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We investigate and model the initiation of motion of a single particle on a structured
substrate within an oscillatory boundary layer flow, following a mechanistic approach. By
deterministically relating forces and torques acting on the particle to the instantaneous
ambient flow, the effects of flow unsteadiness are captured, revealing rich particle
dynamics. Laboratory experiments in an oscillatory flow tunnel characterise the initiation
and early stages of motion, with particle imaging velocimetry measurements yielding the
flow conditions at the motion threshold. The experiments validate and complement results
from particle-resolved direct numerical simulations, combining an immersed boundary
method with a discrete element method that incorporates a static friction contact model.
Within the parameter range just above the motion threshold, the mobile particle rolls
without sliding over the substrate, indicating that motion initiation is governed by an
unbalanced torque rather than a force. Both experimental and numerical results show
excellent agreement with an analytical torque balance including hydrodynamic torque
derived from the theoretical Stokes velocity profile, and contributions of lift, added mass
and externally imposed pressure gradient. In addition to static and rolling particle states,
we identify a wiggling regime where the particle moves but does not leave its original
pocket. Our deterministic approach enables prediction of the phase within the oscillation
cycle at which the particle starts moving, without relying on empirical threshold estimates,
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and can be extended to a wide range of flow and substrate conditions, as long as turbulence
is absent and interactions with other mobile particles are negligible.

Key words: sediment transport, multiphase and particle-laden flows, particle/fluid flow

1. Introduction

The capability to predict the onset of particle motion is fundamental to numerous natural
and industrial processes, ranging from sediment transport in rivers, estuaries and coastal
waters to slurry flows in dredging and mining operations (Van Rijn 1993; Wierschem
et al. 2008). Identifying the threshold conditions for the transport of pollutants, such as
microplastics (1 pm—35 mm), in environmental settings also requires a deep understanding
of particle dynamics, which, for slightly buoyant particles, are particularly sensitive to
hydrodynamic forces (Kane et al. 2020). Therefore, a detailed examination of the early
stages of particle motion is necessary (Nielsen 1992; Buffington & Montgomery 1997;
Vowinckel et al. 2016; Eyal et al. 2021). The motion threshold has been extensively
studied, driven by applications in civil and coastal engineering (Wilcock 1993; Agudo &
Wierschem 2012; Petit et al. 2015).

The criterion introduced by Shields (1936) is often used to determine the conditions
of incipient sediment transport. According to Shields’ criterion, the motion of a sediment
layer exposed to steady flow begins once the hydrodynamic force acting tangentially to
the bottom surface exceeds the frictional resistance between the mobile layer and the
underlying substrate, which is proportional to the layer’s submerged weight (see figure 1a).
This balance leads to the definition of the Shields parameter, given by the ratio between
tangential and vertical forces. At the threshold of incipient motion, this parameter equals
the sediment friction coefficient. The critical value of the Shields parameter depends solely
on the granular Reynolds number, which quantifies the relative contributions of inertial
and viscous forces at the sediment grain scale. By definition, the Shields parameter is
inherently a statistical measure due to the randomness of the bottom geometry, as well as
flow—particle and particle—particle interactions. In practice, the threshold is typically deter-
mined empirically for an ensemble of grains on a rough bed, with critical values accompa-
nied by subjective definitions of different stages of motion (Breusers & Schukking 1971).

Recently, there has been a growing emphasis on developing more precise criteria for
the motion threshold of a single particle and characterising particle dynamics immediately
following the motion onset. These efforts have primarily involved combinations of detailed
experiments (Charru et al. 2007; Agudo & Wierschem 2012) and analytical methods
(Agudo et al. 2017; Topic et al. 2019). Unlike the statistical nature of the Shields criterion,
these approaches provide well-defined thresholds for the motion of individual spherical
particles, directly linking them to specific flow conditions, material properties, local bed
structure and the influence of other surrounding particles (Agudo et al. 2014, 2017).

It should be stressed that the previously mentioned studies focus exclusively on
unidirectional steady flows. However, the insights gained from these studies have only
limited applicability in settings with transient ambient flows. Oscillatory flows, in
particular, are critical in many engineering and environmental settings, such as in the
periodic agitation of submerged particles in multiphase mixtures or the back-and-forth
motion near sediment bedforms induced by coastal waves (Sleath 1984; Nielsen 1992).
Oscillatory flows are well known to be more complex than unidirectional flows, even
under laminar conditions. Nonlinear residual flows, such as steady streaming flows, can
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Figure 1. (a) Side view of a hypothetical uniform layer of mobile spheres lying on a regular substrate, i.e. the
Shields approach. (b) Top view and (c) side view of the present particle arrangement, where grey spherical
particles form a fixed substrate, and the red sphere represents the mobile particle. The blue curve illustrates
the Stokes velocity profile. Red arrows indicate the hydrodynamic drag, lift and effective weight forces (added
mass and imposed pressure gradient forces are not shown in this sketch). The corresponding lever arms are
shown as black double-headed arrows, referenced to the downstream-side contact points (which coincide in
this side view). The symbols are categorised and described in table 1.

significantly affect particle dynamics on small and (very) large time scales compared
with the period of oscillation (van Overveld et al. 2022b). The complex particle—fluid
interactions can lead to self-organisation into a wide range of patterns, including chains
and bands in diluted systems (van Overveld, Clercx & Duran-Matute 2023) or vortex
ripples in dense systems (Sleath 1984). Despite their importance, oscillatory flows have
received far less attention than unidirectional flows. To our knowledge, a similarly
rigorous analytical approach for oscillatory flows has yet to be developed to determine
the conditions at the onset of particle motion.

Overall, the unique description of the physics in an oscillatory flow needs one additional
dimensionless parameter compared with the unidirectional case, since the system has an
additional degree of freedom. This is analogous to general particle motion in oscillatory
flows (Klotsa et al. 2007; van Overveld et al. 2022a,b). Consequently, reported values
for the Shields criterion (or its single-particle equivalent described by Agudo et al.
2017) will depend not only on the granular Reynolds number, but also on an additional
dimensionless parameter related to the oscillatory flow component, such as the frequency-
dependent viscous length scale relative to the exposed particle’s diameter (Klotsa et al.
2007; Mazzuoli et al. 2016; van Overveld et al. 2022b, 2023).

Due to the larger parameter space, the dynamics of particle motion in oscillatory flows
may differ significantly from those in unidirectional flows. In the latter, once a particle
starts moving, it is slightly lifted from its pocket in the bed, exposing a larger surface area
to the ambient flow and increasing the drag force induced by the ambient flow, accelerating
the particle even further. This feedback mechanism produces a sharp transition between
stationary and dynamic states, assuming laminar flow conditions without fluctuations. In
contrast, oscillatory flows introduce several additional complexities, including unsteady
forces such as added mass and Basset history forces, which induce complex dynamics
(van Overveld et al. 2023). Notably, analytical solutions to the problem have been derived
for specific cases, such as the periodic motion of a small particle in an unbounded viscous
fluid (Coimbra & Rangel 2001), which was later experimentally validated (Coimbra et al.
2004). More generally, analytical approaches for particle motion in time-dependent flows
have been developed, provided the velocity field is sufficiently smooth (Van Hinsberg, ten
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Thije Boonkkamp & Clercx 2011). Moreover, the velocity profile in an oscillatory flow is
often non-monotonic, like for a Stokes boundary layer over a flat bottom. As a result, both
the drag force and associated lever arm are transient quantities, yielding a complex time-
varying torque. The particle’s dynamics can become even more intricate after the onset
of motion. Depending on the flow’s oscillation period relative to the particle’s settling
time, the particle may not settle in or even reach the next pocket in the bed before the flow
reverses.

From a conceptual perspective, we classify particle behaviour into several progressive
modes of motion. Initially, the particle may remain static when the hydrodynamic forces
are too weak to induce any movement. As the forcing increases, the particle may exhibit
a wiggling motion, characterised by brief periodic movements, typically near moments
of maximum drag or shear stress. By definition, the amplitude of this motion is small,
as the particle remains within a single pocket of the bed, falling back into its original
position and coming to rest before the ambient flow reverses direction. This motion is
expected to be periodic under laminar flow conditions where fluctuations are absent. As
the driving forces continue to increase, the particle may start to roll between pockets in
the bed, always maintaining contact with at least one other particle. Rolling is expected to
precede any slipping or sliding, consistent with predictions for unidirectional flow (Agudo
et al. 2017). Even under laminar flow conditions, this rolling motion can be aperiodic,
with the particle approaching a neighbouring pocket but not coming to rest before the
flow direction reverses. When the driving force is sufficiently large to lift the particle
temporarily from the substrate, it may hop between pockets (Topic et al. 2022). As the
driving force increases further, the particle may eventually become suspended for extended
periods, moving freely without touching the substrate.

In this work, we comprehensively explore the threshold of particle motion under
oscillatory flow conditions and the subsequent dynamics post-initiation. We first analyse
the governing equations, provide theoretical predictions for the relevant dimensionless
parameters and make quantitative predictions for the conditions at the onset of motion.
We then extend our study using laboratory experiments, exploring the parameter space to
identify the threshold for different flow conditions using a combination of particle tracking
and particle image velocimetry (PIV). We complement our experimental findings with
direct numerical simulation (DNS) to give insight into the transient forces acting on the
particle and to explore the three-dimensional flow field near the onset of motion. The flow
field around the particles in the simulations is fully resolved, with the particles accounted
for using an immersed boundary method. To faithfully reproduce the motion onset, the
numerical framework is supplemented by a particle—particle contact model that accounts
for the build-up and release of elastic energy around contact points when the particle is still
at rest. Throughout our broad approach, we particularly pay attention to the implications
of the additional degree of freedom, distinguishing it from the more commonly studied
unidirectional flow cases.

The work is structured as follows. We give an overview of the system in § 2, followed
by the experimental approach in § 3 and the numerical approach in § 4. The results with
accompanying discussion and comparison to other criteria are given in § 5, and concluding
remarks in § 6.

2. Formulation of the problem

We first present a systematic overview of the physical system consisting of a single mobile,
spherical particle resting on top of one fixed layer of monosized spherical particles,
hereafter referred to as substrate. The oscillatory flow of an incompressible Newtonian
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Category Symbol Description
General and material properties of Fluid density
Ps Particle density
v Fluid kinematic viscosity
Gravitational acceleration
Oscillation parameters Uy Amplitude of free-stream velocity oscillation
10} Angular frequency of oscillation
ds =+/2v/w Stokes boundary layer thickness
Geometric parameters D Particle diameter
20 Virtual origin of stokes velocity profile
) Bottom elevation of mobile particle
D Contact point elevation
h=z+D —20 Mobile particle exposure height
l=z,+D/2—2zp Particle centre elevation above contact point
Forces and lever arms Fp Hydrodynamic drag force
Lp Lever arm of drag force
Fyy Effective submerged particle weight
Lyy Lever arm of effective weight
Fr Effective hydrodynamic lift force
Ly Lever arm of lift force
Fay Added mass force
Fv, Imposed external pressure gradient

Table 1. Overview of the main parameters describing material properties, oscillation characteristics,
geometric configuration (cf. figure 1), and relevant forces and associated lever arms.

fluid is driven by an externally imposed harmonic pressure gradient over a horizontal
flat wall, resulting in an oscillatory boundary layer (OBL). Figures 1(b) and 1(c) provide
accompanying sketches of the particle and flow configuration. For a regular substrate, the
relevant dimensional parameters are the particle diameter D, the amplitude of velocity
oscillations far from the bottom Uy, the angular oscillation frequency w, the kinematic
viscosity of the fluid v, the fluid density por, the particle density oy, the gravitational
acceleration g, the exposure height of the particle to the ambient flow 4 and the elevation /
of the particle centre relative to its contact points with the bed. These quantities and other
main parameters are listed in table 1.

