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Human-centered evaluation of
statistical parametric mapping
and explainable machine learning
for outlier detection in plantar
pressure data
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Plantar pressure mapping is essential in clinical diagnostics and sports science, yet large
heterogeneous datasets often contain outliers from technical errors or procedural inconsistencies.
Statistical Parametric Mapping (SPM) provides interpretable analyses but is sensitive to alignment
and its capacity for robust outlier detection remains unclear. This study compares an SPM approach
with an explainable machine learning (ML) approach to establish transparent quality-control pipelines
for plantar pressure datasets. Data from multiple centers were annotated by expert consensus and
enriched with synthetic outliers resulting in 798 valid samples and 2000 outliers. We evaluated (i) a
non-parametric, registration-dependent SPM approach and (ii) a convolutional neural network (CNN),
explained using SHapley Additive exPlanations (SHAP). Performance was assessed via nested cross-
validation; explanation quality via a semantic differential survey with domain experts. The ML model
reached high accuracy and outperformed SPM, which misclassified clinically meaningful variations and
missed true outliers (Matthews Correlation Coefficient: ML=0.96 +0.01; SPM=0.78 +0.02). Experts
perceived both SPM and SHAP explanations as clear, useful, and trustworthy, though SPM was
assessed less complex. These findings highlight the complementary potential of SPM and explainable
ML as approaches for automated outlier detection in plantar pressure data, and underscore the
importance of explainability in translating complex model outputs into interpretable insights that can
effectively inform decision-making.

Keywords Explainable artificial intelligence (XAI), Deep learning, Human-centered design, Semantic
differential, Clinical decision support, Biomechanics quality control

Plantar pressure mapping—capturing how vertical forces distribute across the foot during static (e.g., standing)
or dynamic (e.g., walking, running) activities—has become indispensable in clinical diagnostics, sports science,
and rehabilitation'>. By revealing biomechanical irregularities in pressure profiles, the diagnosis, monitoring,
and screening of conditions such as diabetic neuropathy?, Parkinson’s disease’, and various musculoskeletal
disorders®8, is supported. It is also an established approach to measure the biomechanical impact of medical
aids, such as (knee) ankle-foot orthotics or insoles, to ensure positive clinical outcomes’ and in the recent past
to adapt orthotics to plantar pressure profiles”!?. Yet the accuracy of any downstream analysis hinges on data
quality—and in practice, pressure datasets are often contaminated by outliers, or anomalies, which are data
points that deviate from the expected pattern!! (we use the term outliers to refer to technical errors that produce
measurements without clinical relevance, and the term anomalies to describe deviations from a healthy foot
caused by anatomical abnormalities, such as flat foot).

Variations in participant instruction, protocol adherence, or the use of different systems across multiple
centers are causes for inconsistencies and increase the likelihood of outliers in plantar pressure data. Instructor-
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or protocol-related issues may include incorrect guidance, inadequate monitoring, or failure to correct
participant behavior (e.g., wearing unintended footwear or moving unexpectedly during trials). Technical
factors include sensor malfunctions, algorithmic misalignment (e.g., on treadmills), premature truncation
of pressure curves, environmental noise, or errors in automated foot identification and segmentation. If left
unaddressed, such outliers can distort automated segmentation algorithms'>!* and reduce the accuracy of
classification pipelines'*!>, potentially leading to erroneous or lower-quality biomechanical insights. This issue
is particularly critical in multicenter data collection, which is often required to overcome data sparsity, especially
when developing automated machine learning (ML) pipelines'®. In such settings, datasets can become large and
heterogeneous, making manual data verification economically and logistically impractical.

One established approach for analyzing plantar pressure data is Statistical Parametric Mapping (SPM)'”.
Originally developed for the analysis of 3D neuroimaging data'®, SPM enables the statistical comparison of
continuous spatial data by performing voxel- or point-wise variance analyses across pre-defined regions. In the
context of plantar pressure, this enables researchers to identify areas of statistically significant deviation across
the plantar surface rather than relying solely on summary metrics such as peak pressure alone!”. Frameworks
such as Personalized Analysis of Plantar Pressure Images (PAPPI)" leverage SPM by first constructing a
normative model that accounts for individual demographic factors (e.g., age, weight, or foot size) and then
applying SPM to highlight deviations from this normative reference. While PAPPI showcases the interpretability
and individualized assessment strengths of SPM, it was not explicitly designed to isolate technical errors or
procedural inconsistencies; instead, it flags any departure from the norm, independently whether pathological
or spurious. This limitation underscores a critical requirement of SPM analyses: spatial alignment. To ensure that
each pixel corresponds to the same anatomical region across subjects, plantar pressure data must be normalized
for rotation, scale, and anatomical landmarks'. Without such alignment, statistically significant deviations may
reflect misregistration rather than true biomechanical differences—for example, identical pixel locations could
span both heel and midfoot areas in different participants, leading to misleading inferences.

ML methods offer a promising alternative, as they can potentially learn alignment invariances directly from
the data, reducing or even eliminating the need for labor-intensive preprocessing steps®’. In medical imaging,
deep learning approaches have demonstrated high-precision anomaly detection?*2. However, it remains largely
unexplored whether these methods can achieve similar success in plantar pressure data, particularly when
trained on labeled examples of diverse outlier types.

