying all combinations of uncertain-
ties ranked by appearance in the TFGs, allowing a straightforward anal-
ysis without additional overhead. This depth-first-search strategy often 
works well for small models, as it avoids the time-consuming task of 
generating training data and ranking the importance of uncertainties. 
However, this strategy may lead to exponentially increasing runtime if 
critical uncertainties appear closer to the end of the TFG. In such cases, 
delays are significant, as more extensive analysis is required to evaluate 
later uncertainties in the sequence. The DFS strategy serves as a baseline 
for our evaluation.

6.2.  Incremental increase strategy

In this strategy, uncertainties are iteratively included in small incre-
ments: First, only the scenarios of the top-ranked uncertainty are consid-
ered, then the combination of the top two, then the top three, adding one 
uncertainty per iteration. We generate and analyze a new model variant 
for each unique scenario combination of these uncertainties. For the run-
ning example, we would check all scenario combinations for {U1}, then 
{U1,U4}, then {U1,U4,U2} and finally {U1,U4,U2,U3}. Using the public
data scenario for U1 already satisfies all constraints, so we can stop after 
the first iteration. This strategy is efficient when constraint violations are 
caused by a few high-ranking uncertainties. However, frequently gen-
erating and evaluating models may increase runtime compared to other 
strategies.

Fig. 3. Combined uncertainties per iteration in the Fast Start approach, with 
exponential growth up to a threshold, followed by incremental increases.

6.3.  Fast start strategy

This strategy extends the incremental increase and is inspired by 
the TCP Congestion Control (Blanton et al., 2009). In the first phase, we 
increase the amount of combined uncertainties exponentially until we 
reach a threshold. We use half of the total number of uncertainties as 
the threshold. Afterward, we continue to include uncertainties incre-
mentally. As before, we halt the approach when we find a valid config-
uration. Fig. 3 shows an example for 16 uncertainties with a threshold 
of 8.

The main drawback of the Incremental Increase strategy is that when 
numerous uncertainties cause constraint violations, many unnecessary 
model variants are generated early in the approach. The Fast Start strat-
egy mitigates this inefficiency by leveraging the fact that small uncer-
tainty combinations can be evaluated quickly. By initially growing expo-
nentially, we rapidly approach a meaningful threshold before switching 
to incremental increases. This balances computational efficiency with 
the need to explore impactful uncertainty combinations while minimiz-
ing redundant evaluations.

6.4.  Fixed subset strategies

With a good ranking, we can assume that constraint-causing uncer-
tainties will likely appear in the top-ranked portion. Therefore, a subset-
based strategy can improve efficiency by reducing redundant combina-
tion checks. In this strategy, uncertainties are split into varying amounts 
of batches, for example, into four, three, or two batches. We evaluate 
each subset by testing all scenario combinations within that batch un-
til we find a violation-free model, allowing the approach to halt early. 
If we do not find a solution within the current batch, we include the 
next subset, expanding the pool of uncertainties to test additional com-
binations. When using two batches for the running example, we would 
check all scenario combinations for {U1,U4}, and then {U1,U4,U2,U3}. 
As we can satisfy all constraints within the first batch, we can stop the 
approach. This strategy performs efficiently when there are many viola-
tions causing uncertainties that appear high in the ranking. However, if 
some of these uncertainties rank lower than half, the runtime increases 
as more subsets are evaluated.
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6.5.  Clustering strategy

This strategy extends the fixed subset strategy by dynamically de-
termining batch sizes based on the importance of uncertainties using 
clustering. Specifically, we apply k-means clustering (Kodinariya et al., 
2013) on the uncertainty importance scores to form clusters, which are 
then processed similarly to fixed batches.

To determine the optimal number of clusters (k), we use the Sil-
houette coefficient, which measures how well the clusters align with 
uncertainty importance (Kodinariya et al., 2013). We tested values of 𝑘
ranging from 2 to 8, and our experiments indicated that 𝑘 = 8 provided 
the best results for our evaluation scenarios.

By dynamically adjusting batch sizes based on model-specific un-
certainty importance, this approach combines the advantages of batch-
based testing while ensuring better alignment with the given model’s 
structure.