2.1. Governing equations

2.1.1. Fluid motion
The flow is governed by the continuity equation

V.u=0 2.1
and by the incompressible Navier—Stokes equation
du 1 2 o~
§+(u Vu=——Vp+vV-u+ Upw cos(wt)x, 2.2)
pf

where p is the pressure, ¢ is the time and u = (u, v, w) is the fluid velocity with the
components referred to the Cartesian coordinates x = (x, y, z). The unit vector ¥ points in
the x-direction, aligned with the oscillatory flow, and z denotes the wall-normal coordinate
pointing upwards. The last term in (2.2) corresponds to the imposed oscillatory pressure
gradient.

1027 A12-5


https://doi.org/10.1017/jfm.2025.11052

https://doi.org/10.1017/jfm.2025.11052 Published online by Cambridge University Press

T.J.J.M. van Overveld, M. Mazzuoli, M. Uhlmann, H.J.H. Clercx and M. Duran-Matute

In the laminar regime, the velocity in the oscillatory boundary layer over a flat, smooth
wall located at z = z, is given by the Stokes boundary layer solution

u="U |:sin(a)t) —exp (—ﬂ) sin (a)t _z ZO)] X, (2.3)
8s ds

where 5 = +/2v/w denotes the boundary layer thickness, i.e. the characteristic viscous
length scale (Landau & Lifshitz 1987; Acheson 1990).

The presence of bottom roughness adds a remarkable complexity to the problem, even
when the roughness elements are monosized spherical particles arranged regularly on a
horizontal wall (Mazzuoli et al. 2016; Agudo et al. 2017). Notably, roughness can amplify
nonlinear effects, such as steady streaming (Lyne 1971; Riley 2001), and thereby influence
the stability of the oscillatory boundary layer, eventually causing a transition to turbulence
(Mazzuoli & Vittori 2016; Kaptein et al. 2020). Presently, we consider a compact square
arrangement of the bottom substrate.

The influence of substrate roughness on the undisturbed flow is reflected in the velocity
field overlapping with the top layer of the substrate. In other words, the flow does not
vanish at the top of the substrate, but instead penetrates into it to some extent. When
modelling the flow using a Stokes profile, this effective penetration is accounted for by
adjusting zo, the virtual wall location, as illustrated in figure 1(c). In practice, zo is chosen
such that far above the substrate, the Stokes velocity profile matches the velocity field
obtained from the DNS or experiments. Note that the mean velocity at z = zg in the DNS
or experiments does not necessarily vanish. The influence of substrate roughness on the
flow experienced by the mobile particle is quantified by the particle exposure height

h=zp+ D — zo, (2.4)

where 7, is the bottom elevation of the mobile particle.

2.1.2. Particle motion
The translational velocity u; of a spherical particle is described by Newton’s second law

du,
psVs— =Fp+Fc+Fs, (2.5)
where V, =7 D3 /6 is the particle volume, Fp is the resultant of body forces, F¢ is the
resultant of inter-particle contacts due to interactions with the substrate and Fg is the
resultant of surface forces

FS=/ (=(p+Pn+1,)dS, (2.6)
S

where P denotes the imposed pressure, T, the viscous stress tangential to the sphere
surface S, and n the surface-normal unit vector. In the x-direction, following Maxey—
Riley—Gatignol’s approach, the hydrodynamic force Fg can be modelled as the sum of the
drag force and contributions from added mass, Basset force and imposed pressure gradient
(Gatignol 1983; Maxey & Riley 1983). While not strictly exact, this decomposition
provides a reasonable approximation for small particles, where drag is predominantly
viscous and the effects of flow unsteadiness, captured by the added mass, Basset and
pressure gradient terms, can be effectively treated as additional contributions to the
steady-state drag model. In the z-direction, the hydrodynamic force corresponds to the
lift force.
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The net body force Fpg, proportional to the volume occupied by the particle, results from
the sum of contributions due to gravity and buoyancy

Fg=—(ps — pr)Vs8z, 2.7)

where g is the gravitational acceleration pointing in the negative z-direction, —Z.
The rotation of a spherical particle is described by Euler’s second law

PsTC D’ de;
60 dr

where 2 denotes the particle angular velocity. The torques acting on the particle arise
from interactions with the substrate T¢c and hydrodynamic viscous stresses

Ts :/ (x —x.) x 1,dS, (2.9)
S

=Tc+Ts, (2.8)

with x. denoting the particle centre coordinates. For a rolling particle in the compact
square arrangement (cf. figure 1b), rotation occurs around the contact point at elevation
zp. The distance between zp and the particle centre elevation is given by

D
l=zb+3 — 27D, (2.10)
as shown in figure 1(c).

2.2. Dimensional considerations

Let us now consider the following dimensionless variables of the hydrodynamic problem,
indicated with asterisks,

u X
uw=—, tf=owt, x*=— V* =5V, pF=
Uo s

which were also considered by Mazzuoli & Vittori (2016). Moreover, the following
dimensionless quantities characterising the particle dynamics are introduced

P

_ 2.11
prdsUpw @10

N D ’ s UO ’ s UO ’ C WS ’ C Ws D )
F 2T F 2T
= Ti=—— Fy=2l Tp=% Q)
T D T D W WsD

where the contact forces are normalised by the particle submerged weight
Wy = (ps — pr)gVs, and the hydrodynamic forces are normalised by the characteristic
viscous shear stress 7,0 = pf Upwds/2 multiplied by the area of the particle surface nD>.

We now use (2.11) and (2.12) to non-dimensionalise the governing equations for both
the fluid phase and the particle motion. Hence, the dimensionless form of (2.1) and (2.2)
reads

V¥ u*=0 (2.13)
and
ou” + lReg(u* VI = —V*p* 4 Lovur 4 cos(1*)% (2.14)
arr 2 2 ’ ’
respectively, where
Uyé
Res = —2°5 (2.15)
v
1027 A12-7
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is the Reynolds number of the oscillatory boundary layer. Substitution into (2.5) and (2.8)
yields

du* 1

s _ * 2 *
ST =T (F¢—2)+38Fg (2.16)
for the particle translation and
sdey 1
——2 = _—TF+38T¢ 2.17
s5ar et els @17
for the particle rotation, where
s=0 (2.18)
Pf
is the particle—fluid density ratio,
s
§=— 2.19
D (2.19)
is the normalised viscous length scale, and
U
=220 (2.20)
(s = pr)g

is the ratio between the amplitude of the oscillatory acceleration far from the bottom
and the specific gravitational acceleration. From this point onward, all variables are
non-dimensional unless otherwise indicated and the asterisks are omitted for notational
convenience.

According to (2.16), when lift forces (i.e. the vertical component of Fs) are relatively
small, vertical motion is primarily determined by the balance between contact forces and
effective weight, with the dimensionless acceleration being inversely proportional to s1°.
Horizontal motion is governed by the horizontal components of the contact force F¢ and
the hydrodynamic force F', the latter comprising contributions from the imposed pressure
gradient and drag, which are proportional to §/s.

The dynamic problem involves nine distinct dimensional parameters (Uy, D, w, pf,
Pss Vs &, h, 1) and is, therefore, uniquely characterised by six independent dimensionless
parameters. Four of these already appeared in the governing equations: §, Res, s and I".
In addition, the dynamics of the exposed particle depend on two geometric parameters,
H =h/D and L =1/D, which relate to the substrate arrangement and are defined by (2.4)
and (2.10), respectively.

Combinations of these numbers result in other dimensionless quantities that are fre-
quently considered in sediment transport problems, such as the particle mobility number

2
2% _Lsper 2.21)
(ps —pp)gD 2
which is the ratio between the convective force and the submerged weight of the particle
(Mazzuoli et al. 2016, 2019; Vittori et al. 2020).

Finally, the bulk flow velocity Uy does not necessarily represent the local flow around
the mobile particle, especially when § is large. The flow conditions near the substrate are
better captured by the Shields parameter, representing the dimensionless shear stress at the
bed as

”(//:

0
0=—— (2.22)
(os — pr)gD
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where 7 denotes the instantaneous bottom shear stress. According to the Shields criterion,
this stress represents the horizontal hydrodynamic force per unit area acting on the top
layer of particles resting on the substrate. This force is approximately equal to the shear
stress evaluated at an elevation zg, which typically lies within one particle diameter
D above the base of the top layer z;, (see figure la). In our configuration, where the
mobile layer consists of a single particle and the particle-induced disturbance to the
flow is negligible, zp is close to z, (see figure 1c). Consequently, the shear stress at zo
closely approximates the actual shear stress acting at the base of the mobile particle.
In the absence of a substrate (i.e. a single sphere lying on a smooth wall), tp can be
computed by evaluating the derivative of the Stokes profile (2.3) at z =z9 =0, yielding
0 = (v/2/2)8 T sin(t + 7 /4). Finally, we stress that, in contrast to steady flow conditions,
the Shields parameter 6 in (2.22) oscillates over time, implying that both the magnitude
and the duration of the hydrodynamic forcing determine the onset of motion.

2.3. Model for the motion threshold

The detailed derivation underlying the model for the motion threshold is given in
Appendix A, while the main concepts are summarised in this section.

Under the assumption that an exposed particle is more likely to roll rather than slip or
slide out of a pocket in the bed (Agudo et al. 2017), the motion threshold is governed by a
torque balance. This balance includes a stabilising contribution from the submerged weight
and typically destabilising contributions from drag, lift, added mass and the imposed
pressure gradient. However, these torques may be out of phase, meaning some may have
stabilising effects during parts of the oscillation cycle. The Basset history term is omitted
from the present balance, since its contribution is expected to be small for the range of
Res considered. In the absence of a substrate, its magnitude is approximately 10 %—20 %
of drag, while precise evaluation in the present geometry remains challenging. Moreover,
since the history force is related to flow acceleration, its phase does not coincide with that
of the drag force, further limiting its influence on the onset of particle motion.

Lubrication forces are not included, as prior studies have shown good agreement without
them (Agudo et al. 2017), and they are not expected to be significant compared with
dominant contributions such as drag and pressure gradients in the present parameter range.
The dimensionless spanwise component of the particle torque T referred to an arbitrary
point is defined by

d lift AM v
Ty=Tg  + Ty + T3, + Tl + Ty + Tcy, (2.23)

where the terms on the right-hand side denote contributions of drag, lift, added mass,
pressure gradient, submerged weight and inter-particle contacts, respectively. In this
section, let us evaluate the torque contributions referring to the contact point elevation
at the incipient rolling conditions, i.e. when T\, =0 and the mobile particle has only two
contact points aligned in the spanwise direction, such that also T¢y = 0. Therefore, in the
definition of the spanwise component of the hydrodynamic torque Ts, provided by (2.9),
the coordinates (x., z.) are replaced by (xp, zp).

The primary challenge lies in relating the hydrodynamic torque contributions to the
ambient flow, for which we adopt an approach similar to that of Agudo et al. (2017) for
steady shear flows. In general, there is no analytical formulation for the velocity field u
that captures all substrate-induced variations. Therefore, we introduce a horizontal plane-
average to obtain an effective velocity profile that represents the mean flow. This averaged
profile is defined as
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1
(u)(z) = 7 //A udxdy, (2.24)

where A denotes the substrate area. The averaging procedure accounts for spatial
velocity variations induced by the substrate, which are present even in non-turbulent
flow conditions. Notably, while the ambient flow is free of turbulent fluctuations, random
velocity fluctuations may still appear in the wake downstream of the mobile particle.