Importantly, under Article 22 of the General Data Protection Regulation (GDPR), individuals subjected to
automated decision-making have the right to obtain meaningful information about the logic underlying such
decisions?. This requirement presents a significant challenge for ML models, which often operate as “black
boxes” that do not readily provide interpretable explanations. To address this challenge, Explainable Artificial
Intelligence (XAI) techniques have gained increasing importance, enabling researchers and practitioners to
probe the internal decision-making processes of complex ML models*!. Beyond facilitating model debugging,
XAI methods support risk assessment, bias detection, regulatory compliance, and the development of end-user
trust and acceptance®.

Crucially, the value of an explanation extends beyond quantitative metrics (e.g., fidelity or completeness)
to encompass human-centered attributes, including understandability, reliability, and the potential to inform
subsequent actions?®?’. Without systematic, human-in-the-loop evaluation, XAI outputs risk relegation to
academic curiosities rather than serving as practical decision-support tools in clinical settings.

Despite recent advances in the field of explainable outlier detection?®, the integration of supervised outlier
classification with XAI—along with human-centered assessment of explanatory outputs—has, to the best of the
authors’ knowledge, not yet been explored in plantar pressure data. This constitutes a critical research gap, given
the growing need for automated yet interpretable quality-control pipelines in clinical and sports analysis®’. To
address this gap, this study directly compares the more established SPM approach against a novel explainable ML
approach. This investigation is structured around two core questions:

1. How do these approaches compare in terms of detection accuracy?
In an exploratory follow-up, how do human evaluators perceive and trust the explanations generated by each
approach?

By addressing these questions, this study aims to inform strategies for refining data-cleaning protocols and
guiding the development of real-time monitoring systems that can alert technicians to potential acquisition
errors (e.g., prompting trial repetition or verifying foot-side annotations). Ultimately, these advancements are
intended to enhance data quality and reliability in both research and practical diagnostic settings, specifically
within the context of plantar pressure analysis.

Methods
Workflow overview
An overview of the workflow is presented in Fig. 1 and described in more detail below.

Participants and data acquisition

Participation in the study was restricted to individuals of legal age. All participants received detailed information
about the study protocol and relevant data protection guidelines before giving their written informed consent.
The study was conducted in accordance with the ethical standards set forth in the Declaration of Helsinki and
received approval from the Ethics Committee of the University of Kaiserslautern-Landau (approval number:
55). Data were collected across several centers using two types of pressure measurement systems: resistive
pressure sensor plates (RSscan Lab Ltd., Ipswich, England) and capacitive pressure sensor plates (Zebris Medical
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Fig. 1. Overview of the study workflow, illustrating the comparison between Statistical Parametric Mapping
(SPM) and a machine learning approach based on a Convolutional Neural Network (CNN), with model
interpretation provided through SHapley Additive exPlanations (SHAP).

GmbH, Isny, Germany). Measurements were taken from both the left and right feet under static (53%) and
dynamic (47%) conditions. In the static trials, participants stood barefoot in an upright position on the platform
for 10 s, with data captured at 50 Hz. Following a 60-second habituation phase on a treadmill, dynamic trials
consisted of three overground walking passes at each participant’s self-selected pace, recorded at 100 Hz. For
these dynamic measurements, stride-level plantar pressure profiles and peak pressure values were extracted,
in line with common reporting practices®. Both static and dynamic profiles were subsequently combined for
model development, which increases the sample size, enhances generalizability, and supports more robust model
training. Duplicate datasets were identified and excluded before analysis.

Only data essential to the development and evaluation of the computational model were collected, while
anthropometric and other descriptive variables were deliberately omitted. This choice reflected the principle of
data minimization (GDPR Art. 5(1)(c)?, requiring personal data to be “adequate, relevant, and limited to what
is necessary” for the stated purpose.
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Because the two pressure systems differed in spatial resolution and sensor geometry, preprocessing steps
were applied to harmonize the datasets. First, all pressure distributions were rescaled to adjust for non-uniform
sensor spacing. The resulting data were proportionally resized and embedded into a standardized 64 x 64 pixel
grid, maintaining aspect ratios and avoiding distortion by applying zero-padding around the patterns. Finally,
pressure intensities were normalized to the range [0,1] to reduce inter-subject variability and eliminate weight-
dependent effects.

Outlier annotation and dataset augmentation

Outlier categories were defined by domain experts through systematic review of the dataset, considering both
naturally occurring artifacts and recurrent sources of error in the initial dataset. The resulting taxonomy is
presented in Table 1. The categorization was guided not only by technical accuracy but also by the practical
relevance of providing automated feedback to end users regarding data integrity. Specifically, recordings
classified as General Acquisition Errors were consolidated into a single category, because such trials are irreparably
flawed (e.g., incomplete foot contact, trials performed with footwear, or corrupted sensor output) and require
re-acquisition rather than post hoc correction. In contrast, the remaining categories capture systematic but
potentially correctable errors—such as mislabeling of foot laterality or inverted foot orientation—that could be
addressed through post-processing.

If a sample was identified as having both an Incorrect Side Annotation label and another outlier category,
the Incorrect Side Annotation was considered the lowest priority and was superseded by the more critical label.
This method was implemented to ensure that each sample was assigned to the most practically relevant outlier
category, which aids in subsequent actions, such as deciding whether re-recording the data is required.

