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Recent progress in plant genome engineering: from large 
insertions to chromosome number changes
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Holger Puchta 

The adaptation of the CRISPR/Cas system as a 
biotechnological tool has enabled a wide spectrum of targeted 
genome modifications. Whereas earlier approaches focused on 
small sequence changes, recent years have seen a shift toward 
larger-scale alterations. Advances in homology-directed gene 
targeting now enable efficient, scar-free kilobase insertions, 
while combining nuclease-deficient Cas effectors with 
recombinases or transposases allows the integration of much 
larger sequences. Prime editing further expands this scope, 
enabling inversions, replacements, and deletions spanning 
hundreds of kilobases to several megabases. More recently, 
genome engineering has reached a new stage with 
chromosome fission and fusion, demonstrating the feasibility of 
controlled karyotype restructuring. Together, these advances 
open new opportunities for crop improvement, from 
establishing reproductive barriers and mimicking evolutionary 
processes to trait stacking on Plant Artificial Chromosomes.
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Introduction
Global climate change and the projected rise of the 
human population to nearly 10 billion by mid-century 
threaten global food security, requiring about 50% more 
food production than in 2010 [1,2]. Meeting this demand 
will require enhancing productivity and resource-use 
efficiency on existing agricultural land through sustain
able production systems. Future breeding strategies 

must rapidly adapt crops to shifting environmental 
conditions, including tolerance to abiotic stresses such as 
drought, salinity, and extreme weather, as well as resi
lience to emerging pathogens. Conventional approaches 
like selection and mutation breeding have delivered 
substantial improvements but are constrained by limited 
precision, high off-target variation, and long develop
ment times. The deeper understanding of complex 
genomic structures (for details, see article by Zhu et al. 
in this issue) and the advent of sequence-specific nu
cleases — particularly Clustered Regularly Interspaced 
Short Palindromic Repeats/CRISPR-associated 
(CRISPR/Cas) — has transformed molecular breeding, 
enabling targeted genome modifications with un
precedented efficiency. Since their first use in plants just 
over a decade ago, CRISPR/Cas tools have been applied 
to ∼120 crop and model species [3–5], accelerating the 
development of improved varieties. Beyond introducing 
sequence-specific double-strand breaks (DSBs) repaired 
by often unpredictable endogenous pathways, recent 
advances now enable precise and user-defined sequence 
changes. These capabilities extend genome engineering 
from single-nucleotide edits to large insertions and 
complex chromosomal rearrangements (Table 1), of
fering transformative potential for refining existing cul
tivars and domesticating new crops from wild species.

Recent advances in large DNA insertions
In plants, DSBs are predominantly repaired through 
the error-prone non-homologous end-joining (NHEJ) 
pathway, which typically generates small insertions or 
deletions (indels) within the target locus [6]. Conse
quently, the precise, site-specific, and scar-free in
tegration of sequence alterations spanning several 
kilobases for the refinement of traits or the incorpora
tion of defined allelic variants remains technically 
challenging. To overcome these limitations, recent 
strategies either exploit the cell’s DSB repair pathways 
to achieve targeted sequence integration or rely on 
DSB-independent systems capable of introducing pre
cise genetic changes, each offering distinct advantages 
and limitations that have shaped their application in 
plant genome engineering.

Leveraging the predominant DSB repair pathway in 
plants, an approach combining chemically modified donor 
DNA with CRISPR/SpCas9 enables targeted insertion of 
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sequences up to 2 kb into the rice genome with effi
ciencies of up to 25% by using a blunt, 5′-phosphorylated 
double-stranded oligodeoxynucleotide (dsODN) bearing 
phosphorothioate linkages at both ends to increase oligo
nucleotide stability and provide ligatable ends for direct 
NHEJ-mediated integration [7]. To improve precision, 
orientation, and efficiency, the method was refined into 
directional oligonucleotide-based targeted insertion 
(DOTI), which exploits the ability of SpCas9 to generate 
1-nucleotide 5′ overhangs. Matching these with com
plementary overhangs on the ends of chemically protected 
dsODNs containing the intended insert markedly 

increased insertion accuracy and directionality across all 
tested target sites, reaching efficiencies of up to 60.9% and 
enabling seamless insertions in Setaria viridis and Oryza 
sativa [8]. Besides NHEJ, the homology-directed repair 
(HDR) pathway can be utilized to replace or insert se
quences at predetermined genomic locations without 
leaving any genomic scar. However, its application in 
plants has been limited by inherently low rates of homo
logous recombination. As HDR-based gene targeting re
quires extended 3′ single-stranded overhangs [9,10], the 
predominantly blunt ends and 5′ overhangs produced by 
Cas9 and Cas12a, respectively, may limit its efficiency. 