Although (1) cannot be computed analytically, our numerical simulations provide full
access to the three-dimensional velocity field, allowing us to evaluate the plane-average
directly. The resulting mean velocity profiles are well approximated by a vertically shifted
Stokes solution (2.3) (see figure 16 in Appendix A) for the parameter values presently
considered. The torque due to the hydrodynamic drag is defined as the moment of the
drag force with respect to the contact point between the particle and the substrate. For the
spherical particle, this torque is modelled as

Tp o<t D? uy, (2.25)

according to (AS), where

1 zp+D
u =~ / (2 — 20)(u) dz (2.26)
D %

is the first moment of the streamwise ambient velocity (see (A3)) with z;, and zp denoting
the z-coordinates of the lowest point of the exposed particle and of the rotation axis,
respectively (see figure 1¢). Similarly, the contribution of lift to the hydrodynamic torque
is based on Saffman’s (1965) expression, see (A15). Notably, both the expressions of
drag and lift in dimensionless form contain correction coefficients that depend on the
instantaneous particle Reynolds number

uc.D _ Res

Reg (1) = - [sin(t) — e ¢ sin (r — 0)]. (2.27)

where u. denotes the ambient velocity at the same elevation as the particle centre and
¢ = (H —1/2) /4 is the normalised elevation of the particle centre above the zero level of
the velocity profile zg.

The ratio 7 between the aforementioned destabilising contributions and the stabilising
contribution due to submerged weight is given by

dra A% lift
AT T T5)

Tpy
H 92.66 _, &8°

=4T |:9C/52Hg (z, ?) Lp+ht ¢)L+ —5 C”R_ea Re?LL], (2.28)

T

/2

where C” and C” are correction coefficients for the drag and lift forces, respectively, and
Lp and L are their corresponding lever arms, as detailed in Appendix A. The function

g (t, ?) =sin(t) — ?% |:sin (t — %) — e /% in (t — g . %>i| (2.29)

captures the effect of shielding by the substrate, and
3 1
h(t, ¢) = > cos(t) — Ee—i cos (t —¢) (2.30)

groups the contributions of the pressure gradient and added mass. Equation (2.28) allows
us to define the criterion for the initiation of rolling motion, depending on (dimensionless)
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Figure 2. (a) Temporal evolution of the motion threshold parameter 7", as defined by (2.28), for typical
parameter values in the present experiments and simulations (specifically matching DNS run 3, see table 2):
§=0.12, Res =41, I' =0.45, s =1.81, H =0.8 and L =0.36 (black line). Dotted lines represent relative
contributions of hydrodynamic drag (blue), lift (green) and added mass plus imposed pressure gradient (red).
(b) Normalised time interval Aty during which the motion threshold condition (2.31) is exceeded, as a
function of I" (proportional to the forcing strength) for various values of §, with other parameters as in panel
(a). Crosses mark the characteristic time scale T (2.33) for the particle to reach the crest of the substrate.

time ¢ and five dimensionless numbers:
Y (t; Res, 6, I', H, L) > 1. (2.31)

Note that the contribution of s to the threshold is contained within the parameter I". Once
the threshold is exceeded, s becomes an independent control parameter that governs the
relative importance of particle inertia in the dynamics.

Both H and L are primarily determined by the geometry of the bottom substrate. For a
substrate composed of spheres in a compact square arrangement, L = +/2/4 ~ 0.35. The
value of H is related to the effective position of the virtual origin zo of the velocity profile
within the substrate crevices. In a similar substrate configuration but under steady flow
conditions, Agudo et al. (2017) and Topic et al. (2022) positioned zg at a distance 0.077D
below the top of the substrate, corresponding to H =2L 4 0.077 ~0.78. In our DNS
results, H ~ (.84 (cf. table 2).

To get familiar with the 7T -criterion (2.28)-(2.31) and distinguish the different
contributions to the particle torque, figure 2(a) shows the time variation of 7" for constant
parameters H =0.8, L =0.35 and I" =0.45, which are representative of the present
experimental and numerical conditions.

2.4. Particle motion just above the motion threshold
Assuming that the particle rolls during the early stages of its motion, as verified in § 5.1, we
define the spanwise rotation angle ¢; as the angle swept by the particle while rolling from
its initial position to the crest of the substrate particle, before settling into the adjacent
pocket. For the present substrate configuration, a compact square arrangement, we find
¢s = /2 — arctan(+/2) 2 0.62. The angle ¢, may alternatively be obtained by integrating
Euler’s second law (2.17) twice with respect to time, which yields

T df2 56R 1
by = / / ooy grt ar e 228802 (3575, — 1y ). (2.32)
0 dr 4s r
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where 7 denotes the characteristic (dimensionless) time for the particle to reach the
substrate crest, hereafter referred to as the ‘time to crest’, and Ts, and T¢, represent
the characteristic values of the respective torque components during this time. Close to
the motion threshold, the difference between stabilising and destabilising torques is small.
Based on the scaling analysis in § 2.2, the resultant dimensionless torque (i.e. the left-
hand side of (2.17)) is expected to be of order unity during the early stages of motion.
Furthermore, the same analysis suggests that 3675, and T¢y /I, i.e. the terms between
brackets in (2.32), are typically of the same order of magnitude. Then, the characteristic

time to crest scales as
S s
T~ | — = —, (2.33)
SRes 2K

where K¢ =Up/(wD) is the Keulegan—Carpenter number, describing the relative
importance of hydrodynamic drag to inertial forces in oscillatory flows. The range of K¢
values covered in this study spans from 2.5 to 80 in the simulations and from 0.58 to 10 in
the experiments.

Figure 2(b) shows the normalised time interval Atjy|-1, representing the fraction of
the oscillation period during which the motion threshold (2.31) is met. The prediction
of Afjr|>1 is crucial for determining whether a particle can accelerate sufficiently to
overcome substrate barriers and settle into neighbouring pockets before flow reversal.
At low forcing (small I"), the threshold is typically not exceeded (Afjy|~1 =0). As I
increases, Afjr|>1 grows rapidly and asymptotically approaches 27, corresponding to
continuous particle motion throughout the oscillation cycle. The dependence on § reflects
the effect of flow uniformity at the particle scale, where larger values of § (more shear-
like flow) promote particle motion at lower I”, for otherwise identical parameters. The
figure also shows the predicted time to crest (2.33), marked by crosses. Below each cross,
the duration during which |7°| > 1 is too short for the particle to roll over the crest of the
substrate particle, resulting in wiggling motion. Above the cross, the particle can roll out
of its pocket and reach a neighbouring one. Notably, for small §, the time to crest diverges.
In this regime, the oscillation frequency is sufficiently high that flow reversal occurs before
the particle can accelerate sufficiently, preventing it from rolling over the substrate.

3. Experimental approach

The experiments are carried out in an oscillatory flow tunnel (OFT) and serve a dual
purpose. First, they enable the characterisation of flow conditions and particle behaviour
as a function of the problem’s parameters close to the motion threshold. Second, they
validate and inform the numerical simulations.

3.1. Experimental set-up

Figure 3 shows a schematic overview of the set-up. We use a custom-made OFT consisting
of an acrylic tank with inner dimensions (100 x 50 x 30) cm in the streamwise, spanwise
and vertical directions, respectively. A U-shaped lid is suspended within this tank,
creating a central section with two parallel flat plates spaced 30 mm apart. Each end
of the tank contains a vertical section with a free surface, measuring 50 mm in width.
The tank is filled with tap water with mass density py = (0.999 £0.001) x 10° kgm™—3
and kinematic viscosity v = (1.05 £ 0.01) x 107 m? s~!. Special care has been taken to
ensure a watertight seal between the lid and the side walls of the outer tank at the front and
back (out of plane). A partially submerged piston with a width of 48 mm is placed in the
left column, covering approximately 77 % of the free surface area (as seen from above).
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Figure 3. (a) Schematic of the oscillatory flow tunnel (OFT), where a harmonically oscillating piston (grey)
drives flow between two parallel flat plates. On the bottom, a single mobile particle (white) lies on top of a fixed
monolayer (black), with a vertical laser sheet (green) illuminating the cross-section parallel to the oscillation
direction. (b) Experimental snapshot (§ ~ 0.12 and s = 1.81) showing the substrate, exposed particle and laser-
illuminated tracer particles. (¢) A contrast-enhanced snapshot overlaid with velocity vectors obtained using
PIV, scaled and colour-coded by magnitude (green to red for increasing velocity magnitude).

The piston is driven by a PID-controlled linear motor (LinMot P01-37 x 120F/100 x 180-
HP) in a vertical oscillatory motion. This motion modulates the water level in the left
column, generating a hydrostatic pressure difference between the left and right columns,
which in turn drives the flow through the central horizontal section. The piston does not
fully cover the free surface in the lateral direction, but it is sufficiently large to generate
the necessary flow through vertical oscillations of the water level. A tight seal or full
interfacial coverage is not required, as this would involve extreme forces and special care
to prevent friction.

The substrate consists of a monolayer of spheres with a diameter of (5.950 &
0.005) mm, arranged in a square lattice with 6.0 mm centre-to-centre spacing, forming
a 25 x 26 particle grid aligned with the oscillation direction. The spheres are securely
positioned in circular holes (3.0 mm in diameter) on a bottom plate, with a 5 mm-
high surrounding frame preventing the layer from shifting. The bottom plate and frame
are CNC milled to ensure a highly regular spacing and alignment of the substrate
spheres. A single spherical particle with diameter D = (5.950 £ 0.005) mm is placed
on top of the substrate approximately in the centre of the grid. Its density is either
ps = (1.09 £ 0.05) x 10° kgm=3 or p; = (1.81 & 0.05) x 10° kg m~3 for light and heavy
particles, respectively. All spheres used in the experiments are plastic BB pellets made of
polylactic acid (PLA) and are specially designed to be smooth and highly spherical.

We use PIV to characterise the oscillating flow field, specifically to measure the mean
flow velocity Uy far from the bed (e.g. as in figure 4) and to obtain the velocity profile near
the exposed particle (cf. figure 16). A vertical two-dimensional slice of the velocity field is
captured above the bed and around the exposed particle using a laser sheet approximately
5 mm wide, similar to the particle’s diameter. The sheet is centred on the exposed particle
and aligned with both the substrate grid and the oscillation direction, which limits out-
of-plane reflections. The laser illuminates non-fluorescent polycrystalline tracer particles
(Optimage PIV Seeding Powder with nominal diameter of 100 wm) and operates in a
double-pulsed mode, emitting two pulses separated by 5.0 ms, with pulse pairs generated
at a frequency of 15Hz. A RedLake MegaPlus II camera equipped with a Nikon 28 mm
f/2.8 lens records the experiment from the side (along the y-axis), perpendicular to the
laser sheet plane (xz) to further minimise reflections from the substrate and the mobile
sphere. Nevertheless, some reflections near the particle are unavoidable due to the finite
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thickness of the sheet. Figure 3 shows a typical snapshot, where the vertical laser sheet
illuminates the substrate at the bottom of the image, the mobile particle on top and the
tracer particles dispersed in the fluid for PIV analysis.

The PIV recordings are analysed with the image processing software PIVview2C
(v3.9.3). For each image pair, instantaneous velocity vectors are computed within
interrogation windows of 32 x 32 pixels (roughly corresponding to 3 x 3 mm,
approximately the particle radius), with 50 % overlap between adjacent interrogation
windows (Prasad 2000). Each window typically contains 10-20 tracer particles.
Figure 3(c) shows a typical frame after PIV analysis. A high-pass filter and pixel value
threshold are applied to the original image to enhance the contrast of the tracer particles.
The coloured arrows represent velocity vectors within each interrogation window.