Three domain experts focused on identifying and labeling outliers and valid (inliers) samples. The annotation
process was carried out collaboratively. Each sample was independently reviewed by at least one expert, after
which labels were cross-verified to ensure consensus across raters. This process yielded a curated dataset of
1,031 samples from 703 subjects, consisting of 798 valid samples and 233 outlier samples (General Acquisition
Error: 124; Double Foot Capture: 29; Inverted Orientation: 38; Incorrect Side Annotation: 42), with approximately
equal representation of left and right feet (~ 50% each). To improve model robustness and allow for systematic
evaluation, the dataset was further augmented with synthetically generated outliers, ensuring that each outlier
category contained 500 samples. Parameter choices for generating these artificial samples were developed in close
collaboration with the domain experts who originally annotated the data. Experts iteratively reviewed prototype
examples to verify that the transformations produced realistic characteristics matching those observed in true
acquisition errors. This synthetic balancing strategy aligns with findings from related fields, where artificially
equalized outlier classes have been shown to enhance model performance®. Four types of artificial outliers were
created:

o General Acquisition Error (Label 1): This category mimics incomplete foot contact caused by early or late
stance capture or by missing regional pressure. Random samples from the valid inlier set were spatially cropped
to remove either the forefoot or heel. For the missing forefoot condition, the distal 50% of the image (+5%
random variation per sample) was zeroed. For the missing heel condition, the proximal 65% of the image (£5%
random variation per sample) was removed. Original laterality labels were retained.

« Double Foot Capture (Label 2): To simulate erroneous recordings showing both feet simultaneously, pairs
of valid left and right foot samples from the same subject folder were combined. Each individual foot image was
downscaled to 32 x 32 pixels and then inserted into diagonally opposite quadrants of a 64 x 64 canvas (e.g., left
foot in the upper-left quadrant and right foot in the lower-right quadrant, or the reverse configuration selected
at random). To increase variability and avoid overly regular composite structures, each downscaled foot image
was additionally shifted by zero to two pixels in a randomly chosen direction (left, right, upward, or downward)
before placement. Laterality annotations are intrinsically undefined for such merged images and were therefore
assigned at random.

« Inverted Orientation (Label 3): A random subset of valid inlier samples was vertically flipped, producing
images equivalent to a 180° rotation. Original laterality annotations were retained.

« Incorrect Side Annotation (Label 4): A random sample of valid inlier images was selected, and their left/
right annotations were inverted while the underlying pressure maps remained unchanged.

The fidelity of these synthetic outliers was evaluated by the three experts, who confirmed that the artificially
generated samples closely reproduced the biomechanical and acquisition-related characteristics of genuine
outliers within each category. After augmentation, the final dataset comprised 2798 samples in total, reflecting
798 inliers and 2000 outliers.

Statistical parametric mapping (SPM) approach

Plantar pressure registration

A critical prerequisite for the SPM approach is that all images be precisely aligned to ensure that each pixel
corresponds to the same anatomical foot region across all subjects, thereby preventing misalignment from
introducing misleading statistical inferences'’. To address this, a plantar pressure registration pipeline was
implemented using a similarity-based optimization method, which has previously been shown to be effective for
plantar pressure alignment®!.

To ensure spatial consistency, each raw input was registered to a single, pre-defined prototypical reference
pressure distribution, generated separately for the left and right foot. This reference acts as a template for
alignment. The registration process employed an affine transformation, which corrects for variations in rotation,
translation, and scaling®?. The optimal transformation parameters (angle, shift, and zoom) were found by
minimizing a mean squared error (MSE) loss function between the transformed input and the corresponding
prototypical reference, following established image registration procedures®. The optimization was performed
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Label Example Description
Valid Correct plantar pressure
Sample ‘.. v recordings without
- measurement or detection errors
Label 0
w . Both feet are properly identified,
‘ and side labels (left vs. right) are
LeftSide Right Side accurate. Importantly, atypical or
pathological plantar pressure
patterns (e.g., due to gait
abnormalities) are not classified
as outliers if acquisition quality is
intact.
General Recordings with severe
Acquisition "y . acquisition artifacts
Error = .
These include incomplete foot
Label 1 L_l contact (e.g., only forefoot or
heel captured), trials performed
Right Side Left Side with footwear instead of
barefoot, or corrupted sensor
output (e.g., motion blur,
hardware malfunction).
Double Foot Failure to separate left and right
Capture T plantar pressure distribution
. L]
Label 2 Trials in which both feet are in a
. single frame due to failed
& . automated segmentation of
Right Side Right Side individual footprints.
Inverted Non-standard orientation of
Orientation ‘ [ ] plantar pressure maps
Label 3 . Plantar pressure maps with non-
( - standard orientation, wherethe
. . forefoot is not aligned upwards,
Left Side Right Side e.g. due to incorrect foot
placement on the pressure plate
or erroneous test leader
instructions.
Incorrect Incorrect side labeling
side -
Annotation ' h‘, Plantar pressure distribution is
valid, and acquisition quality is
Label 4 ' intact, but metadata incorrectly
‘ labels the side of the foot, e.g.,
Right Side Left Side right foot recordle(:tbut annotated
as left.

Table 1. Overview of the data categories included in the dataset.

using the L-BFGS-B algorithm?*, ensuring that the transformations were constrained within realistic bounds.
Figure 2 shows a visual example of the registration results.