6.6.  Optimizing modified uncertainties

We defined an additional approach displayed in Algorithm 3 to min-
imize unnecessary uncertainty modifications that refines the model by 
merging versions that differ by only a single uncertainty. The algo-
rithm works in combination with the previous strategies and returns 
a list of relevant scenarios, marks irrelevant uncertainties. It is espe-
cially useful for architects who want to retain as much modeled un-
certainty as possible. The algorithm identifies and merges models that 
differ by one uncertainty, reducing unnecessary modifications. If two 
models contain all possible scenarios of a particular source, the algo-
rithm marks that source as irrelevant for constraint violations. Other-
wise, the algorithm merges the models to include the scenarios used for 
that source. We iterate the approach until no further optimizations are
possible.

Algorithm 3 Optimize amount of uncertaintes.
1: function simplifyMitigation(models : List of String, scenar-
ioAmounts : List of Integer)

2:  newModels ← models
3:  changeHappened ← true
4:  while changeHappened do
5:  changeHappened ← false
6:  for all pairs of models (𝑚𝑖, 𝑚𝑗 ) in newModels do
7:  if models differ by one uncertainty 𝑢 then
8:  mergedModel ← 𝑚𝑖 ∪ 𝑚𝑗
9:  if mergedModel satisfies scenarios then
10:  𝑢 ← irrelevant
11:  end if
12:  newModels ← newModels ∪ mergedModel
13:  newModels ← newModels ⧵𝑚𝑖 ⧵ 𝑚𝑗
14:  changeHappened ← true
15:  end if
16:  end for
17:  end while
18:  return newModels
19: end function

Through these strategies, the mitigation approach offers flexible 
ways to reduce runtime and ensure minimal alterations to the model, 
balancing effectiveness and efficiency based on the specific characteris-
tics of each ranked uncertainty.

7.  Evaluation

Our evaluation aims to assess whether the proposed mitigation ap-
proach can accurately identify relevant uncertainties and repair confi-
dentiality violations while scaling well with an increasing number of 

uncertainties. To answer this, we ran exhaustive experiments on three 
software architecture models. In this section, we present our plan, de-
sign, and results. To close out the section, we cover any possible threats 
to validity.

7.1.  Goal, questions, and metrics

We use a Goal-Question-Metric (GQM) plan (Basili and Weiss, 1984; 
Basili, 1992) to structure the evaluation. To enhance validity, we align 
our plan with related work (Hahner et al., 2023b,a) and use well-known 
metrics (Kar et al., 2015).

Our Goal is to evaluate the quality of our mitigation approach com-
pared to existing approaches (Hahner et al., 2023b,a). We ask the fol-
lowing questions:
Q1 How precisely do the proposed ranker and aggregation strategies 

identify relevant uncertainties?
Q2 How effective is the automatic mitigation in repairing confidentiality 

violations?
Q3 How scalable are the refactored mitigation strategies?
Q4 How scalable are the new proposed mitigation strategies?

Question Q1 investigates the precision of the ranking and aggrega-
tion strategies. We evaluate and compare all previously introduced rank-
ing strategies, i.e., Exploratory Factor Analysis (EFA), Principal Com-
ponent Analysis (PCA), Random Forests (RF), Linear Regression (LR), 
Logistic Regression (LGR), and Linear Discriminant Analysis (LDA), see 
Section 2. Furthermore, we consider the three aggregation strategies 
introduced in Section 5, i.e., simple summation (SUM), exponential de-
cay (EXP), and top-3 emphasis (Top3). To assess the ranking results, 
we apply the often used Precision@K (M1.1) metric that measures “the 
number of relevant items at the top k positions of a ranked list” (Kar 
et al., 2015). An uncertainty is relevant, i.e., a true positive (TP) if it 
causes a confidentiality violation. Otherwise, it is irrelevant, i.e., a false 
positive (FP). For instance, Uncertainty U1 in our running example is al-
ways relevant as it affects both confidentiality requirements regardless 
of the other uncertainties. We calculate Precision@K = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ∈ [0, 1]
with K being the rank of the last relevant uncertainty. Otherwise, 
the ranking could ignore relevant uncertainties and negatively impact 
the recall, which shall be avoided in confidentiality analysis (Hahner 
et al., 2023b). Put simply, we investigate how many irrelevant uncer-
tainties were ranked among all relevant uncertainties, where lower is
better.

Question Q2 investigates the effectiveness of our automatic mitiga-
tion in producing repaired models without confidentiality violations. 
To answer this question, we compare the number of confidentiality vi-
olations before the mitigation (M2.1) and after the mitigation (M2.2). 
Trivially, the mitigation shall remove identified confidentiality viola-
tions without reintroducing new violations. Thus, lower is better.