Finally, a preferential path for the mobile particle may arise due to secondary flows or
minor substrate irregularities. While the latter contributions are minimised by using CNC-
milled components and uniform particles, factors such as imperfect levelling of the tank
and inertial effects from the piston’s motion (e.g. vortex shedding) may still contribute to
minor asymmetries in the flow. While these asymmetries are typically irrelevant, they can
influence particle motion near the threshold, where small torque differences may result in
a preferred direction of particle movement.

3.2. Measurement approach

For a given particle—fluid combination and substrate geometry, the density ratio s and
the geometrical parameter L remain constant across all experiments. The parameter H,
primarily determined by the substrate geometry (as discussed in § 2.3), is also assumed to
remain approximately constant. Three independent degrees of freedom remain (8, Res, I"),
all depending on the flow conditions. For comparison with DNS results, we also consider
the particle mobility number 1 = §ResI"/2 (see (2.21)). In each experiment, the oscillation
frequency w is fixed while gradually increasing the piston’s stroke, thereby increasing the
fluid velocity amplitude Up. The constant frequency implies that the value of § remains
constant within each experiment, but varies across different trials as the frequency is
adjusted. At each stroke value, the piston oscillates for ten periods before its peak-to-
peak amplitude is slightly increased: by 5 mm at lower amplitudes and by 1 mm near the
motion threshold. The oscillation period ranges between 1.0s and 1.8 s, corresponding to
the Stokes boundary layer thickness §5 &~ 0.58—0.78 mm, which is significantly smaller
than the 30 mm spacing between the parallel plates. This ensures that the velocity profile
above the bottom remains unaffected by the OFT’s upper boundary (van Overveld et al.
2022a). The ranges of dimensionless parameters explored near the motion threshold are
listed in table 2.

4. Numerical approach

Direct numerical simulations (DNSs) are conducted to extend the experimental results
and to determine the dynamics of the mobile particle during its early stages of motion.
The simulations are designed to closely replicate the experiments at Res & 164, using
a matching geometry with the exception that the substrate in the DNS extends across
the entire horizontal bottom plane. The incompressible Navier—Stokes equations (2.2)
are solved numerically using a second-order central-difference scheme to discretise the
spatial derivatives and a Runge—Kutta-based fractional-step method to advance in time.
At the top boundary (far above the substrate), a stress-free condition is imposed, while
periodic boundary conditions are applied in both horizontal directions. At the bottom of
the numerical domain, i.e. on the plane supporting the fixed bed, a no-slip/no-penetration

1027 A12-14


https://doi.org/10.1017/jfm.2025.11052

https://doi.org/10.1017/jfm.2025.11052 Published online by Cambridge University Press

Journal of Fluid Mechanics

Run no. ) Res Rep =Res /s r H L v Yirw
1 0.12 164 1400 0.10 0.84 0.36 0.74—1.11 1.10
2 0.12 188 1600 0.13 0.84 0.36 1.46 —
3 0.12 41 340 0.45 0.82 0.36 .11 1.1
4 0.12 164 1400 0.10—-0.11 0.84 0.36 0.99-1.11 0.99
5 0.12 188 1600 0.13 0.84 0.36 1.46 —
6 0.96 164 170 0.014—0.19 0.86 0.39 1.11-2.23 1.55
Exp. s ) Re; r v

Heavy part. 1.81 0.106—0.125 115-162  0.102—0.133 0.73—1.11

Light part. 1.09 0.097—0.130 12—-33 0.12—-0.28  0.08—0.46

Table 2. Values of the dimensionless parameters that characterise the DNS cases, alongside experimental
ranges near the motion threshold (corresponding to the symbols in figure 6). The Reynolds number based on
the particle diameter is denoted by Rep. The final column reports the threshold value of the mobility number
Y. for the onset of wiggling motion. In the DNS, the density ratio is fixed at s = 1.813 and the value of ¥ is
explicitly prescribed. In the experiments, ¥ is not an independent control parameter but follows from the other
dimensionless parameters.

condition is enforced. The no-slip/no-penetration boundary conditions at the fluid—solid
interfaces of both the fixed and mobile particles are enforced using an immersed boundary
method (IBM) developed for particulate flows by Uhlmann (2005). This method employs a
direct forcing approach, adding a localised volume force term to the momentum equations.
The additional forcing term is explicitly computed at each time step as a function of
the particle position and velocity, providing the stress distribution at each particle’s
surface. The dynamics of the mobile particle are determined by Newton’s second law
for its translation and by Euler’s second law for its rigid-body rotation, according to (2.5)
and (2.8), respectively. The hydrodynamic forces and torques result from the zeroth and
first angular moments of the stresses, respectively, integrated over the particle surface.
The contribution of inter-particle contacts is given by the sum of the contact forces
between a considered particle and its neighbours, computed using a discrete element
method (DEM) similar to that proposed by Kidanemariam & Uhlmann (2014). The
present approach, which is described in Appendix B, accounts for inter-particle static
friction, simultaneously incorporating elastic, inelastic and frictional contributions to the
tangential force at each contact point. Correct evaluation of the inter-particle contact force
is necessary for describing the early stages of particle motion because the mobile particle
may either roll or slide. Tables 2 and 3 show the values of the parameters characterising
the flow conditions and the computational domain, respectively. The density ratio is fixed
at s = 1.813 in all simulations, matching experiments with heavier particles. The lighter
particles, with density ratios closer to unity, could not be accurately simulated due to
stability limitations of the numerical approach.

5. Results and discussion
5.1. Description of the early stages of particle motion

The flow velocity within the OFT is averaged over the PIV measurement area (e.g. as
shown in figure 3), excluding regions near the top plate, the substrate and the exposed
particle to minimise boundary effects. This yields a representative, spatially averaged
velocity for the undisturbed flow field. Figure 4(a) shows the space-averaged flow velocity
(blue curve), oscillating harmonically with an amplitude Uy = (0.23 £ 0.01) m s—1, where
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Run no. ) Ay/b Ay /8 A/b Ny my n; D/Ax wAt

1-3 0.12 201.9 67.3 50.5 768 256 192 31 4x10™*
4-5 0.12 201.9 67.3 50.5 1536 512 384 62 4x10*
6 0.96 25.2 8.4 25.2 384 128 384 16 2x10~*

Table 3. Simulation domain parameters, where A represents the size of the computational domain, while n
indicates the number of grid points used to discretise the domain along the corresponding axis. Ax and At
denote the grid spacing and time step used in the simulations, respectively.

(@)

u (ms)

Figure 4. (a) Temporal evolution of the space-averaged flow velocity above the substrate, # (blue), and the
(normalised) particle position, x; (red), over approximately three oscillation periods, obtained from the OFT
experiments (s = 1.81, § = 0.11, Res ~ 150, I = 0.13, ¥ = 1.1). The velocity amplitude is gradually ramped
up to identify the conditions for incipient motion. The complementary DNS data (black) show the trajectory
of a rolling particle just above the motion threshold for run 4 (¢ = 1.1). Roman numerals mark every eight
frames, corresponding to the snapshots in panel (b). The inset shows the particle motion and velocity over a
longer duration, with the highlighted region corresponding to the main plot.

the error follows from PIV correlations and subsequent averaging procedure, for § =0.11
and s = 1.81. Figure 4(b) shows some frames of the particle motion.

The particle’s horizontal centre position is determined by filtering out tracers and
identifying the median position of pixels with intensities above half the maximum value,
restricted to the visible portion of the particle above the substrate. This method allows
us to accurately and consistently resolve the particle’s centre position to within a few
percent of its diameter. The red curve in figure 4(a) shows the particle position over
time under conditions near the motion threshold. The DNS results (black curve) closely
match the experimental results, exhibiting similar motion characteristics, including the
phase of motion initiation, typical excursion lengths and movement directions. This
agreement suggests that, in the absence of significant velocity fluctuations in the ambient
flow, deterministic predictions of the incipient particle motion are possible. Quantitative
differences arise due to the system’s sensitivity to small perturbations near the motion
threshold, where minor positional variations alter the particle’s exposure to the flow,
leading to significant long-term deviations in its trajectory, such as settling into a different
pocket in the substrate.

For the parameter values considered in the experiments, the particle motion was
observed to begin around the maximum velocity phases (frames I, IV, IX). In some
cases, the particle rolled without escaping its initial pocket (frame II), a behaviour
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Figure 5. Consecutive snapshots from an experiment with s =1.81, § & 0.12, Res ~ 190 and I" ~0.13,
showing that the particle (with black dots drawn on its surface) rolls when it moves over the substrate (dark
grey). The brightness has been enhanced to improve substrate visibility, and the time interval between snapshots
is 0.05s.

we refer to as ‘wiggling motion’. In others, sustained motion continued until the flow
reversal (frame V), after which the particle rolled across multiple pockets in the opposite
direction (frames VI, VII), and occasionally overshot (frames V, VII, X) before settling.
The range of flow velocities (captured in the forcing parameters Res, I” and ) for
which wiggling motion is observed is relatively narrow, as even a slight increase of the
hydrodynamic torque intensity or duration above the critical threshold can cause the
particle to roll over the substrate. As the particle leaves its initial position and falls into
one of the neighbouring pockets, the effects of the nonlinearities associated with the inter-
particle contacts reflect on the hydrodynamic force, which becomes impossible to predict
deterministically. Therefore, from now on, only the early stages of particle motion are
considered.

While figure 4(b) provides a detailed view of the particle translation, it does not resolve
its rotation due to the laser sheet illumination. Therefore, supplementary experiments are
conducted with the laser turned off, as shown in figure 5. These snapshots support that
the particle rotates throughout its motion, also when it moves between the pockets of
the substrate, which is consistent with Agudo et al.’s (2017) experiments in steady flow
conditions, where rolling always characterised the initiation of motion.

To confirm the deterministic nature of the motion threshold and wiggling, figure 6
shows the streamwise centre position of a wiggling particle over ten oscillation cycles,
projected onto two cycles for clarity. The particle’s centre position is resolved to within a
few percent of its diameter, which is sufficient to reliably detect the wiggling motion and
demonstrate its repeatability. When the particle comes to rest before the flow reverses, its
motion remains highly repeatable. This is reflected in the tight clustering of red dots and
minimal fluctuations in the mean position, which also serve as the basis for estimating
the phases of motion onset and cessation in § 5.3. In contrast, if the particle has not
settled in time, it remains exposed after flow reversal and is likely to remain displaced
from its equilibrium position in the subsequent half-cycle, resulting in a trajectory that
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Figure 6. Particle position during ten consecutive oscillation cycles with constant flow amplitude, projected
onto two oscillation cycles, from an experiment with s =1.09 and § =0.127. The spatially averaged flow
velocity (blue dots) and its sinusoidal fit (blue curve) are shown alongside the exposed particle position (red
dots) and its mean trajectory over the ten cycles (black curve).

is not exactly predictable. Additionally, a slight asymmetry in the set-up, as discussed in
§ 3, leads to asymmetric wiggling, with motion predominantly directed towards one side.
While this asymmetry does not notably affect the overall repeatability of the motion, it
introduces a small directional preference in the particle’s trajectory.

To further quantitatively investigate the nature of the particle motion, DNS run 4
replicates the experimental conditions, with three main objectives: (i) examine contact-
point dynamics to verify that the mobile particle does not slide; (ii) characterise the local
flow field around the mobile particle and (iii) quantify the hydrodynamic force acting on
the particle.

Topic et al. (2022) showed that a spherical particle on a rough substrate may either
roll, maintaining continuous contact with the substrate, or slide, if the tangential force at
the contact point exceeds the Coulomb static friction threshold. In the former case, the
minimum torque required to initiate rotation can be predicted based on the hydrodynamic
torque, as described in § 2.3. In the latter case, including sliding, the particle rotation angle
no longer matches the angular displacement of its centre, invalidating the model described
in §2.3.