To quantitatively verify the registration accuracy, the spatial overlap between each registered plantar pressure
map and the corresponding reference was calculated by binarizing the images (pressure>0 - 1, background
> 0) and computing the Intersection over Union (IoU). Across the dataset, a mean IoU of 0.77+0.11 on the
valid samples was observed, indicating that the registration pipeline achieves reliable spatial correspondence for

subsequent SPM analyses.
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Fig. 2. Exemplary plantar pressure registration results.

Statistical analysis

We implemented a non-parametric SPM approach tailored for plantar pressure data, using cluster-based
permutation testing to identify deviant (outlier) pressure maps. This approach extends the widely used
methodology of non-parametric SPM*>* to the specific task of technical error or procedural inconsistency
detection in plantar pressure data. The analysis is grounded in a normative modeling framework, where each test
sample is statistically compared against a reference distribution derived from a cohort of non-outlier (healthy)
plantar pressure maps. Because left and right feet differ in anatomy and loading patterns, analyses were conducted
independently for each laterality, preventing anatomical misalignment even after spatial normalization.

Our methodology proceeds in two main steps:

1. Pixel-wise non-parametric testing: For each pixel in a test sample, we compute a two-tailed empirical p-value
by comparing its pressure intensity against the empirical distribution at the same pixel across the normative
reference cohort. This is achieved via a rank-based permutation approach?®, which is robust to non-Gaussian
distributions and does not rely on parametric assumptions. The resulting p-map represents the probability of
observing such an extreme pressure value under the normative model.

2. Cluster-based multiple comparison correction: To control the large number of simultaneous pixelwise tests,
we employed a cluster-based permutation procedure®. First, clusters of contiguous suprathreshold pixels
were identified using an uncorrected cluster-forming threshold (a_forming). Next, a null distribution of
maximum cluster sizes was constructed by repeatedly permuting the normative data (n=1,000 permuta-
tions) and recomputing the p-map, thereby quantifying the cluster sizes expected under the null hypoth-
esis. Finally, only clusters whose size exceeded the (1 - a_FWE) percentile of the null distribution (here,
a_FWE=0.05) were retained as significant. This procedure controls the family-wise error rate at the cluster
level and, by considering contiguous clusters rather than individual pixels, indirectly accounts for spatial
correlations across neighboring pixels.

To increase robustness, we additionally required clusters to meet a minimum cluster size (min_cluster) criterion,
which served as an initial filter before running the full permutation-based correction. The two key parameters of
this—a_forming (cluster-forming threshold) and min_cluster (minimum cluster size)—were tuned in a nested
cross-validation scheme (see Sect. Evaluation and calculations). Specifically, a randomized search was performed
in the inner loop of the cross-validation, where a_forming was sampled uniformly from the range 0.01-0.05, and
min_cluster from the range 0-30 pixels. Candidate parameter sets were evaluated on the validation folds using
the F1-score (binary inlier vs. outlier classification), and the best-performing combination was carried forward
to the outer cross-validation loop for final evaluation.

Machine learning approach
For the ML approach, the original (unregistered) plantar pressure data were used, as previous research has
shown that deep learning models can effectively handle spatial misalignments in plantar pressure data'?. A
Convolutional Neural Network (CNN) classifier designed to process the plantar pressure data along with
additional categorical metadata (foot lateral label) was implemented®”-*. Parameter search was performed
manually by evaluating the model’s performance on the validation sets. We also evaluated transfer learning
approaches using pre-trained image classification models (e.g., ResNet) fine-tuned on the plantar pressure data;
however, these did not generalize well due to structural differences between plantar pressure images and the
original training images, which is also supported by other research®. Starting with a more complex architecture,
the model’s complexity was gradually reduced until further reductions led to worse validation performance.
The resulting CNN backbone consists of three sequential convolutional blocks with increasing filter sizes (32,
64, 128). Each block is composed of two convolutional layers with a 3 x 3 kernel, followed by batch normalization,
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aReLU activation function, and a 2 x 2 max-pooling layer. Dropout layers (Dropout2D) were included after each
max-pooling operation to mitigate overfitting. The flattened output of the convolutional layers is concatenated
with a learned embedding vector from a categorical embedding layer. This layer converts the integer-encoded
side labels into an 8-dimensional vector representation. The combined vector is then passed to a classifier head
comprising two fully connected layers with batch normalization and dropout. The final layer outputs the class
probabilities.

The plantar pressure samples were normalized using the mean and standard deviation calculated exclusively
from the training data of each cross-validation fold (see Sect. Evaluation and calculations) to prevent data leakage.
The categorical variable was encoded as an integer and passed directly to the embedding layer. The data were
structured using a custom dataset class, with class-balanced sampling to address label imbalance during training.

The model was trained using a weighted cross-entropy loss, where class weights were inversely proportional
to their frequency in the training set. The Adam optimizer with a learning rate of 0.001 was used for weight
updates. Training was managed with an early stopping mechanism, which halted the process if the validation
loss did not improve for ten consecutive epochs, and the model with the lowest validation loss was retained.

To understand the key plantar presser regions that contributed to the CNN’s predictions, we employed the
XAI method SHapley Additive exPlanations (SHAP)*. This method explains the output of a ML model as a sum
of contributions from each input feature, providing local interpretability. We used a Deep SHAP explainer, which
is tailored for deep learning models. The explainer was trained on a background dataset of a random subset of
100 plantar pressure samples and their corresponding metadata from the training set. For each test sample, the
SHAP explainer calculated the contribution of each sample pixel to the final prediction.