Figure 1  

A reverse
transcriptase

recombinase

GOI

B

5' 3'

3' 5'
5' 3'
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Current Opinion in Biotechnology

Overview of DSB-free methods for targeted insertion of large sequences. (a) Based on its high precision and efficiency for small insertions, PE can be 
used to install short recognition sequences for SSRs (yellow), which subsequently can mediate the targeted integration of large DNA fragments. (b) 
The bridge RNA system is based on a mobile genetic element that excises from the genome to form a circular DNA intermediate. A structured non- 
coding RNA guides sequence-specific recombination by directing the cognate recombinase through two internal loops, one recognizing the genomic 
target site and the other the donor sequence.  
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Based on the premise that fusing 5′ exonucleases to in
tronized version of SpCas9 [11] or temperature-tolerant 
LbCas12a [12] could promote the generation of free 3′ 
ends, a recent study identified two exonuclease families 
— herpesvirus UL12 and bacteriophage T7 — that in
creased HDR frequencies by up to 38-fold in Nicotiana 
benthamiana. In Arabidopsis thaliana, a Cas9-UL12 fusion 
increased knock-in frequencies tenfold, while in wheat, 
stable and heritable knock-ins exceeding 2 kb were 
achieved in 1% of primary transformants [13]. These 
findings open perspectives for routine production of 
heritable knock-in and gene replacement events in plants, 
with exonuclease–Cas9 fusions enabling recovery of de
sired edits from screening only 50–100 transformants.

Beyond such DSB-dependent strategies, emerging 
methods such as reverse transcriptase (RT)-, re
combinase-, or transposase-based systems employ DSB- 
free mechanisms to reduce off-target editing and improve 
the efficiency and precision of targeted insertions [14]. As 
an RT-mediated genome-editing approach, prime editing 
(PE) uses a CRISPR/SpCas9 nickase-RT fusion. A PE 
guide RNA (pegRNA), extended at its 3′ end, directs the 
complex to the target site, anneals to the cleaved DNA 
strand, and serves as a template for the RT to incorporate 
the sequence changes encoded in the pegRNA into the 
genomic DNA [15]. Although PE is a versatile genome- 
editing technology, its use in plant cells is limited by low 
efficiency, driving efforts to enhance its performance. 
Modifying the RT and adding a viral nucleocapsid pro
tein increased editing by up to 5.8-fold in rice protoplasts, 
yet insertion efficiency dropped as the insert size in
creased up to 34 bp, indicating its current potential, 
especially for small edits [16]. However, given the high 
precision of PE, this capability can be leveraged to install 
short recognition sequences for site-specific recombinases 
(SSRs), enabling the targeted integration of larger DNA 
cargos (Figure 1a). The Programmable Addition via Site- 
specific Targeting Elements (PASTE) system ex
emplifies this approach by fusing a CRISPR/SpCas9 
nickase to both an RT and a serine integrase, allowing 
PE-mediated installation of short att landing sites that are 
subsequently recognized for site-specific insertion of 
DNA fragments up to 36 kb at efficiencies of up to 50% in 
human cells [17]. More recently, the Bxb1 recombinase- 
based Prime-editing-Assisted Site-Specific Integrase 
Gene Editing (PASSIGE) strategy was developed, en
abling efficient integration of large DNA cargos (> 10 kb) 
and outperforming PASTE by up to 16-fold in human cell 
lines with pre-installed landing sites [18]. Meanwhile, in 
plants, the Prime editing-mediated Recombination Of 
Opportune Targets (PrimeRoot) system combines en
gineered plant prime editors with optimized Cre and FLP 
recombinases to enable efficient integration of DNA 
fragments up to 11.1 kb in rice. PrimeRoot was further 
validated in maize, demonstrating cross-species applic
ability [19]. As editing scale and recombination site scars 

remain limiting factors, a scarless chromosome editing 
platform was recently developed for kilobase- to mega
base-scale manipulations in plants and human cells. The 
Programmable Chromosome Engineering (PCE) system 
uses PE to insert optimized Cre-Lox recombination sites 
with 10-fold reduced reversibility, followed by targeted 
genomic recombination mediated by an AI-assisted en
gineered Cre recombinase, enabling precise insertions up 
to 18.8 kb and efficiencies up to 4.7-, 5.3-, and 11.8-fold 
higher than PrimeRoot in rice, maize, and wheat proto
plasts, respectively [20].