Figure 7(a—c) presents the contact forces (split into normal and tangential components)
at the four contact points of the mobile particle during the early motion stages. The
three simulations have constant parameters Res = 164 and § = 0.12, while the mobility
number v increases, corresponding to a stationary case (¥ = 0.99, panels a and d), a case
with wiggling motion (¥ = 1.1, panels b and e) and a case where the particle rolls over
the substrate ( = 1.46, panels ¢ and f).

Initially, the contact forces at the four contact points can be distinguished. As the
flow accelerates from left to right, the magnitude of the contact force at points j =3, 4
increase, while those at j =1, 2 rapidly diminish. For sufficiently large hydrodynamic
torque, these forces even vanish and the particle starts to roll (cf. figure 7b,c). Otherwise,
when the hydrodynamic force is not strong enough to initiate rolling, the particle remains
within its original pocket and the contact forces at j =1, 2 recover their initial values
(cf. figure 7a,d). Notably, the difference between the normal and tangential components of
the contact force is set by the static friction coefficient.
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Figure 7. Force and motion characteristics for three representative cases from run 4 (with Res =164 and
8 =0.12): a stationary particle at ¢ =0.99 (I" =0.10, panels a and d), a wiggling particle at ¢ =1.1
(I' =0.11, panels b and ¢) and a rolling particle at y = 1.46 (I" =0.15, panels ¢ and f). (a,b,c) Normal (Fc,
black) and tangential (F¢, red) components of the contact force between the mobile (red) particle and particles
j=#1(0), #2 (v), #3 (O), #4 (1). Forces are normalised by the particle’s submerged weight (cf. (2.12)). The
inset in panel (d) defines the contact point indices. (d,e, f) Time evolution of the mobile particle’s wall-normal
centre position z; (black) and spanwise angular velocity §2y (red). In panel (e), the dashed black curve indicates
the velocity far above the substrate, while the dashed red curve represents the particle’s angular acceleration
until it comes to rest in a pocket. Panel ( f) includes an inset showing a longer time interval.

Importantly, no sliding is observed at the contact points, consistent with the
experimental observations. This is most clearly reflected in the smooth temporal evolution
of the angular velocity in figure 7(f), which shows the particle rolling continuously from
one pocket to the next. These results support the conclusion that the motion threshold is
governed by a torque balance, as outlined in § 2.3.

The hydrodynamic force acting on the mobile particle is governed by a combination
of viscous and advective effects, depending on the surrounding flow regime and the
development of a wake downstream. As the maximum particle Reynolds number Rep =
Res /5 (see table 2) increases, different flow behaviours emerge that may significantly
influence the particle dynamics. In the viscous-dominated regime, the drag force scales
linearly with the ambient flow velocity, as is the case in run 3 (Res =41, § =0.12,
I' =0.45), where the flow remains laminar and the boundary layers developing on
both the substrate and the mobile particle stay attached throughout the oscillation cycle
(cf. figure 8a,b). As inertial effects become more pronounced, such as in run 6 (Res = 164,
8 =0.96, I' =0.019), the flow separates downstream of the mobile particle, resulting in
the formation of a wake that, while not strictly steady due to the transient nature of the
oscillating flow, remains coherent without shedding vortices (cf. figures 8¢,d and 9a). In
this case, the particle size is similar to the Stokes boundary layer thickness (§ ~ 1), and
the vicinity of the bottom significantly affects the resulting hydrodynamic force acting
on the particle. At higher particle Reynolds numbers Rep, advective effects dominate.
In run 4 (Res =164, § =0.12, I" =0.10), the wake becomes unsteady, leading to a
transitional regime where vortices are randomly shed downstream of the mobile particle
(cf. figures 8e, f and 9b). To account for these advective effects in the torque balance model
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Figure 8. Contour lines of the spanwise vorticity component in the vertical symmetry plane crossing the centre
of the exposed particle (yellow) for: (a,b) run 3 (§ =0.12, Res =41, Rep =340, I’ =0.45, ¢ = 1.1); (¢,d) run
6 (6 =0.96, Res =164, Rep =170, I' =0.019, ¢y = 1.5) and (e, f) run 4 (6 =0.12, Res = 164, Rep = 1400,
I’ =0.10, ¥ = 0.98). The snapshots correspond to the phases of (a,c,e) flow reversal and (b,d, f) maximum
velocity far above the substrate. Contours represent positive (black) and negative (red) values of vorticity
normalised by the oscillation frequency, with contour levels spaced by (a,b) 0.05, (¢,d) 0.4 and (e, f) 0.3.
The zero contours are omitted for clarity.

Figure 9. Vortex structures visualised by isosurfaces of 1, =—0.3 Ug /82, where A, is the second-largest
eigenvalue of a tensor derived from the velocity gradient, used to distinguish vortical regions from purely
straining ones (Jeong & Hussain 1995). The visualisations show the flow shortly before the black particle starts
to roll, for (@) run 6 (§ =0.96, Res = 164, ¥ = 1.53, I' =0.019) and (b) run 4 (§ =0.12, Res = 164, y = 1.1,
I’ =0.11). These runs illustrate two distinct wake regimes despite having the same value of Res: (a) a coherent
wake without vortex shedding (mean flow directed leftward) and () a transitional regime with unsteady wake
dynamics and vortex shedding (mean flow directed rightward).

described in § 2 and Appendix A, the Schiller—Naumann correction (A13) is applied to the
hydrodynamic drag.

5.2. Characterisation of the parameter space

The onset and modality of the early particle motion (whether the particle remains
stationary, wiggles within its pocket or rolls over the substrate) are predicted for each
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Figure 10. Phase space overview of particle behaviour as a function of §, Res and . Crosses and squares
mark wiggling and rolling cases, respectively, while circles indicate cases just below the motion threshold.
Experimental results are shown in blue (s =1.09) and red (s =1.81), whereas black symbols represent
simulation results for small (§ ~ 0.96, open symbols) and large (8 ~ 0.12, filled symbols) particles. Error bars
indicate measurement uncertainties. Horizontal error bars for § are smaller than the symbol sizes and thus not
visible. The uncertainty in Re; is mainly due to the velocity measurement uncertainty, while the error in v is
additionally due to the uncertainty in the density ratio s, which particularly amplifies the upper bound of v for
the light particles (blue).

experimental and numerical case using the torque-balance criterion (2.31) presented
in §2 and fully derived in Appendix A. First, figure 10 maps these cases in the
parameter space (V, 8, Res). In the experiments, the oscillation frequency is held constant
while the velocity amplitude is gradually increased, such that both Res and i increase
simultaneously (figure 10b). Circles indicate the cases where the particle is never set into
motion throughout the oscillation cycle, while crosses and squares mark wiggling and
rolling motion, respectively. In the experiments, the values of 1 separating the threshold
conditions between stationary, wiggling and rolling are approximately equispaced by
Ay =0.1.

For the numerical simulations, a series of independent runs is performed at increasing
values of v, while keeping the same values of the other parameters indicated in table 2.
We find good agreement between the numerical and experimental results at s = 1.81, as
shown in figure 10. For these conditions, the motion threshold is estimated at ¥ ~ 1.0 for
wiggling and v ~ 1.1 for rolling. Wiggling thus occurs within a narrow range of values of
¥ ~ 1.0—1.1, indicating that the transition from stationary to rolling is relatively sensitive
to small changes in flow conditions. This behaviour was already observed in figure 4.
It is worth stressing that the wiggling motion is peculiar to oscillatory flow and has no
equivalent in steady flow conditions.

For lighter particles (s = 1.09), the motion threshold is reached at smaller values of
Res at similar values of §, which corresponds to weaker hydrodynamic torque. The
corresponding ¥ -values for wiggling and rolling motion are approximately four times
lower than those of the denser particles. The data further show a significant scatter,
particularly for the light particles. This is partly due to their increased sensitivity to small
velocity fluctuations near the motion threshold, which can arise from minor substrate
irregularities, flow asymmetries or transient effects during velocity ramp-up. As a result,
the measured velocity Up at the onset of motion has a larger uncertainty. Moreover,
the upper bound of the uncertainty in i is amplified for light particles because ¥ is
inversely proportional to (s —1). As s approaches unity (i.e. as the movable particle
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Figure 11. Threshold parameter 7" as a function of (a) ¥, (b) § and (c) Res, with circles, crosses and squares
as in figure 10. Experimental results are shown in red for s = 1.81, and in blue for s = 1.09 (dark symbols) and
s = 1.04 (light symbols). The latter corresponds to a slight modification of s to the lower bound of measurement
uncertainty, highlighting the model’s sensitivity to lighter particles, due to the scaling with s — 1. Simulation
results are shown in black, with open symbols for small particles (§ ~0.96) and filled symbols for large
particles (8§ ~ 0.12). The vertical error bars represent uncertainty in 7", primarily due to velocity measurement
errors (~5 %) for dense particles (red), and additionally due to uncertainty in the density ratio s for light
particles (blue), which particularly amplifies the upper bounds. Error bars for 1 and Re; are omitted for clarity
but are provided in figure 10.

becomes nearly neutrally buoyant), the stabilising torque due to weight vanishes and
diverges. In our experiments, this means that even small variations in s of the order of
the measurement precision (£0.05) can lead to significant discrepancies in . While
Y reflects the characteristic pressure amplitude, it does not solely determine the motion
threshold. As shown in figure 10(b), the threshold occurs at different yr-values depending
on the flow regime, e.g. ¥ ~0.25 for Res ~ 10—40 and i ~ 1.0 for Res ~ 150. This
demonstrates that the critical value of ¥ is not universal for the cases considered here,
but instead varies with other dimensionless parameters.

Figure 11 presents the experimental and numerical maximum values of |7°| attained
during the oscillation cycle and calculated using (2.28), and compares them to the
theoretical motion threshold of |7'|=1. The figure shows good agreement between
experiments, simulations and the theoretical threshold. For dense particles (red), the
obtained values of |7'| for both wiggling and rolling regimes deviate by only 2 % and
4 %, respectively, from the predicted threshold at unity. These deviations fall well within
the overall uncertainty in predicted i (approximately 10 %). Notably, the numerically
determined threshold for wiggling motion is |7 | = 1.02, which closely matches both the
experimental data and the model prediction. Figure 11 further highlights that 7" is highly
sensitive to small variations in the density ratio s, particularly as it approaches unity. Even
a slight correction of the experimental value from s = 1.09 to s = 1.04, within the bounds
of measurement uncertainty, yields a significant shift in 7" in the diagram and substantially
improves the prediction of incipient motion for these lighter particles. As with y, the
increased scatter for the light particles is further amplified by their sensitivity to velocity
fluctuations near the motion threshold.

The accuracy of our model is further confirmed by comparing the transient values of 7
over multiple oscillation cycles and identifying the instants when the particle motion
starts, as shown in figure 12. Notably, in simulations where the maximum value of 7
exceeds unity, the mobile particle is consistently observed to roll. A key advantage of the
T -criterion is that it predicts the onset of wiggling or rolling motion using a threshold
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Figure 12. Computed values of 7" for: (a) run 6 at ¥ = 1.53, 1.58, 1.67, 2.23; (b) run 3 at ¢y = 1.11 and
(c) runs 4—5 at  =0.99, 1.11. Black and red curves correspond to simulations in which the mobile particle is
static or starts to roll, respectively. The black triangles in panel (a) mark the phases of incipient particle motion
observed in the DNS, which intercept the corresponding model prediction (red curve). Note that the red curve
for ¥ = 1.58 nearly overlaps with the black curve for ¥ = 1.53.

value based on mechanistic understanding, while also determining the phase within each
half-cycle at which the motion starts.