Finally, with questions Q3 and Q4 we investigate the scalability of 
the mitigation. We consider the mitigation strategies that determine 
how uncertainties are selected for the mitigation, i.e., incremental in-
crease (INCREASE), Fast Start (FASTSTART), fixed subsets splitting the 
relevant uncertainties into two halves (HALF), or four quarters (QUAR-
TER) and clustering. (CLUSTER), see Section 6. We compare these strate-
gies against each other and against Depth-First-Search (BRUTE), repre-
senting the baseline of the ABUNAI approach. Here, we want to asses 
which strategy is expedient and whether we can outperform the state 
of the art. We measure the runtime (M3.1) of the approach for ris-
ing numbers of relevant and irrelevant uncertainties to evaluate the
scalability.

7.2.  Scenarios

We selected three diverse software architectures in the form of DFDs 
as evaluation scenarios. They differ in size (5 to 18 nodes), interconnect-
edness, and the number of uncertainties (7 to 21), representing a range 
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Fig. 4. Spring boot architecture.

Fig. 5. Tap and eat architecture.

of real-world architectures. These systems also span varied technolog-
ical and functional domains, including open-source microservices and 
secure online banking. This heterogeneity demonstrates the applicabil-
ity of our approach to a broad spectrum of architectures with similar 
characteristics.

Spring Boot. Kothagal (2024) created this open-source microservice ar-
chitecture, and Schneider et al. (2023) derived its DFD representation. 
The model is shown in Fig. 4 and contains 5 nodes representing 1 user 
interface, 3 internal services and 1 data storage. The nodes are con-
nected by 6 edges. The model contains 7 uncertainties, and 3 out of 
those cause confidentiality violations. For this model we check the fol-
lowing constraints (Niehues et al., 2024):
𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑒𝑛𝑡𝑟𝑦𝑝𝑜𝑖𝑛𝑡) ⟹ 𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) ⟹ 𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑙𝑜𝑐𝑎𝑙_𝑙𝑜𝑔𝑔𝑖𝑛𝑔) ⟹ 𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)

Tap and Eat. Ferrater (2024) created this open-source architecture, and 
Schneider et al. (2023) derived its DFD. The model is shown in Fig. 5 
and displays a microservice architecture containing 9 nodes represent-
ing 8 internal services and 1 data storage. The nodes are connected by 
16 edges. The model contains 21 uncertainties, and 4 out of those cause 
confidentiality violations. For this model we check the following con-
straints (Niehues et al., 2024):
𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) ⟹ 𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑎𝑢𝑡ℎ_𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑙𝑜𝑔𝑖𝑛_𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠_𝑟𝑒𝑔) ⟹ 𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑎𝑢𝑡ℎ_𝑠𝑒𝑟𝑣𝑒𝑟)

𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑒𝑛𝑡𝑟𝑦𝑝𝑜𝑖𝑛𝑡) ⟹ 𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑙𝑜𝑐𝑎𝑙_𝑙𝑜𝑔𝑔𝑖𝑛𝑔) ⟹ 𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)

Online Banking. The last model is our own creation and displays an 
online banking architecture. The model is shown in Fig. 6 and consists 
of 18 nodes representing 2 external actors, 3 user interfaces, 10 internal 
services and 3 data storages. The nodes are connected by 20 edges. The 
model contains 9 uncertainties, and 3 out of those cause confidentiality 
violations. For this model we check the following constraints:
𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑛𝑜𝑛𝐸𝑈 ) ⟹ ¬𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑎𝑏𝑙𝑒) ⟹ ¬𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑)

𝑁𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙(𝐷𝑒𝑣𝑒𝑙𝑜𝑝) ⟹ ¬𝐷𝑎𝑡𝑎𝐿𝑎𝑏𝑒𝑙(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙)

7.3.  Design

To evaluate the precision of our ranking, we created reference rank-
ings. To that end, we manually examined the evaluation scenarios and 
identified the relevant uncertainties, which make our true positives. 
Each author, independently of one another, assessed which uncertain-
ties were responsible for the observed confidentiality violations. Next, 
all authors compared assessments. In all cases, the authors arrived at the 
same conclusions because the violating uncertainties will be self-evident 
to any researcher with expertise in software architecture and confiden-
tiality. Next, on the basis of the reference rankings, our automatic miti-
gation was executed with different combinations of uncertainty ranker 
and aggregation strategies and calculated the Precision@K score.