Evaluation and calculations

To ensure an unbiased assessment of the two approaches, we employed nested stratified cross-validation.
The nested structure is critical for preventing data leakage and ensuring that the final performance metrics
accurately reflect the models’ generalization ability on unseen data?!. The same data partitions were used for
both approaches, enabling a direct and fair comparison of their performance. An outer 5-fold stratified cross-
validation was used to partition the dataset into a training/validation set and a held-out test set. Within each
outer training/validation fold, an inner stratified shuffle split (80/20 ratio) was applied to create a dedicated
training set and a validation set for hyperparameter tuning. For both the SPM and ML approaches, the grouped
data structure was respected, ensuring that all data from a single subject (e.g., both left and right foot) were
confined to a single partition. This is important to mitigate the risk of artificially inflated performance due to
anatomical or measurement similarities within a subject.

The best-performing model configuration—identified by its performance on the validation set during the
inner loop—was then evaluated on the completely independent, held-out test set. This process was repeated
for each fold of the outer loop. The final model’s performance was assessed using the Matthews Correlation
Coefficient (MCC) and F1-score, which are robust metrics for evaluating models in the presence of class
imbalance?®. To assess the influence of the synthetic outlier samples, these metrics were also computed
exclusively on the real test data, with the synthetically generated outliers omitted from testing. Thanks to the
grouped cross-validation scheme, which splits data by subject, synthetic outliers were generated only from
the training and validation data within each fold, ensuring strict separation from the test set. To ensure a fair
comparison, the multi-class predictions from the ML approach were additionally post-processed into a binary
classification output, analogous to the SPM-inspired predictions. In addition, confusion matrices were generated
to visualize class-wise prediction accuracy and to identify potential sources of bias. All modeling, training,
and evaluation procedures were implemented in Python using PyTorch*), scikit-learn®®, and SciPy*¢, while
visualizations were generated with Matplotlib’ and Seaborn?®. Computations were performed on a desktop
equipped with an 11th Gen Intel Core i7-11800 H CPU, 16 GB of RAM, a 512 GB SSD, and an NVIDIA GeForce
RTX 3070 Laptop GPU (8 GB).

Human-centered results evaluation
Visual representation
To provide a comprehensive understanding of the models’ decision-making processes, a side-by-side visualization
of the outputs from the SPM and the ML approach is provided. For each sample analyzed, we generated a
three-panel figure. The leftmost panel displays the original grayscale plantar pressure. The central panel presents
the output of the non-parametric SPM approach. Here, the original pressure is shown with a green contour
line overlaying regions that were identified as statistically significant outliers according to the approach. This
highlights the specific foot regions where pressure values deviate substantially from the normative, valid plantar
pressure dataset.

The rightmost panel presents the explanation of the CNN model’s predictions using SHAP values. It overlays
a heatmap on the original plantar pressure, highlighting pixels that positively or negatively contributed to the
model’s output. This provides a visual representation of the most influential plantar pressure regions underlying
the predicted classification. To enhance clarity, SHAP values below 20% of the maximum absolute value were
omitted, and the resulting map was smoothed using a bilateral filter.

Semantic differential survey

For this exploratory part of the study, we recruited 16 participants (9 male, 7 female) with expertise in biomedical
data analysis and plantar pressure assessment. Post-hoc power calculations were performed using G*Power
(version 3.1)*, indicating a power of =0.83 for large effects (d=0.8) at a=0.05, and =0.50 when applying a
Bonferroni correction for the comparisons. All participants held at least a university degree in sports science,
biomechanics, or a health-related field, and reported extensive prior experience with plantar pressure data.
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The participants were provided with written, standardized explanations on how to interpret the explanations
provided. The presentation to participants and data collection were carried out using the digital survey platform
LimeSurvey (LimeSurvey GmbH, Hamburg, Germany). The estimated duration for completing the entire survey
was approximately 25 min.

To explore how end-users perceive the quality of explanations generated we employed a semantic differential
survey. A semantic differential is a well-established psychometric technique in which respondents rate a concept
along bipolar adjective scales, thereby yielding quantitative measures of subjective impressions®’.

Drawing on prior work in human-centered XAI and established criteria for evaluating explanation quality,
we selected eight key attribute pairs that capture core dimensions relevant to users’ understanding and trust
in AI explanations?®?”°1, These pairs were selected to evaluate two key aspects of explanations: their cognitive
processing and their perceived utility. Each of the following adjective pairs was presented on a 7-point Likert
scale, with the two extremes representing the poles of the pair:

« Understandability (Understandable — Unintelligible).
o Correctness (Correct — Incorrect).

« Trustworthiness (Trustworthy — Suspicious).

o Usefulness (Useful — Useless).

« Clarity (Clear — Unclear).

« Completeness (Complete — Incomplete).

« Simplicity (Simple - Complex).

« Relevance (Relevant - Irrelevant).

The left-to-right order of the attributes (e.g., “Correct-Incorrect” vs. “Incorrect-Correct”) was randomized
for each participant to minimize bias. Each approach was evaluated separately using the semantic differential
scale, and only correctly classified samples were shown. This ensured that participants assessed the quality of
the explanations themselves, not the model’s prediction accuracy. Including misclassified cases introduced
confounding effects during the pilot phase, as participants tended to judge the explanation in light of the error,
making direct comparisons between approaches difficult. Given this and the exploratory nature of the study, we
deliberately restricted the evaluation to correctly classified samples to maintain clarity and comparability.