5.3. Phase information

The phases of motion initiation and cessation are determined from mean particle
trajectories near the motion threshold, e.g. as shown in figure 6. The resulting phase
difference Ar in figure 13 exhibits a linear correlation with /s/Kc, similar to that of
the time to crest T predicted by (2.33), which is particularly evident for light particles.
Unlike in the calculation of 7', the results in figure 13 are much less sensitive to small
variations in s, as the scaling here involves s rather than s — 1. For all the present
simulations, the dimensionless particle angular acceleration remained of order one (e.g.
see figure 7e for run 4), leading to an equality for the time to crest T as given by (2.33).
To further investigate the phase of motion initiation, we analyse cases well above
the motion threshold by increasing the value of ¥ in the DNS, as shown in figure 14.
The experimental data for dense particles and the DNS results from run 6 (triangles)
complement each other, with our model accurately predicting the initiation time observed
in the DNS. As ¢ increases and the condition |7"| > 1 is satisfied for a longer duration

1027 A12-23


https://doi.org/10.1017/jfm.2025.11052

https://doi.org/10.1017/jfm.2025.11052 Published online by Cambridge University Press

T.J.J.M. van Overveld, M. Mazzuoli, M. Uhlmann, H.J.H. Clercx and M. Duran-Matute

1.0 =
>
0.9 7 0 93// 3
% ’gz
0.8 7 & =
At o PR
' -
0.7 7 4 ’53-’
s a
0.6 4 . x’/ %
,/
’,,
05w T T T T T T T
0 0.2 0.4 0.6 0.8 1.0 1.2 14
(s/Ko)"3

Figure 13. Duration of particle motion within each half-cycle for conditions just above the motion threshold.
Red and blue symbols correspond to experiments with relatively heavy (s = 1.81) and light (s = 1.09) particles,
respectively. Crosses and squares indicate wiggling and rolling motion, respectively. The dashed line shows a
linear fit through the data. Horizontal error bars reflect measurement uncertainty in the velocity amplitude and
density ratio, while vertical error bars indicate the precision in phase measurements.
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Figure 14. (a) Initiation time #;,, at which | 7| exceeds unity and the particle begins to move. DNS results (filled
symbols), experimental results (filled grey symbols) and model predictions (open symbols) are compared for
parameter values corresponding to run 4 (red squares), run 3 (blue circles) and run 6 (black triangles). The
inset shows the initiation time projected onto part of the oscillation cycle centred around the flow reversal,
highlighting that for some cases, initiation occurs at flow reversal (blue circles) or even before (leftmost black
triangles). The experimental measurement uncertainties for ¥ and ¢, are previously shown in figures 10 and
13, respectively. () Modelled time interval during which |7'| > 1. The threshold values separating wiggling
(filled symbols) from rolling particles (open symbols) are indicated by the horizontal red and black dashed
lines, as predicted by the time to crest scaling (2.33) for runs 4 and 6, respectively.

within the oscillation cycle, the onset of motion shifts to earlier phases. Remarkably, for
sufficiently strong forcing, motion begins even before the reversal of the flow far above the
substrate. This is attributed to viscous contributions within the oscillatory boundary layer,
which induce a phase lead of up to 7 /2 in the near-bed velocity relative to the bulk flow.
Since the boundary layer is relatively thick in this case (6 =0.96), this phase lead has a
pronounced effect on the phase of the hydrodynamic force. For larger particles, but still in
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laminar flow conditions (run 3, blue circles), motion initiation in the DNS occurs precisely
at the flow reversal, aligning with our model predictions.

Comparing the type of particle motion with the duration Afjy|~ | for which |7'| > 1
(figure 14b), we find that this interval generally exceeds the characteristic time scale 7 from
(2.33) which separates the wiggling and rolling regimes. The only case where wiggling is
observed corresponds to Afjy|->1 < T, supporting the relevance of 7 as the critical time
scale for a particle to roll out of a pocket in the bed. Additionally, the sharp increase
in Atjy|~1 with particle mobility (i.e. increasing v in figure 14b) explains the relatively
abrupt transition from static to rolling particles, with only a narrow regime of wiggling in
between, as previously observed in figure 10. Finally, the scaling v ~ § % predicts that
T asymptotically vanishes for small particles (6 >> 1), which is also the reason why it is
challenging to observe the wiggling motion in the case of small particles (run 6, black
triangles in figure 145). The wiggling motion state is thus typically characteristic of large
particles (e.g. run 3, red squares in figure 14b).

For these cases with relatively large particles or fast flow reversal (small §),
distinguishing between wiggling and rolling requires accounting for the duration over
which the force exceeds the threshold (i.e. Afjy|~1). This suggests that combining 7" with
a characteristic time scale into an angular impulse-based criterion could yield predictive
value even during early stages of particle motion. This approach aligns with the impulse-
based framework of Diplas et al. (2008) and Valyrakis et al. (2010), where the product of
force and duration is used as a predictor for particle dislodgement in turbulent conditions.

5.4. Comparison with other criteria

The method presented in this study enables the deterministic prediction of the initiation
of rolling motion for a single sphere exposed to an oscillatory flow. This is conceptually
different from predicting the incipient motion of the surface layer of a horizontal sediment
layer. In the latter case, the arrangement of the particles in the substrate, as well as
the disturbance in the flow due to neighbouring mobile particles and their contacts,
introduce randomness and additional resistance. Hence, criteria based on the balance of
horizontal forces acting on the mobile layer, such as the Shields criterion (balancing drag
and bottom friction), are expected to fail to predict the incipient motion of individual
sediment particles. Moreover, for steady flows, the torque balance criterion (2.28) can be
reformulated as a critical Shields parameter by expressing it in terms of a critical particle
density and substituting this into the general Shields expression (2.22), as shown by Agudo
et al. (2017). However, this approach is not practical for unsteady flows, where it leads to
both the criterion and the Shields parameter becoming time-dependent, complicating their
interpretation and application. Only in the limit of § 3> 1 and Rep < 1, our model reduces
to a formulation closely aligned with the Shields criterion, as derived for uniform shear
flows by Agudo et al. (2017). In an OBL, the imposed oscillatory pressure gradient by
itself can lead to the initiation of particle motion, making the Shields parameter 6, as
defined in (2.22), incomplete since it only accounts for the contribution of drag. Figure 15
compares incipient motion predictions based on 6 and 7" (as computed from (2.28)) for
runs 6 and 4. The critical Shields parameter 6., was estimated using the ‘lower-limit’
formula obtained by Paphitis (2001), based on experimental unidirectional flow data.
Paphitis (2001) adopted a statistical approach to identify the critical conditions for the
transport of quartz particles and proposed lower- and upper-limit curves that enveloped a
large heterogeneous dataset. In the present work, we compare with the ‘lower-limit’ value
because our substrate geometry, a closely packed square arrangement, supports early onset
of particle motion with respect to other geometries. While both quantities relate to the
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Figure 15. Time evolution of 7" (red curve) as computed from (2.28) and the Shields parameter 6 (black curve)
for cases just above the motion threshold in: () run 6 and (b) run 4. The horizontal dashed lines indicate the
respective critical values, where 6., is estimated using the ‘lower-limit” formula proposed by Paphitis (2001).

onset of motion, their time evolution differs significantly, especially for run 4, making
it difficult to infer the exact phase of incipient rolling motion directly from 6. More
importantly, the threshold 6., substantially overestimates the actual onset of motion by
up to a factor of five, as indicated by the difference between the black curve and the black
dashed threshold line in figure 15. Thus, it mispredicts the actual conditions for particle
transport in unsteady flows. Beyond the Shields parameter, Frank et al. (2015) proposed to
consider also the Sleath parameter, which normalises the force due to the imposed pressure
gradient by the particle weight, to predict incipient sediment transport within an OBL with
relatively small §. However, none of the models proposed so far accounted for the variation
in the velocity distribution during the oscillation cycle and the consequent effects on the
torque. The present mechanistic approach additionally eliminates the need to determine
empirical threshold values for different criteria, which typically depend on flow conditions.

6. Concluding remarks

The threshold and characteristics of particle motion on top of a structured substrate
driven by hydrodynamics have been studied, focusing on a uniform monolayer of spheres
arranged in a square grid with a single mobile particle on top. While prior results have
primarily focused on steady unidirectional flows, this work concentrates on the added
complexity introduced by oscillatory flows. The problem is subsequently governed by an
additional degree of freedom: the oscillation frequency introduces a time scale that enters
the problem through the frequency-dependent viscous length scale §, corresponding to the
normalised thickness of the oscillatory boundary layer.

Our model for the motion threshold, based on a balance of torques, provides excellent
quantitative agreement with both our experimental and numerical data, with time-averaged
relative errors consistently of the order of a few per cent (see figure 18). The model
effectively captures the threshold differences due to variations in particle size relative
to the viscous length scale, which sets the relative importance of the pressure gradient
and hydrodynamic drag. Notably, the model performs well despite relying solely on
theoretical velocity profiles and derived forces in the streamwise direction, with only
two tuneable constants. Our mechanistic approach provides an accurate estimate of the
motion threshold without requiring consideration of the shear stress at the substrate,
particularly for relatively dense particles. In these cases, the observed values of 7" deviate
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by only 2 %—4 % (for wiggling and rolling, respectively) from the theoretically predicted
threshold, which is well within the experimental uncertainty (~10 %). In other words, it
replaces the need for empirically determined threshold values at different flow conditions
with a criterion based on the mechanistic balance of stabilising and destabilising torques.

Above the threshold, the particle motion in oscillatory flows is richer than in steady
flows, as explored by Agudo & Wierschem (2012) and Topic ef al. (2022). In the steady
case, only the motion threshold itself is relevant: once exceeded, a positive feedback
loop between hydrodynamic drag and exposure to the flow starts (Agudo et al. 2017).
In contrast, the additional degree of freedom in the oscillatory case adds a dynamic
complexity to the particle behaviour, emerging as a competition between the particle
inertia as it rolls towards a neighbouring pocket and the flow reversal time. When the
reversal occurs too quickly, the particle may move but fail to reach the next pocket,
resulting in a wiggling state that is not observed in the steady case.

Our findings suggest that the present approach can be extended to various flow and
substrate conditions, e.g. higher Reynolds numbers, and even to flows that are not strictly
laminar but in the transitional regime, provided the relevant length scale characterising
the boundary layer can be accurately predicted. In such cases, the pressure gradient has a
dominant contribution to the destabilising torque, for which the model accurately accounts.
However, the predictive power reaches its limits when hydrodynamic fluctuations become
significant, such as those induced by chaotic vortex shedding in turbulent conditions.
These fluctuations introduce variability in the force and torque acting on the particle,
making its motion inherently unpredictable.

Finally, our work provides extensive opportunities to further explore incipient particle
motion in unsteady flows and extend our modelling approach. The effect of bottom
geometry warrants further study: while its role has been examined in unidirectional flows
(Agudo & Wierschem 2012; Agudo et al. 2017; Topic et al. 2019), its effect on particle
dynamics in oscillatory flows remains largely unexplored. An especially intriguing aspect
is the potential for cross-stream particle transport relevant to the mixing and dispersion
processes of both sediment grains and microplastics. The combination of symmetrical
forcing, which on average eliminates net streamwise transport, and anisotropy in the
substrate geometry could lead to lateral transport and particle—particle interactions. This
mechanism may contribute to the formation of sediment bedforms, such as ripples,
alongside other self-organisation processes like steady streaming flows (Klotsa et al. 2009;
Mazzuoli et al. 2016; van Overveld et al. 2023).
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Appendix A. Analytical model for the torque balance

This appendix presents the full derivation of the analytical model describing the torque
balance on the mobile spherical particle, evaluated about its contact points. To avoid
ambiguity, all quantities are expressed in dimensional form. The model distinguishes
between stabilising and destabilising contributions. The onset of particle motion is
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assessed by evaluating the ratio of these contributions, yielding a criterion for incipient
rolling. The destabilising torques are associated hydrodynamic forces such as drag, lift,
added mass and the imposed pressure gradient, the latter two being related to the flow
unsteadiness. The stabilising torque is primarily due to the submerged weight of the
particle, which helps preserve its stable position.