To evaluate the effectiveness of our automatic mitigation approach, 
we employed the ABUNAI framework (Hahner, 2025). The analysis 
takes a DFDs and a list of constraints as input and automatically checks 
for violations and their locations. We use the output of this analysis to 
measure the number of confidentiality violations detected both before 
and after applying our mitigation.

To evaluate the scalability of our approach, we manually scaled the 
evaluation scenarios. We iteratively duplicated subgraphs to scale the 
Spring Boot and Online Banking model up, which increased the nodes 
and uncertainty counts. Conversely, to scale the Tap and Eat model 
down, we removed subgraphs step by step. We measured the mitigation 
runtime in milliseconds on an Apple M3 Pro-CPU with 18 Gigabytes of 
RAM for every evaluation scenario and scaling step.

7.4.  Results

7.4.1.  Ranking of uncertainties
We evaluated every uncertainty ranker on every aggregation strat-

egy. In this way, we obtained a total of 54 Precision@K scores, or 18 
for the Spring Boot model (see Fig. 7a), 18 for the Tap and Eat model 
(see Fig. 7b), and 18 for the Online Banking model (see Fig. 7c). In the 
figures, each bar represents a Precision@K value ranging from 0 to 1, 
where 1 indicates a perfect score.

Across all evaluation scenarios, supervised rankers consistently out-
performed unsupervised rankers. Specifically, Logistic Regression and 
Random Forest were the top-performing rankers; moreover, the Expo-
nential and Top3 aggregation strategies, when combined with Logistic 
Regression, consistently produce perfect rankings across all models. In 
contrast, unsupervised rankers, such as EFA and PCA, underperformed, 
especially in models with high variance among uncertainties.

All in all, our combination of logistic regression with exponential 
decay achieved a perfect ranking of uncertainties across all evaluation 
scenarios.

7.4.2.  Effectiveness of our mitigation
To evaluate the effectiveness of our automatic mitigation approach, 

we employed ABUNAI on three evaluation scenarios and then measured 
the number of confidentiality violations detected both before and after 
applying our mitigation.

Table 5 summarizes our results. Prior to mitigation, the Spring Boot 
model exhibited 3 confidentiality violations, the Tap and Eat model 9 
violations, and the Online Banking Model 4 violations. After applying 
our mitigation approach, all models demonstrated zero confidentiality 
violations. Thus, our results confirm the effectiveness of our approach 
in mitigating confidentiality violations.

7.4.3.  Scalability of our mitigation
To provide a broader set of data points for evaluating scalability, 

we modified the models by duplicating or removing subgraphs, thereby 
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Fig. 6. Online banking architecture.

Fig. 7. Precision@K for different uncertainty rankers and aggregation strategies.

Table 5 
Confidentiality violations identified be-
fore and after mitigation.

 Before  After
 Spring Boot Model  3  0
 Tap and Eat Model  9  0
 Online Banking Model  4  0

yielding models with uncertainty counts ranging from 7 to 22. To pre-
serve model behavior and structure, we maintained a proportional dis-
tribution of relevant to total uncertainties. For each uncertainty level, 
we executed the mitigation approach multiple times and then recorded 
the average runtime in milliseconds on a logarithmic scale. Fig. 8 shows 
our results both for the refactored strategies of Niehues et al. (2025) and 
also for our two new strategies.

The baseline depth-first search (BRUTE) exhibits exponential growth 
in runtime as uncertainties increase in number. In the Online Banking 
model, to resolve the 22 uncertainties, the baseline takes 5356 seconds 
— that is, 1 h 30 minutes — and so represents the worst case, while our 
new Fast Start strategy, by contrast, resolves in just 2 seconds. Overall, 
our mitigation strategies consistently maintain runtimes near 1 second, 
even for the largest models, and no strategy ever exceeds 10 seconds 
runtime.

However, our strategies do introduce some overhead by using ma-
chine learning for the uncertainty ranking. Consequently, for models 
with low uncertainty (e.g., fewer than 14 uncertainties), the runtime of 
the baseline may outperform the runtimes of our strategies.

7.4.4.  Statistical analysis
Based on the scalability results shown in Section 7.4.3, we propose 

the following hypothesis:
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Fig. 8. Runtime scalability for different mitigation strategies.

Hypothesis: Our mitigation strategies outperform the depth-first 
search baseline when there are at least 14 uncertainties.