To manage the workload for each participant, we selected a random subset of ten generated explanations
to be evaluated by the participants. Each participant was presented with the same set of model predictions
along with their corresponding explanations from both approaches, as described in Sect. Visual representation.
This side-by-side presentation allowed for a direct evaluation of the relative strengths and weaknesses of each
approach’s explanations on the same task. To ensure a fair comparison, we removed the additional level of detail
provided by the ML model, which not only indicated whether a sample was predicted as an outlier but also
specified the type of outlier. This adjustment was made to avoid bias resulting from differences in the amount
of information conveyed by the labels. Furthermore, we labeled the approaches A and B to prevent any bias that
could arise from participants knowing which approach was used.

To assess potential statistical differences between the approaches for each semantic differential attribute,
we applied the Wilcoxon signed-rank test as a non-parametric paired test. This choice accounts for the ordinal
nature of the semantic differential data and its non-normal distribution. Since each subject rated ten images per
approach, we first computed the median rating across the images for each subject and attribute. These median
values were then used as the paired data in the Wilcoxon test. The test was applied separately for each of the
eight semantic differential attributes using data from all participants. To control for multiple comparisons across
all attributes, p-values were adjusted using the Bonferroni correction, considering the total number of tested
attributes. The significance threshold was set at a=0.05.To assess the perceived consistency of the explanations,
a question was posed to participants for each sample after they had evaluated both approaches. Using a 5-point
Likert scale, we asked participants to rate their agreement with the following statement: “Both approaches A
and B highlight similar features and reasoning behind the model’s classification.” This question was designed
to gauge the experts’ perception of explanation alignment between the two approaches. Finally, for each sample
presented, participants were asked, “Which approach would you personally prefer?” Response options included:
Approach A, approach B, a combination of both (as presented in the survey), or neither.

Results

Classification results

Results are summarized in Table 2. Overall, the ML approach outperformed the SPM approach. A detailed
single-case analysis of the misclassified samples revealed that, for both approaches, valid samples incorrectly
identified as outliers (false positives) were predominantly feet exhibiting pathological characteristics (e.g., hallux
valgus, hammer toe, claw toe, flatfoot). Further analysis of the false negative samples of the SPM approach
indicates that samples from the outlier class 4 (Incorrect Side Annotation) were most often misclassified as valid
(n=109), followed by classes 1 (General Acquisition Error; n=49) and class 3 (Inverted Orientation; n=29).

A confusion matrix for the ML approach is shown in Fig. 3. The lowest label accuracy was observed for the
General Acquisition Error class. Interestingly, samples belonging to this class were most frequently misclassified
as valid samples. For the Inverted Orientation class, the primary source of error was misclassification as General
Acquisition Error.
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SPM approach ML approach

754 (754) | 44 (44) 783 (783) | 15(15)
237 (27) 1763 (206) | 30 (4) 1970 (229)
MCC (min; max) 0.76; 0.81 (0.74; 0.83) | 0.95; 0.98 (0.92; 0.98)
MCC (mean + std) 0.78+0.02 (0.81+0.03) | 0.96+0.01 (0.95+0.01)
F1-score (min; max) | 0.92;0.94 (0.86; 0.93) 0.98; 1.00 (0.94; 0.99)
Fl-score (mean=+std) | 0.93+0.01 (0.88+0.03) | 0.99+0.00 (0.96+0.02)

Confusion matrix

Table 2. Results for the held-out test sets across all cross-validation folds, comparing the SPM and machine
learning (ML) approaches. For comparability, predictions of the multiclass ML approach were reduced to

a binary classification of outlier vs. non-outlier. The confusion matrices show actual classes on the rows

and predicted classes on the columns, where the top row corresponds to valid samples and the bottom row
corresponds to outliers. Correct predictions (true positives and true negatives) are highlighted in bold. Metrics
include the minimum (min) and maximum (max) values, as well as the mean + standard deviation (std) for the
Matthews Correlation Coefficient (MCC) and F1-score (F1). Values shown in brackets represent performance
calculated exclusively on the real test data, excluding the synthetically generated outliers, which were used only
during training and validation.
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Fig. 3. Class-specific confusion matrices for the machine learning (ML) approach on the test set.

Semantic differential results

Figure 4 presents exemplary cases of generated explanations using both approaches. While the SPM-approach
highlights clusters with statistically significant deviations from the valid dataset, the ML-approach with SHAP
explanations highlights areas that contributed to or against the decision.
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Fig. 4. Side-by-side visualization comparing outputs from the Statistical Parametric Mapping (SPM) approach
and the machine learning (ML) approach for each data category (see Table 1). Each row shows: (left) the
original grayscale plantar pressure, (middle) the SPM output with green contours marking regions identified
as statistically significant outliers relative to a normative dataset, and (right) the ML explanation using SHAP
values, where a heatmap overlays the original pressure distribution to highlight plantar pressure regions with
the strongest positive or negative contributions to the model’s prediction. Regions colored blue represent pixels
that positively contribute to the model’s prediction for the classified label, while regions colored red indicate
pixels that push the prediction away from that label.
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Fig. 5. Results of the semantic differential survey, shown separately for the SPM (blue) and ML (orange)
approaches. For each subject, ratings across the 10 images per approach were summarized using the median,
and these subject-level medians were then used to calculate overall median values across all participants for
each attribute. Confidence intervals (95% CI) were estimated using bootstrapping with 5000 resamples of the
subject-level medians. For clarity, positively connoted attributes are placed on the right side.