A.l. Drag and lift force models

First, we analyse the hydrodynamic drag and lift forces acting on the mobile particle, which
are expressed as

2p+D
FD=/ ('H‘-n)-ede=7rD/ fr dz, (A1)
S 2b
xc+DJ/2
FL=/ (T-n)-eZdS=71D/ fz dx, (A2)
S xc—D/2

where T is the fluid stress tensor, x. the streamwise coordinate of the particle centre
and f, (f;) the streamwise (wall-normal) component of the hydrodynamic stress acting
on vertical (horizontal) strips of infinitesimal thickness dz (dx), respectively. We further
define the nth moment u, of the ambient streamwise velocity (u)(z) relative to the
elevation z = zp of the contact point, as

1 p+D
un:—/ (z —zp)"(u) dz. (A3)
D .

Assuming fy is proportional to the local undisturbed velocity, the drag force and its
torque about z = zp follow as

2+D
Fp ocer/ (u) dz = 7 D?uy, (Ad)
b
Z[7+D
TDoan/ (z — zp)(u) dz =7 D*u;, (A5)
b
where define the drag lever arm L as
T
Lp=-2 =" (A6)
Fp ug

In the case of a uniform ambient flow, the non-uniformity of f; over the particle height
is solely due to the varying orientation (altitude angle) of the local surface element, since
the strip surface remains constant at w Ddz. However, in more complex flows, particularly
if convective transport dominates (e.g. at moderate-to-high Reynolds numbers or turbulent
wake conditions), the actual value of L p may deviate from (A6).

Similarly, the lift lever arm L is defined by

1L

Ly =—, A7
L=F, (A7)
where the lift torque about the particle centre is given by
Xe+D/2
TLGDf f:(x —xp) dx. (A8)
xc—D/2
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For a spherical particle resting on a flat wall (zp = z5 =0) exposed to a linear shear
flow, the zeroth velocity moment reads

1 b Ue
uo= ; ZBZdz=uc, (A9)

where u. denotes the ambient flow velocity at the particle centre elevation. This quantity
plays a central role in the model, as it allows generalisation to unsteady flow conditions
beyond the canonical oscillatory boundary layer (OBL). In the low-Reynolds-number
limit, the drag force reduces to Stokes’ drag,

Fp =3mprvugD =3mwprvucD, (A10)

which is consistent with the assumption (A4). The corresponding lever arm equals Lp =
(2/3)D.

For more complex flow conditions, where u( deviates from u., empirical corrections
are introduced. Following Agudo et al. (2017) for a particle resting on a rough, structured
substrate, corrections account for: (i) the effective elevation of the particle (zp — zp)
and (ii) the shielding effect of the substrate (e.g. related to zg — z). The normalised
geometrical parameters H =h/D and L =1[/D, from (2.4) and (2.10), capture these
effects. Additionally, a correction coefficient C’ incorporates effects due to finite-size and
nonlinear shear flows, such that the drag force is modified to

Fp =3nC'ppvugD, (A11)
where C’ depends on the instantaneous particle Reynolds number

u.D
Reg (1) =

(A12)

and the relative boundary layer thickness 8. For Reg < 1000, the Schiller—-Naumann
correction (Schiller 1933) is used:

C' =14 0.15R%%7. (A13)
For § > 1, the correction proposed by Zeng et al. (2009) applies for Re; < 200:
C'=1.7005(1 4 0.104Re)- ™). (Al4)

In the present simulations, (A13) is applied for cases with § =0.12 (runs 1-5) and (A14)
for run 6 (see table 2). The Schiller-Naumann correction generally holds for uniform
flows and is not strictly applicable in shear-dominated flows. However, for the cases where
(A13) is used, the small value of § = 0.12 implies that the velocity profile experienced by
the mobile particle is nearly uniform, making the correction a reasonable approximation.
Near-wall effects under such conditions (small §) can be compared with the case of a
particle moving parallel to a wall in a quiescent fluid (Zeng et al. 2005, 2009), where the
drag coefficient diverges as the particle nears the wall, while the Reynolds dependence
diminishes. Since it is not directly applicable to our system due to the more complex
bottom geometry and flow conditions, we will explicitly validate the modelled drag force
against the present DNS results.

We now turn to the lift force. For small particles, we adopt the Saffman lift force
expression (Saffman 1965)

D
u?, (A15)

F. =3.22C"Dp
M\ 2luc]
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where C” =1 for § 2 1. For Re; > 40, we use the correction proposed by McLaughlin
(1991) and Mei (1992):

C" =0.0741/Re;. (A16)

To prevent overprediction at high values of Re,, we cap C” at the Saffman value (C"=1)
when Reg 2 1100, namely when advective effects on the particle dynamics became
dominant (see Appendix A.2). A similar cut-off was also predicted by Schiller (1933) for
drag at high Re; in steady flow conditions, though it is not observed here for the OBL for
the parameter values presently considered.

Since the lift force distribution f,(x) along the streamwise coordinate is not directly
known, the lift lever arm L is estimated from our DNS results reported in the following
section. Its validity is thus specific to the OBL under conditions close to ours.

A.2. Torque balance in an oscillatory boundary layer

We now examine the torque acting on a particle exposed to OBL flow, in the configuration
shown in figure 1.

Assuming that the mean velocity (u) is reasonably approximated by the Stokes solution
(2.3), referenced from the effective zero level zg, each torque contribution can be expressed
in closed form using the previously introduced force models. Figure 16 supports this
assumption, showing good agreement between DNS velocity profiles and the vertically
shifted Stokes solution, particularly for low to moderate Res. At higher values Rep =
Res/D (e.g. run 4), deviations remain moderate and can be compensated by adjusting
the effective viscous length scale. Corrections for such advective effects associated with
bottom roughness at moderate Reynolds numbers are further discussed in Appendix A.3.

The instantaneous particle Reynolds number is now given by

Res u Re
Rey (1) = 757; - TS [sin(t) — ¢~ sin (t — 0], (A17)
where ¢ = (H — 1/2) /6 denotes the dimensionless elevation of the particle centre above
the zero level of the velocity profile zg.
The zeroth moment of the velocity across the particle height is

uo(t, H, 8) 1 w+D 1 w+D H
= udz=—— udz=Hg|owt, — ), (A18)
Uo toD J,, uoD J,, 8

with H = (zp + D — z0)/D the dimensionless exposure height of the particle. The
function g(wt, H/3), plotted in figure 17(b), quantifies the effect of shielding by the
substrate and is defined as

g (a)t, ?) — sin(wr) — ?% |:sin (a)t _ %) — e Hl gin (a)t _ ? _ %)} (A19)

In the limit H/§ > 1 (large particle), ug/ Uy ~ H sin(wt), reflecting a quasi-uniform
profile. In contrast, for H/§ <« 1 (small particle), the expression reduces to uy/Upy ~
(v2/2)(H?/8) sin(wt + 7 /4), which is maximum during the phases of maximum bottom
shear stress. The latter case further shows the torque being dominated by bottom shear
stress rather than imposed pressure gradient.

With the drag force (A11) now reading

H
Fp=3nC'ppvUpDH g (a)t, K)’ (A20)
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1.5

(z*—z)/D*

Figure 16. Comparison of streamwise velocity profiles at different phases of the oscillation cycle from DNS
results for: (a) run 6 (6 =0.96, Res = 164); (b) run 3 (§ =0.12, Res =41) and (¢) run 4 (§ = 0.12, Res = 164).
All velocity profiles are plotted relative to the virtual wall elevation zo (black curves) and compared with the
analytical Stokes solution shifted vertically by zg (red curves). Black dashed lines mark the crest elevation of the
fixed substrate particles, located at z = zg 4+ 0.06 D. The lower red dashed lines mark the base elevation of the
mobile particle, expressed as (zp — z0)/ D, which equals —0.14 (run 6), —0.18 (run 3) and —0.16 (run 4). The
upper red dashed lines indicate the exposure height & of the mobile particle above the substrate. In panel (c),
symbols represent experimental PIV data at five oscillation phases, shown for comparison with the numerical
results. Interrogation windows of 32 x 8 pixels with 50 % overlap were used to enhance vertical resolution. Note
that the velocity amplitudes far above the substrate and the vertical shift in the decay towards zero velocity are
reasonably captured in the experimental data. However, the detailed boundary layer profile near the bed is not
resolved, likely due to smoothing and averaging errors caused by scattering and reflections.

the hydrodynamic torque associated with drag is given by the product of the drag force Fp
and its effective lever arm L p, illustrated in figure 1 and approximated by (A6). Using the
Stokes boundary layer profile (2.3), the normalised lever arm can be written as

Lo _m gl Bt 4o+ L (A21)
D Duy @ 2’
where L =1/D =1/2 + (z» — zp)/D accounts for the vertical offset between the particle
centre and the contact points, effectively incorporating the influence of the substrate
geometry (cf. figure 1b).
The time-dependent function f(wt, H/§), shown in figure 17(a), describes the first
moment of the velocity distribution and is given by
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Figure 17. Temporal evolution of the dimensionless functions governing the hydrodynamic torque: the lever
arm f(wt, H/5), the zeroth-order moment of the velocity profile g(wt, H/§), and the contributions from
added mass and imposed pressure gradient i (wt, ). Note that f(wt, H/§) diverges at the zero crossings of
g(wt, H/5), corresponding to the flow reversal, where the instantaneous drag force vanishes.

2
sin(wt) + (%) cos (wt) + %e_H/’S |}/§ sin (a)t — E — £> — i cos (a)t — %)]

s 4) H
20 (wr. 2
wt, —
@S

In the limiting case of a particle resting directly on a flat surface (L =1/2 and H = 1),
the lever arm simplifies to Lp/D = f(wt, H/§). For a substrate of spherical particles in
a square arrangement, we obtain L = /2/4. In the large particle regime (H /8 >> 1), the
lever arm reduces to L p = 1/2, while in the small particle regime (H /5 < 1), it tends to
Lp=2/3, consistent with predictions for steady linear shear flow (Agudo et al. 2017).
Thus, the torque associated with the drag force, normalised according to (2.12), reads

(A22)

drag

5 _ecms | (f o Y1 B2 g (w2 (A23)
Tt D32 s 2|18\ % )
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Figure 18. Comparison between model predictions (red) and DNS results (black) for: (a) run 6 (Res = 164,
8 =0.96); (b) run 3 (Res =41, § =0.12) and (c) run 4 (Res = 164, § = 0.12). Solid and dashed lines represent
the zeroth velocity moment u( and the drag lever arm L p, respectively.

10

30 35 40 45
t t

Figure 19. Comparison between model predictions (red) and DNS results (black) of the hydrodynamic forces
acting on the particle for: () run 6 and (b) run 4. Solid and dashed lines indicate drag and lift force components,
respectively. In run 6, the Stokes profile is referenced from a virtual origin located at zo =z, + 0.15 D.

where the terms inside the brackets correspond to the time-dependent lever arm Lp
defined in (A21).