To test this hypothesis, we conducted the Friedman test to assess 
whether there are statistically significant differences among strategies. 
The test yielded a p-value of 0.025 and a Kendall’s W of 0.721. Those 
results indicate a significant difference and a strong effect size, and so 
we conclude that the null hypothesis is rejected.

Next, we proceeded with a Nemenyi post hoc test. We treated strate-
gies as groups, we treated runtime as the target metric, and we treated 
evaluation scenarios across different amounts of uncertainty as blocks. 
Table 6 summarizes all resulting p-values. We set the significance level 
to 𝛼 = 0.05 and found that the Fast Start strategy significantly outper-
forms the depth-first search baseline (𝑝 = .039). However, under the 
𝛼 = 0.05 threshold, no other pairwise differences were statistically sig-
nificant, neither against the baseline nor between any of the other pairs.

All in all, on smaller models, our mitigation approaches may 
underperform the baseline because of the overhead introduced by 
the machine-learning techniques. Yet, as the number of uncertain-
ties reaches 14, our mitigation approach outperforms the baseline, as 
demonstrated on a logarithmic scale in Fig. 9. Our approaches achieve 
a median elevenfold runtime reduction; moreover, using our new Fast 
Start strategy, our approaches achieve a maximum of a 2298-fold run-
time reduction on the Online Banking model with 22 uncertainties.

7.5.  Threats to validity

We structure the discussion of threats to validity based on the guide-
lines by Runeson and Höst (2009).

Table 6 
Nemenyi Post-hoc p-values.

 Brute  Quarter  Half  Cluster  Fast  Increasing
 Brute  1.000  0.985  0.596  0.995  0.039  0.206
 Quarter  0.985  1.000  0.937  1.000  0.206  0.596
 Half  0.596  0.937  1.000  0.894  0.765  0.985
 Cluster  0.995  1.000  0.894  1.000  0.154  0.507
 Fast  0.039  0.206  0.765  0.154  1.000  0.985
 Increasing  0.206  0.596  0.985  0.507  0.985  1.000

Fig. 9. Factor of runtime reduction for models with at least 14 uncertainties.

Internal validity. One threat is the accuracy of the model-based con-
fidentiality analysis (Hahner et al., 2023a) used to assess confidential-
ity violations in the repaired models. Wrong results would negatively 
affect the correctness of our results. However, as this analysis has al-
ready been comprehensively evaluated, we consider this threat to be 
negligible. Another threat is the subjectivity of our manual identifica-
tion of relevant uncertainties in the evaluation scenarios. To mitigate 
this, each author independently assessed which parts were responsible 
for the confidentiality violations, and then all authors compared results. 
We consistently reached the same conclusions, since the problematic 
elements were largely self-evident to anyone familiar with confidential-
ity requirements. Note, too, that this manual assessment is only one 
part of our evaluation of the quality of the ranking; the assessment does 
not reflect on the ability of our approach to mitigate confidentiality vi-
olations. Therefore, any possible impact of this threat is even further
limited.

External validity. The choice of cases and evaluation scenarios can 
limit the generalizability of our results. To address this, we choose mod-
els from diverse backgrounds, with the two from Schneider et al. (2023) 
being derived from real-world open-source projects.

Construct validity. We applied a GQM plan with well-known met-
rics such as Precision@K. Last, we involved multiple researchers in 
the process to enhance the reliability of our results and minimize 
the bias in annotating our models. Every step in our process is
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deterministic, given the same input model. Therefore, the only vari-
ance in our runtime measurements stems from differing CPU loads. 
To reduce this variability, we averaged runtimes from twelve runs 
per measurement. Last, we provide supplemental material as data set 
(Niehues et al., 2025) to address the availability of evolution arti-
facts in software architecture research (Konersmann et al., 2022). This 
includes all code artifacts, results, and instructions on reproducing
them.

8.  Discussion

8.1.  Confidentiality for trustworthier software

Here we revisit four sets of our results, in order to draw out exactly 
how these help our extended approach to contribute to trustworthier 
software.

First, one set of results on ranking uncertainties which cause viola-
tions (detailed in Section 7.4.1) shows that supervised machine learning 
techniques produce better rankings than unsupervised techniques. We 
infer that supervised rankers align so well with this prediction task that 
they are capable of capturing more effectively the relevant uncertain-
ties. On the other hand, unsupervised rankers appear to rely too heavily 
on shared variance, which can introduce noise when unrelated variables 
correlate with the target constraints. Therefore, supervised techniques 
are better at identifying relevant uncertainties than unsupervised tech-
niques.