Beyond recombinase-based systems, the discovery of 
Tn7-like CRISPR/Cas-associated transposons (CASTs) 
has introduced a distinct class of genome engineering 
tools that couple RNA-guided DNA recognition with 
transposase-mediated integration. In this system, a nu
clease-deficient Cas-effector alongside a TnsD/TniQ- 
like protein recruits a TnsABC transposase complex to 
integrate its cargo DNA downstream of a guide RNA- 
specified target. The first programmed CAST-mediated 
transposition in E. coli was based on a nuclease-deficient 
type I-F Cascade from Vibrio cholerae Tn6677 and al
lowed integration of cargo DNA ranging in size from 
290 bp to 10.1 kb at a fixed distance downstream of the 
target site [21]. Combining high efficiency, specificity, 
and directionality with minimal tandem-insertion by- 
products, CASTs are rapidly emerging as powerful bac
terial genome engineering tools [22]. To address the 
minimal activity of type I-F CASTs in human cells, ac
tivity-enhancing mutations were introduced into Pseu
doalteromonas sp. S983 CAST components, yielding an 
evolved CAST (evoCAST) system that exhibits over 
200-fold higher integration activity, achieves insertion 
efficiencies of up to 30%, and is capable of integrating 
DNA fragments exceeding 10 kb [23]. In plants, CASTs 
have served as the conceptual basis for developing the 
transposase-assisted target-site integration (TATSI) 
system, which co-expresses catalytically active SpCas9 or 
LbCas12a with the rice Pong DNA transposon ma
chinery. Following excision from the donor site, the 
mPing transposable element carrying a DNA cargo in
tegrates into induced DSBs, enabling sequence-specific 
insertion in A. thaliana with efficiencies of 27% for small 
cargo and 8.3% for fragments up to 9 kb, and has also 
been adapted for soybean, a major crop lacking efficient 
targeted insertion tools [24].

Recently, the repertoire of nucleic acid-guided systems 
was expanded through the discovery of IS110 insertion 
sequences, a family of minimal, autonomous mobile ge
netic elements. These ‘cut-and-paste’ elements excise 
from the genome without leaving scars, forming a circular 
DNA intermediate as part of their transposition cycle. A 
structured, non-coding bridge RNA encoded by these 
elements guides sequence-specific recombination, di
recting the cognate recombinase through two internal 
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loops, recognizing the genomic target site and the donor 
sequence, respectively (Figure 1b). Recently demon
strated to be biotechnologically applicable in E. coli, these 
target- and donor-binding loops can be independently 
reprogrammed to mediate insertion, excision, or inversion 
of DNA in a programmable manner [25]. Most recently, 
the related IS622 element was adapted for targeted in
duction of inversions and deletions in human cells, mo
bilizing up to 0.93 Mb of DNA [26]. Given their 
versatility and ability to mediate complex genome re
arrangements without DSB, bridge RNA systems hold 
considerable promise for future applications.

Large-scale chromosomal rearrangements
Besides the targeted integration of new DNA sequences, 
the precise rearrangement of existing genomic regions 
provides an additional layer of genome engineering po
tential. Such rearrangements can be achieved by indu
cing two DSBs on the same chromosome, which enables 
the generation of defined deletions, duplications, or in
versions [27–29].

Inversions are especially interesting for plant breeding as 
they permit the controlled manipulation of genetic re
combination to both disrupt and stabilize allelic combi
nations, a strategy successfully demonstrated in 
Arabidopsis [27,30]. Interestingly, a recent study on the 
epigenetic landscape of peri- and paracentric inversions 
in Arabidopsis suggested that relocating heterochromatic 
pericentric sequences into euchromatic regions has only 
a minimal effect on epigenetic states and gene expres
sion across subsequent generations [31]. Besides inver
sions, CRISPR/Cas-based approaches have enabled 
targeted deletions in multiple plant species, although 
their size is often limited by the substantial loss of ge
netic information. In A. thaliana, a recent study de
monstrated the targeted removal of retained syntenic 
blocks of up to 684 kb using SpCas9, encompassing up to 
60 genes and 112 transposable elements. The resulting 
plants remained viable, with some exhibiting distinct 
phenotypes and widespread transcriptomic changes, 
pointing to the potential of large chromosomal deletions 
as tools for genome minimization and allele replacement 
in plants [28]. In addition to multiplex CRISPR-based 
strategies for inducing large deletions, a dual prime 
editing (DualPE) system has recently been established 
to enable not only large-scale deletions but also gene 
replacements and inversions with high precision (Figure 
2). DualPE combines a plant-optimized prime 
editor with dual engineered pegRNAs positioned at sites 
flanking the target DNA fragment to generate com
plementary 3′ DNA flaps for deletions or inversions, or 
partially complementary flaps containing the desired 
sequence changes for replacements. In wheat, DualPE 
mediated deletions up to 2 Mb, replacements of up to 
258 kb, and inversions of up to 205 kb with efficiencies 