The human evaluation of the explanations is presented in Fig. 5. Overall, both approaches were rated
positively, being perceived as clear, correct, useful, relevant, understandable, trustworthy, and relatively complete.
A notable descriptive difference emerged with respect to simplicity: SPM was rated as simpler, whereas the ML
approach was considered more complex and exhibited greater variability in participants’ ratings. However, no
statistically significant differences between the two approaches for any attribute in the semantic differential were
observed (p>0.05).

Experts rated the similarity between the SPM and ML approaches on a Likert scale, yielding a median score
of 3.75 (median absolute deviation=0.25). This indicates a relatively high level of perceived agreement between
the two approaches. Regarding subjective preferences, 43.48% of the expert ratings favored the ML approach
with SHAP explanations, followed by the SPM approach (34.78%) and the side-by-side presentation of both
approaches (17.39%). Only 4.35% of ratings indicated no preference for any of the presented approaches.

Discussion

Both the SPM and ML approaches were able to detect outliers within plantar pressure data, but the ML approach
outperformed the SPM approach in all evaluated metrics. Specifically, the ML model achieved an F1 score of
0.99+0.00 and an MCC 0of 0.96 £0.01, compared to F1=0.93+0.01 and MCC=0.78+0.02 for the SPM approach
(research question 1). The dataset contained both real and synthetically generated outliers; however, performance
estimates remained nearly unchanged when synthetic outliers were excluded from the test sets, suggesting that
their inclusion did not bias the evaluation. This aligns with the nature of the task: the model learns to detect
systematic structural or procedural abnormalities, such as missing regions or inverted orientation, rather than
memorizing subject-specific plantar pressure characteristics. Consequently, the synthetic outliers appear to
provide a practical means of ensuring sufficient representation of rare error types.
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These results demonstrate the superior performance of the ML approach for outlier detection in this dataset.
The observed differences in accuracy likely stem from the fundamentally different ways in which each approach
interprets deviations. Within our dataset, clinically relevant but non-anomalous cases exist that exhibit substantial
pixel-wise differences due to underlying pathological conditions or biomechanical adaptations. While these
variations are clinically meaningful, they do not constitute technical errors or procedural inconsistencies. SPM
is highly sensitive to localized, pixel-level variations and relies on precise normalization for rotation, scale, and
anatomical landmarks to ensure that corresponding pixels accurately represent the same plantar region across
subjects!”. Although our proposed alignment procedure performed well visually, residual misalignments may
have disproportionately affected SPM’s classification performance.

This limitation is especially pronounced for pathological yet valid plantar pressure samples, where alignment
with a normative reference plantar pressure distribution is challenging or even infeasible. For example, optimally
registering a foot with Hallux Valgus to a normative template is nearly impossible, as either the hallux protrudes
beyond the reference region or pressure voids appear where tissue is normally present. As a result, pathologic
inliers were more often misclassified as outliers with the SPM approach due to their pixel-wise deviations from
normative plantar pressure patterns. Regarding false negatives in the SPM approach, these largely arose from
samples in outlier class 4 (Incorrect Side Annotation). This outcome may reflect the fact that lateral feet are
relatively similar, and lateral differences are often localized and subtle. As a result, even when the lateral side is
incorrectly labeled, the SPM approach may still interpret the sample as conforming to the normative dataset for
that side, leading to misclassification.

The lowest label accuracy for the ML approach was observed for the outlier class General Acquisition Error,
with 5.4% of the samples predominantly being wrongly classified as valid. A possible explanation is the class’s
inherent heterogeneity—ranging from subjects wearing shoes to instances with only partial plantar pressure
data. Though combining these diverse characteristics into a single class was intended to boost sample size, it
may have inadvertently compromised accuracy. Similar problems have been documented in other domains, such
as medical imaging, where hidden stratification—arising from unrecognized heterogeneity within a class—has
significantly reduced model performance®. Consequently, as the sample size of this outlier category grows,
subdividing it into more homogeneous subclasses may enable finer-grained classification and improve outlier
detection performance.

Overall, the two approaches were rated similarly on most attributes of the semantic differential, being
generally rated positively across the dimensions, including clarity, correctness, usefulness, relevance,
understandability, trustworthiness, and perceived completeness (research question 2). While the aggregated
ratings suggest that experts generally found the explanations aligned with domain knowledge, individual cases
reveal occasional differences in ratings, showing that full agreement with expert logic was not achieved for every
sample. Nonetheless, the generally high usefulness ratings imply that both approaches could support expert
understanding of the classification process, potentially facilitating interpretation of how specific features or
regions contribute to model decisions. Taken together, these findings provide preliminary evidence that both
approaches generate explanations that are interpretable and relevant from an expert perspective, though further
investigation is needed to confirm the extent and robustness of this alignment.

The observed difference in perceived complexity was descriptive rather than statistically significant: although
ratings exhibited high variability, SPM explanations were, on average, considered simpler. This descriptive trend
aligns with expectations, as SHAP provides fine-grained, pixel-level attributions that detail how individual
features contribute to predictions, whereas the SPM approach highlights only significant clusters of pixels,
offering a less detailed but more immediately interpretable representation. The substantial variability in ratings,
particularly for the ML approach using SHAP, likely contributed to the absence of statistical significance,
reflecting the subjective nature of participants’ perceptions of complexity.