Second, another set of results on ranking uncertainties (again, de-
tailed in Section 7.4.1) shows that across all models, the Exponential ag-
gregation performs best, while the Sum method performs worst. The Ex-
ponential method possesses the ability to reduce noise by weighting un-
certainties exponentially. Conversely, the Sum method underperforms, 
likely because it evenly distributes importance and thus introduces ran-
dom noise and reduces precision. Therefore, exponential decay is better 
suited to aggregate individual importance than just summing up impor-
tance, constraint by constraint.

Third, one set of results on scalability (detailed in Section 7.4.3) 
shows that our mitigation strategies, when compared against the depth-
first search baseline ABUNAI (Hahner, 2025), are much faster, and in 
the case of the Fast Start strategy, even significantly faster. We attribute 
this considerable gain in efficiency to the effective ranking of uncer-
tainties. Effective rankings allow our strategies to consider only those 
scenario combinations which are necessary to mitigate confidentiality 
violations. In contrast, the baseline ABUNAI must first inspect many un-
necessary combinations before it gets to the root of the problem and 
mitigates the violations. Therefore, trying exclusively combinations of 
the relevant uncertainties is faster than trying combinations based on 
appearance in the model.

Lastly, another set of results on scalability (again, detailed in Sec-
tion 7.4.3) shows that with our extension, we can reduce the runtime 
compared to the baseline by a factor of up to 2298 times. In Niehues 
et al. (2025), we had achieved merely a 60-fold reduction on the same 
model with the same amount of uncertainties. We explain this extraor-
dinary improvement in two ways. First, we meticulously improved our 
prototype to increase code quality, to remove redundant operations, and 
to make it more efficient. Second, the newly added Fast Start strategy, 
which is based on the TCP Congestion Control, is not only the fastest 
strategy, but also significantly faster than the baseline with a p value 
below 0.05 and Kendall’s W of 0.721 (i.e., a strong impact). Therefore, 
by polishing the prototype and also by developing more advanced mit-
igation strategies, we transformed our previous work through dramatic 
improvement in runtime.

In sum, this extension of our previous work (Niehues et al., 2025) 
is a significant contribution both specifically to the mitigation of con-
fidentiality violations and generally to the trustworthiness of software 
architectures.

8.2.  Discrete quality attributes for trustworthier software

Trustworthiness is “The degree to which a system deserves to be 
trusted based on the qualities of security, safety, reliability, resilience, 
and privacy” (ISO/IEC, 2011). Clearly, trustworthiness will be strongly 
influenced by confidentiality, because this attribute is an integral part of 
security. However, confidentiality is just one among a number of addi-
tional relevant quality attributes. For example, the attributes integrity, 
authenticity, and privacy will all influence trustworthiness too, and in-
terestingly, the ways that they influence trustworthiness may prove to 
be similar or even identical to how confidentiality influences trustwor-
thiness. The reason is that attributes like integrity, authenticity, and 
privacy are binary in nature and thus lack gradients for incremental im-
provement. In contrast to a continuous attribute like reliability, binary 
attributes like these are harder to optimize for efficiently because they 
are discrete (Aspvall and Stone, 1980; Lenstra, 1983). Therefore the dis-
creteness of an attribute actually presents a major challenge for viola-
tions mitigation generally, and thus impinges upon the trustworthiness 
of the software.

Our approach promises to deliver effective application also to other 
discrete quality attributes because our mitigation of confidentiality vi-
olations is agnostic to concrete components, to their behavior, and to 
the rules imposed on them. As long as (1) a model and (2) the uncer-
tainties of that model and (3) the constraints in the underlying analysis 
are all well-defined, then our approach can use those outputs to rank 
uncertainties and combine the uncertainty scenarios for our violations 
mitigation. That, of course, is a noteworthy advance on ensuring gener-
ally – beyond just confidentiality – greater trustworthiness in software 
systems.

Our approach, again, should apply to any discrete quality attribute 
when these two prerequisites are met, namely, that the quality attribute be 
constrainable in a formal way and also that there be an analysis which 
identifies violations of the constraints under uncertainty. Such an anal-
ysis can be either sourced from related work or built as an adaptation 
of our confidentiality analysis here. If the analysis is adapted from this 
work, the DFD metamodel only needs to be adjusted to incorporate the 
additional properties and behaviors of whichever quality attribute is 
under analysis. For example, if the quality attribute for analysis is in-
tegrity, then the DFD will need to be made capable of saving hashes for 
data sent between nodes. This way, the analysis of integrity can now 
verify whether the data was changed between the source node and the 
sink node. Such a step in analysis is all that should be needed to mitigate 
violations of any discrete quality attribute just as effectively as we have 
demonstrated that our approach mitigates violations in confidentiality 
constraints.