The analytical predictions for the zeroth moment of the velocity uo and the drag lever
arm Lp show excellent agreement with DNS results from runs 3, 4 and 6 (figure 18),
with time-averaged relative errors of 3.8 % and 1.2 % (figure 18a), 2.5% and 3.9 %
(figure 18b), and 8.0 % and 5.7 % (figure 18c) for ug and L p, respectively. This confirms
the accuracy of the expressions derived from the Stokes profile referenced to an effective
zero level. Furthermore, figure 19 shows that the same model accurately reproduces the
time-resolved drag and lift forces for both small and large particle cases (§ =0.96 and
8 =0.12, respectively). This close agreement between model and DNS results across a
range of flow conditions supports the validity of the force expressions and associated
torque calculations within the present parameter space. In particular, the good agreement
between the modelled force contributions and the DNS results in figure 19 lends further
confidence to our chosen expressions for the correction factors C’ and C”. Furthermore,
the overall expression for 7" (A28) is not particularly sensitive to them, with only the
drag and lift terms scaling linearly with these coefficients. The added mass and pressure
gradient contributions (especially relevant for larger particles, as shown in figure 2) are
independent of C’ and C”, thereby reducing their influence on the final result. Although
the lift force model does not explicitly account for substrate effects, these are partially
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incorporated via the torque lever arm derived from DNS data. The agreement between
model and DNS is generally strong (e.g. run 6 in figure 19a), but minor deviations for cases
with thinner boundary layers (e.g. run 4 in figure 195) suggest that substrate effects not
captured by the model may play a role. A more refined treatment, e.g. based on particles in
wall-bounded shear flow (Zeng et al. 2009), could enhance predictive accuracy in future
extensions.

In addition to viscous drag, the unsteady nature of the oscillatory flow gives rise
to additional hydrodynamic forces, namely those due to the imposed external pressure
gradients and the added mass effect. These also contribute to the horizontal torque on the
particle. The torques associated with these forces are expressed by

TVp = FVpLVp = pof VsUpw cos(wt) L, (A24)
Ta o Loy Be (A25)
AM ™~ 2:0f s ar

respectively.

The torques associated with forces in the vertical direction include the gravitational
torque, depending on the submerged weight of the particle, and the lift force.
The corresponding lever arm associated with the particle’s weight is L, = D/4,
while the lever arm of the lift force, L, was obtained directly from the DNS. In all cases,
the lift-force lever arm was found to be smaller than L,,. During phases of the oscillation
cycle when the lift force is significant, L; ~ 0.62 L,, corresponding to a dimensionless
value Ly /D =0.155 (see figure 20). This reduced value indicates that the lift force acts
further from the particle centroid than the gravitational force, which is reflected in the
net torque balance. In fact, during these phases, the stress distribution over the sphere
surface is asymmetric between the upstream and downstream sides. As a result, the net
force is shifted downstream, as illustrated in figures 20(a) and 20(c), which correspond to
relatively small and large particles, respectively.

Consequently, the torques due to the submerged weight and the lift force are given by

W, D

Ty =———. (A26)
.

T =3.22C" ppv?\ReLL, (A27)

where W is the submerged weight of the particle.

Finally, the ratio 7" between destabilising torques (due to hydrodynamic drag, pressure
gradient, added mass and lift force) and the stabilising torque (due to the particle’s
submerged weight) is defined as

drag Vp AM lift
TSy + TSy + TSy + TSy

T

Ty
H 9.66 _, &
=4I |9C'8*Hg (wt, — | Lp+h(wt, {) L+ ——= C"—/ReL |, (A28
|: g(a) 8) p +h(wt, ) +n«/§ Rey VRELL (A28)
where the function h(wt, ¢) groups the contributions of the pressure gradient and added
mass:
3 1,
h(wt, §) = 3 cos(wt) — Ee cos (wt — ¢). (A29)

The onset of particle motion is predicted when 7 reaches or exceeds unity:
T (wt; Res, 8, I', H, L) > 1. (A30)
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Figure 20. Spatial distribution of the vertical force density f, (defined in (A2)) along the normalised horizontal
coordinate for runs: (@) 6 and (c) 4, at the phase of maximum velocity far above the substrate. The vertical red
dashed lines mark the location of the resultant lift force, as defined by (A7). (b,d) Temporal evolution of the lift
lever arm L normalised by the weight lever arm Ly (red) and the lift force Fj;; normalised by the submerged
weight W | (black), for the same runs. The horizontal red dashed lines indicate the phase-averaged value of the
normalised lever arm during the phases of maximum lift force.

A.3. Substrate effects at moderate Reynolds numbers

The model described so far relies on the assumption that the ambient flow velocity is well
approximated by the analytical solution for Stokes’ oscillatory boundary layer, which is
valid under laminar, smooth-wall flow conditions. This assumption holds when the viscous
boundary layer thickness § is sufficiently large compared with the substrate roughness.

However, for § <1 and moderate values of Res, the flow can become increasingly
influenced by the bottom roughness. In this regime, the effective length scale of the
flow grows beyond § and can approach the particle diameter D as Res increases (Jensen,
Sumer & Fredsge 1989). Consequently, the actual velocity profile deviates from the Stokes
solution, as shown in figure 21(a).

Nonetheless, as long as the flow does not become turbulent, a reasonable approximation
of the velocity profile can be recovered by introducing an effective boundary layer
thickness, defined as §s = 8+/2v/w, where 8 > 1 is an empirical correction factor. For
example, in run 4, characterised by Rep > 1500, setting 8 = 1.22 yields a much improved
agreement between the model predictions and DNS results (see figure 215). This empirical
correction extends the applicability of the torque-based motion criterion discussed in
Appendix A.2 to moderate Rep values, while retaining the same theoretical framework.

Finally, the present approach can be generalised to different substrate configurations.
For instance, in a compact square arrangement, the lever arm of the hydrodynamic torque
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Figure 21. Velocity profiles from run 4 (black curves) compared with analytical Stokes profiles (red curves)
shifted upward by zg. The Stokes profiles are scaled using either (a) the viscous length scale § or (b) the
amplified length scale 8§, where the amplification coefficient is set to § = 1.22.

is given by L = (v/2/4) D, while the lever arm of the submerged weight L., varies between
D/4 and (v/2/4) D, depending on the flow orientation relative to the substrate geometry.
In a closely packed hexagonal arrangement, these values become L = (+/6/6)D and
L,=I1, 21 V3 /12) D. Further investigations will be required to incorporate the effects
of substrate geometry and packing density (i.e. inter-particle spacing), which introduce
additional degrees of freedom to the problem.

Appendix B. Contact model

A soft-sphere collision model is employed to describe particle contact dynamics. When
two spherical particles, with diameter D and centre positions at X’ and X, approach
each other, contact occurs when the distance between their centres, | X ) — X /)|, becomes
smaller than D 4 A. Here, A denotes a safety distance, which is taken to be equal to the
grid spacing Ax used in the IBM, as illustrated in figure 22.

The force developing at the contact point, F % is decomposed into surface normal and

tangential components, F' 2”) and F t(lj), respectively. Each of these components is modelled
as a spring-dashpot system, where the spring term accounts for the elastic contributions,
while the dashpot term represents the dissipative, inelastic contributions. Thus, the normal
and tangential components of the force that the ith particle exerts on the jth particle are
given by the sum of their respective elastic and dissipative contributions:

F =F¢ + Fdb, (B1)
ngj) — Ftel + Ftdis’ (B2)

respectively. The dissipative contributions F zis and F ;ﬁs are modelled as the product of the

respective components of the relative velocity V% at the contact point, the effective mass
(which is (1/2)m for particles of equal mass m), and the respective damping coefficients,
un and wy; = 0.5 p,. The relative velocity V@ s equal to

v —y®O _yi) ¢ L(ij)(g(i) + Q(j)) % n(ij)’ (B3)
where V@ and V) are the linear velocities of the particle centres, L% is the distance

from the contact point to the centre of the ith particle, 2O and 2 are the angular
velocities of the particles, and n¥) is the surface-normal unit vector pointing towards the
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) e kn en A/Ax D/Ax
0.1 0.4 1 x 102 0.3 1.0 63
1.0 0.4 2 x 10° 0.3 1.0 16

Table 4. Contact model parameters. The parameters denote the Coulomb coefficient of dynamic friction .,
the dimensionless normal stiffness coefficient 12,1 =6k;Ax/(m o5 gD3), the dry restitution coefficient ¢, the
dimensionless penalty force range A /Ax and number of grid points per particle diameter D/Ax. The reported
values are commonly used in sediment transport studies, such as those reported by Mazzuoli et al. (2016).

0)
) 1)
b a0

x

X .
Q0 v .

Figure 22. Schematic of the inter-particle contact kinematics. Particles i and j are assumed to have equal radii.

Jjth particle. The damping coefficients depend on the normal restitution coefficient e, the
effective mass and the normal stiffness coefficient k, (Silbert et al. 2001). In particular,
the normal damping coefficient is assumed to be twice the value of the tangential damping
coefficient. The parameters for the contact model are summarised in table 4.

The normal and tangential elastic contributions to the contact force are proportional to

the respective normal and tangential displacements, 65,17) and 6,@ , at the contact point, and
are given by
F =8k, (B4)
Fi'=—8"k. (BS)

where Sf,lj) =38, n'/, and the normal deformation is 8, =d + A —2 L@ (see figure 22).
The tangential stiffness coefficient k; is assumed to be k; = (2/5)k,, following the
approach by Silbert e al. (2001). The tangential displacement is computed by accounting
for the possibility that elastic energy accumulated during the contact can be released when
the corresponding tangential elastic force exceeds the Coulomb friction threshold. The
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particles do not slide, as long as the condition

P (B6)

<u® |r9

is satisfied, where ugij) denotes the Coulomb coefficient of dynamic friction and F ,(ij) is the

static friction force determined by (B2), following a widely adopted approach in granular
flow models (e.g. Syamlal, Rogers & OBrien 1993).
To compute the elastic contribution to the static friction force, F fl , the tangential
@)
61‘

displacement is updated at each time step At according to the following expression:

@)

8Pt + A =38"(t) +8,tD, (B7)

where §; = V,(ij)At and ¢t = V,(ij) /| V;ij)l denote the increment of the tangential relative
displacement and the displacement unit vector at time ¢, respectively. The initial value

of §; is given by the smaller of two values: V,(ij)At or 8§, Vt(ij) / V,,(ij), where V,l(ij) =V,
n'") represents the normal component of the relative velocity. In (B7), the accumulated

tangential displacement § ;ij) () is adjusted for rotation of the contact plane during the time
interval At by the expression

0= (8" @ - £)¢ + (87 @) - tota) tnew, (BS)
where the unit vectors &, £,;4 and ¢, are defined by
_ nD (1) x nD (¢t + Ar) (o ¢ xn () _&x n@(t + At)
T OO xn@a+ a0 T exn®@ @l T g xn@ @+ AD|
(B9)

When the condition (B6) no longer holds, the two particles slide relative to each other
at the contact point, and the static friction force, expressed by (B2), is replaced by the
dynamic friction force

3 ;lj)

—/ng) |F£,ij)| t@ if e £0,
@) _ I iy
F7 = _Mgt/) |F£llj)| |§_i| ift@ =0, § £0, (B10)
0 otherwise.

Finally, the total contact force and torque acting on the ith particle are obtained by
summing the contributions from all surrounding particles in contact, as given by

ng) — Z F (B11)
J#i

Tg) — Z (L(ij)n(ij) % F(ij))’ (B12)
J#

respectively. To solve the contact dynamics effectively, the fixed time substep Az used to
solve (2.16) and (2.17) is chosen to be O (10?) smaller than the fixed time step At adopted
to advance the flow field.
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