of up to 51%. In N. benthamiana and tomato, large-frag
ment edits reached efficiencies of up to 72%, estab
lishing DualPE as a powerful approach for large-scale 
chromosomal engineering and precision crop improve
ment [32]. While DualPE enables precise sequence 
modifications, megabase-scale inversions are often more 
efficiently achieved with standard CRISPR/Cas ap
proaches. Thus, this strategy was recently implemented 
in Arabidopsis to invert a 3.6-Mb genomic segment, 
which exchanged the promoters of FLOWERING 
LOCUS T and HTA3, thereby demonstrating that inver
sions can also be exploited to alter gene expression by 
inducing a designed promoter swap between two genes, 
previously achievable only through transgenic ap
proaches [29,33].

Changing chromosome numbers
Extending the principle of inducing two DSBs to en
gineer defined rearrangements within a chromosome, 
inducing two DSBs on separate chromosomes enables 
the generation of reciprocal translocations, similarly al
lowing for breaking genetic linkages for plant breeding. 
Interestingly, A. thaliana lines carrying such SaCas9-in
duced reciprocal translocations of up to 1 Mb between 
chromosomes I and II or I and IV displayed wild-type- 
like morphology, minimal and dispersed transcriptional 
changes, unchanged histone mark profiles, and stable 
telomere lengths across generations, highlighting the 
genomic and phenotypic robustness of A. thaliana to 
large-scale chromosome restructuring [34,35].

Most recently, CRISPR/Cas-mediated translocations 
were successfully harnessed not only to transfer entire 
chromosome arms but also to fuse independent chromo
somes, thereby reducing the karyotype of Arabidopsis 
thaliana from 10 to 8 chromosomes (Figure 3a). Using 
CRISPR/Cas-mediated breaks at subcentromeric and 
subtelomeric sites, entire arms of chromosome 3 were 
fused either to chromosome 1 or redistributed to chro
mosomes 1 and 5. Despite this substantial karyotype re
duction, the plants displayed a wild-type-like phenotype 
and remarkable transcriptomic stability. However, crosses 
with wild-type plants resulted in reduced fertility, sug
gesting that directed chromosome fusions may not only 
reshape recombination landscapes but also offer new 
breeding strategies by redefining linkage groups and es
tablishing reproductive barriers to wild relatives. Inter
estingly, minichromosomes generated through arm 
transfer were only transiently detected across generations, 
likely due to the absence of essential genes [36], in
dicating that minimal requirements for stable inheritance 
are not yet fully defined. Their reduced meiotic trans
mission likely reflects species-specific constraints on 
chromosome size, chromatid cohesion, and bivalent sta
bility [37], making the definition of configurations that 
ensure faithful segregation a key outstanding challenge.
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While CRISPR/Cas-mediated translocations have de
monstrated the possibility of reducing chromosome 
numbers, complementary approaches have achieved 
chromosome number increase through de novo cen
tromere seeding. For this purpose, LacI-fused CENH3 
derivatives were tethered to LacO arrays at non-cen
tromeric sites, reconstituting functional centromeres in 
maize [38]. Building on this concept, a recent synthetic 
centromere tethering strategy in maize employed a 
LexA–CENH3 fusion protein to recruit native CENH3 
to LexO repeat arrays on a chromosome arm, enabling 
kinetochore assembly and inducing random breakage of 

dicentric chromosomes into self-sustaining, heritable 
neochromosomes (Figure 3b) [39]. The derived lines 
carrying 22 chromosomes instead of the typical 20 dis
played normal growth, reproduction, and phenotype 
[40]. Coupled with CRISPR/Cas-mediated engineering, 
such tethering strategies offer a powerful means to in
duce targeted chromosome breakage, paving the way for 
precise karyotype restructuring and de novo chromosome 
construction. The resulting additional chromosomes 
provide expandable genomic space suitable for high- 
capacity gene stacking to support structurally complex 
trait assemblies.