We look forward to future work in this direction. We first plan to 
extend our approach to the attributes of authenticity, integrity and 
privacy. Advances here should help achieving generally trustworthier
software.

9.  Related work

In this paper, we consider uncertainty within the software architec-
ture to enable the automated repair of confidentiality violations. We 
identify three areas of work related to this paper. First, work from the 
field of software architecture research that deals with uncertainty, which 
is often related to self-adaptive systems (Hezavehi et al., 2021; Weyns, 
2020; Weyns et al., 2023). Second, approaches to confidentiality analy-
sis at design time that enable the early identification of confidentiality 
violations (Seifermann et al., 2022; Boltz et al., 2023, 2020, 2024), also 
while considering uncertainty (Hahner et al., 2023b,a). Third, using ma-
chine learning to mitigate security issues (Ahsan et al., 2022; Kronjee 
et al., 2018; Steenhoek et al., 2024). We summarize these research di-
rections in the following.
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Architectural analysis and mitigation under uncertainty. Numerous papers 
aim to understand better the representation and impact of uncertainty 
on architectural models. Troya et al. (2021) performed a survey to in-
vestigate the representation of uncertainty in models and found that 
modeling uncertainty as variation models and scenarios is common, es-
pecially in design space exploration. Andersson et al. (2009) support 
this view by presenting modeling dimensions of self-adaptive systems, 
as does the recently proposed OMG PSUM standard (Group, 2023). Re-
searchers have proposed numerous classifications (Perez-Palacin and 
Mirandola, 2014; Mahdavi-Hezavehi et al., 2017; Ramirez et al., 2012) 
to investigate the nature of uncertainty, including some focused on 
security-related fields like access control (Bures et al., 2020) and confi-
dentiality (Hahner et al., 2023). Comprehensive frameworks have been 
researched to investigate uncertainty in software systems, e.g., RELAX
(Whittle et al., 2009), Rainbow (Garlan et al., 2004), PerOpteryx (Kozi-
olek et al., 2011), ArcheOpterix (Aleti et al., 2009), GuideArch (Esfahani 
et al., 2013), and DeTUM (Famelis and Chechik, 2019). Here, Heza-
vehi et al. (2021) and Sobhy et al. (2021) recently conducted surveys 
and found that addressing uncertainty in design time is expedient and 
mitigation should be systematically considered. However, most exist-
ing approaches focus only on analysis rather than mitigation and do 
not explicitly support confidentiality. This can severely limit their ap-
plicability (Walter et al., 2022b; Hahner et al., 2023a) to identify and re-
pair confidentiality violations under uncertainty. Researchers have high-
lighted the challenge of creating comprehensive end-to-end approaches 
(Weyns et al., 2023). Here, especially considering multiple uncertainty 
sources and their interactions is considered to be challenging (Cámara 
et al., 2022; Camara et al., 2024). The work presented in this paper 
addresses this gap by considering both the analysis and the mitiga-
tion of uncertainty at design time, which is tailored to confidentiality
violations.

Architecture-based confidentiality analysis. Numerous approaches have 
been proposed to identify confidentiality violations using the architec-
tural abstraction, e.g., data flow-based confidentiality analysis (Seifer-
mann et al., 2022, 2021; Boltz et al., 2023), or architecture-based access 
control analysis (Walter et al., 2022b, 2023). Furthermore, broader ap-
proaches to model-based security analysis, e.g. UMLsec (Jürjens, 2002), 
or SecDFD (Tuma et al., 2019; Peldszus et al., 2019). Despite focussing 
on security, these approaches lack support for confidentiality or auto-
mated model repair. More recently, uncertainty-aware confidentiality 
analysis has been proposed, e.g., by extending the PerOpteryx frame-
work (Walter et al., 2022a), by tracing uncertainty in data flow dia-
grams (Hahner et al., 2023a), or by combining data flow analysis with 
fuzzy inference to represent uncertainty (Boltz et al., 2022). Hahner 
et al. (2023b) proposed an uncertainty impact analysis to predict un-
certainty’s potential impact on software architectures’ confidentiality. 
However, these approaches only focus on analyzing software archi-
tectures without considering mitigating confidentiality violations. The 
work presented in this paper addresses this by combining analysis and 
mitigation into one comprehensive approach.