The integration of ML-based and statistically driven explanations has been proposed as a promising avenue
in XAl research, particularly in domains such as biomechanics where interpretability and trust are critical!#33-%,
Previous findings suggest that the optimal XAl approach must be adapted to the user’s context®. Consequently,
providing both statistical and ML explanations allows end users to choose the representation that best fits their
background and task requirements. Interestingly, our findings suggest that experts did not primarily value the
combined presentation of SPM and ML explanations. Instead, the ML approach with SHAP explanations received
the highest preference, followed by the SPM approach, while the side-by-side presentation of both approaches
was less frequently favored. This indicates that, although SPM and ML operate at different levels of abstraction—
feature-level versus group-level—the added value of presenting both simultaneously may not be as compelling to
domain experts. At the same time, experts rated the overall similarity between the two approaches as relatively
high, suggesting that despite methodological differences, both approaches were perceived as largely consistent.
This perceived alignment may explain why experts felt comfortable selecting a single preferred approach rather
than relying on a dual-validation perspective.

Finally, the necessity of XAI in the current study’s task requires careful consideration. Although the
classification task in this study is relatively straightforward for human experts, it is time-consuming, making
automation valuable. In such scenarios, XAI primarily supports compliance with regulatory frameworks, fosters
trust in automated systems, and facilitates human-in-the-loop monitoring™. It can also highlight cases where
models fail, enhancing the robustness and reliability of ML-assisted decision-making. In our current evaluation,
we focused on instances where SPM and SHAP explanations agreed with ground-truth labels. A practical
workflow might prioritize ML predictions for decision-making, given their higher accuracy, while using SPM
outputs as supporting explanations when the two approaches align.

This study has several limitations, which also suggest promising directions for future research. While our
ML approach proved highly effective, simpler methods—such as expert-defined rules—could be explored for
identifying specific outlier categories (e.g., multiple feet or upside-down feet). However, heuristic approaches
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tend to be less robust when handling highly abnormal foot shapes, as they may not adequately account for
complex or anomalous data patterns®®. The SPM approach is computationally intensive due to registration
and voxel-wise analyses (~0.5-1 s per image), whereas the ML approach enables fast inference (~5-10 ms per
image on GPU), making it better suitable for potential real-time applications. Hyperparameter search for the
ML model was performed manually, guided by validation performance. While this approach yielded very good
results on key metrics, it may limit the reproducibility and generalizability of the model, as more systematic
optimization methods (e.g., automated search or ablation studies) could potentially uncover architectures
that perform equally well or better. In the context of inference-statistics—based outlier detection, future work
could investigate advanced biomechanical alignment techniques, such as deformable image registration®.
These approaches may better accommodate anatomical variability in pathological feet, improving registration
quality and enhancing the robustness of SPM-based outlier detection. Moving beyond pixel-wise comparisons,
aggregating plantar pressure values over anatomically or functionally meaningful regions (e.g., heel, metatarsal
heads) could also provide more clinically meaningful and functional metrics for comparison with normative
datasets®’. Our dataset included both real and artificially generated outlier samples. Although experts confirmed
that the synthetic cases closely resembled realistic outliers, some residual bias cannot be ruled out. Future
research could leverage generative Al to produce even more realistic artificial outliers, building on recent work
demonstrating its capability to generate accurate biomechanical data and thus enhancing the utility of ML
predictions in biomechanics® %4,

Although explanations for misclassified samples are essential for evaluating the full utility of XAI systems,
they constitute a separate research question beyond the scope of this exploratory study and should be addressed
in future work. Moreover, our study focused exclusively on SHAP. Future work could systematically compare
multiple XAI methods, assessing both their technical interpretability and perceived usefulness from the
perspective of human experts. Expert ratings in our semantic differential analysis may have been influenced
by differences in explanatory depth. Since standardized instruments for evaluating XAI explanations are still
underdeveloped, our study represents an initial exploratory effort. Given the sample size, post hoc power
analysis indicates moderate sensitivity for detecting large effects, whereas smaller or medium effects are unlikely
to be detected. Consistent with the exploratory aim of this investigation, the focus on practically meaningful,
large effects is statistically appropriate. Moreover, most studies employing the semantic differential technique
are fundamentally descriptive rather than inferential®®, which further supports the methodological decisions
regarding sample size and observed statistical trends. Consequently, the observed patterns offer valuable
preliminary insights, while future, adequately powered investigations with larger samples will be required
to confirm subtle effect sizes. Future research could also refine evaluation protocols by expanding the set of
assessment attributes and applying factor analysis to capture latent dimensions of user perception.

Conclusion

This study demonstrates that the statistical SPM analysis and ML modeling are highly promising approaches
for detecting and categorizing technical errors and procedural inconsistencies in plantar pressure data, thereby
enabling automated and targeted guidance for addressing outliers. The results underscore that advancing artificial
intelligence in biomechanics requires not only evaluating predictive performance but also understanding how
users perceive model explanations. By applying semantic differential analysis to assess user perceptions of SPM
and ML explanations, this study provides a first step toward developing human-centered tools that evaluate
interpretability and practical usefulness, highlighting the need for further research in this direction.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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