Figure 2  

DNA repair

Excision of annealed 5' flaps

3' flap annealing

Deletion Replacement Inversion

Current Opinion in Biotechnology

Overview of DualPE-mediated induction of targeted large-scale deletions, replacements, and inversions. DualPE uses two pegRNA flanking the 
targeted DNA fragment to generate 3′ overhangs, which are designed according to the desired edit. Targeted deletions can be achieved through 
complementary 3′ flaps, while replacements are induced using partially complementary overhangs harboring the edited sequence. For the precise 
inversion of a target sequence, the 3′ flaps are complementary to the opposing inversion junction.  
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Given their potential as modular platforms for trait 
stacking, engineered minichromosomes and neochro
mosomes highlight the growing feasibility of creating 
synthetic chromosomal platforms suitable for high-ca
pacity applications, including Plant Artificial 
Chromosomes (PAC) systems. Building on advances in 
large-DNA integration, PACs provide modular vectors 
for installing sizeable genomic segments and co
ordinating multigene traits or entire biosynthetic path
ways — such as those underlying stress resilience, 
metabolic engineering, or quality improvement — while 
maintaining these assemblies as recombination-in
sulated, heritable units [41]. Especially in polyploid 
crops, where genome redundancy complicates conven
tional trait stacking, synthetic chromosomes could offer 
orthogonal integration sites with defined copy number 
and predictable inheritance. Realizing these prospects 
will require better insight into the minimal gene content 
compatible with stable minichromosome maintenance, 
robust design principles for synthetic centromeres across 
diverse genomic backgrounds, and improved control 
over segregation fidelity during meiosis. Together, these 
advances could enable PAC systems to substantially 
expand the scope of plant genome engineering.

Current practical limitations and bottlenecks
Although chromosome-scale engineering is advancing 
rapidly, its practical deployment remains limited by 
challenges in transformation and DNA delivery, which 
continue to restrict the efficient introduction of large 
DNA fragments across diverse genotypes. Precise, 

marker-free integration of sizeable payloads is similarly 
hindered by low locus-specific efficiencies, though on
going improvements in editor performance, donor de
sign, and delivery approaches are steadily expanding 
feasible insertion capacities [37,41,42]. As progress in 
genotype-flexible delivery platforms and targeted in
tegration technologies continues, these bottlenecks are 
expected to diminish, thereby broadening the utility of 
chromosome engineering for plant breeding.

Conclusion
The advent of CRISPR/Cas has expanded plant genome 
engineering far beyond single-gene alteration, enabling 
precise interventions across the scale of chromosomes. 
Among these modifications, large insertions allow the 
introduction of complex traits directly into native chro
mosomes. Likewise, CRISPR/Cas-mediated deletions, 
inversions, and translocations provide tools to restructure 
chromosomes and control gene dosage, while large-scale 
deletions could also be applied to chromosome down
sizing in polyploids. Such approaches open possibilities to 
mimic evolutionary processes, explore fundamental limits 
of chromosome length, and generate artificial re
productive isolation. With the recent breakthroughs in 
targeted chromosome fission and fusions, even karyotype- 
scale reprogramming is now within reach. Together, these 
advances point toward a new era of plant breeding that 
operates at the chromosomal level, integrating precise 
editing with synthetic chromosome platforms to create 
resilient crops and novel genetic diversity.

Figure 3  

LexA-CENH3

LexO

A B
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Overview of approaches for targeted karyotype modifications. (a) Sequential translocations of entire chromosome arms can fuse independent 
chromosomes, resulting in one enlarged chromosome and one minichromosome. If — as shown — the minichromosome is lost during segregation, 
the karyotype is reduced; alternatively, a stably inherited minichromosome can serve as a vector for a PAC. (b) Conversely, centromere seeding 
enables an increase in chromosome number. Here, CENH3 derivatives are recruited to non-centromeric regions via DNA-binding domains (LacI or 
LexA) tethered to arrays of their recognition sequences (LacO or LexO), thereby reconstituting functional centromeres. During cell division, spindle- 
induced tension can cause chromosome fission, ultimately producing two distinct chromosomes.  
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