Machine learning addressing security. More recently, machine learning 
has been used more thoroughly to address security issues such as confi-
dentiality violations. Ahsan et al. (2022) give an overview of common 
security threats and which machine learning techniques can be used to 
mitigate them, e.g., deep learning or reinforcement learning. One exam-
ple is the work of Kronjee et al. (2018), who extract security-related fea-
tures from source code to use in models like decision trees and random 
forests. Another recently proposed approach by Steenhoek et al. (2024) 
proposed combining classical program analysis, such as data flow analy-
sis, with deep learning to increase the accuracy while reducing the run-
time. Although applying machine learning seems to be expedient, these 
approaches lack the required explainability (Hahner et al., 2024; Bersani 
et al., 2023) of issues to software engineers and the abstraction of the 

software architecture. Choosing the right abstraction and representa-
tion to investigate confidentiality greatly impacts the understandability 
of security experts (Schneider et al., 2024). Furthermore, only consid-
ering source code in the analysis limits the applicability at design time, 
which is required for early mitigation to minimize costs (Boehm and 
Basili, 2001). We address this by incorporating machine learning into 
data flow analysis at design time and using this abstraction to enhance 
the explainability of identified and repaired confidentiality violations.

10.  Conclusion

In this paper, we contribute a novel, scalable solution for mitigating 
confidentiality violations in software architectures under uncertainty, 
underlining the benefits of combining architecture-based analysis with 
machine learning techniques to support secure software development.

The approach proposed here extends our previous machine-learning-
based approach for mitigating confidentiality violations in software ar-
chitectures (Niehues et al., 2025). Specifically, our extension here ad-
vances beyond the original because we introduce two major new strate-
gies. First, we take inspiration from TCP Congestion Control and so 
are able to significantly accelerate the identification of critical uncer-
tainties. Second, we now make allowance for the dynamics of uncer-
tainty sources and so develop a clustering-based technique for adjust-
ing batch sizes dynamically to the structure of the input model. Taken 
together, these changes over our previous approach deepen our un-
derstanding about the nature of uncertainty and so, too, about those 
techniques optimally suited to mitigating the violations caused by
uncertainties.

The evaluation in this work is much more rigorous than in Niehues 
et al. (2025) because we increased the amount of data points and also 
conducted a thorough statistical analysis (including the Friedman test 
and the Nemenyi post hoc test). Our previous work (Niehues et al., 2025) 
achieved a mere 60 times mitigation runtime reduction over the state-
of-the-art. This extension of that work, on the other hand, has a median 
reduction that is elevenfold but achieves an impressive maximum of 
2298 times runtime reduction on the same model with the same level of 
uncertainty. This big advance over the state-of-the-art was made possi-
ble by our two new strategies and as well by our careful polishing of 
the prototype. Moreover, we obtain significantly faster mitigation times 
compared to the state-of-the art baseline, when at least 14 uncertainties 
are present. We found a significant difference (Friedman test 𝑝 = .025) 
between our strategies and the baseline and as well, a strong practical 
impact (Kendall’s W = 0.721). Further, our new TCP-inspired strategy 
proved to be significantly faster than the baseline (Nemenyi post hoc 
test 𝑝 = .039).

Our novel automatic mitigation succeeds in advancing existing anal-
ysis frameworks beyond just the identification of confidentiality viola-
tions so that now we can truly assist software architects in efficiently 
addressing confidentiality challenges at design time. Our approach au-
tomates uncertainty prioritization and resolution, thereby enhancing 
the scalability of confidentiality maintenance in complex systems to 
ensure that data protection measures are more manageable and reli-
able. That is clearly a step forward in trustworthier software gener-
ally. Additionally, our extended approach opens the door to similar ap-
proaches to violations mitigation for other quality attributes which are 
discrete like confidentiality. A promising direction for future work is 
to extend these ideas to attributes such as authenticity, integrity, and
privacy.

Future work might also attempt to automatically generate scenar-
ios using machine learning trained on real-world software architectures. 
That would help to further reduce the manual effort of software archi-
tects. Additionally, we plan to explore combining SAT solvers with fine-
grained cost estimation, in order to identify a configuration that satis-
fies all confidentiality requirements while minimizing the cost of the
mitigation.
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